
Mathematische Zeitschrift          (2023) 303:82 
https://doi.org/10.1007/s00209-023-03223-8 Mathematische Zeitschrift

A Bloch–Ogus theorem for henselian local rings in mixed
characteristic

Johannes Schmidt1 · Florian Strunk2

Received: 22 October 2019 / Accepted: 23 January 2023
© The Author(s) 2023

Abstract
We show a conditional exactness statement for the Nisnevich Gersten complex associated
to an A

1-invariant cohomology theory with Nisnevich descent for smooth schemes over
a Dedekind ring with only infinite residue fields. As an application we derive a Nisnevich
analogue of theBloch–Ogus theorem for étale cohomologyover a henselian discrete valuation
ring with infinite residue field.

1 Introduction

Given an A
1-invariant cohomology theory E for smooth varieties X over a field k with

Nisnevich descent, Colliot-Thélène, Hoobler and Kahn proved in [4] the exactness of the
associated Gersten complex

0 → Hn(Y , E) →
⊕

z∈Y (0)

Hn
{z}(Y , E) →

⊕

z∈Y (1)

Hn+1
{z} (Y , E) → · · ·

· · · →
⊕

z∈Y (d−1)

Hn+d−1
{z} (Y , E) →

⊕

z∈Y (d)

Hn+d
{z} (Y , E) → 0,

(1a)

where Y = Spec(OX ,x ) is the local scheme at a point x and d is the dimension of X . The
main ingredient of their proof is a geometric presentation theorem [4, Theorem 3.1.1] for a
closed immersion Z ↪→ X which is due to Gabber. If E is algebraic K -theory, this result
implies the Gersten conjecture for smooth schemes over a field, originally proved by Quillen
[11, Theorem 5.11]. Taking E as étale cohomology with constant torsion coefficients defined
over k, one obtains the Bloch–Ogus theorem [3].
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In the mixed characteristic case of a discrete valuation ring with infinite residue field,
an analogue of Gabber’s geometric presentation theorem for a closed immersion Z ↪→ X
was shown in [12, Theorem 2.1]. However, there are two crucial differences to the equal
characteristic case: Firstly, one has to require that the closed subscheme Z does not contain
any irreducible component of the special fibre of X . Secondly, the presentation is not Zariski-
but only Nisnevich-local in X .

In this paper, our goal is to adopt the techniques of Colliot-Thélène, Hoobler and Kahn to
the mixed characteristic case using the more restricted version of the presentation theorem.
Our main result is the following (see Theorem 5.13, below).

Theorem Let S be a Dedekind scheme with only infinite residue fields and E anA
1-invariant

cohomology theory for smooth schemes of finite type over S with Nisnevich descent. Let X/S
be such a smooth scheme of dimension d, x ∈ X a point and Y = Spec(Oh

X ,x ) the Henselian
local scheme at x.

(1) The Gersten complex (1a) is exact possible except at the first and third (non-trivial) spot.
(2) If for each point x of X the forget support map for the special fibre Yx

R�Yx (YNis, E) → �(Y , E)

is trivial, then the Gersten complex is exact everywhere.

In presence of the second condition, one obtains the usual resolution of the Nisnevich
sheafification of the cohomology given by E by flabby Nisnevich sheaves. If E is algebraic
K -theory, the theorem was known before, see [2] and [8].

As an application of the theorem above, we derive the following analogue of the Bloch–
Ogus theorem in mixed characteristic (see Corollary 6.10).

Theorem Let Y = Spec(Oh
X ,x ) be a Henselian local scheme of a d-dimensional smooth

scheme X of finite type over a Henselian discrete valuation ring o with infinite residue field
of characteristic p. Let K be a locally constant constructible sheaf of Z/m-modules for m
prime to p on the small étale site of Spec(o). Then the Gersten complex

0 → Hn(Yet, K ) →
⊕

z∈Y (0)

Hn(k(z), K ) → · · · →
⊕

z∈Y (d)

Hn−d(k(z), K (−d)) → 0.

is exact. Here Hi (k(z),−) denotes the Galois-cohomology of the field k(z).

We remark that in [7] Geisser derived the exactness of the above Gersten complex from
the Bloch–Kato-Conjecture even for a (Zariski) local scheme Y = Spec(OX ,x ) but only for
coefficients K = µ⊗r

m where n ≤ r . Our method of proof is more elementary, at least if the
residue and quotient field of o are perfect (see Remark 6.9 and Remark 6.11).

The organization of the paper is as follows. In Sect. 2 we recall some known results on
basechange of presheaves of spectra. We include a short reminder on elementary properties
of the codimension for schemes not necessarily over a field. In Sect. 3 we define the coniveau
filtration for a spectrum with Nisnevich descent and show that the filtration quotients are
flabby Nisnevich sheaves. In Sect. 4 the Nisnevich Gersten complex is introduced. Up to
this point, the A

1-invariance property has not been used yet. Sect. 5 contains an effaceability
result which makes use of A

1-invariance and the geometric presentation theorem. This leads
to our main theorem. The final Sect. 6 deals with the application to étale cohomology with
torsion coefficients.
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2 Preliminaries

Let S be a base scheme, which is always assumed to be noetherian and of finite dimension.
Let moreover SmS be the category of smooth schemes of finite type over S and SptS1(SmS)

the category of presheaves of spectra on SmS . For an object X ∈ SmS we define the category
SptS1(XNis) analogously where XNis denotes the small Nisnevich site on X .

The details of the following model structures play no essential role for this text and we
refer to the preliminary section of [12], which summarizes material from [1], [5, Sec.2] and
[9, 10], for further explanation and references.

We consider the (stable) object-wise model structure on SptS1(SmS). Its homotopy cat-
egory SHS1(SmS) is a triangulated category with exact triangles given by the homotopy
(co)fibre sequences. The left Bousfield localization at the equivalences on Nisnevich stalks
is called the (stable) Nisnevich local model structurewith a fibrant replacement functor LNis.
Likewise, in the case of the small site XNis, we define the (stable) Nisnevich local model
structure on SptS1(XNis) analogously. In the case of the big site SmS , a further left Bousfield
localization yields the (stable)A

1-Nisnevich local model structurewith a fibrant replacement
functor Lmot. We are working in the non-localized model structure only and use the fibrant
replacement functors to obtain statements about the localizations. Hence, whenever we speak
of an exact triangle or a homotopy cofibre, we mean the respective terms for the object-wise
model structure.

2.1 Basechange

Amorphism f : X → Y of noetherian schemes of finite Krull dimension induces a covering
preserving functor f̄ : SmY → SmX by pullback. Precomposition f̄ ∗ with f̄ is the right
adjoint of a Quillen adjunction

f̄
∗ : SptS1(SmY ) � SptS1(SmX ) : f̄ ∗

for each of the model structures from above (see again the preliminary section of [12] for
more details and references). By abuse of notation, we write f∗ := f̄ ∗ and f ∗ := f̄

∗
. If the

morphism f is an object of SmY itself, there is an adjunction

¯
f : SmX � SmY : f̄

with the left adjoint given by post-composition. Again, precomposition with
¯
f is the right

adjoint of a Quillen adjunction

¯
f ∗ : SptS1(SmX ) � SptS1(SmY ) :

¯
f ∗

for each of the model structures. We clearly have
¯
f ∗ = f̄

∗ = f ∗ and set f� :=
¯
f ∗.

Likewise, for a morphism f : X → Y , we obtain Quillen adjunctions

SptS1(XNis)
f�
�
f ∗

SptS1(YNis)
f ∗
�
f∗
SptS1(XNis) (2a)

for the object-wise and the Nisnevich local model structure where again for the first one we
have to assume that f is an object of YNis whereas the second always exists.

For an object X → Y in SmY , there is a canonical covering preserving inclusion functor
δX/Y : XNis → SmY . Precomposition with this functor yields the right adjoint of a Quillen
adjunction

δ∗
X/Y : SptS1(XNis) � SptS1(SmY ) : δX/Y ,∗ (2b)
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for the object-wise and the Nisnevich local model structures. The inclusion functor δX/Y

factorizes as

XNis
δX−→ SmX ¯

f−→ SmY

(where we set δX := δX/X ) and the adjunction (2b) factorizes as

SptS1(XNis)
δ∗
X

�
δX ,∗

SptS1(SmX )
f�
�
f ∗

SptS1(SmY ).

If moreover X is an object of YNis, there is a commutative diagram

XNis SmX

YNis SmY

¯
f

δX

δX/Y ¯
f

δY

(2c)

inducing the diagramm

SptS1(XNis) SptS1(SmX )

SptS1(YNis) SptS1(SmY )

f�

δ∗
X

f�
δX ,∗

f ∗
δ∗
Y

δY ,∗

f ∗

ofQuillen adjunctionswith diagonal (2b). In particular, for an étalemorphism f : X → Y the
restriction δ∗ to the respective small sites commutes with f ∗. In particular, these observations
imply the following lemma.

Lemma 2.1 Let X ∈ SmS and g : X̃ → X étale. Then g∗δX/S,∗ ∼= δX̃/S,∗. In particular, the
unit of the adjunction g∗ � g∗ induces a canonical map

δX/S,∗E → g∗δX̃/S,∗E .

for E ∈ SptS1(SmS).

Remark 2.2 Let f : X → Y be any morphism between noetherian schemes of finite Krull
dimension. A diagram analogous to (2c) with f̄ in place of

¯
f shows that the restriction δ∗ to

the respective small sites commutes with f∗.

Definition 2.3 Let E ∈ SptS1(SmS) or E ∈ SptS1(XNis) be a spectrum. For n ∈ Z, we let
πn(E) denote the presheaf U 	→ πn(E(U )) of abelian groups on SmS or XNis. Moreover,
one sets En(X) := π−n(E(X)). This common convention lets us synonymously use the term
cohomology theory for such an object E .

Lemma 2.4 Let E ∈ SptS1(XNis) be a spectrum, z ∈ X a point and consider the canonical
morphism z : Spec(OX ,z) → X. Then the canonical morphism

z∗z∗πn(E) → πn(z∗z∗E)

is an isomorphism of presheaves on XNis for every n ∈ Z.

Proof For any morphism f , we have an isomorphism f∗πn(E) ∼= πn( f∗E) as πn and f∗ are
defined object-wise. Suppose for a moment that zwere an object f : U → X of the site XNis.
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In this case f ∗(F) ∼= F ×X U . Since homotopy presheaves and pullbacks of presheaves are
calculated object-wise, we obtain

f ∗π0(E) ∼= π0(E) ×X U ∼= π0(E ×X U ) ∼= π0( f
∗E).

We may write πn(F) alternatively as π0(Hom(Sn, F)), where Hom denotes the internal
mapping space of preshaves. For this internal mapping space, there are isomorphisms

f∗( f ∗ Hom(Sn, E))
∼=−→ f∗(Hom( f ∗(Sn), f ∗(E)))

∼=−→ Hom(Sn, f∗ f ∗(E))

where for the first we used that f was assumed to be in XNis. Alltogether, we have

f∗ f ∗πn(E) ∼= f∗ f ∗π0 Hom(Sn, E)
∼= π0 f∗ f ∗ Hom(Sn, E)
∼= π0 Hom(Sn, f∗ f ∗(E))
∼= πn( f∗ f ∗E)

in the case of f being an object of the site XNis.
For the case of the essentially open immersion z : Spec(OX ,z) → X of the lemma, we

write z as the cofiltered limit of the diagram D(−) : I → XNis given by the affine Zariski
neighbourhoods of z in X . Then by the proof of [12, Lemma 1.5] one has a canonical natural
isomorphism

z∗z∗(F) ∼= colimi∈I di,∗d∗
i (F)

where di : Di → X is the structural morphism which is an open immersion. The result now
follows from the case handled above and from the fact that homotopy groups commute with
filtered colimits.

2.2 Codimension

In this subsection, we recall basic notations on the codimension for the convenience of the
reader.

Let X be a scheme and Z ⊆ X an irreducible closed subset. Define

codim(Z , X) := sup{s ∈ N∞ | Z = Zs � · · · � Z0 ⊆ X with Zi ⊆ X irred. cl.}.
For an arbitrary closed subset Z ⊆ X we set

codim(Z , X) := inf{codim(Z ′, X) | Z ′ ⊆ Z is an irreducible component},
where by convention codim(∅, X) = ∞, as the codimension of Z in X . One has

codim(Z , X) = inf
z∈Z dim(OX ,z).

If Z is irreducible closed with generic point ηZ , then codim(Z , X) = dim(OX ,ηZ ). Recall
that a scheme X is called catenary, if for every two irreducible closed subsets Z ⊆ Z ′ ⊆ X
every maximal chain Z = Zs � · · · � Z0 = Z ′ of irreducible closed subsets has the same
finite length. Examples of such are schemes (locally) of finite type over a field or over a one
dimensional noetherian domain, e.g., a discrete valuation ring.

We have the following three easy lemmas.

Lemma 2.5 Let X be a scheme and Z ⊆ Z ′ ⊆ X two irreducible closed subsets with
codim(Z ′, X) = s. Then

Z �= Z ′ ⇔ codim(Z , X) ≥ s + 1.
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Lemma 2.6 Let X be a schemeand Z1, Z2 ⊆ X two closed subsetswith both codim(Z1, X) ≥
s and codim(Z2, X) ≥ s. Then codim(Z1 ∪ Z2, X) ≥ s.

Lemma 2.7 Let X be an irreducible catenary scheme and Z ⊆ Z ′ ⊆ X two irreducible
closed subsets. Then

codim(Z , X) = codim(Z , Z ′) + codim(Z ′, X).

For an integer s ≥ 0, define

X (s) = {z ∈ X | codim({z}, X) = s}
and say that z has codimension s in X if z ∈ X (s). Note, that {z} is always an irreducible
closed subset of X and z is its generic point. One has X (s) = ∅ for s > dim(X) as dim(X) =
supx∈X dim(OX ,x ). We have codim(Z , X) = 0 if and only if Z contains a whole irreducible
component of X . Hence a point z ∈ X is a generic point of an irreducible component of X
if and only if dim(OX ,z) = 0. Thus, X (0) is precisely the set of generic points of irreducible
components of X .

Remark 2.8 Please note that the inequality

dim(Z) + codim(Z , X) ≤ dim(X)

is not always an equality, even for catenary schemes.

3 The coniveau filtration

3.1 In this section we define the coniveau filtration for a Nisnevich local fibrant spectrum
on SmS . We fix a spectrum E ∈ SptS1(SmS).

Definition 3.2 Let X/S ∈ SmS , Z ⊆ X a closed subset with complementary open immersion
j : (X � Z) ↪→ X . Let EX be the spectrum δX/S,∗E in SptS1(XNis). Lemma 2.1 induces a
morphism

η j : EX → j∗ j∗EX = j∗EX�Z (3a)

in SptS1(XNis) whose homotopy fibre, we denote by EZ/X ∈ SptS1(XNis).

Remark 3.3 Note that EX/X = EX and E∅/X = ∗ in SptS1(XNis).

Remark 3.4 Throughout Sects.‘3 and 4, we could as well work with arbitrary spectra EX ∈
SptS1(XNis), not necessarily of the form δX/S,∗E for a spectrum E ∈ SptS1(SmS). In this
case, EX̃ will be defined as f ∗EX for an étale morphism f : X̃ → X of finite type.

3.5 We fix an étale morphism f : X̃ → X of finite type and a closed subset Z ⊆ X . Let
Z̃ = Z×X X̃ denote the pullback of Z along f . We get an induced morphism f̃ : (X̃ � Z̃) →
(X � Z) on the open complements. By Lemma 2.1, f ∗EX ∼= EX̃ and we have a canonical
morphism EX → f∗EX̃ .

Lemma 3.6 In the situation of 3.5, we have f ∗EZ/X � EZ̃/X̃ in SptS1(X̃Nis).
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Proof Let j : (X � Z) ↪→ X and j̃ : (X̃ � Z̃) ↪→ X̃ . First, we apply the homotopy exact
functor f ∗ to the homotopy fibre sequence EZ/X → EX → j∗ j∗EX . Base change (since
f ∈ XNis) for the pullback square

X̃ � Z̃ X̃

X � Z X

j̃

f̃ f
j

yields an equivalence f ∗ j∗ � j̃∗ f̃
∗
and it remains to observe that f̃

∗
j∗ � ( j f̃ )∗ �

( f j̃)∗ � j̃
∗
f ∗, which is easy.

Lemma 3.7 (Forget support map) Let Z and Z ′ be closed subsets of X with Z ⊆ Z ′ ⊆ X
and let EX ∈ SptS1(XNis) be a spectrum. Then there is a canonical forget support map
EZ/X → EZ ′/X . Further, this map sits in a canonical exact triangle

EZ/X → EZ ′/X → j∗E(Z ′
�Z)/(X�Z)

of objects from SptS1(XNis), where j : (X � Z) ↪→ X.

Proof Note first that j ′ : (X � Z ′) ↪→ X factorizes as

X � Z ′ = (X � Z) � (Z ′
� Z)

k−→ X � Z
j−→ X ,

and therefore the unit id → k∗k∗ of the adjunction k∗ � k∗ induces a morphism j∗ j∗ →
j∗k∗k∗ j∗ � j ′∗ j ′∗. This map is compatible with the units of the adjunctions j ′∗ � j ′∗ and
j∗ � j∗, thus inducing the forget support map EZ/X → EZ ′/X on homotopy fibres.

For the exact triangle consider the diagram

F[−1] ∗ F

EZ/X EX j∗ j∗EX

EZ ′/X EX j ′∗ j ′∗EX

forget support id

of distinguished triangles. It remains to identify F with j∗E(Z ′
�Z)/(X�Z). Applying the

exact functor j∗ to the exact triangle

E(Z ′
�Z)/(X�Z) → E(X�Z) → k∗k∗E(X�Z),

yields the right vertical exact triangle

F = j∗E(Z ′
�Z)/(X�Z) → j∗ j∗EX → j∗k∗k∗ j∗EX ,

where we used the definition j ′∗EX � E(X�Z).

Remark 3.8 In particular, the previous Lemma 3.7 induces a long exact sequence

· · · → En
Z (X) → En

Z ′(X) → En
Z ′

�Z (X � Z) → En+1
Z (X) → · · · .

123



   82 Page 8 of 24 J. Schmidt, F. Strunk

3.9 Recall that a Nisnevich distinguished square

Ũ X̃

U X

f
j

is a pullback square such that j is an open immersion, f is an étale morphism of finite type
and (X − j(U ))red ×X X̃ → (X − j(U ))red is an isomorphism.

3.10 Recall moreover, that an object-wise fibrant spectrum E ∈ SptS1(SmS) (i.e., every
evaluation E(X) is an ordinary�-spectrum) isNisnevich local fibrant if and only if E(∅) = ∗
and for each Nisnevich distinguished square Q as in 3.9, the square E(Q) is a homotopy
pullback square (or equivalently a homotopy pushout square). Equivalently, the sequence

E(X) → E(X̃) ⊕ E(U ) → E(Ũ )

is a distinguished triangle and hence induces long exact sequences on homotopy groups. The
same observation holds for the Nisnevich local fibrant objects of SptS1(XNis) and the right
adjoint δX/S,∗ : SptS1(SmS) → SptS1(XNis) of the adjunction (2b) preservesNisnevich local
fibrant objects.

Lemma 3.11 An object-wise fibrant spectrum E ∈ SptS1(SmS) is Nisnevich local fibrant if
and only if for all Nisnevich distinguished squares as in 3.9, the induced morphism

EZ/X → f∗ f ∗EZ/X � f∗EZ̃/X̃

(see Lemma 3.6) is an equivalence. Here, Z := X � U and Z̃ := (X̃ � Ũ ) ∼= f −1(Z).

Proof This follows immediately from the fact the a square of spectra is a homotopy pullback
square if and only if the homotopy fibres of the horizontal morphisms are equivalent.

Lemma 3.12 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum. Let Z1 and Z2 be
closed subsets of X, and set Z12 = Z1 ∩ Z2 and Z = Z1 ∪ Z2. Then the forget support maps

EZ12/X EZ2/X

EZ1/X EZ/X

(3b)

form a homotopy (co)fibre square in E ∈ SptS1(XNis).

Proof First, observe that the respective open immersions form a Nisnevich distinguished
square

X � Z X � Z2

X � Z1 X � Z12

Denote by j : X � Z ↪→ X and ji : X � Zi ↪→ X for i = 1, i = 2 or i = 12 the
complementary open immersions. Since E is Nisnevich local fibrant, it follows that

j12,∗ j∗12EX j2,∗ j∗2 EX

j1,∗ j∗1 EX j∗ j∗EX

123
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is a homotopy pullback square. Mapping into this square from the square with edges idEX ,
which is a homotopy pullback square for trivial reasons, and taking homotopy fibres, yields
the square (3b). Thus, (3b) is a homotopy pullback square, too.

Corollary 3.13 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum and Z1, . . . , Zr ⊆
X be disjoint closed subsets. Then

r⊕

i=1

EZi /X � E(
∐r

i=1 Zi /X).

Definition 3.14 Let EX ∈ SptS1(XNis) be a spectrum. For an integer s ≥ 0, we define the
spectrum

EX (s) := colim
Z⊆Xclosed

codim(Z ,X)≥s

EZ/X

in SptS1(XNis). The structure maps for the colimit are the forget support maps (see
Lemma 3.7).

Remark 3.15 Informally, one should think of the colimit in the previous Definition 3.14 as
“making the Z ’s bigger”. The index category is filtered as one can take the union of two
closed sets.

3.16 Since a closed subset of X of codimension ≥ (s + 1) is in particular a closed subset of
codimension ≥ s, we get a filtration

∗ → EX (d) → · · · → EX (s+1) → EX (s) → · · · → EX (0) ∼= EX

of presheaves of spectra on XNis. For the last equivalence, observe that the colimit in Defi-
nition 3.14 has a terminal object Z = X in the case s = 0.

Definition 3.17 We denote the homotopy cofibre of EX (s+1) → EX (s) by EX (s/s+1) .

3.18 As usual, one can associate a spectral sequence (more precisely, a presheaf on XNis of
spectral sequences) to such a situation: Applying πn for an integer n to the filtration of 3.16
yields a finite filtration

0 ⊆ imπn(EX (d) → EX ) ⊆ . . . ⊆ imπn(EX (1) → EX ) ⊆ πn(EX )

and the associated spectral sequence (in the category of presheaves of abelian groups on
XNis)

E1
p,q = πp+q(EX (p/p+1) ) ⇒ πp+q(EX )

is degenerate (and hence always converges in the strongest sense) as the filtration above is
bounded. Reindexing and rephrasing along Definition 2.3, we get

E p,q
1 = E p+q

X (p/p+1) ⇒ E p+q .

The constructed spectral sequence is not yet the coniveau spectral sequence. To obtain the
latter, we will sheafify the whole situation (after taking homotopy groups as above) and
identify the homotopy cofibres EX (p/p+1) with certain coproducts.

3.19 For a point z ∈ X we denote by z in the following the canonical morphism
z : Spec(OX ,z) → X .
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Proposition 3.20 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum. Then for every
integer s ≥ 0, we have an equivalence

EX (s/s+1) �
⊕

z∈X (s)

z∗z∗EZ/X ,

where z∗ : SptS1(XNis) � SptS1(Spec(OX ,z)Nis) : z∗ is the adjunction (2a) and where we
set Z := {z} in each summand by abuse of notation.

Proof For closed subsets Z and Z ′ of X with Z ⊆ Z ′, Lemma 3.7 yields an exact triangle

EZ/X → EZ ′/X → j∗E(Z ′
�Z)/(X�Z).

Taking filtered colimits yields an exact triangle

EX (s+1) → EX (s) → colim
Z ,Z ′⊆Xclosed

Z⊆Z ′
codim(Z ′,X)≥s
codim(Z ,X)≥s+1

j∗E(Z ′
�Z)/(X�Z) (3c)

of objects from SptS1(XNis). In particular, the right-hand side is equivalent to EX (s/s+1) . The
colimit in (3c) runs over the filtered category of pairs (Z , Z ′) where Z ⊆ Z ′ for Z , Z ′ ⊆ X

closed subsets of the indicated codimensions with an arrow (Z , Z ′) → (Ẑ , Ẑ
′
) if and only

if both Z ⊆ Ẑ and Z ′ ⊆ Ẑ
′
.

Wewill now rewrite this colimit. Fix a pair (Z , Z ′). Since X is noetherian, Z ′ is noetherian
as a topological space and hence the union of its finite number of irreducible components
Z ′
1, . . . , Z

′
r , each of codimension ≥ s. It follows, that all the intersections Z ′

i ∩ Z ′
j for i �= j

are of codimension ≥ s + 1 by Lemma 2.5. Set

Ẑ := Z ∪
⋃

i �= j

(Z ′
i ∩ Z ′

j ) ∪
⋃

i such that
codim(Z ′

i ,X)≥s+1

Z ′
i .

By Lemma 2.6, Ẑ has codimension ≥ s + 1 and (Ẑ , Ẑ
′ := Z ′) receives a map from our

original pair (Z , Z ′). Let T ⊆ X (s) be the set of generic points of those Z ′
i of codimension

s. Then T ∪ Ẑ = Ẑ
′
. Further, Û = X � Ẑ ⊆ X is an open separating neighbourhood of

T . By this we mean that T ∩ Û splits into a disjoint union of closures of points of T in Û .
Combining these observations, we get a cofinal functor from the category of pairs (T ,U )

with T ⊆ X (s) a finite subset and U ⊆ X an open separating neighbourhood of T into our
original index category by mapping a pair (T ,U ) to the pair (X � U , T ∪ (X � U )). In
particular,

colim
Z ,Z ′⊆Xclosed

Z⊆Z ′
codim(Z ′,X)≥s
codim(Z ,X)≥s+1

j∗E(Z ′
�Z)/(X�Z) � colim

T⊆X (s) finite
T⊆U⊆X open sep nbh

j∗E(T∩U )/U .

As U is a separating neighbourhood of T , Corollary 3.13 gives a splitting

E(T∩U )/U �
⊕

z∈T
E({z}∩U )/U .
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Note that the open separating neighbourhoods of T are cofinal in all open neighbourhoods
of T . In particular, we get

colim
T⊆X (s) finite

T⊆U⊆X open sep nbh

j∗E(T∩U )/U� colim
T⊆X (s) finite

T⊆U⊆X open nbh

⊕
z∈T j∗E({z}∩U )/U

�⊕
z∈X (s) colim

z∈U⊆X open nbh
j∗E({z}∩U )/U

Finally, by Lemma 3.6, E({z}∩U )/U � j∗E{z}/X and the claim follows.

Corollary 3.21 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum. Then for every
integer s ≥ 0 and every integer q, we have an isomorphism

Eq
X (s/s+1)

∼=
⊕

z∈X (s)

z∗z∗Eq
Z/X .

Proof. By Proposition 3.20 EX (s/s+1) � ⊕
z∈X (s) z∗z∗EZ/X . Using Lemma 2.4 we compute

π−q(
⊕

z∈X (s) z∗z∗EZ/X ) ∼= ⊕
z∈X (s) π−q(z∗z∗EZ/X )

∼= ⊕
z∈X (s) z∗z∗π−q(EZ/X ).

3.22 Recall that a sheaf F of abelian groups on the site XNis is called flabby, if the presheaf
Hq(−, F) on XNis is zero for q �= 0.Aflabby sheaf is in particular acyclic, i.e., Hq(X , F) = 0
for q �= 0.

Proposition 3.23 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum, z ∈ X (s) with
Z := {z} and q an integer. Then the presheaf

z∗z∗Eq
Z/X

of abelian groups is a flabby sheaf on XNis.

Proof Let q be an integer. Let V → X be étale of finite type with (set-theoretical) fibre
V (z) over the point z ∈ X . For a point v ∈ V (z), we set V loc

v := Spec(OV ,v) and V loc
z :=

V ×X X loc
z . Using the identification Z ×X V loc

z = ∐
v∈V (z) v, we have

z∗z∗Eq
Z/X (V ) ∼= π−q

(
z∗z∗EZ/X (V )

)
(by Lemma 2.4)

∼= π−q

(
EZ×X V loc

z /V loc
z

(V loc
z )

)
(by Lemma 3.6)

∼= π−q

(
E(∐

v∈V (z) v
)
/V loc

z
(V loc

z )

)

∼= π−q

(⊕
v∈V (z) Ev/V loc

z
(V loc

z )
)

(by Corollary 3.13)
∼= ⊕

v∈V (z) E
q
v/V loc

v
(V loc

v ).

Let us now prove the sheaf property of z∗z∗Eq
Z/X . Using Lemma 3.6, we may restrict us to

Nisnevich covers V → X of X . Writing W := V ×X V , we have to show that

0 z∗z∗Eq
Z/X (X) z∗z∗Eq

Z/X (V ) z∗z∗Eq
Z/X (W )

Eq
z/X loc

z
(X loc

z )
⊕

v∈V (z) E
q
v/V loc

v
(V loc

v )
⊕

w∈W (z) E
q
w/W loc

w
(W loc

w )

pr∗1−pr∗2
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is an exact sequence. Since V → X is a Nisnevich cover, we can find a point v0 in the fibre
V (z) with residue field k(v0) = k(z). In particular, by Lemma 3.11, the composition

Eq
z/X loc

z
(X loc

z ) −→
⊕

v∈V (z)

Eq
v/V loc

v
(V loc

v )
can−→ Eq

v0/V loc
v0

(V loc
v0

)

is an isomorphism, which settles the exactness at z∗z∗Eq
Z/X (X).

For the exactness at z∗z∗Eq
Z/X (V ), observe that

⊕
v∈V (z) E

q
v/V loc

v
(V loc

v ) splits into a direct

sum of Eq
z/X loc

z
(X loc

z ) and
⊕

v0 �=v∈V (z) E
q
v/V loc

v
(V loc

v ). Hence, it is enough to show that the

restricted map
⊕

v0 �=v∈V (z) E
q
v/V loc

v
(V loc

v ) → ⊕
w∈W (z) E

q
w/W loc

w
(W loc

w ) is a monomorphism.

To this end, it is suffices to show that

pr∗1 − pr∗2 : Eq
v/V loc

v
(V loc

v ) −→ Eq
v⊗v0/W loc

v⊗v0

(W loc
v⊗v0

) ⊕ Eq
v0⊗v/W loc

v0⊗v

(W loc
v0⊗v)

is a monomorphism for each v different from v0. But even the projection

pr∗1 : Eq
v/V loc

v
(V loc

v ) −→ Eq
v⊗v0/W loc

v⊗v0

(W loc
v⊗v0

)

is an isomorphism by Lemma 3.11: Indeed, the equality k(v ⊗ v0) = k(v) follows from
k(v0) = k(z), so pr1 : (W loc

v⊗v0
, v ⊗ v0) → (V loc

v , v) is (essentially) a Nisnevich neighbour-
hood. This finishes the proof of the sheaf property of z∗z∗Eq

Z/X .

In order to show the flabbieness, let us first show that z∗Eq
Z/X is flabby: Again, we have

z∗Eq
Z/X = Eq

z/X loc
z

by Lemma 3.6. Let j : U ↪→ X loc
z be the open complement of the closed

point z ∈ X loc
z . Then j∗Eq

z/X loc
z

is trivial by construction. Hence, Eq
z/X loc

z
is supported on z,

i.e., Eq
z/X loc

z
= z∗z∗Eq

z/X loc
z

is flabby as a skyscraper-sheaf. For the flabbiness of z∗z∗Eq
Z/X ,

we have to show that Hi (VNis, z∗z∗Eq
Z/X ) is trivial for all V → X étale of finite type and

i > 0. Since z∗Eq
Z/X is flabby, it is Rz∗-acyclic, i.e., z∗z∗Eq

Z/X � Rz∗z∗Eq
Z/X . In particular,

we have

Hi (VNis, z∗z∗Eq
Z/X ) ∼= Hi (VNis, Rz∗z∗Eq

Z/X ) ∼= Hi (V loc
z,Nis, z

∗Eq
Z/X ),

but the latter group is trivial since V loc
z,Nis → X loc

z is étale and z∗Eq
Z/X is flabby.

Corollary 3.24 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum. Then for every
integer s ≥ 0 and every integer q, the presheaf Eq

X (s/s+1) is a flabby sheaf on XNis.

Proof By Corollary 3.21, we have Eq
X (s/s+1) � ⊕

z∈X (s) z∗z∗Eq
Z/X . Here the direct sum is the

direct sum of presheaves. But XNis in noetherian (see e.g. [13, Proposition 5.2]), so the direct
sum of sheaves is the direct sum of presheaves and the claim follows from Proposition 3.23.

4 The Nisnevich Gersten complex

Let us remark that the Zariski-analogues of the following Lemma 4.1 and Proposition 4.6
were considered initially by Quillen for the special case of algebraic K -Theory in [11, §7.
Prop 5.6].
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Lemma 4.1 Let E ∈ SptS1(SmS) be a spectrum and n an integer. The cofibre sequences of
Definition 3.17 yield a complex of presheaves on XNis of abelian groups

0 → En
X

e−→ En
X (0/1)

d0−→ En+1
X (1/2)

d1−→ · · · dd−2−−→ En+d−1
X (d−1/d)

dd−1−−→ En+d
X (d) → 0.

The (Nisnevich) sheafification (−)∼ of this complex is exact at the first spot (En
X )∼ if and

only if the canonical map
(αn

0 )
∼ : (En

X (1) )
∼ → (En

X (0) )
∼ (4a)

is zero and it is exact at the spot (En+s
X (s/s+1) )

∼ for s ≥ 0 if both the canonical maps

(αn+s
s−1 )

∼ : (En+s
X (s) )

∼ → (En+s
X (s−1) )

∼ and

(αn+s+1
s+1 )∼ : (En+s+1

X (s+2) )∼ → (En+s+1
X (s+1) )∼ (4b)

are zero (where the first condition is empty for s = 0).

Proof The long exact sequences on homotopy groups associated to the cofibre sequences
EX (s+1) → EX (s) → EX (s/s+1) from Definition 3.17 for s ≥ 0 yield a diagram

En
X (1) En+2

X (3)

En
X (0) En+2

X (2)

0 En
X En

X (0/1) En+1
X (1/2) En+2

X (2/3)

En+1
X (1)

En+1
X (2) En+1

X (0)

αn
0

αn+2
2

βn
0

βn+2
2

e

γ n
0

d0

γ n+1
1

d1

αn+1
0

βn+1
1

αn+1
1

andwe define themiddle horizontal sequence as indicated. This sequence is clearly a complex
as the diagonal lines are complexes. The remaining statement follows immediately from
sheafification (−)∼ applied to the whole diagram.

4.2 For a Nisnevich local fibrant spectrum E ∈ SptS1(SmS) we can rewrite the complex
of presheaves on XNis of abelian groups from the previous Lemma 4.1 with the help of
Corollary 3.21 as

0 → En
X

e−→
⊕

z∈X (0)

z∗z∗En
Z/X

d0−→
⊕

z∈X (1)

z∗z∗En+1
Z/X

d1−→ · · ·

· · · dd−2−−→
⊕

z∈X (d−1)

z∗z∗En+d−1
Z/X

dd−1−−→
⊕

z∈X (d)

z∗z∗En+d
Z/X → 0. (4c)

Definition 4.3 For every integer n, we define the Nisnevich Gersten complex G•(E, n) of E
and homotopical degree n as the complex with entries

Gs(E, n) :=
⊕

z∈X (s)

z∗z∗En+s
Z/X

for s ≥ 0 and zero otherwise. The differentials ds are defined as in 4.2.
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4.4 For every integer n, we can reformulate (4c) as a map

En
X

e−→ G•(E, n)

into a complex of flabby sheaves (see Corollary 3.24) of abelian groups.

4.5 In abuse of notation, we will just write E(Xh
x ) for the stalk of E at a point x of X . Here

of course Xh
x denotes the Henselian local scheme Spec(Oh

X ,x ).

Proposition 4.6 Let E ∈ SptS1(SmS) be a Nisnevich local fibrant spectrum and n an integer.
There is a complex of sheaves on XNis of abelian groups

0 → (En
X )∼ ẽ−→ G0(E, n)

d0−→ G1(E, n)
d1−→ · · · dd−1−−→ Gd(E, n) → 0

where all but the first entry are flabby Nisnevich sheaves. This complex is

(1) exact at the first spot (En
X )∼ if and only if, for each point x of X and all Z ⊆ X closed

with codim(Z , X) ≥ 1, the forget support map

En
Z/X (Xh

x ) → En
X (Xh

x )

is trivial and
(2) exact at Gs(E, n) for s ≥ 0 if, Nisnevich-locally on X,

(i) if s = 1, for each point x of X and all Z ⊆ X closed with codim(Z , X) ≥ 1, the
forget support map

En+1
Z/X (Xh

x ) → En+1
X (Xh

x )

is trivial and
(ii) if s > 1, for all Z ⊆ X closed with codim(Z , X) ≥ s, there exists Z ⊆ Z ′ ⊆ X

closed with codim(Z ′, X) ≥ s − 1 such that the forget support map

En+s
Z/X (X) → En+s

Z ′/X (X)

is trivial and
(iii) for all s ≥ 0 and all Z ⊆ X closed with codim(Z , X) ≥ s + 2, there exists Z ⊆

Z ′ ⊆ X closed with codim(Z ′, X) ≥ s + 1 such that the forget support map

En+s+1
Z/X (X) → En+s+1

Z ′/X (X)

is trivial.

Proof The complex is obtained by applying the sheafification functor to the complex (4c). By
Corollary 3.24, all but the first entry are flabby Nisnevich sheaves. The exactness conditions
are just expanded versions of (4a) and (4b).

5 Effaceability

5.1 In this chapter, let S be the spectrum of a Henselian discrete valuation ring o with
infinite residue field F of characteristic p and quotient field k. Note that we make use of this
hypothesis only from Lemma 5.8 onwards.
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Construction 5.2 Let E ∈ SptS1(SmS) be a spectrum and f : X̃ → X a morphism in SmS .
We consider the morphism

η f : EX → f∗EX̃ (5a)

in SptS1(XNis) given on an étale morphism V → X of finite type as the map

EX (V ) = E(V ) → E(V ×X X̃) = EX̃ (V ×X X̃)

induced by the projection. This clearly generalizes the construction (3a) where the morphism
f was assumed to be étale. Indeed, in this case we have f ∗(EX ) ∼= EX̃ .

Construction 5.3 Next, for E ∈ SptS1(SmS), a closed subset Z ⊆ X and a pullback diagram

X̃ � Z̃ X̃

X � Z X

j̃

f̃ f
j

(5b)

we want to define a morphism
η f : EZ/X → f∗EZ̃/X̃ (5c)

that coincides with (5a) for Z = X . First note that the commutative diagram (5b) induces
the base-change morphism

f ∗ j∗
(b.c.)−−→ j̃∗ f̃

∗
.

Further, by adjunction, Construction 5.2 induces a map

f̃
∗
j∗EX ∼= f̃

∗
EX�Z

η
�
f−→ EX̃�Z̃

∼= j̃
∗
EX̃ .

Composition with the unit yields a morphism

j∗ j∗EX
η−→ f∗ f ∗ j∗ j∗EX

f∗(b.c.) j∗−−−−−→ f∗ j̃∗ f̃
∗
j∗EX

f∗ j̃∗η
�
f−−−−→ f∗ j̃∗ j̃

∗
EX̃ (5d)

which is seen to fit into a commutative square

EX j∗ j∗EX

f∗EX̃ f∗ j̃∗ j̃
∗
EX̃ .

η f

η j

f∗η j

inducing the desired map η f by taking horizontal homotopy fibres.

Lemma 5.4 Let

X2
f2−→ X1

f1−→ X

be twomorphisms of noetherian schemes of finiteKrull dimension, Z ⊆ X a closed subset and
Z1 := Z ×X X1, Z2 := Z ×X X2 the respective base changes. Then we have a commutative
triangle

EZ/X f1,∗EZ1/X1

f1,∗ f2,∗EZ2/X2

η f1

η f1 f2
f1,∗η f2

in SptS1(XNis) of the respective morphisms (5c).
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Proof By adjointness it suffices to show the commutativity of the outer square of the diagram

f ∗
2 f ∗

1 j∗(EU ) f ∗
2 j1,∗ f ∗

1|U (EU ) f ∗
2 j1,∗EU1 j2,∗ f ∗

2|U1
(EU1)

j2,∗( f1 f2)∗|U (EU ) j2,∗(EU2)

(b.c.)

f ∗
2 (b.c.)

(b.c.) f ∗
1|U

f ∗
2 j1,∗η�

f1|U (b.c.)

j2,∗η�
f2|U1j2,∗η�

( f1 f2)|U

where j : U ↪→ X , j1 : U1 ↪→ X1 and j2 : U2 ↪→ X2 are the respective open complements
of Z , Z1 and Z2 andwhere f1|U : U1 → U , f2|U1 and ( f1 f2)|U are the respective restrictions.
The triangle on the left-hand side commutes as base change morphisms are compatible with
composition and the commutativity of the remaining part is easily seen.

5.5 Recall, that a Nisnevich local fibrant spectrum E ∈ SptS1(S) is an A
1-Nisnevich local

fibrant spectrum if E(X) → E(X × A
1) is an equivalence for all X ∈ SmS .

Lemma 5.6 Let E ∈ SptS1(SmS) be an A
1-Nisnevich local fibrant spectrum. Let X ∈ SmS

be a scheme, Z ⊆ X a closed subset and π : A
1
X → X the projection. Then the canonical

map (c.f. (5c))

EZ/X
ηπ−→ π∗EA

1
Z /A

1
X

is a weak equivalence.

Proof By construction of the map in question as a homotopy fibre, it suffices to show that
the two maps

EX
ηπ−→ π∗EA

1
X

and

j∗ j∗EX → π∗ j̃∗ j̃
∗
E

A
1
X

from (5d) are both object-wise weak equivalences, This can be checked directly by evaluation
on an object V → X of the site XNis.

Lemma 5.7 Let E ∈ SptS1(SmS) be an A
1-Nisnevich local fibrant spectrum. Let X ∈ SmS

be a scheme and s : X ↪→ A
1
X a section of the projection π : A

1
X → X. Then there is a

commutative diagram

EZ/X π∗EA
1
Z /A

1
X

π∗s∗EZ/X

ηπ

π∗ηs

of weak equivalences. In particular, for another section s′ : X ↪→ A
1
X of the projection, the

morphisms π∗ηs and π∗ηs′ are equal in the homotopy category.

Proof This follows from the previous Lemmas 5.4 and 5.6.

Lemma 5.8 Let E ∈ SptS1(SmS) be an A
1-Nisnevich local fibrant spectrum. Let V ∈ SmS

and Z ↪→ A
1
V a closed subscheme such that Z ↪→ A

1
V

π−→ V is finite. Let Z̄ := π(Z)red be
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the reduced image. Then codim(A1
Z̄
, A

1
V ) = codim(Z , A

1
V ) − 1 and the forget support map

(see Lemma 3.7) induces the trivial morphism

π∗EZ/A
1
V

→ π∗EA
1
Z̄
/A

1
V

in the homotopy category.

Proof Consider the diagram

A
1
V V

P
1
V

j

π

π̄

where the non-vertical maps are the projections and j is the canonical open immersion. Let
us first prove that the triangle

π̄∗EP
1
Z̄
/P

1
V

π̄∗s̄∞,∗EZ̄/V = EZ̄/V

π∗EA
1
Z̄
/A

1
V

π̄∗ηs̄∞

π̄∗η j
ηπ (5e)

commutes in the homotopy category, where s̄∞ : V ↪→ P
1
V is the section at infinity. Let

s̄0 : V s0
↪−→ A

1
V

j−→ P
1
V denote the zero-section. Since by Lemma 5.7 the morphism

π∗ηs0 : π∗EA
1
Z̄
/A

1
V

→ π∗s0,∗EZ̄/V = EZ̄/V

is a weak equivalence, it suffices to show that the outer triangle of the enlarged diagram

π̄∗EP
1
Z̃
/P

1
V

EZ̄/V

π∗EA
1
Z̄
/A

1
V

EZ̄/V

π̄∗ηs̄∞

π̄∗ηs̄0

π̄∗η j

ηπ

π∗ηs0�

commutes. Indeed, the bottom triangle is obtained by applying π̄∗ to a commutative triangle
considered in Lemma 5.4 for s̄0 = js0. By the same Lemma 5.4 applied to id = πs0, the
right vertical composition is the identity. Hence, it suffices to show that π̄∗ηs̄0 = π̄∗ηs̄∞
holds in the homotopy category.
Since the sections s̄0 and s̄∞ : V → P

1
V both factorize through the open immersion j ′ : P

1
V �

s1(V ) ↪→ P
1
V via s′

0 and s′∞ : V → P
1
V � s1(V ), we have a commutative diagram

π̄∗EP
1
Z̄
/P

1
V

π̄∗ j ′∗E(P1
Z̄
�s1(V ))/(P1

V �s1(V ))

EZ̄/V

π̄∗η j ′

π̄∗ηs̄0 π ′∗ηs′0

(and likewise for s̄∞ and s′∞). Here,π ′ : P
1
V �s1(V ) → V is the projection. AsP

1
V �s1(V ) ∼=

A
1
V and P

1
Z̄

� s1(V ) ∼= A
1
Z̄
, we obtain π ′∗ηs′0 = π ′∗ηs′∞ by Lemma 5.7, thus π̄∗ηs̄0 = π̄∗η̄s∞ .

Summing up, this yields the commutativity of diagram (5e).
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In order to show that the morphism in question

π∗EZ/A
1
V

= π̄∗ j∗EZ/A
1
V

→ π̄∗ j∗EA
1
Z̄
/A

1
V

= π∗EA
1
Z̄
/A

1
V

is trivial in the homotopy category, we consider the diagram

π̄∗ j∗EZ/A
1
V

π̄∗ j∗EA
1
Z̄
/A

1
V

EZ̄/V

π̄∗EZ/P
1
V

π̄∗EP
1
Z̄
/P

1
V

π̄∗ j ′′∗ E(P1
Z̄
�Z)/(P1

V �Z)

� π̄∗η j π̄∗η j

π̄∗ s̄∞
π̄∗η j ′′

π̄∗ j ′′∗ ηs′′∞

where the middle triangle is (5e). The left horizontal maps are induced by the respective
forget support maps. For the right triangle, we note that s̄∞ : V ↪→ P

1
V factorizes through

j ′′ : P
1
V � Z ↪→ P

1
V via s′′∞ : V ↪→ P

1
V � Z . The commutativity of the square on the left-hand

side is clear. The triangle on the right-hand side commutes again by Lemma 5.4. We observe
that the lower horizontal line is given by π̄∗ applied to the exact triangle of Lemma 3.7. In
particular, it is an exact triangle itself and therefore the composition is trivial. Finally, the
left vertical arrow is a weak equivalence by the excision Lemma 3.11. Hence the morphism
π∗EZ/A

1
V

→ π∗EA
1
Z̄
/A

1
V
in question is trivial in the homotopy category.

For the assertion codim(A1
Z̄
, A

1
V ) = codim(Z , A

1
V ) − 1 we can argue component-wise

on Z so we may assume that Z is irreducible. Further, we can replace A
1
V by a base change

along a flat morphism V ′ → V . In particular, we may assume that V is a local scheme with
closed point Z̄ . As Z is finite over Z̄ , it is just a finite union of points in the curve A

1
Z̄
. Thus,

codim(Z , A
1
Z̄
) = 1 and the assertion follows by Lemma 2.7.

5.9 In [3, Definition 4.4], the authors define the notion of an étale sheaf A to be effaceable
at a point x ∈ X . (There is a corresponding dual definition of homological effaceability in
[3, Definition 4.4].) The connection of this definition with the next Proposition 5.10 and its
Corollary 5.12 is as follows. As we will explain in more detail in 6.2, there is a spectrum E
which satisfies En

X (U ) = Hn(U , A) and En
Z/X (U ) = Hn

Z (U , A) for an étale sheaf A. With
this terminology and under the required assumptions, the next Proposition 5.10 shows that
A is “Nisnevich-locally” effaceable at the point x ∈ X .

Proposition 5.10 Let E ∈ SptS1(SmS) be an A
1-Nisnevich local fibrant spectrum. Let X ∈

SmS, Z ↪→ X be a closed subscheme and x ∈ X be a point. If x lies in the special fibre Xσ ,
assume that Zσ does not contain any connected components of Xσ . Then, Nisnevich-locally
on X around x, there exists a V ∈ SmS, a smooth relative curve p : X → V with Z finite over
V and a closed subscheme Z ′ ↪→ X containing Z such that codim(Z ′, X) = codim(Z , X)−1
and the forget support map induces the trivial morphism

p∗EZ/X → p∗EZ ′/X

in the homotopy category. In particular, EZ/X (X) → EZ ′/X (X) is trivial in this case.
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Proof Possibly after shrinking X Nisnevich-locally around x , we find a Nisnevich distin-
guished square

X � Z X

A
1
V � f (Z) A

1
V

f (5f)

such that Z ↪→ X
f−→ A

1
V

π−→ V is finite by [12, Theorem 2.1]. Let p : X
f−→ A

1
V

π−→ V
denote the composition and set Z̄ := p(Z)red and Z ′ := p−1(Z̄). Since f and π and hence
the composition p is flat, the assertion about the codimensions holds true. By the excision
Lemma 3.11, the upper horizontal morphism of the diagram

E f (Z)/A
1
V

f∗EZ/X

E
A
1
Z̄
/A

1
V

f∗EZ ′/X

�

is an equivalence, where the vertical maps are the respective forget support maps and
f −1 f (Z) = Z . Application of π∗ yields the commutative diagram

π∗E f (Z)/A
1
V

p∗EZ/X

π∗EA
1
Z̃
/A

1
V

p∗EZ ′/X .

�

The left vertical morphism is trivial by the previous Lemma 5.8. Hence the right vertical
morphism is trivial which proves the claim.

5.11 Denote by Xh
x,η the generic fibre Spec(Oh

X ,x ⊗o k) of the Henselian local scheme at

x . Similar to 4.5, by E(Xh
x,η) we mean colim(W ,w) E(Wη), where (W , w) runs through the

Nisnevich neighbourhoods of x and Wη is the generic fibre.

Corollary 5.12 Under the assumptions of Proposition 5.10, the forget support map

EZ/X (Xh
x,η) → EX (Xh

x,η)

is trivial.

Proof By [12, Theorem 2.1], there is a cofinal family of Nisnevich neighbourhoods (W , w)

of x admitting a Nisnevich distinguished square of the form (5f) with the additional finiteness
assumption. We even claim that for such neighbourhoods (W , w), the forget support map
EZ/X (Wη) → EX (Wη) is trivial. To show this, we may assume W = X , i.e., we assume X
admits a Nisnevich distinguished square as in (5f) with Z/V finite. On the generic fibres, we
still have a distinguished square

Xη � Zη Xη

A
1
Vη

� fη(Zη) A
1
Vη

fη

and as pullback, Zη/Vη is still finite. Accordingly, the arguments in the proof of Proposition
5.10 go through for Zη ⊆ Xη, as well. In particular, the forget support map EZ/X (Xη) →
EX (Xη) is indeed trivial.
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Theorem 5.13 Let S be a Dedekind scheme with only infinite residue fields. Moreover, let
E ∈ SptS1(SmS) be an A

1-Nisnevich local fibrant spectrum and X ∈ SmS of dimension d.
The complex of sheaves over the small Nisnevich site XNis

0 → (En
X )∼ ẽ−→

⊕

z∈X (0)

z∗z∗En
Z/X

d0−→
⊕

z∈X (1)

z∗z∗En+1
Z/X

d1−→ · · ·

· · · dd−2−−→
⊕

z∈X (d−1)

z∗z∗En+d−1
Z/X

dd−1−−→
⊕

z∈X (d)

z∗z∗En+d
Z/X → 0

is exact, possible except at the spots (En
X )∼ and

⊕
z∈X (1) z∗z∗En+1

Z/X . Moreover, if for each
point x of X the forget support map for the special fibre

EXσ /X (Xh
x ) → EX (Xh

x )

is trivial, then it is exact everywhere and thus a resolution of (En
X )∼ by flabby Nisnevich

sheaves. In this case, we have

H p(Y , (En
X )∼) ∼= H p(G•(E, n)(Y )).

for Y ∈ XNis which vanishes for p > d.

Proof Since exactness is checked stalk-wise and we can compute the stalk at a point x ∈ X
after henselization of the local scheme obtained from S at the image of x , we may assume,
that S is the spectrum of a Henselian discrete valuation ring with infinite residue field. Now
the first result follows from Proposition 4.6 and Proposition 5.10.
Suppose the forget support maps EXσ /X (Xh

x ) → EX (Xh
x ) are trivial for all points x . By our

assumtion and Propositions 4.6 and 5.10, it is enough so show that the forget support map
En
Z/X (Xh

x ) → En
X (Xh

x ) is trivial for closed subsets Xσ � Z � X . We may replace X by

the Henselian local scheme Xh
x . Write Z = Z1 ∪ Z2 with Z1 = Xσ and Xσ � Z2. Let

U = X � Z and Ui = X � Zi be the respective open complements. Observe that U1 = Xη

and U = U2,η are just the generic fibres. Consider the exact triangles

EZ2/X (U1) → EX (U1) → EX (U ).

and

EZ1/X (X) → EX (X) → EX (U1).

By our assumption, the forget support map in the latter triangle is trivial, so the restriction
map EX (X) → EX (U1) admits a retraction r1. By Corollary 5.12, the forget support map in
the former triangle is trivial, so the restriction map EX (U1) → EX (U ) admits a retraction
r2. Set r := r1 ◦ r2 : EX (U ) → EX (X). By construction, r is a retraction of the restriction
map EX (X) → EX (U ). Thus, using the exact triangle

EZ/X (X) → EX (X) → EX (U ),

we get that the forget support map EZ/X (X) → EX (X) is indeed trivial.

6 A Bloch–Ogus theorem for étale cohomology

In this section we want to apply Theorem 5.13 to étale cohomology. Let us first fix the
situation:
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6.1 We are in the situation of 5.1. For the whole section, we fix an essentially smooth
scheme X/S, connected and of finite dimension. Let us denote the structural morphism by
pX : X → S. We fix a coefficient group� := Z/m for an integerm > 0 prime to p. Wework
in the derived category Db

c (Xet,�) of bounded (above and below) complexes all of whose
cohomology sheaves are constructible sheaves of �-modules. By an l.c.c. complex K •, we
mean a complexes K • ∈ Db

c (Xet,�) with locally constant cohomology sheaves Hq(K •) for
all q .

6.2 Let ε : Xet → XNis be the canonical morphism of sites. Note that R�(Xet,−) �
R�(XNis, Rε∗(−)). By abuse of notation, let us denote by ε also the correspondingmorphism
SmS,et → SmS,Nis of the smooth sites. For an l.c.c. complex K • inDb

c (Set,�), we denote by
K • also the complex inDb(SmS,et,�) that restricts to p∗

X K
• on each small site Xet. Further,

we fix a Nisnevich local fibrant spectrum E(K •) ∈ SptS1(SmS) corresponding to Rε∗K •
under the Dold–Kan correspondence.

Lemma 6.3 The spectrum E(K •) is A
1-local.

Proof Indeed, the projection π : A
1
X → X induces a quasi-isomorphism p∗

X K
• →

Rπ∗π∗ p∗
X K

• (e.g.[6, Corollary 7.7.4]) and hence a quasi-isomorphism on cohomology

R�(XNis, Rε∗ p∗
X K

•) → R�(A1
X ,Nis, Rε∗ p∗

A
1
X
K •).

Under the Dold–Kan correspondence this translates to our claim.

6.4 In order to apply Theorem 5.13 to the A
1-local spectrum E(K •), we need to show that

the forget support maps
E(K •)Xσ /X (Xh

x ) → E(K •)X (Xh
x )

vanish for all points x in X . Here, Xh
x denotes the spectrum of the henselization of the local

ring of X at x . Unravelling the definitions, these maps are just the forget support maps

R�Xh
x,σ

(Xh
x,et, p

∗
X K

•) → R�(Xh
x,et, p

∗
X K

•)

of étale cohomology.

In the following, we will make use of Gabber’s absolute purity theorem – but not in its
full strength. The following easy special case will be sufficient for our cause:

Lemma 6.5 In the situation of 6.1, let i : Z ↪→ X be a closed subscheme of codimension c,
contained in the special fibre of X/S. Assume Z/F is smooth and connected. Then the canon-
ical morphism Ri !K •|X → K •|Z (−c)[−2c] is a quasi-isomorphism for all l.c.c. complexes
K • ∈ Dc

b(Set,�).

Proof Say, X/S and Z/F have relative dimension m and n respectively. In particular, c =
m − n + 1. Consider the commutative diagram

Z X

Spec(F) S.

i

pZ pX

σ

By Poincaré-duality for X/S (respectively Z/F) , Rp!
X K

• � p∗
X K

•(m)[2m] (respectively
Rp!

Zσ ∗K • � p∗
Zσ ∗K •(n)[2n]). Further, by the special case of absolute purity for the closed
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point in S (which is an easy exercise – e.g. the proof of [6, Lemma 8.3.6] goes through
unchanged for l.c.c. sheaves and hence for l.c.c. complexes), Rσ !K • � σ ∗K •(−1)[−2].
Summing up, we get

Ri ! p∗
X K

• � Ri !Rp!
X K

•(−m)[−2m]
� Rp!

ZRσ !K •(−m)[−2m]
� Rp!

Zσ ∗K •(−m − 1)[−2m − 2]
� p∗

Zσ ∗K •(−c)[−2c],
finishing the proof.

Lemma 6.6 In the situation of 6.1, assume that X is Henselian local with closed point x in
the special fibre of X/S. Then the canonical morphism σX ,∗Rσ !

X� → � induces the trivial
morphism in Db(k(x)et,�):

x∗σX ,∗Rσ !
X�

� 0−−→ x∗� � �.

In particular, the canonical map R�Xσ (Xet,�) → R�(Xet,�) is trivial.

Proof The second claim follows from the first. Indeed, as X is local HenselianR�(Xet,−) �
R�(k(x)et, x∗(−)). For the first claim, it is enough to show that the Tate-twist

x∗(σX ,∗Rσ !
X�(1) → �(1)) (6a)

is trivial in Db(k(x)et,�). By Lemma 6.5, Rσ !
X�(1) � �[−2]. In particular, the sheaf-

cohomology of (6a) in degree 2 is given by

� = H0(Xσ,et,�) � H2
Xσ

(Xet,�(1)) → H2(Xet,�(1)), 1 	→ ĉ1[O(Xσ )], (6b)

i.e., is trivial as X is a local scheme. Further,

x∗σX ,∗Rσ !
X�(1) � x∗σX ,∗�[−2] � �[−2]

which implies

HomDb
c (k(x)et,�)(x

∗σX ,∗Rσ !
X�(1), x∗�(1)) ∼= H2(k(x)et,�(1))

and (6a) corresponds to a class contained in the image of (6b) (more precisely, (6a) corre-
sponds to the class ĉ1[O(Xσ )]), hence it is trivial.
Corollary 6.7 In the situation of 6.1, assume that X is Henselian local with closed point x
in the special fibre of X/S. Let K • ∈ Db

c (Set,�) be a l.c.c. complex. Then the canonical
morphism σX ,∗Rσ !

X K
•|X → K •|X induces the trivial morphism in Db(k(x)et,�):

x∗σX ,∗Rσ !
X K

•|X � 0−−→ x∗K •|X .

In particular, the canonical map R�Xσ (Xet, K •|X ) → R�(Xet, K •|X ) is trivial.

Proof By Lemma 6.6, x∗ applied to

(σX ,∗Rσ !
X� → �) ⊗L p∗

X K
• (6c)

is trivial. By the projection formula and Lemma 6.5, (6c) is isomorphic to the canonical
morphism σX ,∗Rσ !

X p
∗
X K

• → p∗
X K

•, so the claim follows.

Combining Theorem 5.13 and Corollary 6.7, we get:
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Theorem 6.8 Let S be the spectrum of a Henselian discrete valuation ring with infinite
residue field F. Let X/S be smooth, d = dim(X) and K • an l.c.c. complex in Db

c (Set,�).
Then the Nisnevich Gersten complex G•(E(K •), n) is a flasque resolution of the Nisnevich
sheafification R

nε∗K •|X of étale cohomology with coefficients K •. In particular, we get the
exact sequence

0 → R
nε∗K •|X →

⊕

z∈X (0)

z∗Hn(k(z), K •|k(z)) → . . .

· · · →
⊕

z∈X (d)

z∗Hn−d(k(z), K •|k(z)(−d)) → 0.

Proof The spectrum E(K •) isA
1-local by Lemma 6.3. Combining Theorem 5.13 and Corol-

lary 6.7, we get that G•(E(K •), n) is a flasque resolution of R
nε∗K •|X .

Let us compute Gs(E(K •), n) = ⊕
z∈X (s) z∗z∗E(K •)n+s

Z/X : In the proof of Proposition 3.23

we saw that z∗E(K •)n+s
Z/X = z∗z∗E(K •)n+s

z/X loc
z
. Unravelling the definitions, z∗E(K •)n+s

z/X loc
z

∼=
Hn+s
z (X loc

z,et, K
•). By absolute purity, Hn+s

z (X loc
z,et, K

•) ∼= Hn−s(k(z), K •(−s)), which fin-
ishes the proof.

Remark 6.9 Wecan avoid absolute purity in its full strength ifwe assume k andF to be perfect:
Computing z∗E(K •)n+s

Z/X under this assumption, we may assume Z to be smooth over k (if
z is contained in the generic fibre of X/S) or smooth over F (if z is contained in the special
fibre of X/S) by generic smoothness. In both cases, z∗E(K •)n+s

Z/X
∼= z∗Hn−s(k(z), K •(−s)),

either by relative purity or by Lemma 6.5.

Taking Nisnevich stalks, we get:

Corollary 6.10 Let S be the spectrum of a Henselian discrete valuation ring with infinite
residue field F. Let X/S be smooth of finite type, d = dim(X) and K • an l.c.c. complex in
Db
c (Set,�). Let x be a point of X and Y = Xh

x the Nisnevich local scheme at x. Then there
is an exact sequence

0 → Hn(Yet, K
•|Y )

e−→
⊕

z∈Y (0)

Hn(k(z), z∗K •|Y )
d0−→ · · ·

· · · dd−1−−→
⊕

z∈Y (d)

Hn−d(k(z), z∗K •|Y (−d)) → 0.

Remark 6.11 Using the Bloch–Kato-Conjecture, in [7] Geisser proved the exactness of the
Gersten complex in degree n for X/S smooth even for ε : Xet → XZar, but only for coeffi-
cients K • = �(r) = µ⊗r

m for n ≤ r . If S is not strictly Henselian, this assumption excludes
H2r (Yet,�(r)) for r > 0, i.e., the targets of the cycle class maps.
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