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Abstract

We show a conditional exactness statement for the Nisnevich Gersten complex associated
to an Al-invariant cohomology theory with Nisnevich descent for smooth schemes over
a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich
analogue of the Bloch—Ogus theorem for étale cohomology over a henselian discrete valuation
ring with infinite residue field.

1 Introduction

Given an Al-invariant cohomology theory E for smooth varieties X over a field k with
Nisnevich descent, Colliot-Thélene, Hoobler and Kahn proved in [4] the exactness of the
associated Gersten complex

n n n+1
0— H"(Y.E) > P H(Y.E) — ., HZN (Y E) — -

2eY® zey(® (a)
a
n+d—1 n+d
N EB H (Y,E)—)@Hm (Y,E) —> 0,
zey =1 zey@

where ¥ = Spec(Oy ) is the local scheme at a point x and d is the dimension of X. The
main ingredient of their proof is a geometric presentation theorem [4, Theorem 3.1.1] for a
closed immersion Z < X which is due to Gabber. If E is algebraic K -theory, this result
implies the Gersten conjecture for smooth schemes over a field, originally proved by Quillen
[11, Theorem 5.11]. Taking E as étale cohomology with constant torsion coefficients defined
over k, one obtains the Bloch—Ogus theorem [3].
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In the mixed characteristic case of a discrete valuation ring with infinite residue field,
an analogue of Gabber’s geometric presentation theorem for a closed immersion Z — X
was shown in [12, Theorem 2.1]. However, there are two crucial differences to the equal
characteristic case: Firstly, one has to require that the closed subscheme Z does not contain
any irreducible component of the special fibre of X. Secondly, the presentation is not Zariski-
but only Nisnevich-local in X.

In this paper, our goal is to adopt the techniques of Colliot-Thélene, Hoobler and Kahn to
the mixed characteristic case using the more restricted version of the presentation theorem.
Our main result is the following (see Theorem 5.13, below).

Theorem Let S be a Dedekind scheme with only infinite residue fields and E an A'-invariant
cohomology theory for smooth schemes of finite type over S with Nisnevich descent. Let X / S
be such a smooth scheme of dimensiond, x € X a pointandY = Spec(O’)'(’x) the Henselian
local scheme at x.

(1) The Gersten complex (1a) is exact possible except at the first and third (non-trivial) spot.
(2) If for each point x of X the forget support map for the special fibre Y,

RI'y, (MNis, E) = I'(Y, E)
is trivial, then the Gersten complex is exact everywhere.

In presence of the second condition, one obtains the usual resolution of the Nisnevich
sheafification of the cohomology given by E by flabby Nisnevich sheaves. If E is algebraic
K -theory, the theorem was known before, see [2] and [8].

As an application of the theorem above, we derive the following analogue of the Bloch—
Ogus theorem in mixed characteristic (see Corollary 6.10).

Theorem Let Y = Spec((’);x) be a Henselian local scheme of a d-dimensional smooth
scheme X of finite type over a Henselian discrete valuation ring o with infinite residue field
of characteristic p. Let K be a locally constant constructible sheaf of 7./m-modules for m
prime to p on the small étale site of Spec(0). Then the Gersten complex

0— H'(Ye, K) > @ H'(*(). K) > - > @) H"(k(z), K(=d)) — 0.

zeY©® zeY@

is exact. Here H' (k(z), —) denotes the Galois-cohomology of the field k(z).

We remark that in [7] Geisser derived the exactness of the above Gersten complex from
the Bloch—Kato-Conjecture even for a (Zariski) local scheme Y = Spec(Oy ) but only for
coefficients K = /L%’ where n < r. Our method of proof is more elementary, at least if the
residue and quotient field of o are perfect (see Remark 6.9 and Remark 6.11).

The organization of the paper is as follows. In Sect. 2 we recall some known results on
basechange of presheaves of spectra. We include a short reminder on elementary properties
of the codimension for schemes not necessarily over a field. In Sect. 3 we define the coniveau
filtration for a spectrum with Nisnevich descent and show that the filtration quotients are
flabby Nisnevich sheaves. In Sect. 4 the Nisnevich Gersten complex is introduced. Up to
this point, the A'-invariance property has not been used yet. Sect. 5 contains an effaceability
result which makes use of A'-invariance and the geometric presentation theorem. This leads
to our main theorem. The final Sect. 6 deals with the application to étale cohomology with
torsion coefficients.
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2 Preliminaries

Let S be a base scheme, which is always assumed to be noetherian and of finite dimension.
Let moreover Smg be the category of smooth schemes of finite type over S and Sptgi (Smy)
the category of presheaves of spectra on Smg. For an object X € Smg we define the category
Sptgi (Xnis) analogously where Xnjs denotes the small Nisnevich site on X.

The details of the following model structures play no essential role for this text and we
refer to the preliminary section of [12], which summarizes material from [1], [5, Sec.2] and
[9, 10], for further explanation and references.

We consider the (stable) object-wise model structure on Sptgi (Smg). Its homotopy cat-
egory SHgi (Smyg) is a triangulated category with exact triangles given by the homotopy
(co)fibre sequences. The left Bousfield localization at the equivalences on Nisnevich stalks
is called the (stable) Nisnevich local model structure with a fibrant replacement functor Lnjs.
Likewise, in the case of the small site Xnjs, we define the (stable) Nisnevich local model
structure on Spt g1 (Xnis) analogously. In the case of the big site Smyg, a further left Bousfield
localization yields the (stable) A'-Nisnevich local model structure with a fibrant replacement
functor L. We are working in the non-localized model structure only and use the fibrant
replacement functors to obtain statements about the localizations. Hence, whenever we speak
of an exact triangle or a homotopy cofibre, we mean the respective terms for the object-wise
model structure.

2.1 Basechange

A morphism f: X — Y of noetherian schemes of finite Krull dimension induces a covering
preserving functor f: Smy — Smyx by pullback. Precomposition f, with f is the right
adjoint of a Quillen adjunction

" Sptgi(Smy) = Sptgi(Smy) : f,

for each of the model structures from above (see again the preliminary section of [12] for
more details and references). By abuse of notation, we write fi := f, and f* := f . If the
morphism f is an object of Smy itself, there is an adjunction

f:Smx = Smy : f

with the left adjoint given by post-composition. Again, precomposition with f* is the right
adjoint of a Quillen adjunction

S* 1 Sptgi(Smy) = Sptgi (Smy) : !,

for each of the model structures. We clearly have f = f = f*andset f; := f *,
Likewise, for a morphism f: X — Y, we obtaln Quillen adjunctions

Ji K
Sptsi (Xnis) ﬁ Sptgi (YNis) = Sptgi (Xnis) (2a)
for the object-wise and the Nisnevich local model structure where again for the first one we
have to assume that f is an object of Ynjs whereas the second always exists.

For an object X — Y in Smy, there is a canonical covering preserving inclusion functor
8x/y: XnNis — Smy. Precomposition with this functor yields the right adjoint of a Quillen
adjunction

8;‘(/), : Sptg1 (Xnis) = Sptgi (Smy) : Sx,y « (2b)
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for the object-wise and the Nisnevich local model structures. The inclusion functor 8x/y
factorizes as
dx /
XNis —> SmX b d Smy

(where we set §x := x,x) and the adjunction (2b) factorizes as

5*

Sptgi (Xnis) = ; Sptgi (Smx) —> Sptsl (Smy).
X, %

If moreover X is an object of Ynis, there is a commutative diagram

Xle % Smx
own, s (20)
Ynis *} Smy

inducing the diagramm

Sptgi (XNN) Sptg1 (Smy)

5X * ) )
ETr 5 T
Sptsl (Yle) 8 SptSl (Smy)
Y., x
of Quillen adjunctions with diagonal (2b). In particular, for an étale morphism f: X — Y the
restriction 8, to the respective small sites commutes with f*. In particular, these observations
imply the following lemma.

Lemma2.1 Let X € Smg and g: X — X étale. Then g* Ox/s,x =03
unit of the adjunction g* - g, induces a canonical map

%5 I particular, the

SX/S,*E — g*af(/S,*E'
for E € Sptgi (Smy).

Remark2.2 Let f: X — Y be any morphism between noetherian schemes of finite Krull
dimension. A diagram analogous to (2¢) with f in place of f* shows that the restriction 8, to
the respective small sites commutes with f.

Definition 2.3 Let E € Sptgi(Smg) or E € Sptgi (Xnis) be a spectrum. For n € Z, we let
7, (E) denote the presheaf U +— 1, (E(U)) of abelian groups on Smg or Xyjs. Moreover,
one sets E"(X) := w_,(E(X)). This common convention lets us synonymously use the term
cohomology theory for such an object E.

Lemma2.4 Let E € Sptgi (Xnis) be a spectrum, z € X a point and consider the canonical
morphism 3: Spec(Ox ;) — X. Then the canonical morphism

353 0 (E) = (343" E)
is an isomorphism of presheaves on Xjis for every n € Z.

Proof For any morphism f, we have an isomorphism f,7,(E) = 7, (f«E) as 7, and f, are
defined object-wise. Suppose for a moment that 3 were an object f: U — X of the site Xnis.
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In this case f*(F) = F xx U. Since homotopy presheaves and pullbacks of presheaves are
calculated object-wise, we obtain

frmo(E) Zmo(E) xx U E>mo(E xx U) = 1o(f*E).

We may write 7, (F) alternatively as mo(Hom(S"”, F)), where Hom denotes the internal
mapping space of preshaves. For this internal mapping space, there are isomorphisms

f+(f*Hom(S", E)) = fu(Hom(f*(S"), f*(E))) = Hom(S", f. f*(E))
where for the first we used that f was assumed to be in Xjs. Alltogether, we have

Jef*mn(E) = fi f*mo Hom(S", E)
7o f«f* Hom(S", E)
7o Hom (8", f f*(E))
T (fe [TE)

in the case of f being an object of the site Xnjs.

For the case of the essentially open immersion 3: Spec(Ox ;) — X of the lemma, we
write 3 as the cofiltered limit of the diagram D_): Z — Xnjs given by the affine Zariski
neighbourhoods of z in X. Then by the proof of [12, Lemma 1.5] one has a canonical natural
isomorphism

11211 e 11

343" (F) = colimiez d; . d; (F)

where d; : D; — X is the structural morphism which is an open immersion. The result now
follows from the case handled above and from the fact that homotopy groups commute with
filtered colimits. O

2.2 Codimension

In this subsection, we recall basic notations on the codimension for the convenience of the
reader.
Let X be a scheme and Z C X an irreducible closed subset. Define

codim(Z, X) :=sup{s e Noo | Z =2, C --- C Zp € X with Z; C X irred. cl.}.
For an arbitrary closed subset Z C X we set
codim(Z, X) := inf{codim(Z’, X) | Z’ C Z is an irreducible component},
where by convention codim(, X) = oo, as the codimension of Z in X. One has
codim(Z, X) = inf dim(Ox ;).
zeZ

If Z is irreducible closed with generic point 1z, then codim(Z, X) = dim(Ox;,). Recall
that a scheme X is called catenary, if for every two irreducible closed subsets Z € Z' C X
every maximal chain Z = Z; C --- C Zg = Z’ of irreducible closed subsets has the same
finite length. Examples of such are schemes (locally) of finite type over a field or over a one

dimensional noetherian domain, e.g., a discrete valuation ring.
We have the following three easy lemmas.

Lemma 2.5 Let X be a scheme and Z € Z' C X two irreducible closed subsets with
codim(Z', X) = s. Then

Z#7 & codim(Z,X)>s+1.
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Lemma 2.6 Let X beaschemeandZ,, Zy < X two closed subsets with both codim(Z,, X) >
s and codim(Zy, X) > s. Then codim(Z, U Z, X) > s.

Lemma 2.7 Let X be an irreducible catenary scheme and Z C Z' C X two irreducible
closed subsets. Then

codim(Z, X) = codim(Z, Z") + codim(Z', X).
For an integer s > 0, define
X® ={z € X | codim({z}, X) = s}

and say that z has codimension s in X if z € X ), Note, that {z} is always an irreducible
closed subset of X and z is its generic point. One has X &) = g fors > dim(X) as dim(X) =
sup,cy dim(Ox ). We have codim(Z, X) = 0 if and only if Z contains a whole irreducible
component of X. Hence a point z € X is a generic point of an irreducible component of X
if and only if dim(QOy ;) = 0. Thus, X© is precisely the set of generic points of irreducible
components of X.

Remark 2.8 Please note that the inequality
dim(Z) + codim(Z, X) < dim(X)

is not always an equality, even for catenary schemes.

3 The coniveau filtration

3.1 In this section we define the coniveau filtration for a Nisnevich local fibrant spectrum
on Smg. We fix a spectrum E € Sptgi (Smyg).

Definition 3.2 Let X/S € Smg, Z C X aclosed subset with complementary open immersion
Jj: (X N\ Z) — X.Let Ex be the spectrum dx /s +E in Sptgi (Xnjs). Lemma 2.1 induces a
morphism

nj: Ex = jxj"Ex = jxEx<z (3a)

in Spt g1 (Xnis) whose homotopy fibre, we denote by Ez,x € Sptgi (Xnis)-
Remark 3.3 Note that EX/X = Ex and EQ)/X = xin SptSI (XNis)-

Remark 3.4 Throughout Sects.‘3 and 4, we could as well work with arbitrary spectra Ex €
Sptg1 (Xnis), not necessarily of the form x5 «E for a spectrum E € Sptgi (Smg). In this
case, E ; will be defined as f*Ex for an étale morphism f : X — X of finite type.

3.5 We fix an étale morphism f': X — X of finite type and a closed subset Z C X. Let
Z = Z x x X denote the pullback of Z along f. We get an induced morphism f: (X \Z) —
(X ~\ Z) on the open complements. By Lemma 2.1, f*Ex = E; and we have a canonical

morphism Ex — fyE5.

Lemma 3.6 In the situation of 3.5, we have f*EZ/X ~ EZ/)? in Sptgi ()?Nis).
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Proof Let j: (X ~ Z) < X and j: (X ~ Z) — X. First, we apply the homotopy exact
functor f* to the homotopy fibre sequence Ez;x — Ex — j.j*Ex. Base change (since
f € Xnis) for the pullback square

yields an equivalence f*j, =~ j* f * and it remains to observe that f * Jr o~ f )* o~
(f))* ~ j* f*, which is easy. -

Lemma 3.7 (Forget support map) Let Z and Z' be closed subsets of X with Z € Z' C X
and let Ex € Sptgi(Xnis) be a spectrum. Then there is a canonical forget support map
Ez/x — Ez x. Further, this map sits in a canonical exact triangle

Ez)x = Ezyx = jxEz'<2)/x~2)

of objects from Spt g1 (Xnis), where j: (X N\ Z) — X.
Proof Note first that j': (X \ Z') — X factorizes as

X Z =X~ )~ Z 25 x 7zl x,

and therefore the unit id — k.k* of the adjunction k* H k, induces a morphism j, j* —
o/ /%

Jekik® j* =~ j j"™*. This map is compatible with the units of the adjunctions j* - j and
J* = jx, thus inducing the forget support map Ez,;x — Ez/;x on homotopy fibres.
For the exact triangle consider the diagram

Fl-1] — « ——— F

l l l

Ez/x — Ex —> ]*]*Ex

forget supportl lid l

Ezx — Ex — j.j™Ex

of distinguished triangles. It remains to identify F* with j.E(z/< z);(x~z)- Applying the
exact functor j, to the exact triangle

Ezzyx~z) = Ex~z) = kk™Ex7),
yields the right vertical exact triangle
F = jxEz<z)/x~2) = JxJ Ex = jskik™ j*Ex,
where we used the definition j*Ex >~ E(x z). O
Remark 3.8 In particular, the previous Lemma 3.7 induces a long exact sequence

o= EB(X) = E%(X) = EY (X NZ) = EXTNX) > -
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3.9 Recall that a Nisnevich distinguished square

U— X

b

v x
is a pullback square such that j is an open immersion, f is an étale morphism of finite type
and (X — j(U))red Xx X = (X — j(U))req is an isomorphism.

3.10 Recall moreover, that an object-wise fibrant spectrum E € Sptgi(Smg) (i.e., every
evaluation E (X) is an ordinary Q-spectrum) is Nisnevich local fibrant if and only if E () = *
and for each Nisnevich distinguished square Q as in 3.9, the square E(Q) is a homotopy
pullback square (or equivalently a homotopy pushout square). Equivalently, the sequence

E(X)— EX)® E(U) — E(U)

is a distinguished triangle and hence induces long exact sequences on homotopy groups. The
same observation holds for the Nisnevich local fibrant objects of Sptgi (Xnis) and the right
adjoint§x /s «: Sptgi (Smg) — Sptgi (Xnis) of the adjunction (2b) preserves Nisnevich local
fibrant objects.

Lemma 3.11 An object-wise fibrant spectrum E € Sptgi(Smy) is Nisnevich local fibrant if
and only if for all Nisnevich distinguished squares as in 3.9, the induced morphism

Ezix = [« Ez/x = fxEz %
(see Lemma 3.6) is an equivalence. Here, Z == X ~\. U and 7= ()~( N 17) = f_l(Z).

Proof This follows immediately from the fact the a square of spectra is a homotopy pullback
square if and only if the homotopy fibres of the horizontal morphisms are equivalent. |

Lemma3.12 Let E € Sptgi(Smg) be a Nisnevich local fibrant spectrum. Let Z1 and Z, be
closed subsets of X, and set Z1» = Z1 N Zy and Z = Z1 U Zy. Then the forget support maps

Ezy;x — Ezyx

I ab

Ez,x — Ez/x
form a homotopy (co)fibre square in E € Sptgi (XNis)-

Proof First, observe that the respective open immersions form a Nisnevich distinguished
square
XNZ — X\ 2y

l l

XNZ — X\ Zp

Denote by j: X N\ Z < Xand ji;: X\ Z, — Xfori =1,i = 2ori = 12 the
complementary open immersions. Since E is Nisnevich local fibrant, it follows that

j12,*]'ik2EX — JZ*]Q*EX

l |

J1xJfEx —— jxj*Ex

@ Springer



A Bloch-Ogus theorem for... Page9of24 82

is a homotopy pullback square. Mapping into this square from the square with edges idg,,
which is a homotopy pullback square for trivial reasons, and taking homotopy fibres, yields
the square (3b). Thus, (3b) is a homotopy pullback square, too. |

Corollary 3.13 Let E € Sptgi (Smg) be a Nisnevich local fibrant spectrumand Zy, . . . , Z, <
X be disjoint closed subsets. Then

.
EB Eziix = Eqr_, zi/x)-
i=1

Definition 3.14 Let Ex € Sptgi (Xnis) be a spectrum. For an integer s > 0, we define the
spectrum

Exe = colim Ez/x
ZCXclosed
codim(Z,X)>s

in Sptgi(Xnis). The structure maps for the colimit are the forget support maps (see
Lemma 3.7).

Remark 3.15 Informally, one should think of the colimit in the previous Definition 3.14 as
“making the Z’s bigger”. The index category is filtered as one can take the union of two
closed sets.

3.16 Since a closed subset of X of codimension > (s + 1) is in particular a closed subset of
codimension > s, we get a filtration

k —> EX(‘” —> s —> EX<5+1) —> EX(S) —> s —> EX(O) = EX
of presheaves of spectra on Xnjs. For the last equivalence, observe that the colimit in Defi-
nition 3.14 has a terminal object Z = X in the case s = 0.

Definition 3.17 We denote the homotopy cofibre of E yi+1) — Ex by Exe/s+1)-

3.18 As usual, one can associate a spectral sequence (more precisely, a presheaf on Xyjs of
spectral sequences) to such a situation: Applying , for an integer n to the filtration of 3.16
yields a finite filtration

0 Cimm,(Exwy - Ex) C ... Cimm,(Exq) — Ex) C my(Ex)
and the associated spectral sequence (in the category of presheaves of abelian groups on
XNis)

E;lhq = Tptq(Exirin) = Tpiq(Ex)

is degenerate (and hence always converges in the strongest sense) as the filtration above is
bounded. Reindexing and rephrasing along Definition 2.3, we get

P4 _ pptq r+q
El - Ex(p/ﬂ+l) =E .

The constructed spectral sequence is not yet the coniveau spectral sequence. To obtain the
latter, we will sheafify the whole situation (after taking homotopy groups as above) and
identify the homotopy cofibres E y(y/p+1) With certain coproducts.

3.19 For a point z € X we denote by 3 in the following the canonical morphism
3: Spec(Ox ;) — X.
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Proposition 3.20 Let E € Sptgi (Smg) be a Nisnevich local fibrant spectrum. Then for every
integer s > 0, we have an equivalence

~ *
Exoiin >~ @D 33 Ez/x.
zeX®

where 3* : Sptgi(Xnis) = Sptg1 (Spec(Ox ;)nis) © 3« is the adjunction (2a) and where we

set Z := {z} in each summand by abuse of notation.
Proof For closed subsets Z and Z’ of X with Z C Z’, Lemma 3.7 yields an exact triangle

Ez/x = Ezx = j«E@z'<2)/x~2)-
Taking filtered colimits yields an exact triangle

E (s+1) —> E (s) —> colim '*E ZINZ)(XNZ (30)
X X Z,Z'<Xclosed HE@DIXND)
A<y 4
codim(Z’,X)>s
codim(Z,X)>s+1

of objects from Spt¢i (Xnis). In particular, the right-hand side is equivalent to E y(s/s+1). The
colimit in (3c) runs over the filtered category of pairs (Z, Z') where Z C Z' for Z, Z' € X
closed subsets of the indicated codimensions with an arrow (Z, Z') — (2 .7 /) if and only
ifboth Z € Zand Z' < 7.

We will now rewrite this colimit. Fix a pair (Z, Z’). Since X is noetherian, Z' is noetherian
as a topological space and hence the union of its finite number of irreducible components
Z\, ..., Z,,each of codimension > s. It follows, that all the intersections Z; N Z} fori # j
are of codimension > s + 1 by Lemma 2.5. Set

z=zulJzinzhu |J Zl.
i#] i such that
codim(Z;,X)2s+]

By Lemma 2.6, 7 has codimension > s+ 1and (Z s Z/ := Z’) receives a map from our
original pair (Z, Z'). Let T € X be the set of generic points of those Z; of codimension

s.ThenTUZ = 2. Further, U = X . Z C X is an open separating neighbourhood of
T. By this we mean that 7 N U splits into a disjoint union of closures of points of 7 in U.
Combining these observations, we get a cofinal functor from the category of pairs (T, U)
with 7 € X a finite subset and U C X an open separating neighbourhood of T into our
original index category by mapping a pair (T, U) to the pair (X ~ U, T U (X ~ U)). In
particular,

colim  jiEz\z)/(x~2) =~ colim JxE 7 )
Z,Z'<Xclosed ( )/ ) TCX® finite (TNU)/U
zez! TCUCX open sep nbh

codim(Z’,X)>s
codim(Z,X)>s+1

As U is a separating neighbourhood of 7', Corollary 3.13 gives a splitting

Eroyu = D Eqovyu-

zeT
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Note that the open separating neighbourhoods of T are cofinal in all open neighbourhoods
of T'. In particular, we get

colim j« E = ~ colim i« E 1o,
T<X® finite e (rom/u TCX® finite ®ZET e (=nn/u
TCUCX open sep nbh TCUCX open nbh
~P.exo colim i E =

zeUCX open nbh

Finally, by Lemma 3.6, E ;) v = j*EE/X and the claim follows. O

Corollary 3.21 Let E € Sptgi1(Smg) be a Nisnevich local fibrant spectrum. Then for every
integer s > 0 and every integer q, we have an isomorphism

q ~ * q
Ex(s/s-H) = @ 3x3 Ez/x-
7€X®)

Proof. By Proposition 3.20 Ex/s+1) =~ @, cx 343" Ez;x. Using Lemma 2.4 we compute
”—q(@zex(:) 5*5*EZ/X) = @ZEX(S) T—g (3*3*EZ/X)
= D.exw 343 g (Ez)x)-

3.22 Recall that a sheaf F of abelian groups on the site XNnjs is called flabby, if the presheaf
HY(—, F) on Xyjs is zero for g # 0. A flabby sheaf is in particular acyclic,i.e., HY (X, F) =0
for g # 0.

O

Proposition 3.23 Let E € Sptgi(Smgs) be a Nisnevich local fibrant spectrum, z € X with
Z = {z} and q an integer. Then the presheaf

33 E7)x
of abelian groups is a flabby sheaf on Xnjs.
Proof Let g be an integer. Let V. — X be étale of finite type with (set-theoretical) fibre

V(z) over the point z € X. For a point v € V(z), we set VJOC := Spec(Oy ) and Vzk’C =
V xx X]ZOC. Using the identification Z x x VZ]"C = ]_[veV(z) v, we have

;,*;,*Eg/x(m =7y (33" Ez/x(V)) (by Lemma 2.4)
= 71 (Ezsyymejuoe(VI)) by Lemma 3.6)

=y (E( (v;°°))

L[vEV(Z) v)/vzloc
7 (Brevie) Evjvie(VI)) (by Corollary 3.13)
@veV(z) EZ/VI}OC(VI}OC)'

12

12

Let us now prove the sheaf property of 343*E % ne Using Lemma 3.6, we may restrict us to
Nisnevich covers V — X of X. Writing W := V xx V, we have to show that

pri—pr3
0 = 33" EY (X)) —— 33" ES (V) ————— 3,37 ES (W)

! 1 1
EZ/Xéﬂc(XZOC) - ®UEV(Z) EZ/VLQOC(VUOC) - @weW(z) EZ)/Wlll?c(Wu?c)
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is an exact sequence. Since V — X is a Nisnevich cover, we can find a point vy in the fibre
V (z) with residue field k(vg) = k(z). In particular, by Lemma 3.11, the composition

loc q loc can loc
E /XIOL (X ) @ | E /V]m (V ) U /Vloc V )
vevi(z

is an isomorphism, which settles the exactness at 3,3*E % /X (X).

For the exactness at 343" E% /x(V), observe that Drevy E V1) splits into a direct

U/Vk’“(
sum of EZ/XLOC(XIZOC) and @vo#vev(z) EU/VVIQC(VUOC). Hence, it is enough to show that the

restricted map €D, zyev () EZ/VJ,OC (Vloey — Duew EZ)/W}‘?C(W};)C) is a monomorphism.
To this end, it is suffices to show that
pri —pr3c Ej i (V) — EY (Whes,,) @ E* (Wi,

v®up /Wl"“ v ®v/WlOL S

is a monomorphism for each v different from vy. But even the projection

Wloc )

It q
(V OC) — E VR, /Wloc ( VRV

prT v/vloc

is an isomorphism by Lemma 3.11: Indeed, the equality k(v ® vg) = k(v) follows from

k(vo) = k(z), so pry: (W,E‘gvo, v ® vg) — (VUIOC, v) is (essentially) a Nisnevich neighbour-
hood. This finishes the proof of the sheaf property of 3.3*E qZ /X

In order to show the flabbieness, let us first show that 3* E % /X is flabby: Again, we have

=E‘?

3*E% /X 2/ xloe by Lemma 3.6. Let j: U — X/ lo¢ pe the open complement of the closed

point z € X!°¢. Then j*E
ie., EY

is trivial by construction. Hence, E7 is supported on z,

/ Xloc / Xloc

= z,2"EY is flabby as a skyscraper-sheaf. For the flabbiness of 3*3*E% /X

/Xloc /Xloc
we have to show that H' (Vnis, 353 *Eq /x) is trivial for all V — X étale of finite type and
i > 0. Since 3* EZ/X is flabby, it is Rj3.-acyclic, i.e., 343 EZ/X >~ R3q3* EZ/X. In particular,
we have

H (Vis» 343" E? /X) =H (Vis» R343" E} /X) Hl( zlol\chs’ %/X)’
but the latter group is trivial since VZI"l\CIIS - X loc j5 étale and 3*EY, 7/x s flabby. O

Corollary 3.24 Let E € Sptgi(Smg) be a Nisnevich local fibrant spectrum. Then for every

integer s > 0 and every integer q, the presheaf EX<‘/‘+1 is a flabby sheaf on Xnjs.

Proof By Corollary 3.21, we have EX(XM,) ~P.cxe 3*3*E%/X. Here the direct sum is the

direct sum of presheaves. But Xnjs in noetherian (see e.g. [13, Proposition 5.2]), so the direct

sum of sheaves is the direct sum of presheaves and the claim follows from Proposition 3.23.
|

4 The Nisnevich Gersten complex
Let us remark that the Zariski-analogues of the following Lemma 4.1 and Proposition 4.6

were considered initially by Quillen for the special case of algebraic K-Theory in [11, §7.
Prop 5.6].
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Lemma4.1 Let E € Sptgi1(Smg) be a spectrum and n an integer. The cofibre sequences of
Definition 3.17 yield a complex of presheaves on Xnis of abelian groups

0 1 d—2 d—1
n ¢ n d n+l d d n+d—1 d n+d
0— Ey — ES o — EX“/Z) — s — EX(d_l/d) — EX@,) — 0.

The (Nisnevich) sheafification (=)~ of this complex is exact at the first spot (E%)™ if and
only if the canonical map

(a(r)l)N : (El;((l))’v - (Eﬁ(o))’v (4a)
is zero and it is exact at the spot (ET(;% +)~ fors > 0if both the canonical maps

(O‘nH)N: (EHH)N — (E%S-n)” and

s—1 X 4b
n+s+1y~ . nts+1\~ ns+1\~ (4b)
(as+1 )7 (EX(HZ) )T — (EX(:+1) )

are zero (where the first condition is empty for s = 0).

Proof The long exact sequences on homotopy groups associated to the cofibre sequences
Eyis+y = Eys) = Ey/s+1) from Definition 3.17 for s > 0 yield a diagram

n n+2
Ex(l) Ex(3) “
\013 \"f’
n n+2
Ex(O) Ex(Z)
n+l n
/ \ﬁ(:)l "1 /l \/3‘2
0 1
n e n d n+1 d n+2
0 — EY » Exom » Exan > Exaen
n ﬁn+1
\VT 1 /l
n+1
n+1 EX(]) n+1
) / B
n+1 n+1
EL o E o

and we define the middle horizontal sequence as indicated. This sequence is clearly a complex
as the diagonal lines are complexes. The remaining statement follows immediately from
sheafification (—)~ applied to the whole diagram. |

4.2 For a Nisnevich local fibrant spectrum E € Sptgi(Smg) we can rewrite the complex
of presheaves on Xyjs of abelian groups from the previous Lemma 4.1 with the help of
Corollary 3.21 as

d° d!
0— E% 5 @ 3*5*E%/X — @ 3*3*E%*/‘}1( ...

7eX©® zeX®
a2 « pndd—1 447! * pn+d
C— EB 343 EZ/X — GB 343 EE/X — 0. (4c)
zeX@-D zeX@

Definition 4.3 For every integer n, we define the Nisnevich Gersten complex G*(E, n) of E
and homotopical degree n as the complex with entries

G'(E.n):= P 33 E Ty
zeX®)

for s > 0 and zero otherwise. The differentials d° are defined as in 4.2.
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4.4 For every integer n, we can reformulate (4c) as a map

e

E% — G*(E,n)
into a complex of flabby sheaves (see Corollary 3.24) of abelian groups.

4.5 In abuse of notation, we will just write E (X f(’) for the stalk of E at a point x of X. Here
of course X i’ denotes the Henselian local scheme Spec((’)é’(‘ o

Proposition 4.6 Let E € Sptgi (Smg) be a Nisnevich local fibrant spectrum and n an integer.
There is a complex of sheaves on Xnis of abelian groups

0 (D)™ 5 ¢%En L g L 2 Gl E ) — 0

where all but the first entry are flabby Nisnevich sheaves. This complex is

(1) exact at the first spot (E%)" if and only if, for each point x of X and all Z C X closed
with codim(Z, X) > 1, the forget support map

E%/x (X)) = Ex(X1)
is trivial and
(2) exact at G°(E, n) for s > 0 if, Nisnevich-locally on X,

(1) if s = 1, for each point x of X and all Z C X closed with codim(Z, X) > 1, the
forget support map

EZjx (X)) > EX™ (X0)
is trivial and
(ii) if s > 1, for all Z € X closed with codim(Z, X) > s, there exists Z C Z' € X
closed with codim(Z', X) > s — 1 such that the forget support map
EY 3 (X) — E%,*&(X)

is trivial and
(iii) for all s > 0 and all Z C X closed with codim(Z, X) > s + 2, there exists Z
Z' C X closed with codim(Z', X) > s + 1 such that the forget support map

Eg;“(X) N ng/-}“(X)

is trivial.

Proof The complex is obtained by applying the sheafification functor to the complex (4c). By
Corollary 3.24, all but the first entry are flabby Nisnevich sheaves. The exactness conditions
are just expanded versions of (4a) and (4b). m]

5 Effaceability
5.1 In this chapter, let S be the spectrum of a Henselian discrete valuation ring o with

infinite residue field IF of characteristic p and quotient field k. Note that we make use of this
hypothesis only from Lemma 5.8 onwards.
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Construction 5.2 Let E € Sptgi (Smg) be a spectrum and f: X — X a morphism in Smg.
We consider the morphism
ng: Ex = fyuEx (5a)

in Sptgi (Xnis) given on an étale morphism V — X of finite type as the map
Ex(V)=E(V)— E(V xx X) = Eg(V xx X)

induced by the projection. This clearly generalizes the construction (3a) where the morphism
f was assumed to be étale. Indeed, in this case we have f*(Ex) = E %

Construction 5.3 Next, for E € Sptgi (Smg), aclosed subset Z C X and a pullback diagram

. i P (5b)

we want to define a morphism
ng: Ezx — fxEz )z (5¢)

that coincides with (5a) for Z = X. First note that the commutative diagram (5b) induces
the base-change morphism
%, (be) =~
f Jx /> ]*.f .
Further, by adjunction, Construction 5.2 induces a map

b
~ o % ny o T
f ]*EX = f EX\Z —> E}?\Z =] E}?

Composition with the unit yields a morphism

T b
. 1 . felbedj* v Fedullp o
JsJ*Ex = fuf jsi"Ex ——— fiujif JTEx — fij.J Eg (5d)

which is seen to fit into a commutative square

inducing the desired map 7 by taking horizontal homotopy fibres.

Lemma5.4 Let

X2£>X1ﬂ>X

be two morphisms of noetherian schemes of finite Krull dimension, Z < X a closed subset and
Z1:=7Z xx X1, Zp := Z xx X; the respective base changes. Then we have a commutative
triangle

nf
Ez;x —— fi+Ezx,

i~ e

fix25E7y%,

in Sptgi (XNis) of the respective morphisms (5¢).
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Proof By adjointness it suffices to show the commutativity of the outer square of the diagram

% . b
¥ pxi o p fFbe) . x (E f TNy 4 s p (bc) . +
fz f1 J«(Ey) — fz Jl,*f1|U( u) — fz Ji sy, — ]2,*f2|U|( U1)

. b
l(b.(:.) / ) . b J2,x1
e fiy B20py )1 ' Z'U‘l

J2x(f1f2)y (Ev) J2x(Euy)

where j: U — X, j1: Uy «— X and jp: U, — X> are the respective open complements
of Z, Zy and Z, and where fijy: Uy — U, fajy, and (f1 f2)|u are the respective restrictions.
The triangle on the left-hand side commutes as base change morphisms are compatible with
composition and the commutativity of the remaining part is easily seen. |

5.5 Recall, that a Nisnevich local fibrant spectrum E € Sptgi (S) is an A'-Nisnevich local
fibrant spectrum if E(X) — E(X x A') is an equivalence for all X € Sms.

Lemma5.6 Let E € Sptgi(Smy) be an Al-Nisnevich local fibrant spectrum. Let X € Smyg
be a scheme, Z C X a closed subset and m : A}( — X the projection. Then the canonical

map (c.f. (5¢))
N
Ez;x — ”*EAIZ/Ag(
is a weak equivalence.

Proof By construction of the map in question as a homotopy fibre, it suffices to show that
the two maps

Nx
EX —> JT*EA}(
and
.. T Tk
JxJ"Ex = Tujid Epl

from (5d) are both object-wise weak equivalences, This can be checked directly by evaluation
on an object V — X of the site Xnis. ]

Lemma5.7 Let E € Sptgi(Smy) be an Al-Nisnevich local fibrant spectrum. Let X € Smyg
be a scheme and s: X — A}( a section of the projection 7 : A}( — X. Then there is a
commutative diagram

Nz
Ez;x — ﬂ*EA'Z/A}(

I

sk Ez/x

of weak equivalences. In particular, for another section s': X — A% of the projection, the
morphisms 1. and w.ny are equal in the homotopy category.

Proof This follows from the previous Lemmas 5.4 and 5.6. i

Lemma5.8 Let E € Sptgi(Smyg) be an Al-Nisnevich local fibrant spectrum. Let V € Smyg
and 7 — A}/ a closed subscheme such that 7 — A{, v is finite. Let Z := 71(Z)eq be
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the reduced image. Then codim(AIZ, A{,) = codim(Z, A{,) — 1 and the forget support map
(see Lemma 3.7) induces the trivial morphism

”*EZ/A{, — n*EAIZ/AL
in the homotopy category.

Proof Consider the diagram

Al 5V

iL A

Py
where the non-vertical maps are the projections and j is the canonical open immersion. Let
us first prove that the triangle

TelSoo.  —

T_[*EIP’IZ/IP’{, e ”*Eoo,*EZ/V = EZ/V

% l")n (5e)

T EAIZ/A},

commutes in the homotopy category, where Soo: V — IP’%, is the section at infinity. Let
J

- $ j . . .
so:V = A{, - ]P’%/ denote the zero-section. Since by Lemma 5.7 the morphism
T Nsg - n*EAlz/M/ — muSoxEzy = Ez)y
is a weak equivalence, it suffices to show that the outer triangle of the enlarged diagram

T x50

TxEptpt, — Ezpy

_\ J{nrr
T 1) j

T EAIZ/Alv

T4 M50
o~ | Txl)sg

EZ/V

commutes. Indeed, the bottom triangle is obtained by applying 7 . to a commutative triangle
considered in Lemma 5.4 for 5o = jso. By the same Lemma 5.4 applied to id = msg, the
right vertical composition is the identity. Hence, it suffices to show that 7.5, = T«n5,,
holds in the homotopy category.

Since the sections sgp and 51 V — ]P’{/ both factorize through the open immersion j’: IP’{, ~
s1(V) — IP’%, viasjand s, : V — IP’%, ~ s1(V), we have a commutative diagram

ﬁ*nj/

T+Epl /p, > T JeE@L s )@l s ()

EZ/V 0
(and likewise for 5o, and s, ). Here, 7" P{,\s1 (V) — V isthe projection. As IP’{, ~s1(V) =

A%, and IP’IZ ~sp(V) = AIZ, we obtain n;nsé = w1, by Lemma 5.7, thus .05, = 7).
Summing up, this yields the commutativity of diagram (5e).
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In order to show that the morphism in question
ﬂ*EZ/A‘I/ = ﬁ*j*EZ/A{, — ﬁ*j*EA'Z/A{, = N*EA'Z/A"/
is trivial in the homotopy category, we consider the diagram

ﬁ*j*EZ/A‘I/ — ﬁ*j*EA‘Z/A{,

.

S ERY ;g Ezy

_ .
R T "
HV (\/*r]mo

n*r] i

T+E Z/Pl, — TxEpl L /P, —_— T E(P‘ ~2)/(Ph~2)

where the middle triangle is (5e). The left horizontal maps are induced by the respective

forget support maps. For the right triangle, we note that 5o: V — ]P’{, factorizes through
j":PLNZ < P}, viasl: V < P}, \ Z. The commutativity of the square on the left-hand
side is clear. The triangle on the right-hand side commutes again by Lemma 5.4. We observe
that the lower horizontal line is given by 7. applied to the exact triangle of Lemma 3.7. In
particular, it is an exact triangle itself and therefore the composition is trivial. Finally, the
left vertical arrow is a weak equivalence by the excision Lemma 3.11. Hence the morphism
wEy, Al ™ T E AL/Al, in question is trivial in the homotopy category.

For the assertion codim(AL, A{,) = codim(Z, A{,) — 1 we can argue component-wise
on Z so we may assume that Z is irreducible. Further, we can replace Al by a base change
along a flat morphism V' — V.In particular, we may assume that V is a local scheme with
closed point Z. As Z is finite over Z, it is just a finite union of points in the curve Al Thus,
codim(Z, AIZ) = 1 and the assertion follows by Lemma 2.7. O

5.9 In [3, Definition 4.4], the authors define the notion of an étale sheaf A to be effaceable
at a point x € X. (There is a corresponding dual definition of homological effaceability in
[3, Definition 4.4].) The connection of this definition with the next Proposition 5.10 and its
Corollary 5.12 is as follows. As we will explain in more detail in 6.2, there is a spectrum E
which satisfies E% (U) = H"(U, A) and E’}/X(U) = HJ(U, A) for an étale sheaf A. With
this terminology and under the required assumptions, the next Proposition 5.10 shows that
A is “Nisnevich-locally” effaceable at the point x € X.

Proposition 5.10 Let E € Sptgi(Smg) be an A-Nisnevich local fibrant spectrum. Let X €
Smg, Z < X be a closed subscheme and x € X be a point. If x lies in the special fibre X,
assume that Z, does not contain any connected components of X . Then, Nisnevich-locally
on X around x, there existsa V. € Smg, a smooth relative curve p: X — V with Z finite over
V and a closed subscheme Z' — X containing Z such that codim(Z', X) = codim(Z, X)—1
and the forget support map induces the trivial morphism

P+Ez/x = p«Ez/x

in the homotopy category. In particular, Ez;x (X) — Ez/,x(X) is trivial in this case.

@ Springer



A Bloch-Ogus theorem for... Page190f24 82

Proof Possibly after shrinking X Nisnevich-locally around x, we find a Nisnevich distin-
guished square

X\NZ —X
1 I (56)

A N f(Z) — A
such that Z — X —f> A}/ LV is finite by [12, Theorem 2.1]. Let p: X —f> A{, v
denote the composition and set Z:= P(Z)red and Z' := p_1 (Z). Since f and 7 and hence

the composition p is flat, the assertion about the codimensions holds true. By the excision
Lemma 3.11, the upper horizontal morphism of the diagram

Eyayny, = Jebzx

l l

Epyjny, — fEzyx

is an equivalence, where the vertical maps are the respective forget support maps and
f~1£(Z) = Z. Application of 7, yields the commutative diagram

”*Ef(z)/A{/ — p*EZ/X

l |

N*EA]Z/A}/ — p*EZ//X'

The left vertical morphism is trivial by the previous Lemma 5.8. Hence the right vertical

morphism is trivial which proves the claim. O

5.11 Denote by X )}cl,n the generic fibre Spec((’)}}(’x ®, k) of the Henselian local scheme at

x. Similar to 4.5, by E(Xi‘!n) we mean colimy ) E(W,), where (W, w) runs through the

Nisnevich neighbourhoods of x and W, is the generic fibre.

Corollary 5.12 Under the assumptions of Proposition 5.10, the forget support map
Ezx(X!,) — Ex(X!,)

is trivial.

Proof By [12, Theorem 2.1], there is a cofinal family of Nisnevich neighbourhoods (W, w)
of x admitting a Nisnevich distinguished square of the form (5f) with the additional finiteness
assumption. We even claim that for such neighbourhoods (W, w), the forget support map
Ez;x(Wy) — Ex(W)) is trivial. To show this, we may assume W = X, i.e., we assume X
admits a Nisnevich distinguished square as in (5f) with Z/V finite. On the generic fibres, we
still have a distinguished square

Xy~ Zy — Xy

! I

1 1
AV’] N fa(Zy) — AVW
and as pullback, Z,/V;, is still finite. Accordingly, the arguments in the proof of Proposition

5.10 go through for Z,, C X, as well. In particular, the forget support map Ez,x (X;) —
Ex(X;) is indeed trivial. ]
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Theorem 5.13 Let S be a Dedekind scheme with only infinite residue fields. Moreover, let
E € Sptgi (Smyg) be an A-Nisnevich local fibrant spectrum and X € Smyg of dimension d.
The complex of sheaves over the small Nisnevich site Xnjs

1
0— (B~ 5 @ 55"Elx S @ s ELL S -
2eX© zex®
d(l 2 ntd—1 dd 1 n+d
@ 3%3 EZ/X — @ 3%3 EZ/X —-0
zeX@-1 zeX@

is exact, possible except at the spots (E%)™ and @, cx) 3+ EZ/X Moreover, if for each
point x of X the forget support map for the special fibre

Ex,/x(X") — Ex(x1

is trivial, then it is exact everywhere and thus a resolution of (E%)~ by flabby Nisnevich
sheaves. In this case, we have

HP (Y, (EX)™) = HP(G*(E, n)(Y)).
for'Y € Xnis which vanishes for p > d.

Proof Since exactness is checked stalk-wise and we can compute the stalk at a point x € X
after henselization of the local scheme obtained from S at the image of x, we may assume,
that S is the spectrum of a Henselian discrete valuation ring with infinite residue field. Now
the first result follows from Proposition 4.6 and Proposition 5.10.

Suppose the forget support maps Ex, /x (X fc’) — Ex(X fc’) are trivial for all points x. By our
assumtion and Propositions 4.6 and 5.10, it is enough so show that the forget support map
E%/x (X’;) — E} (Xfc’) is trivial for closed subsets X, C Z C X. We may replace X by

=

the Henselian local scheme Xf. Write Z = Z1 U Z, with Z; = X, and X, g Z. Let
U=X\Zand U; = X \ Z; be the respective open complements. Observe that U; = X,
and U = U, are just the generic fibres. Consider the exact triangles

Ez,/x(U1) — Ex(Uy) — Ex(U).
and
Ez,x(X) — Ex(X) — Ex(Uy).

By our assumption, the forget support map in the latter triangle is trivial, so the restriction
map Ex(X) — Ex(U;) admits a retraction r|. By Corollary 5.12, the forget support map in
the former triangle is trivial, so the restriction map Ex(U;) — Ex(U) admits a retraction
rp.Setr :==ryory: Ex(U) — Ex(X). By construction, r is a retraction of the restriction
map Ex(X) — Ex(U). Thus, using the exact triangle

Ez/x(X) — Ex(X) — Ex(U),

we get that the forget support map Ez,x (X) — Ex(X) is indeed trivial. O

6 A Bloch-Ogus theorem for étale cohomology

In this section we want to apply Theorem 5.13 to étale cohomology. Let us first fix the
situation:
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6.1 We are in the situation of 5.1. For the whole section, we fix an essentially smooth
scheme X /S, connected and of finite dimension. Let us denote the structural morphism by
px: X — S. Wefix acoefficient group A := Z/m for an integer m > O prime to p. We work
in the derived category Df(X et; A) of bounded (above and below) complexes all of whose
cohomology sheaves are constructible sheaves of A-modules. By an l.c.c. complex K*®, we
mean a complexes K*® € Df (Xet, A) with locally constant cohomology sheaves H? (K ®) for
all g.

6.2 Let ¢: Xt — Xnis be the canonical morphism of sites. Note that RI"'(Xet, —) =~
RT"(Xnis, Rex(—)). By abuse of notation, let us denote by ¢ also the corresponding morphism
Smg ¢t — Smg nis of the smooth sites. For an 1.c.c. complex K*® in Df(Set, A), we denote by
K* also the complex in Db (Smg ¢, A) that restricts to p;‘(K ® on each small site X¢;. Further,
we fix a Nisnevich local fibrant spectrum E(K*®) € Sptgi (Smg) corresponding to Re, K*®
under the Dold—Kan correspondence.

Lemma 6.3 The spectrum E(K*) is Al-local.

Proof Indeed, the projection 7 : A}( — X induces a quasi-isomorphism p3K°® —
Rmm*p% K* (e.g.[6, Corollary 7.7.4]) and hence a quasi-isomorphism on cohomology

RI (Xnis, Rex py K®) — RO(AY o Re.py) K*)-
Under the Dold-Kan correspondence this translates to our claim. |

6.4 In order to apply Theorem 5.13 to the A!-local spectrum E (K *), we need to show that
the forget support maps
E(K®)x,/x(X}) = E(K")x(X})

vanish for all points x in X. Here, X fr’ denotes the spectrum of the henselization of the local
ring of X at x. Unravelling the definitions, these maps are just the forget support maps

RTyp (XYoo PYK®) = RT(XY o pYK®)

x,et? x,et?

of étale cohomology.

In the following, we will make use of Gabber’s absolute purity theorem — but not in its
full strength. The following easy special case will be sufficient for our cause:

Lemma 6.5 In the situation of 6.1, let i : Z — X be a closed subscheme of codimension c,
contained in the special fibre of X | S. Assume Z /F is smooth and connected. Then the canon-
ical morphism Ri'K*|x — K*|z(—c)[—2c] is a quasi-isomorphism for all L.c.c. complexes
K*® € Dy(Ser, A).

Proof Say, X/S and Z/F have relative dimension m and n respectively. In particular, ¢ =
m — n + 1. Consider the commutative diagram

Spec(F) <%+ §.

By Poincaré-duality for X /S (respectively Z/F) , R p!XK * >~ p% K*®(m)[2m] (respectively
R p!ZO'*K * >~ pbo*K*(n)[2n]). Further, by the special case of absolute purity for the closed
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point in S (which is an easy exercise — e.g. the proof of [6, Lemma 8.3.6] goes through
unchanged for l.c.c. sheaves and hence for l.c.c. complexes), Ro'K® ~ o*K*(—D[-2].
Summing up, we get

Ri'p% K® =~ Ri'RpY K*(—m)[—2m]
~ Rp,Ro'K*(—m)[—2m]
~ Rp,o*K*(—m — 1)[-2m — 2]
>~ po0*K*(—0)[—2c],

finishing the proof. O

Lemma 6.6 In the situation of 6.1, assume that X is Henselian local with closed point x in
the special fibre of X /S. Then the canonical morphism UX,*]RU)!(A — A induces the trivial
morphism in D? (k(x)et, A):

x*UX’*Ra)!(A =0 A~ AL
In particular, the canonical map RT'x, (Xer, A) — RI'(Xet, A) is trivial.

Proof The second claim follows from the first. Indeed, as X is local Henselian R (X, —) >
RI(k(x)et, x*(—)). For the first claim, it is enough to show that the Tate-twist

x*(ox «Roy A(l) = A(1)) (62)

is trivial in D’ (k(x)er, A). By Lemma 6.5, Roy A(1) =~ A[—2]. In particular, the sheaf-
cohomology of (6a) in degree 2 is given by

A =H(Xger, A) ~ Hy (Xer, A1) > H*(Xer, A1), 1+ &[O0(X,)],  (6b)
i.e., is trivial as X is a local scheme. Further,
x*ox «Roy A(l) = x*ox  A[-2] =~ A[-2]
which implies
HOMpp 1 (1), 4) (X0 x sRog A(1), x*A (1)) = H? (k(x)er, A(1))

and (6a) corresponds to a class contained in the image of (6b) (more precisely, (6a) corre-
sponds to the class ¢;[O(X,)]), hence it is trivial. ]

Corollary 6.7 In the situation of 6.1, assume that X is Henselian local with closed point x
in the special fibre of X/S. Let K® € Df(Set, A) be a l.c.c. complex. Then the canonical
morphism ox,*Ra,!(K' lx — K°|x induces the trivial morphism in DP(k(x)et, A):

x*ax,*Ra}!(KﬂX =0 x*K°|x.
In particular, the canonical map RT x_ (Xet, K®|x) — RI (Xet, K*®|x) is trivial.

Proof By Lemma 6.6, x* applied to
(ox «RoyA — A) @ piK® (6¢)

is trivial. By the projection formula and Lemma 6.5, (6¢) is isomorphic to the canonical
morphism ax,*Ra;( pxK*® — p%K®, so the claim follows. O

Combining Theorem 5.13 and Corollary 6.7, we get:
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Theorem 6.8 Let S be the spectrum of a Henselian discrete valuation ring with infinite
residue field F. Let X /S be smooth, d = dim(X) and K*® an l.c.c. complex in Df(Set, A).
Then the Nisnevich Gersten complex G*(E(K*), n) is a flasque resolution of the Nisnevich
sheafification R" e, K ®|x of étale cohomology with coefficients K°. In particular, we get the
exact sequence

0— R'e.K*lx > P 2H" k@), K*lk) = -
zeX©
oo P WH k), Kk (=) — 0.
Zex(d)
Proof The spectrum E (K *®) is A!-local by Lemma 6.3. Combining Theorem 5.13 and Corol-

lary 6.7, we get that G*(E (K *), n) is a flasque resolution of R"¢, K*|x.
Let us compute G°(E(K*®), n) = @,cx» M;,*E(K‘)’Z“;: In the proof of Proposition 3.23

we saw that Z*E(K')'Z‘;( = 7,2*E(K*)"T3,.. Unravelling the definitions, z*E (K *)" 5, =

Z/X}.UC . Z/Xlzuc
HZ P (X1°¢, K'*). By absolute purity, H*™ (X%, K*) = H"™*(k(z), K*(—s)), which fin-
ishes the proof. o

Remark 6.9 We can avoid absolute purity in its full strength if we assume k and IF to be perfect:
Computing 3*E (K ')"Z+§( under this assumption, we may assume Z to be smooth over k (if
z is contained in the generic fibre of X /S) or smooth over [F (if z is contained in the special
fibre of X /§) by generic smoothness. In both cases, 3*E(K’)’Z§( =z . H" 5 (k(z), K*(—5)),

either by relative purity or by Lemma 6.5.
Taking Nisnevich stalks, we get:

Corollary 6.10 Let S be the spectrum of a Henselian discrete valuation ring with infinite
residue field F. Let X /S be smooth of finite type, d = dim(X) and K*® an l.c.c. complex in
Dé’(Set, A). Let x be a point of X and Y = Xfc’ the Nisnevich local scheme at x. Then there
is an exact sequence

. N
0— H'(Yer, K*ly) > €D H'(k(z), 2" K*ly) = -+
z2eY©®

LN P H k), 2 K|y (=d)) — .

zeY@

Remark 6.11 Using the Bloch—Kato-Conjecture, in [7] Geisser proved the exactness of the
Gersten complex in degree n for X /S smooth even for ¢: X — Xzar, but only for coeffi-
cients K®* = A(r) = u%’ for n < r.If S is not strictly Henselian, this assumption excludes
H¥ (Yer, A(r)) for r > 0, i.e., the targets of the cycle class maps.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

82 Page240f24 J. Schmidt, F. Strunk
References
1. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde

10.
11.

motivique. I, Astérisque (2007), no. 314, x+466 pp. (2008)

Bloch, S.: A note on Gersten’s conjecture in the mixed characteristic case, Applications of algebraic
K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 75-78, Contemp.
Math. 55, Amer. Math. Soc., Providence, RI (1986)

Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. Ecole Norm. Sup. (4)
7, 181-201 (1974)

Colliot-Thélene, J.-L., Hoobler, R.T., Kahn, B.: The Bloch-Ogus-Gabber theorem, Algebraic K -theory
(Toronto, ON, 1996), vol. 16. Fields Inst. Commun. Amer. Math. Soc, Providence, RI (1997)

Dundas, B.I., Rondigs, O., @stver, P.A.: Motivic functors, Doc. Math. 8 (2003)

Fu, L.: Etale chomology theory, nankai tracts in mathematics, Vol. 13, World Scientific Publishing Co.
Pte. Ltd., Hackensack (2011)

Geisser, T.: Motivic cohomology over Dedekind rings. Math. Z. (4) 248, 773-794 (2004)

. Gillet, H., Levine, M.: The relative form of Gersten’s conjecture over a discrete valuation ring: the smooth

case. J. Pure Appl. Algebra (1) 46, 59-71 (1987)

Gillet, H., Levine, M.: Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra
165(1), 63—127 (2001)

Jardine, J.F.: Motivic symmetric spectra. Doc. Math. 5, 445-552 (2000)

Quillen, D.: Higher algebraic K -theory. I, Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle
Memorial Inst., Seattle, Wash., 1972), 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin (1973)
Schmidt, J., Strunk, F.: Stable Al—connectivity over Dedekind schemes. Ann. K-Theory (2) 3, 331-367
(2018)

Voevodsky, V., Rondigs, O., @stveer, P.A.: Voevodsky’s Nordfjordeid Lectures: Motivic Homotopy,
Motivic Homotopy Theory, Lectures at a Summer School in Nordfjordeid, Norway, August 2002. Springer,
Berlin, Heidelberg, New York (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	A Bloch–Ogus theorem for henselian local rings in mixed characteristic
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basechange
	2.2 Codimension

	3 The coniveau filtration
	4 The Nisnevich Gersten complex
	5 Effaceability
	6 A Bloch–Ogus theorem for étale cohomology
	References


