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Chapter 1

Thesis Overview

The aim of the present thesis is to contribute towards the theory of higher
and quantum invariants of knots and links. The thesis is structured as
follows.

Chapter 2 is devoted to a brief historical account of knot theory in
mathematics. We start in Section 2.1 by describing how knots found their
way from the real world into mathematics, and continue in Sections 2.2
to 2.4 with a description of the developments of a selection of the most
common and important knot invariants, divided into classical, higher, and
quantum invariants, respectively.1 Along the way, we pay careful attention
to provide many references to original papers, textbooks, or survey articles
with additional sources.

The remainder of the thesis is divided into two parts. In Part I we
turn our attention to higher invariants, more precisely the study of knot
concordance and a particular invariant defined by C. Livingston in 2010
called the stable 4-genus of knots [Liv10]. In the main result we derive a
lower bound on the stable 4-genus of a knot in terms of Casson-Gordon
τ -signatures. As an application, we compute the lower bounder for an
infinite family of knots, the twist knots, and complete the classification of
their order in the knot concordance group. Part I is based on the author’s
paper “A lower bound on the stable 4-genus of knots” from 2020 [Ilt20].

Part II is concerned with contributions towards quantum invariants.
We use a variation of Khovanov homology called Z[G]-homology in order
to define a new knot invariant λ that takes non-negative integer values. The
highlight of this invariant is that it provides a lower bound on the proper
rational unknotting number of a knot, which in turn is a lower bound for
the ordinary unknotting number. We further show that the invariant λ can
be arbitrarily big by constructing concrete examples. Part II is based on
the collaborative work of the author with L. Lewark and L. Marino in 2021,
which resulted in the paper “Khovanov homology and rational unknotting”
[ILM21].

1This classification of knot invariants is neither standard nor precisely defined, but to the
author’s best knowledge widely accepted.
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An extensive introduction to our results with background information
is given at the beginning of Part I and Part II, respectively, where we
also provide a more detailed description on how the individual parts are
structured.

While the new contributions towards the theory of higher and quantum
invariants are certainly the main attraction of the present text, the reader
will notice that a large part of the thesis is formed by the preliminaries
in Part I and Part II. This is due to the fact that we aimed to provide a
mostly self-contained introduction to the mathematical theory needed in
order to understand our own results. Moreover, we tried to put emphasis
on proper notation and explanations in hope to achieve a presentation of
the material that might not be found elsewhere in the literature.
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Livingston and Allison Miller for reading a preliminary version of the paper
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ments and advice. Likewise, I would like to thank Eaman Eftekhary, Dun-
can McCoy, Dirk Schütz and Claudius Zibrowius for comments on drafts of
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in particular to Claudius Zibrowius who pointed the authors of the paper
to the work of Naot and Thompson which are essential to our results, Dirk
Schütz who kindly shared his calculations of Rasmussen invariants [Sch21b],
and Daniel Schäppi who led us towards Remark 10.20. Also thanks to all
participants of the Khovanov homology reading course in Regensburg in
2020, Felix Eberhart, Marco Moraschini, Lars Munser, Paula Truöl, and
José Pedro Quintanilha for the exciting times.
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Chapter 2

Historical Note

The journey of knots into the abstract spheres of modern day mathematics
is an astonishing one. Starting off as a primary example for Leibniz’ geome-
tria situs, the abstract study of knots has produced highly sophisticated
tools in mathematics and revealed deep connections with the geometrical
model of our real world. Let’s take a closer look.

2.1 The Beginnings

The craft of tying knots has been used by mankind since prehistoric times
and is still essential in many areas such as sailing, climbing, or art. Regard-
ing knots in science, one of the earliest records goes back to ancient Greece.
Heraklas, a Greek physicist, described in an essay in the first century A.D.
sixteen knots and nooses for surgical and orthopedic use [Hag08].1 Knots
didn’t enter mathematics however until 1771, when A.-T. Vandermonde
(1735–1796) published his paper “Remarques sur les problèmes de situa-
tion” [Van71]. The newly emerging branch of mathematics “geometry of
position” (geometria situs, the ancestor of modern topology), first men-
tioned by G. W. Leibniz (1646–1716), called for a geometry that deals
with position directly, but convincing examples had been lacking so far
[Fre72, Prz98]. In his paper, Vandermonde observed that it is the “ques-
tion of position”, i.e. the way “...in which [...] threads are interlaced” that
is of main interest for knots, and not any quantitative measures such as
length or magnitude, making knots a primary example for the geometry of
position.

C. F. Gauss (1777–1855) and his student J. B. Listing (1808–1882) also
showed interest in knots and, more generally, links (i.e. a union of several,
possibly intertwined knots) [Prz98, RLR11]. The linking number, intro-
duced by Gauss in 1833, was the first mathematical object that provides
information about knotted strings in space. Intuitively, the linking number

1As noted by J. J. Hage [Hag08], seven of Heraklas’ knots are still in use and four more have
been rediscovered recently.
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counts how many times a curve winds around a second curve, and provides
therefore a first characterization of links. Indeed, the linking number can
be used for instance to tell the 2-component unlink apart from the Hopf
link, see Figure 2.1.

2-component unlink Hopf link

Figure 2.1: The 2-component unlink on the left with linking number 0, and the Hopf
link on the right with linking number +1 or −1 depending on the chosen orientation.

There is evidence that Gauss’ derivation of the linking number was in
fact motivated by his studies of electromagnetism [RLR11]. Gauss’ dis-
covery therefore sparked the interest of physicists such as J. C. Maxwell
(1831–1879) or H. Von Helmholtz (1821–1894) [Prz98]. It is interesting to
note that Maxwell provided a first example of two intertwined curves that
cannot be separated but have the same linking number as the 2-component
unlink, giving a first glimpse of what should become one of the major
problems in mathematical knot theory.

Figure 2.2: The link of Maxwell (thickened, redrawn from [Prz98, Figure 7])

The journey of knots into mathematics continues as Scottish physicist
P. G. Tait (1831–1901) showed W. Thomson, also known as Lord Kelvin
(1824–1907), how to experiment with vortex smoke rings in 1867 [Sil06].
Thomson, at that time trying to understand the fundamental particles of
matter, deduced from his observations the theory of the vortex atom. The
theory suggests that atoms are knotted vortices in the luminiferous aether
and that different knots represent different chemical elements [Tho67].

Motivated by his friend’s theory and anticipating a characterization
of all periodic elements, Tait started in 1878 his extensive study of knots
[Sil06]. Tait attempted to tabulate knots by depicting them with diagrams,
but he was confronted with a major difficulty: how does one prove that two
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knot diagrams represent different or equal knots? There were no rigorous
techniques for this task available, so Tait had to work with intuition and
common sense [Sil06]. He made several observations which later became
known as the Tait conjectures, and achieved a tabulation of knots up to 7
crossings [Sto08, Prz98].2

While Thomson’s theory of the vortex atom eventually turned out to
be wrong [Sil06], Tait’s work on knots could withstand time: his tabula-
tion was proven to be essentially correct by the results of subsequent knot
tabulists (see Footnote 2 on p. 5), and his conjectures were solved by the
works of L. Kauffman, K. Murasugi, M. B. Thistlethwaite and W. Menasco
between 1987 and 1993 [Kau87b, Mur87a, Mur87b, Thi87, Thi88, MT93].
Because of his contributions, Tait can be considered as the first knot the-
orist in mathematics.

Despite its influence, Tait’s work wasn’t the sole reason for the forma-
tion of knot theory as its own mathematical discipline. In the 19th-century,
the theory of algebraic functions and more generally algebraic geometry
experienced great popularity within mathematics. As noted in [Epp95],
W. Wirtinger (1865–1945) was the first to recognize a connection between
knots and singular points of algebraic curves, even though he never directly
published his findings. Many of the immediate knot theoretical inventions
and discoveries after Tait stem in fact from this connection of knots with
problems in algebraic geometry. However, this relation is barely noticeable
in the early papers of modern knot theory by mathematicians such as H.
Tietze, M. Dehn, K. Reidemeister or J. W. Alexander; a consequence of
forgetting contexts [Epp95] (also, see [DH07] for a historical survey of knot
theory in the 19th-century). According to M. Epple [Epp95, Introduction],
it is the result of a “... process of differentiation and ... a subsequent elim-
ination of contexts” [Epp95, Thesis] that fully established knot theory as
an independent discipline within mathematics.

Whether one’s motivation stems from Tait’s work on knot tabulation or
the theory of algebraic functions, the fundamental problem about knots still
remained: how does one distinguish non-equivalent knots in general? In
order to treat this problem a proper mathematical framework was required.
The development of such a framework was initiated by H. Poincaré (1854–
1912), who laid with his paper “Analysis Situs” [Poi95] the foundations of
algebraic topology in 1895. Looking at the bigger picture, Poincaré’s work
was part of an ongoing revolution throughout mathematics at the start of
the 19th-century: the change of mathematics as a tool to treat questions

2T. P. Kirkman (1806–1895) and C. N. Little (1858–1923) contributed to a further tabulation
of knots so that by 1900 a list of knots with up to 10 crossings was available (see [Prz98] and
references therein). The tabulation was continually extended by many mathematicians such
as M. G. Haseman (1889–1960(?)), J. H. Conway (1937–2020), C. H. Dowker (1912–1982), J.
Hoste, J. Weeks and M. B. Thistlethwaite [Has17, Con70, DT83, Thi85, HTW98]. The latest
result is to the best knowledge of the author by B. A. Burton [Bur20], achieving a tabulation
of topologically distinct prime knots up to 19 crossings. The tabulation consists of more than
350 million entries!
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motivated by exact sciences into an autonomous discipline with axiomatic
foundations, rigorous formalism and problems arising from mathematical
research itself.3 This change is reflected in knot theory as knots became
more and more independent objects studied in three- and even higher-
dimensional spaces, formalized in the language of topology.4 It was only
this abstraction which made it possible to tackle the evolving questions
within knot theory.

Equipped with the evolving tools of (algebraic) topology, the early 20th-
century marks the beginning of modern knot theory. The developments
from now on are incredibly vast and rapid, and we have to make a choice on
the topics we wish to discuss. We do so by choosing subjects that benefit us
the most for the rest of this thesis. In particular, we have to omit important
contemporary topics such as Vassiliev (or finite-type) invariants, or contact
geometry and Legendrian knots, for instance. We would also like to take
the opportunity to apologize for all intended and non-intended omissions of
results and references in what follows. For more extensive accounts we refer
the interested reader to one of the many excellent textbooks such as [Rol76,
Lic97, Kau87a, Ada04, Gei08, Mur08, Tur10, LN16, JM19, AFH+21].

2.2 Classical invariants

Let us now switch to a more modern language in order to continue our
historical note. A knot K is a smooth embedding of the unit circle S1

into the Euclidean 3-space R3 or the unit 3-sphere S3, and two such knots
are called equivalent if there is an ambient isotopy between them.5 An n-
component link is a disjoint union of n ∈ N knots (hence a one-component
link is just a regular knot). It is clear that certain tools are needed in order
to prove theorems about knots; heuristic or empirical arguments would not
lead to satisfying proofs. These tools are known as knot invariants, i.e.
mathematical objects that are identical for equivalent knots. Let us refer
to the knot invariants that were predominantly studied in roughly the first
half of the 20th-century as classical knot invariants6

The introduction of the fundamental group of a topological space by
H. Poincaré in 1895 [Poi95] led to one of the first and simultaneously most
famous classical invariants, the so-called knot group π1(S3\K). In 1905, W.
Wirtinger (1865–1945) described an algorithm to obtain a presentation for
the knot group, the Wirtinger presentation [Wir05]. Three years later in
1908, H. Tietze (1880–1964) used the knot group to show that the trefoil
knot is not equivalent to the unknot [Tie08], providing the first formal

3For an excellent account of this process within mathematics with focus on knot theory see
[Epp99].

4Throughout this text we focus on the classical dimension, i.e. 1-dimensional knots in 3-
dimensional space. For knot theory in higher dimensions see for instance [Rol76] or [Ran98].

5For reasons of compactness, knots are frequently considered in S3 rather than R3.
6This terminology is chosen by the author and neither standard nor precisely defined.
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proof that non-trivial knots exist [Epp95]. Without relying on previous
results, M. Dehn (1878–1952) applied his own techniques to the knot group
and published a series of papers between 1910 and 1914, with the latest
containing the remarkable result that the left- and right-handed trefoil are
not equivalent (in other words, the trefoil is not amphicheiral) [Deh10,
Deh12, Deh14].

31 31

Figure 2.3: The right-handed trefoil 31 and its mirror image, the left-handed trefoil 31.
M. Dehn showed in 1914 that the two trefoils are not equivalent [Deh14]. Note that it
is possible to obtain 31 from 31 by an orientation-reversing homeomorphism of S3; such
a homeomorphism induces an isomorphism of the corresponding knot groups, showing
that the isomorphism type of the knot group alone cannot distinguish the two trefoils.

Covering spaces also play an important role in the study of classical
invariants. The abelianization of the knot group is always infinite cyclic,
hence the commutator subgroup gives rise to a covering of the knot exterior
S3\K with automorphism group Z, the infinite cyclic covering of K. If one
composes the Abelianization homomorphism with an epimorphism from Z
to Z/kZ for some k ∈ N, k ≥ 2, one obtains the k-fold finite cyclic covering
of K. These give rise to a set of invariants, the kth torsion numbers of K
(see [Rol76, Chapter 6.A]). If one adds back the knot K to the exterior,
the finite cyclic covering extends to a branched cyclic covering of S3 with
branch locus K.7

In his 1898 dissertation [Hee98], P. Heegaard (1871–1948) constructed
the 2-fold branched cyclic covering of the trefoil knot and the unknot, and
showed that the coverings are different from each other; interestingly, he
did not explicitly state that this distinguishes the trefoil from the unknot
[Sti93, Prz98].

Arguably one of the most important invariants that arises from a cyclic
covering of the knot exterior is the Alexander polynomial ∆K , due to J. W.
Alexander (1888–1971) in 1923 [Ale28]. It is defined as the order ideal of
the Alexander invariant, the first homology of the infinite cyclic covering
viewed as a module over the ring of integer Laurent polynomials Z[t±1] (see

7Invariants that are determined by the (co-)homology of abelian coverings of the knot exte-
rior are known as abelian knot invariants.
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[Rol76, Chapter 8.C]). The Alexander polynomial forms the first and, for a
long time only instance of a new class of invariants, the knot polynomials,
and has been studied extensively ever since its discovery in 1923 [Sei35,
Tor53, Fox53, Bro60, Kon79, Tur86, Mur87a, Mur87b, Lin01].

There is another way to obtain the Alexander polynomial of a knot.
F. Frankl (1905–1961) and L. Pontrjagin (1908–1988) showed in 1930 that
every knot bounds an orientable two-dimensional surface in S3 [FP30].
Five years later in 1935, H. Seifert (1907–1996) described an algorithm
that produces such a bounding surface for any given knot K [Sei35]. This
algorithm is now known as Seifert algorithm, and an orientable bounding
surface is called Seifert surface. Associated to a Seifert surface is a bilinear
form on first homology called Seifert pairing, and a matrix for this pairing
is called Seifert matrix (see [LN16, Chapter 2]).

If A is a Seifert matrix for K, then it can be shown that A − tA⊤ is a
square presentation matrix for the Alexander invariant8, hence det(A−tA⊤)
is equal to the Alexander polynomial ∆K (see [Rol76, Chapter 8.C]). Seifert
surfaces and matrices give rise to many new invariants, such as the genus
of a knot [Sei35], the knot signature [Tro62, Mur65], the knot determinant
[Goe33], or the Arf invariant [Rob65]. The knot signature was further
generalized by J. Levine and A. Tristram in the 1960s, yielding the Levine-
Tristram signatures [Lev69a, Lev69b, Tri69]. Around the same time a
deep connection of links with 3-dimensional topology was revealed when
W. B. R. Lickorish and independently A. H. Wallace showed that every
closed, oriented and connected 3-manifold can be obtained by performing
surgery on a (framed) link in S3 [Lic62, Wal61].

In 1927, K. Reidemeister (1893–1971) showed that any two diagrams of
equivalent knots are related by a sequence of three local moves, the so-called
Reidemeister moves [Rei26] (see Figure 2.4).9 While not being directly a
knot invariant, the Reidemeister moves are still of great importance up to
the present day; a diagrammatically defined object is a knot invariant if
and only if it is invariant under the three Reidemeister moves. As a note
beside, it was also Reidemeister that published the first textbook on knot
theory in 1932 [Rei32].

One of the simplest, yet most puzzling invariants is the unknotting num-
ber of a knot K. It is defined as the minimal number of crossing changes
needed to turn a diagram of K into a diagram the unknot. It is a simple
exercise to show that the unknotting number is always less than half the
crossing number of the knot. However, it is in general surprisingly difficult
to determine the exact value of the unknotting number. One of the main
reasons is that the unknotting number can not always be determined from
a minimal diagram of K, i.e. a diagram that realizes the crossing number.
The first examples of such knots were found by Y. Nakanishi and inde-

8A presentation matrix for the Alexander invariant is called Alexander matrix.
9This was independently discovered by J. W. Alexander and G. B. Briggs in 1927 [AB27].
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Type I Type II

Type III

Figure 2.4: The three Reidemeister moves

pendently S. A. Bleiler in 1983 and 1984, respectively [Nak83, Ble84] (see
Figure 2.5).

Figure 2.5: Two diagrams of the knot 108 (redrawn from [Ble84, Figures 1 and 2]). On
the left, a minimal diagram of 108, and on the right, the (non-minimal) diagram used
by S. A. Bleiler to obtain the unknotting number u(108) = 2. Note that Bleiler also
showed that no two crossing changes in the left diagram are sufficient to produce the
unknot!

The difficulty is also reflected in the fact that many results about the
unknotting number have only been appearing since the 1980s. Outstand-
ing results are that knots of unknotting number one are prime, shown by
M. G. Scharlemann in 1985 [Sch85], and the solution of the Milnor conjec-
ture by P. Kronheimer and T. Mrowka in 1993 [KM93], which states that
the unknotting number of the (p, q)-torus knot equals (p− 1)(p− q)/2. An
excellent survey of results on the unknotting number with focus on classical
invariants is given in [BF15].
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E. Artin (1898–1962) described in 1925 the construction of certain knot-
ted 2-spheres in Euclidean 4-space R4 [Art25]. The intersection of such
a knotted 2-sphere with R3 ⊂ R4 is a non-trivial knot bounding a 2-
dimensional disk in the upper half-space (see [Rol76, Chapter 3.J] or [LN16,
Chapter 3]). Knots with this property are called slice [Fox62, p.135], and
it was an open question until the ’60s whether every knot arises in this way
or not. The answer to the question is negative, with first examples of non-
slice knots given by K. Murasugi [Mur65] and R.H. Fox and J. W. Milnor
[Fox62, FM66]. This paved the way for an entire new subfield within knot
theory: the study of knot concordance, which is an equivalence relation
on the set of isotopy classes of knots, and the connection of knots with
4-dimensional topology. Two knots K1 and K2 are called concordant if the
connected sum K1#−K2 is slice, where −K2 denotes the mirror image of
K2 with reversed orientation. It can be shown that the concordance classes
form an abelian group under the operation of connected sum, the knot
concordance group C. This group was first introduced by Fox and Milnor
in 1966 during their work on surface singularities in 4-manifolds [FM66].
Related to knot concordance is the problem of determining the slice genus
(also called 4-genus) g4(K) of a knot K, which is defined as the minimal
genus of a smoothly and properly embedded surface in B4 bounding the
knot in S3 = ∂B4 ⊂ B4. Clearly, K is slice if and only if g4(K) = 0.

Knot concordance can be studied in two settings: topological and
smooth. The above description assumes that everything is smooth. How-
ever, if one replaces smooth with locally flat, then one arrives at topologically
slice knots and the topological concordance group Ctop. It is a non-trivial
result that the topological and smooth theory are in fact not equivalent,
but we shall come back to this at a later point. For now, we focus on the
smooth concordance group and use the adjective “topological” to emphasize
the locally flat setting.

The first results about knot concordance go back to Fox, who used the
Alexander polynomial to show that the figure-eight knot is of order two
in the knot concordance group [Fox62], and Murasugi who used the knot
signature to obtain an obstruction to the sliceness of a knot, showing that
the trefoil has infinite order in C [Mur65]. In 1969, J. Levine introduced
an algebraic counterpart to slice knots and knot concordance based on the
Seifert form and Seifert matrices: so-called algebraically slice knots and
the corresponding algebraic concordance group G [Lev69b].10 It can be
shown that algebraic sliceness is a necessary condition for a knot to be
slice, but it was unknown at this point if it is also sufficient [Lev69b]. The
application of classical invariants found a culminating point when Levine
showed that the algebraic concordance group G is isomorphic to Z∞⊕Z∞

2 ⊕
Z∞

4 [Lev69a, Lev69b]. This isomorphism also reveals more structure of the
knot concordance group as it induces an epimorphism C ↠ Z∞⊕Z∞

2 ⊕Z∞
4 .11

10In his work, Levine speaks of knot cobordism, rather than knot concordance.
11A great survey on the knot concordance group and concordance invariants is given by C.



2.3. Higher invariants 11

Despite the diversity of classical invariants, none of them can fully solve
the problem of distinguishing all knots; for instance, the Alexander polyno-
mial cannot detect the unknot (see Figure 2.6 for an example), and there
are non-equivalent knots with isomorphic knot groups (such as the left- and
right-handed trefoil in Figure 2.3, for instance).

unknot 1134

Figure 2.6: The unknot and the knot 1134 are not equivalent, but have both Alexander
polynomial 1 (information of and picture about 1134 retrieved from [LM]).

The study of the knot complement reached its high when C. McA. Gor-
don and J. Luecke showed in 1989 that knots are determined by their com-
plement [GL89], but the practical use of this significant theoretical result
is limited. However, explicit algorithms that can decide the equivalence of
any pair of knots exist, with the first one developed by W. Haken in 1961
using the theory of normal surfaces [Hak61]. Nonetheless, the available
algorithms can be extremely time-consuming, and it is an open question to
determine the computational complexity of this so-called recognition prob-
lem [Has98, HLP99].12

2.3 Higher invariants

In the second half of the 20th-century several breakthroughs in mathemat-
ics and knot theory led to entirely new classes of invariants, forming knot
theory as we know it today in the 21st-century.

Despite Levine’s work, many questions about the knot concordance
group C remained open; for instance, as noted at the end of [Lev69a] it
is unknown whether there is torsion of order greater than 2 in C. Surpris-
ingly, this question is still unsolved as of 2022! Nevertheless, remarkable
progress has been made ever since Levine’s results by applying advances
in mathematics to the problem of knot concordance. Central to this is
the work of M. H. Freedman and S. Donaldson on topological respectively

Livingston in [Liv05].
12Recently in February 2021, Marc Lackenby has announced a new unknot recognition algo-

rithm that runs in quasi-polynomial time [Lac21].
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smooth 4-dimensional manifolds in the 1980s, and the work of M. F. Atiyah,
I. M. Singer and V. K. Patodi on global analysis between 1960 and 1980.
Let us give a brief overview.

The G-signature theorem by Atiyah and Singer in 1968 [AS68] led A.
J. Casson and C. M. Gordon in the 1970s to the definition of certain new
invariants, nowadays known as Casson-Gordon invariants, and used them
to show that Levine’s epimorphism C ↠ Z∞ ⊕ Z∞

2 ⊕ Z∞
4 has non-trivial

kernel [CG75, CG78]. They found the first examples of algebraically slice
knots that are not slice. This result was extended by B. Jiang [Jia81] and
C. Livingston [Liv99], who showed that the kernel contains a subgroup
isomorphic to Z∞ and Z∞

2 , respectively. An obstruction to 4-torsion in the
knot concordance group was given by C. Livingston and S. Naik in 1999
using once more Casson-Gordon invariants [LN99, LN01].

In [APS75], Atiyah-Patodi-Singer introduced the η-invariant for an
odd-dimensional, oriented, compact Riemannian manifold Y and a unitary
representation α : π1(Y )→ U(n). η-invariants were applied to knot theory
by Levine to obtain new link invariants [Lev94], and by C. F. Letsche who
found new approaches that yield sliceness obstructions [Let00]. In 2004,
S. Friedl built on Letsche’s work and furthermore related η-invariants to
Casson-Gordon invariants [Fri04].

In 1985, J. Cheeger and M. Gromov refined η and defined the von Neu-
mann η-invariant η(2) (also known as L2-eta invariant) associated to Y as
above and a homomorphism φ : π1(Y )→ Γ, where Γ is some group [CG85,
Section 4].13 They further showed that the difference ρ := η(2) − η does
not depend on the particular choice of Riemannian metric on Y , leading to
yet another invariant, the von Neumann ρ-invariant. Atiyah’s L2-signature
[Ati76] is closely related to the von Neumann η-invariant: it can be shown
that if the pair (Y, φ) is the boundary of some 4k-dimensional (W,ψ), then
η(2)(Y, φ) equals the difference of the L2-signature and the ordinary signa-
ture of W , the so-called reduced L2-signature of (W,ψ) [COT03, Lemma
5.9 and Remark 5.10].14 As one might guess, it was just a matter of time
until these L2-invariants found their way into knot theory as well.

In the groundbreaking work of T. D. Cochran, K. E. Orr, and P. Te-
ichner in 2001, a filtration Fn indexed by 1

2
N0 was exhibited on the knot

concordance group C, revealing more of its structure [COT03, COT04].
This so-called solvable filtration is formed in terms of the newly introduced
(n)-solvability of knots for n ∈ 1

2
N0, a property defined using the theory of

intersection forms on 4-manifolds [COT03, Definition 1.2]. The theory of
L2-invariants found an impressive application when Cochran-Orr-Teichner
used von Neumann ρ-invariants to show the non-triviality of all filtrations

13Cheeger and Gromov work with the trivial unitary representation, but everything general-
izes to arbitrary unitary representations as well.

14The fascinating theory of L2-invariants finds a great exposition in [COT03, Section 5], and
in more condensed form in [CT07, Section 2]. For the reader who wishes to learn the theory
more thoroughly, the textbook [Lü02] by W. Lück is an excellent start.
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steps [COT04, CT07]. Since slice knots are (n)-solvable for all n ∈ 1
2
N0

[COT03, Remark 1.3], this yields an infinite amount of new sliceness ob-
structions. In particular, L2-eta invariants were used to find the first exam-
ples of non-slice knots with vanishing Casson-Gordon invariants [COT03,
Section 6]. Another remarkable result about the solvable filtration is that
the first few filtration steps are related to all previously known concordance
invariants [CT07]: F0 corresponds to knots with vanishing Arf invariant,
F1/2 represents algebraically slice knots, and knots in F3/2 have trivial
Casson-Gordon invariants. Regarding F1, it is an open question as of 2022
whether F1/2 = F1, but there is evidence that the answer is affirmative
[DMOP19].

In the 1980s, topology experienced a revolution when M. H. Freedman
and F. S. Quinn presented their work on the structure of topological 4-
manifolds [Fre82, FQ90]. A major consequence for knot theory was that
the results by Levine and Casson-Gordon on knot concordance also apply
in the topological setting, rather than just in the smooth. On the other
hand, Freedman also showed that all knots with trivial Alexander polyno-
mial are topologically slice. Around the same time, the pioneering work of
S. Donaldson on the application of gauge theory in 4-dimensional topol-
ogy provided deep insight into smooth 4-manifolds [Don96, DK90]. The
impacts were far-reaching: it showed that the smooth h-cobordism theo-
rem fails in dimension 4, and provided in combination with Freedman’s
results the first examples of exotic R4 [Kir89, FQ90]. In knot theory, gauge
theoretic methods were used by R. E. Gompf to find the first examples
of topologically slice knots that are not smoothly slice [Gom86], and P. B.
Kronheimer and T. S. Mrowka succeeded in proving the Milnor conjec-
ture [KM93], which states that the slice genus of a (p, q)-torus knot equals
(p− 1)(p− q)/2. In 2005, Friedl and Teichner discovered new examples of
topologically slice knots with non-trivial Alexander polynomial [FT05].

The introduction of Seiberg-Witten invariants of smooth 4-manifolds
by E. Witten [Wit94] marks yet another breakthrough in topology, and
later knot theory. Just as the 4-manifold invariants discovered by Don-
aldson, Seiberg-Witten invariants not only reveal the structure of smooth
4-manifolds, but also allow for simpler and more general proofs of results
similar to those of Donaldson [Don96, Mor96]. These significant advances
in 4-dimensional topology also sparked developments one dimension lower,
in the study of 3-manifolds. In 1988, Andreas Floer constructed a three-
dimensional analogue to Donaldson’s theory, the instanton Floer homology
[Flo88], and Seiberg-Witten type invariants were obtained for 3-manifolds
with Seiberg-Witten Floer homology, which was constructed rigorously for
the first time by Kronheimer and Mrowka in 2007 in terms of their monopole
Floer homology [KM07]. In an attempt to understand the geometric foun-
dations of the Seiberg-Witten theory [OS18], P. Ozsváth and S. Szabó
defined in the early 2000s the Heegaard Floer homology of a closed smooth
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3-manifold [OS04d, OS04c].15 In 2003, Ozsváth-Szabó [OS04b] and inde-
pendently J. Rasmussen [Ras03] discovered that a knot inside a 3-manifold
induces a filtration of the corresponding Heegaard Floer homology, leading
to the so called knot Floer homology.

Heegaard Floer and knot Floer homology has been proven as extremely
fruitful in the study of 3-manifolds and knots within them, producing many
insights and strong invariants – too many to be discussed here in detail.
For an overview of results and further references we refer the reader to
[OS18] and [Hom17]. Nevertheless, we would like to mention some of the
most beautiful properties of knot Floer homology: it detects the unknot
and the 3-genus [OS04a], its Euler characteristic equals the Alexander poly-
nomial (that is, knot Floer homology is a categorification of the Alexander
polynomial) [OS04b], and it recognizes fibered knots [Ghi08, Ni07]. The
invariants τ [OS03a, OS03b, Ras03], ν [OS11] and Υ [OSS17] coming from
knot Floer homology provide strong concordance homomorphisms and yield
lower bounds on the (smooth) slice genus. As an application, one obtains
another proof of the Milnor conjecture [OS03b], and it was shown by J.
Hom [Hom15] and independently Ozsváth-Stipsicz-Szabó [OSS17] that the
subgroup of the smooth concordance group generated by all topologically
slice knots contains a summand isomorphic to Z∞!

A new type of invariants appeared in the 1990s when X. S. Lin defined
the twisted Alexander polynomial of a knot K [Lin01]. Given the knot ex-
terior XK and a representation α : π1(XK) → GL(k,R[F ]), where R is a
Noetherian unique factorization domain and F a free abelian group, the
twisted Alexander polynomial ∆α

XK
is defined as the order of the twisted

Alexander module H1(XK ;R[F ]
k) (see [FV11, Section 2.3 and 2.4]). This

construction was soon generalized to yield twisted invariants of arbitrary
3-manifolds, most notably twisted Reidemeister torsion, twisted Blanch-
field pairings, and twisted signatures; see [FV11, BCP20] for a survey and
many more references. As explained in [FV11], the general idea of a twisted
invariant is to extract more information about a 3-manifold (e.g. the knot
complement) by combining an algebraic object or invariant with a choice
of representation of the fundamental group of the manifold under consid-
eration. One advantage of this approach is that the resulting invariants
are not only stronger but also remain computable in many cases, e.g. for
satellite constructions [KL99]. As a result, twisted invariants yield sliceness
and concordance obstructions [KL99, BCP20], but also an explicit formula
for the 3-genus of a knot has been discovered [FV15]. Furthermore, the
twisted Alexander polynomial is known to detect the unknot [SW06], as
opposed to the ordinary Alexander polynomial. In similar spirit, the the-
ory of L2-invariants was applied by W. Li and W. Zhang in 2006 to obtain
yet another generalization of the Alexander polynomial, the L2-Alexander

15The previously conjectured equivalence of Heegaard Floer and Seiberg-Witten Floer homol-
ogy [OS18] was proven to be true by the works of Ç. Kutluhan, Y.-J. Lee, C. Taubes [KLT20]
and V. Colin, P. Ghiggini, K. Honda [CGH11, CGH20].



2.4. Quantum invariants 15

invariant [LZ06]. In 2014, F. Ben Aribi showed that the L2-Alexander
invariant also serves as an unknot detector [Ben16].

2.4 Quantum invariants

For nearly 60 years, the Alexander polynomial was the only one of its kind:
a polynomial knot invariant. This changed suddenly when V. F. R. Jones
discovered in 1984 a new polynomial invariant which now bears his name,
the celebrated Jones polynomial VK [Jon85, Jon87]. Its discovery was cer-
tainly surprising to both knot theorists and the general mathematician,
as it resulted from Jones’ study on the index of subfactors of certain von
Neumann algebras [Jon83, Jon85]. This stands in strong contrast to all
previously discovered knot invariants which are underpinned by geometric
observations. The origin of the Jones polynomial and the lack of an ob-
vious geometric interpretation sparked the interest of mathematicians and
physicists alike. It marks the start of a beautiful interaction between knot
theory and physics, as well as the emergence of a new theory: the theory
of quantum invariants.

Let us first emphasize some of the properties of the Jones polynomial
VK , which is contained in Z[

√
t±1]. Since its discovery, several ways to

define the polynomial have appeared, most notably Kauffman’s definition
in terms of the bracket polynomial (also known as the Kauffman bracket)
[Kau87b].16

A A−1= +

Figure 2.7: The main equation appearing in the computation of the Kauffman bracket.
We will encounter this equation again in Part II, Section 8.1.

The Jones polynomial of the mirror image of a knot K equals VK(t−1),
giving a simple criterion for checking the amphicheirality of a knot. M.
Thistlethwaite has shown that the Jones polynomial of an alternating link is
alternating as well [Thi87]. VK has also played a major role in the solution
of the Tait conjectures (see Section 2.1). Last but not least, the Jones
polynomial takes the value 1 on any diagram of the unknot. However, as of
2022 it is surprisingly still unknown whether it detects the unknot or not.
The Jones polynomial was generalized shortly after its discovery with the
HOMFLY-PT polynomial [FYH+85, PT87] in 1985,17 and the Kauffman

16In [Jon91, Lecture 8], Jones refers to Kauffman’s definition as ”fourth and best definition“
of the Jones polynomial.

17The name stands for the initials of its founders: J. Hoste, A. Ocneanu, K. Millett, P. Freyd,
W. B. R. Lickorish, D. Yetter, J. Przytycki and P. Traczyk. In the literature, the HOMFLY-
PT polynomial is often referred to as just the HOMFLY polynomial. The addition “PT” is to
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polynomial in 1986 [Kau90].
Originally, the Jones polynomial arose as the trace of a representation

from the braid group on n strands into a certain finite-dimensional von Neu-
mann algebra, also known as the Temperley-Lieb algebra [Jon85, Jon91].
This algebra also appears in the context of statistical mechanics, where
it is used as a tool to calculate the partition function of the Potts model
[Jon85, Kau88]. Consequently, a relationship between knot theory and sta-
tistical mechanics started to unfold [Kau88, YG89]. The Yang-Baxter equa-
tion, fundamental to quantum integrable systems in statistical mechanics
[Jim89, Tur88, Bax82], relates to the Jones polynomial since solutions of
this equation give rise to Jones-type representations of the braid group
[Res87, YG89]. In 1988, V. G. Turaev showed that both the HOMFLY-
PT and the Kauffman polynomial can be obtained from certain solutions
of the Yang-Baxter equation [Tur88], strengthening the relation between
knot theory and theoretical physics.

The Yang-Baxter equation and quantum integrable systems were pre-
dominantly studied in the ’80s at the Leningrad school of mathemati-
cal physics directed by L. Faddeev [Jim89, Tur10]. Their work led to a
procedure to obtain explicit solutions to quantum integrable systems, the
quantum inverse scattering method [STF80, Fad84, KS82b, KS82a, Fad95].
Algebraic structures appearing within this theory [Tji92] found a proper
mathematical formalization when V. G. Drinfel’d and M. Jimbo intro-
duced certain deformations of Lie algebras, the so-called quantum groups
[Dri85, Dri86, Jim85]. Roughly speaking, a quantum group is a non-trivial
deformation (or quantization) of the enveloping Hopf algebra of a semisim-
ple Lie algebra, giving it the structure of a quasitriangular Hopf algebra
[Kas95]. Basic, yet important examples of quantum groups are quantized
special linear Lie algebras, the quantum sln denoted by Uq(sln).

Connections of quantum groups to knot theory were established quickly:
as outlined in [Saw96], the deformation process that leads to a quantum
group can be understood as a mean to obtain non-commutative, non-
cocommutative ribbon Hopf algebras (i.e. a quasitriangular Hopf algebra
with a certain invertible central element, see [RT90, Section 3.3]), whose
representation theory gives rise to interesting knot invariants. Indeed, N.
Yu. Reshetikhin and V. G. Turaev used in 1990 the representation theory
of quantum sln to obtain new polynomial invariants of knots for all n ∈ N
[RT90]. Polynomials that correspond to the fundamental representation are
referred to as the quantum sln polynomials, with n = 2 corresponding to
the original Jones polynomial. Additionally, it was observed in [RT90] that
the quantum sln polynomials can also be obtained from the HOMFLY-PT
polynomial through a suitable substitution of variables.

Overall, the relation between topology and physics remained puzzling in
the early ’80s. On one hand, there is the discovery of the Jones polynomial,

emphasize the independent work that was done by J. Przytycki and P. Traczyk.
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an invariant of a 3-dimensional geometric situation and closely related to
physical models, but lacking a topological description. On the other hand,
there is Donaldson’s gauge theoretic work on 4-manifolds with a clear topo-
logical picture, yet without a physical interpretation despite its usage of
the Yang-Mills equations which emerged from physics [YM54, Wit88]. As
noted by Atiyah [Ati88a, Ati88b], this situation called for a unifying ap-
proach towards physics and low-dimensional topology. First successes in
this direction were achieved in 1988 with Witten’s introduction of topolog-
ical quantum field theories (TQFTs for short) [Wit88], based on his earlier
work on the geometric description of super-symmetry [Wit82]. Witten’s
theory encompasses Donaldson’s 4-dimensional invariants as well as Floer’s
homology groups of 3-manifolds. Shortly after, TQFTs were given an ax-
iomatic description by Atiyah [Ati88b]. Only one year later in 1989, Witten
constructed a 3-dimensional TQFT using Chern-Simons theory that yields
invariants of knots and 3-manifolds as observables, in particular the Jones
polynomial, giving it the first description ever in a 3-dimensional framework
[Wit89].18

Naturally, TQFTs were quickly picked up by a wide mathematical and
physical audience, and in particular by knot theorists. Speaking loosely in
mathematical terms, an (n + 1)-dimensional TQFT is defined as a sym-
metric monoidal functor from the category of (n + 1)-cobordisms to the
category of vector spaces over a field, or more generally, modules over a
ring [Koc04, Section 1.3]. In 1991, Reshetikhin and Turaev introduced
the notion of a modular Hopf algebra and observed that each such algebra
gives rise to a 3-dimensional TQFT, producing invariants of 3-manifolds
and links within them [RT91]. In particular, they show that given a root
of unity q, the associated quantum group Uq(sl2) carries the structure of a
modular Hopf algebra and has a corresponding 3-dimensional TQFT. They
further show that this relates to the construction of invariants of more gen-
eral 3-manifolds and links inside them using surgery theory as well as their
earlier work on the representation theory of quantum sl2 and the associated
link invariants in S3 [Res87, RT90, RT91]. This gives rise to a large new
class of invariants, the Reshetikhin-Turaev invariants, and form far-reaching
generalizations of the Jones polynomial. As pointed out by Reshetikhin-
Turaev [RT91, Introduction], their work was partly inspired by Witten’s
3-dimensional constructions using TQFTs, and hence their invariants can
be understood as a “mathematical realization of Witten’s program”.

The next breakthrough in the theory of quantum invariants appeared
when M. Khovanov presented a categorification of the Jones polynomial in
1999 [Kho00]. Khovanov’s construction associates to a link diagram and a

18A short heuristic description of Witten’s argument to compute the Jones polynomial can
be found in the introduction of [Saw96]. A general exposition of topological quantum field
theories with applications to topology can be found in the book of J. Labastida and M. Marino
[LM05]. The book by J. Kock [Koc04] treats TQFTs from an axiomatic and categorical point
of view and provides many historical remarks.
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2-dimensional TQFT coming from an algebraic structure called Frobenius
algebra a bigraded chain complex whose homology, the Khovanov homology,
is a link invariant and whose graded Euler characteristic is the Jones poly-
nomial of the link. It can be argued that Khovanov homology is at least as
mysterious as the Jones polynomial: the unnatural combinatorial construc-
tion combined with an enormous amount of topological information made
Khovanov homology seem to appear out of nowhere. This mystery was only
strengthened when E. S. Lee defined a deformation of Khovanov homology
in 2002 [Lee05]. Lee showed that her theory, also known as Lee homology,
is not bigraded but filtered, and that it relates to Khovanov homology by
means of a spectral sequence. She also showed that the direct sum over
all her homology groups – which are in fact vector spaces over Q – always
has dimension 2n, where n is the number of components of the underlying
link. This makes her deformation seem rather rigid. However, in a striking
paper by J. Rasmussen [Ras10] it was observed that for knots the filtration
degree of the generators of Lee homology give rise to a knot invariant: the
Rasmussen s-invariant. The big surprise now is that the s-invariant car-
ries lots of topological information, as it defines a homomorphism from the
knot concordance group to the integers and provides a lower bound on the
slice genus of a knot [Ras10]. Moreover, Rasmussen gave the first purely
combinatorial proof of the Milnor conjecture using his invariant [Ras10].
Quite remarkable having its origin in mind!

Just as for the Jones polynomial, Khovanov homology sparked the in-
terest of researchers throughout mathematics and physics. On the phys-
ical side, the fact that the Jones polynomial arises as an observable in
a 3-dimensional TQFT led physicists to believe that Khovanov homology
should correspond to an observable of a theory in dimension 4. A first
interpretation of Khovanov homology in this direction was given by S.
Gukov, A. Schwarz and C. Vafa in 2005 in terms of topological strings
[GSV05]. A reinterpretation using gauge theory was given by Witten in
2011 [Wit12]. In particular, Witten observed that Khovanov homology can
be computed by counting solutions of certain elliptic partial differential
equations in (4 + 1) dimensions. This method of computation was further
studied by Gaiotto and Witten in 2012, giving the physical understanding
of Khovanov homology a “good foundation” [GW12].

On the mathematical side, generalizations of Khovanov homology were
soon established. In [Kho06], Khovanov investigated different variations
of Khovanov homology by specifying alternative Frobenius algebras, lead-
ing to the discovery of a “universal” Khovanov homology from which other
variations can be obtained. An extension of Khovanov homology to tangles
(i.e. a proper embedding of a disjoint union of arcs and circles into the
3-ball B3) was given in [Kho00, Kho02], with further work done in this
direction by D. Bar-Natan in 2005 [Bar05]. In 2003, Khovanov described a
categorification of the quantum sl3 polynomial [Kho02]. One year later this
result was extended by M. Khovanov and L. Rozansky who constructed a
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categorification of the quantum sln polynomials for arbitrary n > 0, the so-
called Khovanov-Rozansky homologies [KR08a]. In their sequel [KR08b],
Khovanov and Rozansky gave a categorification of the HOMFLY-PT poly-
nomial in terms of a triply graded homology theory.

Together with the categorification of the Alexander polynomial through
knot Floer homology (see Section 2.3), a categorification of all major knot
polynomials was achieved. However, the sheer number of knot homol-
ogy theories left one wonder whether a unifying theory exists. Since the
HOMFLY-PT polynomial specializes to all quantum polynomials, Dunfield,
Gukov and Rasmussen conjectured in [DGR06] that such a theory should
take the form of a triply graded homology theory that categorifies the
HOMFLY-PT polynomial together with an additional set of differentials
from which the Khovanov-Rozansky homologies and knot Floer homology
can be obtained (see [DGR06, Conjecture 3.1]).

While Dunfield, Gukov and Rasmussen didn’t give a precise definition,
they made many observations that strongly support the existence of such a
triply graded theory. A first candidate is Khovanov and Rozansky’s cate-
gorification of the HOMFLY-PT polynomial which is indeed a triply graded
homology theory, but lacks the additional set of differentials as noted in
[DGR06, Section 1.9]. A preliminary connection between Khovanov ho-
mology and knot Floer homology was established when Ozsváth and Szabó
constructed in 2005 a spectral sequence from Khovanov homology to Hee-
gaard Floer homology of the double branched cover of the underlying link
[OS05]. Several years later, Kronheimer and Mrowka proved in 2011 the ex-
istence of a spectral sequence from Khovanov homology to instanton Floer
homology [KM11].

In 2006, Rasmussen showed that for each N > 0 there is a spec-
tral sequence that starts at HOMFLY-PT homology and converges to the
Khovanov-Rozansky slN homology [Ras15]. As noted by Manolescu in
[Man14, Introduction], after Rasmussen’s result “it became more natural”
to expect the existence of a spectral sequence from HOMFLY-PT homology
to knot Floer homology, rather than the existence of a triply graded theory
with additional differentials as proposed in [DGR06]. A first step towards
such a spectral sequence was given by Ozsváth and Szabó in 2007 with their
combinatorial description of knot Floer homology [OS09]. In particular,
they observed that their construction specializes to a theory that resem-
bles the HOMFLY-PT homology of Khovanov and Rozansky [OS09, Intro-
duction]. This specialization was further developed by Manolescu in 2011,
who showed that an associated spectral sequence converges to knot Floer
homology, and conjectured that the first term of this spectral sequence
is isomorphic to Khovanov and Rozansky’s HOMFLY-PT chain complex
[Man14]. Recently, N. Dowlin showed that the second page of this spectral
sequence is a triply graded link invariant that categorifies the HOMFLY-
PT polynomial and converges to knot Floer homology [Dow17, Dow18]. He
also showed that if this second term is torsion-free, then it would be in fact
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isomorphic to Khovanov and Rozansky’s HOMFLY-PT homology [Dow17,
Theorem 1.4], giving a strong foundation for the correctness of the conjec-
ture stated by Manolescu in [Man14]. At the time of writing, the spectral
sequence coming from Ozsváth and Szabó’s construction appears to be
the most promising candidate for a theory that links Khovanov-Rozansky,
HOMFLY-PT, and knot Floer homology.

Ever since their discovery, knot homologies and the associated invari-
ants have become one of the major and strongest tools of 21st-century
knot theory with deep connections to 3- and 4-dimensional topology and
physics. For instance, it has been shown that Khovanov homology serves
as a detector for many knots and links, such as the unknot [KM11], the
unlink [BS15, Xie18], the trefoil and its mirror image [BS21], the Hopf links
[BSX19], and the figure-eight knot [BDL+21]. The Rasmussen s-invariant,
a powerful concordance invariant and provider for a lower bound on the
slice genus, was recently used by L. Piccirillo to give a negative answer to
the long lasting question whether the Conway knot is slice or not [Pic20].
On the other hand, knot Floer homology is known to detect many proper-
ties of knots such as the 3-genus and fiberedness, and serves as a source for
a plethora of link invariants (see Section 2.3). The intricate relationship
of knot homologies with theoretical physics that is being unfolded by the
work of Witten et al. demonstrates the significance outside of mathematical
knot theory. It remains thrilling to see what discoveries are yet to be made
in the domain of knots, mathematics, physics, and science in general.
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Chapter 3

Introduction and Results

In 2010, Charles Livingston [Liv10] introduced a new knot invariant called
the stable 4-genus gst of a knot K, which is defined as

gst(K) = lim
n→∞

g4(nK)

n
,

where nK denotes the n-fold connected sum K# · · ·#K and g4 is the
(topological) 4-genus.1 Recall that the 4-genus of a knot K is defined as
the minimal genus over all properly embedded and locally flat surfaces
Σ ⊂ B4 with ∂Σ = K.

In general, it is rather difficult to compute the stable 4-genus of a knot.
Most of the knot invariants that give bounds on the 4-genus, such as the
Levine-Tristram signatures [Lev69a, Lev69b, Tri69], are additive under con-
nected sum, hence they cannot yield bounds that are different for gst.

More promising are Casson-Gordon invariants [CG75, CG78]. For in-
stance, Livingston used them in [Liv10] to show that a specific satellite
construction yields knots whose stable 4-genus is close to but not greater
than 1/2. Note that it is an open question whether there exists a knot
K such that 0 < gst(K) < 1/2. In what follows we use Casson-Gordon
invariants once more to construct a lower bound on gst. Our results show
that already a simple family of knots, the twist knots, contains an infinite
subfamily with stable 4-genus close to but not greater than 1/2. The main
results are as follows.

Theorem 5.5 (Main Theorem). Let K be a knot with d-fold branched
cover Xd where d is a prime-power, and let p be any prime. If the ra-
tional numbers L1, L2, . . . , Lm (defined below) have the same sign, and if∑d−1

s=1 σs/d(K) = 0, where σs/d(K) is the Levine-Tristram signature of K
associated to e2πis/d, then

gst(K) ≥ t · L
4d(p− 1) + 2(d− 1)L

,

1Throughout this part of the thesis, we will work in the topological category.
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where t := dimH1(Xd;Fp) and L := minj=1,...,m |Lj|.

Here, the numbers Lj for j = 1, . . . ,m are defined as

Lj :=
∑
χ∈Aj

signav
1 (τ(K,χ)) ∈ Q,

where A1, . . . , Am are the one-dimensional subspaces of H1(Xd;Fp), and
signav

1 (τ(K,χ)) is the Casson-Gordon τ -signature corresponding to χ (see
Section 4.3 and Definition 5.1).

The strength of the bound in Theorem 5.5 depends on the choice of d
and p. However, t · L/(4d(p − 1) + 2(d − 1)L) is bounded from above by
t/(2(d− 1)), so a priori the best bounds are obtained in the case d = 2, i.e.
when working with the double branched cover X2. Note that if one of the
numbers Lj is zero, then also L = 0 and Theorem 5.5 will yield the trivial
bound gst(K) ≥ 0.

Note that in Theorem 5.5, we make the assumption that the sum of
Levine-Tristram signatures

∑d−1
s=1 σs/d(K) of K vanishes. This is needed

so that one of our main tools in the proof – Gilmer’s lower bound on
the 4-genus given by Casson-Gordon τ -signatures (see Theorem 4.93 and
Corollary 4.94 in Subsection 4.3.9) – admits a more simplified application.
The given proof of Theorem 5.5 doesn’t hold without this assumption,
and we currently do not know if of our methods generalize to the case
where

∑d−1
s=1 σs/d(K) doesn’t vanish. However, if any of the Levine-Tristram

signatures σs/d(K) is non-zero, then there is the Murasugi-Tristram bound
g4(nK) ≥ n

2
|σs/d(K)| [Mur65, Tri69] which implies gst(K) ≥ 1

2
|σs/d(K)|, so

we still obtain a non-trivial lower bound on gst when
∑d−1

s=1 σs/d(K) doesn’t
vanish.

The main theorem is an immediate consequence of the following propo-
sition.

Proposition 5.4. With the same assumptions as in Theorem 5.5,

g4(nK) ≥ nt · L
4d(p− 1) + 2(d− 1)L

for any n ∈ N.

For the reader who would like to skip the (quite lengthy) proof of the
main theorem without missing out on the key proof technique, we will
provide a quick proof of the following introductory result.

Proposition 5.2. Let K be a knot and p a prime such that H1(Xd;Fp) is
one-dimensional. If L = |L1| > 0, then g4(nK) ̸= 0 for all n ∈ N.

As a sample application, we compute the lower bound given by Theo-
rem 5.5 with d = 2 for an infinite family of knots, the twist knots Kn (see
Figure 3.1). The result is as follows.
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n full twists

Kn

Figure 3.1: The twist knot Kn (picture taken from [Ilt19])

Corollary 6.3. Let Kn be the twist knot with n ∈ N\{0, 2} full right hand
twists and p a prime dividing 4n+ 1. Then

gst(Kn) ≥

{
(pq+q−6)

2(pq+q+18)
, (p− 1)/2 even

p2q−6p−q−6
2(p2q+18p−q−30)

, (p− 1)/2 odd,

where q = (4n+ 1)/p.

While Corollary 6.3 is directly obtained from the main theorem, the
bounds are not particularly easy to grasp. By estimating further from
below, we obtain a single bound which is weaker but easier to grasp and
holds for all twist knots Kn simultaneously.

Corollary 6.7 (Corollary 6.3, weakened). Let Kn with n ∈ N be any
twist knot. Then

gst(Kn) ≥
1

2
− 6

2n+ 7
.

It is straightforward to see that for growing n, the bound given in Corol-
lary 6.7, and in fact also the stronger bounds in Corollary 6.3, tend towards
1/2. This means in particular that our bounds for the twist knots lie in
the interval [0, 1

2
). Since the Levine-Tristram signatures of all twist knots

vanish, these are the best bounds that we currently know.
Note that the first three twist knots K0, K1 and K2 form a special case.

Casson and Gordon proved [CG75, CG78] that the unknot K0 and the so-
called Stevedore knot K2 are the only slice knots among the twist knots,
and so the stable 4-genus of K0 and K2 vanishes. The knot K1 represents
the figure-eight knot, and it is well known that the figure-eight has order
2 in the knot concordance group C. It follows that the stable 4-genus of
K1 vanishes as well. This coincides with the trivial bound obtained from
Corollary 6.3 in those cases. In fact, K0, K1 and K2 are the only twist
knots with L = 0 (see Chapter 6), which means that for any other twist
knot, a non-trivial lower bound can be obtained from Corollary 6.3 (resp.
Theorem 5.5). This establishes the following corollaries.

Corollary 6.5. Let Kn be any twist knot. Then

Kn is torsion in C ⇐⇒ gst(Kn) = 0.
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Corollary 6.6. Kn is of infinite order in C except for n = 0, 1, 2.

It is not known whether Corollary 6.5 holds for arbitrary knots K.

Problem (Livingston [Liv10]). Given a knot K, does gst(K) = 0 imply
that K is torsion in the knot concordance group C?

Corollary 6.6 gives a full description of the concordance order of twist
knots in the topological category. This result was to the best knowledge
of the author not completely known before, despite the vast work that has
been done on the topological concordance order of twist knots in the past.
We would like to mention at this point some of the previously obtained
results. First and foremost, Casson and Gordon [CG75, CG78] showed
that if Kn is algebraically slice and n ̸= 0, 2, then Kn has infinite order in
the knot concordance group C. Livingston and Naik [LN99, LN01] obtained
the same result for all twist knots of algebraic concordance order 4. The
remaining case of algebraic order 2 was partially solved by Davis [Dav12]
and Tamulis [Tam02], who obtained infinite concordance order of Kn if
n = x2 + x+ 1 with x ≥ 2 (see [Dav12, Corollary 6]), or if 4n+ 1 is prime
with n ≥ 3 (see [Tam02, Theorem 1.1]). With our Corollary 6.6, all other
cases are now solved.

A recent result by Baader and Lewark [BL17] shows that gst(Kn) ≤ 2/3
for every n ∈ N. In fact, this bound can be improved for certain n as will
be shown in Section 6.4.

Proposition 6.11. Let n ∈ N be such that the negative Pell equation
x2 − (4n+ 1)y2 = −1 has a solution x, y ∈ Z. Then

gst(Kn) ≤
1

2
.

As shown by Rippon and Taylor in [RT04], the negative Pell equation
x2− (4n+1)y2 = −1 has a solution if and only if the continued fraction of√
4n+ 1 has odd period length. This is the case, for example, if 4n+1 = pk,

where p is a prime such that p ≡ 1 mod 4 and k ∈ N is odd [RT04]. This
yields the infinite family of twist knots whose stable 4-genus is close to but
not greater than 1/2.

3.1 Smooth vs. topological setting

We would like to make a short remark about the situation in the smooth
setting. Since the smooth stable 4-genus is always greater than or equal to
the topological stable 4-genus, our result also applies in the smooth setting.
When it comes to potential lower bounds obtained by smooth knot invari-
ants such as the Rasmussen s- and τ -invariant [Ras03, Ras10, OS03a], or
the Ozsváth-Stipsicz-Szabó Υ-invariant [OSS17], we face the same problem
as with the Levine-Tristram signatures in the topological setting: all these
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invariants are additive under connected sum. In particular, no better lower
bounds in the smooth setting are known.

Regarding the results about twist knots, Corollary 6.3 still holds in the
smooth setting. This is no longer true for Proposition 6.11: the upper
bound is obtained by using machinery that is exclusive to the topological
setting and is therefore no longer valid. However, a result by Baader and
Lewark [BL17, Lemma 6] implies that the smooth stable 4-genus of twist
knots is strictly smaller than 1, so we can still say that it is contained in the
interval [0, 1). Since our lower bounds also hold in the smooth setting, we
can further say that K0, K1 and K2 are the only twist knots with smooth
stable 4-genus equal to zero. Other information is not known. In particular,
we cannot tell whether the topological and smooth stable 4-genus of twist
knots coincide or not, except in the case of K0, K1 and K2 where they are
the same. This raises the following open question.

Problem. Compute the smooth and topological stable 4-genus for any
twist knot Kn with n ≥ 3.

Twist knots form one of the simplest family of knots. The fact that we
don’t know the exact value of the stable 4-genus for any twist knot (other
than the first three) shows how difficult it is to determine gst in general.
Moreover, to the best knowledge of the author all known exact values of
the stable 4-genus are integers. This raises further the following question.

Problem. Does there exist either in the smooth or topological setting a
knot K such that gst(K) /∈ Z and for which the exact value of the stable
4-genus can be computed?

We would like to conclude this discussion with a remark regarding Corol-
lary 6.6. In the smooth category, Lisca [Lis07] gave a complete description
of the concordance order of 2-bridge knots, a class to which the twist knots
belong. It follows from his result that the only twist knots of finite order
in the smooth concordance group are K0, K1, and K2. This coincides with
the results obtained in the present work and shows that the concordance
order of the twist knots is the same in the topological and smooth category.

3.2 Organization

The remainder of the current Part I is structured as follows. In Chapter 4,
we state the tools and definitions needed to prove our results. Chapter 5
forms the heart of Part I and is occupied with the proof of Proposition 5.4
and Theorem 5.5. Here we also prove Proposition 5.2. In Chapter 6, we
compute the lower bound for gst for the twist knots Kn and complete as a
corollary the classification of the concordance order of the twist knots. We
further show that there is an infinite subfamily of twist knots with stable
4-genus close to but not greater than 1/2, and we provide a partial answer
to their linear independency in the knot concordance group C.
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This introduction, Section 4.1 and Subsection 4.3.9, as well as the con-
tents of Chapter 5 and Chapter 6, have appeared previously in the paper
“A lower bound on the stable 4-genus of knots” by the author [Ilt20]. New
is the discussion on how our results behave with respect to connected sum
of knots at the end of Chapter 5, as well as the partial result about the
linear independency of the twist knots in the knot concordance group C,
see Corollary 6.9.



Chapter 4

Preliminaries

The purpose of this chapter is to review the definitions and notions of the
mathematical objects that are used throughout Part I. The chapter is orga-
nized as follows. In Section 4.1 we introduce the abstract notion of linking
forms on finite abelian groups and metabolizers thereof. In Section 4.2, we
recall some of the basic definitions and constructions from knot theory rel-
evant to us. Here, we also introduce our main examples for computations
in Chapter 6, the twist knots.

Section 4.3 forms the main part of Chapter 4 and is concerned with
Casson-Gordon invariants. In Subsections 4.3.1 to 4.3.3, we start with an
introduction to the concepts and objects involved in the definition of these
invariants, such as homology with twisted coefficients and twisted inter-
section forms. In Subsection 4.3.4, we describe a specific situation where
twisted homology is formed using finite cyclic coverings, and discuss how in
this case the twisted intersection form relates to a certain intersection form
on untwisted homology. Also, in this scenario a twisted signature arises
that relates to the Atiyah-Singer G-signature, which we describe in Sub-
section 4.3.5. Note that this setting is of particular interest as it forms the
starting point for the definition and computation of the Casson-Gordon
invariants. The last ingredient needed are Witt groups of non-singular
hermitian forms on free modules, which we introduce in Subsection 4.3.6.
In Subsections 4.3.7 and 4.3.8 we finally arrive at the definition of the
Casson-Gordon invariants and provide a discussion of the main theorems
and results around them, and show how they relate to each other. In
Subsection 4.3.9, we conclude our discussion with a description of results
obtained by P. Gilmer about Casson-Gordon invariants, which will be our
main tools in Chapter 5.

Our discussion about Casson-Gordon invariants in Section 4.3 is quite
detailed and strives to provide a mostly self-contained account for this at
times confusing subject. However, not all of Section 4.3 is needed in order
to understand our main results in the next chapter. The reader who wishes
to proceed to Chapter 5 as fast as possible is advised to have a look at
Section 4.2 and Subsection 4.3.9 for the objects and tools used in our main
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theorems and proofs. In particular, the explicit definition of the Casson-
Gordon invariants is not needed and may be taken as a blackbox.

Unless otherwise mentioned, we work in the topological category. Ref-
erences for Chapter 4 include [CG75, CG78, Gil82, Gil83, LN16, Con17,
Fri22], with further references provided throughout the individual sections.

4.1 Linking forms and metabolizers

We follow the definitions of [Gil82].

Definition 4.1. Let G be a finite abelian group. A linking form on G is a
symmetric bilinear map

α : G×G→ Q/Z

which is non-singular, i.e. the adjoint map c : G → Hom(G,Q/Z) is an
isomorphism.

If α is a linking form on a finite abelian group G and H ⊆ G a subgroup,
we define

H⊥ := {g ∈ G | α(g, h) = 0 for all h ∈ H}.

Definition 4.2. Let α be a linking form on a finite abelian group G. If
there is a subgroup H ⊆ G such that H = H⊥, then α is called metabolic
and H is called a metabolizer.

A useful property of metabolizers is the following.

Proposition 4.3. If H is a metabolizer for α, then

|H|2 = |G|.

Proof. Write G∗ := Hom(G,Q/Z) for short. Observe that there is a short
exact sequence

0→ H⊥ c→ G∗ → H∗ → 0,

hence
G∗/im c ∼= H∗.

Using Lagrange’s Theorem and that im c ∼= H⊥, we get

|G∗|/|H⊥| = |G∗ : im c| = |H∗| ⇐⇒ |G∗| = |H⊥||H∗|

Since G is a finite abelian group, we have |G| = |G∗| and in particular
|H| = |H∗|. Moreover we have H = H⊥ since H is a metabolizer for α,
hence we obtain

|G| = |H|2

as desired.
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It will be convenient for our purposes to consider the above in a slightly
different setting. Given a prime p, let V be a finite-dimensional vector
space over Fp, the finite field with p elements. If V can be embedded in
G as a finite abelian group, then α induces a linking form α on V in the
following way. After choosing an embedding φ : V ↪→ G, we define α to be
the restriction of α to the subgroup φ(V ) ⊆ G. In other words,

α := α ◦ (φ× φ).

Note that the subgroup φ(V ) consists only of p-torsion. In general, the
induced form α depends on the chosen embedding φ and will no longer be
non-degenerate. However, any two forms obtained in this way are isometric
provided that their domains are the same: if φ1, φ2 : V ↪→ G are two
embeddings with φ1(V ) = φ2(V ) inducing the forms α1 and α2, then

f : (V, α1)→ (V, α2), f = φ−1
2 ◦ φ1

defines an isometry between them. Given such an induced form α, we
can similarly define F⊥ for a given subspace F ⊆ V . If F is such that
F = F⊥, then F will be called a generalized metabolizer for α. Similar
to Proposition 4.3, generalized metabolizers satisfy the following useful
property.

Proposition 4.4. If F is a generalized metabolizer for α, then

2 dimF ≥ dimV.

In particular, a generalized metabolizer F can consist of the entire space
V .

Proof. Write V ∗ := Hom(V,Q/Z) for short. Similar to the proof of Propo-
sition 4.3, there is an exact sequence

F⊥ c→ V ∗ r→ F ∗ → 0,

where c : V → V ∗ is the adjoint map and r is restriction of maps. Note that
this sequence is in general not split since α may be degenerate. However,
by the rank-nullity theorem we have

dimV ∗ = dim im r + dimker r. (4.1)

Since V is finite-dimensional we have dimV = dimV ∗. Moreover, using
that c and r sit in an exact sequence and that by assumption F = F⊥, we
get

dim im r = dimF ∗ = dimF

dimker r = dim im c ≤ dimF⊥ = dimF.

Applying this to (4.1) we therefore obtain

dimV ≤ 2 dimF.
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The following example demonstrates that a generalized metabolizer may
indeed consist of the entire space V itself (thus realizing strict inequality
in Proposition 4.4).

Example 4.5. Let G = Z75
∼= Z52 × Z3 with

α : Z75 × Z75 → Q/Z, (x, y) 7→ x · y
75

.

Clearly, α is a symmetric pairing on Z75, and the adjoint map

y 7→ α(·, y) ∈ Hom(Z75,Q/Z) ∼= Z75

is an isomorphism since any element in Hom(Z75,Q/Z) is determined by
its image of 1 ∈ Z75, which is necessarily a multiple of 1/75. Hence, α
defines a linking form on Z75. Now let p = 5 and consider V = F5 as a
vector space over itself. We embed F5 into Z75 via

φ : F5 → Z75, φ(1) = 15.

As described above, this induces a linking form

α : F5 × F5 → Z75, (x, y) 7→ x · y · 152

75
.

Since 152 = 225 = 0 mod 75, we see that α vanishes on the entire vector
space F5, making it a generalized metabolizer for α.

4.2 Notions from knot theory

The aim of this section is to recall some notions from knot theory that will
be used throughout this part of the thesis. Here, we also introduce our
main examples of knots, the twist knots Kn. We assume familiarity with
the upcoming objects and constructions and refer the interested reader for
more details to one of the standard textbooks about knot theory such as
[Rol76] or [BZH14]. We work in the topological setting unless otherwise
mentioned.

We start by recalling the following definitions, which will be needed
shortly when talking about the results involving Casson-Gordon invariants.

Definition 4.6. A knot K is a smooth embedding S1 ↪→ S3 (sometimes
also denoted by K ⊂ S3). A knot K is called:

1. (topologically) slice if there exists a properly embedded locally flat
2-disc D ⊂ B4 with ∂D = K, called a (topological) slice disc for K;

2. algebraically slice if the Seifert pairing of K is metabolic in the sense
of Definition 4.61;
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Figure 4.1: A ribbon knot with a ribbon disc. An open neighborhood of the ribbon
singularities is highlighted in grey (figure taken from [Ilt19]).

3. ribbon if there exists a smooth immersion of a 2-disc D2 → S3 such
that all singularities are of the type shown in Figure 4.1. The im-
mersed disc is called a ribbon disc for K.

Unless otherwise mentioned, our knots will always be assumed to be
oriented.

Remark 4.7. If K is a ribbon knot with ribbon disc D, then one can push
the interior of D into B4 and deform afterwards a small open neighborhood
of the ribbon singularities to obtain a smoothly and properly embedded slice
disc for K, meaning that K is smoothly slice (cf. [LN16, Theorem 3.1.6]).
Hence every ribbon knot is smoothly slice, but the converse, the famous
Slice-Ribbon Conjecture, has been an open question ever since it was first
posed by Fox in the 60’s [Fox62]. Note that since there exist topologi-
cally slice knots which are not smoothly slice [Fre82], ribbon knots are not
relevant in the topological setting.

Definition 4.8. Let K ⊂ S3 be a knot.

1. The 3-genus of K is defined as

g(K) := min{g(F ) |F is a Seifert surface for K}.

2. The (topological) slice genus or (topological) 4-genus of K is defined
as

g4(K) := min
{
g(F )

∣∣∣F ⊂ B4 properly embedded, locally
flat surface with ∂F = K

}
.

3. The stable 4-genus of K is defined as

gst(K) := lim
n→∞

g4(nK)

n
,

where nK := K# · · ·#K denotes the n-fold connected sum of K.
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Remark 4.9. Clearly, if g4(K) = 0 then K is slice. Pushing a Seifert
surface of K into the 4-ball while keeping its boundary fixed, we obtain the
following inequality:

g4(K) ≤ g(K).

Of course, one can also define the smooth 4-genus gsmooth
4 of a knot K by

replacing locally flat with smooth in Definition 4.8. Since smooth implies
locally flat, we see that

g4(K) ≤ gsmooth
4 (K) ≤ g(K),

where the last inequality is obtained by noting that a pushed-in Seifert
surface produces in fact a smoothly and properly embedded surface F ⊂
B4 with ∂F = K. None of these inequalities are in fact equalities, the
first because it is known since the work of Freedman [Fre82] that there
are topologically slice knots which are not smoothly slice, and the second
because there are many smoothly slice knots which are not trivial, such as
the connected sum of the figure-eight with itself, or in general any ribbon
knot.

As mentioned earlier, the stable 4-genus was introduced by Charles
Livingston in 2010 [Liv10] as a mean to provide a new insights into the 4-
genus and knot concordance. For instance, gst induces a semi-norm on the
rationalized knot concordance group CQ = C ⊗Z Q, see [Liv10, Theorem 2].
In Chapter 5, we will obtain a new lower bound for gst using Casson-Gordon
τ -signatures, which will allow us to derive new concordance information
about the twist knots in Chapter 6.

The set of isotopy classes of knots together with the operation of con-
nected sum forms a monoid. Using the notion of sliceness however, one is
able to turn this monoid into a group, the knot concordance group C.

Definition 4.10. Two knots K1 and K2 are called concordant if the con-
nected sum K1#−K2 is slice, where −K2 denotes the mirror image of K2

with orientation reversed.

Theorem 4.11. Knot concordance is a well-defined equivalence relation on
the set of isotopy classes of knots. The resulting equivalence classes form
a group with operation the connected sum of knots. The neutral element
is given by the class of slice knots, and the inverse of a knot K is given by
−K.

For a proof, see for instance [LN16, Theorem 3.3.3].

Definition 4.12. The group described in Theorem 4.11 is called the knot
concordance group C.

Remark 4.13. As mentioned in Chapter 3, the knot concordance group
was first introduced by Fox and Milnor in the 60’s [FM66]. Originally,
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it was formulated in the smooth setting, in which also one of the most
important results, namely that there is an epimorphism

C → Z∞ ⊕ Z∞
2 ⊕ Z∞

4 ,

was obtained by Levine [Lev69a, Lev69b]. Moreover, Casson and Gordon
showed that the kernel of this epimorphism is non-trivial [CG75, CG78],
thus proving that this map is not an isomorphism (see also Subsections 4.3.7
and 4.3.8). However, the work of Freedman [Fre82, FQ90] implies that these
results also apply in the topological setting (cf. [Liv05, Section 6]). Despite
being extensively studied since its introduction, many questions about the
knot concordance group remain open. For instance, it is still unknown
whether there is torsion of order greater than 2 in C. In Chapter 6, we
will apply our results from Chapter 5 to complete the classification of the
concordance order of the twist knots Kn (see Corollary 6.6). For a general
survey of the knot concordance group C, see for instance [Liv05].

We recall the following definitions of manifolds and coverings arising
from the ambient space of a knot K. Details are given for instance in
[Con17, Section 2.1 and 2.7].

Definition 4.14. Let K ⊂ S3 be a knot.

1. The knot exterior of K is defined as

XK := S3\νK,

where νK is a tubular neighborhood of K in S3.

2. By Alexander duality H1(XK ;Z) ∼= Z, with generator given by a
meridian of K (unique up to sign). Hence for each d ∈ N, we define
the d-fold cyclic coverings of the knot exterior as the regular coverings
X ′
d → XK corresponding to the kernel of the composition

π1(XK)→ H1(XK ;Z) ∼= Z proj→ Zd.

If d = 0, we write X ′
∞ and refer to it as the infinite cyclic covering of

XK .

3. The boundary of XK is a torus S1×S1, and so is the boundary of X ′
d

since the Euler characteristic is multiplicative under finite coverings.
Let µK be a meridian of ∂XK and d ∈ N. Then µdK lifts to a closed
loop (µdK)

′ in X ′
d, and we define the d-fold cyclic branched covering of

K as
Xd := X ′

d ∪∂ T → S3,

where T := S1 × D2 is a solid torus glued to X ′
d via an orientation-

reversing homeomorphism that identifies the meridian of T with (µdK)
′.
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4. The zero framed surgery of K is defined as

MK := XK ∪∂ T,

where T := S1 ×D2 is a solid torus glued to XK via an orientation-
reversing homeomorphism that identifies the meridian of T with the
longitude of ∂XK .

5. A Mayer-Vietoris argument applied to the decomposition MK = XK∪
T shows that H1(MK ;Z) ∼= Z, with generator given by a meridian of
K. Hence for each d ∈ N, we define the d-fold cyclic coverings of
the zero-framed surgery of K as the regular coverings Md → MK

corresponding to the kernel of the composition

π1(MK)→ H1(MK ;Z) ∼= Z proj→ Zd.

If d = 0, we write M∞ and refer to it as the infinite cyclic covering of
MK .

Our main examples for computations are going to be the twist knots
Kn, defined as follows.

Definition 4.15. The twist knot Kn is obtained by adding n ∈ N full
right-hand twists into an unknot and adding a clasp; see Figure 4.2.

n full twists

Kn

Figure 4.2: The twist knot Kn (picture taken from [Ilt19]).

The following properties of twist knots are well-known.

Proposition 4.16. Let Kn be a twist knot.

1. If n ̸= 0, then g(Kn) = 1.

2. The signature of Kn vanishes, i.e. σ(Kn) = 0.

3. Kn is algebraically slice if and only if 4n+ 1 is a square.

Proof. If n = 0, then K0 is the unknot and the statements 2. and 3. are
automatically true. So assume without loss of generality that n ̸= 0. Con-
sider Figure 4.3. The surface Fn forms a genus one Seifert surface for Kn,
and since Kn is not trivial it follows that

g(Kn) = 1.
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The curves a and b shown in Figure 4.3 form a basis for H1(Fn;Z) ∼= Z2.
In this basis, the Seifert matrix of Kn takes the form

An :=

(
−1 1
0 n

)
,

and the Seifert pairing is represented by the matrix

An + ATn =

(
−2 1
1 2n

)
.

The signature of An+ATn is easily seen to vanish, hence σ(Kn) = 0. In order
to determine when the Seifert pairing is metabolic, let

(
x y

)
∈ H1(F ;Z).

We have: (
x y

)(−2 1
1 2n

)(
x
y

)
= 2(−x2 + xy + ny2). (4.2)

We wish to find x, y ∈ Z such that the right-hand side of (4.2) vanishes,
for then the element

(
x y

)
∈ H1(F ;Z) generates a submodule of half-rank

that equals its orthogonal complement with respect to the Seifert pairing.
To find a solution, assume y = 1. Solving over the reals R, we obtain

−x2 + x+ n = 0 ⇐⇒ x1,2 =
−1±

√
4n+ 1

−2
.

Observe that the solutions x1 and x2 are in Z if and only if 4n+1 is a square.
It follows that if this is the case, then the Seifert pairing of Kn is metabolic.
A similar computation can also be applied to obtain the other direction of
the equivalence. However, a more elegant argument is the following: if Kn

is algebraically slice, then the existence of a metabolizer for the symmetric
Seifert pairing implies that the absolute value of the determinant of Kn is
a square of a non-zero integer (cf. [LN16, Exercise 4.3.1]). Since

|detKn| = |det(An + ATn )| = 4n+ 1,

it follows that 4n+ 1 has to be a square.

n curls

Fn

a
b

Figure 4.3: The Seifert surface Fn for Kn with a basis for H1(Fn;Z) (picture taken from
[Ilt19]).
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Remark 4.17. As mentioned in Section 2.2, Levine used the notion of
algebraic sliceness to introduce the algebraic concordance group G, defined
similar to the knot concordance group C [Lev69a, Lev69b]. He showed that
there is an epimorphism C ↠ G and that G ∼= Z∞ ⊕ Z∞

2 ⊕ Z∞
4 , giving in

fact the epimorphism mentioned in Remark 4.13. In [LN01, 4.4 Corollary],
Livingston and Naik provided a complete classification of the order of the
twist knots Kn in the algebraic concordance group G:1

1. If 4n+ 1 is a perfect square, then Kn is algebraically slice.

2. If 4n+1 is not a perfect square, and every prime congruent to 3 mod 4
has even exponent in the prime power factorization of 4n + 1, then
Kn is of order 2 in G.

3. If there is some prime congruent to 3 mod 4 with odd exponent in the
prime power factorization of 4n+ 1, then Kn is of order 4 in G.

4.3 Casson-Gordon invariants and τ -signatures

In the 1970s, A. J. Casson and C. M. Gordon defined several invariants of
knots and 3-manifolds and applied them successfully to the study of knot
concordance. These invariants are:

1. The closely related σ(M,χ) ∈ Q and σr(M,χ) ∈ Q, associated to a
closed oriented topological 3-manifold M and an epimorphism
χ : H1(M ;Z)→ Zm for some m ∈ N and 0 < r < m [CG75, CG78];

2. σ(K,χ) ∈ Q, a special instance of σ(M,χ) associated to a knot K
with M = Xd being the d-fold cyclic branched cover of K [CG75];

3. τ(K,χ) ∈ W (C(t))⊗Q, associated to a knot K and an epimorphism
χ : H1(Xd;Z) → Zm with m ∈ N being a prime-power. Here, Xd

denotes again the d-fold cyclic branched cover of K and W (C(t)) is
the Witt group of non-singular hermitian forms on finite-dimensional
vector spaces over C(t) [CG75].

In the upcoming Chapter 5, our main theorems will be obtained by
working exclusively with τ(K,χ) and a certain signature function that
evaluates this invariant. However, we would like to take the opportu-
nity and describe all of the above Casson-Gordon invariants in hope to
resolve some of the confusion that might be encountered when learning
this subject.2 Along the way, we provide an introduction to several con-
cepts that will be needed in order to define the Casson-Gordon invari-
ants, such as homology with twisted coefficients, twisted intersection forms,

1Their result holds more generally for the n-twisted double of a knot K; if n < 0 then the
n-twisted double of K is of infinite order in G, and if n > 0 then the same results as for the
twist knots apply. Note that if K is the unknot and n > 0, one obtains the twist knots Kn.

2Such confusion was actually encountered by the author himself when first learning the
subject.
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and Witt groups. The reader who is already familiar with these con-
cepts and/or Casson-Gordon invariants, or who would simply like to take
this bit of mathematics as a blackbox is advised to continue with Sub-
section 4.3.9, which contains the description of one of the main tools
needed throughout Chapter 5. Unless otherwise mentioned, we will work
in the topological locally flat category. Main references for this section are
[CG75, CG78, Kau87a, LN16, Con17, Fri22].

4.3.1 Twisted homology

Twisted homology, also known as homology with twisted coefficients, is an
extension of ordinary homology and cohomology that takes (roughly speak-
ing) coverings into account in order to obtain more information about the
space under consideration. Arguably its most famous application is the
extension of Poincaré duality to non-orientable manifolds (see for instance
[DK01, Theorem 5.7]). In knot theory, a major tool are covering spaces of
the knot exterior, so homology with twisted coefficients provides a suitable
framework in this situation (see for instance [Hil12]).

Twisted homology is usually formed using modules over (not necessarily
commutative) rings with unity. A similar and in most settings equivalent
theory (see [Fri22, Part XIX] or [Hat02, Chapter 3.H]) is constructed by us-
ing bundles of groups, leading to so-called homology with local coefficients.3
While we will only describe the former in the following, it is worth to note
that both theories have their strengths and weaknesses depending on the
context and the results one wishes to prove (cf. [Fri22]).

We wish to remark that we do not intend to develop the theory in its
full generality at this point; our description stays within the scope of an
introduction that is only as general as needed in later applications. We
refer the interested reader to [Fri22, Part XIX] for a full account instead
(see also [DK01, Hat02, Her19]). Our discussion follows mainly [Fri22,
Part XIX], with additional resources being [DK01, Hat02, LN16, Con17,
FLNP17, Her19]. Proofs will mostly be omitted, but references to proofs
of the stated results will be provided.

Let X be a path-connected and locally contractible topological space
with a base point x0 ∈ X, and let Y ⊂ X be a (possibly empty) sub-
space. Further, let p : (X̃, x̃0) → (X, x0) be the universal cover of X and
write Ỹ := p−1(Y ).4 Using the identification of π1(X, x0) with the group of
deck transformations Autp(X̃) (see [Fri22, Proposition 167.1]), the univer-

3The distinction between twisted homology and homology with local coefficients is not always
made in the literature. For instance, [Hat02] refers to both theories as homology with local
coefficients.

4In order to develop the theory of (co-)homology with twisted coefficients, one usually works
with an explicit description of the universal covering in terms of certain equivalence classes of
paths in X based at x0 (as for instance in [Fri22, Part XIX]). However, [Fri22, Proposition
168.6] implies that the theory also holds for an arbitrary description of the universal cover of
X with any fixed base point x̃0 in the fibre of x0.
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sal cover X̃ admits a left π-action. The boundary map of the singular chain
complex C∗(X̃, Ỹ ;Z) is natural and thus commutes with the π1(X, x0)-
action on X̃, hence C∗(X̃, Ỹ ;Z) inherits the structure of a chain complex
of free left Z[π1(X, x0)]-modules, where Z[π1(X, x0)] is the group ring of
π1(X, x0) over the integers.

Let R be a (not necessarily commutative) unitary ring together with
an involution r 7→ r that reverses the order of multiplication (a so-called
involutive anti-automorphism). We assume that ring homomorphisms are
involution preserving, that is f(r) = f(r) for all r ∈ R and ring homo-
morphisms f : R → S. Our primary examples are group rings R = Z[G]
with involution defined by

∑
αigi 7→

∑
αig

−1
i . If M is a left R-module,

we will denote by M the right R-module obtained by inverting the left
R-multiplication on M using the involution, i.e. m ·r := rm, and vice-versa
if M is a right R-module.

Now let G be a group and let M be a left R-module. Given a repre-
sentation α : G → Autleft−R(M), we can turn M into a left Z[G]-module
by defining g · m := α(g)(m) for g ∈ G and m ∈ M . This structure is
compatible with the left R-structure on M in the sense that

(g · (r ·m)) = α(g)(r ·m) = r · α(g)(m) = (r · (g ·m)),

thus turning M into a (R,Z[G])-left-left module. Conversely, if M is a
(R,Z[G])-left-left module, we obtain a representation α̃ : G→ Autleft−R(M)
by mapping g 7→ Lg, where Lg is the left multiplication Lg(m) := g ·
m. Hence a left Z[G]-structure on a left R-module M is the same as
specifying a representation α : G → Autleft−R(M). In particular, if R = Z
then a (Z,Z[G])-left-left module M is simply a left Z[G]-module, and a
left Z[G]-structure on (the abelian group) M is the same as specifying a
representation α : G→ AutZ(M).

Notation. Let us fix some conventions and notation.

1. If we wish to emphasize the representation α that defines a left Z[G]-
structure on a left R-module M , we will write Mα.

2. If M carries the trivial left Z[G]-structure corresponding to the rep-
resentation defined by α(g)(m) := m for g ∈ G and m ∈ M , we use
the special notation Mtriv.

3. Whenever we speak of a left Z[G]-module M , we will implicitly as-
sume that M is in fact a (Z,Z[G])-left-left module unless otherwise
mentioned or clear from the context.

4. We will use the multiplication symbol · to indicate group actions or
specifically defined module structures. Ordinary ring multiplication
will be denoted by juxtaposition.

5. Throughout this section we will abbreviate π := π1(X, x0).



4.3.1. Twisted homology 41

Definition 4.18. Let X be a locally contractible and path-connected topo-
logical space with base point x0 ∈ X and Y ⊂ X a (possibly empty)
subspace. Let p : (X̃, x̃0) → (X, x0) be the universal cover and write
Ỹ := p−1(Y ). Further, let M be a (R,Z[π])-left-left module. The twisted
(co-)chain complex of the pair (X, Y ) with coefficients in M is defined as5

Ct
∗(X, Y ;M) :=M ⊗Z[π] C∗(X̃, Ỹ ;Z),

C∗
t (X, Y ;M) := Homleft−Z[π](C∗(X̃, Ỹ ;Z),M),

with boundary operator idM⊗∂ and ∂∗, respectively. We denote the corre-
sponding twisted (co-)homology groups by H t

∗(X, Y ;M) and H∗
t (X, Y ;M),

respectively.

Remark 4.19. The conventions used in Definition 4.18 differ throughout
the literature; some authors define twisted (co-)homology using a right in-
stead of a left action of π on the universal cover X̃ (e.g. [CG75, DK01,
FK06]), others assume that M is a right instead of a left Z[π]-module
(e.g. [Con17]). Although the different conventions lead to slightly altered
definitions of twisted (co-)homology, the resulting theories however are es-
sentially the same. Each convention has their strengths and weaknesses,
and we opted for the one that will lead to the least difficulties in our later
applications (note that we use the same conventions as in our main refer-
ence [Fri22, Part XIX]).

Remark 4.20.

1.) Observe that since M is a (R,Z[π])-left-left module, both Ct
∗(X, Y ;M)

and C∗
t (X, Y ;M) are chain complexes of left R-modules. Consequently,

both twisted homology H t
∗(X, Y ;M) and twisted cohomology

H∗
t (X, Y ;M) carry the structure of a left R-module as well.

2.) The choice of base point is essential for the definition of twisted (co-)
homology. However, one can show that a different choice of base point
results in isomorphic twisted (co-)chain complexes and (co-)homology
groups, see [Fri22, Proposition 167.6].

3.) If X is a connected CW-complex, then it is possible to define twisted
(co-)homology starting from cellular instead of singular homology (see
[Fri22, Chapter 170]). Just as in the ordinary case, the resulting ho-
mology groups are naturally isomorphic, see [Fri22, Theorem 170.2].

The following example shows that one can extract ordinary (co-)homo-
logy with coefficients from twisted (co-)homology.

Example 4.21. Let (X, x0) and Y ⊆ X be as above and let p : (X̃, x̃0)→
(X, x0) be the universal cover with Ỹ := p−1(Y ). Given a left R-module

5Here, “t” stands for “twisted”.
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M , let Mtriv be the corresponding (R,Z[π])-left-left module with trivial left
Z[π]-structure. Then the maps

Ct
∗(X, Y ;Mtriv)→M ⊗Z C∗(X, Y ;Z)

k∑
i=0

mi ⊗ σi 7→
k∑
i=0

mi ⊗ p∗(σi)

and
HomZ(C∗(X, Y ;Z),M)→ C∗

t (X, Y ;Mtriv)

φ 7→ φ ◦ p∗
are easily verified to be natural isomorphisms of chain complexes of left R-
modules by using the fact that the trivial Z[π]-structure on Mtriv “cancels”
the Z[π]-action on C∗(X̃;Z) in Ct

∗(X;Mtriv) and C∗
t (X;Mtriv), respectively

(see [Fri22, Lemma 167.3]). Hence the maps above induce natural isomor-
phisms of left R-modules

H t
∗(X, Y ;Mtriv) ∼= H∗(X, Y ;M)

H∗
t (X, Y ;Mtriv) ∼= H∗(X, Y ;M)

In other words, twisted (co-)homology with coefficients in Mtriv is isomor-
phic to ordinary (co-)homology with coefficients in the left R-module M .

When defining a new (co-)homology theory it is always interesting to see
what happens in degree zero. The following proposition gives the desired
answer (see [Fri22, Proposition 168.1] for a proof).

Proposition 4.22. Let (X, x0) be as above with universal cover
p : (X̃, x̃0) → (X, x0), and let M be a (R,Z[π])-left-left module. Define
the left R-modules

Mπ :=M/
{ k∑

i=0

(gi ·mi −mi)
∣∣∣ gi ∈ π, mi ∈M, k ∈ N

}
Mπ := {m ∈M | g ·m = m for all g ∈ π}.

Then the twisted augmentation map

ϵM : H t
0(X;M)→Mπ[ k∑

i=0

mi ⊗ σi
]
7→
[ k∑
i=0

mi

]
and twisted evaluation map

evM : H0
t (X;M)→Mπ

φ 7→ φ(σx̃0),

where σx̃0 : ∆0 → X̃ is the unique singular 0-simplex mapping ∆0 to x̃0,
are both natural isomorphisms of left R-modules.
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Remark 4.23. If π acts trivially on M then obviously Mπ
∼= M and

Mπ = M , so in this case Proposition 4.22 shows that both H t
0(X;M) and

H0
t (X;M) are isomorphic to M as left R-modules.

In the upcoming sections we will encounter change of coefficients on
twisted (co-)homology, so let us state the corresponding definition.

Definition 4.24. Let M and N be (R,Z[π])-left-left modules and suppose
we are given a homomorphism

Θ: M → N

of (R,Z[π])-left-left modules. For each k ∈ N, Θ induces chain maps of
(co-)chain complexes of left R-modules6

Θ∗ : Ck(X, Y ;M)→ Ck(X, Y ;N), m⊗ σ 7→ Θ(m)⊗ σ
Θ∗ : C

k(X, Y ;M)→ Ck(X, Y ;N), φ 7→ Θ ◦ φ
Consequently, Θ∗ induces homomorphisms of left R-modules on twisted
(co-)homology, which we denote by Θ∗ as well. Θ∗ is called a change of
coefficients.

Twisted homology can also be formed using other coverings of X in-
stead of the universal cover. Let Γ ⊆ π be a normal subgroup and let
pΓ : (XΓ, x

′
0) → (X, x0) be the corresponding covering with group of deck

transformations isomorphic to π/Γ. Let Y ⊂ X and set YΓ := p−1
Γ (Y ). As

for the universal cover, this induces a left Z[π/Γ]-action on C∗(XΓ, YΓ;Z).
Given the universal cover p : (X̃, x̃0) → (X, x0), there exists a unique cov-
ering q : (X̃, x̃0)→ (XΓ, x

′
0) with pΓ ◦ q = p.

Let M be a (R,Z[π/Γ])-left-left module with left Z[π/Γ]-module struc-
ture given by a representation αΓ : π/Γ → AutZ(M). Observe that αΓ

induces α : π → AutZ(M) by setting α := αΓ ◦ proj, where proj : π → π/Γ
is the canonical projection, making M also into a (R,Z[π])-left-left module.
(Note that this left Z[π]-structure is in general not compatible with the left
Z[π/Γ]-structure on M).

Proposition 4.25. In the situation above, for each k ∈ N the following
maps are isomorphisms of (co-)chain complexes of left R-modules:

Ct
k(X, Y ;M)

∼=→M ⊗Z[π/Γ] Ck(XΓ, YΓ;Z)
m⊗ σ 7→ m⊗ (q ◦ σ)

Homleft−Z[π/Γ](Ck(XΓ, YΓ;Z),M)
∼=→ Ck

t (X, Y ;M)

φ 7→ (σ 7→ φ(q ◦ σ)),

where σ : ∆k → X̃ is a singular simplex.
6Here we abuse notation and denote the change of coefficients on both the twisted chain

and cochain complex by Θ∗. That Θ induces chain maps is a direct generalization of the fact
that singular (co-)homology is covariantly functorial in the coefficients, see [Fri22, Lemma 89.7
and 108.9].
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Proposition 4.25 follows essentially from the fact that the chain com-
plexes under consideration are generated by the same “basis” due to the
specific left Z[π]-module structure on M ; see for instance [Fri22, Proposi-
tion 168.6] for more details and a proof.

Corollary 4.26. Let M = Z[π/Γ] with the left Z[π/Γ]-module structure
given by hΓ·gΓ := gh−1Γ. Then there is an isomorphism of chain complexes

Ct
∗(X;Z[π/Γ]) ∼= C∗(XΓ;Z).

If we further equip Z[π/Γ] with the left Z[π/Γ]-structure given by ordinary
left multiplication, then Z[π/Γ] is a (Z[π/Γ],Z[π/Γ])-left-left module and
the above is an isomorphism of left Z[π/Γ]-modules.

Proof. Using Proposition 4.25 and properties of the tensor product, we
obtain

Ct
∗(X, Y ;Z[π/Γ]) ∼= Z[π/Γ]⊗Z[π/Γ] C∗(XΓ, YΓ;Z)

∼= C∗(XΓ, YΓ;Z).

The second left Z[π/Γ]-structure on Z[π/Γ] given by left multiplication
turns Ct

∗(X;Z[π/Γ]) into a left Z[π/Γ]-module, making the above isomor-
phisms left Z[π/Γ]-linear.

Example 4.27. Proposition 4.25 shows that one can extract the ordinary
homology of any regular covering from twisted homology, which is in par-
ticular true for the trivial and the universal covering of X. Indeed, taking
Γ = π and M = Ztriv with αΓ trivial yields an isomorphism

Ct
∗(X;Ztriv) ∼= C∗(X;Z),

Similarly, taking the trivial subgroup Γ = {e} and M = Z[π] with αΓ(g) =
idM for all g ∈ π gives us

Ct
∗(X;Z[π]) ∼= C∗(X̃;Z).

Note that Corollary 4.26 is in general not true for twisted cohomology
(cf. [LN16, Example 7.12.5]). For instance, let X = S1, Γ = {e} and
M = Z[π] ∼= Z[t±1] with αΓ(g) = idM for all g ∈ π. Then C∗

t (S
1;Z[Z])

takes the form

0→ Homleft−Z[t±1](Z[R],Z[t±1])
∂∗→ Homleft−Z[t±1](C1(R;Z),Z[t±1])→ · · · ,

where we used C0(R;Z) ∼= Z[R]. In the following we identify all real num-
bers x ∈ R with tx, meaning in particular that Z[t±1] acts on Z[R] via
t±1 · tx := tx±1. Let us show that H0

t (X;Z[t±1]) is trivial, in other words
that ∂∗ is injective. Given f ∈ Homleft−Z[t±1](Z[R],Z[t±1]), observe that by
the Z[t±1]-linearity of f we have

f(tx+1) = tf(tx) (4.3)
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for all x ∈ R. Let σ : [0, 1]→ R be a singular 1-simplex. Then

∂∗(f)(σ) = f(∂σ) = f(tσ(1) − tσ(0)) = f(tσ(1))− f(tσ(0)).

Assume that ∂∗(f) is trivial, so that in particular ∂∗(f)(σ) = 0 for all
singular 1-simplices σ. Then

∂∗(f)(σ) = 0 =⇒ f(tσ(1)) = f(tσ(0))

=⇒ f(tx) = f(ty) ∀x, y ∈ R
(4.3)
=⇒ f(tx) = 0 ∀x ∈ R
=⇒ f = 0,

proving that ∂∗ is injective, and hence H0
t (S

1;Z[t±1]) ∼= 0 as desired. How-
ever R is contractible, so the untwisted cohomology group H0(R;Z) is
isomorphic to Z. Therefore the corresponding chain complexes can’t be
isomorphic:

C∗
t (S

1;Z[t±1]) ≇ C∗(R;Z).

While Corollary 4.26 does in general not hold for twisted cohomology,
there is an analogue provided that the group Γ ⊆ π has finite index. The re-
sult is quite technical, but it will be needed later in Subsection 4.3.4. So let
Γ ⊆ π be a normal subgroup of finite index, and let pΓ : (XΓ, x

′
0)→ (X, x0)

be the corresponding covering. Given the universal cover p : (X̃, x̃0) →
(X, x0), there exists a unique covering q : (X̃, x̃0)→ (XΓ, x

′
0) with pΓ◦q = p.

As before, we equip M = Z[π/Γ] with a left Z[π/Γ]-module structure via
hΓ · gΓ := gh−1Γ, which also induces a left Z[π]-structure by composing
with the canonical projection proj : π → π/Γ.

Given k ∈ N, observe that by definition of the group ring Z[π/Γ] every
f ∈ Homleft−Z[π](Ck(X̃;Z),Z[π/Γ]) is of the form

f(x) =
∑

gΓ∈π/Γ

ψgΓ(x)gΓ, x ∈ Ck(X̃;Z)

with unique coefficient functions ψgΓ ∈ HomZ(Ck(X̃;Z),Z). In fact more
is true: we can write

f(x) =
∑

gΓ∈π/Γ

ψeΓ(g · x)gΓ, x ∈ Ck(X̃;Z),

where ψeΓ is the unique coefficient function corresponding to the neutral
element eΓ ∈ π/Γ. Indeed, let h ∈ π and x ∈ Ck(X̃;Z) and consider

f(h · x) =
∑

gΓ∈π/Γ

ψgΓ(h · x)gΓ (4.4)

h · f(x) =
∑

gΓ∈π/Γ

ψgΓ(x)gh
−1Γ (4.5)
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Observe that the coefficient of some given gΓ ∈ π/Γ is ψgΓ(h · x) in (4.4)
and ψghΓ(x) in (4.5). Since f(h · x) = h · f(x) by the left Z[π]-linearity of
f , we have by comparing coefficients that

ψgΓ(h · x) = ψghΓ(x).

Taking h = g−1 and substituting x′ = h · x yields

ψh−1Γ(x
′) = ψeΓ(h

−1 · x′).

Hence we obtain

f(x) =
∑

gΓ∈π/Γ

ψgΓ(x)gΓ =
∑

gΓ∈π/Γ

ψeΓ(g · x)gΓ

as claimed.
Now, for each k ∈ N define the maps

Φ: Homleft−Z[π](Ck(X̃;Z),Z[π/Γ])→ HomZ(Ck(XΓ;Z),Z)
f 7→

(
σ 7→ ψeΓ(σ̃)

)
,

where σ̃ : ∆k → X̃ is a lift of σ : ∆k → XΓ, and

Ψ: HomZ(Ck(XΓ;Z),Z)→ Homleft−Z[π](Ck(X̃;Z),Z[π/Γ])

f 7→
(
σ 7→

∑
gΓ∈π/Γ

f(g · q(σ))gΓ
)

(here we use that Γ has finite index). We are now finally ready to state the
cohomological analogue to Corollary 4.26.

Proposition 4.28. The maps Φ and Ψ defined above are well-defined
cochain maps and form inverses of each other. In particular, if we equip
Z[π/Γ] with a second left Z[π/Γ]-structure given by ordinary left multi-
plication, and HomZ(Ck(XΓ;Z),Z) with the left Z[π/Γ]-structure given by
gΓ · f := f ◦ (T−1

gΓ )∗ where TgΓ is the deck transformation corresponding
to gΓ ∈ π/Γ, then Φ and Ψ establish for each k ∈ N isomorphisms of left
Z[π/Γ]-modules

Homleft−Z[π](Ck(X̃;Z),Z[π/Γ]) ∼= HomZ(Ck(XΓ;Z),Z)

and
Hk
t (X;Z[π/Γ] ∼= Hk(XΓ;Z).

A proof of Proposition 4.28 is given for instance in [Fri22, Proposition
168.4].
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4.3.2 Twisted cup and cap product

Twisted (co-)homology shares many of the familiar properties of ordinary
singular homology, such as long exact sequences of triples (see [Fri22,
Proposition 167.11] or excision (see [Fri22, Theorem 167.12] or [Her19, The-
orem B.1]). Of most interest to us are cup and cap products on twisted ho-
mology, which will allow us to state a version of Poincaré duality for twisted
homology which will ultimately lead us to twisted intersection forms. While
it is relatively simple to define cup and cap products on absolute twisted
homology, our applications are going to need cup and cap products on rel-
ative twisted homology. The subject is quite delicate, so we are only going
to state the necessary definitions and refer the interested reader for a full
treatment to [Fri22, Chapters 169 and 171].

As before, we abbreviate in the following π := π1(X, x0). We start by
recalling the definition of an excisive triad of topological spaces.

Definition 4.29.

1.) A triad of topological spaces is a triple (X,A1, A2) where X is a topo-
logical space and A1, A2 ⊆ X are subspaces.

2.) Let (X,A1, A2) be a triad of topological spaces. Define for each n ∈ N
the subgroup

C{A1,A2}
n (A1 ∪ A2;Z) :=

{ k∑
i=0

αiσi

∣∣∣ imσi ⊂ A1 or im σi ⊂ A2,
i = 0, . . . , k

}
⊆ Cn(A1 ∪ A2;Z).

The boundary of C∗(A1 ∪ A2;Z) restricts to a boundary on
C

{A1,A2}
∗ (A1 ∪ A2;Z), hence C

{A1,A2}
n (A1 ∪ A2;Z) is a chain complex

whose homology groups we denote by H{A1,A2}
∗ (A1 ∪ A2;Z).

3.) A triad (X,A1, A2) is called excisive if the inclusion

ι : C{A1,A2}
∗ (A1 ∪ A2;Z)→ C∗(A1 ∪ A2;Z)

is a chain homotopy equivalence.

Excisive triads are used in ordinary homology theory to obtain Mayer-
Vietoris sequences or relative cup and cap products. The following defini-
tion now adapts this notion to the twisted setting.

Definition 4.30. LetX be a locally contractible and path-connected space
with base point x0 and universal cover p : (X̃, x̃0) → (X, x0). A triad
(X,A1, A2) is called universally excisive if the following two conditions are
satisfied:

1. (X̃, p−1(A1), p
−1(A2)) is an excisive triad;
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2. The subspaces A1, A2 and A1 ∩ A2 are locally contractible.

In [Fri22, Theorems 169.7-169.9] it is shown that a universally exci-
sive triad as defined in Definition 4.30 is the correct notion to obtain a
Mayer-Vietoris sequence on twisted homology. For the relative cup and
cap product however we are going to need one more definition.

Definition 4.31. LetX be a locally contractible and path-connected space
with base point x0 and universal cover p : (X̃, x̃0)→ (X, x0). Given a triad
(X,A,B), write Ã := p−1(A), B̃ := p−1(B). Let M be a (R,Z[π])-left-left
module. Consider the obvious maps

φ : M ⊗Z[π] C
{Ã,B̃}
∗ (Ã ∪ B̃;Z)→ Ct

∗(X;M)

ψ : C∗
t (X;M)→ Homleft−Z[π](C

{Ã,B̃}
∗ (Ã ∪ B̃;Z),M)

and define

Ct
∗(X, {A,B};M) := cokerφ

C∗
t (X, {A,B};M) := kerψ.

The boundary on Ct
∗(X;M) induces a boundary on Ct

∗(X, {A,B};M),
turning it into a chain complex of left R-modules. Similarly, the bound-
ary on C∗

t (X;M) induces a boundary on C∗
t (X, {A,B};M), turning it into

a cochain complex of left R-modules. We write H t
∗(X, {A,B};M) and

H∗
t (X, {A,B};M) for the corresponding homology and cohomology groups.

As we will see shortly, the “natural” definition of a relative cup and
cap product on twisted homology has as target the quite unhandy groups
H t

∗(X, {A,B};M) and H∗
t (X, {A,B};M). However, Lemma 4.32 shows

that these are in fact isomorphic to some familiar relative twisted homology
groups (see [Fri22, Lemma 171.4 and 171.10] for a proof).

Lemma 4.32. Let X be a locally contractible and path-connected space
with base point x0 and suppose that (X,A,B) is a universally excisive
triad. Then the obvious maps

Ct
∗(X,A ∪B;M)→ Ct

∗(X, {A,B};M)

C∗
t (X,A ∪B;M)→ C∗

t (X, {A,B};M)

induce isomorphisms

H t
∗(X, {A,B};M) ∼= H t

∗(X,A ∪B;M)

H∗
t (X, {A,B};M) ∼= H∗

t (X,A ∪B;M).

The last ingredient we need is a remark on the tensor product of left-left
modules over Z.
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Remark 4.33. Let R and S be unital rings with involution and let M be a
(R,Z[π])-left-left module and N a (S,Z[π])-left-left module. Observe that
the tensor product M ⊗Z N inherits a natural left Z[π]-module structure
via the diagonal action

g · (m⊗ n) := g ·m⊗ g · n,

where g ∈ π and m ∈ M , n ∈ N . Furthermore, M ⊗Z N is a left R ⊗Z S-
module via

(r ⊗ s) · (m⊗ n) := r ·m⊗ s · n
where g ∈ π and m ∈M , n ∈ N . Those two structures are compatible with
each other since M is a (R,Z[π])-left-left module and N is a (S,Z[π])-left-
left module. Thus M⊗ZN turns into a (R⊗ZS,Z[π])-left-left module, and
we will always consider M⊗ZN with this specific left-left module structure
in the following.

We are now finally ready to state the definition of the relative twisted
cup and cap product.

Definition 4.34. LetX be a locally contractible and path-connected space
with base point x0 and let (X,A,B) be a universally excisive triad. Let R
and S be unital rings with involution. Further, let M be a (R,Z[π])-left-left
module and N a (S,Z[π])-left-left module and p, q ∈ N. Then the (relative)
twisted cup product is the map

⌣t : C
p
t (X,A;M)× Cq

t (X,B;N)→ Cp+q
t (X, {A,B};M ⊗Z N)

∼=→ Cp+q
t (X,A ∪B;M ⊗Z N)

defined by the formula

(φ ⌣t ψ)(σ) := φ(σ|[0,...,p])⊗ ψ(σ|[p,...,p+q]),

where φ ∈ Cp
t (X,A;M), ψ ∈ Cq

t (X,B;N), and σ : ∆p+q → X̃ is a singular
simplex with σ|[i,...,j] being the restriction of σ to the face spanned by the
standard basis vectors indexed i through j.

Definition 4.35. LetX be a locally contractible and path-connected space
with base point x0 and let (X,A,B) be a universally excisive triad. Let R
and S be unital rings with involution. Further, let M be a (R,Z[π])-left-left
module and N a (S,Z[π])-left-left module and p, q ∈ N. Then the (relative)
twisted cap product is the map

⌢t : C
p
t (X,A;M)× Ct

q(X,A ∪B;N)
∼=→ Cp

t (X,A;M)× Ct
q(X, {A,B};N)

→ Ct
q−p(X,B;M ⊗Z N)

defined by the formula

φ ⌢t (n⊗ σ) :=
(
φ(σ|[0,...,p])⊗ n

)
⊗ σ|[p,...,q],
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where φ ∈ Cp
t (X,A;M), m ⊗ σ ∈ Ct

q(X,A ∪ B;N), and σ : ∆q → X is a
singular simplex with σ|[i,...,j] being the restriction of σ to the face spanned
by the standard basis vectors indexed i through j. If p > q, the (relative)
twisted cap product is defined to be zero.

Remark 4.36. In [Fri22, Lemma 171.5 and 171.11], it is shown that both
the (relative) twisted cup and cap product descend to well-defined products
on twisted homology:

⌣t : H
p
t (X,A;M)×Hq

t (X,B;N)→ Hp+q
t (X,A ∪B;M ⊗Z N)

⌢t : H
p
t (X,A;M)×H t

q(X,A ∪B;N)→ H t
q−p(X,B;M ⊗Z N).

The left R⊗ZS-structure on M⊗ZN yields a (R, S)-left-left module struc-
ture on M ⊗Z N via

r ·m⊗ n := (r ⊗ 1) · (m⊗ n), s ·m⊗ n := (1⊗ s) · (m⊗ n),

where r ∈ R, s ∈ S and m⊗n ∈M⊗ZN . This turns Hp+q
t (X,A∪B;M⊗Z

N) and H t
q−p(X,B;M⊗ZN) into (R, S)-left-left modules, respectively, and

then both ⌣t and ⌢t are R-linear in the first and S-linear in the second
argument.7 If A = B = ∅, then (X, ∅, ∅) is trivially a universally excisive
triad and we obtain by the same formulas as in Definition 4.34 and 4.35 a
cup and cap product on absolute twisted homology.

Remark 4.37. The twisted cup product shares symmetry properties sim-
ilar to the ordinary cup product provided A = B. Indeed, given φ ∈
Hp
t (X,A;M) and ψ ∈ Hq

t (X,A;N), we have

τ(φ ⌣t ψ) = (−1)pq(ψ ⌣t φ) ∈ Hp+q
t (X,A;N ⊗Z M),

where τ : M ⊗ZN → N ⊗ZM is the flip isomorphism m⊗ n 7→ n⊗m (see
[Fri22, Proposition 171.7]). Moreover, if A ⊂ X is a subset, C,D ∈ {∅, A},
φ ∈ Hp

t (X,C;L), ψ ∈ H
q
t (X,D;M), and x ∈ H t

n(X,C ∪ D;N), then we
have the following relation between the twisted cup and cap product (see
[Fri22, Lemma 171.14]):

φ ⌢t (ψ ⌢t x) = (ψ ⌣t φ)⌢t x ∈ H t
n−p−q(X;L⊗Z M ⊗Z N).

This is again similar to the relation between the cup and cap product in
the ordinary case.

There is an important special case of the twisted cap product that makes
it possible to cap a twisted cohomology class with an untwisted homology
class. To state this special case we need the following observation. Let

7Alternatively, one can use the tensor-hom adjunction (see Proposition 4.44) to ob-
tain induced maps ⌣t : H

p
t (X,A;M) ⊗Z Hq

t (X,B;N) → Hp+q
t (X,A ∪ B;M ⊗Z N) and

⌢t : H
p
t (X,A;M) ⊗Z Ht

q(X,A ∪ B;N) → Ht
q−p(X,B;M ⊗Z N), which then are homomor-

phisms of left R⊗Z S-modules.
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M be a (R,Z[π])-left-left module and consider Ztriv, the integers equipped
with the trivial left Z[π]-module structure. Then the map

Θ: M ⊗Z Ztriv →M, m⊗ n 7→ n ·m
is a natural isomorphism of (R⊗Z Z,Z[π])-left-left modules.
Definition 4.38. LetX be a locally contractible and path-connected space
with base point x0 and let (X,A,B) be a universally excisive triad. Let

ψ : Ct
∗(X,A;Ztriv)

∼=→ C∗(X,A;Z)
be the isomorphism described in Example 4.27. Finally, let M be a
(R,Z[π])-left-left module and p, q ∈ N. Then we extend Definition 4.35
of the relative twisted cap product to

⌢Z : C
p
t (X,A;M)× Cq(X,A ∪B;Z)→ Ct

q−p(X,B;M)

(φ, σ) 7→ Θ∗(φ ⌢t ψ
−1(σ)),

where Θ∗ is the change of coefficients that is induced by Θ as described in
Definition 4.24.
Remark 4.39. As for the relative twisted cap product, ⌢Z descends to a
well-defined product on homology

⌢Z : H
p
t (X,A;M)×Hq(X,A ∪B;Z)→ H t

q−p(X,B;M),

which is R-linear in the first and Z-linear in the second argument.
We are now equipped with enough machinery to state a version of

Poincaré-Lefschetz duality for homology with twisted coefficients as in
[Fri22, Theorem 172.1].
Theorem 4.40 (Twisted Poincaré-Lefschetz Duality). Let W be a
compact oriented path-connected topological manifold of dimension n ∈ N,
possibly with boundary, and with a base point w0 ∈ W . Suppose that we
are given a decomposition ∂W = A ∪ B, where A and B are compact
(n− 1)-dimensional submanifolds such that A ∩ B = ∂A = ∂B.8 Further,
let M be a left (R,Z[π1(W,w0)])-left-left module. Then for any k ∈ N there
is an isomorphism of left R-modules

PDt : H
k
t (W,A;M)→ H t

n−k(W,B;M)

x 7→ x ⌢Z [W ],

where [W ] ∈ Hn(W,∂W ;Z) denotes the fundamental class of W .
The proof is similar to the classical, untwisted case. We refer the inter-

ested reader to [Fri22, Chapter 172].
Notation. In order to simplify notation, we will denote both twisted
Poincaré-Lefschetz duality and its inverse with PDt. Similarly, we will
use the notation PD for Poincaré-Lefschetz duality and its inverse in the
classical untwisted case.

8Most important to us are the cases A = ∅ or A = ∂W .
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4.3.3 Twisted intersection forms

One of the central invariants that arises from Poincaré-Lefschetz duality
is the intersection form of an even-dimensional manifold together with its
signature, which finds a natural generalization to homology with twisted
coefficients. Let us quickly recall the definition of and some facts about the
ordinary intersection form, focusing on the dimension most important to
us, dimension 4.9 Our discussion follows essentially [Fri22, Chapter 173].

We start by recalling a basic fact from algebraic topology. Let X be a
topological space and consider the augmentation map

ϵ : H0(X;Z)→ Z,
[ k∑
i=0

αiσi

]
7→

k∑
i=0

αi,

which is frequently used to form reduced homology (recall that we also
encountered a twisted augmentation map in Proposition 4.22). If X is
path-connected then the augmentation map is an isomorphism, thus giving
H0(X;Z) ∼= Z. We will use this in the upcoming definition of the ordinary
intersection form. But first, let us fix some notions about pairings between
modules.

Definition 4.41. Let R be a unitary ring with involution and let M,N
be left R-modules. A pairing is a Z-bilinear map B : M × N → R. Let
m ∈M,n ∈ N and α, β ∈ R. A pairing B is called:

1. sesquilinear if B(α ·m,β · n) = αB(m,n)β;

2. hermitian if B is sesquilinear and satisfies B(m,n) = B(n,m);

3. non-degenerate if B is sesquilinear and the adjoint maps

M → Homright−R(N,R)

m 7→
(
n 7→ B(m,n)

)
and

N → Homleft−R(M,R)

n 7→
(
m 7→ B(m,n)

)
are injective;

4. non-singular if B is sesquilinear and both adjoints are isomorphisms.
9The (twisted) intersection form that we describe is a special case of the more general

(twisted) intersection pairing, which can be defined in arbitrary dimensions, but we restrict
our considerations to the case most important to us. A full account can be found in [Fri22,
Chapters 132-135 and 173].
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Definition 4.42 (Intersection Form). Let W be a compact oriented
topological 4-manifold, possibly with non-empty boundary ∂W . The in-
tersection form of W is defined as

QZ : H2(W ;Z)×H2(W ;Z)→ Z

(x, y) 7→ ϵ
((

PD(y)⌣ PD(x)
)
⌢ [W ]

)
,

where [W ] ∈ H4(W,∂W ;Z) denotes the fundamental class of W and ϵ is
the augmentation map. The signature of W is defined as the signature of
QZ and denoted by signZ(W ).

Remark 4.43. It is evident from the definition that QZ is a bilinear pair-
ing. Moreover, since we are working in even dimensions the cup product is
symmetric, and it follows immediately that QZ is symmetric as well. How-
ever, the intersection form is in general not non-singular. Indeed, using
properties of the cup and cap product we have that

QZ(x, y) = ϵ
((

PD(y)⌣ PD(x)
)
⌢ [W ]

)
= ϵ
(
PD(x)⌢

(
PD(y)⌢ [W ]

))
= ϵ
(
PD(x)⌢ i∗(y)

)
,

where i∗ : H2(W ;Z) → H2(W,∂W ;Z) is induced by inclusion. If we now
set

Φ: H2(W ;Z) PD→ H2(W,∂W ;Z) ev→ HomZ(H2(W,∂W ;Z),Z),

where ev is evaluation, then we see that

QZ(x, y) = ϵ
(
PD(x)⌢ i∗(y)

)
= Φ(x)(i∗(y)),

and it becomes evident that the intersection form QZ is non-singular when
both i∗ and ev are isomorphisms. Whether i∗ is an isomorphism can be
determined by considering the long exact sequence of the pair (W,∂W ).
On the other hand, by universal coefficients ev is always an isomorphism
on the free part of H2(W ;Z). Since QZ is always zero on the torsion part
of H2(W ;Z), one frequently mods out torsion and considers the form that
is induced by QZ on the free part of H2(W ;Z) so that evaluation is an
isomorphism.

Let us now discuss how to define the intersection form on twisted homol-
ogy. As in the previous sections, let R be a unitary ring with an involution
r 7→ r. Let X be locally contractible and path-connected with base point
x0 ∈ X, write as usual π := π1(X, x0), and consider the trivial left Z[π]-
module Rtriv (note that Rtriv is a (R,Z[π])-left-left module). Recall from
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Proposition 4.22 that there is a twisted augmentation map

ϵRtriv : H
t
0(X;Rtriv)→ R,

[ k∑
i=0

ri ⊗ σi
]
7→

k∑
i=0

ri,

which in this case is an isomorphism of left R-modules.
Similar to the ordinary intersection form, the definition of the twisted

intersection form involves the twisted cup product. However, as we have
seen in Definition 4.34, the target space of the twisted cup product is
twisted homology with coefficients in a tensor product, which in most cases
is not very desirable. So let us show how to obtain a suitable change of
coefficients. For this, let us recall the tensor-hom adjunction in our setting.

Proposition 4.44. Let R, S, T unitary rings with involution, and

• M an (R, T )-left left module;

• N an (T, S)-left left module;

• L an (R, S)-left left module.

Let M denote the (R, T )-left-right module obtained from M by turning the
left T -module structure into a right T -module structure using the involution
on T . Then there is a natural isomorphism of Z-modules

Hom(R,T )-left-right(M,Hom(Z,S)-left-left(N,L)) ∼= Hom(R,S)-left-left(M ⊗T N,L).

The proof is a routine check and left to the reader.

Remark 4.45. Observe that Hom(R,T )-left-right(M,Hom(Z,S)-left-left(N,L))

consists precisely of all maps B : M ×N → L that are R-linear in the first
and S-linear in the second argument and T -balanced. Indeed, if

f ∈ Hom(R,T )-left-right(M,Hom(Z,S)-left-left(N,L)),

then we obtain a map

Bf : M ×N → L, Bf (m,n) := f(m)(n)

that is obviously R-linear in the first and S-linear in the second argument,
and moreover satisfies

Bf (m ·t, n) = f(m ·t)(n) f is T -linear
= (f(m) ·t)(n) (∗)

= f(m)(t ·n) = Bf (m, t ·n)

for all t ∈ T , meaning that Bf is T -balanced. Here, the equality (∗) follows
since f(m) ∈ Hom(Z,S)-left-left(N,L) and Hom(Z,S)-left-left(N,L) is a (R, T )-
left-right module via

(r · h)(n) := r · h(n), (h · t)(n) := h(t · n).
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Conversely, a T -balanced map B : M ×N → L that is R-linear in the first
and S-linear in the second argument defines an element fB that is contained
in Hom(R,T )-left-right(M,Hom(Z,S)-left-left(N,L)) via

fB(m) := B(m, ·) ∈ Hom(Z,S)-left left(N,L).

As a special case, observe that if T = Z, then M can be identified with M ,
and any map B : M × N → L that is R-linear in the first and S-linear in
the second argument is automatically Z-balanced.

Now, let M and N be two (R,Z[π])-left-left modules and suppose we
are given an R-sesquilinear pairing

Θ: M ×N → Rtriv

that is preserved by the action of π, that is Θ(g ·m, g ·n) = Θ(m,n) for all
g ∈ π and m ∈ M , n ∈ N . We consider Rtriv as a (R,R,Z[π])-left-left-left
module as follows:

1. the first left R-structure is given by r · x := rx;

2. the second left R-structure is given by r · x := xr;

3. the left Z[π]-structure is given by the trivial action of π on R.

Then Θ can be understood as an R-bilinear pairing since

Θ(r1 ·m1, r2 ·m2) = r1Θ(m1,m2)r2
(∗)
= r1 · (r2 ·Θ(m1,m2)),

where the equality (∗) follows from our specifically chosen module struc-
tures on R. Now Θ is Z-balanced, hence we obtain by Proposition 4.44 a
homomorphism of (R,R)-left-left modules

Θ⊗ : M ⊗Z N → Rtriv.

that is moreover Z[π]-left linear. This map now induces a change of coeffi-
cients on the relative twisted cup product by post-composing ⌣t with the
induced map Θ⊗

∗ :

Hp
t (X,A;M)×Hq

t (X,B;N)→ Hp+q
t (X,A ∪B;Rtriv)

(φ, ψ) 7→ Θ⊗
∗ (φ ⌣t ψ)

In particular, observe that the resulting map is now R-sesquilinear:

Θ⊗
∗ (r1φ ⌣t r2ψ) = Θ⊗

∗ (r1 · r2 · (φ ⌣t ψ))

= r1 · (r2 ·Θ⊗
∗ (φ ⌣t ψ))

= r1Θ
⊗
∗ (φ ⌣t ψ)r2.

We are now ready to state the definition of the twisted intersection form.
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Definition 4.46 (Twisted Intersection Form). Let W be a compact
oriented path-connected 4-dimensional topological manifold, possibly with
boundary, and with a base point w0 ∈ W . Let M be a (R,Z[π1(W,w0)])-
left-left module, and suppose that we are given an R-sesquilinear pairing

Θ: M ×M → Rtriv

that preserves the π1(W,w0)-action, so that Θ(g ·m1, g ·m2) = Θ(m1,m2)
for all g ∈ π1(W,w0) and m1,m2 ∈ M . Then the M-twisted intersection
form of W is defined as the map

Qt
M : H t

2(W ;M)×H t
2(W ;M)→ R

(x, y) 7→ ϵRtriv

(
Θ⊗

∗
(
PDt(y)⌣t PDt(x)

)
⌢Z [W ]

)
,

where [W ] ∈ H4(W,∂W ;Z) is the fundamental class of W and ϵRtriv is the
twisted augmentation map.

Remark 4.47. Observe that since PDt and ϵRtriv are R-linear, ⌣t and
⌢Z are R-bilinear, and Θ is R-sesquilinear, it follows immediately that the
twisted intersection form Qt

M is R-sesquilinear. Moreover, if Θ is hermitian
then Qt

M is hermitian as well (this uses symmetry properties of the twisted
cup product described in Remark 4.37, see also [Fri22, Proposition 173.1]).
Just as the ordinary intersection form QZ, the twisted intersection form
Qt
M is in general not non-singular, and it is in general difficult to determine

the non-singularity of Qt
M . As a result, one can show that if R = F is a

skew-field and Θ: M × M → F is a non-singular F-sesquilinear pairing,
then Qt

M is indeed non-singular (see [Fri22, Proposition 173.3]).

Note that in Definition 4.46, we did not define any form of signature for
Qt
M . This is simply because the usual notion of a signature is in general not

defined for pairings on modules over arbitrary rings. In the next section
however, we will describe a scenario where a twisted intersection form arises
that indeed does have a well-defined signature.

4.3.4 Finite cyclic coverings, twisted intersection forms, and
eigenspace decompositions

It is evident from the definition that computing twisted intersection forms is
in general not a simple task. However, there is a specific situation in which
computations are quite possible, a situation that we will also encounter in
the discussion about Casson-Gordon invariants. This subsection is devoted
to this scenario, with main references being [Con17], [LN16, Section 7.8.1]
and [Fri22, Chapter 173]. Note that in the following we are going to en-
counter exclusively rings (and fields) that are commutative. However, in
order to stay consistent with Subsections 4.3.1 to 4.3.3, we continue to use
the language and notation of the general, non-commutative case.



4.3.4. Finite cyclic coverings, twisted intersection forms, and
eigenspace decompositions 57

Throughout this section we denote by Zm the cyclic group of order
m ∈ N, generated by some formal ξ and written multiplicatively:

Zm = {1, ξ, ξ2, . . . , ξm−1}.

We equip the group ring Z[Zm] with a left Z[Zm]-module structure via
ξi · ξj := ξj−i. We will use this structure in the following to form twisted
homology. We further turn Z[Zm] into a (Z[Zm],Z[Zm])-left-left module
with second left Z[Zm]-structure given by ordinary left multiplication.

Let W be a compact oriented path-connected topological 4-manifold,
possibly with non-empty boundary, and with a base point w0 ∈ W . In
the following we write π := π1(W,w0), and we denote the corresponding
universal cover as usual by p : (W̃ , w̃0) → (W,w0). Given an epimorphism
φ : π → Zm for some m ∈ N, let pm : (Wm, w

′
0)→ (W,w0) denote the m-fold

cyclic covering associated to kerφ ⊆ π. The group of deck transformations
Autpm(Wm) ∼= Zm induces a left Z[Zm]-action on H∗(Wm;Z). We write Tξ
for the deck transformation corresponding to ξ ∈ Zm.

Set ω = e
2πi
m and consider the cyclotomic field Q(ω) with involution

defined by complex conjugation ω 7→ ω. We endow Q(ω) with the structure
of a left Z[Zm]-module via ξ · x := xω, and we will use this structure
in the following to form twisted homology. Further, using ordinary left
multiplication we turn Q(ω) into a (Q(ω),Z[Zm])-left-left module. Now by
Maschke’s Theorem, Q[Zm] is semisimple, hence Q(ω) is projective over
Q[Zm] and thus flat over Z[Zm]. This gives us an isomorphism of left
Q(ω)-modules

H∗(Q(ω)⊗Z[Zm] C∗(Wm;Z)) ∼= Q(ω)⊗Z[Zm] H∗(Wm;Z).

We have the following definition.

Definition 4.48. In the situation above, we define the homology groups

Hφ
∗ (W ;Q(ω)) := Q(ω)⊗Z[Zm] H∗(Wm;Z).

Note that Hφ
∗ (W ;Q(ω)) arises in fact as a certain twisted homology of

W (cf. [Con17, Example 2.24]): as described in Corollary 4.26, there is an
isomorphism of left Z[Zm]-modules

C∗(Wm;Z) ∼= Z[Zm]⊗Z[π] C∗(W̃ ;Z).

The left Z[Zm]-structure on Q(ω) extends to a left Z[π]-structure in the
obvious way by using the projection proj : π → π/ kerφ ∼= Zm. Applying
properties of the tensor product, we obtain isomorphisms of chain com-
plexes of left Q(ω)-modules

Q(ω)⊗Z[Zm] C∗(Wm;Z) ∼= Q(ω)⊗Z[Zm]

(
Z[Zm]⊗Z[π] C∗(W̃ ;Z)

)
∼= Q(ω)⊗Z[π] C∗(W̃ ;Z).
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Taking homology on both sides then yields

Hφ
∗ (W ;Q(ω)) ∼= H t

∗(W ;Q(ω)). (4.6)

Remark 4.49. The reason why we are working here with Hφ
∗ (W ;Q(ω))

instead of H t
∗(W ;Q(ω)) directly will become apparent shortly when talking

about eigenspace decompositions.

Using the Q(ω)-sesquilinear pairing of left Q(ω)-modules defined by

Θ: Q(ω)×Q(ω)→ Q(ω)triv, (x, y) 7→ xy,

we obtain a Q(ω)-twisted intersection form Qt
Q(ω) on H t

2(W ;Q(ω)) as in
Definition 4.46, and thus also one on Hφ

2 (W ;Q(ω)) using the isomorphism
(4.6). For sake of simplicity we will denote this induced form by Qt

Q(ω) as
well. Note that by Remark 4.47, Qt

Q(ω) is hermitian and non-singular. This
form can also be obtained in a different way, as follows.

Definition 4.50. The Z[Zm]-equivariant intersection form of Wm is de-
fined as the pairing

Qeq
Z[Zm] : H2(Wm;Z)×H2(Wm;Z)→ Z[Zm]

(x, y) 7→
m−1∑
i=0

QZ(x, ξ
i · y)ξi.

Remark 4.51. Observe that Qeq
Z[Zm] is Z[Zm]-sesquilinear. Indeed, using

that QZ is invariant under the action of Zm, we have that

Qeq
Z[Zm](ξ

j · x, y) =
m−1∑
i=0

QZ(ξ
j · x, ξi · y)ξi

=
m−1∑
i=0

QZ(x, ξ
i−j · y)ξi

=
m−1∑
i=0

QZ(x, ξ
i · y)ξi+j

=
m−1∑
i=0

QZ(x, ξ
i · y)ξiξj

= ξjQeq
Z[Zm](x, y).
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Similarly, we obtain

Qeq
Z[Zm](x, ξ

j · y) =
m−1∑
i=0

QZ(x, ξ
i · (ξj · y))ξi

=
m−1∑
i=0

QZ(x, ξ
i+j · y)ξi

=
m−1∑
i=0

QZ(x, ξ
i · y)ξi−j

=
m−1∑
i=0

QZ(x, ξ
i · y)ξiξ−j

= Qeq
Z[Zm](x, y)ξ

−j.

Moreover, the symmetry and the Zm-invariance of QZ implies that Qeq
Z[Zm]

is hermitian:

Qeq
Z[Zm](x, y) =

m−1∑
i=0

QZ(x, ξ
i · y)ξi

=
m−1∑
i=0

QZ(ξ
i · y, x)ξi

=
m−1∑
i=0

QZ(y, ξ
−i · x)ξi

=
m−1∑
i=0

QZ(y, ξ
i · x)ξ−i

=
m−1∑
i=0

QZ(y, ξi · x)ξi

= Qeq
Z[Zm](y, x).

However, the form Qeq
Z[Zm] is in general not non-singular.

The Z[Zm]-equivariant intersection form is in fact a twisted intersection
form in disguise: using the Z[Zm]-sesquilinear pairing of left Z[Zm]-modules

Θ: Z[Zm]× Z[Zm]→ Z[Zm], (x, y) 7→ xy,

we obtain a Z[Zm]-twisted intersection form Qt
Z[Zm] on H t

2(W ;Z[Zm]), and
by Corollary 4.26 we know that H t

∗(W ;Z[Zm]) ∼= H∗(Wm;Z). We have the
following proposition.

Proposition 4.52. The following spaces are isometric as left Z[Zm]-mod-
ules:

(H2(Wm;Z), Qeq
Z[Zm])

∼= (H t
2(W ;Z[Zm]), Qt

Z[Zm]).
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Proof. Let q : (W̃ , w̃0) → (Wm, w
′
0) be the unique covering such that pm ◦

q = p. By Proposition 4.25 and Corollary 4.26, there is an isomorphism of
left Z[Zm]-modules

η : Ct
2(W ;Z[Zm])

∼=→ Z[Zm]⊗Z[Zm] C2(Wm;Z)
∼=→ C2(Wm;Z)

n⊗ σ 7→ n⊗ (q ◦ σ) 7→ n · (q ◦ σ),

where n ∈ Z[Zm] and σ : ∆2 → W̃ is a singular 2-simplex, which descends
to an isomorphism η∗ on homology. Our goal is to show that η∗ provides
the desired isometry. Recall that by Proposition 4.28,10 there are cochain
maps of left Z[Zm]-modules

Φ: Homleft−Z[π](C∗(W̃ , ∂W̃ ;Z),Z[Zm])→ HomZ(C∗(Wm, ∂Wm;Z),Z)
f 7→

(
σ 7→ ψe(σ̃)

)
,

and

Ψ: HomZ(C∗(Wm, ∂Wm;Z),Z)→ Homleft−Z[π](C∗(W̃ , ∂W̃m;Z),Z[Zm])

f 7→
(
σ 7→

m−1∑
i=0

f(ξi · q(σ))ξi
)

that are inverse to each other and thus establish an isomorphism

H2
t (W,∂W ;Z[Zm]) ∼= H2(Wm, ∂Wm;Z).

Further, observe the following: suppose that ξ ∈ Zm corresponds to gΓ ∈
π/Γ, where Γ = kerφ. Given f ∈ Homleft−Z[π](C∗(W̃ , ∂W̃ ;Z),Z[Zm]) and
any representative h ∈ gΓ, the left Z[π]-linearity implies

f(h · x) = h · f(x) = f(x)h−1Γ = f(x)g−1Γ = f(x)ξ−1.

This means that given any n ∈ Z[Zm], we have a well-defined equality

f(ñ · x) = f(x)n,

where ñ is any representative of n under the isomorphism Z[Zm] ∼= Z[π/Γ].
In order to continue we need the following claim.

Claim:
Φ∗(PDt(x)) = PD(η∗(x)) (4.7)

For a proof of (4.7), see [FL19] or [Fri22, Proposition 173.4]. Now, let
x,
[∑k

j=1 ni ⊗ µi
]
∈ H t

2(W ;Z[Zm]) with nj ∈ Z[Zm] and µj : ∆
2 → W̃ a

10Proposition 4.28 is stated in terms of absolute twisted cohomology, but also holds for
relative twisted cohomology.
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singular 2-simplex for each j. We have:

Qt
Z[Zm](x,

[
Σk
j=1nj ⊗ µj

]
)

= ϵZ[Zm]triv

(
Θ⊗

∗
(
PDt(

[
Σk
j=1nj ⊗ µj

]
)⌣t PDt(x)

)
⌢Z [W ]

)
∗
= ϵZ[Zm]triv

(
Θ⊗

∗
(
PDt(x)⌢t (PDt(

[
Σk
j=1nj ⊗ µj

]
)⌢Z [W ])

))
= ϵZ[Zm]triv

(
Θ⊗

∗
(
PDt(x)⌢t (

[
Σk
j=1nj ⊗ ι(µj)

]
)
))

=
k∑
j=1

ρ(ι(µj))nj

=
k∑
j=1

ρ(ñj · ι(µj))

Here, ι : Ct
2(W ;Z[Zm]) → Ct

2(W,∂W ;Z[Zm]) denotes the map induced by
inclusion and ρ is a representative of PDt(x) ∈ H2

t (W,∂W ;Z[Zm]). Note
that the equality ∗ is obtained by using the commutativity of the diagram
(here we write β for the pairing Θ in Definition 4.38 of ⌢Z)

Z[Zm]⊗Z Z[Zm]⊗Z Z Z[Zm]⊗Z Z

Z[Zm]⊗Z Z[Zm] Z[Zm]

id⊗β

Θ⊗⊗id

β

Θ⊗

together with Remark 4.37:

Θ⊗
∗
(
PDt(

[
Σk
j=1nj ⊗ µj

]
)⌣t PDt(x)

)
⌢Z [W ]

= Θ⊗
∗
(
(PDt(

[
Σk
j=1nj ⊗ µj

]
)⌣t PDt(x))⌢Z [W ]

)
= Θ⊗

∗
(
PDt(x)⌢t (PDt(

[
Σk
j=1nj ⊗ µj

]
)⌢Z [W ])

)
.

Now we know from Subsection 4.3.1 that any representative ρ of PDt(x)
is of the form11

ρ(y) =
m−1∑
i=0

ψe(ξ
i · y)ξi.

11Here we abuse notation and denote by ξi · y the action of a representative of ξi ∈ Zm
∼=

π/ ker(φ) on y. We have seen in Subsection 4.3.1 that the left Z[π]-linearity of PDt(x) implies
that this is independent of the choice of representative for ξi.
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Then:

k∑
j=1

ρ(ñj · ι(µj))

=
m−1∑
i=0

ψe
(
Σk
j=1ξ

i · ñj · ι(µj)
)
ξi

1.
=

m−1∑
i=0

Φ
(
ρ
)(
Σk
j=1q∗(ξ

i · ñj · ι(µj))
)
ξi

2.
=

m−1∑
i=0

Φ
(
ρ
)(
Σk
j=1nj · q∗(ξi · ι(µj))

)
ξi

3.
=

m−1∑
i=0

γ
(
Σk
j=1ξ

i · ι(η(nj ⊗ µj))
)
ξi

4.
=

m−1∑
i=0

ϵ
(
PD(η∗(x))⌢

([
Σk
j=1ξ

i · ι(η(nj ⊗ µj))
]))

ξi

5.
=

m−1∑
i=0

ϵ
(
PD(η∗(x))⌢

(
PD
([
Σk
j=1ξ

i · η(nj ⊗ µj)
])
⌢ [W ]

))
ξi

=
m−1∑
i=0

QZ

(
η∗(x),

[
Σk
j=1ξ

i · η(nj ⊗ µj)
])
ξi

= Qeq
Z[Zm]

(
η∗(x), η∗

([
Σk
j=1nj ⊗ µj

]))
Here, γ is a representative of PD(η∗(x)) ∈ H2(Wm, ∂Wm;Z). Let us explain
the equalities above:

1. Definition of Φ.

2. Holds since q is the unique cover (W̃ , w̃0) → (Wm, w
′
0) such that

pm ◦ q = p (see [Fri22, Proposition 167.1] for details).

3. Follows from (4.7) and definition and Z[Zm]-linearity of η.

4. Application of Remark 4.43.

5. Another application of Remark 4.43.

Overall, we have shown that

Qt
Z[Zm]

(
x,
[
Σk
j=1nj ⊗ µj

]
) = Qeq

Z[Zm]

(
η∗(x), η∗

([
Σk
j=1nj ⊗ µj

]))
as desired.
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A more general version of Proposition 4.52 is proven in [Fri22, Propo-
sition 173.4]. The form Qt

Q(ω) can now be obtained from Qeq
Z[Zm] by chang-

ing coefficients appropriately. Consider H2(Wm;Z) and switch to Q(ω)-
coefficients. By universal coefficients, we have

H2(Wm;Q(ω)) ∼= Q(ω)⊗Z H2(Wm;Z), (4.8)

and we identify H2(Wm;Q(ω)) with the right-hand side of (4.8) in the
following. Let QQ(ω) be the hermitian extension of the ordinary intersection
form QZ to H2(Wm;Q(ω)), i.e.

QQ(ω)(α⊗ x, β ⊗ y) := αβQZ(x, y), (4.9)

where x, y ∈ H2(Wm;Z) and α, β ∈ Q(ω). Now recall from Definition 4.48
that we defined Hφ

2 (W ;Q(ω)) as

Hφ
2 (W ;Q(ω)) := Q(ω)⊗Z[Zm] H2(Wm;Z).

Similar to QQ(ω), QZ induces a hermitian form Q̃Q(ω) on Hφ
2 (W ;Q(ω))

by the same formula as in (4.9). Then we may imitate Definition 4.50
in order to obtain a twisted Q(ω)-equivariant intersection form Qeq,t

Q(ω) on
Hφ

2 (W ;Q(ω)) as follows:12

Qeq,t
Q(ω) : H

φ
2 (W ;Q(ω))×Hφ

2 (W ;Q(ω))→ Q(ω)

(x, y) 7→
m−1∑
i=0

Q̃Q(ω)(x, ξ
i · y)ωi.

The next proposition shows that this form is in fact the Q(ω)-twisted in-
tersection form Qt

Q(ω) on Hφ
2 (W ;Q(ω)) in disguise.

Proposition 4.53. The forms Qeq,t
Q(ω) and Qt

Q(ω) on Hφ
2 (W ;Q(ω)) are equal.

Proof. Recall from Proposition 4.25 and Corollary 4.26 that there is an
isomorphism of left Z[Zm]-modules

H t
2(W ;Z[Zm]) ∼= H2(Wm;Z).

Moreover, we have seen at the beginning of this section that Hφ
2 (W ;Q(ω))

is isomorphic to H t
2(W ;Q(ω)), see (4.6). Therefore

H t
2(W ;Q(ω)) ∼= Hφ

2 (W ;Q(ω))

= Q(ω)⊗Z[Zm] H2(Wm;Z)
∼= Q(ω)⊗Z[Zm] H

t
2(W ;Z[Zm]).

(4.10)

12Intuitively speaking, we “tensor Definition 4.50 with Q(ω) over Z[Zm]”. Alternatively, one
may first “tensor Definition 4.50 with Q(ω) over Z” in order to obtain a Q(ω)[Zm]-equivariant
intersection form Qeq

Q(ω) on untwisted homology H2(Wn;Q(ω)), and then consider the induced
Q(ω)-form on Hφ

2 (Wm;Q(ω)) which is equal to Qeq,t
Q(ω).
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As in (4.9), one may extend Qt
Z[Zm] on H t

2(W ;Z[Zm]) to the tensor product
Q(ω)⊗Z[Zm] H

t
2(W ;Z[Zm]) via

(α⊗ x, β ⊗ y) 7→ αβQt
Z[Zm](x, y). (4.11)

Using (4.10) and the naturality of twisted cup and cap product (see [Fri22,
Proposition 171.8 and 171.13]), one sees that the form (4.11) on Q(ω)⊗Z[Zm]

H t
2(W ;Z[Zm]) is isometric to Qt

Q(ω) on H t
2(W ;Q(ω)). Similarly, extending

Qeq
Z[Zm] on H2(Wm;Z) to Q(ω) ⊗Z[Zm] H2(Wm;Z) yields by definition the

form Qeq,t
Q(ω) on Hφ

2 (W ;Q(ω)). Therefore, (4.10) and Proposition 4.52 imply
that the following spaces are isometric:

(Hφ
2 (W ;Q(ω)), Qeq,t

Q(ω))
∼= (H t

2(W ;Q(ω)), Qt
Q(ω)).

Since we defined the Q(ω)-twisted intersection form onHφ
2 (W ;Q(ω)) as the

form induced by Qt
Q(ω) via the isomorphism Hφ

2 (W ;Q(ω)) ∼= H t
2(W ;Q(ω))

(using the same notation), the result follows.

There is a third description of the form Qeq,t
Q(ω) = Qt

Q(ω) in terms of un-
twisted homology which will be useful when studying signatures. Consider
again H2(Wm;Q(ω)) (untwisted) with the hermitian form QQ(ω). Observe
that QQ(ω) (and in fact also QZ) is invariant under the action of Zm on
H2(Wm;Q(ω)):

QQ(ω)(ξ · x, ξ · y) = QQ(ω)(x, y).

In other words, the deck transformation Tξ corresponding to ξ defines an
isometry of (H2(Wm;Q(ω)), QQ(ω)), which we will denote by (Tξ)∗. The
eigenvalues of (Tξ)∗ are ωi for i = 0, . . . ,m−1, and H2(Wm;Q(ω)) admits a
Zm-invariant orthogonal decomposition into the eigenspaces E(ωi) of (Tξ)∗
(cf. [LN16, Section 7.8.1]):

H2(Wm;Q(ω)) ∼=
m−1⊕
i=0

E(ωi).

The connection to twisted homology is given with the next proposition.

Proposition 4.54. There is an isomorphism of Q(ω)-vector spaces

E(ω) ∼= Hφ
2 (W ;Q(ω)),

and Qeq,t
Q(ω) = m · (QQ(ω))|E(ω), where (QQ(ω))|E(ω) is the restriction of QQ(ω)

to the ω-eigenspace E(ω).

Proof. Recall that by definition, we have

Hφ
2 (W ;Q(ω)) = Q(ω)⊗Z[Zm] H2(Wm;Z).
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Observe that the right-hand side carries a Q(ω)[Zm]-module structure that
is defined on elementary tensors via(m−1∑

i=0

αiξ
i
)
· (β ⊗ x) :=

m−1∑
i=0

βαi ⊗ ξi · x

and extended linearly, and there is an isomorphism of Q(ω)[Zm]-modules

Q(ω)[Zm]⊗Z[Zm] H2(Wm;Z) ∼= Q(ω)⊗Z H2(Wm;Z).

Using this isomorphism as well as properties of the tensor product, the
universal coefficient theorem, and the decomposition of H2(Wm;Q(ω)) into
eigenspaces, we obtain a sequence of isomorphisms of Q(ω)-vector spaces

Hφ
2 (W ;Q(ω)) = Q(ω)⊗Z[Zm] H2(Wm;Z)

∼= Q(ω)⊗Q(ω)[Zm] (Q(ω)[Zm]⊗Z[Zm] H2(Wm;Z))
∼= Q(ω)⊗Q(ω)[Zm] (Q(ω)⊗Z H2(Wm;Z))
∼= Q(ω)⊗Q(ω)[Zm] H2(Wm;Q(ω))

∼= Q(ω)⊗Q(ω)[Zm]

m−1⊕
i=0

E(ωi)

∼= E(ω).

In order to see the last isomorphism, note that

Q(ω)⊗Q(ω)[Zm] E(ω
i) ∼=

{
E(ω), i = 1

0, i ̸= 1.

Indeed, if
∑

j αj ⊗ xj ∈ Q(ω)⊗Q(ω)[Zm] E(ω
i), then

ω ·
(∑

j

αj ⊗ xj
)
=
∑
j

αjω ⊗ xj

=
∑
j

αj ⊗ (Tξ)∗xj

=
∑
j

αj ⊗ ωixj

= ωi ·
(∑

j

αj ⊗ xj
)
,

so
(ω − ωi) ·

(∑
j

αj ⊗ xj
)
= 0.

Hence if i ̸= 1, then necessarily
∑

j αj⊗xj = 0, and if i = 1 the map defined
by
∑

j αj ⊗ xj 7→
∑

j αjxj yields the desired isomorphism Q(ω) ⊗Q(ω)[Zm]

E(ω) ∼= E(ω).
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For the second statement, let x, y ∈ E(ω) ∼= Hφ
2 (W ;Q(ω)). We have:

Qeq,t
Q(ω)(x, y) =

m−1∑
i=0

QQ(ω)(x, ξ
i · y)ωi

=
m−1∑
i=0

QQ(ω)(x, (Tξ)
i
∗y)ω

i

=
m−1∑
i=0

QQ(ω)(x, ω
i · y)ωi

=
m−1∑
i=0

QQ(ω)(x, y)

= m ·QQ(ω)(x, y).

Let us briefly summarize the previous discussion. Our main actor is the
homology theory

Hφ
∗ (W ;Q(ω)) = Q(ω)⊗Z[Zm] H∗(Wm;Z),

where ω = e
2πi
m , which is isomorphic to the homology of W with twisted

Q(ω)-coefficients:
H t

∗(W ;Q(ω)) ∼= H t
∗(W ;Q(ω)).

OnH t
∗(W ;Q(ω)) there is the twisted intersection formQt

Q(ω), which induces
via the isomorphism above a twisted intersection form on H t

∗(W ;Q(ω))
that we denote by Qt

Q(ω) as well. This form can also be obtained from the
equivariant intersection form Qeq

Z[Zm] by switching coefficients appropriately,
giving the form Qeq,t

Q(ω) = Qt
Q(ω). Moreover, there is an isomorphism

Hφ
2 (W ;Q(ω)) ∼= E(ω),

where E(ω) is the ω-eigenspace of (Tξ)∗ on H2(Wm;Q(ω)) (untwisted).
It turns out that Qeq,t

Q(ω) is equal to m times the hermitian extension of
the ordinary intersection form QZ to H2(Wm;Q(ω)) restricted to the ω-
eigenspace, in symbols

Qeq,t
Q(ω) = m · (QQ(ω))|E(ω).

4.3.5 Q(ω)-twisted signatures

We continue with the setup from the previous Subsection 4.3.4. There we
have described two equal hermitian formsQt

Q(ω) andQeq,t
Q(ω) onHφ

2 (W ;Q(ω)),
and we have shown how they are related to the untwisted Q(ω)-intersection
form QQ(ω). Since a hermitian form on a Q(ω)-vector space has a well-
defined signature, we can make the following definition.
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Definition 4.55. The Q(ω)-twisted signature of W is defined as

signtQ(ω)(W ) := sign(Qt
Q(ω)).

Now on H2(Wm;Q(ω)) we have the hermitian extension QQ(ω) of the
ordinary intersection form, with signature sign(QQ(ω)). Using the decom-
position of H2(Wm;Q(ω)) into the eigenspaces of Tξ, we obtain

sign(QQ(ω)) =
m−1∑
i=0

sign((QQ(ω))|E(ωi)),

and by Proposition 4.54 we have

signtQ(ω)(W ) = sign((QQ(ω))|E(ω)).

Thus the Q(ω)-twisted signature of W is equal to the signature of QQ(ω)

restricted to the ω-eigenspace E(ω). It is in general not an easy task to
compute any signature that arises from a twisted intersection form. How-
ever in our situation, one can apply the G-signature theorem by Atiyah
and Singer [AS68, Theorem 6.12] to obtain information about the sig-
natures sign((QQ(ω))|E(ωi)), and consequently about the twisted signature
signtQ(ω)(Wm). Let us briefly state the definition of the G-signature in our
scenario.

Let X be a compact oriented topological 4-dimensional manifold, and
suppose that a finite group G acts on X via orientation-preserving homeo-
morphisms. On H2(X;Z) we have the ordinary intersection form QZ, which
extends to a hermitian form QC on H := H2(X;C) via

QC(α⊗ x, β ⊗ y) = αβQZ(x, y),

where α, β ∈ C and x, y ∈ H2(X;Z). Note that the form QC is invari-
ant under the induced action of G on H. We make the following general
observation

Lemma 4.56. Let G be a finite group acting on a finite-dimensional com-
plex vector space V . Further, let B : V × V → C be a hermitian form that
is invariant under the action of G, i.e. B(g · x, g · y) = B(x, y) for all g ∈ G
and x, y ∈ V . Then there exists a G-invariant orthogonal decomposition

V = V + ⊕ V − ⊕ V 0,

where B is ±-definite on V ± and totally isotropic (zero) on V 0.

Proof. The action of G on H defines a representation

ρ : G→ AutC(V ).

Since any representation of a finite group decomposes as a sum of irre-
ducible subrepresentations, it suffices to show the following claim.
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Claim: If ρ is irreducible then B is either positive definite, negative defi-
nite, or totally isotropic.

Indeed, the lemma then follows from the claim by noting that the decompo-
sition of ρ into irreducible subrepresentations yields G-invariant subspaces
of V on which B is either positive definite, negative definite, or totally
isotropic, and one can form V +, V − and V 0 from these subspaces by tak-
ing direct sums accordingly.

To see the claim, choose any inner product ⟨·, ·⟩ on V and define a new
form

B̃ : V × V → C, B̃(x, y) =
∑
g∈G

⟨g · x, g · y⟩.

Since ⟨·, ·⟩ is an inner product, it follows that B̃ is hermitian, positive
definite and non-singular. Moreover, B̃ is by construction G-invariant.
Let AB and AB̃ be matrices representing B and B̃, respectively, and set
A := (ABA

−1

B̃
)∗. Then

B̃(Ax, y) = x∗A∗AB̃y = x∗ABy = B(x, y)

for all x, y ∈ V . It follows that the matrix A commutes with the action of
G, i.e. Ag · x = g · Ax for all g ∈ G and x ∈ V . Indeed, observe that

B̃(Ax, y) = B(x, y)

= B(g · x, g · y)
= B̃(Ag · x, g · y))
= B(g−1 · (Ag · x), y)

Since B̃ is non-singular, it follows that Ax = g−1(Ag · x) and thus g ·Ax =
Ag · x. Since ρ is irreducible, we can now apply Schur’s lemma to obtain
A = λI for some λ ∈ C, where I is the identity matrix. Therefore

B(x, y) = λB̃(x, y)

for all x, y ∈ V . Since both B and B̃ are hermitian, it follows that λ ∈ R,
and the sign of λ determines if B is positive definite, negative definite, or
totally isotropic on V .

Returning to our setting, Lemma 4.56 shows that there exists a G-
invariant orthogonal decomposition

H = H+ ⊕H− ⊕H0,

where QC is ±-definite on H± and totally isotropic (zero) on H0. Hence
we obtain representations

ρ± : G→ AutC(H±), ρ±(g) := g∗|H± ,
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where g∗ is the automorphism of H that is induced by g ∈ G. Atiyah and
Singer make the following definition [AS68, Section 6].

Definition 4.57 (G-Signature). The G-signature of the pair (G,X) is
defined as

sign(G,M) := ρ+ − ρ− ∈ R(G),
where R(G) denotes the complex representation ring of G. If g ∈ G, we
define the g-signature as

sign(g,X) := tr(g∗|H+)− tr(g∗|H−),

where tr denotes the trace.

The Atiyah-Singer G-signature theorem [AS68, Theorem 6.12] states
that one can express the g-signatures sign(g,X) using the action of g on
the normal bundle of the fixed-point set Fix(g) ⊆ X. However, the precise
statement of the theorem is quite technical and requires some preparation.
Since the exact statement is of little use to us, we omit a formulation and
continue with a remark about the G-signature, which also contains further
references to the G-signature theorem and its proof.

Remark 4.58. As mentioned before, the notion of theG-signature is due to
Atiyah and Singer in [AS68, Section 6]. It is originally and more generally
defined in the smooth setting, where a compact Lie group G acts on a
compact, oriented, smooth 2n-dimensional manifold X for some n ∈ N
via orientation-preserving diffeomorphisms (the definition is identical to
our Definition 4.57, however). In this scenario, the original proof of the
G-signature theorem given by Atiyah and Singer [AS68, Theorem 6.12]
uses analysis on Riemannian manifolds. A proof that uses only topological
methods was given by Gilmer [Gil81], provided that G is finite. In [Gor86],
Gordon gives an accessible proof of the G-signature theorem in dimension 4
for G finite (which is closest to our scenario), that uses only little analysis.

The transition to the topological setting was made by Wall, who no-
ticed that the formula in the G-signature theorem also holds when G acts
via orientation-preserving homeomorphisms on a topological manifold, pro-
vided that the action is semi-free and tame [Wal99, Theorem 14B.2]. Here,
the action is called

• semi-free if the stabilizer of each x ∈ X is either trivial or the entire
group G; and

• tame if the action is semi-free and for each g ∈ G,

1. Fix(g) is a manifold;
2. there is a G-vector bundle N over F equivariantly homeomorphic

to a neighborhood of F in X;
3. (X\Fix(g))/G is a manifold.
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(see [Wal99, Chapter 14B]). In particular, the action of the group of deck
transformations on the total space of a covering is free and hence also
semi-free and tame, so the G-signature theorem holds in this scenario in
the topological setting.

Turning back to our original situation, one can see immediately that
we find ourselves in the setup of the G-signature. Indeed, the Zm-covering
Wm takes the role of X, and Zm takes the role of G, which acts via deck
transformations Autp(Wm) ∼= Zm on Wm. Furthermore, if we consider
Q(ω) as a subfield of C, we can replace QC with QQ(ω) in the situation
above. Then H = H2(Wm;Q(ω)), and H2(Wm;Q(ω)) decomposes into the
ωi-eigenspaces E(ωi) of (Tξ)∗, where Tξ is the canonical generating deck
transformation, and this decomposition is invariant under the Zm-action
on H2(Wm;Q(ω)). If we now choose and fix subspaces E(ωi)± ⊆ E(ωi)
where QQ(ω) is ±-definite, then we obtain a Zm-invariant orthogonal de-
composition of H2(Wm;Q(ω)) as in the situation preceding Definition 4.57
of the G-signature:

H2(Wm;Q(ω)) = H+ ⊕H−,

where H± =
∑m−1

i=0 E(ωi)± (note that H0 is trivial since QQ(ω) is non-
singular). Thus we have the Zm-signature sign(Zm,Wm), and for each
ξs ∈ Zm we have the ξs-signatures

sign(ξs,Wm) = tr((Tξs)∗|H+)− tr((Tξs)∗|H−)

where s = 0, . . . ,m − 1. Observe that it follows directly from our chosen
decomposition of H2(Wm;Q(ω)) that for each s = 0, . . . ,m− 1,

sign(ξs,Wm) =
m−1∑
r=0

ωrssign((QQ(ω))|E(ωr)).

Now, the G-signature theorem is used by Rohklin [Rok71] (see also [CG78,
Lemma 2.1]) to prove the following key identity, which can be seen as one
motivation for the definition of the Casson-Gordon invariant σr(M,χ).

Lemma 4.59. Let p : Wm → W be as above, and assume additionally
that both Wm and W are closed and that the covering is branched over
a (possibly empty) surface F ⊂ W . Let [F ] denote the self-intersection
number of the branching surface F with respect to QQ(ω). Then for each
r = 0, · · · ,m− 1 we have

sign((QQ(ω))|E(ωr)) = signZ(W )− 2[F ]2r(m− r)
m2

.

Since we know that the Q(ω)-twisted signature signtQ(ω)(Wm) is equal
to sign((QQ(ω))|E(ω)), Lemma 4.59 tells us in particular that

signtQ(ω)(Wm) = signZ(W )− 2[F ]2(m− 1)

m2
.
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This makes the Q(ω)-twisted signature signtQ(ω)(Wm) much more treatable,
and as we will see shortly it is also this relation that Casson and Gordon
use to define their invariant σr(M,χ).

4.3.6 Witt groups

In many cases it is desirable to have a group structure on the set of non-
singular hermitian forms on modules over a ring with involution R. Such
a group structure was first introduced by Ernst Witt in 1936 [Wit36], and
is now known as the Witt group W (R) of R.13 In topology, they arise
naturally in the study of (algebraic) knot concordance (see for instance
[LN16, Chapter 5]), or in surgery theory where they arise in generalized
form as the so-called L-groups (see for instance [Ran02]). In fact, we have
already dealt indirectly with elements of a Witt group in Section 4.1 on
linking forms and metabolizers.

The Witt group W (C(t)) will be the most interesting to us, as it ap-
pears in the definition of the Casson-Gordon τ -invariant. The purpose of
this section is thus to introduce the notion of a Witt group and a cer-
tain signature function in the special case of W (C(t)). Main references are
[Con17, Section 2.6] and [MH73, Chapter 1].

As in Subsection 4.3.1, let R be a (not necessarily commutative) unitary
ring together with an involution r 7→ r that reverses the order of multipli-
cation. We further assume that R is not of characteristic 2.14 We start by
recalling Definition 4.41 from Subsection 4.3.3 about pairings on modules
over R.15

Definition 4.41. Let R be a unital ring with involution and let M,N
be left R-modules. A pairing is a Z-bilinear map B : M × N → R. Let
m ∈M,n ∈ N and α, β ∈ R. A pairing B is called:

1. sesquilinear if B(α ·m,β · n) = αB(m,n)β;

2. hermitian if B is sesquilinear and satisfies B(m,n) = B(n,m);

3. non-degenerate if B is sesquilinear and the adjoint maps

M → Homright−R(N,R)

m 7→
(
n 7→ B(m,n)

)
and

N → Homleft−R(M,R)

n 7→
(
m 7→ B(m,n)

)
13Witt’s original definition was on the set of isometry classes of anisotropic quadratic forms

over an arbitrary field k, but this was soon adapted to more general settings.
14There is also a theory of Witt groups in the case of characteristic 2, see [MH73].
15As in Subsection 4.3.1, we will use the multiplication symbol ’·’ to indicate scalar multipli-

cation on modules. Ordinary ring multiplication will be denoted by juxtaposition.
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are injective;

4. non-singular if B is sesquilinear and both adjoints are isomorphisms.

Definition 4.60. Let M be a free left R-module, and let B : M ×M → R
be a non-singular and hermitian pairing on M . Then B is called a non-
singular hermitian form on M and denoted by (M,B).16

If the underlying module is unimportant or clear from the context, we
will simply write B instead of (M,B) for a non-singular hermitian form
on M . Given two non-singular hermitian forms (M1, B1), (M2, B2), we can
form their direct sum

(M1, B1)⊕ (M2, B2) := (M1 ⊕M2, B1 ⊕B2)

where B1 ⊕B2 is defined in the obvious way. Given a submodule N ⊆M ,
we define the orthogonal complement N⊥ as

N⊥ := {x ∈M | B(x, y) = 0 ∀ y ∈ N}.

We have the following definitions.

Definition 4.61.

1.) A non-singular hermitian form (M,B) is called metabolic if there exists
a direct summand P ⊆ M such that P = P⊥. In this case P is called
a metabolizer for (M,B).

2.) Two non-singular hermitian forms (M1, B1), (M2, B2) are called Witt
equivalent if the sum (M1, B1) ⊕ −(M2, B2) is metabolic, where
−(M2, B2) := (M2,−B2).

Remark 4.62. Note that the proof of Proposition 4.4 carries over to our
setting and shows that if a non-singular hermitian form (M,B) is metabolic
with metabolizer P ⊂M , then

rank(M) = 2 rank(P ).

As the name indicates, Witt equivalence is in fact an equivalence relation
on the set of hermitian forms on M .

Theorem 4.63. Let R be a unitary ring with involution and suppose fur-
ther that R is an integral domain and not of characteristic 2. Then Witt
equivalence is an equivalence relation on the set of isomorphism classes
of non-singular hermitian forms on free modules over R, and the equiva-
lence classes form a group with respect to direct sum. The neutral element
is given by the class of metabolic non-singular hermitian forms, and the
additive inverse of a class [(M,B)] is given by [−(M,B)].

16One can work more generally with projective instead of free modules (see [MH73]). How-
ever, we won’t need this generality in the present text.
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We refer the reader for a proof of Theorem 4.63 to [Con17, Theorem
2.27].

Definition 4.64. Let R be a unitary ring with involution and suppose
further that R is an integral domain and not of characteristic 2. Then
the set of Witt equivalence classes of non-singular hermitian forms on free
modules over R is called the Witt group of R and denoted by W (R).

Example 4.65. Let R = F with F ∈ {R,C}, where R is equipped with
the trivial involution and C is equipped with the involution given by com-
plex conjugation. Then a hermitian form on a vector space over F can be
represented by a hermitian matrix, and has therefore a well-defined signa-
ture. Observe that over F, a non-singular hermitian form is metabolic if
and only if its signature vanishes (see [MH73, Chapter III, §2]). Indeed,
suppose that (V,B) is a non-singular hermitian form. By Sylvester’s law
of inertia, there exists an orthogonal basis of V with respect to B such
that V = V+⊕V−, where B is positive definite on V+ and negative definite
on V−. Then the signature of B is given by dimV+ − dimV−. Suppose
that (V, b) is metabolic with metabolizer P . Since P = P⊥, we have that
P ∩ V+ = P ∩ V− = {0}. Therefore

dimP ≤ dimV − dimV± = dimV∓.

Since 2 dimP = dimV , it follows that

dimP = dimV+ = dimV−,

hence the signature of B vanishes. On the other hand, if B has zero sig-
nature, then there exists again by Sylvester’s law of inertia an orthogonal
basis of V such that B is represented by the matrix(

In 0
0 −In

)
,

where I is the identity matrix of size n = 1
2
dimV . Then the subspace

spanned by all elements that have coordinate vectors whose first n entries
equal the second n entries (respecting orders) obviously forms a metabolizer
for (V,B), showing that the non-singular hermitian form is metabolic.

The previous observation shows that the signature induces a well-
defined map

sign : W (F)→ Z,
which is linear since the signature respects the direct sum of hermitian
forms. In fact, sign is an isomorphism: surjectivity is clear, and injectivity
follows again from the observation that over F, a non-singular hermitian
form is metabolic if and only if its signature vanishes. Therefore

W (F) ∼= Z.
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With some additional work, one can also show that the signature induces
an isomorphism W (Z) ∼= Z, where Z is equipped with the trivial involution
(see for instance [MH73, Chapter IV, Corollary 2.7]).

As noted earlier, the case R = C(t), the field of complex rational
functions with involution defined by complex conjugation and t 7→ t−1,
will be the most interesting to us as it appears in the definition of the
Casson-Gordon τ -invariant. While it is not incredibly hard to show that
W (C[t±1]) ∼= W (C) (see [Con17, Example 2.30]), W (C(t)) is more intri-
cate (see [Lit84, Appendix A7]). The computation uses a certain signature
function defined on W (C(t)), which we are going to describe now.

Let (V,B) be a non-singular hermitian form over C(t) represented by
a matrix A(t). Each entry Aij(t) of A(t) is a complex rational function
f(t)/g(t) ∈ C(t), and both f(t) and g(t) have only finitely many zeros
(provided that f is not zero). Let

S :=
⋃
i,j

zeros of the denominator of Aij(t)

D := zeros of detA(t)

and set
Z := S1\(S1 ∩ (S ∪D)) ⊂ C.

Since S and D are finite, Z contains all but finitely many points of S1. Let
ω ∈ Z and consider

A(ω) := A(t)|t=ω.

This is a well-defined non-singular hermitian matrix over C, and thus has
a signature

signω(A(t)) := sign(A(ω)).

As a hermitian matrix, A(ω) has real eigenvalues. These eigenvalues de-
pend on complex rational functions, hence they vary continuously in a
neighborhood of ω, meaning that their signs remain unchanged. Thus the
function

Z → Z, ω 7→ signω(A(t)) (4.12)

is locally constant. We wish to extend this function to all of S1. Let us
make the following definition.

Definition 4.66. Let (V,B) be a non-singular hermitian form over C(t)
represented by a matrix A(t), and let ω ∈ S1. Then we define the averaged
signature of A(t) as the average of the one-sided limits as η ∈ S1 approaches
ω, in symbols

signav
ω (A(t)) :=

1

2

(
lim
η↗ω

sign(A(η)) + lim
η↘ω

sign(A(η))
)
.
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Lemma 4.67. There exists a well-defined map

S1 → Z, ω 7→ signav
ω (A(t)).

Proof. Consider again the set Z from (4.12). If ω ∈ Z, then clearly

lim
η↗ω

sign(A(η)) = lim
η↘ω

sign(A(η)) = sign(A(ω))

and thus we simply have

signav
ω (A(t)) = signω(A(t)) = sign(A(ω)) ∈ Z

as described above. Now let ω ∈ S1\Z and recall that S1\Z is a finite set of
points. As noted earlier, the assignment Z → Z, η 7→ sign(A(η)) is locally
constant, hence it follows that the limits in the definition of signav

ω (A(t))
exist and are finite. In order to show that signav

ω (A(t)) ∈ Z, we recall the
following fact: given a hermitian matrix A ∈ Cn×n with detA ̸= 0, we have

sign(A) = # pos. eigenvalues−# neg. eigenvalues
≡ # pos. eigenvalues + # neg. eigenvalues mod 2

≡ n mod 2.

Lemma 4.67 shows that the averaged signature is a suitable notion to
obtain information about non-singular hermitian forms over C(t), in par-
ticular because it also takes discontinuities of complex rational functions
into account. Furthermore, signav

ω behaves well under Witt equivalence, as
the next lemma shows.

Lemma 4.68. Let ω ∈ S1. Then the averaged signature signav
ω induces a

well-defined homomorphism of groups

signav
ω : W (C(t))→ Z, [(V,B)] 7→ signav

ω (A(t)),

where A(t) is a matrix representative of the Witt class [(V,B)].

Proof. Let (V1, B1), (V2, B2) be two Witt equivalent, non-singular hermitian
forms over C(t), represented by matrices A1(t) and A2(t), respectively. We
wish to show that

signav
ω (A1(t)) = signav

ω (A2(t)). (4.13)

First, note that the notion of Witt equivalence descends to matrix repre-
sentatives of non-singular hermitian forms in the sense that if B1 and B2

are Witt equivalent, then there exists a basis of V1 ⊕−V2 such that

A1(t)⊕−A2(t) ∼
(

0 U(t)
U(t)∗ P (t)

)
for some square matrices U(t) and P (t) (note that P (t) is necessarily her-
mitian). If this is the case, we will call the corresponding matrices Witt
equivalent.
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In order to show (4.13), we start with a special case. Let (V,B) be a non-
singular hermitian form over C(t), represented by a matrix A(t) ∈ C(t)n×n,
and let T (t) ∈ GL(n,C(t)). Then T (t) defines a change of basis of V , and
the form in this new basis is represented by the matrix

Ã(t) := T (t)∗A(t)T (t),

where T (t)∗ denotes the conjugate transpose. Since Witt equivalence is ba-
sis independent, we moreover have that Ã(t) and A(t) are Witt equivalent.
We wish to show that signav

ω remains unaffected under change of basis, i.e.
signav

ω (Ã(t)) = signav
ω (A(t)). For this we proceed with a similar approach

that led to the definition of the averaged signature. Let

S :=
⋃
i,j

zeros of the denominator of Aij(t) and Tij(t)

D :=
⋃
i,j

zeros of detA(t) and detT (t)

and set
Z := S1\(S1 ∩ (S ∪D)) ⊂ C.

Note that since S and D are finite, Z contains all but finitely many points
in S1. Let ω ∈ Z. Then Ã(ω) and A(ω) are two non-singular hermitian
matrices over C that are related by a change of basis T (ω). Since the
ordinary signature is invariant under change of basis, we have that in this
case

signav
ω (Ã(t)) = signav

ω (A(t)). (4.14)

As before, an eigenvalue argument shows that the averaged signature is
locally constant on Z. Hence it follows from (4.14) that if ω ∈ S1\Z, then

1

2

(
lim
η↗ω

sign(A(η))+lim
η↘ω

sign(A(η))
)
=

1

2

(
lim
η↗ω

sign(Ã(η))+lim
η↘ω

sign(Ã(η))
)

and so signav
ω (Ã(t)) = signav

ω (A(t) for all ω ∈ S1. Turning back to the
general case, note that since A1(t) and A2(t) are Witt equivalent, we can
find a sequence of basis changes of V1 ⊕−V2 such that

A1(t)⊕−A2(t) ∼
(

0 U(t)
U(t)∗ P (t)

)
∼
(

0 U(t)
U(t)∗ 0

)
∼
(

0 −U(t)
−U(t)∗ 0

)
=: Q(t).
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Note that the second similarity is obtained using the basis change(
1 0

−1
2
P (t)U(t)−1 1

)(
0 U(t)

U(t)∗ P (t)

)(
1 −1

2
(U(t)∗)−1P (t)

0 1

)
=(

0 U(t)
U(t)∗ 0

)
.

Clearly signav
ω (Q(t)) = 0. Now, we have shown that the averaged signature

is invariant under change of basis. Moreover, the additivity of the ordinary
signature over C with respect to block sum of matrices implies that signav

ω

is additive under block sum as well. Overall, we find that

signav
ω (A1(t))− signav

ω (A2(t)) = signav
ω (A1(t)⊕−A2(t))

= signav
ω (Q(t))

= 0.

Therefore
signav

ω (A1(t)) = signav
ω (A2(t))

as desired. We have proven that signav
ω is a well-defined map on the Witt

group W (C(t)). The linearity follows again from the fact that the averaged
signature is additive under block sum of matrices.

It can be shown that the averaged signature contains in fact all the
information about W (C(t)). In [Lit84], Litherland defines the notion of a
balanced function as a map f : S1 → Z with finitely many discontinuities
such that

f(ω) =
1

2

(
lim
η↗ω

f(η) + lim
η↘ω

f(η)
)

for all ω ∈ S1. Clearly, signav
ω is a balanced function in Litherland’s sense.

The set of balanced functions forms a group B with respect to addition
of maps. The averaged signature can now be used to obtain the following
result.

Theorem 4.69 ([Lit84, Corollary A1]). There is a well-defined isomor-
phism from W (C(t)) to the group of balanced functions B

Φ: W (C(t))→ B, [(V,B)]→
(
ω 7→ signav

ω (A(t))
)
,

where A(t) is a matrix of a representative of the Witt class [(V,B)].

4.3.7 The Casson-Gordon invariants σr(M,χ) and σ(K,χ)

Equipped with the theory from the previous sections, we are now finally
ready to state the definition of the Casson-Gordon invariants. We start
with the definition of σ(M,χ) following the original source [CG75], and
proceed to describe the closely related σr(M,χ) following [CG78]. The
invariant τ(K,χ) will be described in the upcoming Subsection 4.3.8.
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Remark 4.70. Casson and Gordon describe their invariants and results
in [CG75, CG78] in the smooth category. However, the work of Freedman
[Fre82] implies that the methods used by Casson and Gordon also apply
in the topological setting, meaning that their results hold without change
(see also [Liv05]). This is in particular true for the G-signature theorem
that is applied by Casson and Gordon, as we have already noted in Sub-
section 4.3.5. Hence in the following, we won’t restrict ourselves to the
smooth category and work in the topological setting as well. Unless other-
wise stated, all manifolds will be assumed to be compact and oriented. In
contrast to previous subsections, we will now omit base points whenever
possible for better readability.

Let us define the Casson-Gordon invariant σ(M,χ). Let M be a closed
oriented topological 3-manifold, and let χ : H1(M ;Z)→ Zm be an epimor-
phism for some m ∈ N, m > 1, where Zm denotes as usual the cyclic
group of order m. The bordism group Ωtop

3 (K(Zm, 1)) is finite (see [Con17,
Proposition 2.12]),17 so there exists a compact oriented 4-manifold W and
an epimorphism ψ : H1(W ;Z)→ Zm such that:

1. the boundary of W consists of s disjoint copies of M for some s ∈ N,
i.e. ∂W =

⊔
sM ;

2. ψ restricts on each boundary component to χ.

In short, ∂(W,ψ) = s(M,χ). Note that since the number of boundary
components s may vary, one can always assume that W is path-connected
by taking a path-connected component with non-empty boundary from the
4-manifold obtained through bordism theory.

Let p : Wm → W denote the m-fold cyclic covering associated to ψ. Set
ω = e

2πi
m , and consider the cyclotomic field Q(ω). We find ourselves in a

situation similar to Subsection 4.3.4: we equip Q(ω) with a (Q(ω),Z[Zm])-
left-left module structure where Q(ω) acts via left multiplication and Z[Zm]
acts via ξ · x := xω, and we can form the homology groups

Hψ
∗ (W ;Q(ω)) := Q(ω)⊗Z[Zm] H∗(Wm;Z),

which carry the structure of left Q(ω)-modules. Recall that Hψ
∗ (W ;Q(ω))

is isomorphic to the twisted homology H t
∗(W ;Q(ω)) (see Subsection 4.3.4),

giving us the Q(ω)-twisted intersection form Qt
Q(ω) on Hψ

2 (W ;Q(ω)). The
form Qt

Q(ω) is hermitian (see Remark 4.47), and we defined in Subsec-
tion 4.3.5 the Q(ω)-twisted signature signtQ(ω)(W ) as the signature of Qt

Q(ω).
We have the following definition.

Definition 4.71. Let M be a closed oriented topological 3-manifold and
χ : H1(M ;Z)→ Zm an epimorphism. Let W be a compact path-connected

17We refrain from introducing bordism groups at this point and refer the reader for more
details to [Con17, Section 2.3].
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oriented 4-manifold and ψ : H1(W ;Z) → Zm an epimorphism such that
∂(W,ψ) = s(M,χ) for some s ∈ N. Then we define

σ(M,χ) :=
1

s

(
signtQ(ω)(W )− signZ(W )

)
∈ Q

If M = Xd is the d-fold cyclic branched cover of a knot K, then we set

σ(K,χ) := σ(Xd, χ).

Remark 4.72.

1.) It is not obvious that the Casson-Gordon invariant σ(M,χ) is well-
defined, i.e. does not depend on the particular choice of (W,ψ). The
proof uses Novikov additivity (i.e. that the (twisted) signature is addi-
tive with respect to boundary connected sum) and bordism theory, in
particular that the 4-dimensional oriented topological bordism group is
generated by simply connected manifolds (CP 2 and E8). A proof in the
smooth setting is given in [Con17, Lemma 2.15], which carries over to
the topological setting using [Hsu87, Corollary 2.4] (see also [BKK+21,
Section 21.6.6]).

2.) There is a slight ambiguity in the notation σ(K,χ) as it of course de-
pends on the order d ∈ N of the finite cyclic branched cover used to
construct the invariant. Originally, Casson and Gordon [CG75] define
σ(K,χ) for the double branched cover X2, but use later in their paper
the same notation for the invariant obtained by starting with other d-
fold cyclic branched coverings (see for instance [CG75, Theorem 3]). To
not complicate our notation further, we chose to tolerate this ambiguity
at the potential cost of minor confusion.

3.) Note that Casson and Gordon only work with σ(K,χ) in [CG75] but
mention on p. 182 that their construction also works for arbitrary closed
3-manifolds, giving σ(M,χ).

The main result regarding σ(M,χ) is the following.

Theorem 4.73 (Casson-Gordon). Let K be a slice knot with d-fold
cyclic branched cover Xd and an epimorphism χ : H1(Xd;Z) → Zm where
both d,m ∈ N are prime-powers. If the cover X̂d → Xd that is induced by
χ satisfies H1(X̂d;Q) = 0, then

|σ(K,χ)| ≤ 1.

Remark 4.74. Theorem 4.73 is in fact a combination of [CG75, Theo-
rem 2 and 3] (see also [Con17, Theorem 2.16]), and uses results regarding
the Casson-Gordon invariant τ(K,χ) which we will describe in Subsec-
tion 4.3.8. Without τ(K,χ), the invariant σ(K,χ) only yields an obstruc-
tion for the ribbonness of a knot K whose double branched cover X2 is a
lens space (see [CG75, Theorem 1]).
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Let us now discuss how the Casson-Gordon invariant σ(M,χ) relates to
Subsection 4.3.5, in particular the Atiyah-Singer G-signature. The defini-
tion of σ(M,χ) involves the signature of the Q(ω)-twisted intersection form
Qt

Q(ω) on Hψ
2 (W ;Q(ω)). Consider H2(Wm;Q(ω)) (untwisted) with the her-

mitian extension QQ(ω) of the ordinary intersection form. As described in
Subsection 4.3.4, (H2(Wm;Q(ω)), QQ(ω)) admits a Zm-invariant orthogonal
decomposition into the eigenspaces E(ωi) of (Tξ)∗, i = 0, . . . ,m− 1, where
Tξ is the canonical generating deck transformation of Autp(Wm) ∼= Zm.
By Proposition 4.54 we know that Hψ

2 (W ;Q(ω)) ∼= E(ω) and Qt
Q(ω) =

m · (QQ(ω))|E(ω), so in particular

sσ(M,χ) + signZ(W ) = signtQ(ω)(W ) = sign((QQ(ω))|E(ω)).

Similarly, one obtains

sσ(M,χi) + signZ(W ) = sign((QQ(ω))|E(ωi)) (4.15)

for i = 1, . . . ,m− 1 (to see this, use the fact that the group of deck trans-
formations of the m-fold covering of 4-manifolds used to construct σ(M,χi)
has as canonical generator T iξ and replicate the proof of Proposition 4.54).
On the other hand, in this context there is also the ξ-signature sign(ξ,W )
(see Definition 4.57), and as described at the end of Subsection 4.3.5 we
know that

sign(ξ,Wm) =
m−1∑
i=0

ωisign((QQ(ω))|E(ωi)).

Thus, the Casson-Gordon invariant σ(M,χ) relates to the Atiyah-Singer
G-signature via

sign(ξ,Wm) =
m−1∑
i=0

ωi
(
sσ(M,χi) + signZ(W )

)
.

This explains why Casson and Gordon refer to σ(M,χ) as a “disguised
form of a standard Atiyah-Singer invariant of 3-manifolds”, see [CG75, p.
183]. Moreover, it is also the starting point for the computations made by
Casson and Gordon, which led to an explicit formula for σ(K,χ) = σ(X2, χ)
in the case where the double branched cover X2 is a lens space (see [CG75,
p. 186-188]).

Let us now turn our attention to the invariant σr(M,χ), following the
original source [CG78]. Let M be a closed oriented topological 3-manifold
together with an epimorphism χ : H1(M ;Z)→ Zm for some m ∈ N, m > 1.
The kernel of χ induces an m-fold cyclic covering p : Mm →M , with group
of deck transformations Autp(Mm) isomorphic to Zm. There is a canonical
generator of Autp(Mm) corresponding to ξ ∈ Zm which we will denote by
Tξ.
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Suppose that for some n ∈ N, there exists an mn-fold cyclic branched
covering of 4-manifolds q : Wmn → W , branched over a surface F ⊂ intW ,
such that:

1. ∂Wmn =
⊔
nMm;

2. ∂W =M ;

3. the deck transformation T ′
ξ ∈ Autq(Wmn) ∼= Zmn that induces rotation

through 2π/m on the fibres of the normal bundle of F ′ := q−1(F )
restricts on each boundary component of Wmn to Tξ.

Consider H2(Wmn;C) ∼= H2(Wmn;Z) ⊗Z C, and let (T ′
ξ)∗ be induced

by T ′
ξ on this homology group. We find ourselves in a situation similar

to that of Subsection 4.3.4: we have the hermitian extension QC of the
ordinary intersection form QZ of Wmn, invariant under the action of Zm on
H2(Wmn;C), and H2(Wmn;C) admits a Zm-invariant orthogonal decompo-
sition into the eigenspaces E(ωr) of T ′

ξ, where ω = e
2πi
m and r = 0, . . . ,m−1.

We have the following definition.

Definition 4.75 ([CG78]). Let 0 < r < m. In the situation above, define

σr(M,χ) :=
1

n

(
signZ(W )− sign((QC)|E(ωr))−

2[F ]2r(m− r)
m2

)
,

where [F ] denotes the self-intersection number of F .

Remark 4.76. As the notation indicates, σr(M,χ) only depends on the
pair (M,χ) and r. The proof uses Lemma 4.59 and Novikov additivity and
proceeds similar to the argument that shows that σ(M,χ) is well-defined
(see [Con17, Section 2.3]).

Given (M,χ) as above, it is not obvious that there exists an mn-fold
cyclic branched covering q : Wmn → W such that σr(M,χ) is defined. How-
ever, Casson and Gordon show that σr(M,χ) does indeed always exist.

Lemma 4.77 ([CG78, Lemma 2.2]). Let (M,χ) as above and assume
that there exists a 4-manifold W such that ∂W =M and H1(W ;Zm) = 0.
Then the m-fold cyclic covering p : Mm → M extends to an m-fold cyclic
branched covering q : Wm → W , branched over a surface F ⊂ intW , such
that the canonical deck transformation Tξ ∈ Autp(Mm) extends to T ′

ξ ∈
Autq(Wm) that induces rotation through 2π/m on each fibre of the normal
bundle of F ′ := q−1(F ) ⊂ intWm.

Note that Lemma 4.77 does not only show that σr(M,χ) always exists,
it also shows that it is always possible to take n = 1.

The main application of σr(M,χ) given by Casson and Gordon is con-
cerned with slice knots. Fix a prime q, and let Xqs denote the qs-fold cyclic
branched covering of K for some s ∈ N, s ≥ 1. Note that for each s, there
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exists a canonical cyclic branched covering ψ : Xqs → Xq that induces a
surjection on the fundamental groups, and hence also on first homology.
Thus, given an epimorphism χ : H1(Xq;Z)→ Zm, composition with ψ∗ de-
fines epimorphisms χs : H1(Xqs ;Z) → Zm for all s ∈ N, s ≥ 0. We have
the following theorem.

Theorem 4.78 ([CG78, Theorem 4.1]). Let K be a slice knot. Then
there exists a constant c, and a subgroup G ⊆ H1(Xq;Z) with |G|2 =
|H1(Xq;Z)| such that if m is a prime-power and χ : H1(Xq;Z) → Zm an
epimorphism satisfying χ(G) = 0, then

|σr(Xqs , χs)| < c

for all 0 < r < m and s ∈ N.

As an application, Casson and Gordon use σr(M,χ) in order to deter-
mine which twist knots Kn are slice, a problem that was previously open.

Theorem 4.79 ([CG78, Theorem 5.1]). The only twist knots Kn that
are slice are the unknot K0 and the Stevedore’s knot K2.

n full twists

Kn

Figure 4.4: The twist knot Kn (picture taken from [Ilt19]).

Since Kn is algebraically slice if and only if 4n + 1 is a square (see
Proposition 4.16), Theorem 4.79 is of particular significance as it shows
that there are infinitely many algebraically slice knots which are not slice.
Note that Theorem 4.79 was obtained previously by Casson and Gordon
in [CG75] using their invariants σ(K,χ) and τ(K,χ) (see Corollary 4.91
below); Theorem 4.79 provides the same result using the invariant σr(M,χ).

Let us now discuss how σ(M,χ) relates to σr(M,χ).

Proposition 4.80. Let M be a closed oriented topological 3-manifold and
χ : H1(M ;Z)→ Zm an epimorphism. Then

σ(M,χ) = −σ1(M,χ).

Proof. Let us first consider a special case. Suppose that W is a 4-manifold
and ψ : H1(W ;Z) → Zm an epimorphism such that ∂(W,ψ) = (M,χ), so
that σ(M,χ) can be formed with s = 1. In this case, the m-fold cyclic (un-
branched) covering Wm → W induced by ψ can be used to obtain σr(M,χ).
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Observe that the hermitian extensions QQ(ω) (defined on H2(Wm;Q(ω)))
and QC (defined on H2(Wm;C)) of the ordinary intersection form have the
same signature. Thus using Proposition 4.54 we obtain

signtQ(ω)(W ) = sign((QQ(ω))|E(ω)) = sign((QC)|E(ω)),

and therefore
σ(M,χ) = signtQ(ω)(W )− signZ(W )

= sign((QC)|E(ω))− signZ(W )

= −σ1(M,χ).

Now, assume for the general case that ∂(W,ψ) = s(M,χ) for some s ∈ N.
Consider the disjoint union ⊔sM with epimorphism

χ = (χ, . . . , χ) : H1(⊔sM ;Z) ∼=
⊕
s

H1(M ;Z)→ Zm.

Then ∂(W,ψ) = (⊔sM,χ), so by the above

σ(⊔sM,χ) = −σ1(⊔sM,χ).

On the other hand, signatures are additive with respect to disjoint union,
so in fact

sσ(M,χ) = σ(⊔sM,χ) = −σ1(⊔sM,χ) = −sσ1(M,χ).

Therefore
σ(M,χ) = −σ1(M,χ)

as claimed.

4.3.8 The Casson-Gordon invariant τ(K,χ)

As mentioned after the statement of Theorem 4.73, the invariant σ(K,χ)
alone only yields an obstruction for the ribbonness of a knot K whose
double branched cover is a lens space (see [CG75, Theorem 1]). The main
ingredient used by Casson and Gordon is that if a ribbon knot has a lens
space L as double branched cover, then L is bounded by a compact rational
homology 4-ball with cyclic fundamental group (see [CG75, Lemmas 1-3]).
In order to obtain an obstruction for sliceness, Casson and Gordon extend
their construction of the invariant σ(K,χ) and take infinite cyclic coverings
into account, leading to the invariant τ(K,χ). We outline the definition of
this invariant below, following [CG75] and [Con17].

Let K ⊂ S3 be a knot with knot exterior XK and zero-framed surgery
MK . Given d ∈ N, there are d-fold cyclic (branched) coverings

pd : Md →MK , q′d : X
′
d → XK , qd : Xd → S3

as described in Definition 4.14. The following lemma relates the first ho-
mology of these coverings.
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Lemma 4.81. Let K ⊂ S3 be a knot with meridian µK and d ∈ N. Then
there are isomorphisms of Z-modules

1. H1(Md;Z) ∼= H1(X
′
d;Z), induced by the inclusion X ′

d ↪→Md;

2. H1(X
′
d;Z) ∼= H1(Xd;Z)⊕Z, where the Z-summand is generated by a

lift of µdK to X ′
d.

Proof. Our proof follows essentially [Con17, Lemma 2.18 and 2.31]. Let
µK and ℓk be a meridian and longitude of K, respectively. Recall that
H1(XK ;Z) is freely generated by µK and that ∂XK = S1 × S1. The zero-
framed surgery MK is obtained from XK by gluing in a solid torus T :=
S1×D2 to XK , identifying a meridian m of T with the longitude ℓK and a
longitude λ of T with µK . However, ℓK is null-homologous in XK (since it
bounds a Seifert surface), and it follows that H1(MK ;Z) is freely generated
by µK as well. In other words, the inclusion i : XK ↪→ MK induces an
isomorphism i∗ : H1(XK ;Z)→ H1(MK ;Z).

Now the d-fold cyclic coverings X ′
d and Md are obtained by definition

from the kernel of the maps

π1(XK)
ab−→ H1(XK ;Z) ∼= Z proj−→ Zd

π1(MK)
ab−→ H1(MK ;Z) ∼= Z proj−→ Zd,

where in both cases the map proj reduces the class of the meridian [µK ]
mod d. Hence X ′

d ⊂Md. We make the following observations:

1. The meridian µK does not lift to a closed loop in X ′
d (reps. Md) but

µdK does. Let µ̃dK denote the corresponding lift.

2. The longitude λ of T is identified with µK in MK , hence λ doesn’t lift
to a closed loop in Md either, but λd does. Considering X ′

d ⊂Md, µ̃dK
corresponds to a lift of λd to Md.

3. The longitude ℓK however lifts to a closed loop in both X ′
d and Md

since it is already null-homologous in XK . Let ℓ̃K denote the cor-
responding lift. Note that ℓ̃K is null-homologous in X ′

d (resp. Md)
(simply lift a Seifert surface, for instance).

It follows from these observations that T lifts to Td := S1
d×D2 ∼= S1×D2 in

Md, where S1
d is the d-fold covering of S1. Now, applying Mayer-Vietoris to

the decomposition Md = X ′
d ∪ Td, we obtain the following exact sequence:

H1(∂X
′
d;Z)︸ ︷︷ ︸

∼=⟨[µ̃dK ]⟩×⟨[ℓ̃K ]⟩∼=Z×Z

(ι∗,ν∗)−→ H1(X
′
d;Z)⊕H1(Td;Z)︸ ︷︷ ︸

∼=Z

k∗−j∗−→ H1(Md;Z) −→ 0 (4.16)

where ι∗, ν∗, k∗, j∗ are the maps induced on homology from the correspond-
ing inclusions. We have:

ι∗([µ̃
d
K ]) = [µ̃dK ], ι∗([ℓ̃K ]) = [ℓ̃K ] = 0 (4.17)
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ν∗([µ̃
d
K ]) = 1, ν∗([ℓ̃K ]) = 0 (4.18)

Note that (4.18) holds because the meridian of Td gets identified with the
longitude ℓ̃K inX ′

d, and the longitude of Td gets identified with µ̃dK . Overall,
we see that ν∗ is surjective and so

im(i∗, ν∗) = im i∗ ⊕H1(Td;Z) = ker k∗ − j∗.

Therefore (4.16) reduces to

ker ν∗
ι∗−→ H1(X

′
d;Z)

k∗−→ H1(Md;Z) −→ 0.

By (4.17) and (4.18) we know that the image of ι∗ restricted to ker ν∗ is gen-
erated by ℓ̃K , which is trivial in H1(X

′
d;Z). Therefore k∗ is an isomorphism

and so
H1(X

′
d;Z) ∼= H1(Md;Z).

For the second isomorphism, we proceed identical. Let T̂d := S1 ×D2
d,

where D2
d denotes the d-fold branched cover of D2 obtained by extending

the d-fold cover of S1 to D2. Then Xd = X ′
d ∪∂ T̂d, where the meridian of

T̂d gets identified with µ̃dK and the longitude of T̂d gets identified with ℓ̃K .
Applying Mayer-Vietoris to Xd = X ′

d ∪ T̂d we obtain

H1(∂X
′
d;Z)︸ ︷︷ ︸

∼=⟨[µ̃dK ]⟩×⟨[ℓ̃K ]⟩∼=Z×Z

(ι∗,ν∗)−→ H1(X
′
d;Z)⊕H1(T̂d;Z)︸ ︷︷ ︸

∼=Z

k∗−j∗−→ H1(Xd;Z) −→ 0, (4.19)

where ι∗, ν∗, k∗, j∗ denote again the maps on homology induced by the cor-
responding inclusions. We have:

ι∗([µ̃
d
K ]) = [µ̃dK ], ι∗([ℓ̃K ]) = [ℓ̃K ] = 0 (4.20)

ν∗([µ̃
d
K ]) = 0, ν∗([ℓ̃K ]) = 1 (4.21)

Hence ν∗ is surjective and so

im(i∗, ν∗) = im i∗ ⊕H1(T̂d;Z) = ker k∗ − j∗.

Therefore (4.19) reduces to

ker ν∗
ι∗−→ H1(X

′
d;Z)

k∗−→ H1(Xd;Z) −→ 0.

By (4.20) and (4.21) we know that the image of ι∗ restricted to ker ν∗ is
generated by [µ̃dK ], so

H1(Xd;Z) ∼= H1(X
′
d)/([µ̃

d
K ])

Therefore
H1(X

′
d;Z) ∼= H1(Xd;Z)⊕ Z

as desired.
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Suppose we are given an epimorphism χ : H1(Xd;Z) → Zm for some
m ∈ N. The image of the composition

π1(Md) ↪
(pd)∗−−−→ π1(MK)

ab−→ H1(MK ;Z) ∼= Z,

is isomorphic to dZ generated by [µdK ], producing a surjection φ : π1(Md)→
dZ ∼= Z. On the other hand, by Lemma 4.81 χ defines an epimorphism

ψ : π1(Md)
ab−→ H1(Md;Z) ∼= H1(Xd;Z)⊕ Z χ×0−−→ Zm,

that combines with φ to an epimorphism

ψ × φ : π1(Md)→ Zm × Z.

Let M̂d denote the Zm × Z-covering corresponding to the kernel of ψ × φ.

Remark 4.82. The covering M̂d can also be obtained differently, as follows.
The kernel of the surjection φ : π1(Md) → dZ ∼= Z yields an infinite cyclic
covering r∞ : (Md)∞ →Md. Observe that this covering also corresponds to
the kernel of the composition

φ̃ : π1(Md)
ab−→ H1(Md;Z) ∼= H1(Xd;Z)⊕ Z 0×id−−→ Z.

Indeed, this follows directly from the commutativity of the following dia-
gram:

π1(Md) Z

π1(MK) H1(MK ;Z) ∼= Z

(pd)∗
φ

φ̃

[µ̃dK ] 7→1

·d

ab

So kerφ = ker φ̃, and therefore the kernel of the epimorphism

ρ : π1(Md)
ab−→ H1(Md;Z) ∼= H1(Xd;Z)⊕ Z χ×id−−−→ Zm ⊕ Z (4.22)

yields precisely the Zm × Z-covering M̂d.
There is yet another description of M̂d that appears in the original

source [CG75] by Casson and Gordon. Observe that (Md)∞ gives a cover
of MK via

r : (Md)∞
r∞−→Md

pd−→MK

and this is in fact the same as the infinite cyclic covering p∞ : M∞ → MK

since
(r∞)∗(π1((Md)∞)) = kerφ = (pd)

−1
∗ (ker ab)

and therefore

r∗(π1((Md)∞)) = ker ab = [π1(MK), π1(MK)] ⊂ π1(MK).
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Using again Lemma 4.81, we now obtain an epimorphism

π1(M∞) ↪
(r∞)∗−−−→ π1(Md)

ψ−→ Zm (4.23)

where ψ is the surjection

ψ : π1(Md)→ H1(Md;Z) ∼= H1(Xd;Z)⊕ Z χ×0→ Zm

φ̃ : π1(Md)
ab−→ H1(Md;Z) ∼= H1(Xd;Z)⊕ Z 0×id−−→ Z.

The kernel of (4.23) gives an m-fold cyclic covering (M∞)m of M∞, which
combines to a covering

ℓ : (M∞)m −→M∞
r∞−→Md

But this is precisely the Zm × Z-covering M̂d since

ℓ∗(π1((M∞)m)) = ker ρ,

where ρ is the map in (4.22).

Similar to Ωtop
3 (K(Zm, 1)) that appeared in the construction leading to

σ(K,χ), the bordism group Ωtop
3 (K(Z×Zm, 1)) is finite, hence there exists

a compact oriented 4-manifold V and an epimorphism ϕ : π1(V )→ Zm×Z
such that

∂(V, ϕ) = s(Md, ψ × φ)

for some s ∈ N. Let V̂ denote the Zm×Z-covering associated the kerϕ. Set
ω := e

2πi
m and consider the field of rational functions over Q(ω), denoted

by Q(ω)(t). We equip Q(ω)(t) with an involution defined by ω 7→ ω and
t 7→ t−1. We are again in a situation similar to Subsection 4.3.4: we
endow Q(ω)(t) with a (Q(ω)(t),Z[Zm×Z])-left-left module structure, where
Q(ω)(t) acts via left multiplication and Z[Zm × Z] ∼= Z[Zm][t±1] acts via

ξ · x := xω, t±1 · x := xt∓1.

Then we can form the homology groups

Hϕ
∗ (V ;Q(ω)(t)) := Q(ω)(t)⊗Z[Zm×Z] H∗(V̂ ;Z),

which carry the structure of left Q(ω)(t)-modules. Using the same argu-
ment as in Subsection 4.3.4, we see that Hϕ

∗ (V ;Q(ω)(t)) is isomorphic to
the twisted homology H t

∗(V ;Q(ω)(t)), which yields the Q(ω)(t)-twisted in-
tersection form Qt

Q(ω)(t) on Hϕ
2 (V ;Q(ω)(t)). This form is hermitian, but in

general not non-singular. However, we have the following result.

Lemma 4.83. If the epimorphism χ : H1(Xd;Z) → Zm has prime-power
order, then Qt

Q(ω)(t) is non-singular.
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A proof is given in [CG75, Lemma 4 and the Corollary afterwards].
Now, the standard Q-valued intersection form QQ on H2(V ;Q) (untwisted)
might be singular (see Remark 4.43), but we can consider the induced
non-singular form on Ĥ2(V ;Q) := H2(V ;Q)/(im(H2(∂V ;Q)→ H2(V ;Q)))
which we denote by QQ as well. The canonical inclusions ι : Q→ C(t) and
ι′ : Q(ω)(t)→ C(t) induce homomorphisms

ι∗ : W (Q)→ W (C(t)), ι′∗ : W (Q(ω)(t))→ W (C(t)),

giving us the elements

[Q̃Q] := ι∗
(
(Ĥ2(V ;Q), QQ)

)
[Q̃Q(ω)(t)] := ι′∗

(
(Hϕ

2 (V ;Q(ω)(t)), Qt
Q(ω)(t))

)
in W (C(t)), provided that m is a prime-power. We have the following
definition.

Definition 4.84 ([CG75]). Let K ⊂ S3 be a knot and d ∈ N. Further, let
Xd be the d-fold cyclic branched cover of S3, and let χ : H1(Xd;Z) → Zm
be an epimorphism of prime-power order. Define

τ(K,χ) :=
(
[Q̃Q(ω)(t)]− [Q̃Q]

)
⊗ 1

r
∈ W (C(t))⊗Z Q.

Remark 4.85. Similar to the invariant σ(K,χ), the Casson-Gordon invari-
ant τ(K,χ) only depends on the knot K and epimorphism of prime-power
order χ : H1(Xd;Z)→ Zm. The argument is similar to the one that shows
that σ(K,χ) (resp. σ(M,χ)) is well-defined, and a detailed proof can be
found for instance in [GL92, Theorem 1]. Also, note that there is again
the same ambiguity in the notation of τ(K,χ) as with σ(K,χ), whose con-
struction depends on the order d ∈ N of the finite cyclic coverings used.

In order to state the main results regarding τ(K,χ), we quickly recall
the definition of the geometric linking form on H1(Xd;Z). Let d ∈ N be
a prime-power, and let η : H1(Xd;Z) → H2(Xd;Q/Z) be the Bockstein
homomorphism associated to the short exact sequence 0 → Z → Q →
Q/Z → 0 of coefficients in cohomology. Since d is a prime-power, Xd is a
rational homology sphere and thus η is in fact an isomorphism. Consider
the composition

Φ: H1(Xd;Z)
PD→ H2(Xd;Z)

η−1

→ H1(Xd;Q/Z)
ev→ Hom(H1(Xd;Z),Q/Z),

where PD is Poincaré-Lefschetz duality, η−1 is the inverse of the Bock-
stein map, and ev is the Kronecker evaluation map (see [CFH16] for more
details).

Definition 4.86. Let K be a knot with d-fold cyclic branched cover Xd,
where d ∈ N is a prime-power. The geometric linking form l on H1(Xd;Z)
is defined as

l : H1(Xd;Z)×H1(Xd;Z)→ Q/Z, l(x, y) := Φ(x)(y).



4.3.8. The Casson-Gordon invariant τ(K,χ) 89

Remark 4.87. It is evident from the definition that the geometric linking
form is in fact non-singular. The form is also symmetric, but this is less
obvious and requires some additional work (see [CFH16]). Of course, the
definition of l is not restrained to finite cyclic branched coverings of knots
and works in a more general setting, see [CFH16]. Note that l is a linking
form in the sense of Definition 4.1.

We are now ready to state the main theorem regarding τ(K,χ).

Theorem 4.88 (Casson-Gordon). Let K be a knot with d-fold cyclic
branched cover Xd with d ∈ N a prime-power. If K is slice, then there is a
subgroup G ⊆ H1(Xd;Z) such that

1. l(G×G) = 0;

2. τ(K,χ) = 0 for every χ : H1(Xd;Z)→ Zm of prime-power order with
χ(G) = 0.

A proof of Theorem 4.88 is given in [CG75, Theorem 2]. The proof
shows that one can take G that satisfies G = G⊥ with respect to l, so
G is in fact a metabolizer for the geometric linking form in the sense of
Definition 4.2.

The next main result relates the invariant τ(K,χ) with σ(K,χ). For
this, let ω ∈ S1 and recall from Lemma 4.68 that the averaged signature
signav

ω induces a homomorphism

signav
ω : W (C(t))→ Z

which by Theorem 4.69 contains the entire information about W (C(t)).
This signature homomorphism extends to

signav
ω : W (C(t))⊗Z Q→ Q

in the obvious way,18 allowing us to consider the signatures
signav

ω (τ(K,χ)) ∈ Q. Let us give the special case of ω = 1 a specific
name.

Definition 4.89. The Casson-Gordon τ -signature is defined as

signav
1 (τ(K,χ)) ∈ Q.

We wish to remark at this point that the terminology of Casson-Gordon
τ -signature is not standard and chosen by the author.19 The next theorem
relates σ(K,χ) with the Casson-Gordon τ -signature.

18As there is already plenty of notation involved, we keep things simple and use signav
ω to

denote both the homomorphism defined on W (C(t)) and the one on W (C(t))⊗Z Q.
19The Casson-Gordon τ -signature is not be confused with the notion of Casson-Gordon sig-

nature, which is usually reserved for the invariant σr(M,χ) in [CG78].
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Theorem 4.90 (Casson-Gordon). Let K be a knot with d-fold cyclic
branched covering Xd, where d ∈ N is a prime-power. Further, let
χ : H1(Xd;Z) → Zm be an epimorphism of prime-power order. If the cov-
ering X̂d → X induced by χ satisfies H1(X̂d;Q) = 0, then

|σ(K,χ)− signav
1 (τ(K,χ))| ≤ 1.

A proof of Theorem 4.90 is given in [CG75, Theorem 3]. As noted
earlier, if K is slice, then by Theorem 4.88 signav

1 (τ(K,χ)) = 0, and we see
that in this case Theorem 4.90 yields the earlier mentioned Theorem 4.73.

The main application of τ(K,χ) given by Casson and Gordon deter-
mines which twist knots Kn are slice, a problem that was previously open.

Corollary 4.91 (Casson-Gordon). The only twist knots which are slice
are the unknot K0 and the Stevedore’s knot K2.

Since Kn is algebraically slice if and only if 4n+1 is a square (see Propo-
sition 4.16), Corollary 4.91 is of particular relevance as it shows that there
are infinitely many non-slice knots which are algebraically slice. Corol-
lary 4.91 is derived in [CG75, Computations after Theorem 3], and was
obtained again in Casson and Gordon’s second paper [CG78] using the
invariant σr(M,χ) (see Theorem 4.79).

This concludes our first discussion about the invariants σ(K,χ),
σr(M,χ), and τ(K,χ). We proceed with a short overview of some re-
sults by Patrick Gilmer about τ(K,χ), which will be needed later to prove
our main theorems in Chapter 5.

4.3.9 Gilmer’s work on τ(K,χ)

This subsection is devoted to some results by Patrick Gilmer regarding
the Casson-Gordon invariant τ(K,χ) as found in [Gil82, Gil83]. Our main
interest lies in Theorem 4.93 and Corollary 4.94 below, which will be one
of our main ingredients of the proofs in the upcoming Chapter 5.

Let K be a knot with d-fold cyclic branched cover Xd (see Defini-
tion 4.14). As described in Subsection 4.3.8, given a homomorphism
χ : H1(Xd;Z) → Q/Z of prime-power order,20 there is the associated
Casson-Gordon invariant τ(K,χ) (see Definition 4.84), and for each ω ∈ S1

we have the signatures signav
ω (τ(K,χ)). If ω = 1, we further defined

signav
1 (τ(K,χ)) as the Casson-Gordon τ -signature (see Definition 4.89).
From now on we always assume that d ∈ N is a prime-power. In order

to state one of our main tools, we need to define a certain linking form β
on H1(Xd;Q/Z) which is closely related to the geometric linking form l on
H1(Xd;Z) described in Definition 4.86. The definition is as follows. Recall

20We adapt here the conventions of Gilmer and consider homomorphisms χ : H1(Xd;Z) →
Q/Z of prime-power order instead of χ : H1(Xd;Z) → Zm.
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that we defined l using the composition

Φ: H1(Xd;Z)
PD→ H2(Xd;Z)

η−1

→ H1(Xd;Q/Z)
ev→ Hom(H1(Xd;Z),Q/Z),

where PD is Poincaré-Lefschetz duality, η−1 is the inverse of the Bockstein
map, and ev is the Kronecker evaluation map, and then set

l : H1(Xd;Z)×H1(Xd;Z)→ Q/Z, l(x, y) := Φ(x)(y).

Let us define β as follows.

Definition 4.92. In the situation above, define

β : H1(Xd;Q/Z)×H1(Xd;Q/Z)→ Q/Z, β(x, y) := −l(ν(x), ν(y)),

where ν := PD ◦ η.

The symmetry of l implies that β is symmetric as well, so β is a linking
form in the sense of Definition 4.1. Since H1(Xd;Q/Z) is isomorphic to
Hom(H1(Xd;Z),Q/Z) by universal coefficients, β can be seen as the dual
of the geometric linking form l on (H1(Xd;Z))∗ = Hom(H1(Xd;Z),Q/Z).
The following theorem is due to Gilmer [Gil82].

Theorem 4.93 ([Gil82, Theorem 1]). Let K be a knot with g4(K) = g.
Then (H1(Xd;Q/Z), β) splits as direct sum (B1 ⊕B2, β1 ⊕ β2) such that:

1. β1 has an even presentation with rank 2(d − 1)g and signature∑d−1
s=1 σs/d(K);

2. β2 has a metabolizer H such that for every χ ∈ H of prime-power
order,

|signav
1 (τ(K,χ)) +

d−1∑
s=1

σs/d(K)| ≤ 2dg.

Here, σs/d(K) denotes the Levine-Tristram signature of K associated to
e2πis/d ∈ S1.

It will be convenient for our purposes to consider only elements in
H1(Xd;Q/Z) (resp. H) that have prime order. For this, let p be any prime
(for example one that divides the order of H1(Xd;Q/Z)), and consider the
vector space H1(Xd;Fp). Using the canonical embedding ψ : Fp → Q/Z
defined by 1 7→ 1/p, we obtain a diagram that defines an embedding φ of
H1(Xd;Fp) into H1(Xd;Q/Z):

H1(Xd;Q/Z) Hom(H1(Xd;Z),Q/Z)

H1(Xd;Fp) Hom(H1(Xd;Z),Fp).

∼=

φ

∼=

ψ̃
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Here, the two horizontal isomorphisms are given by the universal coeffi-
cient theorem and ψ̃ is the map induced by postcomposition with ψ. As
described in Section 4.1, the linking form β now induces a linking form β on
H1(Xd;Fp) by setting β := β◦(φ×φ). Note that this form will in general no
longer be non-singular, and that φ(H1(Xd;Fp)) forms the entire p-torsion
subgroup of H1(Xd;Q/Z). Since φ is injective, we can uniquely identify
the elements of H1(Xd;Fp) with the elements of H1(Xd;Q/Z) of order p.
In particular, we obtain a well-defined Casson-Gordon τ -signature for the
elements in H1(Xd;Fp) by setting signav

1 (τ(K,χ)) := signav
1 (τ(K,φ(χ)) for

χ ∈ H1(Xd;Fp). This allows us to translate Theorem 4.93 into this setting
as follows.

Corollary 4.94. Let K be a knot with g4(K) = g and p a prime. Then
(H1(Xd;Fp), β) splits as a direct sum (G1 ⊕G2, γ1 ⊕ γ2) such that:

1. the dimension of G1 over Fp is at most 2(d− 1)g;

2. γ2 has a generalized metabolizer F such that for every χ ∈ F ,

|signav
1 (τ(K,χ)) +

d−1∑
s=1

σs/d(K)| ≤ 2dg. (4.24)

The most important difference is that the inequality (4.24) now holds
for every χ ∈ F , meaning that we no longer have to make the distinction
between elements of arbitrary order and prime-power order.

We conclude this section with a short remark about connected sums.
As before, let Xd be the d-fold branched cover of K where d is a prime-
power and consider the n-fold connected sum nK. The d-fold branched
cover of nK is a connected sum of n copies of Xd, and the first cohomology
splits accordingly. Litherland [Lit84] showed that if χ = (χ1, . . . , χn) ∈
H1(nXd;Q/Z), then

τ(nK, χ) =
n⊕
i=1

τ(K,χi).

In particular,

signav
ω (τ(nK, χ)) =

n∑
i=1

signav
ω (τ(K,χi))

since signav
ω is a homomorphism. In short, Casson-Gordon invariants and

τ -signatures behave well under connected sum. Note that the above also
holds with Fp-coefficients instead of Q/Z-coefficients.



Chapter 5

Main Result

Let K ⊂ S3 be a knot with d-fold branched cover Xd, where d ∈ N is a
prime-power, and p ∈ N a prime. Consider the vector space H1(Xd;Fp).
Every element χ ∈ H1(Xd;Fp) can be considered as a map χ : H1(Xd;Z)→
Fp via universal coefficients, and to each such element there is the Casson-
Gordon τ -signature signav

1 (τ(K,χ)) (see Subsections 4.3.8 and 4.3.9). Since
H1(Xd;Fp) is finite, there are only finitely many Casson-Gordon τ -
signatures. We make the following definition.

Definition 5.1. Assume that H1(Xd;Fp) is non-trivial. Let A1, . . . , Am be
the one-dimensional subspaces of H1(Xd;Fp). Define for j = 1, . . . ,m,

Lj :=
∑
χ∈Aj

signav
1 (τ(K,χ)) ∈ Q.

Moreover, we set L := minj=1,...,m |Lj|. If H1(Xd;Fp) is trivial we define
L1 := 0, L := 0.1

Note that m = (pt − 1)/(p − 1) with t := dimH1(Xd;Fp) whenever
H1(Xd;Fp) is non-trivial.

Before we move on, let us quickly prove an introductory result as a
warm-up exercise. This will not only show one of the key ideas used later
on in a simplified context, but also allow the reader who would like to skip
the (quite lengthy) proof of the main result to not miss out on the main
proof technique.

Proposition 5.2. Let K ⊂ S3 be a knot and p ∈ N a prime such that
H1(Xd;Fp) is one-dimensional. If L = |L1| > 0, then g4(nK) ̸= 0 for all
n ∈ N.

Proof. Let n ∈ N be a natural number and consider the n-fold connected
sum nK. We would like to show with the given assumptions that nK is
not slice, i.e. g4(nK) ̸= 0.

1The somewhat artificial definition of L1 and L in the case of trivial H1(Xd;Fp) is needed
in order to obtain concise statements in Proposition 5.4 and 5.7, and Theorem 5.5.
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If any of the Levine-Tristram signatures σs/d(K) is non-zero, then the
Murasugi-Tristram bound g4(nK) ≥ n

2
|σs/d(K)| holds [Mur65, Tri69], so we

may assume in the following that
∑d−1

s=1 σs/d(K) = 0. Let χ ∈ H1(nXd;Fp)
be a non-zero element. We claim that there exists a k ∈ Z such that
signav

1 (τ(nK, k · χ)) ̸= 0. Indeed, take the canonical basis on H1(nXd;Fp)
given by the decomposition

H1(nXd;Fp) = H1(Xd;Fp)⊕ · · · ⊕H1(Xd;Fp)︸ ︷︷ ︸
n times

and let R be the number of non-zero components of χ with respect to this
basis. Then ∣∣∣∣ p−1∑

ℓ=1

signav
1 (τ(nK, ℓ · χ))

∣∣∣∣ = R · L > 0.

Now by Corollary 4.94, if nK was slice there would exist a subspace F ⊂
H1(nXd;Fp) consisting only of elements with vanishing Casson-Gordon τ -
signature. However, we have just shown that every non-zero element in
H1(nXd;Fp) has a multiple with non-zero τ -signature. Thus nK is not
slice, and the result follows.

Let us now get back to the proof of our main result. We start with the
following technical proposition.

Proposition 5.3. Let K be a knot. If the rational numbers L1, L2, . . . , Lm
have the same sign and L ̸= 0, then for any given g ∈ N, there exists some
N ∈ N such that g4(nK) > g for all n ≥ N .

Proof. Fix some g ∈ N and consider the connected sum nK for some n ∈
N. If one of the Levine-Tristram signatures σs/d(K) is non-zero, then the
Murasugi-Tristram bound g4(nK) ≥ n

2
|σs/d(K)| holds [Mur65, Tri69], so

we may assume in the following that
∑d−1

s=1 σs/d(K) = 0.
Recall Corollary 4.94: If g4(nK) = g, then (H1(nXd;Fp), β) splits as

a direct sum (G1 ⊕ G2, γ1 ⊕ γ2), where the dimension of G1 over Fp is at
most 2(d − 1)g, and G2 has a generalized metabolizer F such that for all
χ = (χ1, . . . , χn) ∈ F ,

|signav
1 (τ(nK, χ))| =

∣∣∣∣ n∑
i=1

signav
1 (τ(K,χi))

∣∣∣∣ ≤ 2dg.

Our goal is to show that by choosing n appropriately, we can find an element
χ ∈ F such that this inequality does not hold.

Observe the following. Since dimG1 ≤ 2(d− 1)g and g is fixed, the di-
mension of G1 is bounded when increasing n. On the other hand, increasing
n increases the dimension of G2 since dimG1+dimG2 = dimH1(nXd;Fp),
and with it the dimension of F .



95

The Gauss-Jordan algorithm shows that if dimF = r, then there is at
least one element χ̃ = (χ̃1, . . . , χ̃n) ∈ F with R ≥ r non-zero entries. We
may assume without loss of generality that the first R entries are non-zero,
i.e.

χ̃ = (χ̃1, . . . , χ̃R, 0, . . . , 0︸ ︷︷ ︸
n−R

).

From now on, we fix this element χ̃. Note that k ·χ̃ ∈ F for any k ∈ N since
F is a subspace. We are now going to show that there exists a multiple
k · χ̃ whose Casson-Gordon τ -signature can be bounded from below by a
value that depends on n.

As in Definition 5.1, let A1, . . . , Am be the one-dimensional subspaces
of H1(Xd;Fp). Write

Aj = {0, ϕj1, . . . , ϕ
j
p−1} ⊆ H1(Xd;Fp)

for j = 1, . . . ,m. For every ϕji there is an associated Casson-Gordon τ -
signature sji := signav

1 (τ(K,ϕji )). In particular, for every component χ̃h for
h = 1, . . . , R, there is some j ∈ {1, . . . ,m} and i ∈ {1, . . . , p− 1} such that

χ̃h = ϕji ∈ Aj, signav
1 (τ(K, χ̃h)) = sji .

Let aji denote the number of components in χ̃ with τ -signature sji and set
rj :=

∑p−1
i=1 a

j
i . Observe that

aji ≥ 0,

p−1∑
i=1

sji = Lj,
m∑
j=1

rj = R

for all i = 1, . . . , p − 1 and j = 1, . . . ,m. Recall from Definition 5.1 that
we defined L := minj=1,...,m |Lj|. We claim the following.

Claim. There exists some 1 ≤ k ≤ p− 1 such that∣∣∣∣ n∑
i=1

signav
1 (τ(K, k · χ̃i))

∣∣∣∣ ≥ R

p− 1
· L.

Proof. Consider the elements

χ̃ = (χ̃1, . . . , χ̃R, 0 . . . , 0)

2χ̃ = 2 · (χ̃1, . . . , χ̃R, 0, . . . , 0)

...

(p− 1)χ̃ = (p− 1) · (χ̃1, . . . , χ̃R, 0, . . . , 0).

For ℓ = 1, . . . , p−1, let aji,ℓ denote the number of components in ℓ·χ̃ with τ -
signature sji . Since every Aj is one-dimensional, the numbers aj1,ℓ, . . . , a

j
p−1,ℓ
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are just a permutation of aj1, . . . , a
j
p−1 for every j. In fact, by looking at the

multiples ℓ · χ̃ for ℓ = 1, . . . , p − 1, we have that for any given aji and sjh,
there is an ℓ such that aji is the number of components in ℓ·χ̃ corresponding
to the τ -signature sjh. Therefore,

p−1∑
ℓ=1

m∑
j=1

p−1∑
i=1

aji,ℓs
j
i =

m∑
j=1

p−1∑
i=1

( p−1∑
ℓ=1

aji,ℓ

)
sji =

m∑
j=1

p−1∑
i=1

rjs
j
i =

m∑
j=1

rjLj

Since also

(p− 1)
m∑
j=1

p−1∑
i=1

rj
p− 1

sji =
m∑
j=1

rjLj,

we have that
p−1∑
ℓ=1

( m∑
j=1

p−1∑
i=1

(
aji,ℓs

j
i −

rj
p− 1

si

))
= 0.

Therefore, there have to be some ℓ1, ℓ2 ∈ {1, . . . , p− 1} such that

m∑
j=1

p−1∑
i=1

(
aji,ℓ1s

j
i −

rj
p− 1

sji

)
≥ 0 and

m∑
j=1

p−1∑
i=1

(
aji,ℓ2s

j
i −

rj
p− 1

sji

)
≤ 0.

Choose k ∈ {ℓ1, ℓ2} such that∣∣∣∣ m∑
j=1

p−1∑
i=1

aji,ks
j
i

∣∣∣∣ ≥ ∣∣∣∣ m∑
j=1

p−1∑
i=1

rj
p− 1

sji

∣∣∣∣.
Unraveling the notations and using that all Lj have the same sign, we find∣∣∣∣ n∑

i=1

signav
1 (τ(K, k · χ̃i))

∣∣∣∣ = ∣∣∣∣ m∑
j=1

p−1∑
i=1

aji,ks
j
i

∣∣∣∣
≥
∣∣∣∣ m∑
j=1

p−1∑
i=1

rj
p− 1

sji

∣∣∣∣
=

∣∣∣∣ m∑
j=1

rj
p− 1

Lj

∣∣∣∣
≥
( m∑

j=1

rj
p− 1

)
· L

=
R

p− 1
· L.

The claim shows that there exists an element k · χ̃ ∈ F such that

|signav
1 (τ(nK, k · χ̃))| ≥ R

p− 1
· L.
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As mentioned earlier, the total number R of non-zero components in χ̃ (or
any multiple of it) depends on the dimension of F , which in turn depends
on n, i.e. the number of summands in the connected sum nK. Since g
is fixed, adding more and more knots to the connected sum increases the
dimension of F . Thus, choose N ∈ N such that the connected sum NK
admits a generalized metabolizer F with dimension r ≤ R satisfying

r

p− 1
· L > 2dg.

Then for any n ≥ N , the connected sum nK admits an element k · χ̃ ∈ F
such that

|signav
1 (τ(nK, k · χ̃))| ≥ R

p− 1
· L > 2dg,

proving that g4(nK) > g by Corollary 4.94.

Before we continue, let us recall again Definition 5.1: if A1, . . . , Am are
the one-dimensional subspaces of H1(Xd;Fp), then we define

Lj :=
∑
χ∈Aj

signav
1 (τ(K,χ)) ∈ Q, j = 1, . . . ,m.

Proposition 5.4. Let K be a knot with d-fold branched cover Xd where
d is a prime-power, and let p be any prime. If the rational numbers
L1, L2, . . . , Lm have the same sign, and if

∑d−1
s=1 σs/d(K) = 0, where σs/d(K)

is the Levine-Tristram signature of K associated to e2πis/d, then

g4(nK) ≥ nt · L
4d(p− 1) + 2(d− 1)L

for any n ∈ N, where t := dimH1(Xd;Fp) and L := minj=1,...,m |Lj|.
Proof. We wish to determine the maximal number g ∈ N in terms of n for
which the proof of Proposition 5.3 applies. So suppose that H1(nXd;Fp)
splits as in Corollary 4.94 for some g ∈ N, and let r = dimF . If L = 0,
then nt · L/(4d(p − 1) + 2(d − 1)L) = 0 and we obtain the trivial bound
g4(nK) ≥ 0. So suppose that L ̸= 0. The proof of Proposition 5.3 showed
that if r

p− 1
· L > 2dg,

then g4(nK) ̸= g. Since dimG2 ≥ nt − 2(d − 1)g, we know that r ≥
(nt− 2(d− 1)g)/2, so

r

p− 1
· L ≥ nt− 2(d− 1)g

2(p− 1)
· L.

The right-hand side of the last inequality is strictly greater than 2dg if and
only if

g <
nt · L

4d(p− 1) + 2(d− 1)L
.



98 5. Main Result

Thus, if

g ≤
⌈

nt · L
4d(p− 1) + 2(d− 1)L

⌉
− 1,

then g4(nK) ̸= g by applying the argument in the proof of Proposition 5.3.
It follows that

g4(nK) ≥ nt · L
4d(p− 1) + 2(d− 1)L

as claimed.

Theorem 5.5 (Main Theorem). Let K be a knot with d-fold branched
cover Xd where d is a prime-power, and let p be any prime. If the rational
numbers L1, L2, . . . , Lm have the same sign, and if

∑d−1
s=1 σs/d(K) = 0, where

σs/d(K) is the Levine-Tristram signature of K associated to e2πis/d, then

gst(K) ≥ t · L
4d(p− 1) + 2(d− 1)L

,

where t := dimH1(Xd;Fp) and L := minj=1,...,m |Lj|.

Proof. By Proposition 5.4,

g4(nK) ≥ nt · L
4d(p− 1) + 2(d− 1)L

for any n ∈ N. Therefore

gst(K) = lim
n→∞

g4(nK)

n

≥ lim
n→∞

1

n
· nt · L
4d(p− 1) + 2(d− 1)L

=
t · L

4d(p− 1) + 2(d− 1)L
.

In the remainder of this chapter we will consider without further men-
tion only knots for which the sum of Levine-Tristram signatures

∑d−1
s=1 σs/d(K)

vanishes.
Let us now discuss how the lower bounds from Theorem 5.5 resp. Propo-

sition 5.4 behave when K itself is a connected sum. For this we introduce
some new notation.

Notation. Let K be a knot with d a prime-power and p a prime. Then we
write:

1. Xd(K) for the d-fold branched cover of K;

2. A1(K), . . . , Am(K)(K) ⊆ H1(Xd(K);Fp) for the one-dimensional sub-
spaces of H1(Xd(K);Fp);
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3. L1(K), . . . , Lm(K)(K) for the rational numbers in Definition 5.1;

4. L(K) for L as in Definition 5.1;

5. t(K) for the dimension of H1(Xd(K);Fp).

Let’s consider a simple example as a warm-up exercise.

Example 5.6. Let J1, J2 be knots. Take d = 2 and p = 5, and suppose
that both H1(X2(J1);F5) and H1(X2(J2);F5) are one-dimensional, so that

H1(X2(J1);F5) ∼= H1(X2(J2);F5) ∼= F5,

and in particular L(J1) = |L1(J1)|, L(J2) = |L1(J2)|, t(J1) = t(J2) = 1.
Now consider the connected sum

J := J1#J2.

We have
H1(X2(J);F5) ∼= F5 ⊕ F5

with t(J) = t(J1) + t(J2) = 2, and we see that the one-dimensional sub-
spaces of H1(X2(J);F5) are given by

A1(J) = spanF5

(
1
0

)
, A2(J) = spanF5

(
0
1

)
A3(J) = spanF5

(
1
1

)
, A4(J) = spanF5

(
2
1

)
A5(J) = spanF5

(
3
1

)
, A6(J) = spanF5

(
4
1

)
with m(J) = 6. It follows that

L1(J) = L1(J1), L2(J) = L1(J2), Li(J) = L1(J1) + L1(J2)

for i = 3, . . . , 6. If all L1(J), . . . , L6(J) have the same sign, then we can
apply Theorem 5.5 to J and obtain

gst(J) ≥
(t(J1) + t(J2)) · L(J)

4d(p− 1) + 2(d− 1)L(J)
=

L(J)

16 + L(J)

However, since L1(J) = L1(J1) and L2(J) = L1(J2), the condition that all
L1(J), . . . , L6(J) have the same sign also implies that L1(J1) and L1(J2)
have the same sign, thus posing a condition on the rational numbers of the
knots in the connected sum J .

Generalizing Example 5.6, we obtain the following result.



100 5. Main Result

Proposition 5.7. Let J1, J2, . . . , Jk be a family of knots, and consider the
connected sum

J := n1J1#n2J2# · · ·#nkJk,
where ni ∈ N\{0} and niJi denotes the ni-fold connected sum of Ji with
itself for i = 1, . . . , k. Further, let d be a prime-power and p a prime. Then:

1. The rational numbers L1(J), L2(J), . . . , Lm(J)(J) have the same sign if
and only if the L1(Ji), L2(Ji), . . . , Lm(Ji)(Ji) obtained from non-trivial
H1(Xd(Ji);Fp) have the same sign simultaneously for all i = 1, . . . , k.

2. If the rational numbers L1(J), L2(J), . . . , Lm(J)(J) have the same sign,
then

gst(J) ≥
k∑
i=1

nit(Ji)L(J)

4d(p− 1) + 2(d− 1)L(J)
,

where t(Ji) := dimH1(Xd(Ji);Fp) and L(J) := minj=1,...,m(J) |Lj(J)|.
In particular, if L(J) ̸= 0 then J is not slice.

Proof. The observation made in Example 5.6 generalizes to prove the first
part of the proposition. We know that there is a decomposition

H1(Xd(J);Fp) ∼=
k⊕
j=1

( nj⊕
i=1

H1(Xd(Ji);Fp)
)
.

Now depending on the prime p some of the H1(Xd(Ji);Fp) may be triv-
ial and are thus not part of one-dimensional subspaces of H1(Xd(J);Fp).
In other words, the rational numbers L1(J), L2(J), . . . , Lm(J)(J) consist
of sums of the L1(Ji), L2(Ji), . . . , Lm(Ji)(Ji) obtained from the non-trivial
H1(Xd(Ji);Fp), i = 1, . . . , k. In particular, for any such Lj(Ji), there is
some h ∈ {1, . . . ,m(J)} such that Lh(J) = Lj(Ji), and the first part of
the proposition immediately follows. For the second part, we apply Theo-
rem 5.5 to J to obtain the inequality

gst(J) ≥
k∑
i=1

nit(Ji)L(J)

4d(p− 1) + 2(d− 1)L(J)
,

which is strictly greater than zero if L(J) ̸= 0.

The reader might have noticed that Proposition 5.7 points towards the
problem of linear independency in the knot concordance group C. The
rational numbers L1(J), L2(J), . . . , Lm(J)(J) play a crucial role in Proposi-
tion 5.7, and we know that they are made of sums of the Lj(Ji). However,
the condition that all these numbers have the same sign is quite restric-
tive, and the next step would be to find an improvement on this condition.
What makes this difficult is that our main results rely on the fact that when
considering a connected sum nK with g4(nK) = g and g ∈ N fixed, then
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there exists a generalized metabolizer F ⊂ H1(Xd(nK);Fp), and we can
manually increase the dimension of F by adding more copies of K to the
connected sum with itself, that is by increasing n (see the proof of Proposi-
tion 5.3). However, we do in general not know how the elements in F (and
with them the appearing Casson-Gordon τ -signatures) change under this
process, which is needed in order to obtain lower bounds for expressions
that involve the numbers Li(K). Nonetheless, when the Casson-Gordon
τ -signatures are explicitly known the results may be improved, and this
will allow us in the upcoming Chapter 6 to obtain a partial result for the
linear independency of the twist knots in the knot concordance group C.





Chapter 6

Example: Twist Knots

The results from Chapter 5 are in particular applicable for (classical) genus
one knots, for example the twist knots. This is because for genus one knots,
there is an explicit formula, due to Gilmer, for computing the Casson-
Gordon τ -signature. We proceed by describing this formula in Section 6.1,
following the original source [Gil83]. In the subsequent Sections 6.2 and 6.3,
we use this formula and the results from Chapter 5 to obtain the lower
bound for the stable 4-genus of twist knots. Moreover, this will allow us to
complete the classification of the concordance order of the twist knots, and
we will be able to provide a partial answer to their linear independency
in the knot concordance group C. In Section 6.4, we apply a different
technique recently used by Baader and Lewark [BL17] to obtain an upper
bound for the stable 4-genus of twist knots, yielding the subfamily with gst
close to but not greater than 1/2.

6.1 Gilmer’s formula for Casson-Gordon τ -signatures

The results in the following section are due to Gilmer [Gil83]. From now
on, we will work exclusively with the double branched cover X2 (see the
remark at the end of Section 6.1). Let K be a knot with Seifert surface
F , Seifert pairing θ : H1(F ;Z)×H1(F ;Z)→ Z, and double branched cover
X2. Define

ε : H1(F ;Z)→ H1(F ;Z), x 7→ εx(·) = θ(x, ·) + θ(·, x).

There is an isomorphism

H1(X2;Q/Z) ∼= ker(ε⊗ idQ/Z),

which is natural up to sign. Given χ ∈ H1(X2;Q/Z), this allows for the
identification χ = x ⊗ s/m for some x ∈ H1(F ;Z) and 0 ≤ s < m. Given
ω = e2πis/m ∈ S1, let σs/m(K) denote the Levine-Tristram signature of K
associated to ω.
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Suppose now that g(F ) = 1, i.e. K is of genus one. If x ∈ H1(F ;Z) is
primitive, let Jx be the knot in S3 obtained by representing x by a simple
closed curve γ on F and then viewing γ as a knot in S3. Note that Jx is
unique up to isotopy since g(F ) = 1. We have the following theorem.

Theorem 6.1 (Gilmer [Gil83]). Let K be a genus one knot with genus-
minimal Seifert surface F and ordinary signature σ(K). If χ = x⊗ s/m ∈
H1(F ;Q/Z), where 0 < s < m, m is a prime-power and x is primitive, then

signav
1 (τ(K,χ)) = 2σs/m(Jx) +

4(m− s)s
m2

θ(x, x) + σ(K).

Using Theorem 6.1, the computation of Casson-Gordon τ -signatures
for genus one knots boils down to the computation of generators of ker(ε⊗
idQ/Z), and then identifying the corresponding knots Jx and their Levine-
Tristram signature.1

Remark 6.2. Gilmer’s formula in [Gil83] for the Casson-Gordon τ -
signatures of genus one knots is stated in terms of the double branched
cover X2. It is worth to note that generalizations of this formula to higher
branched covers exist [Gil93, Nai96, Kim05]. However, since the double
branched cover is the most accessible and since our formula for the stable
4-genus yields a priori the best result for d = 2, we continue our computa-
tions for the twist knots with the double branched cover X2.

6.2 Casson-Gordon τ -signatures of twist knots

The main actors in the remaining sections are the twist knots. Given
n ∈ N, we will denote by Kn the twist knot with n full right hand twists,
as depicted in Figure 6.1 (see also Definition 4.15).

n full twists

Kn

Figure 6.1: The twist knot Kn (picture taken from [Ilt19]).

The double branched cover of Kn is the lens space L(4n + 1, 2), with
Q/Z-(co-)homology

H1(X2;Q/Z) ∼= H1(X2;Q/Z) ∼= Z4n+1.

1There is also a result about Casson-Gordon τ -signatures for knots with higher genus, see
[Gil83, Theorem 3.4]. However, this result yields in general only an inequality for τ -signatures.
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Given χ ∈ H1(X2;Q/Z) of prime-power order, there is the Casson-Gordon
invariant τ(Kn, χ) and the Casson-Gordon τ -signature signav

1 (τ(Kn, χ)).
Since g(Kn) = 1 for all n ∈ N, we can use Gilmer’s formula (see Theo-
rem 6.1) to compute the τ -signatures of the twist knots. We would like to
note at this point that the computations in the current section have already
appeared in the literature previously in greater generality [Kim05]. More-
over, they were also already made by the author in [Ilt19]. However, for
the sake of completeness and because we use slightly different conventions,
we chose to perform the computations once more.

Let Fn be the genus-one Seifert surface for Kn with a and b as a basis
for the first homology as shown in Figure 6.2.

n curls

Fn

a
b

Figure 6.2: The Seifert surface Fn for Kn with a basis for H1(Fn;Z) (picture taken from
[Ilt19]).

In this setting, the Seifert matrix of Kn takes the form

An =

(
−1 1
0 n

)
We are interested in finding generators for ker(ε⊗ idQ/Z) ∼= H1(X2;Q/Z).
Since H1(X2;Q/Z) ∼= Z4n+1 is a finite cyclic group of order 4n + 1, any
element of order 4n + 1 in this kernel will form a generating set. Let
x = (1, 2)⊤ ∈ H1(Fn;Z). We claim that the element

x⊗ 1

4n+ 1
=

(
1
2

)
⊗ 1

4n+ 1
∈ H1(F ;Z)⊗Q/Z

is of order 4n+ 1 and contained in ker(ε⊗ idQ/Z). The former assertion is
clear. To see the latter, note that given any y = (y1, y2)

⊤ ∈ H1(Fn;Z),

εx(y) = x⊤Any + y⊤Anx = (4n+ 1)y2,

showing that (ε⊗ idQ/Z)(x⊗ 1
4n+1

) is zero in H1(Fn;Z)⊗Q/Z.
The next step consists of representing x = (1, 2)⊤ as a simple closed

curve on Fn and determining what knot Jx this curve represents in S3.
Figure 6.3 below shows this process. It turns out that the element x rep-
resents a (2, 2n+ 1)-torus knot in S3, i.e. Jx = T (2, 2n+ 1).
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n curls

Fn S3

S3S3

x

Jx = T (2, 2n+ 1)

2n+ 1 crossings

x

Figure 6.3: The element x = (1, 2)⊤ ∈ H1(Fn;Z) represents a (2, 2n + 1)-torus knot in
S3 (picture taken from [Ilt19]).

We now have all ingredients to compute the Casson-Gordon τ -signatures
from Theorem 6.1. Assume for the moment that 4n + 1 is a power of a
prime, so that every element in H1(X2;Q/Z) has prime-power order. Given

χ = x⊗ s

4n+ 1
∈ H1(X2;Q/Z), 0 < s < 4n+ 1,

we get

signav
1 (τ(Kn, χ)) = σs/(4n+1)(T (2, 2n+ 1)) +

4((4n+ 1)− s)s
(4n+ 1)2

θ(x, x) + σ(Kn)

= σs/(4n+1)(T (2, 2n+ 1)) +
4((4n+ 1)− s)s

4n+ 1

since θ(x, x) = 4n + 1 and σ(Kn) = 0 for all n ∈ N. The Levine-Tristram
signatures of (2, 2n+ 1)-torus knots are well-known and readily computed
(see for instance [Lit79]). Thus overall,

signav
1 (τ(Kn, χ)) =

{
−4
⌈
s
2

⌉
+ 4((4n+1)−s)s

4n+1
, s = 1, . . . , 2n

−4
⌈
4n+1−s

2

⌉
+ 4((4n+1)−s)s

4n+1
, s = 2n+ 1, . . . , 4n.

(6.1)
Table 6.1 shows the Casson-Gordon τ -signatures for the twist knot K6.
Notice the symmetry of the values about 12.

Suppose now that 4n+ 1 is a general number, not necessarily a prime-
power. It is still true that the right-hand side of the equation for the
Casson-Gordon τ -signature given by Theorem 6.1 is equal to the right-hand
side of (6.1) for twist knots. However, the whole equation (6.1) only holds
if the corresponding character χ has prime-power order. So the best way
to get information about the Casson-Gordon τ -signature of an arbitrary
twist knot is to study the right-hand side of (6.1), and keep in mind that it
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Element Signature
0 0
1 −0.16
2 3.36
3 2.56
4 5.44
5 4
6 6.24
7 4.16
8 5.76
9 3.04
10 4
11 0.64
12 0.96

Element Signature
13 0.96
14 0.64
15 4
16 3.04
17 5.76
18 4.16
19 6.24
20 4
21 5.44
22 2.56
23 3.36
24 −0.16

Table 6.1: Elements in H1(X2;Q/Z) ∼= Z25 and their corresponding
Casson-Gordon τ -signatures for the twist knot K6.

is equal to signav
1 (τ(Kn, χ)) if and only if the corresponding character has

prime-power order.
In general, the values of the two formulas for signav

1 (τ(Kn, χ)) in (6.1)
are symmetric about 2n. Thus, it suffices to consider only the first formula
and take symmetry into account. We will do so in the following section.

6.3 Lower bound for the stable 4-genus of twist knots

We proceed by computing the lower bound for gst(Kn) from our results in
Chapter 5. Let p be a prime dividing 4n + 1. Since H1(X2;Q/Z) is finite
cyclic, H1(X2;Fp) is one-dimensional, hence there is only one number

L1 =
∑

χ∈H1(X2;Fp)

signav
1 (τ(K,χ)).

In particular, |L1| = L. Observe that if p appears with exponent k in the
prime-decomposition of 4n+1, then the elements of H1(X2;Fp), considered
as elements in Z4n+1, are 0, q, 2q, . . . , (p− 1)q with q = (4n + 1)/p. Then,
using the symmetry of the Casson-Gordon τ -signatures for the twist knots,

L1 = 2

(p−1)/2∑
s=1

−4
⌈sq
2

⌉
+

4((4n+ 1)− sq)sq
4n+ 1

= q(p− 1)(p+ 1)−
(
pq2(p− 1)(p+ 1)

3(4n+ 1)

)
−

(p−1)/2∑
s=1

8
⌈sq
2

⌉
=

2

3
q(p2 − 1)−

(p−1)/2∑
s=1

8
⌈sq
2

⌉
.

(6.2)
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To evaluate the remaining sum, we distinguish two cases. If (p − 1)/2 is
even, then

(p−1)/2∑
s=1

8
⌈sq
2

⌉
=

(p−1)/4∑
i=1

8

(
iq +

(2i− 1)q + 1

2

)
= (1− q)(p− 1) +

q(p− 1)(p+ 3)

2

=
1

2
(p− 1)(pq + q + 2).

On the other hand, if (p− 1)/2 is odd, then

(p−1)/2∑
s=1

8
⌈sq
2

⌉
=

( (p−3)/4∑
i=1

8
(
iq +

(2i− 1)q + 1

2

))
+ 4q

(
p− 1

2
+ 1

)
=
q(p− 3)(p+ 1)

2
+ (p− 3)(1− q) + 2q(p− 1) + 8

=
1

2
(p2q + 2p− q + 2).

Putting this into the equation (6.2) above and simplifying further, we over-
all obtain

L1 =

{
1
6
(p− 1)(pq + q − 6), (p− 1)/2 even

1
6
(p2q − 6p− q − 6), (p− 1)/2 odd .

Note that p = 2 cannot occur since 4n + 1 is always odd, so we covered
all cases above. It is not hard to see that L1 ≥ 0 for all primes p ≥ 3.
Moreover, all Levine-Tristram signatures of twist knots vanish, hence we
can apply Theorem 5.5 and obtain the following.

Corollary 6.3. Let Kn be the twist knot with n ∈ N\{0, 2} full right hand
twists and p a prime dividing 4n+ 1. Then

gst(Kn) ≥

{
(pq+q−6)

2(pq+q+18)
, (p− 1)/2 even

p2q−6p−q−6
2(p2q+18p−q−30)

, (p− 1)/2 odd ,

where q = (4n+ 1)/p.

Remark 6.4. One can check from the previous computations that K0, K1

and K2 are the only twist knots with L = 0. This means that a non-trivial
lower bound for gst can be obtained from Corollary 6.3 (resp. Theorem 5.5)
for any twist knot Kn with n ≥ 3. The unknot K0 and the Stevedore
knot K2 are slice, and the figure-eight K1 represents torsion in the knot
concordance group C. Thus we obtain the following corollaries.
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Corollary 6.5. Let Kn with n ∈ N be any twist knot. Then

Kn is torsion in C ⇐⇒ gst(Kn) = 0.

Corollary 6.6. Kn is of infinite order in C except for n = 0, 1, 2.

For arbitrary knotsK, it is an open question whether gst(K) = 0 implies
that K is torsion in the knot concordance group C.

It is important to note that the strength of the lower bound in Corol-
lary 6.3 depends on the choice of prime factor p; a priori, there is no
preferred choice of p to obtain the strongest bound. In order to obtain the
best result, one has to compute the lower bound for all primes p in the
prime decomposition of 4n + 1 and then compare. In Table 6.2 below we
have computed the lower bounds given by Corollary 6.3 for the twist knots
K5, K11, K16, K21 and K400.

Kn \ p 3 5 7 13 17 89 4n+ 1

K5 1/5 0 1/5 0 0 0 21 = 3 · 7
K11 1/3 1/3 0 0 0 0 45 = 5 · 9
K16 0 3/8 0 4/11 0 0 65 = 5 · 13
K21 0 2/5 0 0 7/18 0 85 = 5 · 17
K400 22/45 0 0 0 0 67/138 801 = 9 · 89

Table 6.2: Examples of lower bounds for the stable 4-genus of twist
knots obtained from Theorem 5.5.

While the bounds in Corollary 6.3 are directly obtained from the main
theorem and are the strongest that we currently know, they are not partic-
ularly easy to grasp. By estimating further we obtain a weaker result that
holds for all twist knots simultaneously and is easier to grasp.

Corollary 6.7 (Corollary 6.3, weakened). Let Kn with n ∈ N be any
twist knot. Then

gst(Kn) ≥
1

2
− 6

2n+ 7
.

Proof. The result is obtained by estimating the two bounds given in Corol-
lary 6.3. Recall that p is a prime dividing 4n+1 and q = (4n+1)/p. Observe
that 3 ≤ p ≤ 4n+ 1, 1 ≤ q ≤ (4n+ 1)/3, and pq = 4n+ 1.

1.) In the first case of Corollary 6.3,

gst(Kn) ≥
pq + q − 6

2(pq + q + 18)

=
pq + q + 18

2(pq + q + 18)
− 24

2(pq + q + 18)

=
1

2
− 12

4n+ q + 19

≥ 1

2
− 3

n+ 5
. (6.3)
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The last inequality is obtained by estimating q from below with 1.

2.) In the second case of Corollary 6.3,

gst(Kn) ≥
p2q − 6p− q − 6

2(p2q + 18p− q − 30)

=
1

2
− 12(p− 1)

p2q + 18p− q − 30

=
1

2
− 12(p− 1)

(4n+ 1)p+ 18p− q − 30

=
1

2
− 12

4n+ q + 19− 12
p−1

≥ 1

2
− 6

2n+ 7
. (6.4)

The third equality is obtained by using

(4n+ 1)p+ 18p− q − 30 = (4n+ 1)p+ 18p− 4n+ 1− 18

+ pq − q − 12

= (p− 1)
(
4n+ 1 + q + 18− 12

p− 1

)
,

while the last inequality is obtained by estimating q from below with 1
and 12/(p− 1) from above with 12/2 by using p ≥ 3.

Comparing the lower bounds obtained in (6.3) and (6.4), we see that

1

2
− 3

n+ 5
≥ 1

2
− 6

2n+ 7

for all n ∈ N, and the result follows.

It is immediate from Corollary 6.7 that for growing n, the bound tends
towards 1/2. This implies that the stronger bounds in Corollary 6.3 also
tend towards 1/2 as n grows, since 1/2 is an upper bound for the lower
bound in the main theorem. We will use this fact in the next section
to show that there exists an infinite subfamily of twist knots with stable
4-genus close to but not greater than 1/2.

Our next result is concerned with the linear independency of the twist
knots in the knot concordance group C. We provide a partial answer by
applying the discussion leading to Proposition 5.7 at the end of Chapter 5.
For this we make the following definition.

Definition 6.8. Let {Ji}i∈I be a finite family of knots for some finite index
set I ⊂ N. Then we say that {Ji}i∈I is positively linearly independent in C
if the sliceness of any connected sum

m1Ji1#m2Ji2# · · ·#mjJik ,
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where i1, i2, . . . , ik ∈ I and m1,m2, . . . ,mk ∈ N, implies that m1 = m2 =
· · · = mk = 0.

Corollary 6.9. Let {Kn}n∈I be a finite family of twist knots for some finite
index set I ⊂ N\{0, 1, 2}. Then {Kn}n∈I is positively linearly independent
in the knot concordance group C.
Proof. Throughout the proof, we use the notation from Proposition 5.7.
Consider the connected sum

K := m1Kn1#m2Kn2# · · ·#mkKnk
,

where n1, n2, . . . , nk ∈ I and m1,m2, . . . ,mk ∈ N. Fix some ni and let
p be a prime dividing 4ni + 1. Then we know that H1(X2(Kni

),Fp) is
one-dimensional, so there exists only one rational number L1(Kni

). Our
computations at the beginning of Section 6.3 showed that

L1(Kni
) =

{
1
6
(p− 1)(pq + q − 6), (p− 1)/2 even

1
6
(p2q − 6p− q − 6), (p− 1)/2 odd ,

where q = (4ni + 1)/p, and in particular L1(Kni
) > 0. Moreover, if Knj

is
any other twist knot in the connected sum K for which H1(X2(Kjl);Fp) is
non-trivial, the same argument applies to show that L1(Knj

) > 0.
Let Kj1 , Kj2 , . . . , Kjh be the twist knots in the sum K for which

H1(X2(Kjl);Fp) is non-trivial. Then we know that the rational numbers
L1(K), . . . , Lm(K)(K) consist of sums of the numbers L1(Kj1), . . . , L1(Kjh)
which by the above are strictly positive. Hence L(K) > 0 and we can apply
Proposition 5.7 to obtain

gst(K) ≥ L(K)

8(p− 1) + 2L(K)

h∑
i=1

mji (6.5)

If K is slice then the lower bound in (6.5) is necessarily zero, and this is
the case if and only if mj1 = mj2 = · · · = mjh = 0. Replicating the above
argument (if necessary) for other choices of p then shows that K is slice if
and only if m1 = m2 = · · · = mk = 0, proving that {Kn}n∈I is positively
linearly independent in the knot concordance group C.

Remark 6.10. Of course, the exact value of the bound in (6.5) depends
on the choice of fixed ni and prime p dividing 4ni+1. This means that the
bound may be improved with a different choice of ni or p.

6.4 Twists knots with stable 4-genus close to but not
greater than 1/2

A recent result by Baader and Lewark [BL17] implies that
gst(Kn) ≤ 2/3 for any n ∈ N (see [BL17, Lemma 5]). The idea is to
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take the three-fold connected sum 3Kn with Seifert surface 3Σ, where Σ is
a genus-minimal Seifert surface for Kn, and find a subgroup of rank two of
H1(3Σ;Z) on which the Seifert form has the matrix(

0 1
0 c

)
(6.6)

for some c ∈ Z. As the proof in [BL17, Lemma 5] shows, one can always
find such a subgroup when taking at least three copies of Kn. In this
setting, Baader and Lewark show that one can achieve a situation in which
Freedman’s disc theorem [Fre84, FQ90] can be applied to obtain g4(3Kn) ≤
g(3Kn)− 1 = 2, implying that gst(Kn) ≤ 2/3.

A natural question that arises is under what conditions one can find
such a subgroup of rank two starting with two copies of the knot instead of
three. Thus, let Kn be any twist knot with its standard genus-one Seifert
surface Σ and Seifert matrix

A =

(
1 1
0 −n

)
.

The two-fold connected sum 2Kn has then 2Σ as a Seifert surface with
Seifert matrix the block sum A := A⊕ A. Consider the vectors

v = (1, 0, x, y)⊤, w = (0, 1, 0, 0)⊤ ∈ H1(2Σ;Z),

where x, y ∈ Z are yet to be found. Independent of the choice of x and y,
we have

v⊤Aw = 1, w⊤Av = 0, w⊤Aw = −n.
Thus, it remains to find x, y ∈ Z such that v⊤Av = 0; that is

v⊤Av = x2 + xy − ny2 + 1 = 0.

Similar to the proof of [BL17, Lemma 4], we complete the square to obtain

x2 + xy − ny2 =
(
x+

y

2

)2
− (4n+ 1)

(y
2

)2
= x2 − (4n+ 1)y2,

where in the last equation we substituted y = y/2 and x = x + y. We
obtain

v⊤Av = 0 ⇐⇒ x2 − (4n+ 1)y2 = −1.
The equation x2 − (4n + 1)y2 = −1 is generally known as a negative Pell
equation. If this equation has a solution x, y ∈ Z, then setting x = x − y
and y = 2y in v gives us a vector such that v⊤Av = 0. It follows that the
Seifert form of 2Kn restricted to the rank-two subgroup spanned by v and
w is of the form (

0 1
0 c

)
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for some c ∈ Z. Proceeding as in the proof of [BL17, Lemma 5], we obtain

g4(2Kn) ≤ 1 =⇒ gst(Kn) ≤
1

2
,

provided that for 4n + 1, the negative Pell equation has an integer valued
solution. We summarize the above observations in the following proposi-
tion.

Proposition 6.11. Let n ∈ N be such that the negative Pell equation
x2 − (4n+ 1)y2 = −1 has a solution x, y ∈ Z. Then

gst(Kn) ≤
1

2
.

As mentioned in the introduction, a necessary and sufficient condition
for the existence of a solution of the negative Pell equation is that the
continued fraction of

√
4n+ 1 has odd period length [RT04]. This is the

case, for example, if 4n + 1 = pk, where p is a prime such that p ≡ 1
mod 4 and k ∈ N [RT04]. This yields, together with the lower bound given
in Corollary 6.3, the infinite subfamily of twist knots with gst close to but
not greater than 1/2.

Note that in the approach above, we specified two explicit vectors v and
w and derived a sufficient condition for them to span a rank-two subgroup
on which the Seifert matrix has the desired form as in (6.6). A natural
question to ask is under what circumstances such a subgroup exists in
general. Indeed, although the solvability of the negative Pell equation is a
sufficient condition, it is not necessary. For example, if n = 51, then 4n +
1 = 205, but x2 − 205y2 = −1 has no solution. Yet, the Seifert form of 2K51

restricted to the rank-two subgroup spanned by the vectors (13, 2, 3, 0)⊤

and (14, 2,−2, 1)⊤ gives the desired matrix (6.6), so gst(K51) ≤ 1/2.
More generally, there might also be other, different methods to obtain

the upper bound given by 1/2. We do not know of a full characterization
of twist knots for which gst ≤ 1/2 holds.





Part II

Quantum Invariants: Khovanov
homology and the λ-invariant





Chapter 7

Introduction and Results

In 1999, M. Khovanov introduced a categorification of the Jones polynomial
that takes the form of a homology theory and is a link invariant [Kho00].
This theory is now known as Khovanov homology, and it soon became ap-
parent that it is a strictly stronger invariant than the Jones polynomial
[BN02]. More so, ever since its discovery Khovanov homology and its vari-
ations has served as a fruitful source to obtain geometric information about
the underlying knot or link.

Arguably the most famous piece of information obtained from Khovanov
homology is J. Rasmussen’s s-invariant [Ras10]. It induces a homomor-
phism from the knot concordance group C to the integers and provides a
lower bound for the slice genus g4 of a knot. The Rasmussen s-invariant
can be computed as follows: there is a variation of Khovanov homology,
known as Lee homology [Lee05], that is the limit of the so-called Lee spec-
tral sequence which starts at Khovanov homology. The Lee homology of
a knot is always of rank 2, and the filtration degree of the two generators
may be used to compute the Rasmussen s-invariant.

Recently, Alishahi and Dowlin [AD19] used Lee homology in a new and
different way to obtain geometric information. They discovered a knot in-
variant uX taking non-negative integer values that yields a lower bound for
the unknotting number u of a knot K. Interestingly, this number behaves
rather differently than the s-invariant: it does not induce a concordance
homomorphism, and it is not additive under connected sum of knots. In-
spired by their methods, the author defined in joint work with L. Lewark
and L. Marino in [ILM21] a new invariant λ on yet another variation of
Khovanov homology: Z[G]-homology. Let’s take a closer look.

7.1 A simple universal Khovanov homology

A Frobenius system is a tuple F = (R,A,∆, ε) consisting of a commu-
tative ring R, a commutative algebra A, a cocommutative comultiplica-
tion ∆: A → A ⊗R A, and a counit ϵ : A → R such that ∆ ◦ m =
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(Id⊗m) ◦ (∆⊗ Id). The algebra A of a Frobenius system is called a Frobe-
nius algebra. In the present work we will only consider so-called rank two
Frobenius systems, i.e. Frobenius systems F with an X ∈ A such that A is
freely generated by 1 and X as an R-module. Moreover, all our Frobenius
algebras will be equipped with a filtration or a grading, such that 1 and X
are homogeneous elements of degree 0 and −2, respectively. We call this
the quantum grading.

It is well known that every rank two Frobenius system F yields a vari-
ation of Khovanov homology, i.e. a way to associate to all diagrams D of a
link L a chain complex CF(D) of free R-modules, well-defined up to homo-
topy equivalence for different diagrams of L, thus giving CF(L) [Kho06].
For links with a marked component or for knots, there is an action of A on
CF(D) which is well-defined up to homotopy, so we may consider CF(D)
as a chain complex of free A-modules.

Khovanov’s original homology theory corresponds to the Frobenius al-
gebra Z[X]/(X2) over Z. On the other hand, the theory coming from the
Frobenius algebra Auniv = Runiv[X]/(X2 − hX − t) over Runiv = Z[h, t]
is called universal since for all rank two Frobenius algebras F , the chain
complex CF(D) is determined by Cuniv(D) [Kho06]. Recently, Khovanov
and Robert defined another theory called α-homology, which is also uni-
versal in the sense above [KR22]. To define λ, we will use a third universal
theory, which we call Z[G]-homology. The universality of this theory is due
to Naot [Nao06, Nao07]. This Z[G]-theory associates to a diagram D of a
knot K the reduced Khovanov chain complex coming from the Frobenius
algebra R[X]/(X2+GX) with R = Z[G]. We denote this chain complex by
JDK (well-defined up to isomorphism) or JKK (well-defined up to homotopy
equivalence). Our reason to use Z[G]-homology is that it is the simplest of
the three mentioned universal theories, in the sense that the ground ring
is a polynomial ring in only one, instead of two variables. Let us explicitly
state how Z[G]-homology determines Funiv-homology (this is implicit in the
work of Naot [Nao06, Nao07]).

Theorem 7.1. Endow Auniv = Z[h, t][X]/(X2−hX− t) with the structure
of a Z[G]-module by letting G act as 2X − h. Then for every oriented link
with base point,

Cuniv(L) ≃ JLK⊗Z[G] Auniv{1}.

Here, { · } denotes a shift in quantum degree.

Corollary 7.2. For every knot K, Cuniv(K) is homotopy equivalent to a
chain complex of free shifted Auniv-modules, with differentials consisting
only of integer multiples of powers of 2X − h.

Theorem 7.1 and Corollary 7.2 can be understood to say that Z[G]-
homology encodes the same amount of information present in Funiv- and
α-homology in a more compact way. In particular, the original reduced
Khovanov homology over Z of K as defined in [Kho03] may be obtained
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from JKK simply by setting G = 0, i.e. by tensoring with Z[G]/(G) ∼= Z.
The original unreduced Khovanov homology over Z is also determined by
Z[G]-homology, see Corollary 9.10.

Let us give three examples of Z[G]-complexes J · K of knots. For the
unknot U , JUK is simply homotopy equivalent to one copy of Z[G] sup-
ported in homological degree 0. For the trefoil T2,3, we have a homotopy
equivalence

JT2,3K ≃ 0Z[G]{2} 0 Z[G]{6} Z[G]{8},G

where the subscript to the left denotes homological degree. Finally, for the
T3,4 torus knot we have

JT3,4K ≃

0Z[G]{6} 0 Z[G]{10} Z[G]{12} Z[G]{12} Z[G]{16}.G 0 G2

We will show how to compute JT2,3K in Example 9.3. The complex JT3,4K
may be computed using the same methods, or by using the computer
programs khoca [LL18] and homca [Ilt21a], see Section 7.7 and Subsec-
tion 11.3.1.

7.2 The definition of λ

Having an understanding of Z[G]-homology, we are ready to introduce the
previously mentioned new knot invariant λ.

Definition 7.3. For a knot K, let λ(K) be the minimal integer k ≥ 0 such
that there exist ungraded chain maps (i.e. chain maps that do not need to
respect the homological or the quantum degree, see Definition 10.1)

JKK JUK
f

g

such that g ◦ f and f ◦ g are homotopic to multiplication with Gk:

g ◦ f ≃ Gk · idJKK, f ◦ g ≃ Gk · idJUK.

It is not obvious that for a given knot, f, g and k as in Definition 7.3
exist at all. So for the time being we simply set λ(K) =∞ if they do not,
but it will be a consequence of our Theorem 7.4 that this case does in fact
not occur. To get acquainted with calculating λ, the reader is invited to
convince themself that λ(U) = 0, λ(T2,3) = 1, and λ(T3,4) = 2.

As mentioned previously, the definition of λ is based on the work of
Alishahi and Dowlin, who use analogous maps f , g in the proof that their
invariant uX is a lower bound for the unknotting number u. The invariant
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uX(K) is defined as the maximal X-torsion order of the homology of K
coming from the Frobenius algebra FAD = Q[X, t]/(X2 − t) over Q[t], i.e.
the minimal n such that XnHFAD(K) is torsion-free. Note that setting
t = 1 in FAD yields the system FLee = Q[X]/(X2 − 1) over Q, which is
used to obtain Lee homology.

At first glance the definition of uX and λ appear to be rather different;
but on a closer look, one finds that uX(K) = λX(K), where λX(K) is the
minimal k ≥ 0 such that there exist ungraded chain maps

CFAD(K) CFAD(U)
f

g

and homotopies

g ◦ f ≃ (2X)k · idCFAD (K), f ◦ g ≃ (2X)k · idCFAD (U).

In this sense, λ is a direct generalization of uX , obtained from the reduced
homology coming from the Frobenius algebra FZ[G] instead of from the
unreduced homology coming from FAD. But why don’t we instead of λ
consider uG(K), defined as the maximal G-torsion order of Z[G]-homology
of K (see Definition 10.23)? There are two reasons. First, λ is not equal
to uG for all knots; the proof of the equality λX = uX does not carry over
from Q[X, t]/(X2− t) to Z[G], because it relies on Q[X, t]/(X2− t) ∼= Q[X]
being a PID, which Z[G] is not. In fact, λ(K) ≥ uG(K) holds for all knots
K (cf. Lemma 10.28). Second, uG displays some unfavorable behavior; for
example, the value of uG(−K) is not determined by the value of uG(K),
where −K denotes the mirror image of K. Again, the ring Z[G] not being
a PID is to blame for this.

7.3 Main results

Our main results about λ are the following.

Theorem 7.4. For all knots K, one has λ(K) ≤ uq(K).

Theorem 7.5. For every n ∈ N there exists a knot K such that λ(K) = n.

Here, uq(K) denotes the proper rational unknotting number, which is
defined as follows.

Definition 7.6. Two knots K and K ′ are related by a rational replacement
if K ′ may be obtained from K by replacing a rational tangle T in K with
another rational tangle T ′. If the arcs of T and T ′ connect the same tangle
end points, we say that the rational replacement is proper. Now, uq(K) is
defined as the minimal number of proper rational replacements relating K
to the unknot.
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P (3, 3, 2) = 85 unknot

P (3, 3,−2) = T3,4 = 819 unknot

(i)

(ii)

Figure 7.1: In (i), an example of a proper rational replacement (1/3 by −1 in the
language of Definition 12.15), showing that the P (3, 3, 2) pretzel knot has proper
rational unknotting number 1. In (ii), an example of a non-proper rational re-
placement (1/3 by 0), showing that the P (3, 3,−2) pretzel knot, which is also the
T3,4 torus knot, has rational unknotting number 1. Since λ(T3,4) = 2, it follows
from Theorem 7.4 that there is no proper rational replacement transforming the
T3,4 pretzel knot into the unknot, i.e. T3,4 has proper rational unknotting number
at least 2 (and in fact equal to 2).

A more refined definition of rational replacement will be given in Defi-
nition 12.15. Figure 7.1 shows examples of rational replacements, and an
application of Theorem 7.4. Since a crossing change is merely a special case
of a proper rational replacement, we find that uq(K) ≤ u(K) holds for all
knots K. So Theorem 7.4 can be seen as a strengthening of the inequality
uX(K) ≤ u(K) obtained by Alishahi and Dowlin in [AD19]. Indeed, we
have

uX(K) ≤ λ(K) ≤ uq(K) ≤ u(K). (7.1)

We shall see that none of these inequalities are equalities, and in fact, the
gaps between the four involved invariants can be arbitrarily large. Observe
that Theorem 7.4 and (7.1) show that λ(K) always exists and is finite.

In contrast to Theorem 7.5, let us note that currently uX(K) ≤ 3 holds
for all knots K for which uX has been computed. The essentially only
known knot with uX(K) = 3 was recently found by Manolescu and Maren-
gon [MM20]. Still, it seems a reasonable conjecture that uX is unbounded,
though the proof of that conjecture might require more complicated knots
and methods of computation than our proof of the unboundedness of λ in
Theorem 7.5.
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7.4 Rational replacements and rational unknotting

Rational unknotting has previously been considered by Lines [Lin96] and
McCoy [McC15], and the recent work by McCoy and Zentner [MZ21] deals
with proper rational unknotting. In those papers, rational unknotting is
obstructed via the double branched cover, relying on the so-called Mon-
tesinos trick: if two knots K and J are related by a rational replacement,
then their double branched covers MK ,MJ are related by a surgery.

As one consequence of this observation, the minimal number of gener-
ators of H1(MK ;Z) is a lower bound for the rational unknotting number
of K. For example, this implies that the connected sum of n trefoil knots
has (proper and non-proper) rational unknotting number equal to n. On
the other hand, one may easily compute that λ of the connected sum of
n ≥ 1 trefoil knots equals 1. This may be taken as a first sign that our
lower bound λ is quite different from the lower bounds for uq obtainable
from the double branched cover.

Note that the gap between the proper rational unknotting number uq
and the (classical) unknotting number u may also be arbitrarily high. For
example, uq(K) = 1 clearly holds for all two-bridge knots K; but u(K) of
two-bridge knots can take any value, which can e.g. be shown using the
signature bound |σ(K)/2| ≤ u(K) [Mur65]. This also demonstrates that
|σ(K)/2| is not a lower bound for the proper rational unknotting number.

As an aside, let us also remark that in the definition of the proper ratio-
nal unknotting number uq(K), the proper rational replacements relating K
and the unknot are sequential: happening one after the other. However, by
a standard transversality argument (see e.g. [Sch85]) one can show that for
every knot K, there exist uq(K) many simultaneous rational replacements,
i.e. rational replacements taking place in pairwise disjoint balls.

7.5 Further properties and generalizations of λ

Let us now state further properties of our invariant λ. First and foremost,
λ is a unknot detector, which is a direct consequence of Kronheimer and
Mrowka’s result that Khovanov homology detects the unknot [KM11].

Proposition 7.7. The λ-invariant detects the unknot, i.e. λ(K) = 0 holds
if and only if K is the unknot.

Given a connected sum of knots K#J , we will see that the value of
λ(K#J) is not determined by the values of λ(K) and λ(J). However, we
can say the following.

Proposition 7.8.

1. λ(K#J) ≤ λ(K) + λ(J) for all knots K, J .

2. λ does not change under taking mirror images, or orientation reversal.
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Let us call a knot K thin if its reduced integral Khovanov homology
consists of free modules supported in a single δ-degree (see Section 8.11 for
the definition of δ and further details).

Proposition 7.9. For all non-trivial thin knots K, we have λ(K) = 1.

In particular λ(K) = 1 holds for all non-trivial quasi-alternating knots,
since those knots are thin in the above sense [MO08]. This leads to appli-
cations such as the following.

Example 7.10. In Example 10.19, we will compute λ(T5,6) = 3. It fol-
lows that there is no proper rational replacement relating T5,6 to a quasi-
alternating knot (compare this to [CGL+20, Example 10]).

In the definition of λ, replacing U by an arbitrary second knot J yields
the definition of a function λ(K, J) ≥ 0 that is symmetric and obeys the
triangle inequality: λ( · , · ) is a pseudometric on the set of isotopy classes of
knots. In fact, we can even further extend the definition of λ and define it
for pairs of tangles. This leads to a pseudometric on the set of equivalence
classes of tangles in a fixed ball, with fixed base point and connectivity, see
Proposition 10.14. Details will be provided in Chapter 10.

7.6 A comparison of λ with previously known invari-
ants

Alishahi and Dowlin’s article [AD19] appeared at the same time as an arti-
cle by Alishahi [Ali19], in which similar to uX a lower bound uh for the un-
knotting number was obtained using the Frobenius algebra F2[X, h]/(X

2+
hX) over F2[h]. Then, further papers followed: Caprau-González-Lee-
Lowrance-Sazdanović-Zhang generalized Alishahi and Dowlin’s work for
Q to the fields Fp for all odd primes p [CGL+20]. Using the previously
mentioned α-homology, Gujral [Guj20] defined an invariant ν which can be
seen to equal our invariant uG, and showed that it provides a lower bound
for the ribbon distance between knots; this was a generalization of earlier
work by Sarkar [Sar20]. Here, the ribbon distance between two smoothly
concordant knots K and J is the minimal k such that there is a sequence
K = K1, . . . , Kn = J of knots, such that each consecutive Ki, Ki+1 are
related by a ribbon concordance in either direction with at most k saddles.
This leads to the following question (see Section 7.5 or Definition 10.2 for
the definition of λ(K, J)).

Question. Is λ(K, J) less than or equal to the ribbon distance of K and
J for all pairs of knots K, J?

The previously defined invariants mentioned above will be discussed in
more detail in Section 10.4. By construction, λ is greater than or equal
to all of them (the price to pay is that λ is generally slightly harder to
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compute). Let us explicitly emphasize that this observation combined with
Theorem 7.4 implies that all of those previously defined invariants are also
lower bounds for the proper rational unknotting number.

Alishahi and Eftekhary applied the same construction principle that
underlies λ to knot Floer homology [AE20], obtaining a lower bound for the
unknotting number as well as lower bounds for other quantities, such as the
minimal number of negative-to-positive crossing changes in any unknotting
sequence of a knot. Further knot Floer torsion order invariants were defined
by Juhász, Miller and Zemke [JMZ20], who find lower bounds for even
more topological quantities, such as the bridge index, the band-unlinking
number, etc. Still, the following question remains open.

Question. Is one of the knot Floer torsion order invariants a lower bound
for the proper rational unknotting number?

7.7 Computations

Computations of Z[G]-homology are theoretically possible by hand using
Bar-Natan’s divide-and-conquer approach [BN07]. Nevertheless, to proceed
efficiently, we use the program khoca [LL18] (originally written for [LL16])
to compute Z[G]-complexes of knots.1 As input, khoca accepts diagrams
of a knot K, e.g. in PD notation. From khoca’s output, one may read
off a chain complex of Z[G]-modules in the homotopy class of JKK. For
further simplification, khoca’s output may be fed into the new program
homca [Ilt21a], which attempts to decompose JKK as a direct sum of simpler
chain complexes. From these simpler pieces, one may typically calculate λ
by hand. See Example 10.19 for an application of this strategy to the T5,6
torus knot. For small knots, we find the following.

Proposition 7.11. For all knots up to 10 crossings we have λ = 1, except
for the knots 819, 10124, 10128, 10139, 10152, 10154, 10161, where λ = 2.

7.8 Organization and overview of Part II

The remainder of Part II is organized as follows. In Chapter 8 we pro-
vide a mostly self-contained introduction to the mathematical topics and
notions needed in subsequent chapters, and in particular to those already
present in Chapter 7. We treat subjects such as Khovanov homology and
Bar-Natan’s generalization to tangles, Frobenius systems and topological
quantum field theories, or the Rasmussen s-invariant. In particular, we lay
the categorical framework for Z[G]-homology and fix conventions regarding

1Note that javakh [GM05], while very fast, apparently only calculates Morrison’s ‘universal
homology’, which corresponds to Q[G]-homology. Currently, the program kht++ [Zib21] also
only simplifies complexes over fields, not over the integers.
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tangles and tangle diagrams. A detailed overview of the contents is given
at the beginning of Chapter 8.

Chapter 9 is devoted to the theoretical foundations of Z[G]-homology
and contains the proof of Theorem 7.1. In Chapter 10 we provide a detailed
introduction to the λ-invariant. Here, we prove Proposition 7.7 to 7.9
and 7.11, and we compute λ of the (5, 6)-torus knot in Example 10.19.
Chapter 11 deals with calculations surrounding Z[G]-homology and the λ-
invariant. In particular, we prove Theorem 7.5 that λ can be arbitrarily
big, and we provide descriptions of the author’s computer programs homca
[Ilt21a] and tenpro [Ilt21b] which were used throughout our work. Finally,
Chapter 12 is concerned with our main Theorem 7.4 which states that λ
yields a lower bound for the proper rational unknotting number of a knot.

A more detailed overview of the contents is given at the beginning of
each chapter. Most of the results in Part II have appeared previously in
the paper “Khovanov homology and rational unknotting” by the author in
joint work with L. Lewark and L. Marino [ILM21]. New is Chapter 8 (aside
from parts in Sections 8.3 to 8.5), Section 11.3 on the computer programs
homca and tenpro, Remark 11.9 on a knot whose Z[G]-complex potentially
splits off interesting new pieces, and Lemma 12.12 and Proposition 12.13
which are generalizations of [ILM21, Lemma 5.12] and [ILM21, Lemma
5.13], respectively. In particular, Lemma 12.12 fixes a gap in the proof of
[ILM21, Lemma 5.13], which is crucial to the proof of Theorem 7.4 (see
also Remark 12.14). Proposition 12.13 extends [ILM21, Lemma 5.13] to
positive rational tangles of arbitrary connectivity.





Chapter 8

Preliminaries

The aim of this chapter is to introduce the mathematical notions and con-
cepts needed in later chapters. We start in Section 8.1 by recalling how to
obtain the Jones polynomial of an oriented link using the (scaled) Kauffman
bracket. In Section 8.2, we will introduce Khovanov homology by categori-
fying step-by-step the ingredients from the previous section for computing
the Jones polynomial, following Bar-Natan’s exposition in [BN02]. This
intuitive approach is well-suited for the reader unfamiliar with Khovanov
homology, as it conveys Khovanov’s idea without introducing unnecessary
formalism. Nonetheless, precise formalism is necessary and will be needed
for our discussions about Z[G]-homology and the invariant λ. In particu-
lar, we will work with Bar-Natan’s generalization of Khovanov homology
to tangles and cobordisms [BN02], and Sections 8.3 to 8.6 are devoted to
the introduction thereof. More precisely, in Section 8.3 we will introduce
tangles and tangle diagrams, and explain the 1:1-correspondence between
oriented links with base point in S3 and 2-ended tangles in a fixed 3-ball.
Here, we also describe rational tangles which play a major role in proving
that λ forms a lower bound on the proper rational unknotting number. In
Section 8.4, we will introduce the necessary categorical framework in which
Bar-Natan’s theory is constructed, and we define the specific categories that
will be used for Z[G]-homology in Chapter 9.

A key ingredient in the construction of Khovanov homology is the spec-
ification of a Frobenius system (also called Frobenius algebra) and the cor-
responding topological quantum field theory (TQFT for short). Any such
Frobenius system yields a Khovanov-type homology theory for oriented
links in S3, and we will take a closer look at these systems in Section 8.5.
Moreover, they will also be needed in order to obtain a homology the-
ory from Bar-Natan’s complex of tangles, which we will finally introduce
in Section 8.6. Before doing so however, we describe in Section 8.7 im-
portant composability and compatibility properties of tangles and their
corresponding Bar-Natan complexes in the language of Bar-Natan’s planar
arc diagrams and planar algebras, which will ultimately lead to tools that
simplify computations. These tools will be described in Section 8.8, and
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we will demonstrate them in action by computing the Bar-Natan complex
of the right-handed trefoil in the same section. In Section 8.9 we describe
how to obtain a homology theory from Bar-Natan’s complex of tangles
using TQFTs. In Section 8.10 we discuss Lee’s deformation of Khovanov
homology and the famous Rasmussen s-invariant, and show how MacKaay-
Turner-Vaz and Liphshitz-Sarkar generalized the s-invariant to arbitrary
fields. Last but not least, we return to ordinary Khovanov homology in
Section 8.11 and discuss more about its structure, such as the Knight Move
Conjecture, and introduce a reduced version of Khovanov homology as well
as the notion of homologically thin knots.

In this chapter we tried to put emphasis on proper descriptions and
formalism, with additional explanations that may not be found or may
be implicit in the literature. However, not all of Chapter 8 is needed in
detail in order to understand our own results. The reader who is already
familiar with Khovanov homology resp. Bar-Natan’s theory and wishes to
proceed as fast as possible to Chapter 9 and subsequent chapters is advised
to have a look at Sections 8.3 to 8.5 for the main definitions that we use.
Main references for this chapter are [Kho00, BN02, Bar05, Kho06, Ras10,
MTV07].

8.1 The scaled Kauffman bracket and the Jones poly-
nomial

We start by recalling the (scaled) Kauffman bracket and its relation to
the Jones polynomial (for motivation and historical background of these
invariants, see Section 2.4). Our main references are [Kau87b] and [Kho00,
Section 2.4].

Definition 8.1. Let n ∈ N. An n-component link L in S3 is a smooth
embedding L : S1 ⊔ · · · ⊔ S1 → S3 of the disjoint union of n circles into S3.
Each connected component of the image of L is a knot K ⊂ S3, and we
write L = K1⊔ · · · ⊔Kn. A regular plane projection of a link L is a smooth
immersion p : S3 → P of S3 to a plane P , such that all self-intersections in
the image of p◦L are transverse double points (i.e. no more than two points
intersect transversally and no points intersect tangentially), endowed with
over- and undercrossing information. The image of p ◦ L is called a link
diagram of L, and will be used to represent links. See Figure 8.1 for an
example.

Convention. Unless otherwise mentioned or clear from the context, all
links and link diagrams are understood to be oriented.

In [Kau87b], Kauffman constructs a state model for the Jones polyno-
mial. In this model, the Jones polynomial results from a normalization
of an invariant of unoriented links, the so-called bracket polynomial. The
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Figure 8.1: A regular plane projection of the (positive) Hopf link.

bracket polynomial is defined in a combinatorial way based on a diagram
of the link. The main ingredient is the resolution (also called smoothing)
of a crossing in a link diagram. There are two types of resolutions, the 0-
and 1-resolution, as shown in Figure 8.2.

oo0−resolution 1−resolution //

Figure 8.2: The two possible ways of resolving a crossing in a link diagram.

Observe that orientations are irrelevant for smoothings. Resolving all
crossings in a link diagram with any sort of resolutions always results in a
diagram that consists of a disjoint union of planar circles (a so-called com-
plete smoothing). This is the main observation for the upcoming recursive
definition of the bracket polynomial (and in fact also the starting point for
the construction of Khovanov homology as we shall see in Section 8.2).1

Definition 8.2. Let L ⊂ S3 be a link with diagram D. Then the bracket
polynomial of D is the Laurent polynomial ⟨D⟩ ∈ Z[q±1] defined by the
following rules:

1. ⟨ ⟩ = q + q−1;

2. ⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩;

3. ⟨D1 ⊔D2⟩ = ⟨D1⟩⟨D2⟩.

Here, D1 ⊔D2 denotes the disjoint union of two link diagrams.

The rules in Definition 8.2 are to be understood locally, that is, in order
to compute ⟨D⟩, one starts to resolve crossings, disjoint unions, and circles
withinD in a recursive fashion according to the rules in Definition 8.2. Note
that the bracket polynomial is not an invariant of oriented links; it is not
invariant under the first and second Reidemeister move (cf. [Kho00, Section

1Note that our definition of the bracket polynomial follows the (up to normalization equiva-
lent) convention of [Kho00], instead of the original source [Kau87b]. See Remark 8.4 below for
further details.
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2.4]). In order to obtain an invariant, one has to take the orientation of
L and the induced orientation on a diagram of L into account. Figure 8.3
shows our convention regarding the sign of an oriented crossing.

+1 −1

Figure 8.3: A positive and negative crossing on the left and right, respectively.

Definition 8.3. Let L ⊂ S3 be a link with diagram D and set

n+(D) := number of positive (+1) crossings in D
n−(D) := number of negative (−1) crossings in D.

Then the scaled Kauffman bracket of L is defined as

K(L) := (−1)n−(D)qn+(D)−2n−(D)⟨D⟩ ∈ Z[q±1].

One can check that K(L) does not depend on the choice of the diagram
D, making it an invariant of L (see [Kau87b]), and hence justifying the
notation in Definition 8.3.

Remark 8.4. The conventions regarding the notions of the bracket poly-
nomial and the Kauffman bracket differ throughout the literature, but are
equivalent up to normalization. Our conventions are closest to [Kho00] and
[BN02]. However in [Kho00], there is no name for the bracket polynomial
⟨D⟩. The invariant K(L) is called scaled Kauffman bracket because in
Kauffman’s original work [Kau87b], the Kauffman bracket is defined as

f [L] = (−A)−3(n+(D)−n−(D))⟨D⟩Ka ∈ Z[A±1],

where the polynomial ⟨D⟩Ka ∈ Z[A±1] is determined by the rules

1. ⟨ ⟩Ka = 1;

2. ⟨ ⟩Ka = A⟨ ⟩Ka + A−1⟨ ⟩Ka;

3. ⟨ ⊔D′⟩Ka = (−A2 − A−2)⟨D′⟩Ka,

where D′ is a non-empty link diagram. It is easy to see that K(L) and f [L]
are related via

K(L)|q=−A−2 = (−A2 − A−2)f [L].

Yet another naming convention appears in [BN02], where the bracket poly-
nomial ⟨D⟩ is called the Kauffman bracket and K(L) is referred to as the
unnormalized Jones polynomial.
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Let us now recall the skein relation of the Jones polynomial. Let L1,
L2, and L3 be oriented links with diagrams D1, D2, and D3 that differ at
a single crossing as shown in Figure 8.4.

D1 D2 D3

Figure 8.4: The link diagrams D1, D2, and D3 that differ at a single crossing.

Proposition 8.5 ([Jon85]). Let L ⊂ S3 be an oriented link with diagram
D. Then there exists a unique polynomial V (L) ∈ Z[

√
t±1] such that:

1. V ( ) = 1;

2. t−1V (L1)− tV (L2) = (
√
t− 1√

t
)V (L3).

Here, L1, L2, L3 are the links obtained by changing L (respectively D) in
a single crossing as in Figure 8.4. Moreover, V (L) is equal to the Jones
polynomial of L.

We wish to relate the scaled Kauffman bracket K(L) to the Jones poly-
nomial V (L). For this, let L ⊂ S3 be an oriented link with diagram D,
fix a crossing in D, and consider the corresponding links L1, L2, L3 and
diagrams D1, D2, D3 as in Figure 8.4. The second rule in Definition 8.2 of
the bracket polynomial implies that

⟨D1⟩ = ⟨D3⟩ − q⟨ ⟩, ⟨D2⟩ = ⟨ ⟩ − q⟨D3⟩.

Hence
⟨D1⟩+ q⟨D2⟩ = (1− q2)⟨D3⟩. (8.1)

Observe that

n+(D1) = n+(D2) + 1 = n+(D3) + 1

n−(D1) = n−(D2)− 1 = n−(D3).

Therefore

K(L1) = (−1)n−(D1)qn+(D1)−2n−(D1)⟨D1⟩ = c⟨D1⟩
K(L2) = (−1)n−(D1)+1qn+(D1)−1−2n−(D1)−2⟨D2⟩ = −q−3c⟨D2⟩
K(L3) = (−1)n−(D1)qn+(D1)−1−2n−(D1)⟨D3⟩ = q−1c⟨D3⟩,
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where c := (−1)n−(D)qn+(D)−2n−(D). Applying these observations to (8.1),
we get

⟨D1⟩+ q⟨D2⟩ = (1− q2)⟨D3⟩ ⇔ c⟨D1⟩+ qc⟨D2⟩ = (1− q2)c⟨D3⟩
⇔ K(L1)− q4K(L2) = (q − q3)K(L3)

⇔ q−2K(L1)− q2K(L2) = (q−1 − q)K(L3).

Thus we have the following skein relation for the scaled Kauffman bracket:

q−2K(L1)− q2K(L2) = (q−1 − q)K(L3).

Noting that K(unknot) = q+q−1 and V (unknot) = 1, we now immediately
obtain that the scaled Kauffman bracket and the Jones polynomial are
related via

V (L)|√t=−q =
K(L)

q + q−1
.

Before moving on to Khovanov homology, let us quickly emphasize again
a certain point of view in computing the Jones polynomial using the scaled
Kauffman bracket, as explained in [BN02, Section 2].

Let L ⊂ S3 be an oriented link with diagram D, and let X ⊂ D
denote the set of crossings in D, i.e. the transverse double points. Fix
an enumeration of the crossings in X and set n = |X |. As mentioned at
the beginning of this section, each crossing x ∈ X admits a 0- and a 1-
resolution. Thus any tuple α ∈ {0, 1}X defines a unique way to resolve
all crossings in D, so that we end up with a diagram that consists of a
disjoint union of planar circles (a so-called complete smoothing of D). In
the process of computing the scaled Kauffman bracket K(L) we eventually
arrive at every possible complete smoothing of D, which then gets replaced
by a suitable polynomial in Z[q±1].

Let us be more specific. Each vertex α ∈ {0, 1}X of the n-dimensional
cube [0, 1]X defines a complete smoothing Sα of D. Looking at Defini-
tion 8.2 and Definition 8.3, we see that in order to compute the scaled
Kauffman bracket K(L), we replace each such union Sα with a term of the
form

(−1)rqr(q + q−1)kα , (8.2)

where kα denotes the number of planar circles in Sv, and r is the height of a
smoothing, i.e. the number of 1-resolutions used in order to obtain Sα. We
then sum (8.2) over all possible α ∈ {0, 1}X , and multiply the result by the
final term (−1)n−qn+−2n− , where as before n+ and n− denote the number
of positive and negative crossings in D, respectively. This process can be
depicted nicely in a diagram as shown in Figure 8.5, which also explains
why we speak of vertices and cubes in this scenario.2

2Bar-Natan’s diagrams (1)-(3) for the (right-handed) trefoil in [BN02] served as templates
for our Figures 8.5, 8.7 and 8.9 for the (positive) Hopf link.
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DHopf =
q(q+q−1)

10

+
(q+q−1)2

00

��

q2(q+q−1)2

11

��

q(q+q−1)

01

��
(q + q−1)2 − 2q(q + q−1) + q2(q + q−1)2

= q−2 + 1 + q2 + q4
·(−1)n−qn+−2n−

−−−−−−−−−−−−−−→
(with (n+, n−) = (2, 0))

1 + q2 + q4 + q6
·(q+q−1)−1

−−−−−−−→ V ( )|√t=−q = q + q5.

Figure 8.5: The cube [0, 1]X for a diagram DHopf of the (positive) Hopf link. Each vertex
α ∈ {0, 1}X is decorated with a box containing the vertices’ coordinates in the lower
right corner, and the corresponding complete smoothing Sα and polynomial (−1)rqr(q+
q−1)kα in the center and upper right corner, respectively. The bottom line shows how
to obtain the Jones polynomial of the (positive) Hopf link from the depicted cube.

Convention. It will be convenient in later sections and for computations
to have a convention giving an enumeration of the circles in a complete
smoothing Sα of D. We adapt the convention described in [BN02, Section
3.3]. First, we label each edge of D individually by integers in an ascending
order starting from 1. Then, given a complete smoothing Sα, we label every
circle by the minimal integer of the edges appearing in it. This gives us an
ascending enumeration of circles, although not necessarily by consecutive
integers. So last but not least, we relabel the circles according to their
enumeration starting at 1. See Figure 8.6 for an example. However, for
better readability we will keep the enumeration implicit and most of the
time omit them in our figures, and only refer to them when needed.

The 1-skeleton of the cube [0, 1]X as depicted in Figure 8.5 will play an
important role in the upcoming sections, so let’s give it a proper name.

Definition 8.6 (Cube of Resolutions). Let L ⊂ S3 be an oriented link
with diagram D. Let X ⊂ D be the subset of crossings of D. Then the
1-skeleton of the cube [0, 1]X with vertices α ∈ {0, 1}X identified with the
corresponding complete smoothings Sα with circles enumerated according
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(0,0)-resolution,

label

relabel

Figure 8.6: Our convention for enumerating circles in complete smoothings of link dia-
grams.

to our convention is called the cube of resolutions of D, and denoted by
Q(D).

8.2 Khovanov homology I

Khovanov homology was introduced by M. Khovanov in 1999 as a “categori-
fication of the Jones polynomial” [Kho00]. Two decades after its discovery
however we know that Khovanov homology (and all its variations) bears
much more information. For instance, one may extract a lower bound on
the slice genus of a knot using the Rasmussen s-invariant [Ras10], and it
is know that Khovanov homology detects the unknot [KM11], a question
that is still open for the Jones polynomial at the time of writing. In this
sense, one could say that the categorification of the Jones polynomial is
just a mere property. Nonetheless, approaching Khovanov homology via
categorification is still a suitable way to get a first understanding of its
spirit. Thus, we will pick up where we stopped in Section 8.1 and show
how to obtain Khovanov homology by categorifying the Jones polynomial,
following Bar-Natan’s exposition in [BN02].3

Khovanov’s categorification can intuitively be understood as the process
of encoding the Jones polynomial into a homological object. The basic idea
is to replace the polynomials of the form (−1)rqr(q+ q−1)kα that pop up in
the computation of the Jones polynomial by graded vector spaces such that
their graded dimension equals said polynomials. These vector spaces then
form the cornerstones of a bigraded chain complex C, with a homological
and a so-called quantum grading,4 such that the graded Euler characteristic

3A more formal approach is given by Khovanov in his original paper [Kho00].
4The gradings of Khovanov homology, in particular the quantum grading, will be discusses
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of this complex equals the Jones polynomial. Let us be more precise.

Definition 8.7. Let V =
⊕

m∈Z Vm be a graded finite-dimensional vector
space with homogeneous components Vm.

1. The graded dimension of V is defined as

qdimV :=
∑
m∈Z

qm dimVm ∈ Z[q±1].

2. Let l ∈ Z. Then the degree (or grading) shift operation ·{l} on V is
defined as

V {l} :=
⊕
m∈Z

V {l}m, V {l}m := Vm−l

3. The degree of a non-zero homogeneous element x ∈ Vm, m ∈ Z, is
defined as

deg x := m.

The degree of 0 is set to be indefinite.

Remark 8.8. Observe that the degree shift has the following effect on the
graded dimension of V :

qdimV {l} = ql(qdimV ).

Definition 8.9. Let

C = · · · → Cr dr→ Cr+1 → · · ·

be a chain complex of (possibly graded) finite-dimensional vector spaces.

1. Let s ∈ Z. Then the height shift operation ·[s] on C is defined as

C[s] := · · · → Cr[s]
dr[s]→ Cr+1[s]→ · · · , Cr[s] := Cr−s,

with differentials shifted accordingly. Here, r is called the height of a
chain group Cr.

2. The graded Euler characteristic of C is defined as

χq(C) :=
∑
r∈Z

(−1)r qdimHr(C).

Remark 8.10. Let

C = · · · → Cr dr→ Cr+1 → · · ·
more precisely in Section 8.10.
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be a chain complex of graded finite-dimensional vector spaces. Note that C
can be considered as what is sometimes called a differential graded module
(e.g. in [McC85]): a Z-graded module

C =
⊕
r∈Z

Cr

with a differential d =
⊕

r∈Z d
r, i.e. an endomorphism d : C → C that

squares to the identity. From this point of view, (C, d) becomes a bigraded
chain complex, where the Z-grading of C corresponds to the first, homo-
logical grading, and the second grading is given by the individual graded
chain groups Cr. Note that the degree and height shift operators act on
(C, d) as follows:

C[s]{l} =
⊕
r∈Z

⊕
m∈Z

Cr−s,m−l.

Convention. From now on we will work with the usual notion of a graded
chain complex and its corresponding understanding as a differential graded
module as explained in Remark 8.10 interchangeably.

Let us now move towards the categorification of the Jones polynomial.
Let L ⊂ S3 be an oriented link with diagram D, let X ⊂ D be the subset of
crossings, and set n := |X |. As before, we write n = n++n−, where n+ and
n− denote the number of positive and negative crossings in D, respectively.
Let A be the graded 2-dimensional Q-vector space

A := Q[X]/(X2) ∼= ⟨1⟩Q ⊕ ⟨X⟩Q
with

deg 1 = +1, degX = −1,
so that qdimA = (q + q−1). Given a vertex α ∈ {0, 1}X of the cube of
resolutions Q(D), we define the vector space

Aα(D) := A⊗kα{r},

where kα denotes the number of planar circles in the complete smoothing Sα
of D, and r is the height r = |α| =

∑
i αi, i.e. the number of 1-resolutions

used in order to obtain Sα. Note that Aα(D) inherits a grading via

deg(a1 ⊗ a2 ⊗ · · · ⊗ akα) := deg a1 + deg a2 + · · · deg akα ,

where ai ∈ A, i = 1, 2, . . . , kα, are homogeneous.
Observe that Aα(D) is defined precisely such that qdimAα(D) equals

the polynomial that appears at the vertex α of the cube of resolutions when
computing the Jones polynomial (see the end of Section 8.1 and Figure 8.5).
Now, define for 0 ≤ r ≤ n

Cr(D) :=
⊕

α∈{0,1}X ,
|α|=r

Aα(D),
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where we order the summands in reversed lexicographical order with respect
to α (so that we “flatten” the cube of resolutions top-down),5 and set

C(D) :=
n⊕
r=0

Cr(D).

Finally, we define

CKh(D) := C(D)[−n−]{n+ − 2n−}.

As an example, Figure 8.7 shows how the cube of resolutions for the Hopf
link in Figure 8.5 translates to this new setting.

DHopf =
A{1}

10

⊕A⊗2

00

��

A⊗2{2}

11

��

A{1}

01

��
C0(DHopf)

⊕
C1(DHopf)

⊕
C2(DHopf)

= C(DHopf)
·[−n−]{n+−2n−}−−−−−−−−−−−−−−→

(with (n+, n−) = (2, 0))
CKh(DHopf)

Figure 8.7: The cube of resolutions Q(DHopf) for a diagram DHopf of the (positive)
Hopf link. Each vertex α ∈ {0, 1}X is decorated with a box containing the vertices’
coordinates in the lower right corner, and the corresponding complete smoothing Sα

and vector spaces Aα(DHopf) in the center and upper right corner, respectively. The
bottom lines show how to obtain the (soon to be) chain complex CKh(DHopf) from the
depicted cube.

The notation indicates that CKh(D) is going to be the chain complex
corresponding to Khovanov homology. However, there is still a suitable
differential missing, which we are going to construct now. The plan is

5This is our convention for ordering summands in Cr(D), but the result does in fact not
depend on the choice of ordering, see [BN02].
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to define a linear map dσ for every edge of the cube of resolutions Q(D),
and use those to construct a differential. Thus, let σ ⊂ Q(D) be an edge
connecting two vertices α1, α2 ∈ {0, 1}X with |α1| < |α2|. Observe that
the coordinates of α1 and α2 differ at exactly one entry by a 0 and a 1 (so
that in fact |α1| = |α2| − 1). We use this to encode an edge σ ⊂ Q(D) by
a sequence σ ∈ {0, 1, ⋆}X such that σ contains exactly one entry with a ⋆
at the position where the coordinates of α1 and α2 differ. We define the
height of σ as

|σ| :=
n∑
i=0

σ̃i, σ̃i :=

{
σ̃i = σi if σi ̸= ⋆,

σ̃i = 0 if σi = ⋆.
(8.3)

In other words, |σ| equals the height of α1.
Now, let σ ∈ {0, 1, ⋆}X be an edge connecting two vertices α1, α2 ∈

{0, 1}X as above with |α1| = |α2| − 1. The two corresponding complete
smoothings Sα1 and Sα2 differ at exactly one crossing x ∈ X that was
0-resolved in Sα1 and 1-resolved in Sα2 . This means that by the nature
of resolving crossings either two planar circles merge, or one planar circle
splits while moving from Sα1 to Sα2 along the edge σ. This splitting re-
spectively merging along an edge of the cube of resolutions can abstractly
be visualized by a (1 + 1)-dimensional cobordism as shown in Figure 8.8
below (in fact, we can consider a cobordism from Sα1 to Sα2 that is a prod-
uct except in a neighborhood of the crossing that was resolved differently,
where the cobordism is the obvious saddle between the 0- and 1-resolution,
see Remark 8.63).

Figure 8.8: Two circles merging into one and one circle splitting into two via a (1 + 1)-
dimensional cobordism

Now, the circles in a complete smoothing of D correspond to tensor fac-
tors in Aα(D), and so both splitting and merging of circles can be translated
into maps as follows:

m : A⊗ A→ A ∆: A→ A⊗ A
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Let us define m and ∆ on basis elements as follows:

m :

{
1⊗X 7→ X 1⊗ 1 7→ 1

X ⊗ 1 7→ X X ⊗X 7→ 0
∆:

{
1 7→ 1⊗X +X ⊗ 1

X 7→ X ⊗X

Clearly, both m and ∆ are linear maps. Define

dσ : Aα1(D)→ Aα2(D),

where dσ acts as the identity on all tensor factors except on those factors
that are involved in the merging or splitting process, where dσ acts as either
m or ∆.

Remark 8.11. As explained in [BN02], the definition of the maps m and
∆ are not chosen arbitrarily and are in fact forced up to scalars by several
requirements. First, recall that our goal is categorification; the graded
Euler characteristic (see Definition 8.9) of our chain complex CKh should
equal the Jones polynomial (up to normalization). If the degree of the
differential of an arbitrary graded chain complex equals zero and all chain
groups are finite-dimensional, then the graded Euler characteristic equals
the alternating sum of the chain groups. Thus it is favorable that the maps
dσ are of degree zero. This means that m and ∆ have to be of degree −1
due to the degree shift in the spaces Aα(D). Moreover, since there is no
canonical order of the circles in Sα and the corresponding tensor factors of
Aα(D), m and ∆ must be commutative and co-commutative, respectively
(see Section 8.5). These requirements lead to the definition of m and ∆
above.

We have now defined a linear map dσ for every edge of the cube of
resolutions Q(D), and just as we did to obtain the spaces Cr(D), we now
take appropriate sums of these maps:

dr :=
∑
|σ|=r

(−1)σdσ, 0 ≤ r ≤ n

with
(−1)σ := (−1)Σi<jσi ,

where j is the coordinate of the single ⋆ in σ. The reader is invited to
check that the signs are chosen in a way such that all square-faces in the
cube of resolutions anti-commute, which guarantees that dr+1◦dr = 0, thus
making dr a differential. Figure 8.9 extends the diagram from Figure 8.7
by the maps leading to the differentials dr. If we now set

dKh :=
n⊕
r=0

dr,

then (CKh(D), dKh) becomes a bigraded chain complex in the sense of Re-
mark 8.10. We are now ready for the following definition.
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DHopf =
A{1}

10

◦

d1⋆

= ∆

  ⊕A⊗2

00

= m

d⋆0

==

= m

d0⋆

##

��

A{2}⊗2

11

��

A{1}

01

= ∆

d0⋆

==

��
C0(DHopf)

d0 // C1(DHopf)
d1 //

⊕
��

C2(DHopf)

∑
|σ|=0

(−1)σdσ

��

∑
|σ|=1

(−1)σdσ

��

= (C(DHopf), dKh)
·[−n−]{n+−2n−}−−−−−−−−−−−−−−→

(with (n+, n−) = (2, 0))
(CKh(DHopf), dKh)

Figure 8.9: The cube of resolutions Q(DHopf) for a diagram DHopf of the (positive)
Hopf link as in Figure 8.7, but with edges decorated by the maps dσ that lead to the
differential dKh. A little circle at the tail of an edge indicates that the map appears with
a minus sign in the sum dr. The bottom lines show how to obtain the chain complex
(CKh(DHopf), dKh) from the depicted cube.

Definition 8.12 (Khovanov homology). Let L ⊂ S3 be an oriented link
with diagram D. Then (CKh(D), dKh) is called Khovanov chain complex of
D. It is by construction a bigraded chain complex, with a homological and
a quantum grading. The gradings may be read off via

h(x) := |α| − n− (homological grading)
q(x) := deg x+ h(x) + n+ − n− (quantum grading)

where x ∈ Aα(D) is homogeneous. The homology of the chain complex
(CKh(D), dKh) is bigraded as well and called Khovanov homology of L and
denoted by KhQ(L).

The notation KhQ(L) will be justified shortly. Comparing Figure 8.5
and Figure 8.9, it is easy to see that (CKh(D), dKh) does indeed categorify
the Jones polynomial of L by construction of the chain complex. The next
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theorem captures this statement, and a short proof is given for instance in
[BN02, Theorem 1].

Theorem 8.13. The graded Euler characteristic of CKh(D) is equal to the
scaled Kauffman bracket of L which in turn equals the Jones polynomial
of L up to normalization. In symbols:

χq(CKh(D)) = K(L) = (q + q−1)V (L)|√t=q.

In the notation KhQ(L) of Khovanov homology we have secretly hidden
the fact that while the entire construction of the chain complex CKh(D)
depends heavily on the chosen diagram D of L, the homology does sur-
prisingly not! In fact, different choices of diagrams for L yield homotopy
equivalent Khovanov chain complexes. Before stating the corresponding
theorem, let us recall that the Poincaré polynomial of a bigraded chain
complex C is defined as

PC(t) :=
∑
r∈Z

tr qdimHr(C) ∈ Z[t±1, q±1],

where Hr(C) denotes the r-th homology group of C.

Theorem 8.14 ([Kho00]). The graded dimensions of the homology
groups KhrQ(L) and the Poincaré polynomial PCKh(D)(t) of the complex
CKh(D) are link invariants. In particular, PCKh(D)(−1) equals the Jones
polynomial of L up to normalization.

A proof of Theorem 8.14 is given for instance in [Kho00] or [BN02,
Theorem 3]. Let us now compute the Khovanov homology of the Hopf
link.

Example 8.15. Consider the (positive) Hopf link LHopf with diagramDHopf
and cube of resolutions Q(DHopf) as in Figure 8.9. Then CKh(DHopf) takes
the form

0 −→ A{2}⊗2 d0−→ A{3} ⊕ A{3} d1−→ A{4}⊗2 −→ 0

We use the ordered basis (1, 0), (X, 0), (0, 1), (0, X) for A⊕2, and 1⊗1, X⊗
X, 1⊗X,X ⊗ 1 for A⊗2. Then the matrices of d0 and d1 respectively take
the form

Md0 :=


1 0 0 0
0 0 1 1
1 0 0 0
0 0 1 1

 , Md1 :=


0 0 0 0
0 −1 0 1
−1 0 1 0
−1 0 1 0
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Putting Md0 and Md1 into Smith normal form6, we obtain

Md0 ∼


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , Md1 ∼


0 0 0 0
0 0 0 1
0 0 1 0
0 0 0 0


From this, we can immediately read off the isomorphism types of kernels
and images, and obtain

Kh0
Q(LHopf) ∼= Q0 ⊕Q2

Kh1
Q(LHopf) ∼= 0

Kh2
Q(LHopf) ∼= Q4 ⊕Q6.

Here, the subscript denotes the quantum degree of the individual genera-
tors.

This concludes our introduction to Khovanov homology from the point
of view of categorification. However, the maps m and ∆, as well as the
mentioning of (1+1)-dimensional cobordisms already gave a hint of what’s
secretly hidden in the intuitive construction of Khovanov homology that
we followed above. Namely, the Q-vector space A = Q[X]/(X2) and the
maps m and ∆ are part of a more general algebraic structure, a so-called
Frobenius system. These structures exist more generally over (graded) rings
R instead of fields, and any Frobenius system of rank two gives rise to a
functor F from the category of (1 + 1)-dimensional cobordisms to the cat-
egory of modules over R, a so-called topological quantum field theory or
TQFT for short. Without introducing precise definitions at this point, it
should be clear that any such TQFT can be used to translate the cube
of resolutions of a link into a chain complex just as we did above, giving
rise to many possible Khovanov-type link homology theories. The upcom-
ing sections are concerned with making these notions precise in the more
general context of Bar-Natan’s theory for tangles. We will return however
to Khovanov homology in Section 8.11, where we discuss more about its
structure.

8.3 Tangles and tangle diagrams

Tangles can be understood in two ways; either as the building blocks of
knots and links, or as a generalization of them, see (8.4) and (8.5) below.
In the context of Khovanov homology, tangles first appeared in Khovanov’s
papers [Kho00, Kho02], with one result being the discovery of a suitable

6Note that since column operations change the basis of the kernel and row operations change
the basis of the image, we have to do the corresponding inverse operations on the preceding
and succeeding differentials, respectively.
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functoriality property for his homology theory of links.7 However, Kho-
vanov’s approach towards this property is rather involved. In his paper
[Bar05], Bar-Natan picked up Khovanov’s ideas for tangles and simplified
as well as extended his approach using a new language, leading to Bar-
Natan’s theory for tangles and cobordisms.

In the upcoming chapters we will exclusively work with Bar-Natan’s
complex for tangles, so let us pick up Bar-Natan’s more general theory and
introduce the necessary formalism. We start with a treatment of tangles
and tangle diagrams in the present section, and move on to the introduction
of a suitable categorical framework in Section 8.4. In Section 8.5 we discuss
Frobenius algebras and TQFTs, before introducing the Bar-Natan complex
in Section 8.6.

Definition 8.16.

1.) A tangle T is a proper smooth 1-submanifold of a closed oriented 3-ball
B.

2.) Every tangle is 2n-ended for some n ≥ 0, and the 2n points in T ∩ ∂B
are called end points of T.

3.) Two tangles in the same 3-ball B with the same set of 2n end points
in ∂B are called equivalent if there is an orientation-preserving home-
omorphism of B, fixing the boundary pointwise, mapping one tangle
to the other, and preserving the orientation of the tangles if they are
oriented.

Remark 8.17. Throughout this text we will consider oriented tangles,
unless explicitly mentioned otherwise. Note that a tangle with no end
points (i.e. n = 0) is just an ordinary link in S3, and thus of no further
interest beyond that.

Observe that a 2n-ended tangle consists of n arcs and a finite number
of circles.

Definition 8.18. Let n > 0. The connectivity of a 2n-ended tangle T with
arcs α1, α2, . . . , αn ⊆ T is defined as the set {∂α1, ∂α2, . . . , ∂αn}. If n = 0,
we define the connectivity of T as ∅.

It is not hard to see that a tangle with 2n > 0 end points has (2n− 1)!!
possible connectivities, where !! denotes the double factorial. Hence, if a
tangle has 0, 2, 4, 6, . . . end points, then there are 1, 1, 3, 15, . . . possible
connectivities. Bleiler [Ble85] called this notion “string attachments”, but
for its brevity we prefer the term connectivity, which is also used in [SW21,
KWZ21].

7Roughly speaking, this functoriality property says that a 4-dimensional cobordism C be-
tween two links L1 and L2 induces a well-defined homomorphism Kh(C) : Kh(L1) → Kh(L2)
on Khovanov homology. A similar property was also discovered independently by Jacobsson
[Jac04].
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Definition 8.19.

1.) A tangle diagram D is an immersed proper smooth 1-submanifold of
a closed 2-disk E, such that all self-intersections are transverse double
points, endowed with over-under information at each such double point.

2.) Similar to tangles, a tangle diagram has an even number of end points
in D ∩ ∂E.

3.) Two tangle diagrams in the same disk E with the same set of end
points are called equivalent if there is an orientation-preserving home-
omorphism of E, fixing the boundary pointwise, mapping one diagram
to the other while preserving over-under information, and preserving
orientation if the tangle diagram is oriented.

Remark 8.20. All tangles in a ball that is embedded into the 3-sphere
arise as intersections of that ball with a link that is transverse to the ball’s
boundary sphere. Similarly, all tangle diagrams in a disk embedded into
the plane arise as intersection of that disk with a link diagram that is
transverse to the disk’s boundary circle.

A natural question that arises is how tangle diagrams with 2n end points
in two different disks E1, E2 are related to each other. In order to answer
this question, consider orientation-preserving homeomorphisms φ : E1 →
E2 that preserve end points, i.e. that map end points to end points. If two
such homeomorphisms φ, φ′ are isotopic along end point preserving maps,
then they send a tangle diagram D ⊂ E1 to two equivalent tangle diagrams
φ(D), φ′(D) ⊂ E2. By Alexander’s trick (see e.g. [FM11, discussion after
Lemma 2.1]), the isotopy class of a homeomorphism E1 → E2 is determined
by the isotopy class of its restriction to the boundary. So there are 2n end
point preserving isotopy classes of homeomorphisms E1 → E2, each giving
a way to identify equivalence classes of 2n-ended tangle diagrams in two
different disks. If one considers tangle diagrams with base points, i.e. one
distinguished end point, then requiring that φ sends base point to base
point determines φ uniquely up to isotopy.

The situation is more complicated for tangles in different balls B1, B2,
however. As before, the end point-preserving isotopy classes of homeomor-
phisms φ : B1 → B2 are determined by the end point-preserving isotopy
classes of homeomorphisms ∂B1 → ∂B2. Those are in (non-canonical) one-
to-one correspondence with the elements of the mapping class group of
the 2n-punctured 2-sphere (see e.g. [FM11] for an introduction to mapping
class groups). For 2n ≥ 4, there are non-trivial mapping classes fixing some
boundary point; so, in contrast to the situation for tangle diagrams, base
pointed tangles with four or more end points in different balls cannot be
identified in a canonical fashion.

This also has consequences for the tangle diagrams of a tangle, which
one may obtain by projection.
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Definition 8.21. Let T ⊂ B be a 2n-ended tangle. Let φ be a homeo-
morphism from B to the unit ball B0 ⊂ R3, mapping the end points of
T on ∂B to {(cos(2kπ/n), sin(2kπ/n), 0) | 0 ≤ k ≤ n}. If the projection
R3 → R2, (x, y, z) 7→ (x, y) sends φ(T ) to a tangle diagram DT in the unit
disk in the xy-plane, we call DT a tangle diagram of T .

A fixed homeomorphism φ : B → B0 sends equivalent tangles T, T ′ to
tangle diagrams DT , D

′
T related by Reidemeister moves and tangle diagram

equivalence. But this is no longer true if one does not specify φ, and the
equivalence class of T is no longer determined by DT .

Let us now focus on the case n = 1, i.e. tangles with 2 end points and
the corresponding tangle diagrams. They will serve as the building blocks
for the construction of Z[G]-homology in Chapter 9. We have the following
one-to-one correspondences:

isotopy classes of
base-pointed ori-
ented links L ⊂ S3

1:1←→

equivalence classes of oriented
2-ended tangles T in a fixed
ball with fixed end points x, y,
with the arc of T oriented
from x to y.

(8.4)

isotopy classes of
base-pointed ori-
ented link diagrams

1:1←→

equivalence classes of oriented
2-ended tangle diagrams D in
a fixed disk with fixed end
points x, y, with the arc of D
oriented from x to y.

(8.5)

Here, ‘base-pointed’ simply means a fixed distinguished point on a link
L ⊂ S3 or on a link diagram away from crossings. Figure 8.10 below shows
an example of the correspondence (8.5).

oo //

Figure 8.10: A base-pointed oriented link diagram on the left and the corresponding 2-
ended tangle diagram in a fixed disk E with fixed end points x, y and with arc oriented
from x to y on the right.
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Let us describe how to get from L to T and vice versa in (8.4). The
complement of an open ball neighborhood of the base point of L is a closed
ball B containing a 2-ended tangle B ∩ L. There are two non-isotopic
homeomorphisms sending end points to end points between B and another
fixed ball; these two correspond to the two elements of the mapping class
group of the twice-punctured sphere. By specifying the orientation of the
arc on the right-hand side of (8.4), we eliminate this ambiguity. In the other
direction, a fixed ball containing a 2-ended tangle T may be embedded into
S3, and the two end points of T may be joined by an arc outside of the
embedded ball, producing a link L ⊂ S3. The correspondence (8.5) can be
shown in a similar way.

So, from now on, we will work with the notions of base-pointed link (di-
agrams) and 2-ended tangle (diagrams) interchangeably. Moreover, we may
associate tangle diagrams to given 2-ended tangles without the ambiguities
arising for tangles with more end points.

In Chapter 12 we are going to work with a special class of tangles,
so-called rational tangles.

Definition 8.22. A 4-ended (oriented or unoriented) tangle T is called
rational if (B, T ) is homeomorphic to (D2× [0, 1], {(−1

2
, 0), (1

2
, 0)}× [0, 1]),

drawn in Figure 8.11.

Figure 8.11: The rational tangle (D2 × [0, 1], {(−1
2 , 0), (

1
2 , 0)} × [0, 1]).

Let us briefly summarize Conway’s famous one-to-one correspondence
[Con70, GK97]

R : Q ∪ {∞} 1:1−→ {unoriented rational tangles}/equivalence (8.6)

(for a general introduction to this topic see e.g. [Cro04]). Let us work with
unoriented tangles in the unit ball B0 ⊂ R3 ⊂ S3 with the four end points
(±1/

√
2,±1/

√
2, 0), and base point (−1/

√
2,−1/

√
2, 0). Generically, the

projection to D2×{0} yields tangle diagrams; these are the tangle diagrams
we consider in what follows. Then, R may be defined by the rules in
Figure 8.12 (where we set 1/∞ = 0 and 1/0 = ∞ = ∞ + 1 = −∞). By a
slight abuse of notation, we denote by R(x) both the tangle and the tangle
diagram (both well-defined up to equivalence).

As stated, these rules are consistent and determine the correspondence
R completely, but they are somewhat redundant: for example, (8.11)
to (8.13) can be derived from the other rules. For simplicity, we will focus
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= R(0) (8.7)

= R(1) (8.8)

R(x) = R(x+ 1) (8.9)

R(x) mirrored at
plane ⟨e1−e2, e3⟩ = R

(
1

x

)
(8.10)

= R(∞) (8.11)

= R(−1) (8.12)

R(x)

= R

(
x

x+ 1

)
(8.13)

R(x) mirrored at
plane ⟨e1, e2⟩ = R(−x) (8.14)

Figure 8.12: The recursive definition of the bijection R between Q ∪ {∞} and
equivalence classes of unoriented rational tangles. In (5.4) and (5.8), e1, e2, e3
denote the standard basis vectors of R3.

in Chapter 12 only on rational tangles T such that R−1(T ) ∈ Q+ = {x ∈
Q | x > 0} (in particular excluding R(0) and R(∞)). The one-to-one corre-
spondence between such rational tangles and Q+ is completely determined
by (8.8),(8.9),(8.10), or by (8.8),(8.9),(8.13).

8.4 Categorical framework for Bar-Natan’s theory of
tangles

The aim of this section is to introduce the necessary categorical notions
for Bar-Natan’s theory of tangles and cobordisms, as well as for our fur-
ther discussions regarding Z[G]-homology and the invariant λ. The main
reference for this section is Bar-Natan [Bar05, Sections 3 and 4.1.1-4.1.2].

Convention. Whenever we refer to “category” in this thesis, we assume
that the category is small, i.e. its classes of objects and morphisms are
actually sets.

Definition 8.23. A category C is called pre-additive if it has the follow-
ing additional structure: for any two given objects O,O′ ∈ ob(C), the
set homC(O,O′) is an abelian group and the composition of morphisms is
bilinear.

Remark 8.24. An arbitrary category C can be made pre-additive by allow-
ing formal Z-linear combinations in every set of morphisms homC(O,O′)
and by extending composition of morphisms in the natural bilinear way.

Definition 8.25. Let C be a pre-additive category. The additive closure
Mat(C) of C is defined as follows:

• The objects of Mat(C) are (possibly empty) formal direct sums⊕ni=1Oi
whereOi ∈ ob(C), and thought of as column vectors (O1 O2 · · · On)⊤;
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• IfO = ⊕ni=1Oi,O′ = ⊕mi=1O′
i ∈ ob(Mat(C)), then a morphism F : O →

O′ in Mat(C) is an m × n-matrix F = (Fij) of morphisms Fij ∈
homC(Oi,O′

j);

• The addition of morphisms in Mat(C) is given by matrix addition;

• The composition of morphisms in Mat(C) is defined using the rules of
matrix multiplication using the composition of morphisms in C, i.e. if
F = (Fij) : O → O′ and G = (Gjk) : O′ → O′′, then

G ◦ F = ((G ◦ F )ik) :=
((∑

j

Gjk ◦ Fij
)
ik

)
.

Definition 8.26. Let C be a pre-additive category. The category of com-
plexes Kom(C) over C is defined as follows:

• The objects of Kom(C) are chains of finite length

(C, d) = · · · −→ Cr−1 dr−1

−→ Cr dr−→ Cr+1 −→ · · · ,

with Cr ∈ ob(C) and dr ∈ homC(C
r, Cr+1) such that dr ◦ dr−1 = 0 for

all r;

• The morphisms of Kom(C) are chain maps F : (C1, d1) → (C2, d2)
defined just as in ordinary homological algebra;

• Composition of morphisms in Kom(C) is given as well by composition
of chain maps just as in ordinary homological algebra.

Definition 8.27. Let C be a pre-additive category. Then two morphisms

F,G : (C1, d1)→ (C2, d2)

are called homotopic, in symbols F ∼ G, if for all r ∈ Z there exist
morphisms h : Cr

1 → Cr−1
2 such that

F r −Gr = hr+1 ◦ dr1 + dr−1
2 ◦ hr.

If there are morphisms F : (C1, d1) → (C2, d2) and G : (C2, d2) → (C1, d1)
such that G ◦ F and F ◦G are homotopic to the identity morphisms, then
the complexes (C1, d1) and (C2, d2) are called homotopy equivalent and F,G
form a homotopy equivalence.

Definition 8.26 and 8.27 mimics the notions of ordinary chain complexes
and chain maps of, say, abelian groups, for a pre-additive category C, and
many properties of the ordinary setting are preserved. In particular, ho-
motopy equivalence defines an equivalence relation on the morphisms of
Kom(C), leading to the following definition.
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Definition 8.28. Let C be a pre-additive category. Then we define the
category Kom/h(C) as Kom(C) with morphisms considered up to homotopy
equivalence.

We continue with the notion of a graded category.

Definition 8.29. We call a pre-additive category C graded if it carries the
following additional structure:

1. For any two objects O,O′ ∈ ob(C), homC(O,O′) forms a graded
abelian group such that composition of morphisms respects the grad-
ing and such that all identity maps are of degree zero.

2. There is a Z-action (m,O) 7→ O{m} on the objects of C, called grading
shift by m.

If C only satisfies 1., we define the graded closure cl(C) of C by adding
“artificial” objects O{m} for any O ∈ ob(C) and m ∈ Z, and define the
grading shift in the obvious way (so that cl(C) satisfies 1. and 2. and
becomes graded).

Remark 8.30.

1.) Note that the grading shift changes gradings of morphisms, but not
the set of morphisms itself: homC(O,O′) = homC(O{m},O′{n}), but
if f ∈ homC(O,O′) has degree d, then f ∈ homC(O{m},O′{n}) has
degree d−m+ n.

2.) If C is a graded category, the additive closure Mat(C) and the category
of complexes Kom(C) can be considered as graded categories as well.

Next, let us describe the categories we are going to work with in order
to obtain Bar-Natan’s theory for tangles.

Definition 8.31. We define the following categories:

1. The category Cob3(2n):

• The objects of Cob3(2n) are crossingless unoriented 2n-ended
tangle diagrams DT (possibly empty if n = 0) inside the unit disk
D2 ⊂ R2 with fixed end points, together with an enumeration of
every circle appearing in DT (see Figure 8.13 below).

2

1

3

1

3

2

Figure 8.13: Two non-equal but isomorphic objects in Cob3(2n).
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• Morphisms are 2-dimensional cobordisms (orientable, possibly
disconnected surfaces) between two such diagrams DT , DT ′ , con-
sidered up to boundary-fixing isotopy. We assume that cobor-
disms are properly embedded in the cylinder D2 × [0, 1] such
that if C is a cobordism from DT to DT ′ , then:
(a) C ∩D2 × {0} = DT ;
(b) C ∩D2 × {1} = DT ′ ;
(c) C ∩ S1 × [0, 1] = the straight boundary arcs connecting the

end points of DT and DT ′ in the cylinder D2 × [0, 1].
• The identity is given by the product cobordism, and composition

is done by concatenating cobordisms.
• We turn Cob3(2n) into a pre-additive category as described in

Remark 8.24. For better readability we will frequently keep the
enumeration implicit and omit it in our diagrams.

2. The category Cob3
/l(2n):

• The objects of Cob3
/l(2n) are the same as the objects of Cob3(2n).

• The morphisms of Cob3
/l(2n) are those of Cob3(2n), modulo the

local relations S, T , and 4Tu (see Figure 8.14).
• The identity morphism is the product cobordism, and composi-

tion is done by concatenating cobordisms.
• The local nature of the S-, T -, and 4Tu-relation preserve pre-

additivity of Cob3(2n) when taking the quotient on morphisms,
thus making Cob3

/l(2n) pre-additive as well.

+ = +

= 2= 0

S-relation T -relation

4Tu-relation

Figure 8.14: The defining relations for Cob3/l(2n).

The local relations are to be understood as follows. Whenever a cobor-
dism contains a connected component that is a closed sphere or a closed
torus (i.e. with no boundary), the S- and T -relation say that we may set
these components to 0 and 2, respectively. The 4Tu-relation says that if
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a cobordism C contains four embedded 2-disks D1, D2, D3, D4 (possibly in
different connected components), then

C12 + C34 = C13 + C24,

where Cij, i, j ∈ {1, 2, 3, 4}, denotes the cobordism C with disks Di and
Dj replaced by a tube connecting the boundary of the two disks. The
local relations are needed in order to obtain invariance under the three
Reidemeister moves for the Bar-Natan complex of a tangle, see Section 8.6.

The category Cob3
/l(2) will play an important role in subsequent sec-

tions. The tangle diagrams that form the objects in this category consist
of the disjoint union of a single arc and a certain number of closed circles.
Let’s give this arc a special name.

Definition 8.32. Let O be an object in Cob3
/l(2). Then the single arc in

O is called special strand.

In order to construct Z[G]-homology in Chapter 9 we are further going
to need the following categories.

Definition 8.33. Let R be a graded ring. Similar to Definition 8.7, we
write R{m} for R with grading shifted by m ∈ Z, i.e. R{m}n = Rn−m. We
define the following categories:

1. The category E :

• There is only one object in E , namely the crossingless diagram
DT0 of the trivial 2-ended tangle T0 in the unit disk in R2 with
the same fixed end points as for the objects in Cob3(2).

• Morphisms are connected cobordisms up to boundary-fixing iso-
topy.

• The identity is given by the product cobordism (a “curtain” of
genus zero, see Definition 8.35), and composition is done by con-
catenating cobordisms.

• We turn E into a pre-additive category using Remark 8.24.

2. The categoryMR:

• The objects ofMR are graded R-modules isomorphic to a direct
sum ⊕ni=1R{mi}.

• Morphisms are graded homomorphisms between R-modules.
• We turn MR into a graded category by introducing the shift

operation( n⊕
i=1

R{mi}
)
{n} :=

n⊕
i=1

R{mi + n}, n ∈ Z.
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Remark 8.34. Note that our definition of the category Cob3(2n) (resp.
Cob3

/l(2n)) differs from Bar-Natan’s definition in [Bar05]: we require that
the objects in Cob3(2n), i.e. crossingless tangle diagrams, come with an
enumeration of the circles in the diagram. This enumeration will be needed
in subsequent sections in order to obtain well-defined TQFTs. It is worth-
while to note that while the enumeration enlarges the set of objects in
Cob3(2n), it does not introduce any new isomorphism classes of objects
compared to Bar-Natan’s definition of Cob3(2n). Moreover, morphisms re-
main unaffected by the enumeration. In fact, the functor that forgets the
enumeration of the circles is an equivalence of categories. In particular, all
results obtained by Bar-Natan in [Bar05] remain true for our definition of
Cob3(2n).

Connected cobordisms between the trivial 2-ended tangle diagram DT0

and itself will have a special role throughout in the upcoming sections and
chapters, so let’s give them a proper name.

Definition 8.35. A connected cobordism of genus k between the trivial
2-ended tangle diagram and itself will be called a curtain of genus k.

Figure 8.15 shows a curtain of genus one.

Figure 8.15: A curtain of genus one.

Remark 8.36. Let G be a formal variable. Observe that there is an iso-
morphism of Z-modules

homCob3(2))(DT0 , DT0)
∼= Z[G]

that is generated by mapping the product cobordism to 1 and the curtain
of genus one to G in Z[G], respectively.

We introduce a notion of degree on cobordisms as follows.

Definition 8.37. Let C ∈ homCob3(2n)(DT1 , DT2) be a morphism between
two tangle diagrams DT1 and DT2 . Then we define the degree of C as

degC := χ(C)− n,

where χ(C) is the Euler characteristic of C
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Using Definition 8.37, we can turn homCob3(2n)(DT1 , DT2) into a graded
abelian group. Consequently, we can extend Cob3(2n) to become a graded
category by taking the graded closure, see Definition 8.29. Since the three
local relations S, T , and 4Tu are degree-homogeneous, Cob3

/l(2n) is graded
too. Last but not least, we use the same notion of degree to turn E into a
graded category as well.

Notation. For the sake of simplicity, we will use the same notation for the
graded versions of Cob3(2n), Cob3

/l(2n) and E .

8.5 Frobenius systems and TQFTs

As mentioned at the end of Section 8.2, what’s secretly hidden in our
construction of Khovanov homology is that the chain complex CKh(D) re-
sults from applying a (1+ 1)-dimensional topological quantum field theory
(TQFT for short) defined by a Frobenius algebra to the cube of resolutions
Q(D). In particular, given a cube of resolutions Q(D), any TQFT coming
from a rank two Frobenius algebra yields a Khovanov-type homology the-
ory, and this principle extends easily to Bar-Natan’s generalization in the
case of 2-ended tangles. We start by recalling some basic definitions.

Definition 8.38. Let R be a commutative unitary ring. An algebra over
R (or R-algebra for short) is a unitary ring A together with a ring homo-
morphism

ι : R→ Z(A)

called unit, where Z(A) denotes the center of A. An R-algebra A is called
commutative if the ring multiplication of A is commutative.

Remark 8.39. The unit ι turns an R-algebra A into an R-module via

r · a := ι(r)a, (8.15)

turning the ring multiplication m : A × A → A into an R-bilinear map.
Using the universal property of tensor products, we can identify the mul-
tiplication m with a map

m⊗ : A⊗R A→ A.

Note that our definition of algebra implies that the algebra multiplication
is associative.

Convention. From now on, we will always consider the multiplication of
an R-algebra as a map m : A ⊗R A → A (and dropping the subscript ⊗
from m⊗). Furthermore, we will consider A both as a ring and R-module
interchangeably (using the scalar multiplication (8.15)).
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Definition 8.40. Let R be a commutative unitary ring. A coalgebra over
R is an R-module A with R-linear maps

∆: A→ A⊗R A (comultiplication)
ε : A→ R (counit)

such that:

(idA ⊗∆) ◦∆ = (∆⊗ idA) ◦∆ (coassociativity)
(idA ⊗ ε) ◦∆ = idA (counit identity).

A coalgebra A is called cocommutative if

τ ◦∆ = ∆,

where τ : A⊗R A→ A⊗R A denotes the flip map τ(a⊗ b) := b⊗ a.

We assume that the reader is familiar with the notion of a graded ring
and algebra. However, we will eventually also encounter filtered algebras,
so let’s recall the definition of a filtration.

Definition 8.41. Let R be a commutative unitary ring and A an algebra
over R. An ascending filtration on A is a sequence of subalgebras F =
(Fi)i∈I , indexed by a set I ⊆ Z that is bounded from below and closed
under addition, such that:

1. Fj ⊆ Fi for i, j ∈ I with j ≤ i;

2. Fi · Fj ⊆ Fi+j for all i, j ∈ I;

3. A =
⋃
i∈I Fi.

Similarly, a descending filtration on A is a sequence of subalgebras F =
(Fi)i∈I , indexed by a set I ⊆ Z that is bounded from above and closed
under addition, such that 2. and 3. hold, and Fi ⊆ Fj for i, j ∈ I with
j ≤ i. The algebra A together with a filtration F is called filtered. If I
is finite, then a filtration F is said to be of finite-length. If φ : A → A′

is a homomorphism of algebras A,A′ with (both ascending or descending)
filtrations F = (Fi)i∈I , F

′ = (F ′
i )i∈I that are indexed by the same set I

respectively, we say that φ is filtered of degree k if i+k ∈ I and φ(Fi) ⊆ F ′
i+k

for all i ∈ I.

Convention. If unimportant or clear from the context, we will refer to an
ascending or descending filtration simply as filtration.

Remark 8.42. Let A ∼=
⊕

i∈I Ai be an I-graded algebra over an I-graded
commutative unitary ring R, where I ⊆ Z. If I is bounded from below,
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then the grading on A induces an ascending filtration F a = (F a
i )i∈I by

setting
F a
i :=

⊕
j∈I,
j≤i

Aj, i ∈ I.

Similarly, if I is bounded from above then the grading induces a descending
filtration F d = (F d

i )i∈I via

F d
i :=

⊕
j∈I,
j≥i

Aj, i ∈ I.

Definition 8.43. Let A be a filtered algebra over a commutative unitary
ring R with filtration F = (Fi)i∈I . Given a non-zero element a ∈ A such
that

a ∈ Fi, a /∈ Fj

{
for all j < i if F is ascending,
for all j > i if F is descending,

for some i ∈ I, then we define the filtration degree of a as

degF a := i.

The filtration degree of 0 is set to be indefinite (i.e. of no particular value).

Definition 8.44. Let A be a filtered algebra over a commutative unitary
ring R with filtration F = (Fi)i∈I . Further, let l ∈ Z and set

I + l := {i+ l | i ∈ I} ⊆ Z.

Then the (filtration) degree shift operation ·{l} on A is defined as returning
the algebra A with new filtration F ′ = (F ′

i )i∈I+l given by

F ′
i := Fi−l, i ∈ I + l.

We write A{l} for the algebra A with filtration F ′.

Remark 8.45. Let A1, . . . , An be filtered algebras over a commutative
unitary ring R with ascending filtrations F j = (F j

i )i∈I for j = 1, . . . , n
respectively (so that all F j are indexed by the same set I ⊆ Z). Then
there is an induced ascending filtration F⊗R = (F⊗R

i )i∈I on the tensor
product

⊗n
j=1Aj by setting

F⊗R
i := spanR {a1 ⊗ · · · ⊗ an ∈

n⊗
j=1

Aj |
n∑
j=1

degF j ai ≤ i}

for all i ∈ I. The filtration degree of an element a =
∑k

i=1 ai,1⊗· · ·⊗ai,n ∈⊗n
j=1Aj is then given as

degF⊗R (a) = max
i=1,...,k

( n∑
j=1

degF j ai,j

)
. (8.16)
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Similarly, there is an induced ascending filtration F⊕ = (F⊕
i )i∈I on the

direct sum
⊕n

j=1Aj by simply setting

F⊕
i :=

n⊕
j=1

F j
i . (8.17)

The filtration degree of an element (a1, . . . , an) ∈
⊕n

j=1Aj is then given as

degF⊕((a1, . . . , an)) = max
j=1,...,n

degF j aj

The same holds if the filtrations F j are descending by replacing max with
min in (8.16) and (8.17), respectively.

We will not only encounter filtered algebras, but also filtered chain
complexes. Let’s quickly translate the above definitions into the language
of chain complexes.

Definition 8.46. Let R be a commutative unitary ring and R-Mod the
category of modules over R. Further, let (Ω, d) ∈ Kom(R-Mod) be a
chain complex. An ascending filtration of Ω is a sequence of subcomplexes
C = ((Ci, di))i∈I , indexed by a set I ⊆ Z that is bounded from below and
closed under addition, such that:

1. Cj ⊆ Ci for all i, j ∈ I with j ≤ i;

2. di(Ci) ⊆ Ci for all i ∈ I;

3.
⋃
i∈I Ci = Ω.

Similarly, a descending filtration on (Ω, d) is a sequence of subcomplexes
C = ((Ci, di))i∈I , indexed by a set I ⊆ Z that is bounded from above
and closed under addition, such that 2. and 3. hold, and Ci ⊆ Cj for
all i, j ∈ I with j ≤ i. A chain complex together with a filtration is
called filtered, and the filtration is of finite length if the set I is finite. If
φ : (Ω, d) → (Ω′, d′) is a chain map of chain complexes (Ω, d) and (Ω′, d′)
with filtrations C = ((Ci, di))i∈I and C ′ = ((C ′

i, d
′
i))i∈I that are indexed by

the same set I respectively, we say that φ is filtered of degree k if i+ k ∈ I
and φ(Ci) ⊆ C ′

i+k for all i ∈ I. The filtration degree degC and (filtration)
degree shift operation ·{l} on Ω for l ∈ Z are defined in analogy with the
corresponding notions for filtered algebras (see Definition 8.43 and 8.44).

A filtration on a chain complex Ω induces one on homology, as follows.

Definition 8.47. Let R be a commutative unitary ring and R-Mod the cat-
egory of modules over R. Further, let (Ω, d) ∈ Kom(R-Mod) a chain com-
plex with ascending (resp. descending) filtration C = ((Ci, di))i∈I . Then C
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induces an ascending (resp. descending) filtration S = (Si)i∈I on homology
H∗(Ω) by setting8

Si := {[x] ∈ H∗(Ω) | there exists some y ∈ [x] such that y ∈ Ci}.

If φ : H∗(Ω) → H∗(Ω
′) is a morphism on homology of filtered chain com-

plexes with induced filtrations S = (Si)i∈I and S ′ = (S ′
i)i∈I that are in-

dexed by the same set I respectively, we say that φ is filtered degree k
if i + k ∈ I and φ(Si) ⊆ S ′

i+k for all i ∈ I. The filtration degree degS
and (filtration) degree shift operation ·{l} on H∗(Ω) for l ∈ Z are defined
in analogy with the corresponding notions for filtered algebras (see Defini-
tion 8.43 and 8.44).

Remark 8.48. We make the following observations.

1. The differential of a filtered chain complex is by definition required
to be filtered of degree zero.

2. If φ : Ω → Ω′ is a chain map filtered of degree k, then φ∗ : H∗(Ω) →
H∗(Ω

′) is filtered of degree k as well.

3. Let Ω be a filtered chain complex with ascending filtration C and
induced ascending filtration S on homology H∗(Ω). Then given an
element [x] ∈ H∗(Ω), observe that

degS([x]) = min
y∈[x]

degC y.

Replacing max with min yields the same formula in the descending
case.

4. Let Ω ∼=
⊕

i∈I Ωi be an I-graded chain complex (so that each Ωi is a
subcomplex), where I ⊆ Z. Similar to Remark 8.42, if I is bounded
from below, then the grading on Ω induces an ascending filtration
Ca = (Ca

i )i∈I by setting

Ca
i :=

⊕
j∈I,
j≤i

Ωj, i ∈ I.

Similarly, if I is bounded from above then the grading induces a
descending filtration Cd = (Cd

i )i∈I via

Cd
i :=

⊕
j∈I,
j≥i

Ωj, i ∈ I.

8We refrain from the introduction of a filtration on homology as the definition should be
clear to the reader at this point.
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5. An ascending finite length filtration C on a chain complex Ω induces
a spectral sequence that converges to the so-called associated graded
group G(H∗(Ω)) of H∗(Ω) with induced filtration S. Here, G(H∗(Ω))
is defined as

G(H∗(Ω)) :=
⊕
i∈I

Gi, Gi := Si/Sj

with i > j such that i > k ≥ j implies k = j. A similar statement is
true for descending filtrations. See [McC85] for details.

We are now ready to introduce the notion of a Frobenius system.

Definition 8.49. A Frobenius system (or Frobenius algebra) is a 4-tuple
F = (R,A,∆, ε) consisting of a graded commutative unitary ring R and a
graded or filtered free R-module A equipped with

1. a commutative algebra structure (multiplication m, unit ι); and

2. a cocommutative coalgebra structure (comultiplication ∆, counit ε),

such that the so-called Frobenius identity holds:

∆ ◦m = (Id⊗m) ◦ (∆⊗ Id). (8.18)

The maps defining the (co-)algebra structure are required to be homoge-
neous respectively filtered of a certain degree. The Frobenius system F is
called graded (resp. filtered) if A is graded (resp. filtered).

As one might guess from the definition there exist many different Frobe-
nius algebras, and we have already encountered one in Section 8.2, namely
A = Q[X]/(X2), with more examples following shortly. However, we will
only be interested in rank 2 Frobenius systems, i.e. Frobenius systems where
A ∼= R1A ⊕RX as R-modules for some X ∈ A.

We already mentioned several times that a Frobenius system gives rise
to a topological quantum field theory, i.e. a functor from the category of
(1 + 1)-dimensional cobordisms to a certain category of modules. Before
making this precise, let us make two observations.

First, given a rank 2 Frobenius algebra A ∼= R1A ⊕ RX, we have an
isomorphisms of R-modules

A⊗R · · · ⊗R A︸ ︷︷ ︸
n times

∼= R⊕2n ∼= A⊕ · · · ⊕ A︸ ︷︷ ︸
2n−1 times

.

In particular, this allows us to consider tensor products A⊗Rn as objects in
the categoryMA (see Definition 8.33).

Second, the morphisms of Cob3
/l(2) can be expressed as sums (recall that

Cob3
/l(2) is pre-additive) of compositions of disjoint unions of the following

elementary cobordisms (details can be found in [Kho00]):
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(8.19)

Thus in order to define a functor on Cob3
/l(2), it is enough to specify how

it acts on objects and the elementary cobordisms in (8.19).
We make the following definition.

Definition 8.50. Let F = (R,A,∆, ε) be a rank 2 Frobenius system. A
topological quantum field theory (or TQFT for short) is a functor

F : Cob3
/l(2)→MA

defined as follows:

1. On objects, F acts in the following way:

F
(
⊔ · · ·︸ ︷︷ ︸

n times

)
= A{1} ⊗R A{1} ⊗R · · · ⊗R A{1}︸ ︷︷ ︸

n times

.

Here, the special strand corresponds to the first tensor factor while
the other factors are ordered according to the enumeration of the
circles. The underline indicates the action of A on the tensor product
A{1}⊗RA{1}⊗n, turning it into an A-module. If an object in Cob3

/l(2)
is shifted in grading, say k, then the resulting tensor factors are shifted
by k + 1, respectively.

2. On morphisms, F is defined via

F
( )

= m : A{1} ⊗ A{1} → A{1}

F
( )

= ι : R{1} → A{1}

F
( )

= ∆: A{1} → A{1} ⊗ A{1}

F
( )

= ε : A{1} → R{1}

F
( )

= Id: A{1} → A{1}

F
( )

= Id: A{1} → A{1}

F
( )

= m : A{1} ⊗ A{1} → A{1}

F
( )

= ∆: A{1} → A{1} ⊗ A{1}
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If A is graded, then F is called a graded TQFT, and if A is filtered, then
F is called a filtered TQFT. We require that F respects the grading on
Cob3

/l(2), so that on objects F(O{k}) = F(O){k} for k ∈ Z and similar
for morphisms.

Notation. As the symbols in Definition 8.49 and 8.50 already indicate, we
abuse notation and use the letter F to denote the Frobenius system, the
corresponding algebra A, and the corresponding TQFT. Furthermore, we
abuse language and refer to F as a Frobenius system (resp. Frobenius al-
gebra) and TQFT interchangeably. We will sometimes also use the algebra
A to denote the entire Frobenius system (resp. Frobenius algebra).

Let us make several remarks regarding TQFTs.

Remark 8.51.

1.) If F is a filtered TQFT, then we use Remark 8.45 to endow tensor
products A{1} ⊗R A{1} ⊗R · · · ⊗R A{1} with the induced filtration so
that F returns when applied to objects in Cob3

/l(2) a filtered space.

2.) The grading shift on A by 1 in the definition of a TQFT are to be
explained as follows: we will only work with rank 2 Frobenius system
that are either graded, or whose filtration is induced by a grading. In
this sense, if A ∼= R1A ⊕ RX in specific examples, then we will always
use the grading

deg 1 = 0, degX = −2, (8.20)

and endow A if necessary with the filtration induced by that grading (as
for instance in Section 8.10). Now, the grading shift is needed in order
to obtain a graded (resp. filtered) chain complex whose differential is
of graded (resp. filtered) degree zero when applying F to the cube of
resolutions of a link or tangle, see Section 8.6. The advantage of (8.20)
is however that in our examples, the algebra multiplication will always
be of graded or filtered degree zero.

3.) Let DT be an object in Cob3
/l(2), i.e. an unoriented crossingless tangle

diagram in the unit disk. Endowing DT with an orientation, the 1:1-
correspondence between 2-ended tangle diagrams and base pointed link
diagrams (see (8.5)) assigns to the equivalence class of DT a unique
isotopy class of a base-pointed oriented crossingless link diagram. If we
forget about the base point and orientation, and endow circles with an
enumeration, then each link diagram in this isotopy class is an object in
Cob3

/l(0). Since a TQFT F assigns by definition isomorphic A-modules
to isomorphic objects in Cob3

/l(2), F induces a well-defined functor

F ′ : Cob3
/l(0)→MR

by similar rules as in Definition 8.50. Observe that the target category
of F ′ isMR and notMA; this is due to the fact that after translating an
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object in Cob3
/l(0) into a tensor product A{1}⊗n, there is no canonical

way to obtain an A-module structure on said tensor product without
introducing further conventions.

4.) Let F be a TQFT corresponding to a rank 2 Frobenius system. Con-
sider the following two cobordisms in Cob3

/l(2):

C1 = C2 =

Clearly, C1 and C2 are isotopic preserving the boundary, so we better
have F(C1) = F(C2). Now observe that

F(C1) = ∆ ◦m
F(C2) = (Id⊗m) ◦ (∆⊗ Id).

The equality ∆ ◦ m = (Id ⊗ m) ◦ (∆ ⊗ Id) is precisely the Frobenius
identity of a Frobenius system (see Definition 8.49), and so F(C1) =
F(C2) does indeed hold.

5.) The term topological quantum field theory has a broad use throughout
physics and mathematics (see Section 2.4), and definitions might differ
throughout the literature. In mathematics, a TQFT is usually under-
stood in the sense of Atiyah’s axiomatic formulation in [Ati88b], with
the basic idea being that a TQFT should be a functor from a certain
category of cobordisms to a certain category of vector spaces or mod-
ules. Precise definitions are then made depending on the context and
individual use, such as we did with Definition 8.50.

Before looking at examples, let us introduce as in [Kho06] two operations
that deform Frobenius systems.

Definition 8.52. Let F = (R,A,∆, ε) be a Frobenius system, R′ a graded
commutative unitary ring, and φ : R → R′ a ring homomorphism. Then
we define a Frobenius system F ′ = (R′, A′,∆′, ε′) as follows:

A′ := A⊗R R′

m′ := m⊗ IdR′ , ι′ := ι⊗ IdR′

∆′ := ∆⊗ IdR′ , ε′ := ε⊗ IdR′

(here, we used that A′⊗R′ A′ ∼= (A⊗RA)⊗RR′ in order to define m′). The
Frobenius system F ′ is said to be obtained from F by a base change.
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Remark 8.53. If the Frobenius system F is graded, then a base change
might collapse the grading, depending on whether φ : R → R′ is homoge-
neous of a certain degree. Thus the resulting Frobenius system F ′ might
no longer be graded, but can filtered instead (for an example, see Defini-
tion 8.59).

Definition 8.54. Let F = (R,A,∆, ε) be a Frobenius system and y ∈ A
invertible. Then we define a Frobenius system F t = (R,A,∆′, ε′) by setting

∆′(x) := ∆(y−1x), ε′(x) := ε(yx).

The Frobenius system F t is said to be obtained from F by a twist.

In order to motivate the following examples, we will take for the moment
for granted that a Frobenius system and the corresponding TQFT yields
a Khovanov-type homology theory. We will explain this process in the
upcoming Section 8.6.

Let us now introduce the explicit Frobenius systems that we will en-
counter throughout this text. In the following, we will accept for motiva-
tional purposes that a Frobenius system induces a homology theory, and
will explain this process in the upcoming Section 8.9.

Definition 8.55 (Khovanov System). The Frobenius system FZ =
(RZ, AZ,∆, ε) is defined as

RZ = Z, AZ = Z[X]/(X2), ι(1) = 1,

m(1⊗ 1) = 1 m(X ⊗X) = 0

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 ε(1) = 0

∆(X) = X ⊗X ε(X) = 1

We equip FZ with a grading by setting

deg 1 = 0, degX = −2.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.
If F is a field (e.g. Q or Fp for a prime p), we define FF as FZ with coefficients
switched to F (more formally, the unique map φ : Z → F given by 1 7→ 1
defines a base change from FZ to FF).

The system FZ is the Frobenius system originally used by Khovanov
[Kho00] in order to construct his homology theory (up to a shift in grad-
ing).9 The system FQ is the one that we encountered in Section 8.2 (up to
a shift in grading).

9In fact, Khovanov worked over the even more general ground ring Z[c], but noticed later
in [Kho06] that adding c does not provide any new information on the resulting homology
theories.
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Definition 8.56 (Universal System). Let h, t be formal variables. The
Frobenius system Funiv = (Runiv, Auniv,∆, ε) is defined as

Runiv = Z[h, t], Auniv = Runiv[X]/(X2 − hX − t), ι : Runiv ↪→ Auniv,

m(1⊗ 1) = 1 m(X ⊗X) = hX + t

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1 ε(1) = 0

∆(X) = X ⊗X + t1⊗ 1 ε(X) = 1

We equip Funiv with a grading by setting

deg 1 = 0, degX = deg h = −2, deg t = −4.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

This Frobenius system was first described by Khovanov in [Kho06]. As
the subscript indicates, Funiv is a universal Frobenius system in the sense
that any other rank 2 Frobenius system can be obtained from Funiv by a
composition of base change and twist, see [Kho06, Proposition 5]. As an
example, the ring homomorphism φ : Runiv → Z defined by φ(h) = φ(t) = 0
and φ(1) = 1 defines a base change giving back the previously described
Frobenius system FZ.

Definition 8.57 (Z[G]-System). Let G be a formal variable. The Frobe-
nius system FZ[G] = (RZ[G], AZ[G],∆, ε) is defined as

RZ[G] = Z[G], AZ[G] = RZ[G][X]/(X2 +GX), ι : RZ[G] ↪→ AZ[G],

m(1⊗ 1) = 1 m(X ⊗X) = −GX
m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 +G1⊗ 1 ε(1) = 0

∆(X) = X ⊗X ε(X) = 1

We equip FZ[G] with a grading by setting

deg 1 = 0, degX = degG = −2.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

As the subscript indicates, FZ[G] will be the Frobenius system that we
use in order to construct Z[G]-homology in Chapter 9. Observe that FZ[G]

can be obtained from the universal system Funiv by a base change that
sends 1 7→ 1, h 7→ −G, t 7→ 0. We will see in Section 9.2 that FZ[G] yields
a homology theory that is as strong as the one induced by Funiv, despite
having less formal variables. Note that if we switch coefficients from Z to
F2 and replace G with the formal variable h, then we obtain Bar-Natan’s
system in [Bar05, Section 9].



164 8. Preliminaries

Definition 8.58 (Alishahi-Dowlin System). Let t be a formal variable.
The Frobenius system FAD = (RAD, AAD,∆, ε) is defined as

RAD = Q[t], AAD = RAD[X]/(X2 − t), ι : RAD ↪→ AAD,

m(1⊗ 1) = 1 m(X ⊗X) = t

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 ε(1) = 0

∆(X) = X ⊗X + t1⊗ 1 ε(X) = 1

We equip FAD with a grading by setting

deg 1 = 0, degX = −2, deg t = −4.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

The system FAD was used recently by Alishahi-Dowlin [AD19] to con-
struct their invariant uX(K) (resp. ut(K)) that yields a lower bound on
the unknotting number of a knot K (see also Section 10.4). FAD is closely
related to the following famous system.

Definition 8.59 (Lee System). The Frobenius system FLee =
(RLee, ALee,∆, ε) is defined as

RLee = Q, ALee = Q[X]/(X2 − 1), ι : Q ↪→ ALee,

m(1⊗ 1) = 1 m(X ⊗X) = 1

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 ε(1) = 0

∆(X) = X ⊗X + 1⊗ 1 ε(X) = 1

We equip FLee with a descending filtration given by

{0} ⊂ F0 ⊂ F−2 = ALee,

where F0 is generated by 1 and F−2 is generated by 1 and X. The maps
m, ι,∆, ε are then filtered of degree 0, 0,−2, 0 respectively.

The system FLee was first introduced by Lee [Lee05] as a deformation
of Khovanov homology. It is of particular interest because it induces a
filtered homology theory that gives rise to a spectral sequence with E2 page
Khovanov homology that converges to the associated graded of the filtration
on homology. Moreover, the system was used by Rasmussen [Ras10] in
order to obtain his famous s-invariant, which provides a lower bound on
the slice genus of a knot. More details will be given in Section 8.10. Note
that FLee results from FAD by setting t = 1. This collapses the grading
in FAD (i.e. the (co-)algebra maps are no longer homogeneous), but the
descending filtration on AAD that is induced by the grading yields precisely
the filtration on ALee after setting t = 1.
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Definition 8.60 (Bar-Natan System). Let h be a formal variable. The
Frobenius system FBN = (RBN, ABN,∆, ε) is defined as

RBN = F2[h], ABN = RBN[X]/(X2 − hX), ι : RBN ↪→ ABN,

m(1⊗ 1) = 1 m(X ⊗X) = hX

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1 ε(1) = 0

∆(X) = X ⊗X ε(X) = 1

We equip FBN with a grading by setting

deg 1 = 0, degX = deg h = −2.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

The system FBN was first introduced by Bar-Natan in [Bar05]. Turner
[Tur06] showed that setting h = 1 yields a filtered Frobenius system similar
to the Lee system with ground field F2. This filtered system also induces
a spectral sequence with E1 page Khovanov homology over F2 (i.e. the
homology resulting from F2) that converges to the associated graded, and
it can be used to define the Rasmussen s-invariant over F2. Again, more
details will be provided in Section 8.10.

Definition 8.61 ((α, β)-System). Let F be a field (e.g. Q or Fp with p
a prime), and α, β ∈ K. The Frobenius system Fα,β = (Rα,β, Aα,β,∆, ε) is
defined as

Rα,β = F, Aα,β = F[X]/(X2 − αX − β), ι : F ↪→ Aα,β,

m(1⊗ 1) = 1 m(X ⊗X) = αX + β

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1− α1⊗ 1 ε(1) = 0

∆(X) = X ⊗X + β1⊗ 1 ε(X) = 1

We equip Fα,β with a descending filtration given by

{0} ⊂ F0 ⊂ F−2 = Aα,β,

where F0 is generated by 1 and F−2 is generated by 1 and X. The maps
m, ι,∆, ε are then filtered of degree 0, 0,−2, 0 respectively.

The system Fα,β was used by MacKaay-Turner-Vaz in [MTV07] in order
to define the Rasmussen invariant over the field K. Note that Fα,β results
from Funiv by switching coefficients form Z to K and specializing h and t
to elements of the field. Observe that choosing F = Q and α = 0, β = 1
recovers the system FLee. As for the Lee system, this collapses the grading
but the induced descending filtration on Auniv yields the filtration on Fα,β
after switching coefficients and specializing h and t.
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8.6 The Bar-Natan complex of tangles

Armed with the definitions and notions from Sections 8.3 to 8.5, we are
ready to introduce Bar-Natan’s theory of tangles and cobordisms with ease.
In fact, the construction of the Bar-Natan chain complex is very similar to
the construction of the Khovanov complex CKh in Section 8.4. Let’s start.

Let T be a 2n-ended (oriented) tangle with (oriented) tangle diagram
DT (as defined in Definition 8.21) and with crossings enumerated. Let
X ⊂ DT denote the subset of crossings, set n := |X | and write n = n++n−,
where n+ and n− denote the number of positive and negative crossings in
DT , respectively.

Just as for an ordinary link diagram, we can form the cube of resolutions
of DT as follows. An n-tuple α ∈ {0, 1}X defines a complete smoothing Sα
of DT by 0- and 1-resolving the crossings according to α with respect to
the enumeration of crossings. In order to obtain an ordering on the circles
in Sα, we introduce the following convention.

Convention. Given a 2n-ended tangle T with diagram DT , we label every
edge of DT by integers in an ascending fashion starting at 1. Given a
complete smoothing Sα of DT , we label each component with the minimal
integer of the edge appearing in it. In particular, circles are now ordered
in an ascending fashion with not necessarily consecutive integers. Then we
forget the labelling of the arcs, and reenumerate the circles according to
their order starting at 1. See Figure 8.16 for an example.

(1,1,1)-resolution,

label

relabel

Figure 8.16: Our convention for enumerating circles in complete smoothings of tangle
diagrams.

With the above convention, each complete smoothing Sα defines an
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object in the category Cob3
/l(2n).

Given an edge σ in the 1-skeleton of the n-dimensional cube [0, 1]X

connecting vertices α1 and α2 with |α1| = |α2|−1, we encode σ again using
an n-tuple σ ∈ {0, 1, ⋆} that contains exactly one ⋆ at the single position
where the coordinates of α1 and α2 change.

Just as for links diagrams, the complete smoothings Sα1 and Sα2 are
obtained by resolving crossings in DT in the same way, except at a single
crossing, say the i-th, that gets 0-resolved in Sα1 and 1-resolved in Sα2 .
Geometrically, Sα1 and Sα2 differ by a merging or splitting of a combination
of circles or arcs. Now we can consider again a cobordism Cσ from Sα1 to
Sα2 that is a product except in a neighborhood of the former i-th crossing,
where the cobordism is made up of the obvious saddle between the 0- and
1-resolution.

Sα1

σ // Sα2

��

Figure 8.17: The cobordism Cσ assigned to an edge σ connecting the complete smooth-
ings Sα1 and Sα2 .

This gives us a way to identify the edge σ with the cobordism

Cσ ∈ homCob3/l(2n)
(Sα1 , Sα2),

well-defined up to boundary-fixing isotopy, and we are now ready to define
the cube of resolutions for a tangle diagram DT .

Definition 8.62. Let T be a 2n-ended oriented tangle with oriented tangle
diagram DT with crossings enumerated. Let X ⊂ DT be the subset of
crossings of DT . Then the 1-skeleton of the cube [0, 1]X with
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1. vertices α ∈ {0, 1}X identified with the corresponding enumerated
complete smoothings Sα ∈ ob(Cob3

/l(2n)); and

2. edges σ identified with the corresponding cobordism Cσ that is con-
tained in homCob3/l(2n)

(Sα1 , Sα2)

is called the cube of resolutions of DT and denoted by Q(DT ).

Remark 8.63. Let L be a 0-ended tangle, that is a link in S3, with diagram
DL. Then Q(DL) is nothing but the cube of resolutions of a link diagram
as described in Definition 8.6, with vertices and edges described in the
language of Cob3

/l(0).

Now, when constructing the Khovanov chain complex CKh in Section 8.2,
we translated the cobordisms Cσ into linear maps m and ∆ in order to
obtain a differential dKh. However, for the Bar-Natan chain complex we
won’t translate anything into algebra yet and instead form a chain complex
in Kom(Mat(Cob3

/l(2n))) from the cube of resolutions Q(DT ). For 0 ≤ r ≤
n, define

Cr(DT ) :=
⊕

α∈{0,1},
|α|=r

Sα{r} ∈ ob(Mat(Cob3
/l(2n))),

where we order the summands in reversed lexicographical order with respect
to α (so that we “flatten” the cube of resolutions top-down),10 and set11

[DT ] :=
n⊕
r=0

Cr(DT )[−n−]{n+ − 2n−}.

For the differentials, let σ ∈ {0, 1, ⋆} be an edge of the cube of resolutions
identified with the cobordism Cσ. Then we define

dσ := Cσ ∈ homCob3/l(2n)
(Sα1 , Sα2).

and set for 0 ≤ r ≤ n

dr :=
∑
|σ|=r

(−1)σdσ ∈ homMat(Cob3/l(2n))
(Cr(DT ), C

r+1(DT ))

with Cn+1(DT ) := 0. Here, |σ| denotes the height of σ as defined in (8.3),
and (−1)σ is defined as

(−1)σ := (−1)
∑

i<jσi,

where j is the coordinate of the single ⋆ in σ. Let us make two observations:
10This is our convention for ordering summands in Cr(DT ), but the result does in fact not

depend on the choice of ordering, see [BN02].
11The notation [DT ] is chosen to be consistent with [ILM21].
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1. The linear map dr is homogeneous of degree zero: this follows from our
grading shifts in the definition of Cr(DT ) and the fact that degCσ =
−1, which in turn follows since the degree of a saddle (which is a
morphism in Cob3

/l(4)) is −1 (see Definition 8.37).

2. We have that dr+1 ◦ dr = 0. Indeed, in order to see this it is enough
to understand that all square faces in Q(DT ) anti-commute. Just
as for the Khovanov complex, our choice of signs guarantees anti-
commutativity of square faces provided that they positively commute
(i.e. commute with signs ignored). But this is clear, because we can
isotope saddles in a composition Cσ2 ◦ Cσ1 so they are arranged in
reverse order (cf. [Bar05]).

Setting

dBN :=
n⊕
r=0

dr,

it follows from the previous two observations that we have constructed an
honest chain complex ([DT ], dBN). We are ready for the following definition.

Definition 8.64 (Bar-Natan chain complex). Let T be a 2n-ended
oriented tangle with oriented tangle diagram DT . Then the complex

([DT ], dBN) ∈ Kom(Mat(Cob3
/l(2n)))

is called the Bar-Natan chain complex of DT . Likewise, the complex

[T ] := ([DT ], dBN) ∈ Kom/h(Mat(Cob3
/l(2n)))

is called Bar-Natan chain complex of T .

An example of ([DT ], dBN) is given in Figure 8.18. The notation [T ]
for the Bar-Natan chain complex of a tangle will be justified shortly. In
contrast to Khovanov homology, the main actor in Bar-Natan’s theory is
the complex itself. Even more, we are not yet able to obtain any sort of
homology theory from [DT ] because Mat(Cob3

/l(2n)) is not an abelian cat-
egory. Nonetheless, [DT ] is in fact an invariant of tangles when considered
up to chain homotopy equivalence, and a strong tool for applications as
subsequent sections will show. The following is a main theorem of Bar-
Natan.

Theorem 8.65 ([Bar05, Theorem 1]). The isomorphism class of the
complex ([DT ], dBN) considered in Kom/h(Mat(Cob3

/l(2n))) is an invariant
of the tangle T . That is, it does not depend on the ordering of the crossings
of DT and on the ordering of the complete smoothings in Cr(DT ), and is
invariant under the three Reidemeister moves.
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DT =

10

◦

d1⋆

��⊕
00

d⋆0

??

d0⋆

!!

��

11

��

01

d0⋆

??

��
C0(DT )

d0 // C1(DT )
d1 //

⊕
��

C2(DT )

∑
|σ|=0

(−1)σdσ

��

∑
|σ|=1

(−1)σdσ

��

= (C(DT ), dBN)
·[−n−]{n+−2n−}−−−−−−−−−−−−−−→

(with (n+, n−) = (2, 0))
([DT ], dBN)

Figure 8.18: The cube of resolutions Q(DT ) for the tangle diagram DT with edges
decorated by the maps dσ that lead to the differential dBN. A little circle at the tail of
an edge indicates that the map appears with a minus sign in the sum dr. The bottom
lines show how to obtain the chain complex ([DT ], dBN) from the depicted cube.

A proof of Theorem 8.65 is given in [BN02, Section 4.3]. Note that this
is the point where the local relations S, T and 4Tu are needed in Cob3

/l(2n)
in order to obtain invariance under the three Reidemeister moves.

The Bar-Natan complex of a tangle has a very geometrical and combi-
natorial nature, which is very advantageous for computations as we shall
see shortly in Sections 8.7 and 8.8. Of course, one may also obtain a ho-
mology theory from the Bar-Natan complex using a TQFT, and we will
discuss how this is done in Section 8.9.

8.7 Planar arc diagrams and compatibility results

One of the great advantages of tangles and the complex [T ] is their compo-
sition properties, formalized in terms of planar arc diagrams. This compos-
ability in combination with a certain form of Gaussian elimination and an
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isomorphism in Mat(Cob3
/l(2)) called delooping yields an algorithm known

as divide-and-conquer for computing and simplifying [T ], which further sim-
plifies the calculation of homology theories obtained from the Bar-Natan
complex. This will be the subject of upcoming sections, but for now let’s
take a closer look at planar arc diagrams. Main reference is [Bar05, Section
5].

As mentioned at the beginning of Section 8.3, tangles can be considered
as the building blocks of links, and it should be intuitively clear how to
build a link diagram from a finite collection of tangle diagrams (“place
tangle diagrams in a big fixed disk and close up strands in any fashion”).
This process of gluing tangle diagrams together was formalized by Bar-
Natan [Bar05], using so-called planar arc diagrams.

Convention. For reasons of well-definedness, we will consider in the fol-
lowing without further mention all disks up to orientation preserving home-
omorphisms mapping end points to end points, base points to base points,
and keeping enumeration whenever it makes sense.

Definition 8.66. Let d ∈ N. An oriented d-input planar arc diagram D
consists of

1. a diskD (called output disk) with d enumerated open disjoint so-called
input disks Ei removed from its interior; and

2. a proper smooth oriented 1-submanifold of D with end points on the
boundary ∂D.

Here, we have that
∂D =

⋃
D∈{E,E1,...,Ed}

∂D

where E denotes the output disk with the input disks placed back in. The
number of end points on each ∂D is required to be even; if it is non-zero
then one of the end points is required to be chosen and fixed as base point of
D. Forgetting about the orientation of the proper smooth 1-submanifolds,
D is called an unoriented planar arc diagram.

Let D be an oriented d-input planar arc diagram and Ei an input disk
with 2nEi

> 0 end points on ∂Ei. The orientation of the proper smooth 1-
submanifold yields an ordered sequence sEi

∈ {i, o}2nEi of “in” (i) and “out”
(o) that describes the direction of the arcs connected to the end points of
∂Ei, with ordering given by starting at the base point and moving counter-
clockwise (see Figure 8.19 for an example). Given a 2nEi

-ended oriented
tangle diagram D in a disk H, let D• denote the same diagram with one of
the end points fixed as base point. Then the orientation of D• induces an
ordered sequence sD• ∈ {i, o}2nEi in the exact same way as sEi

is defined.
Let φ : H → Ei be an orientation-preserving homeomorphism mapping
end points to end points and base point to base point (note that φ is
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E1 E2

D

Figure 8.19: An oriented 2-input planar arc diagram D. Here, 2nE1
= 2nE2

= 4 and
sE1

= (i, o, i, o), sE2
= (i, i, o, o).

unique up to isotopy, see Section 8.3). If sD• = sEi
, then we can use the

homeomorphism φ in order to place the tangle diagram D• inside the input
disk Ei, which in turn can be put into the planar arc diagram D. Let’s
make the following definition.

Definition 8.67. Let n ∈ N>0 and s ∈ {i, o}2n. Then we define T 0(s)
as the collection of all 2n-ended oriented base-pointed tangle diagrams D•

with sD• = s, and T (s) for the corresponding quotient of T 0(s) modulo
the three Reidemeister moves. We further write T 0(0) for the collection of
all 0-ended oriented tangle diagrams and T (0) for the quotient modulo the
three Reidemeister moves.

Definition 8.68. Let D be an oriented d-input planar arc diagram. Then
D defines an operator

DT : T (sE1)× · · · × T (sEd
)→ T (sE) (8.21)

that places d oriented base-pointed tangle diagrams inside the d holes of
the planar arc diagram D using the construction above. If either E or one
of the input disks Ei has no end-points, then we set sE = 0 or sEi

= 0 in
(8.21), respectively. The operator DT is called planar arc diagram operator.

The procedure that we described above in order to place a tangle dia-
gram inside an oriented planar arc diagram also works in the unoriented
case. Indeed, let D be an unoriented d-input planar arc diagram and Ei
an input disk with 2nEi

> 0 end points. Given an unoriented 2n-ended
tangle diagram D in some fixed disk H, let D• denote the same tangle
diagram with one of the end points fixed as base point. As before, any
orientation-preserving homeomorphism φ : H → Ei that maps end points
to end points and base point to base point (unique up to isotopy) can be
used to place the diagram D• inside the i-th hole of D. Let us imitate
Definition 8.67 and 8.68 in the unoriented scenario.

Definition 8.69. Let n ∈ N. Then we define S0(2n) as the collection of
all 2n-ended unoriented base-pointed (without base point if n = 0) tangle
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diagrams D•, and S(2n) as the corresponding quotient modulo the three
Reidemeister moves.

Definition 8.70. Let D be an unoriented d-input planar arc diagram.
Then D defines an operator

DS : S(2nE1)× · · · × S(2nEd
)→ S(2nE) (8.22)

that places d oriented base-pointed tangle diagrams inside the d holes of
the planar arc diagram D using the construction above. The operator DS
is called unoriented planar arc diagram operator.

Let us make the following observations.

Remark 8.71.

1.) Of course, an oriented (resp. unoriented) d-input planar arc diagram D
yields also an operator DT 0 (resp. DS0) in the sense of Definition 8.68
and 8.70.

2.) For each s ∈ {i, o}2n with n > 0 or s = 0, there exists an oriented
|s|-input “radial ” planar arc diagram I such that IT : T (s) → T (s) is
the identity operator. The same is true in the unoriented case, giving
an identity operator IS .

3.) Oriented planar arc diagram operators are “associative”, that is com-
patible with each other in a natural way, as follows. Suppose we are
given oriented planar arc diagrams D and D′ such that D′ can be placed
into the i-th hole of D (i.e. so that sE of D′ matches sEi

of D), and
call the resulting oriented planar arc diagram D̃. Then on the level of
operators, if

DT : T (sE1)× · · · × T (sEd
)→ T (sE)

D′
T : T (tE1)× · · · × T (tEd′

)→ T (sEi
)

then we have

D̃T = DT ◦ (IT × · · · × D′
T × · · · × IT ).

As before, the same compatibility holds in the unoriented case and
without Reidemeister moves modded out.

4.) The identity and associativity properties also hold for T 0(s) and S0(2n),
respectively.

Generalizing the above discussion, we make the following definition.

Definition 8.72. Let S be the collection of all possible finite sequences
of symbols i and o. An oriented planar algebra is a collection of (possibly
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empty) sets P = {P(s)}s∈S such that each oriented d-input planar arc
diagram D defines operators

DP : P(sE1)× · · · × P(sEd
)→ P(sE)

satisfying identity and associativity properties similar as in Remark 8.71.
Likewise, we define an unoriented planar algebra as a collection of sets Q =
{Q(k)}k∈N such that each unoriented d-input planar arc diagram defines
operators with the corresponding identity and associativity properties.

Remark 8.73. Every unoriented planar algebra Q = {Q(k)}k∈N can triv-
ially be considered as an oriented planar algebra Qor = {Qor(s)}s∈S by
setting Qor(s) := Q(|s|) and simply ignoring all orientations on planar arc
diagrams D.

Definition 8.74. A morphism of oriented planar algebras P1,P2 is a col-
lection of maps Φ = {Φs : P1(s) → P2(s)}s∈S such that for each oriented
d-input planar arc diagram D

ΦsE ◦ DP1 = DP2 ◦ (ΦsE1
× · · · × ΦsEd

).

A morphism of unoriented planar algebras is defined similarly.

Of course, the collections T 0 = {T 0(s)}s∈S, T = {T (s)}s∈S and S0 =
{S0(2n)}n∈N, S = {S(2n)}n∈N form examples of oriented and unoriented
planar algebras, respectively.

Now, recall that the objects of Cob3(2n) are crossingless unoriented
2n-ended tangle diagrams in a fixed disk with fixed end points and circles
enumerated. We would like to see the objects ob(Cob3(2n)) and in fact
also the morphisms mor(Cob3(2n)) as part of a planar algebra as well. For
this, we need to adapt Cob3(2n) as follows.

Definition 8.75. Let Cob3,•(2n) denote the category Cob3(2n) but with
one end point of the fixed disk containing the unoriented crossingless 2n-
ended tangle diagrams marked as base point. The quotient Cob3,•

/l (2n) is
defined similarly.

Considered as a stand-alone object, Cob3,•(2n) (resp. Cob3,•
/l (2n)) pro-

vides no new information; the base point is just decoration. In particu-
lar, morphisms are still composed in the same way as in Cob3(2n) (resp.
Cob3

/l(2n)). However, forgetting about the enumeration of circles we have
ob(Cob3,•(2n)), ob(Cob3,•

/l (2n)) ⊂ S0(2n), and are thus part of the unori-
ented planar algebra S0. In fact,

ob := {ob(Cob3,•(2n))}n∈N, ob/l := {ob(Cob3,•
/l (2n))}n∈N

form unoriented sub-planar algebras of S0.
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Convention. In practice we want to consider ob and ob/l as individual
planar algebras, that is with enumeration of circles taken into account. For
this, we have to choose a convention how to enumerate circles in the image
of the corresponding unoriented planar arc diagram operators. We will do
so by starting with the given enumeration of the circles of the diagram
that gets placed in the first input disk, and then continue this enumeration
in subsequent placed-in diagrams while keeping the individual absolute
ordering of the circle within a diagram; see Example 8.76 for an example.

Example 8.76. Consider the unoriented 2-input planar arc diagram

D = E1 E2

Then D defines an operator

Dob : ob(Cob3,•(4))× ob(Cob3,•(4)) −→ ob(Cob3,•(4)).

As an example and to demonstrate our convention for enumerating circles,
let

D1 = D2 =

Then

= Dob(D1, D2)
relabel

Similar to the objects, the collection of sets of morphisms

mor := {mor(Cob3,•(2n))}n∈N, mor/l := {mor(Cob3,•
/l (2n))}n∈N

form also unoriented planar algebras, respectively. Indeed, let D be an
unoriented d-input planar arc diagram. Then the thickening D × [0, 1]
yields an operator

Dmor :
d∏
i=1

mor(Cob3,•(2nEi
)) −→ mor(Cob3,•(2nE))
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that places a cobordism C ∈ mor(Cob3,•(2nEi
)) inside the i-th cylinder of

D×[0, 1] via a orientation-preserving homeomorphism φ : D2×[0, 1]→ Ei×
[0, 1] that preserves the arcs on the boundary and maps the arc connecting
the base points in D2 × [0, 1] to the arc connecting the base points in
Ei × [0, 1] (note that φ is unique up to isotopy). Here, D2 denotes the
unit disk in R2 containing the unoriented crossingless tangle diagrams in
Cob3,•(2nEi

). The same construction applies also to ob/l and mor/l. See
[Bar05, Section 5] for further details.

The unoriented planar algebra structures on ob and mor (resp. ob/l and
mor/l) define an unoriented planar algebra structure on

Cob := {Cob3,•(2n)}n∈N, Cob/l := {Cob3,•
/l (2n)}n∈N,

where an unoriented d-input planar arc diagram D yields an operator as a
functor

DCob :
d∏
i=1

Cob3,•(2nEi
)→ Cob3,•(2nE)

and

DCob/l :
d∏
i=1

Cob3,•
/l (2nEi

)→ Cob3,•
/l (2nE),

respectively, that acts on objects and morphisms using the operator that
D defines in the planar algebras ob, mor and ob/l, mor/l, respectively.
The following theorem by Bar-Natan shows that the unoriented planar
algebra structures of Cob and Cob/l descend in fact to additive closures
and complexes over additive closures, respectively.

Theorem 8.77 ([Bar05, Theorem 2]).

1.) The collection

K = {Kom(Mat(Cob3,•
/l (2n)))}n∈N

has a natural structure of an unoriented planar algebra.

2.) The operations DK on K send homotopy equivalent chain complexes to
homotopy equivalent chain complexes, hence

K/h = {Kom/h(Mat(Cob3,•
/l (2n)))}n∈N

also has a natural structure of an unoriented planar algebra.

3.) The Bar-Natan chain complex [T ] of a tangle T descends to an oriented
planar algebra morphism

[ · ]• : T → (K/h)or,

where (K/h)or is K/h considered as an oriented planar algebra as de-
scribed in Remark 8.73.
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The basic idea is that an unoriented d-input planar arc diagram D yields
an operator that is a functor

DK :
d∏
i=1

Kom(Mat(Cob3,•
/l (2nEi

)))→ Kom(Mat(Cob3,•
/l (2nE)))

that takes as input a d-tuple of chain complexes (C1, . . . , Cd) and returns
their tensor product C1 ⊗ · · · ⊗ Cd that is formed using D (this is best un-
derstood by looking at an example, so we refer the reader to Example 8.80
instead of giving a precise definition). Then, 3.) of Theorem 8.77 says that
the following complexes are homotopy equivalent:

DK([D1]
•, . . . , [Dd]

•) ≃ [DT (D1, . . . , Dd)]
•, (8.23)

where Ti is a 2nEi
-ended oriented tangle diagram with base point for all

i = 1, . . . , d. We refer the reader to [Bar05] for a proof of Theorem 8.77.

8.8 Delooping, Gaussian elimination, and divide-and-
conquer

The compatibility result (8.23) from the previous Section 8.7 gives us an
effective way of computing the Bar-Natan chain complex [T ]• of any tangle
T : we break T down into “smaller” tangles Ti from which we successively
compute [T ]• using the simpler [Ti]

• and suitable planar arc diagrams.
Along the way, one simplifies the intermediate complexes using two tools
called delooping and Gaussian elimination. This strategy of computation is
known as divide-and-conquer, a term coined by Bar-Natan [BN07]. We will
see how this works in detail in Example 8.80 below where we compute the
Bar-Natan complex of the right-handed trefoil, but first let us introduce
the two aforementioned tools that will greatly simplify our computations.

The first tool is an isomorphism in the category Mat(Cob3
/l(2)) known

as delooping. It is described in Figure 8.20.
Put differently, we have an isomorphism of objects in Mat(Cob3

/l(2))

∼= {−1} ⊕ {+1}.

We invite the reader to check that the morphisms in Figure 8.20 are indeed
mutually inverse to each other. Thus given a 2-ended tangle with diagram
DT , we can use delooping to successively resolve every circle appearing in
the complex CBN(DT ) which reduces the computational complexity of [T ]
in the sense that there are less different objects and morphisms involved.

Remark 8.78. Delooping was first described by Bar-Natan [BN07], with
a different version given by Naot [Nao06]. Our version is closest to Naot’s,
with the exception that we don’t use dots.
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-

{−1}

{+1}

Figure 8.20: The depicted morphisms in Mat(Cob3/l(2)) are mutually inverse to each
other, thus yielding an isomorphism of objects known as delooping.

The second tool is Gaussian elimination, which is described in the fol-
lowing lemma.

Lemma 8.79. Assume (C, d) is a chain complex in some additive category
taking the following form:

X Z

. . . Ci−1 ⊕ ⊕ Ci+2 . . .

Y W

c

d ga

b

e

f
h

where e is an isomorphism. Then C is homotopy equivalent to

. . . Ci−1 X Z Ci+2 . . . .a c−fe−1d g

For a proof, see [BN07, Lemma 4.2]. Using Gaussian elimination as
stated in Lemma 8.79, one may eliminate the domain and target of an
isomorphism in a chain complex, by paying the price of introducing a new
differential f ◦ e−1 ◦d. The compatibility property as described in (8.23) in
combination with delooping and Gaussian elimination yields an algorithm
known as divide-and-conquer for computing the Bar-Natan chain complex
of a tangle [BN07], which is best understood by looking at a hands-on
example.

Example 8.80. Let K be the right-handed trefoil with diagram DK as
depicted below:

DK =
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We wish to compute the Bar-Natan complex [K]• using the diagram DK .
For this, we apply the correspondences (8.4) and (8.5) in order to obtain a 2-
ended tangle T with diagram DT corresponding to K and DK , respectively:

DT =

Then, computing [K]• is equivalent to compute [T ]• (resp. [DT ]
• up to

homotopy equivalence). We will do so by applying Bar-Natan’s divide-
and-conquer strategy: we compute [T ]• by computing the Bar-Natan com-
plexes of the tangles T1, T2, T3 corresponding to the diagrams DT1 , DT2 , DT3

respectively:12

DT1 = DT2 = DT3 =

Observe that if we close up the blue marked strands in DT3 in the most
obvious way, we obtain a 2-ended tangle diagram equivalent to DT . In
order to compute [T2]

• and [T3]
•, we will use the following unoriented 2-

input planar arc diagram:

D =

(here, the leftmost inner input disk is the first, and the rightmost inner
input disk is the second). Before starting the computation, let us give an
overview of the process for better understanding:

1. The first step consists of computing [T1]
• using DT1 which, as we shall

see shortly, will be a very easy task.

2. Next, we compute [T2]
•. We do so by considering DT (DT1 , DT1); if

we equip this diagram with an orientation and an enumeration of
12For illustrative reasons, the base point doesn’t appear at the same position in DT1 , DT2 ,

DT3 , but the pictures are to be understood with a fixed disk and fixed base point.
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crossings, and forget about the inner input disks, we see that

[DT (DT1 , DT1)]
• =

[ ]•
= [DT2 ]

•

We then obtain [T2]
• by considering [DT2 ]

• up to homotopy equiva-
lence. In order to compute [DT (DT1 , DT1)]

•, we use [T1]
• from the

previous step in combination with (8.23).

3. The third step consists of computing [T3]
• which proceeds similar to

the second step. We consider DT (DT2 , DT1) and equip this diagram
with an orientation and enumeration of crossings, and forget about
the inner input disks. Then

[DT (DT2 , DT1)]
• =

[ ]•
= [DT3 ]

•

We then obtain [T3]
• by considering [DT3 ]

• up to homotopy equiva-
lence. In order to compute [DT (DT2 , DT1)]

•, we use [T1]
•, [T2]

• from
the previous step in combination with (8.23).

4. The last step consists of closing up the blue marked strands in DT3

and adjusting the complex [DT3 ]
• accordingly. Up to homotopy equiv-

alence, we then obtain the complex of the right-handed trefoil [T ]•
(resp. [K]•).

Let us now start with the computations. In what follows we omit the
enumeration of circles (in objects of Cob3,•

/l ) since there will always be at
most one circle appearing in diagrams. A left subscript next to diagrams
indicates homological degree, and a number in curly brackets denotes as
usual the shift in quantum grading. We call the strand that connects the
base point the marked strand. The main tools in our computations are
delooping (see Figure 8.20) and Gaussian elimination (see Lemma 8.79).
In the upcoming computations we will always deloop with respect to the
marked strand as shown below:

{−1}

{1}

−

⊕
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Finally, let us introduce the following abbreviation for the saddle morphism:

S := : −→ {1}

Let us now start with the first step by computing [DT1 ]
•. We have:

[DT1 ]
• = 0 {1} {2}S

Up to homotopy equivalence, this is the Bar-Natan complex of [T1]•.
For the second step we compute [DT (DT1 , DT1)]

• using [DT1 ]
• and (8.23).

Hence we form the tensor product of [DT1 ]
• with itself, where we tensor

objects in Cob3,•
/l (4) using the planar arc diagram D:13

⊗ 0 {1} {2}

0 {1} 0 {1} {3}

{2} {3} {4}

S

S

−S

S

Forgetting about the inner input disks, the diagram above simply becomes

⊗ 0 {1} {2}

0 {1} {2} {3}

{2} {3} {4}

S

S

−S

S

From this, we obtain the following chain complex:

{3}

0 {2} {4}

{3}

⊕

−S

S

(8.24)

13We use here the convention that the column gets placed in the first, and the row in the
second inner input disk.
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Next, we deloop the diagram in the red box. This means that we have to
compute the following compositions of maps:

{3} {3}

{4}

{3} {5}

⊕ ⊕ (8.25)

We get:

( )
◦
( )

= = id( )
◦
( )

=( )
◦
( )

= = id( )
◦
( )

=

Hence, (8.24) is overall isomorphic to the following isomorphic complex:

{3} {3}

0 {2}

{3} {5}

id

⊕ ⊕

−S

S
id

(8.26)

Last but not least, we apply Gaussian elimination to the green edge and
finally obtain

[DT2 ]
• ≃ 0 {2} {3} {5}S

−

Again, up to homotopy equivalence this is the complex of [T2]•. For the
third step, we proceed exactly in the same way as before. We compute
[DT (DT2 , DT1)]

• by considering
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⊗ 0 {1} {2}

0 {2} 0 {3} {4}

{3} {4} {5}

{5} {6} {7}

S

S

S

S

− −

−

−

This gives us the complex

{4} {5}

0 {3} {7}

{4} {6}

⊕

−

⊕

S

S

−

−

(8.27)

Let us deloop the diagram in the red box. Note that in contrast to (8.24),
we now have a non-zero outgoing arrow from the red box. So we effectively
have to compute the following compositions:

{4} {4}

{5} {5} {7}

{4} {6}

⊕

−

⊕
−

−

(8.28)
Observe that the left rectangular half of (8.28) is simply (8.25), which we
computed in (8.26), with an additional minus sign at one edge. Hence
(8.28) becomes

{4} {4}

{5} {7}

{4} {6}

id

⊕

−

⊕
−

−

−id

(8.29)
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Now let us compute the compositions in the right half of (8.29):(
−

)
◦
(

−
)

= −(
−

)
◦
( )

= −

Hence (8.29) becomes

{4} {4}

{7}

{4} {6}

id

⊕

−

⊕

−

−id −

Plugging this into (8.27), we overall obtain the following isomorphic com-
plex:

{4}

{4}

0 {3} {6} {7}

{4}

{6}

−

⊕

id

⊕

S

S

−

⊕

−id −

−

(8.30)
Let us deloop once more the diagram in the red box. We have to compute
the following compositions:

{4}

{6}

{6} {7}

{8}

{6}

−
⊕

⊕
−

⊕

(8.31)

Using the local relations S and T (see Figure 8.14, not to be confused with
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the saddle morphism S)( )
◦
(

−
)

= − T
= −( )

◦
(

−
)

= − = 0( )
◦
(

−
)

= − S
= id( )

◦
(

−
)

= − = 0( )
◦
( )

= = id( )
◦
( )

=

Hence (8.31) becomes

{4}

{6}

{6}

{8}

{6}

−

⊕

⊕

id

⊕

id

Plugging this into (8.30), we overall obtain the following complex isomor-
phic to [DT3 ]

•:

{4}

{4} {6}

0 {3} {6}

{4} {8}

{6}

−

⊕

id

⊕ ⊕

S

S

id

⊕

−id −

−

id

(8.32)
Simplifying further, we apply Gaussian elimination to the green edge in
(8.32) and get
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{6} {6}

0 {3} {4}

{6} {8}

id

⊕ ⊕S

−

−
id (8.33)

Finally, we apply once more Gaussian elimination to the green edge in
(8.33) and obtain

[DT3 ]
• ≃ 0 {3} {4} {6} {8}S

−

(8.34)
Note that (8.34) is equal to [T3]

• up to homotopy equivalence. Observe
that we have indicated blue strands in (8.34); this leads us to the final step
in our computation of [T ]•. Indeed, closing up the blue strands in (8.34)
in the most obvious way and doing the same for the morphisms, we obtain

[DT ]
• ≃

0
{3} {4} {6} {8}0

Delooping the diagram in the red box gives

{2}

[DT ]
• ≃ {4} {6} {8}

{4}

0

⊕ 0

id

Finally, applying Gaussian elimination to the edge in green we obtain

[DT ]
• ≃ 0 {2}

(
{6} {8}

)
⊕

This complex is equal to [T ]• up to homotopy equivalence. This concludes
our computation of the Bar-Natan complex of the right-handed trefoil with
the final result:

[ ]•
≃ 0 {2}

(
2 {6} 3 {8}

)
= [K]•⊕ (8.35)
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8.9 Obtaining homology from the Bar-Natan complex

The goal of this section is to show how to obtain a homology theory by
applying a TQFT to the Bar-Natan complex of a 2-ended tangle (or link).
The basic idea is very similar to the construction of Khovanov homology
in Section 8.2, where we translated vertices and edges of the cube of reso-
lutions into algebraic objects. A TQFT yields precisely the rules to do the
same with more general algebraic systems. It goes as follows.

Let F = (R,A,∆, ε) be a rank 2 Frobenius system with corresponding
TQFT F : Cob3

/l(2) → MA as described in Section 8.5. Note that the
categoryMA is by definition not an abelian category (see Definition 8.33).
However, there exists an inclusion functor

I :MA ↪→ A-Mod

where A-Mod denotes the usual category of graded A-modules with graded
A-module homomorphisms. Post-composing F with I gives us a new func-
tor

I ◦ F : Cob3
/l(2)→ A-Mod

which we denote by F as well at the cost of minor confusion. By definition
of the TQFT F , it should be clear that F induces a functor

F̂ : Kom(Mat(Cob3
/l(2)))→ Kom(A-Mod).

Indeed, F descends to F̃ : Mat(Cob3
/l(2)) → A-Mod by applying F to

summands in a direct sum of objects of Cob3
/l(2) and entries of matrices

individually, and the step from F̃ to F̂ is then immediate. Note that F̂
respects homotopy equivalence of complexes and thus descend to a functor
on Kom/h, for which we use the same notation.

Now, given a 2-ended tangle T with diagramDT , we have the Bar-Natan
complexes [DT ] ∈ Kom(Mat(Cob3

/l(2))) and [T ] ∈ Kom/h(Mat(Cob3
/l(2)))

respectively, and applying F̂ gives us a well-defined chain complex over A,
from which we can take homology.

Definition 8.81. Let T be a 2-ended tangle with diagram DT and F =
(R,A,∆, ε) a rank 2 Frobenius system giving a TQFT F : Cob3

/l(2)→MA.
Then we define the F-complex of DT as

CF(DT ) := F̂([DT ]) ∈ Kom(A-Mod),

and the F-complex of T as

CF(T ) := F̂([T ]) ∈ Kom/h(A-Mod).

The homology
HF(T ) := H(CF(T )) ∈ A-Mod
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is called the F-homology of T . If L ⊆ S3 is a base-pointed link with base-
pointed diagramDL and TL the corresponding 2-ended tangle with diagram
DTL (see (8.4)), we define the F-complex of DL and L as

CF(DL) := CF(DTL) ∈ Kom(A-Mod)
CF(L) := CF(TL) ∈ Kom/h(A-Mod),

respectively, and the F-homology of L as

HF(L) := HF(TL) ∈ A-Mod

Let us make several remarks regarding Definition 8.81.

Remark 8.82.

1.) By Theorem 8.65, CF(T ) does not depend on the choice of diagram
DT , thus making the F -complex and F -homology of T an invariant
of tangles. The same is true for the F -complex and F -homology of a
base-pointed link L, respectively.

2.) If two rank 2 Frobenius systems F1 and F2 are related by a twist Defi-
nition 8.54, then the corresponding complexes CF1(T ) and CF2(T ), as
well as the homologies HF1(T ) and HF2(T ) are isomorphic (see [Kho06,
Proposition 3 and Corollary 1]).

3.) Similar to the Khovanov complex from Section 8.2, the F -complex
CF(T ) carries by construction a homological grading given by the height
in the cube of resolutions and the final shift by −n−. Moreover, if F
is graded, then the F -complex CF(T ) carries a second grading which
we call quantum grading, which makes CF(T ) and therefore also the F -
homology HF(T ) bigraded. Likewise, if F is filtered, then CF(T ) is a
filtered complex (use Remark 8.45 in order to obtain filtrations induced
by F on tensor products and direct sums in CF(T )) with a single grad-
ing given by the homological grading. The filtration on CF(T ) then
induces one on homology as described in Definition 8.47, thus making
HF(T ) filtered.

4.) Recall Remark 8.51: the TQFT F : Cob3
/l(2) → MA induces a new

TQFT F ′ : Cob3
/l(0) → MR, and Definition 8.81 translates mutatis

mutandis to 0-ended tangles, i.e. oriented links in S3. This gives us a
way to obtain a chain complex and homology theory from the cube of
resolutions Q(DL) of a link diagram DL to which we previously referred
to as a Khovanov-type homology theory. Indeed, if we take the Frobenius
system FQ described in Definition 8.55, then we see that CF ′

Q
(L) and

HF ′
Q
(L) are precisely the Khovanov chain complex (up to homotopy

equivalence) and homology of a link L that we defined in Section 8.2.
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5.) More generally, if J : A-Mod → R-Mod is the functor that forgets the
A-module structure and considers them as R-modules, then J(HF(L))
is isomorphic to HF ′(L) over R (cf. [Bar05, Section 9]).

6.) It should be clear that Definition 8.81 generalizes to arbitrary 2n-ended
tangles by specifying a suitable functor F : Cob3

/l(2n)→ A-Mod. How-
ever, since we will work exclusively with 2-ended tangles in upcoming
sections, we decided to restrict our considerations and descriptions to
this special case. For more information, see [Bar05, Section 7].

In Section 8.5, we have defined several explicit Frobenius systems. Let’s
give the corresponding homology theories proper names.

Definition 8.83. Let L ⊂ S3 be a link with base point. Then:

1. KhZ(L) := HFZ(L) and KhQ(L) := HFQ(L) are called integral and
rational Khovanov homology of L, respectively.

2. More generally, if F is a field thenHFF(L) is called Khovanov homology
of L over F.

3. Huniv(L) := HFBN(L) is called universal Khovanov homology of L.

4. HLee(L) := HFLee(L) is called Lee homology of L.

5. HBN(L) := HFBN(L) is called Bar-Natan homology of L.

Example 8.84. Let K be the right-handed trefoil as shown below.

In Example 8.80, we computed the Bar-Natan complex of K using divide-
and-conquer and obtained the result (see (8.35))[ ]•

≃ 0 {2}
(
2 {6} 3 {8}

)
= [K]•⊕ (8.36)

Here, the left subscript denotes as usual the homological degree. From
(8.36) we can easily compute F -complexes and F -homology of K, so let’s
look at some examples. Consider the Khovanov system FZ as described in
Definition 8.55. Then the FZ-complex of K is given as

CFZ(K) = 0Z[X]/(X2){3}
(
2Z[X]/(X2){7} 3Z[X]/(X2){9}

)
⊕ m◦∆
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In the usual basis 1, X of Z[X]/(X2), the matrix of m ◦∆ takes the form

m ◦∆ =

(
0 0
2 0

)
Hence the integral Khovanov homology of the right-handed trefoil is

Kh0
Z(K) ∼= Z1 ⊕ Z3

Kh1
Z(K) = 0

Kh2
Z(K) ∼= Z5

Kh3
Z(K) ∼= Z7 ⊕ Z/2Z9,

where the right subscript denotes the quantum degree of the individual
generator. Switching from Z to Q and noting that 2 is invertible over
Q, we can immediately read off the rational Khovanov homology of the
right-handed trefoil from the above:

Kh0
Q(K) ∼= Q1 ⊕Q3

Kh1
Q(K) = 0

Kh2
Q(K) ∼= Q5

Kh3
Q(K) ∼= Q7.

Consider the universal Frobenius system Funiv from Definition 8.56. We
write Auniv = Z[h, t,X](X2 − hX − t). Then the corresponding complex
for the right-handed trefoil takes the form

CFuniv
(K) = 0Auniv{3}

(
2Auniv{7} 3Auniv{9}

)
⊕ m◦∆

In the basis 1, X of Auniv, the matrix of m ◦∆ is given as

m ◦∆ =

(
−h 2t
2 h

)
Hence the universal Khovanov homology of the right-handed trefoil is

H0
univ(K) ∼= Z[h, t]1 ⊕ Z[h, t]3

H1
univ(K) = 0

H2
univ(K) = 0

H3
univ(K) ∼= coker

(
−h 2t
2 h

)
Now let’s look at the Z[G]-system FZ[G] as described in Definition 8.57. We
write AZ[G] = Z[X,G]/(X2 + GX). Then the corresponding complex for
the right-handed trefoil takes the form
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CFZ[G]
(K) = 0AZ[G]{3}

(
2AZ[G]{7} 3AZ[G]{9}

)
⊕ m◦∆

In the basis 1, X of AZ[G], the matrix of m ◦∆ is given as

m ◦∆ =

(
G 0
2 −G

)
Hence the FZ[G]-homology of the right-handed trefoil is

H0
FZ[G]

(K) ∼= Z[G]1 ⊕ Z[G]3
H1

FZ[G]
(K) = 0

H2
FZ[G]

(K) = 0

H3
FZ[G]

(K) ∼= coker

(
G 0
2 −G

)
Finally, let’s look at the Lee system FLee. We write ALee = Q[X](X2 − 1).
Then the corresponding complex for the right-handed trefoil takes the form

CFLee(K) = 0ALee{3}
(
2ALee{7} 3ALee{9}

)
⊕ m◦∆

In the basis 1, X of ALee, the matrix of m ◦∆ is given as

m ◦∆ =

(
0 2
2 0

)
∼
(
1 0
0 1

)
Hence the Lee homology of the right-handed trefoil is

HLee(K)0(K) ∼= Q1 ⊕Q3

HLee(K)1(K) = 0

HLee(K)2(K) = 0

HLee(K)3(K) = 0

It is not a coincidence that HLee(K) is concentrated in homological degree
0 with dimension 2; this is in fact true for the Lee homology of any knot.
Also, note that the quantum degrees of the two generators differ by 2; this
is a key observation used for the definition of the Rasmussen s-invariant,
which will be the topic of the upcoming section.

8.10 Lee homology and the Rasmussen s-invariant

In 2002, Lee [Lee05] defined a deformation of Khovanov homology by spec-
ifying a Frobenius system that applied to the cube of resolutions of a link
diagram yields a filtered homology theory. A consequence of this is the ex-
istence of a spectral sequence that starts at Khovanov homology and ends
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at the associated graded space corresponding to the filtration of the Lee
homology of a link L. This spectral sequence was later used by Rasmussen
[Ras10] in order to extract an invariant of knots that provides much geo-
metrical information, such as a lower bound on the slice genus of the knot.
Let’s take a closer look.

In Definition 8.59 we already encountered the Frobenius system that
was specified by Lee: it is defined as the system FLee = (RLee, ALee,∆, ε),
where

RLee = Q, ALee = Q[X]/(X2 − 1), ι : Q ↪→ ALee,

m(1⊗ 1) = 1 m(X ⊗X) = 1

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 ε(1) = 0

∆(X) = X ⊗X + 1⊗ 1 ε(X) = 1

We equip FLee with a descending filtration

{0} ⊂ F0 ⊂ F−2 = ALee,

where F0 is generated by 1 and F−2 is generated by 1 and X. The maps
m, ι,∆, ε are then filtered of degree 0, 0,−2, 0 respectively. This filtration
is induced by the grading on the system FAD with algebra Q[t,X]/(X2− t)
after setting t = 1, see Section 8.5.

Now, let L ⊂ S3 be a link with diagram D. Applying the TQFT given
by FLee to the cube of resolutions Q(D), we obtain a filtered chain complex
(CFLee(D), dFLee) as described at the end of Section 8.6.

Remark 8.85. In the literature, the filtration on CFLee(D) is frequently de-
scribed as “induced by the quantum grading” (as for instance in [Ras10]).
This is to be explained as follows. Recall from Section 8.2 that the Kho-
vanov chain complex CKh(D) is bigraded with a homological and a quantum
grading. The gradings may be read off via

h(x) := |α| − n− (homological grading) (8.37)
q(x) := deg x+ h(x) + n+ − n− (quantum grading), (8.38)

where x ∈ Aα(D) is homogeneous (see Definition 8.12). The quantum
grading can now be used to obtain the filtration on the Lee complex in
the following way. Keep the homological grading on CFLee(D), but other
than that think of the Lee complex as an ordinary vector space, so that
each homologically graded component of CFLee(D) is simply a direct sum
of tensor products

CiFLee
(D) =

n⊕
j=1

kj⊗
1

ALee{1}
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We grade ALee{1} once more internally as a vector space with deg 1 = +1
and degX = −1. Now for each j = 1, . . . , n, define a quantum grading on⊗kj

1 ALee{1} as in (8.38), and form the corresponding induced descending
filtration. Finally, form the descending filtration on the direct sum using
the filtrations on the tensor products (see Remark 8.45). This defines a fil-
tration on CiFLee

(D), and one may check that diLee is filtered. Thus CFLee(D)
is a filtered complex whose filtration coincides with the one induced by FLee
(which can be seen by noting that the quantum grading contains precisely
all additional degree shifts that are made while forming the Bar-Natan
complex of D). With this description, the filtration degree of an element
in CFLee(D) may now be read off as follows (see [MTV07, Section 3]): let
x = (x1, . . . , xn) ∈ CiFLee

(D) be an element in the i-th homologically graded
component. Then each xj is contained in a tensor product of ALee{1} and
in general not homogeneous, but we can write xj = x1j + · · · + xkj with xlj
homogeneous and of different degree for all l = 1, . . . , k and j = 1, . . . , n.
We set

r(xj) := min
l=1,...,k

deg xlj,

where deg xlj denotes the degree of xlj in the tensor product with respect
to the grading deg 1 = +1, degX = −1 on ALee{1} considered as a vector
space. Then

degC(x) = min
j=1,...n

r(xj) + i+ n+ − n−,

where C denotes the filtration induced by the quantum grading on CiFLee
(D).

As described in Definition 8.47, the filtration on CFLee(D) induces a
filtration S on homology HLee(L). The main results of Lee are now the
following (see also [Ras10]).

Theorem 8.86 ([Lee05]). Let L ⊂ S3 be an oriented link. Then there
is a spectral sequence with E2 term the Khovanov homology KhQ(L) of L
that converges to the associated graded space GS(HLee(L)) of the induced
filtration S on HLee(L). The terms Ei with i ≥ 2 form invariants of the
link L.

Theorem 8.87 ([Lee05]). Let L ⊂ S3 be an oriented link. Then

dimQHLee(L) = 2n,

where n denotes the number of components of L. If L is a knot (i.e. n = 1),
then both generators lie in homological degree 0.

The proof of Theorem 8.87 is very explicit and obtained by describing
a bijection between the set of possible orientations of L and a generating
set of HLee(L). Details regarding Theorem 8.86 and 8.87 can be found in
[Lee05] and [Ras10]. Before we continue, let us make a remark regarding
the relation between a grading and filtration on a finite-dimensional vector
space.
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Remark 8.88. Let F be a field and V a finite-dimensional F-vector space.
Further, let I ⊆ Z be an index set that is bounded from above. Then we
have the following relation between I-gradings and descending filtrations
F = (Fi)i∈I on V :

I-grading on V descending filtration on V

V ∼=
⊕

i∈I Vi F = (Fi)i∈I

induced filtration

Fi:=
⊕

j≤i Vi

associated graded space

Vi:=Fi/Fi+j

Here, j ∈ I is chosen such that i < k ≤ j =⇒ k = j (i.e. the next
greater number after i in I). Note that in the case of finite-dimensional
vector spaces, both arrows are mutually inverse to each other: starting with
an I-grading on V , then passing to the induced filtration and going back
via the associated graded (which in this case if isomorphic to V ) yields
the same grading on V . Vice-versa, the associated graded of a descending
filtration on V induces again the original filtration on V . As a consequence,
if v ∈ V ∼=

⊕
i∈I Vi is homogeneous and F the induced filtration on V , then

the degree and filtration degree coincide:

deg v = degF v.

However, note that the above is in general not true: consider for instance
the abelian group A := Z with filtration given by

{0} ⊂ F1 := 2A ⊂ F0 := A. (8.39)

Then the associated graded A0 ⊕ A1 is given by

A0 = Z/2Z, A1 = 2Z,

and it is clear that the corresponding induced descending filtration is no
longer the one in (8.39). In fact, the associated graded A0 ⊕ A1 isn’t even
isomorphic to the original group A = Z.

Let K ⊂ S3 be an oriented knot with diagram D. By Theorem 8.87,

HLee(K) ∼= Q⊕Q.

Hence by Theorem 8.86, there exist two generators in KhQ(K) that sur-
vive the spectral sequence and end up in the associated graded space cor-
responding to the induced filtration on HLee(K). By Remark 8.88, the
quantum degree of these two elements equals the filtration degree of the
two generators of HLee(K). Rasmussen makes the following definition.
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Definition 8.89 ([Ras10, Definition 3.1]). Let K ⊂ S3 be an oriented
knot. Define

smin(K) := min{degS([x]) | [x] ∈ HLee(K), [x] ̸= 0}
smax(K) := max{degS([x]) | [x] ∈ HLee(K), [x] ̸= 0}

Note that smin(K) and smax(K) correspond precisely to the quantum
degree of the two surviving elements in the associated graded space, re-
spectively. Since the the spectral sequence in Theorem 8.86 is up to iso-
morphism an invariant of K, both smin(K) and smax(K) are invariants of
K as well.

Proposition 8.90 ([Ras10, Proposition 3.3]). Let K ⊂ S3 be an ori-
ented knot. Then

smax(K) = smin(K) + 2.

The previous proposition justifies the following definition.

Definition 8.91 ([Ras10, Definition 3.4]). Let K ⊂ S3 be an oriented
knot. Define

s(K) := smax(K)− 1 = smin(K) + 1.

Since smin(K) and smax(K) are invariants of K, s(K) is an invariant of K
as well.

This is the famous Rasmussen s-invariant of a knot. The invariant
behaves nicely with respect to mirror images and connected sum. Indeed,
[Ras10, Proposition 3.9 and 3.11] show that

s(K) = −s(K), s(K1#K2) = s(K1) + s(K2)

for knots K,K1, K2, where K denotes the mirror image of K and K1#K2 is
the connected sum of K1 and K2. Note that the additivity of s with respect
to connected sum implies that s induces a homomorphism from the knot
concordance group C (see Definition 4.12) to the integers Z. However, the
probably strongest and most surprising result is that the s-invariant yields
a lower bound on the smooth 4-genus gsmooth

4 of a knot K (see Definition 4.8
and Remark 4.9 for the definition of smooth 4-genus).

Theorem 8.92 ([Ras10, Theorem 1]). Let K ⊂ S3 be an oriented knot.
Then

|s(K)| ≤ 2gsmooth
4 (K).

The proof proceeds by showing that an oriented connected cobordism
S between two knots K1 and K2 induces a well-defined isomorphism
ϕS : HLee(K1)→ HLee(K2) that is filtered of degree χ(S), the Euler charac-
teristic of S. Then, if a knot K bounds a smoothly and properly embedded
genus g surface in B4, there exists an orientable connected cobordism S
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of Euler characteristic −2g between K and the unknot U , so the induced
map ϕS is filtered of degree −2g. One then obtains inequalities

1 ≥ degS(ϕ([x])) ≥ degS([x])− 2g

for [x] ∈ HLee(K), where the first inequality follows from the fact that
smax(U) = 1, which in turn follows since Kh(U) has dimension 2 and is
supported in quantum degrees +1 and −1. It follows that degS([x]) ≤
2g + 1, hence smax(K) ≤ 2g + 1 and thus by definition s(K) ≤ 2g. The
other inequality s(K) ≥ −2g is shown by applying the same argument to
the mirror image K and using s(K) = −s(K). Details can be found in
[Ras10, Section 4].

The Rasmussen s-invariant can be defined more generally over any given
field. Indeed, using the Bar-Natan system FBN with h set equal to 1, Turner
[Tur06] showed that the resulting filtered homology theory yield analogues
of Theorem 8.86 and 8.87 over F2, thus giving a definition of the s-invariant
over F2. This was later generalized to prime fields Fp by MacKaay-Turner-
Vaz in [MTV07], using the filtered (α, β)-system Fα,β (see Definition 8.61).
In fact, their results hold for arbitrary fields F as shown by Lipshitz and
Sarkar [LS14, Section 2]. In any case, the resulting s-invariant only depends
on the characteristic of the field, see Schütz [Sch22]. Thus, let us state the
results of [MTV07] but for arbitrary fields.

Proposition 8.93 ([MTV07, Proposition 2.2], [LS14, Section 2]).
Let L ⊂ S3 be a link and F a field. Further, let α, β, α̃, β̃ ∈ F.

1. If α2 + 4t = 0 then there is an isomorphism

HFα,β
(L) ∼= HFF(L),

where HFF(L) denotes the Khovanov homology of L over F.

2. If α2+β ̸= 0 and (α̃2+4β̃2)/(α2+4β) = γ2 for some non-zero γ ∈ F,
then there is an isomorphism

HFα,β
(L) ∼= HF

α̃,β̃
(L)

that is induced by a base change and twist on Fα,β.

They proceed to show that in many cases, the homology HFα,β
(L) is as

simple as HLee(L).

Proposition 8.94 ([MTV07, Proposition 2.3]). Let L ⊂ S3 be an
oriented link with n components and F a field. Further, let α, β ∈ F. If
α2 + 4β = γ2 for some non-zero γ ∈ F, then

dimFHFα,β
(L) = 2n.

All generators of HFα,β
(L) have even homological degree, except in the case

of a knot (i.e. n = 1) where both generators lie in homological degree zero.
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We are now in a similar situation that led to the definition of the Ras-
mussen s-invariant. Indeed, let F be a field, and let α, β ∈ F such that
α2 + 4β = γ2 for some non-zero γ ∈ F. Let S be the filtration on HFα,β

(L)
that is induced by the filtration on the corresponding chain complex. Let
K ⊂ S3 be a knot and set

smin(K,F)α,β := min{degS([x]) | [x] ∈ HFα,β
(L), [x] ̸= 0}

smax(K,F)α,β := max{degS([x]) | [x] ∈ HFα,β
(L), [x] ̸= 0}.

Then we have the analogue of Proposition 8.90.

Proposition 8.95 ([LS14, Proposition 2.6]). We have

smax(K,F)α,β = smin(K,F)α,β + 2

Definition 8.96 ([MTV07, Definition 4.1]). Let K ⊂ S3 be a knot and
F a field. Further, let α, β ∈ F such that α2 + 4β = γ2 for some non-zero
γ ∈ F. Define

s(K,F)α,β :=
smin(K,K)α,β + smax(K,K)α,β

2
.

In the case of α = 1, β = 1, we set

sF(K) := s(K,F)1,0.

sF(K) is called the Rasmussen s-invariant over F.

Remark 8.97.

1.) s(K,K)α,β is an invariant of K for the same reasons as for the Ras-
mussen s-invariant.

2.) By Proposition 8.93 2., if F = Q then sQ(K) = s(K).

3.) For a long time it was an open question whether s(K,F)α,β is the same
over all fields. In fact, [MTV07, Theorem 4.2] provided a seemingly
affirmative answer to this question, but later the proof turned out to
contain an error, see [MTV13]. Then, a first counter-example was given
by Cotton Seed [See13, LS14], who showed that

sF2(14n19265) ̸= sF3(14n19265).

Few years later, Dirk Schütz [Sch21a, Sch21b] found all knots with up
to 15 crossings for which sF2 ̸= sF3 . They are listed in [Sch21a, Table
1] together with the following additional knots [Sch21b]:

15n154386, 15n165952, 15n165966, 15n166064, 15n166244.

Recently, Lewark and Zibrowius [LZ21] found the first example of a
knot for which sQ ̸= sF3 . In the upcoming Chapter 9, we will show that
one can extract the Rasmussen s-invariant over any finite field Fp or Q
from the Z[G]-homology of a knot, see Remark 9.16.
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4.) One may also define an s-invariant over Z. Indeed, let FZ
α,β denote the

Frobenius system Fα,β with coefficients changed from F to Z. MacKaay,
Turner, and Vaz show in [MTV07, Proposition 2.4] that if L ⊂ S3 is
a link with n components and α2 + 4β = γ2 for some non-zero γ ∈ Z,
then

HFZ
α,β

(L) ∼= Z⊕n ⊕ T ∗,

where T ∗ is torsion (they further show that if α, β < p and γ ̸= 0 mod p
for p a prime, then HFZ

α,β
(L) has no p-torsion). For a knot K ⊂ S3,

one may then define s(K,Z)α,β as in Definition 8.96 but with smin and
smax restricted to the torsion-free part of HFZ

α,β
(L).

8.11 Khovanov homology II

Let us return once more to ordinary Khovanov homology. Let K ⊂ S3 be
an oriented knot with diagram D, and consider the (rational) Khovanov ho-
mology KH(K) of K obtained from the Khovanov chain complex CKh(D),
or equivalently from the FQ-complex CFQ(D) corresponding to the Frobe-
nius system FQ with algebra Q[X]/(X)2 (see Definition 8.55). Based on
early computations of Khovanov homology by Bar-Natan, Khovanov, and
Garoufalidis, there have been several phenomenological conjectures about
the structure of Kh(K) [BN02, Section 3.6]. The most famous one is the
so-called Knight Move Conjecture.

Conjecture 8.98 ([BN02, Conjecture 1]). Let K ⊂ S3 be an oriented
prime knot. Then the rational Khovanov homology of K consists of a single
pawn move piece

Q(0,s(K)−1) ⊕Q(0,s(K)+1),

and several knight move pieces

Q(i,j) ⊕Q(i+1,j+4)

where i, j ∈ Z. Here, Q(i,j) stands for a copy of Q generated by a single
element in homological degree i and quantum degree j, and s(K) stands
for the Rasmussen s-invariant of K.

The terms “pawn move” and “knight move” were coined by Bar-Natan
[BN02, Section 3.6] and origin from the observation that if one arranges the
Khovanov homology in a two dimensional table where the horizontal axis
corresponds to the homological grading and the vertical axis corresponds
to the quantum grading, then the pawn and knight move pieces look like

Q
Q and

Q

Q
(8.40)
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respectively. We will give a more formal definitions of “pawns” and “knights”
in Section 10.3, where they appear in the decomposition of the Z[G]-
complex of a knot K.

The Knight Move Conjecture was supported by many examples for a
long time. In particular, Bar-Natan [BN02, Section 3.6] showed by com-
putations that the conjecture is true for all prime knots with up to 11
crossings, Lee [Lee02] proved that the Knight Move Conjecture is true
for all alternating knots, and Manolescu-Ozsváth [MO08] showed it for all
quasi-alternating knots. Since the Lee spectral sequence (see Theorem 8.86)
has on page En a differential of bidegree (1, 4n), it follows that if the se-
quence for a knot K collapses on the second page, then the Knight Move
Conjecture is true for K. Alishahi and Dowlin [AD19] linked the Knight
Move Conjecture to the unknotting number of knots and showed that it
is true for all knots with unknotting number not bigger than 2 (see Corol-
lary 10.25). However, a counterexample to the Knight Move Conjecture
was found very recently by Manolescu-Marengon [MM20], proving that the
conjecture is in general wrong (their counterexample is a knot with more
than 30 crossings!).

Another structural observation about Khovanov homology was made by
Khovanov in [Kho03]. Let L ⊂ S3 be an oriented link with diagram D and
consider the rational or integral Khovanov complex CFQ(D) or CFZ(D),
respectively. By our definition of a TQFT, CFQ(D) is equipped with an
AQ := Q[X]/(X2)-module structure, where AQ acts on the first factor of
tensor products in CFQ(D). Similarly, CFZ(D) has an AZ := Z[X]/(X2)-
module structure. Khovanov [Kho03] makes the following definition.14

Definition 8.99. Let L ⊂ S3 be an oriented link with diagram D. Then
the homology of the reduced rational Khovanov complex

Cred
FQ

(D) := CFQ(D)⊗AQ AQ/(X){−1}

is called the reduced rational Khovanov homology of L and denoted by
Khred(L). Similarly, the homology of the reduced integral Khovanov com-
plex

Cred
FZ

(D) := CFZ(D)⊗AZ AZ/(X){−1}

is called the reduced integral Khovanov homology of L and denoted by
Khred

Z (L).

As for ordinary Khovanov homology, the notation Khred(L) respectively
Khred

Z (L) is justified since a different choice of diagram for L yields homo-
topy equivalent reduced Khovanov complexes. Further, note that reducing
preserves the homological as well as the quantum grading on complexes,
making reduced Khovanov homology bigraded as well.

14Khovanov’s definition of reduced complexes and homology in [Kho03] is for knots and only
in the rational case, but it works equally well for links and the integral case.
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Before discussing results about reduced Khovanov homology, let us
quickly note that one may also reduce other F -complexes in the sense
of Definition 8.99; in fact, we will do so with the Z[G]-complex in Sec-
tion 9.1. In order to distinguish between ordinary and reduced complexes,
we introduce a new term.

Definition 8.100. Let L ⊂ S3 be an oriented link with diagram D and
F a rank 2 Frobenius system. Then the F -complex CF(L) (resp. CF(D))
and F -homology HF(L) is called unreduced.

Convention. If clear from the context, we will refer to an unreduced F -
complex (resp. F -homology) simply as F -complex (resp. F -homology) as
we did before.

Representing Khovanov homology in a table as in (8.40), the compu-
tations of Bar-Natan in [BN02] have shown that the rational Khovanov
homology of almost all knots with at most 10 crossings is supported on two
adjacent diagonals; there are only twelve exceptions. Here, if h denotes the
homological and q the quantum grading, then a “diagonal” refers to the line
q − 2h = b in the table for some b ∈ Z. This observation has led to several
notions of homological thinness and width of knots, see [Shu14, Shu21]. Be-
fore introducing one of them, let us state how this observation translates
to reduced rational Khovanov homology.

Proposition 8.101 ([Kho03, Proposition 4]). Let K ⊂ S3 be an ori-
ented knot. Then the reduced rational Khovanov homology Khred(K) is
supported in a single diagonal (i.e. q−2h is constant) if and only if the ra-
tional Khovanov homology Kh(K) is supported in two adjacent diagonals.

This motivates the following definition.

Definition 8.102. Let L ⊂ S3 be an oriented link with diagram D. Define
on the rational and integral Khovanov complex the δ-grading by setting

δ(x) := h(x)− 2q(x),

where h(x) denotes the homological degree and q(x) denotes the quantum
degree of a homogeneous element x ∈ CFZ(D) or x ∈ CFQ(D), respectively.
The δ-grading descends to homology, and L is called

1. homologically thin (or h-thin) if the reduced rational Khovanov ho-
mology of L is supported in a single δ-degree; and

2. δ-thin (or simply thin) if the reduced integral Khovanov homology of
L consists of free modules and is supported in a single δ-degree.

IfK is not homologically thin or δ-thin, then L is called called homologically
thick (or h-thick) or δ-thick (or simply thick), respectively.
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Remark 8.103. Observe that our notion of homological thinness agrees
with Khovanov’s notion in [Kho03], whereas the notion of δ-thinness follows
[MO08], where it is referred to as “Khovanov homological thinness”. Note
that we have the following implication:

δ-thin =⇒ h-thin.

However, the converse is in general not true: we require that the reduced
integral Khovanov homology of a δ-thin link is free.

As mentioned above, all but twelve knots with up to 10 crossings are
h-thin. More generally, Lee has shown that all alternating links are h-
thin [Lee05]. In the upcoming Proposition 7.9, we will see that λ of all
non-trivial δ-thin knots is equal to one.





Chapter 9

Z[G]-Homology

In 2006, Khovanov [Kho06] described a rank 2 Frobenius system Funiv

from which any other rank 2 Frobenius system can be obtain by a base
change and twist (see [Kho06, Proposition 5]). As a consequence, the Funiv-
complex determines the F -complex of any other rank 2 Frobenius system
F . In this sense, Funiv yields a universal Khovanov homology theory.

As mentioned in Chapter 7, other Frobenius systems that yield universal
Khovanov-type chain complexes were found later on, one of them being
the system FZ[G], which gives rise to Z[G]-homology of a link. This system
was first described by Naot [Nao06, Nao07], and will form the basis for
the definition of our knot invariant λ. The Z[G]-system is of particular
interest as it is a simpler theory than Funiv in the sense that there are
less indeterminates involved. The aim of this chapter is to provide the
theoretical foundations of the Z[G]-theory and show that it is equivalent
to Khovanov’s Funiv-theory.

Chapter 9 is organized as follows. In Section 9.1, we give the definition
of the Z[G]-complex of a knotK using the Frobenius algebra Z[G,X]/(X2+
GX) (see Definition 9.1). We then describe an alternative way to obtain the
Z[G]-complex using the Bar-Natan complex of the 2-ended tangle obtained
by cutting K open at some point (see Definition 9.5). In Proposition 9.8
we show that both these ways to obtain the Z[G]-complex are equivalent,
which forms the starting point for the proof of Theorem 7.1 in Section 9.2
about its universality. In Section 9.3, we describe a reduced version of
Z[G]-homology obtained by setting G = 1. This gives a particularly sim-
ple homology theory (see Proposition 9.15), from which one may read off
the Rasmussen s-invariant over any field, for instance (see Remark 9.16).
Lastly, in Section 9.4 we introduce a Z[G]-action on a certain category of
cobordisms, which is a necessary technicality for later chapters. We assume
that the reader is familiar with the contents of Chapter 8, in particular Sec-
tions 8.3 to 8.5 and 8.7.
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9.1 The Z[G]-complex and homology

In Section 8.5, we already encountered the definition of the Frobenius sys-
tem Funiv and the Z[G]-system FZ[G]. For the readers convenience, we recall
the details in formal definitions.

Definition 8.56. Let h and t be formal variables. The Frobenius system
Funiv = (Runiv, Auniv,∆, ε) is defined as

Runiv = Z[h, t], Auniv = Runiv[X]/(X2 − hX − t), ι : Runiv ↪→ Auniv,

m(1⊗ 1) = 1 m(X ⊗X) = hX + t

m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1 ε(1) = 0

∆(X) = X ⊗X + t1⊗ 1 ε(X) = 1

We equip Funiv with a grading by setting

deg 1 = 0, degX = deg h = −2, deg t = −4.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

Definition 8.57. Let G be a formal variable. The Frobenius system
FZ[G] = (RZ[G], AZ[G],∆, ε) is defined as

RZ[G] = Z[G], AZ[G] = RZ[G][X]/(X2 +GX), ι : RZ[G] ↪→ AZ[G],

m(1⊗ 1) = 1 m(X ⊗X) = −GX
m(1⊗X) = X m(X ⊗ 1) = X

∆(1) = 1⊗X +X ⊗ 1 +G1⊗ 1 ε(1) = 0

∆(X) = X ⊗X ε(X) = 1

We equip FZ[G] with a grading by setting

deg 1 = 0, degX = degG = −2.

The mapsm, ι,∆, ε are then homogeneous of degree 0, 0,−2, 2, respectively.

As explained in Section 8.5, a rank 2 Frobenius system induces a func-
tor F : Cob3

/l(2) → MA which is called topological quantum field theory
(TQFT for short). Let T be a 2-ended tangle with diagram DT . Then
a TQFT applied to the cube of resolutions of DT yields a chain complex
CF(T ) as described in Section 8.6. The chain complex depends on the
chosen diagram DT , but any two diagrams of T yield homotopy equivalent
chain complexes (see Theorem 8.65).
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Notation. To simplify notation, we will write Cuniv(T ) and CZ[G](T ) for the
complexes coming from the TQFTs Funiv and FZ[G], respectively. Further,
we abuse notation as in Section 8.5 and denote a Frobenius system as well
as the corresponding TQFT with the same symbol F .

As we will see in Section 9.2, Cuniv(T ) is determined by a reduced version
of CZ[G](T ) and vice-versa (see Section 8.11 for a discussion of reduced
homology). Let us give the definition of the reduced FZ[G]-complex.

Definition 9.1. Let T be a 2-ended tangle with diagram DT and CZ[G](T ),
CZ[G](DT ) the corresponding (unreduced) FZ[G]-complexes, respectively.
The reduced FZ[G]-complex of DT is defined as

JDT K := CZ[G](DT )⊗AZ[G]
AZ[G]/(X){−1} ∈ Kom(MZ[G]).

Similarly, the reduced FZ[G]-complex of T is defined as

JT K := CZ[G](T )⊗AZ[G]
AZ[G]/(X){−1} ∈ Kom/h(MZ[G]).

Using the inclusion functorMZ[G] ↪→ Z[G]-Mod as described in Section 8.9,
we define the Z[G]-homology of T as the homology of JT K considered in
Kom/h(Z[G]-Mod) and is denoted by HZ[G](T ). If L ⊂ S3 is a base-pointed
link with base-pointed diagram DL and TL the corresponding 2-ended tan-
gle TL with diagram DTL (see (8.4)), we define the same notions for L by
setting

JDLK := JDTLK, JLK := JTLK, HZ[G](L) := HZ[G](TL).

Remark 9.2.

1.) Since CZ[G](T ) is an invariant of 2-ended tangles, so is the reduced
version JT K and does in particular not depend on the choice of diagram
DT .

2.) The grading on FZ[G] induces a grading on CZ[G](T ) and thus also on
JT K, making the reduced Z[G]-complex and Z[G]-homology bigraded.
We call the gradings as usual homological and quantum grading.

3.) Observe that reducing has the following effect on summands in CZ[G]:

AZ[G]{1} ⊗RZ[G]
AZ[G]{1}⊗n

reduce−−−→ RZ[G] ⊗RZ[G]
AZ[G]{1}⊗n.

In particular, the reduced complex has no longer an AZ[G]-module struc-
ture. Also note that the first factor is no longer affected by a shift in
grading.1

1This is needed in order that the dual of the reduced complex corresponds to the reduced
complex of the mirror image. Here, we use the usual convention that the signs of the homological
and quantum grading in the dual are switched.
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Example 9.3. Let K be once more the right-handed trefoil. Recall from
Example 8.80 that the Bar-Natan complex of the right-handed trefoil is
given as[ ]•

≃ 0 {2}
(
2 {6} 3 {8}

)
= [K]•⊕

and the unreduced FZ[G]-complex of K takes the form

CFZ[G]
(K) = 0AZ[G]{3}

(
2AZ[G]{7} 3AZ[G]{9}

)
⊕ m◦∆

where AZ[G] = Z[X,G]/(X2 + GX) and the left subscript denotes the ho-
mological degree. In the basis 1, X of AZ[G], the matrix of m ◦∆ is

m ◦∆ =

(
G 0
2 −G

)
Then the reduced FZ[G]-complex JKK is given as

JKK def.
= CZ[G](K)⊗AZ[G]

AZ[G]/(X){−1}

= 0Z[G]{2} ⊕
(
2Z[G]{6}

G−→ 3Z[G]{8}
)

It will be convenient to give an alternative description of JT K, using the
category E (see Definition 8.33). Let T be a 2-ended tangle with diagram
DT . Using delooping (see Figure 8.20), we can successively resolve every cir-
cle that appears in the Bar-Natan complex [DT ]. This yields an isomorphic
complex whose chain objects consist solely of sums of grading shifted copies
of DT0 (where DT0 is the diagram of the trivial 2-ended tangle in the unit
disk), giving us a connection between the categories Kom(Mat(Cob3

/l(2))
and Kom(Mat(E)). In fact:

Proposition 9.4. The functor B : E → Cob3
/l(2) given by inclusion is an

equivalence of categories.

Proof. We need to check that B is faithful, full and dense. As explained
before, density of B follows directly from delooping. To show that B is
faithful and full, we are going to look at the morphism spaces

homE(DT0 , DT0),

homCob3(2)(B(DT0), B(DT0)),

homCob3/l(2)
(B(DT0), B(DT0)),

where DT0 is the diagram of the trivial 2-ended tangle T0.
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Let G,Σi, i ∈ Z≥0 be formal variables. We introduce a grading on Z[G]
and Z[G,Σ0,Σ1,Σ2, . . . ] by setting degG = −2 and deg Σi = 2− 2i. Then
there is an isomorphism of graded abelian groups2

homE(DT0 , DT0)
∼= Z[G]

given by mapping a connected cobordism of genus k to Gk. Similarly, there
is an isomorphism of graded Abelian groups2

homCob3(2)(B(DT0), B(DT0))
∼= Z[G,Σ0,Σ1,Σ2, . . . ],

given by mapping a cobordism, which consists of the marked component
with genus k and a disjoint union of ni many closed surfaces of genus
i, to the product Gk

∏∞
i=0Σ

ni
i . In order to determine the morphism space

homCob3/l(2)
(B(DT0), B(DT0)), we need to understand how the local relations

S, T , and 4Tu in Cob3
/l(2) affect the ring Z[G,Σ0,Σ1,Σ2, . . . ]. Introducing

S and T translates to Σ0 = 0 and Σ1 = 2. Next, we replace 4Tu with the
equivalent 3S2 relation (cf. [Bar05, Section 11.4], and Figure 9.1 below)
which is easier to handle as there are at most three surfaces involved. We
name the surfaces in the relation A,B,C in a clockwise manner starting
top left. Suppose that g(A) = a, g(B) = b, g(C) = c. Let Mn be the
curtain with genus g(Mn) = n.

+ + = + +

Figure 9.1: The 3S2-relation.

Suppose first that A = B = M0 ̸= C. In this case, the 3S2 relation
translates to

GΣc +Gc +Gc = Σc+1 +GΣc +GΣc ⇐⇒ Σc+1 = 2Gc −GΣc.

By the S relation, we have Σ0 = 0 and thus Σ1 = 2G0 − G · 0 = 2,
which coincides with the T relation. By induction, we therefore obtain the
relation

Σc =

{
2Gc−1, c odd,
0, c even,

(9.1)

giving us a surjection homCob3/l(2)
(B(DT0), B(DT0)) ↠ Z[G]. We claim that

there are no other relations introduced, i.e. that this surjection is an iso-
morphism. For this, we check all possible general cases of the 3S2 relation.

2This is in fact an isomorphism of graded rings if we declare multiplication in homE (resp.
homCob3(2)) as composition of cobordisms.
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Case 1: A,B,C are three different closed surfaces (i.e. none of them is
a curtain Mn). In this case, 3S2 translates to

Σa+bΣc + Σa+cΣb + Σb+cΣa = Σa+1ΣbΣc + ΣaΣb+1Σc + ΣaΣbΣc+1.

If all a ≡ b ≡ c mod 2 or if a is odd and b, c even, both sides of the
equation vanish after applying (9.1). On the other hand, if a is even and
b, c odd, then (9.1) gives us

4Ga+b+c−2 + 4Ga+b+c−2 + 0 = 8Ga+b+c−2 + 0 + 0,

showing that there is no new relation introduced. Since 3S2 is symmetric
in A,B,C, no other parities of a, b, c need to be checked in this case.

Case 2: A = B ̸= C, none of them is a curtain Mn. In this case we
have

Σa+1Σc + Σa+c + Σa+c = ΣaΣc+1 + Σa+1Σc + Σa+1Σc.

If a ≡ c mod 2 both sides of the equation vanish after applying (9.1). If a
is even and c odd, we obtain

4Ga+c−1 + 0 + 0 = 0 + 2Ga+c−1 + 2Ga+c−1,

showing that there is no new relation introduced. Again by symmetry of
the 3S2 relation, no other cases a and c need to be checked.

Case 3: A = B = C, none of them is a curtain Mn. In this case we
have

3Σa+1 = 3Σa+1,

showing immediately that there are no new relations introduced.

Case 4: A = Ma, B, C are three different surfaces. The 3S2 relations
translates to

Ga+bΣc +Ga+cΣb +GaΣb+ c = Ga+1ΣbΣc +GaΣb+1Σc +GaΣbΣc+1.

If b, c are even, both sides vanish after applying (9.1). If b is even and c is
odd, we obtain

2Ga+b+c−1 + 0 + 2Ga+b+c−1 = 0 + 4Ga+b+c−1 + 0,

and if b is odd and c even, we get

0 + 2Ga+b+c−1 + 2Ga+b+c−1 = 0 + 0 + 4Ga+b+c−1.

In both cases, no new relations are introduced.

Case 5: A = B =Ma ̸= C. In this case, we get

Ga+1Σc +Ga+c +Ga+c = Ga+1Σc +Ga+1Σc +GaΣc+1.
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If c is odd, applying (9.1) yields

2Ga+c +Ga+c +Ga+c = 2Ga+c + 2Ga+c + 0,

and if c is even,

0 +Ga+c +Ga+c = 0 + 0 + 2Ga+c.

In both cases, no new relations are introduced.

Case 6: A =Ma, B = C =Mc, Ma ̸=Mc. We have

Ga+c +Ga+c +GaΣc+1 = Ga+1Σc +GaΣc+1 +GaΣc+1.

If c is odd, we obtain after applying (9.1)

Ga+c +Ga+c + 0 = 2Ga+c + 0 + 0,

and if c is even,

Ga+c +Ga+c + 2Ga+c = 0 + 2Ga+c + 2Ga+c.

In both cases, no new relations are introduced.

Case 7: A = B = C =Ma. As in the third case, we have

3Ga = 3Ga,

showing immediately that there are no new relations introduced.
The above shows that there are isomorphisms

φ : homE(DT0 , DT0)
∼=→ Z[G]

ψ : homCob3/l(2)
(B(DT0), B(DT0))

∼=→ Z[G].

Consider the diagram

Z[G]

homE(DT0 , DT0) homCob3/l(2)
(B(DT0), B(DT0)).

φ ψ

B

By construction this diagram commutes, i.e. B ◦ φ = ψ. Since both φ and
ψ are isomorphisms, B has to be an isomorphism as well.

The functor B induces an equivalence of categories on the additive clo-
sure Mat(E)→ Mat(Cob3

/l(2)) which we denote by the same symbol. This
means in particular that there is a functor I : Mat(Cob3

/l(2)) → Mat(E)
such that I ◦B and B ◦ I are naturally isomorphic to the identity functors
IdMat(E) and idMat(Cob3/l(2)

, respectively. The functor I can be constructed
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by using delooping as well, though not in a natural way: there is an am-
biguity in the order of which circles get delooped.3 Observe that if I is
constructed in this way, then I ◦B = IdMat(E) while B ◦ I is still only natu-
rally isomorphic to IdMat(Cob3/l(2))

. The functor I induces an equivalence of
categories

Î : Kom(Mat(Cob3
/l(2)))→ Kom(Mat(E)).

Now as before let G be a formal variable and consider the ring Z[G].
We equip Z[G] with a grading by setting deg 1 = 0 and degG = −2, and
we consider the categoryMZ[G]. There is a functor F : E →MZ[G] sending
the object DT0{m} ∈ ob(E) to the Z[G]-module Z[G]{m} and a cobordism
of genus k to the linear map given by multiplication with Gk. This functor
extends by linearity to a functor F : Mat(E)→MZ[G], which is in fact an
isomorphism. Moreover, it induces yet another functor

F̂ : Kom(Mat(E))→ Kom(MZ[G]).

Note that the functors Î and F̂ respect homotopy equivalence of com-
plexes and thus descend to functors on Kom/h, for which we use the same
notation. Let us make the following definition.

Definition 9.5. Let T be a 2-ended tangle with diagram DT . The Z[G]-
complex of DT is defined as the chain complex

Ω(DT ) := F̂ (Î([DT ])) ∈ Kom(MZ[G]),

where [DT ] denotes the Bar-Natan complex of DT . Similarly, the Z[G]-
complex of T is defined as the chain complex

Ω(T ) := F̂ (Î([T ])) ∈ Kom/h(MZ[G]),

where [T ] is the Bar-Natan complex of T . If L is a link with base point
and diagram DL, and TL its corresponding 2-ended tangle with diagram
DTL (see (8.4) and (8.5)), we define the Z[G]-complex of DL and the Z[G]-
complex of L as

Ω(DL) := F̂ (Î([DTL ])) ∈ Kom(MZ[G])

Ω(L) := F (Î([TL])) ∈ Kom/h(MZ[G]),

respectively.

Since the Bar-Natan complex is an invariant of tangles, Ω(T ) (resp. the
homotopy class of Ω(DT )) is an invariant for 2-ended tangles as well. The
construction is summarized in the schematic below.

3This problem can be resolved by introducing the convention of always delooping the last
circle with respect to the enumeration. However, since we don’t need a natural inverse we
aren’t going to introduce such a convention.
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2-ended tangles T

cube of resolutions of a diagram of T

[T ] ∈ Kom/h(Mat(Cob3
/l(2)))

Î([T ]) ∈ Kom/h(Mat(E))

Ω(T ) := F̂ (Î([T ])) ∈ Kom/h(MZ[G]).

Bar-Natan

Î,Proposition 9.4

F̂

Remark 9.6. Observe that by construction, the differentials in Ω(DT )
(resp. Ω(T )) are given by multiplication with nGk for some n ∈ Z and
k ∈ N.

Let us now show that the Z[G]-complex Ω(T ) is isomorphic to the re-
duced FZ[G]-complex JT K. For this, we need the following lemma.

Lemma 9.7. Let DT be a 2-ended tangle diagram and let F = (R,A,∆, ε)
be a rank 2 Frobenius system. Let α be the functor

α : Kom(Mat(Cob3
/l(2)))→ Kom(MA)

that is induced by the TQFT F . We can see A as a Z[G]-module by letting
G act as F( ). Then the functor γ : Kom(MZ[G]) → Kom(MA) defined
as

γ(Y ) := Y ⊗Z[G] A{1}, Y ∈ Kom(MZ[G])

satisfies
α([DT ]) ∼= γ(Ω(DT ))

(see Figure 9.2 for a diagram of the situation).

Proof. We know that the functor Î is an equivalence of categories (with
"inverse" B̂, see Proposition 9.4) and that F̂ is an isomorphism of cate-
gories, thus if β = F̂ ◦ Î and ζ = B̂ ◦ F̂−1 we have that ζ(β(C)) ∼= C for
all C ∈ Kom(Mat(Cob3

/l(2))) (see Figure 9.3 below). In order to show that
α([DT ]) ∼= γ(F̂ (Î([DT ]))), it is enough to prove that α(ζ(Y )) ∼= γ(Y ) for all
Y ∈ Kom(MZ[G]). This is done by introducing a new functor J : E →MA

sending the trivial 2-ended tangle diagram DT0 to the A-module A and the
curtain with genus k ≥ 0 to the linear map given by F( )k. The functor
J induces a functor

Ĵ : Kom(Mat(E))→ Kom(MA).
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2-ended tangle diagrams

cube of resolutions

Kom(Mat(Cob3/l(2)))

Kom(Mat(E))

Kom(MA) Kom(MZ[G])

F-TQFT

Bar-Natan

α

Î,Proposition 9.4

F̂
γ

Figure 9.2: The functors and constructions in the statement of Lemma 9.7.

It is easy to see that Ĵ = α ◦ B̂, so α is naturally isomorphic to Ĵ ◦ Î. Thus
it only remains to check that Ĵ ∼= γ ◦ F̂ . This follows immediately from
the definitions.

Kom(Mat(Cob3/l(2)))

Kom(Mat(E))

Kom(MA) Kom(MZ[G])

α Î

β

Ĵ
F̂

γ

ζ

Figure 9.3: Functors used in the proof of Lemma 9.7.

Proposition 9.8. Let T be a 2-ended tangle. Then the reduced FZ[G]-
complex JT K is isomorphic to the Z[G]-complex Ω(T ).

Proof. Let DT be a diagram for T . Using Lemma 9.7 with F = FZ[G] and
that AZ[G]/(X) ∼= Z[G], we obtain

JDT K = CZ[G](DT )⊗AZ[G]
AZ[G]/(X){−1}

= α([DT ])⊗AZ[G]
AZ[G]/(X){−1}

∼= γ(Ω(DT ))⊗AZ[G]
AZ[G]/(X){−1}

∼= Ω(DT )⊗Z[G] AZ[G]/(X){−1}
∼= Ω(DT ).

Considering the above up to homotopy equivalence of chain complexes then
yields the isomorphism JT K ∼= Ω(T ).
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Proposition 9.8 tells us that the reduced FZ[G]-complex and the Z[G]-
complex are isomorphic, so let’s consider them as the same.

Notation. We will from now on denote both the reduced FZ[G]-complex
and the Z[G]-complex with J · K, and no longer distinguish between them.

9.2 Equivalence of the Funiv- and Z[G]-theory

The aim of this section is to prove the previously claimed statement that
the FZ[G]-theory is universal in the sense of Khovanov’s Funiv-theory. Thus
our goal is to show that the Z[G]-complex determines the Funiv-complex
and vice-versa. We start by showing that the Z[G]-complex determines any
F -complex obtained from a rank 2 Frobenius system.

Theorem 9.9. Let T be a 2-ended tangle with diagram DT and let F =
(R,A,∆, ε) be a rank 2 Frobenius system. The F -complex CF(DT ) is
determined by the Z[G]-complex JDT K in the following way:

CF(DT ) ∼= JDT K⊗Z[G] A{1} ∈ Kom(MA),

where A is a Z[G]-module via G acting as F
( )

. Considered up to ho-
motopy equivalence of chain complexes, the same is true for CF(T ) and
JT K.

Proof. The statement of the theorem follows immediately from Lemma 9.7
and Proposition 9.8:

CF(DT ) = α([DT ]) ∼= γ(Ω(DT )) ∼= JDT K⊗Z[G] A{1}.

Observe that Theorem 9.9 specializes to Theorem 7.1 that we already
mentioned in the introduction:

Theorem 7.1. Endow Auniv = Z[h, t][X]/(X2−hX− t) with the structure
of a Z[G]-module by letting G act as 2X − h. Then for every oriented link
L with base point,

Cuniv(L) ≃ JLK⊗Z[G] Auniv{1}.

Proof. Apply Theorem 9.9 with F = Funiv.

Let us make explicit how Z[G]-homology determines the original Kho-
vanov homology (Naot mentions this statement in [Nao06, Section 6.6]).

Corollary 9.10. For all knots K, the unreduced integral Khovanov chain
complex may be obtained from JKK by tensoring with the Z[G]-module
Z{−1} ⊕ Z{1}, where G acts as

(
0 2
0 0

)
. More sloppily said, replace every

copy of Z[G]{m} by Z{m−1}⊕Z{m+1}, and every differential nGk with
n, k ∈ Z, k ≥ 0 by

(
n 0
0 n

)
for k = 0, by

(
0 2n
0 0

)
for k = 1, and by the zero

matrix for k ≥ 2.
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Proof. Apply Theorem 9.9 to the Frobenius system Z[X]/(X2) over Z, and
forget the action of the algebra.

Theorem 9.9 shows us how to obtain the F -complex CF(DT ) from the
Z[G]-complex JDT K for any rank 2 Frobenius system F , which is in partic-
ular true for the universal system Funiv. In order to show that the Funiv-
and the Z[G]-theory are in fact equivalent, it remains to prove that JDT K
is also determined by Cuniv.

Theorem 9.11. Let T be a 2-ended tangle with diagram DT . The Z[G]-
complex JDT K is determined by the Funiv-complex Cuniv(DT ) in the follow-
ing way:

JDT K ∼= Cuniv(DT )⊗Auniv Z[G]{−1} ∈ Kom(MZ[G]),

where Z[G] is an Auniv-module by X and t acting as 0 and h as −G.
Considered up to homotopy equivalence of chain complexes, the same is
true for JT K and Cuniv(DT ).

Proof. By Theorem 9.9,

CFuniv(DT ) ∼= JDT K⊗Z[G] Auniv{1}. (9.2)

Consider AZ[G] as an Auniv-module by letting X and t act as 0 and h as
−G. Tensoring (9.2) with AZ[G] over Auniv yields

Cuniv(DT )⊗Auniv AZ[G]
∼=
(
JDT K⊗Z[G] Auniv{1}

)
⊗Auniv AZ[G]

∼= JDT K⊗Z[G] AZ[G]{1}
∼= CZ[G](DT ).

Therefore

JDT K = CZ[G](DT )⊗AZ[G]
AZ[G]/(X){−1}

∼= (Cuniv(DT )⊗Auniv AZ[G])⊗AZ[G]
AZ[G]/(X){−1}

∼= Cuniv(DT )⊗Auniv AZ[G]/(X){−1}
∼= Cuniv(DT )⊗Auniv Z[G]{−1}.

The discussion in this section can be summarized by the commutative
diagram in Figure 9.4, where ξ : Kom(MAuniv)→ Kom(MZ[G]) is the func-
tor given by

ξ(C) := C ⊗Auniv Z[G]{−1}

for C ∈ Kom(MAuniv).

Remark 9.12. For the reader’s convenience, let us quickly summarize the
current state of matters from Sections 9.1 and 9.2. We have the following
Z[G]-related objects:
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2-ended tangle diagrams

cube of resolutions

Kom(Mat(Cob3/l(2)))

Kom(Mat(E))

Kom(MAuniv) Kom(MZ[G])

Funiv-TQFT red. FZG-TQFT

Bar-Natan

Î,Proposition 9.4

Ĵ F̂

ξ

γ

Figure 9.4: A summary of the relationships discussed in Section 9.2.

1. The unreduced FZ[G]-complex CZ[G](T ) obtained by applying the
TQFT FZ[G] to the Bar-Natan complex of a diagram of T ;

2. The reduced FZ[G]-complex JT K obtained by “setting X equal to 0”
in CZ[G](T ) (see Definition 9.1). It’s homology is called the Z[G]-
homology of T ;

3. The Z[G]-complex Ω(T ) obtained from the equivalence of categories
Kom/h(Mat(Cob3

/l(2))) and Kom/h(Mat(E)) in combination with the
isomorphism F̂ : Kom/h(Mat(E))→ Kom/h(MZ[G]).

By Proposition 9.8 we have JT K ∼= Ω(T ), which is why we no longer distin-
guish between them and denote both by JT K. By Theorem 9.9, the Z[G]-
complex JT K determines any F -complex CF(T ) obtained from a TQFT
corresponding to a rank 2 Frobenius system F , so in particular Cuniv(T ).
On the other hand, Cuniv(T ) determines the Z[G]-complex JT K by Theo-
rem 9.11, showing that both theories are “universal”.

9.3 Reduced Z[G]-homology

Let T be a 2-ended tangle. We have seen in the previous subsection that
the reduced Z[G]-complex JT K is determined by the Funiv-complex Cuniv(T )
and vice-versa. One advantage of the Z[G]-complex is that setting G = 1
yields a particularly simple homology theory.

Definition 9.13. Let T be a 2-ended tangle with a single component, so
that T corresponds to a knot K with base point. Then the homology
H(JT KG=1) of the complex

JT KG=1 := JT K⊗Z[G] Z[G]/(G− 1)

is called the reduced Z[G]-homology of T .
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Remark 9.14.

1.) Observe that setting G = 1 collapses the quantum grading of JT K.
However, forming on JT K the descending filtration that is induced by
the quantum grading, we obtain that JT KG=1 is filtered (compare Re-
mark 8.85).

2.) To avoid the reader’s confusion, let us notice the slight ambiguity in
our usage of the word “reduced”: the homology of the Z[G]-complex,
which by Proposition 9.8 we identified with the reduced FZ[G]-complex,
is called the Z[G]-homology of an arbitrary 2-ended tangle T . On the
other hand, the reduced Z[G]-homology of a 2-ended tangle T with
a single component is obtained from JT K by “setting G = 1” as in
Definition 9.13.

Proposition 9.15. Let T be a 2-ended tangle with a single component, so
that T corresponds to a knot K with base point. Then

H(JT KG=1) ∼= Z.

Proof. Let us first look at the unreduced situation over the rationals with
G set equal to 1, i.e. the complex

C(T ) := (CZ[G](T )⊗AZ[G]
AQ)⊗AQ[G]

Q[G]/(G− 1),

where A = Z[X,G]/(X2+GX) and AQ[G] = Q[X,G]/(X2+GX). Note that
C(T ) can be equivalently obtained from the Frobenius system FZ[G] in the
usual way after switching coefficients to Q and setting G = 1 (the algebra
of this system is then given by Q[X]/(X2 + X)). Then Proposition 8.94
implies that

H(C(T )) ∼= Q⊕Q.
In fact, using Wehrli’s edge-coloring technique [Weh08, Section 2.1], one
obtains a decomposition

C(T ) = XC(T )⊕ (X + 1)C(T ),

where XC(T ) and (X + 1)C(T ) are the subcomplexes generated by all
elements having X and X + 1 as the first tensor factor (i.e. at the factor
corresponding to the special strand), respectively. Similar to [Weh08, The-
orem 5], one can show that both XC(T ) and (X+1)C(T ) have homology of
dimension one. Now let’s look at the reduced situation over the rationals,
i.e. the complex

JT KQ,G=1 := JT KG=1 ⊗Z Q,
By construction, JT KQ,G=1 is equivalent to the complex C(T ) with X set to
0 in the first tensor factor of every summand in C(T ), which means that
the summand XC(T ) becomes trivial after reducing. Hence

H(JT KQ,G=1) ∼= Q.
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The above tells us that dimQ(JT KG=1) = 1. Thus switching back to the
integers, it remains to show that JT KG=1 has no torsion. This is done in
the same way as in the proof of [MTV07, Proposition 2.4, ii.)].

Remark 9.16. Let T be a 2-ended tangle corresponding to a knot K. It is
interesting to note that one can extract the Rasmussen sF-invariant of K
over any field F (see Definition 8.96) from the Z[G]-homology of K. Indeed,
consider the Z[G]-complex with coefficients switched to F, i.e.

JKKF[G] := JKK⊗Z[G] F[G].

By Proposition 9.15 and since F[G] is a PID, JKKF[G] decomposes into a
single grading-shifted copy of the base ring F[G]{n} and some summands

of the form F[G]{m} Gk

→ F[G]{2k + m} for k,m, n ∈ Z (a so-called pawn
and several Gk-knights, cf. Definition 10.17). Therefore, setting G = 1 in
JKKF[G] yields

JKKF,G=1 := JKKF[G] ⊗F[G] F[G]/(G− 1) ≃ F[G]{n} ⊗F[G] F[G]/(G− 1).

As in the case of F = Q, JKKF,G=1 is a filtered complex. We claim that
n, i.e. the filtered degree of the generator of F[G]{n} in homology, is equal
to sF(K). Indeed, let FF[G] denote the Frobenius system FZ[G] with coeffi-
cients switched from the integers to F, so that the algebra of this system is
F[G,X](X2+GX). Setting G = 1 in FF[G] defines a filtered Frobenius sys-
tem in the usual way that yields the unreduced complex CFF[G]

(K) whose
homology can be used to obtain sF(K) (see Section 8.10). Now, using The-
orem 9.9 and the decomposition of JKKF[G] described above, we can write
CFF[G]

(K) as

CFF[G]
(K) ∼= JKKF[G] ⊗F[G] F[G,X]/(X2 +GX){1}
∼= (F[G]{n} ⊕R)⊗F[G] F[G,X]/(X2 +GX){1}
∼= F[G,X]/(X2 +GX){n+ 1}⊕

(R⊗F[G] F[G,X]/(X2 +GX){1}),

where R consists solely of summands F[G]{m} Gk

→ F[G]{2k + m}. If we
now set G = 1 and take homology, we obtain

H(CFF[G]
(K)⊗F[G] F[G]/(G− 1)) ∼= F[X]/(X2 +X){n+ 1}.

Now F[X]/(X2 + X){n + 1} is generated by 1 and X in filtered degrees
n + 1 and n − 1 respectively (see Proposition 8.95), hence sF(K) = n as
claimed.

Example 9.17. In Example 9.3, we computed the Z[G]-complex of the
right-handed trefoil and obtained

JKK = 0Z[G]{2} ⊕
(
2Z[G]{6}

G−→ 3Z[G]{8}
)
.
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Setting G = 1 yields

JKKG=1
def.
= JKK⊗Z[G] Z[G]/(G− 1)

∼= 0Z{2} ⊕
(
2Z{6}

1−→ 3Z]{8}
)

≃ 0Z{2}

Hence the reduced Z[G]-homology of the right-handed trefoil is given by
a single copy of Z in homological degree 0 and quantum degree 2, con-
firming Proposition 9.15. Moreover, we can also immediately read off the
Rasmussen invariant of the right-handed trefoil over any field F, which is
given by 2.

9.4 The Z[G]-enriched category Cob3,•/l (2n)

In preparation for upcoming chapters about the λ-invariant, we need to be
able to speak about “multiplication by G” on the Bar-Natan complex of a
tangle diagram [D]. Thus, let’s introduce the necessary formalism.

As in Section 8.7, let Cob3,•
/l (2n) denote the category Cob3

/l(2n) with
one of the fixed end points of the unoriented crossingless 2n-ended tangle
diagrams marked as base point. We wish to obtain a Z[G]-action on the
morphism groups of this category. For this, let C ∈ homCob3,•(2)(DT0 , DT0)
be a cobordism between the trivial 2-ended tangle diagram DT0 and itself,
and let T ∈ homCob3,•(2n)(D,D

′) be any cobordism between two unoriented
crossingless 2n-ended tangle diagramsD, D′. Then one may glue the cobor-
disms C and T together, so that the base point of DT0 gets attached to the
base point of D and D′, respectively. This gives a bilinear map

homCob3,•(2)(DT0 , DT0)× homCob3,•(2n)(D,D
′)→ homCob3,•(2n)(D,D

′).

Modding out the local relations l and using that homCob3,•(2)(DT0 , DT0) is
isomorphic to Z[G] (see Remark 8.36), we obtain a Z[G]-action on each
of the morphism Z-modules of Cob3

/l(2n), thus turning them into Z[G]-
modules. Let us redefine Cob3,•

/l (2n) as follows.

Definition 9.18. Let Cob3,•
/l (2n) denote the Z[G]-enriched category ob-

tained from Cob3
/l(2n) by marking one of the fixed tangle diagram end

points as base point and letting Z[G]-act on the morphism groups as de-
scribed above. Given a 2n-ended tangle diagram D with base point, we de-
note by [D]• the Bar-Natan chain complex of D in Kom(Mat(Cob3,•

/l (2n))).
Here, we identify equivalence classes of tangle diagrams in the disk that
contains D with equivalence classes of tangle diagrams in the fixed unit
disk in R2 for Cob3,•

/l (2n), using a homeomorphism (which is unique up to
isotopy) between these disks that sends end points to end points and base
point to base point.
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Remark 9.19.

1.) The Z[G]-action on Cob3,•
/l (2n) induces a Z[G]-action on [D]• in the

obvious way.

2.) Note that one may recover Cob3
/l(2n) from Cob3,•

/l (2n) and [D] from
[D]• by simply forgetting the Z[G]-action and the base point. In other
words, Definition 9.18 only introduces the action of G, but does not
introduce any new objects and morphisms.

3.) For n = 1, the Z[G]-action on Cob3,•
/l (2) is by construction the same

as the one obtained via the equivalence of Cob3
/l(2) and MZ[G] (see

Proposition 9.4 and the discussion after). In particular, for 2-ended
tangle diagrams D, both choices of base point result in the same Z[G]-
action on [D]•.

Notation. In order to distinguish the two versions of Cob3,•
/l (2n) as in

Definition 9.18 (i.e. with Z[G]-action and base point) and Definition 8.75
(i.e. only with base point), we drop from now on the • from the latter and
keep in mind that in the context of planar arc diagrams there is always a
fixed base point.

In Section 8.7 we have described how an unoriented d-input planar arc
diagram D (see Definition 8.66) yields a functor

DCob/l :
d∏
i=1

Cob3
/l(2nEi

)→ Cob3
/l(2nE)

that intuitively “glues” d suitable tangle diagrams into the planar arc di-
agram D. Here, 2nEi

is the number of end points on the boundary of
the i-th removed input disk from D, and 2nE is the number of end points
on the boundary of D with the input disks placed back in. According to
Theorem 8.77, DCob/l extends by taking tensor products to a functor

DK :
d∏
i=1

Kom(Mat(Cob3
/l(2nEi

)))→ Kom(Mat(Cob3
/l(2nE))),

which again by Theorem 8.77 is compatible with homotopy equivalence of
chain complexes (see Section 8.7 for more details). Thus an unoriented
d-input planar arc diagram establishes the following compatibility result:

DK([D1], . . . , [Dd]) ≃ [DT (D1, . . . , Dd)], (9.3)

where Di is a 2nEi
-ended tangle diagram Di for i = 1, . . . , d and DT is the

planar arc diagram operator defined by D (see Definition 8.68). Note that
with this tool set, one could give a more formal definition of the Z[G]-action
on [D]• given in Definition 9.18 by using an unoriented 2-input planar arc
diagram whose two input disks have 2 and 2n end points, respectively.
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To adapt to Z[G]-complexes, let us consider unoriented d-input planar
arc diagrams D that contain an arc connecting the base point of E to the
base point of the first input disk E1. Then D(K/h)or induces a functor

Kom/h(Mat(Cob3,•
/l (2nE1)))×

d∏
i=2

Kom/h(Mat(Cob3
/l(2nEi

)))

−→ Kom/h(Mat(Cob3,•
/l (2nE))).

For this functor, it is straightforward to obtain the following analogue of
(9.3):

DK([D1]
•, [D2] . . . , [Dd]) ≃ [D(D1, . . . , Dd)]

•.



Chapter 10

The λ-Invariant

The aim of this chapter is to provide a detailed introduction to the λ-
invariant. It is organized as follows. We start in Section 10.1 with the gen-
eral definition of λ as described in Section 7.5 (see Definition 10.2 and 10.3),
and prove first properties, such as Proposition 7.8. In Section 10.2, we take
a closer look at λ for tangles, and prove Proposition 10.14 which states
that λ induces a pseudometric on the set of equivalence classes of tangles
in a fixed ball with fixed base point and connectivity. In Section 10.3 we
describe how to decompose the Z[G]-complex of a knot into a direct sum of
simpler complexes (so-called pieces), which leads to the computation of λ
for the (5, 6)-torus knot T5,6 in Example 10.19. In Section 10.4, we return to
the relation of λ with torsion order invariants. We start with a discussion of
uG (see Definition 10.23) and related invariants, and proceed to show that
uG detects the unknot (see Lemma 10.27) and that uG(K) ≤ λ(K) for all
knots K (see Lemma 10.28). It then follows directly from these results that
λ is an unknot detector (see Proposition 7.7). The remaining Sections 10.5
and 10.6 are concerned with λ of thin and small knots respectively, and
contain proofs of Proposition 7.9 and 7.11

10.1 Definition and basic properties

Let us start by making the preliminary definition of the λ-invariant for a
knot K in Chapter 7 more formal in a general context. However, before
doing so let us introduce the notion of an ungraded chain map.

Definition 10.1. For chain complexes (C, d), (C ′, d′) in some additive cat-
egory, an ungraded chain map f : C → C ′ is a morphism

f :
∞⊕

i=−∞

Ci →
∞⊕

i=−∞

C ′
i

that need not respect homological degree, such that d′ ◦ f = f ◦ d. When-
ever we want to highlight the difference, we call a chain map in the usual
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sense graded. If the underlying category is Abelian (so that one may take
homology), then the ungraded chain map f induces a morphism

f∗ : H(C) =
∞⊕

i=−∞

Hi(C)→
∞⊕

i=−∞

Hi(C
′) = H(C ′).

Definition 10.2. Let A,B ∈ Kom(C) with C = Mat(Cob3,•
/l (2n)) or

Z[G]-Mod. Then we define λ(A,B) as the minimal integer k ≥ 0 such
that there exists ungraded chain maps

A B

f

g

and chain homotopies g ◦ f ≃ Gk · idA, f ◦ g ≃ Gk · idB. If such a k does
not exist, then we set λ(A,B) =∞.

Based on Definition 10.2, we introduce the following abbreviations for
λ(A,B).

Definition 10.3. Let K and J be knots, let U be the unknot, and let
A ∈ Kom(Z[G]-Mod). Further, let D,D′ be two 2n-ended base-pointed
tangle diagrams in a fixed disk with the same endpoints and the same base
point. Then we set:

1. λ(A) := λ(A, JUK);

2. λ(D,D′) := λ([D]•, [D′]•);

3. λ(K, J) := λ(JKK, JJK);

4. λ(K) := λ(JKK, JUK) = λ(JKK).

Remark 10.4.

1.) One can naturally extend the definition of λ from knots to links with
base point, by setting λ(L,L′) to be λ(T, T ′), where T, T ′ are the 2-
ended tangles corresponding to the links L,L′ via (8.4). In this sense,
most of the results regarding λ will generalize from knots to links. For
simplicity’s sake, however, we are sticking with knots.

2.) Strictly speaking, the Z[G]-complex of a knot K is by definition
considered up to homotopy equivalence and not contained in
Kom(Z[G]-Mod). However, λ as in Definition 10.2 is invariant under
homotopy equivalence of complexes, hence we accept the slight inac-
curacy in formalism by plugging Z[G]-complexes of knots into λ as in
Definition 10.3.

Next, let us prove some useful basic properties of λ.
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Lemma 10.5. For some k ≥ 1, let A1, . . . , Ak, B1, . . . , Bk be chain com-
plexes over Z[G]-Mod or Mat(Cob3,•

/l (2n)). Then, for A = A1 ⊕ · · · ⊕ Ak
and B = B1 ⊕ · · · ⊕Bk one has

λ(A,B) ≤ max(λ(A1, B1), . . . , λ(Ak, Bk)).

Proof. W.l.o.g. we can assume that k = 2. If either λ(A1, B1) or λ(A2, B2)
are equal to ∞ the statement of the lemma is trivial, so let us assume
that they are both finite. We pick chain maps f1, g1 such that f1 ◦ g1 ≃
Gλ(A1,B1) · idB1 and g1◦f1 ≃ Gλ(A1,B1) · idA1 , and choose maps f2, g2 similarly
for λ(A2, B2). Let m = max(λ(A1, B1), λ(A2, B2)) and define f : A1⊕A2 →
B1 ⊕B2, g : B1 ⊕B2 → A1 ⊕ A2 as follows:

f =

(
Gm−λ(A1,B1) · f1 0

0 Gm−λ(A2,B2) · f2

)
, g =

(
g1 0
0 g2

)
We leave it to the reader to check that f ◦ g ≃ Gm · idB1⊕B2 and g ◦ f ≃
Gm · idA1⊕A2 .

Taking one of the Bi as JUK, and all the others as 0, we obtain the
following special case of Lemma 10.5, which gives a useful upper bound for
λ of a direct sum.

Corollary 10.6. Let C1, . . . , Cn be chain complexes over Z[G]-Mod, fix a
j ∈ {1, . . . , n} and let li = λ(Ci, 0), for all i ̸= j, and lj = λ(Cj). Then:

λ
( n⊕

i=1

Ci
)
≤ max

i=1,...,n
li.

Lemma 10.7. Let A,A1 and A2 be chain complexes over Z[G]-Mod. Then:

1. λ(A1 ⊗ A2) ≤ λ(A1) + λ(A2);

2. λ(A) = λ(A), where A is the dual of A.

Proof. For the first statement, let us assume that λ(A1), λ(A2) are both
finite (if either one is ∞ the statement is trivial). Let fi : Ai → JUK,
gi : JUK → Ai be chain maps such that gi ◦ fi ≃ Gλ(Ai) · idAi

and fi ◦ gi ≃
Gλ(Ai) · idJUK, for i = 1, 2. Define f : A1 ⊗ A2 → JUK ⊗ JUK ∼= JUK and
g : JUK⊗ JUK ∼= JUK→ A1 ⊗ A2 as

f = f1 ⊗ f2, g = g1 ⊗ g2.

Then g ◦ f ≃ Gλ(A1)+λ(A2) · idA1⊗A2 and f ◦ g ≃ Gλ(A1)+λ(A2) · idJUK, so
λ(A1 ⊗ A2) ≤ λ(A1) + λ(A2) as desired.

As for the second statement, it follows from the fact that if f : A→ JUK,
g : JUK→ A are chain maps such that g ◦f ≃ Gk · idA and f ◦g ≃ Gk · idJUK,
then the induced dual chain maps g : A→ JUK ∼= JUK and f : JUK ∼= JUK→
A satisfy f ◦ g ≃ Gk · idA and g ◦ f ≃ Gk · idJUK.
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The in the introduction mentioned Proposition 7.8 now follows directly
from Lemma 10.7, since JK#JK ∼= JKK⊗ JJK and J−KK ∼= JKK.

Proposition 7.8.

1. λ(K#J) ≤ λ(K) + λ(J) for all knots K, J .

2. λ does not change under taking mirror images, or orientation reversal.

10.2 A closer look at λ for tangles

The aim of this section is to study closer the behaviour of λ for tangles.
Here, we will again make use of planar arc diagrams and the corresponding
operators, as described in Sections 8.7 and 9.4. In the following, all planar
arc diagrams D are to be understood as oriented, and in order to simplify
notation we will denote the various induced operators with D as well.

Lemma 10.8. Let D be a 2-input planar arc diagram containing an arc
connecting the base points of the output disk and the first input disk. Let
D1 and D′

1 be two tangle diagrams fitting into the first input disk, and let
D2 be a tangle diagram fitting into the second input disk. Then

λ(D(D1, D2),D(D′
1, D2)) ≤ λ(D1, D

′
1).

Proof. Let f : [D1]
• → [D′

1]
• and g : [D′

1]
• → [D1]

• be chain maps satisfying
f ◦ g ≃ Gn · id[D′

1]
• and g ◦ f ≃ Gn · id[D1]• for n = λ(D1, D

′
1). Using the

functor induced by D, we may define maps f̃ and g̃ as

D([D1]
•, [D2]) D([D′

1]
•, [D2]).

f̃=D(f,id[D2]
)

g̃=D(g,id[D2]
)

These maps satisfy

g̃ ◦ f̃ = D(g ◦ f, idD2) ≃ D(Gn · idD1 , idD2) = Gn · idD([D′
1]

•,[D2]),

and the analog equality for g̃ ◦ f̃ . This shows the desired statement.

See Figure 10.1 for examples of the following definitions.

Definition 10.9. Let D2n be the following 2-input planar arc diagram: the
two input disks are 2n-ended and (4n−2)-ended, respectively; D2n consists
of one arc connecting the base point of the output disk to the base point
of the first input disk, 2n− 1 arcs connecting end points of the two input
disks, and 2n − 1 arcs connecting end points of the second input disk to
end points of the output disk. We say that a tangle diagram Q with 2m
end points is braid-like, if it may be isotoped such that m end points are
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*

* *

*

(a) (b)

(c) (d)

Figure 10.1: Examples of the concepts introduced in Definition 10.9. An asterisk
marks the base point. (a) D4, (b) a braid-like 6-ended tangle diagram Q, (c) a
4-ended tangle diagram T , (d) D4(T,Q), called a braiding of T using Q.

on the left, m end points are on the right, and Q consists of m arcs that
at no point have a vertical tangent. For D2n as above, Q a (4n− 2)-ended
braid-like tangle diagram, and D a 2n-ended tangle diagram, we say that
D(D,Q) is a braiding of D.

Recall from Definition 8.21 that to obtain a tangle diagram of a given
tangle in a ball B, one must choose a homeomorphism between B and the
unit ball B0. We will now show that two tangle diagrams of a fixed tangle
are related by a finite sequence of Reidemeister moves and a braiding. In
fact, the braiding only depends on the homeomorphisms between the balls,
and not on the tangles. Let us make this precise.

Lemma 10.10. Let B be a ball, and P = {p1, . . . , p2n} ⊂ ∂B for some
n ≥ 1. Let φ1, φ2 be homeomorphisms from B to the unit ball B0 with
φ1(P ) = φ2(P ) and φ1(p1) = φ2(p1). Let D2n be the 2-input planar arc
diagram from Definition 10.9. Then there is an unoriented braid-like (4n−
2)-ended tangle diagram Q, such that for all tangles T in B with end
points P and base point p1 the following holds: if D1 and D2 are the tangle
diagrams of T coming from φ1 and φ2, respectively, thenD2n(D1, Q) andD2

are related by a finite sequence of Reidemeister moves and tangle diagram
equivalences.

Proof. Let f : S2 → S2 be the restriction of φ2 ◦ φ−1
1 to S2 = ∂B0. Let us

write P̃ = φ1(P ) = φ2(P ) and p̃i = φ1(pi). Note f(P̃ ) = P̃ . In case that f
is isotopic to idS2 along homeomorphisms fixing P̃ pointwise, it follows that
φ1(T ) and φ2(T ) are equivalent tangles, and thus D1 and D2 are related by
a finite sequence of Reidemeister moves and tangle diagram equivalences.
In order to deal with general f , let us consider the mapping class group
of homeomorphisms f : S2 → S2 with f(P̃ ) = P̃ and f(p̃1) = p̃1, up to
isotopy along such maps. Every such f is isotopic to a homeomorphism
fixing a neighborhood of p̃1 pointwise, and so this mapping class group
is isomorphic to the mapping class group of the (2n − 1)-punctured disk,
which is isomorphic to the braid group on 2n− 1 strands. More explicitly,
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it is generated by σ1, . . . , σ2n−2, where σi is a so-called half-twist, switching
the positions of the punctures p̃i+1 and p̃i+2 [FM11, Section 9.1.3]. So
f is isotopic to a product β of the generators σ1, . . . , σ2n−2. Let Q be a
braid-like (4n−2)-ended tangle diagram corresponding to β. Then one sees
that D2n(D1, Q) is a tangle diagram of T coming from the homeomorphism
(φ2 ◦ φ−1

1 ) ◦ φ1 = φ2. Therefore, D2n(D1, Q) and D2 are related by a
finite sequence of Reidemeister moves and tangle diagram equivalences, as
desired.

Proposition 10.11. Let S and T be tangles with the same end points
and the same base point in a ball B. Let φ1 and φ2 be homeomorphisms
from B to the unit ball B0, leading to tangle diagrams DS1, DS2 for S and
DT1, DT2 for T , respectively. Then

λ(DS1, DT1) = λ(DS2, DT2)

Proof. By Lemma 10.10, there is a 2-input planar arc diagram D and a
tangle Q such that D(DS1, Q) and DS2 are related by a finite sequence of
Reidemeister moves, and so are D(DT1, Q) and DT2. By Lemma 10.8, it
follows that λ(DS2, DT2) ≤ λ(DS1, DT1). Switching the roles of φ1 and φ2,
the opposite inequality also follows.

As a consequence, the following is well-defined, since it does not depend
on the choice of homeomorphism.

Definition 10.12. Let S and T be tangles with the same end points and
the same base point in a ball B. Then let λ(S, T ) be defined as λ(DS, DT ),
where DS and DT are tangle diagrams of S and T , respectively, obtained
via the same homeomorphism from B to the unit ball B0.

Proposition 10.13. Let S and T be two tangles in a ball B with the
same connectivity, base point and end points. Let R be a tangle in an-
other ball B′, and φ : ∂B → ∂B′ an orientation-reversing homeomorphism
sending end points to end points, such that S ∪ R and T ∪ R are knots in
B ∪φ B′ ∼= S3. Then

λ(S ∪R, T ∪R) ≤ λ(S, T ).

Proof. One may pick tangle diagrams DS, DT and DR for S, T and R,
respectively, such that: DS and DT come from the same homeomorphism
from B to B0; gluing DS and DR (using a 2-input planar arc diagram D)
results in a knot diagram of S ∪R; and similarly, D(DT , DR) is a diagram
of T ∪R. Then, we have

λ(S ∪R, T ∪R) = λ(D(DS, DR),D(DT , DR))

≤ λ(DS, DT )

= λ(S, T )

by the definition of λ for knots, Lemma 10.8, and Definition 10.12, respec-
tively.
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Proposition 10.14. Let us fix a ball with 2n end points, and consider
unoriented tangles T with a fixed connectivity and fixed base point in that
ball. On the set of equivalence classes of such tangles T , λ is a pseudometric.

Proof. It is straight-forward to see that λ is symmetric, satisfies the trian-
gle inequality, and λ(T, T ) = 0. Since any two tangles S, T with same
connectivity are related by crossing changes, Theorem 7.4 implies that
λ(S, T ) <∞.

Note that λ(S, T ) = 0 if and only if [S]• and [T ]• are ungradedly homo-
topy equivalent. So the existence of non-equivalent tangles with homotopy
equivalent Bar-Natan homology prevents λ from being a metric. Still, this
pseudometric allows for a nice formulation of the main step of the proof of
Theorem 7.4.

Proposition 10.15. Fix a ball with four end points on it, one of them
distinguished as base point. On the set of equivalence classes of unoriented
rational tangles in that ball with fixed connectivity, the pseudometric given
by λ is in fact equal to the discrete metric. That is to say, λ(S, T ) = 1 for
inequivalent rational tangles S and T .

The proof of Proposition 10.15 will be given in Chapter 12.

10.3 Decomposing Z[G]-chain complexes into pieces

To analyze the Z[G]-chain complex JKK of a knotK and compute λ(K), one
may follow the same divide-and-conquer strategy as described in Section 8.8
for the Bar-Natan complex and decompose JKK as a direct sum of simpler
complexes. This motivates the following definition.

Definition 10.16. For a graded ring R, a graded chain complex C of free
shiftedR-modules of finite total rank, i.e. C ∈ Kom(MR), is called a piece if
it satisfies the following: C is not contractible (i.e. not homotopy equivalent
to the trivial complex), and if C is homotopy equivalent to C ′ ⊕ C ′′ with
C ′, C ′′ ∈ Kom(MR), then either C ′ or C ′′ is contractible. In other words,
a piece is an indecomposable object in the category Kom/h(MR) of chain
complexes of finite total rank up to homotopy equivalence.

In Section 8.11 and Remark 9.16 we have already implicitly encountered
pieces called pawns and knights. Those are the two most common kinds of
pieces, and we introduce them now formally.

Definition 10.17. For a graded integral domain R, let the pawn piece,
denoted by p, be the chain complex consisting of just one copy R in ho-
mological degree 0 and quantum degree 0. Given a non-trivial prime power
z ∈ R, we define the z-knight piece, denoted by N(z), to be the chain
complex

0R
z−−→ R{deg z},
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where the left subscript denotes the homological degree.

As mentioned in Section 8.11, the terminology of these pieces are coined
by Bar-Natan [BN02] and come from the fact that when obtaining unre-
duced rational Khovanov homology from JKK using Theorem 9.9, a p and
N(G) piece in JKK result in the patterns

Q
Q and

Q

Q
,

respectively in the unreduced rational Khovanov homology. This can be
seen using Corollary 9.10.

Remark 10.18. A complex P is a piece if and only if the ring of endo-
morphisms of P up to homotopy has precisely two distinct idempotents,
namely the zero map and the identity map. Let us use this to check that
pawns and knights actually are pieces. For P = p, the endomorphism ring
of P is isomorphic to R, and there are no non-trivial homotopies. Since
R is assumed to be an integral domain, the only idempotents are 0 and 1,
and 0 ̸= 1. So p is indeed a piece.

Now consider P = N(z). Ignoring the chain complex structure, R-
module endomorphisms P → P are given by ( a bc d ). Which among those
maps are chain maps? To respect homological degree, we must have b = c =
0. To commute with the differential, we must have az = dz. Since z ̸= 0
and R is an integral domain, this implies a = d. So the endomorphism ring
of P consists (as for p) just of multiples of idP , i.e. this ring is isomorphic
to R. All homotopies are multiples of h : P1 → P0, h(1) = 1. We have
h◦d+d◦h = z · idP , and so the endomorphism ring of P modulo homotopy
is isomorphic to R/(z). Since z is by assumption a non-trivial prime power,
R/(z) has no non-trivial idempotents. Thus N(z) is indeed a piece.

In Example 10.19 and Chapter 11 below, we will claim that various
chain complexes are pieces. This may be checked by similar arguments as
above; but since we don’t actually make use of the fact that those complexes
are pieces, we omit these arguments from the text.

If R is a graded PID, then it is not hard to see that pawns and knights
are the only pieces. This fact has been used previously to analyze homol-
ogy theories coming from Frobenius algebras over fields, e.g. by Khovanov
[Kho06], or by Morrison [Mor07].1 In the introduction, we have seen JKK
for K = U , T2,3, T3,4, and for those examples, JKK also decomposes as sum

1Morrison’s “universal Khovanov homology” is equivalent to J · K⊗Q, i.e. the reduced theory
coming from the Frobenius algebra Q[X]/(X2 − tX) over Q[t]. Since Q[t] is a PID, the chain
complexes coming from that theory are homotopy equivalent to a sum of p and N(tn) pieces,
which Morrison calls E and Cn (or KhC[n]), respectively. This homology theory can be
calculated with JavaKh [GM05].
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of pawns and knights. Let us consider a further example, which demon-
strates that the pieces of Z[G]-chain complexes can be significantly more
complicated (in fact, we do not know a classification of those pieces).

Example 10.19. As one may compute with khoca and homca, the chain
complex JT5,6K is homotopy equivalent to the sum of

0p{20} ⊕ 2N(G){24} ⊕ 4N(G2){26}

and the following four more complicated pieces (where we write R = Z[G]):

P1 =
6R{28} R{30}
⊕ ⊕

R{30} R{32}

G

G

2

P2 =

R{34}

8R{30} ⊕ R{36},

R{36}

G2G2

G3 −2

P3 =

R{36}

10R{34} ⊕ R{40},

R{38}

G25G

G2 −5G

P4 =

R{40}

12R{36} ⊕ R{42}.

R{42}

G3G2

G3 −3

Note that P3 is isomorphic to 10N(G2)⊗N(5G){34}. Let us now compute
λ of T5,6. We have λ(N(Gk)) = k for k ∈ {1, 2} (in fact, for all k ≥ 1)
and leave it to the reader to check that λ(Pi, 0) ≤ 3 for i ∈ {1, 2, 3, 4}.
Using Corollary 10.6, this implies λ(T5,6) ≤ 3. To show λ(T5,6) ≥ 3, we
rely on the maximal G-torsion order of Z[G]-homology, denoted by uG.
This invariant is discussed in detail in the next Section 10.4. It gives a
lower bound uG ≤ λ (see Lemma 10.28). Consider the homology of P4,
the dual of P4. The annihilator of the class of a generator of −12R{−36}
is the ideal (3G2, G3) ⊂ Z[G], and so the G-torsion order of that homology
class is equal to 3. Hence λ(T5,6) = λ(−T5,6) ≥ uG(−T5,6) ≥ 3, and thus
λ(T5,6) = 3.

Remark 10.20. If R is Noetherian, then every chain complex in
Kom/h(MR) can be written as a sum of finitely many pieces. If R is a
graded PID, then this decomposition is essentially unique, i.e. unique up
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to the order of the summands. This is not true for R = Z[G], as the fol-
lowing Example 10.21 demonstrates. As a consequence, in this text we will
often decompose chain complexes JKK as sums of pieces, but we will never
rely on this decomposition being unique.

Example 10.21. Let us give an example of a chain complex that admits
two essentially different decompositions as sums of pieces. Let R = Z[G],
and for any integer n > 0 let Qn be the complex

R{2}

0R{0} ⊕ R{4}.

R{4}

−GnG

G2 n

One computes that the endomorphism ring of Qn modulo homotopy is iso-
morphic to R/(G2, nG). This ring does not admit non-trivial idempotents,
and so Qn is a piece. Now, the Smith normal form gives us invertible 2× 2
integer matrices S, T such that S ( 2 0

0 3 )T = ( 1 0
0 6 ). This leads to the follow-

ing change of basis, which demonstrates Q2⊕Q3
∼= Q1⊕Q6, giving us the

desired example. Note that Q1 ≃ N(G).

R{2}⊕2

0R{0}⊕2 ⊕ R{4}⊕2

R{4}⊕2

−GG( 2 0
0 3 )

G2
( 2 0
0 3 )

∼=

R{2}⊕2

0R{0}⊕2 ⊕ R{4}⊕2

R{4}⊕2

−GGS( 2 0
0 3 )T

G2
S( 2 0

0 3 )T

10.4 Torsion orders

When computing λ of a knot K it is fairly simple to find an upper bound
k ≥ λ(K) by defining ungraded chain maps f : JKK→ JUK, g : JUK→ JKK
such that g ◦ f and f ◦ g are homotopic to multiplication with Gk. In order
to compute the exact value of λ however, one has to find the minimal such
k, which can be a hard task. The invariants described in this subsection
give lower bounds for λ in terms of the maximal torsion order in homology.

In 2017, Alishahi and Dowlin [Ali19, AD19] introduced the following
knot invariants which are lower bounds for the unknotting number: uh is
defined as the maximal order of h-torsion in Bar-Natan homology (with
Frobenius algebra F2[h,X]/(X2+hX), see Definition 8.60), while ut is the
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maximal t-torsion order of the homology corresponding to the Alishahi-
Dowlin system FAD with Frobenius algebra Q[t,X]/(X2 − t) (cf. Defini-
tion 8.58). Since X2 = t in this setting, one has ⌈uX/2⌉ = ut, where uX is
the maximal X-torsion order. It was then remarked in [CGL+20] that for
the latter invariant one can replace Q with Fp for any odd prime p in order
to obtain new bounds ut,p.

The following invariant is the analog of those bounds in the Z[G]-setting.

Definition 10.22. Let K be a knot with Z[G]-homology HZ[G](K). Given
a ∈ HZ[G](K), we say that a is G-torsion if there is some n ∈ Z≥0 such
that Gn · a = 0. We further define the order of a G-torsion element a as

ordG(a) := min{n ∈ Z≥0 | Gn · a = 0}

and write T
(
HZ[G](K)

)
for the Z[G]-submodule of G-torsion elements.

Definition 10.23. Let K be a knot. Then we define uG(K) to be the
maximal order of a G-torsion element:

uG(K) := max
a∈T(HZ[G](K))

ordG(a)

In a recent paper, Gujral [Guj20] introduced a lower bound ν for the
ribbon distance2 in terms of the maximal order of (2X− (α1+α2))-torsion
in the α-homology of a knot. α-homology, first described in [KR22], is
universal as well and thus equivalent to our Z[G]-homology. Hence the
invariant ν is equal to uG. The following is a natural consequence of the
universality of Z[G]-homology:

Proposition 10.24. We have

uG = ν ≥ ut, ut,p, uh.

As a side note it is worthwhile to observe, although we will not make use
of it, that uh, ut are also linked to the convergence of the Bar-Natan [Tur06]
and the Lee [Lee05] spectral sequences respectively (see Section 8.10). For
all knots K, these sequences start at Khovanov homology of K (with co-
efficients in F2 and Q respectively) and, letting nBN and nLee be the pages
at which they collapse, we have uh(K) = nBN − 1 and ut(K) = nLee − 1.
As a consequence, the following interesting result holds which we already
mentioned in Section 8.11:

Corollary 10.25 ([AD19]). The Knight Move Conjecture is true for all
knots K with u(K) ≤ 2.

In light of Theorem 7.4, we even have:
2Here, the ribbon distance of two knots K and J is defined as the minimal k ≥ 0 such that

there exists a sequence of knots K = K1,K2 . . . ,Kn = J where each consecutive pair Ki,Ki+1

is connected by ribbon concordance with at most k saddles, see [Sar20].
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Corollary 10.26. The Knight Move Conjecture is true for all knotsK with
uq(K) ≤ 2.

The connection discussed above between invariants related to λ and
spectral sequences brings us to the following natural question:

Question. Is there a spectral sequence EG such that for any knot K,
EG(K) starts at Khovanov homology (with coefficients in Z) and collapses
at page uG(K) + c, for some constant c?

We suspect this question has a positive answer. Namely, consider the
chain complex obtained from JKK by setting G = 1. The resulting complex
is filtered, and gives rise to a spectral sequence EG(K) starting at (reduced)
Khovanov homology with integer coefficients. It seems likely that EG(K)
converges at page uG(K)− 1.

Let us continue by showing that uG is an unknot detector.

Lemma 10.27. The invariant uG detects the unknot, i.e. uG(K) = 0 holds
if and only if K is trivial.

Proof. We start by noticing that uG(U) = 0: this is clear since HZ[G](U) =
Z[G] is torsion free. It is also clear that λ(U) = 0, using the ungraded
chain maps f = g = idJUK.

Let HFAD be the unreduced Khovanov homology theory coming from
the TQFT FAD with algebra Q[t][X]/(X2 − t) (see Definition 8.58). Then

HFAD(K) ∼= Q[t]⊕Q[t]⊕ T (HFAD(K)) ,

where T (HFAD(K)) is the t-torsion part. Since Khovanov homology detects
the unknot we have T (HFAD(K)) = {0} only if K = U . This implies that
if K is not the unknot uG(K) ≥ ut(K) > 0. More details on ut can be
found in [AD19] (the homology HFAD is called HLee there).

Lemma 10.28. Let K be a knot. Then uG(K) ≤ λ(K).

Proof. Let n = λ(K) and let f : JKK → JUK, g : JUK → JKK be ungraded
chain maps such that g ◦ f ≃ Gn · idJKK and f ◦ g ≃ Gn · idJUK. Then, for
every a ∈ T (HZ[G](K)):

ordG (f∗(a)) ≥ ordG (g∗ ◦ f∗(a)) = ordG (Gn · a) ≥ ordG (a)− n.

Taking the maximum over T
(
HZ[G](K)

)
we get:

0 = uG(U) = max
a∈T(HZ[G](K))

ordG (f∗(a))

≥ max
a∈T(HZ[G](K))

ordG (a)− n

= uG(K)− n.

This shows that uG(K) ≤ n = λ(K).
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The two previous lemmas combined show that λ detects the unknot, as
claimed in the introduction.

Proposition 7.7. The λ-invariant detects the unknot, i.e. λ(K) = 0 holds
if and only if K is the unknot.

A more direct proof of Proposition 7.7 may also be given as follows:

Proof of Proposition 7.7. Let K be a knot. Khovanov homology detects
the unknot [KM11], so

λ(K) = 0 ⇐⇒ JKK ≃ JUK
⇐⇒ K = U.

In Definition 10.3 we saw how to define λ for the Z[G]-complex of any
knot. Similarly, one can define the invariants uG, uh, ut, and ut,p on chain
complexes over MR, where R is equal to Z[G],F2[h],Q[t] or Fp[t], respec-
tively. Indeed, if C ∈ Kom(MR) and η = G, h, t or (t, p), then uη(C) is the
maximal order of η-torsion in the homology H(C) ∈ R-Mod of C. Note
that Lemma 10.28 also holds for arbitrary complexes overMZ[G].

Let us now state a few properties of uG, uh, ut and ut,p.

Lemma 10.29. Let RG = Z[G], Rh = F2[h], Rt = Q[t], Rt,p = Fp[t], and
let A, B be chain complexes over MRη , where η = G, h, t or (t, p). We
have:

1. uη(A⊕B) = max{uη(A), uη(B)}.

2. uη(K#J) = max{uη(K), uη(J)} for η = h, t or (t, p) and knots K, J .

Proof. The first statement is clear. For the second one, we use the fact
that Rα is a PID. As noted earlier, this implies that

Cη(K) ∼= p⊕N(a1)⊕ . . .⊕N(an),

where

ai =

{
tki if η = t or (t, p)

hki if η = h

and ki ≤ ki+1 for all i = 1, . . . , n. Similarly,

Cη(J) ∼= p⊕N(b1)⊕ . . .⊕N(bm),

where bj = tlj or bj = hlj and lj ≤ lj+1 for all j = 1, . . . ,m. One checks
that uη(p) = 0 and uη(N(ai)) = ki, therefore

uη(K) = max{uη(p), uη(N(a1)), . . . , uη(N(an))} = kn
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Similarly, uη(J) = lm. Now

Cη(K#J) ∼= Cη(K)⊗ Cη(K) ∼=
⊕

i∈{0,...,n}
j∈{0,...,m}

Ai ⊗Bj,

with A0 = B0 = p, Ai = N(ai) and Bj = N(bj). It is a simple exercise to
check that uη(N(ai)⊗N(bj)) = min{ki, lj}. It follows that

uη(K#J) = max
i,j
{uη(Ai ⊗Bj)}

= max{uη(A0 ⊗Bm), uη(An ⊗B0)}
= max{uη(p⊗N(bm)), uη(N(an)⊗ p)}
= max{uη(K), uη(J)}

as desired.

Remark 10.30. Statement 2. of Lemma 10.29 does not hold in general for
uG. This is due to the fact that for η ̸= G, the uη are defined over PIDs,
while uG is not (cf. Section 10.3). Later on in this article, Remark 11.7
and 11.8 will provide us with examples of knots K1, K2 such that

uG(K1#K2) < max{uG(K1), uG(K2)},

as well as examples of knots J1, J2 where

uG(J1#J2) > max{uG(J1), uG(J2)}.

In particular, if K1, K2 satisfy 1. of Proposition 11.4 and J satisfies 2. then

uG(K1) = uG(K2) = uG(J) = 1,

but

uG(K1#K2) = 2 = uG(K1) + uG(K2)

uG((K1#K2)#J) = 1 = uG(K1#K2)− uG(J)

Therefore, the best that we can hope for is that uG(K#J) ≤ uG(K)+uG(J).
For generic complexes A,B over MRη things get also more intrigued

for uη(A ⊗ B) for general η = G, h, t or (t, p), as the pieces that appear
in the decompositions of a generic chain complex are often much more
complicated than those we saw appear in Cη(K) of a knot K. In this case,
the only result we can hope for is again uη(A ⊗ B) ≤ uη(A) + uη(B), for
η = G, h, t or (t, p).
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10.5 λ of thin knots

In Section 8.11, we introduced the notion of δ-thin knots: a knot K is called
δ-thin (or simply thin) if its reduced integral Khovanov homology consists
of free modules supported in a single δ-degree, see Definition 8.102. The
aim of this section is to prove that λ of non-trivial thin knots is 1.

Lemma 10.31. If a chain complex C ∈ Kom(MZ[G]) decomposes (ignoring
gradings) as a sum of one p and finitely many N(G) pieces, then λ(C) ≤ 1.

Proof. Since λ(p) = 0 and λ(N(G), 0) = 1, this follows from Corollary 10.6.

Lemma 10.32. Let K be a knot whose reduced integral Khovanov homol-
ogy is torsion free. Then JKK is homotopy equivalent to a chain complex
C ∈ Kom(MZ[G]) of free shifted Z[G]-modules, such that the Poincaré
polynomial of C is equal to the Poincaré polynomial of reduced integral
Khovanov homology of K.

Proof. Start by picking an arbitrary chain complex C ′ ∈ Kom(MZ[G])
that is homotopy equivalent to JKK. Consider the chain complex C ′ ⊗Z[G]

Z[G]/(G). This is a chain complex over the integers, whose homology is
isomorphic to reduced integral Khovanov homology of K. In particular,
it has torsion free homology by assumption. One may select bases for the
chain groups of the complex C ′ ⊗Z[G] Z[G]/(G), with respect to which the
matrices of the differentials are in Smith normal form. Because homology
is torsion free, all the entries of these matrices are 0 or 1. Gaussian elimi-
nation (see e.g. Lemma 8.79) of all the entries equal to 1 yields a homotopy
equivalence between C ′⊗Z[G]Z[G]/(G) and a complex Z with trivial differ-
entials. So, Z is isomorphic to the reduced integral Khovanov homology of
K.

Now, one may lift the bases of C ′⊗Z[G]Z[G]/(G) to homogeneous bases
of C ′. Since the matrices of the differentials of C ′ have homogeneous entries,
it follows that if a matrix entry of a differential of C ′⊗Z[G]Z[G]/(G) equals
1, then the corresponding matrix entry of the corresponding differential
of C ′ also equals 1. Therefore, one may lift the homotopy equivalence
constructed above, obtaining a homotopy equivalence between C ′ and a
complex C ∈ Kom(MZ[G]), such that C⊗Z[G]Z[G]/(G) is isomorphic to Z.
It follows that C and the reduced integral Khovanov homology of K have
the same Poincaré polynomial, as desired.

Lemma 10.33. For all thin knots K, JKK is up to degree shifts homotopy
equivalent to a sum of one p piece and finitely many N(G) pieces.

Proof. By Lemma 10.32, we may pick a chain complex C ∈ Kom(MZ[G])
that is homotopy equivalent to JKK, and has the same Poincaré polynomial
as reduced integral Khovanov homology of K. Since the latter is supported
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on a single δ-degree, so is C. Choosing arbitrary bases for the chain modules
of C, it follows that every entry of the matrices of the differentials is an
integer multiple of G. Similarly as in the proof of Lemma 10.32, one may
choose new bases for the modules of C, such that the matrices of the
differentials equal G times a matrix in Smith normal form. Consequently,
ignoring gradings C decomposes as a direct sum of p and N(aG) pieces,
with a priori varying a ∈ Z>0. By Proposition 9.15, there is exactly one p

piece, and all other pieces are N(G) pieces.

Proposition 7.9. For all non-trivial thin knots K, we have λ(K) = 1.

Proof. Lemma 10.33 and Lemma 10.31 imply λ(K) ≤ 1, whereas Proposi-
tion 7.7 implies λ(K) ≥ 1.

Remark 10.34. Note that Lemma 10.33 also provides a proof (at least for
knots) for Bar-Natan’s “structural conjecture” that all alternating links are
“Khovanov basic” [Bar05, Conjecture 1].

In [CGL+20], upper bounds for uX , uh, ut and ut,p are given in terms
of the homological width of Khovanov homologies. This motivates the
following question.

Question. Let K be a knot such that JKK is homotopy equivalent to a
complex supported in n adjacent δ-degrees. Does then λ(K) ≤ n follow?

10.6 λ of small knots

We start this section by computing λ for all knots with up to 10 crossings.

Proposition 7.11. For all knots up to 10 crossings we have λ = 1, except
for the knots 819, 10124, 10128, 10139, 10152, 10154, 10161, where λ = 2.

Proof. By Proposition 7.9, if a knot is thin then λ = 1, so it suffices to look
at knots which are not thin. Among the knots with up to 10 crossings,
there are twelve knots that are thick:

819, 942, 10124, 10128, 10132, 10136, 10139, 10145, 10152, 10153, 10154, 10161.

Using khoca [LL18] and homca [Ilt21a], one can compute that the Z[G]-
complex of the knots 942, 10132, 10136, 10145, 10153 decomposes into a sum
of a p and several N(G) pieces, hence λ = 1 by Lemma 10.31. The Z[G]-
complex of the remaining knots 819, 10124, 10128, 10139, 10152, 10154, 10161
decomposes into a sum of a p, several N(G) pieces and a single N(G2)
piece. Using Corollary 10.6 and Lemma 10.29, one obtains λ = 2 for these
knots.
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A natural question to ask when introducing a new invariant is how it
compares to other already existing invariants. For example, how does λ
compare to the classical 3-genus g of a knot K? We know that λ is a
lower bound for the unknotting number u, while g can be a lower or upper
bound for u depending on the knot. For instance, Lee-Lee [LL13] showed
that for all knots with braid index ≤ 3, the inequality u(K) ≤ g(K) holds.
However, this is no longer true for knots with braid index ≥ 4: as pointed
out in their work, there are six braid-index 4 knots with up to 9 crossings
for which u < g holds. How does λ fit into this scheme? For knots up to
12 crossings, we can provide the following answer.

K u(K) g(K)

946 2 1
11n139 1 or 2 1
12n203 3 or 4 3
12n260 2 or 3 2
12n404 2 or 3 2
12n432 2 or 3 2
12n554 3 2
12n642 3 or 4 2
12n764 3 or 4 3
12n809 1 or 3 2
12n851 3 or 4 3

Table 10.1: Non-quasi-alternating prime knots with up to 12 crossings for which
(possibly) g < u holds.

Proposition 10.35. For all knots up to 12 crossings, the 3-genus g is an
upper bound for λ.

Proof. Since λ is a lower bound for the unknotting number u, it is sufficient
to consider knots with up to 12 crossings for which (possibly) g < u holds.
Using that quasi-alternating knots are thin and that for thin knots λ = 1
(cf. Proposition 7.9) there are 11 non-quasi-alternating knots with at most
12 crossings with (possibly) g < u. They were found using Livingston’s
wonderful KnotInfo [LM] and Jablan’s table of quasi-alternating knots for
up to 12 crossings [Jab14]. The knots are listed in Table 10.1.

A computation using khoca [LL18] and its extension homca [Ilt21a]
showed that the Z[G]-complex of all knots in Table 10.1 decomposes into
p and N(G) summands. By Lemma 10.31, this implies that λ = 1 for all
knots in Table 10.1.

Proposition 10.35 raises the following question.

Question. Does λ(K) ≤ g(K) hold for all knots K?





Chapter 11

Calculations of Z[G]-Homology
and the λ-Invariant

In the previous Chapter 10, we have seen how to define the λ-invariant
for chain complexes over Z[G] resp. Mat(Cob3,•

/l (2n)), and in particular for
the Z[G]-complex of a knot. Moreover, we have seen basic properties and
results regarding λ and related torsion order invariants. In this chapter
we now provide further results that involve computations around Z[G]-
homology and the λ-invariant.

Chapter 11 is organized as follows. Section 11.1 is occupied with the
proof that λ can be arbitrarily big, see Theorem 7.5. In Section 11.2 we
study the behavior of λ under connected sums of knots. Section 11.3 is oc-
cupied with a description of the author’s computer programs used through-
out our work. Subsection 11.3.1 starts with homca [Ilt21a] and gives an
intuitive description of the algorithm used to simplify Z[G]-complexes. In
Subsection 11.3.2 we introduce the program tenpro [Ilt21b], which is able
to compute tensor products of Z[G]-complexes.

11.1 λ can be arbitrarily big

The aim of this section is to prove our main Theorem 7.5 which states that
λ can be arbitrarily big.
Theorem 7.5. For every n ∈ N there exists a knot K such that λ(K) = n.

The proof proceeds by constructing an explicit knotK such that λ(K) =
n for any given n ∈ N. Since λ does not depend on the quantum grading
of the Z[G]-complex, we will in the following omit quantum degree shifts
for better readability. For the proof we are going to need a special type of
chain complex.
Definition 11.1. For every n ∈ Z>0 the staircase of rank 2n+ 1, denoted
by Sn, is defined as the chain complex

0 C0 C1 0,
dSn
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where C0 = Z[G]⊕n+1, C1 = Z[G]⊕n and

dSn =

2 G 0
. . .

. . .

0 2 G

 .

R1 Rn+2

⊕ ⊕

R2 Rn+3

⊕ ⊕

...
...

...

⊕ ⊕

Rn R2n+1

⊕

Rn+1

2

2

G

2

G

Figure 11.1: The staircase Sn of rank 2n + 1. Here, Ri = Z[G] for all i =
1, . . . , 2n+1 so that the left-hand column corresponds to C0 and the right-hand
column to C1. The diagonal arrows indicate a shift in quantum degree.

Lemma 11.2. Let Sn be a staircase of rank 2n+ 1. Then

λ(Sn) = uG(Sn) = n.

The proof of Lemma 11.2 proceeds by finding chain maps f : Sn → JUK
and g : JUK→ Sn such that f ◦ g ≃ Gn · idJUK and g ◦ f ≃ Gn · idSn , showing
that λ(Sn) ≤ n. In order to show the reversed inequality, one finds an
element x ∈ HZ[G](Sn) with G-torsion order n. Using that uG ≤ λ, one
then obtains

n ≤ uG(Sn) ≤ λ(Sn) ≤ n.

Details can be found in [ILM21, Lemma 4.2]

Lemma 11.3. Forgetting about shifts in quantum degree we have

S1 ⊗ Sn ∼= Sn+1 ⊕ (N(G)⊗N(2))⊕n.

Lemma 11.3 is a straightforward computation that involves manipu-
lation of large matrices. We refer the interested reader for the proof to
[ILM21, Lemma 4.3].
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Proof of Theorem 7.5. Lemma 11.2 and Lemma 11.3, together with the
fact that JK1#K2K ∼= JK1K ⊗ JK2K for any two knots K1, K2, are enough
to construct knots with arbitrarily big λ. Indeed, let us consider the knot
K = 14n19265. This knot was used by Seed to show that s(K) ̸= sF2(K)
[See13, LS14], where s is the classical Rasmussen invariant over Q and sF2

is the invariant computed over F2. We observe using khoca and homca that
the Z[G]-complex JKK decomposes as a sum of a staircase S1 and finitely
many N(G) and N(G)⊗N(2). Therefore, by Corollary 10.6:

λ(K) ≤ max{λ(S1), λ(N(G), 0), λ(N(G)⊗N(2), 0)} = 1

Since K ̸= U it follows that λ(K) = 1. By Proposition 7.8, given n ∈ Z>0,
we then have:

λ(K#n) ≤ n · λ(K) = n.

On the other hand, it follows from Lemma 11.3 that JK#nK ∼= Sn ⊕ C for
some chain complex C. We know that uG(Sn ⊕ C) = max(uG(Sn), uG(C))
(cf. Lemma 10.29), so

λ(K#n) = λ(Sn ⊕ C) ≥ uG(Sn ⊕ C) ≥ uG(Sn) = n.

This proves that λ(K#n) = n for all n ≥ 0.

The fact that λ(K#n) = n will also follow from the upcoming Proposi-
tion 11.4.

11.2 Further calculations

Proposition 11.4. Let K1, . . . , Kn and J1, . . . , Jm be knots such that:

1. for all i = 1, . . . , n the complex JKiK splits as a sum of one staircase
S1 and finitely many N(G) and N(G)⊗N(2) pieces,

2. for all j = 1, . . . ,m the complex JJjK decomposes as a sum of one dual
staircase S1 and finitely many N(G) and N(G)⊗N(2).

Then

λ
(
( #
i≤n
Ki)# ( #

j≤m
Jj)
)
=


|n−m| if n ̸= m and m,n ≥ 0

1 if n = m ̸= 0

0 if n = m = 0

where we set the empty # to be equal to the unknot.

For the proof of Proposition 11.4 we will need the following lemmas.

Lemma 11.5. Ignoring shifts in quantum degree we have

N(G)⊗ Sn ∼= N(G)⊗ Sn ∼= (N(G)⊗N(2))⊕n ⊕N(G)

and
N(2)⊗ Sn ∼= N(2)⊗ Sn ∼= (N(G)⊗N(2))⊕n ⊕N(2).
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Lemma 11.6. Let z ∈ Z[G] and a, b ∈ Z≥0 with a ≤ b. Then

N(za)⊗N(zb) ∼= N(za)⊕N(za)

(shifts in quantum degree are omitted).

We refer the reader for a proof of Lemma 11.5 and 11.6 to [ILM21,
Lemma 4.6] and [ILM21, Lemma 4.7], respectively.

Proof of Proposition 11.4. Let us start by stating a few facts that we will
use throughout this proof.

(N(G)⊗N(2))⊗ (N(G)⊗N(2)) ∼= (N(G)⊗N(2))⊕4 (11.1)

N(G)⊗ (N(G)⊗N(2)) ∼= (N(G)⊗N(2))⊕2 (11.2)

(N(G)⊗N(2))⊗ S1
∼= (N(G)⊗N(2))⊗ S1

∼= (N(G)⊗N(2))⊕6 (11.3)

S1 ⊗ S1
∼= (N(G)⊗N(2))⊕2 ⊕ p. (11.4)

The equations (11.1) to (11.3) follow easily from Lemma 11.6. The equation
(11.4) requires some more work and may be checked by hand or using the
program tenpro. Details are left to the reader. We also remind the reader
that for two knots K1 and K2 we have JK1#K2K ∼= JK1K⊗ JK2K.

Let L = (#
i≤n
Ki)# ( #

j≤m
Jj). If n = m = 0 then λ(L) = λ(U) = 0,

so assume n,m ̸= 0. Using equations (11.1) to (11.4), Lemma 11.5 and
Lemma 11.6 we find that for all i, j ≥ 1 the complex JKi#JjK splits as a
sum of the following pieces:

p, N(G), N(G)⊗N(2).

The same pieces also give a decomposition of J #
i,j≥1

(Ki#Jj)K. If n = m ̸= 0

then L = #
1≤i≤m

(Ki#Ji). Using Corollary 10.6 and the fact that

λ(N(G), 0) = λ(N(G)⊗N(2), 0) = 1

one obtains:

λ(L) = λ( #
1≤i≤m

(Ki#Ji))

≤ max{λ(p), λ(N(G), 0), λ(N(G)⊗N(2), 0)}
= 1

Since L ̸= U , we also have λ(L) ≥ 1 by Proposition 7.7. This shows that
λ(L) = 1.

Suppose now that n > m ≥ 0. Then

L = #
j≤m

(Kj#Jj)# ( #
m+1≤i≤n

Ki).
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Using the equations (11.1) to (11.3), Lemma 11.3 as well as Lemma 11.5
and Lemma 11.6, it is easy to see that J #

m+1≤i≤n
KiK splits as a sum of

N(G), N(G)⊗N(2), Sn−m.

Now
JLK ∼= J #

j≤m
(Kj#Jj)K⊗ J #

m+1≤i≤n
KiK,

therefore (11.1) to (11.3) together with Lemma 11.5 and Lemma 11.6 show
that the same pieces also give a decomposition of JLK. Thus, in order to
prove that λ(L) ≤ n−m all we have to do is apply Corollary 10.6, which
yields:

λ(L) ≤ max{λ(Sn−m), λ(N(G), 0), λ(N(G)⊗N(2), 0)} = n−m.

The inequality λ(L) ≥ n−m also holds: the complex J #
j≤m

(Kj#Jj)K has a

p piece, and J #
m+1≤i≤n

KiK has a Sn−m piece, so there is a piece Sn−m ∼= p⊗Sn−m
in JLK. Using Lemma 10.29 and that uG(Sn−m) = n −m by Lemma 11.2,
one finds

λ(L) ≥ uG(L) = n−m.
Overall, it follows that λ(L) = n−m.

Lastly, let m > n ≥ 0. Then

L = #
i≤n

(Ki#Ji)# ( #
n+1≤j≤m

Jj),

and the only pieces appearing in JLK are

N(G), N(G)⊗N(2), Sm−n.

It follows that the pieces appearing in J−LK = JLK are

N(G), N(G)⊗N(2), Sm−n.

Hence, by Proposition 7.8 and looking at the proof of the case n > m just
above, one finds λ(L) = λ(−L) = m− n.

Remark 11.7. Using khoca and homca one finds that there are many knots
satisfying requirements 1. or 2. of Proposition 11.4. For instance, one can
take any knot with up to 15 crossings such that sF2 ̸= sF3 . One of those is
the above-mentioned knot 14n19265, and a complete list is given in Table 1
of Schütz’s paper [Sch21a], supplemented by the following knots [Sch21b]:

15n154386, 15n165952, 15n165966, 15n166064, 15n166244.

We also note that if a knot K satisfies condition 1. of Proposition 11.4 then
its mirror image −K will satisfy condition 2. and vice-versa.
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Remark 11.8. It’s easy to see from the above proof that a similar result
as Proposition 11.4 also holds for uG. Namely, if K1, . . . , Kn, J1, . . . , Jm
satisfy conditions 1. and 2. of Proposition 11.4, we have:

uG(#
i≤n
Ki # #

j≤m
Jj) =

 n−m if n > m ≥ 0
1 if n = m ̸= 0 or m > n ≥ 0
0 if n = m = 0

The partial difference is due to the fact that uG(Sk) = 0, while λ(Sk) =
λ(Sk) = k for all k ≥ 1.

Remark 11.9. So far we have only encountered knots whose Z[G]-
complex decomposes into either a staircase or a pawn, and (tensor prod-
ucts of) knights. In particular, we have used knots that split off a staircase
to exhibit special behavior of λ. However, it is very likely that there ex-
ist knots whose Z[G]-complex decomposes into summands other than the
ones mentioned above. A potential candidate is the knot 18nh9772775,
used by Schütz in [Sch22]:1 using khoca and homca, one finds that the
Z[G]-complex of this knots splits off the following summand of rank 9 (left
subscript denotes homological degree):

−1R{0} ⊕R{2}
d−1

−→ R{−2} ⊕R{−2} ⊕R{−2} ⊕R{0} ⊕R{0}
d0−→ R{−4} ⊕R{−2}

where

d−1 =


−2G 0
3G 0
2G 0
−4 0
2 −G

 , d0 =

(
0 2G −3G 0 0
−2 0 0 G 0

)
.

11.3 The computer programs homca and tenpro

Many of the results in the current chapter are obtained or supported by
computations using the program khoca by Lewark [LL18] and the exten-
sions homca, tenpro by the author [Ilt21a, Ilt21b]. The purpose of this
section is to give an introduction to the author’s programs homca and
tenpro and provide a description of the algorithms and working mech-
anisms that are implement. A documentation of khoca is available at
https://github.com/LLewark/khoca.

1Here, we use the notation provided by the knot tables of https://regina-normal.github.
io/data.html.

https://github.com/LLewark/khoca
https://regina-normal.github.io/data.html
https://regina-normal.github.io/data.html
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11.3.1 homca

The Z[G]-complex of a knot K can be difficult to handle; without further
simplification, the size of JKK grows exponentially in terms of rank with in-
creasing crossing number of K. This is problematic in hands-on examples,
as special behaviour seems to often appear for knots with large crossing
number (such as non-equal values of the Rasmussen invariant over differ-
ent fields (see Remark 11.7) or the counterexample to the Knight Move
Conjecture by Manolescu and Marengon with over 30 crossings [MM20],
for instance). While Lewark’s program khoca [LL18] is able to produce the
Z[G]-complex JKK of any knot, it doesn’t particularly attempt to decom-
pose the complex into pieces in the sense of Section 10.3. This is where
homca [Ilt21a] comes into play.

The program homca, written in Python and SageMath, was designed
with the purpose to simplify the Z[G]-complex JKK of a knotK produced by
khoca. It does so by performing basis changes on the free chain modules in
JKK in order to produce as many zeros as possible in matrix representatives
of the differentials, so that one may more easily read off indecomposable
summands. For instance, given the following complex of free Z[G]-modules

C = 0 Z[G]⊕ Z[G] Z[G]⊕ Z[G]⊕ Z[G] 0

(
G 0
2 0
0 3

)
,

we may read off a decomposition into a staircase of rank 1 and a 3-knight:

C ∼= S0 ⊕N(3) =
(
Z[G] Z[G]⊕ Z[G]

)⊕(
Z[G] Z[G]

)
.

(G2 ) ( 3 )

For a general chain complex of free Z[G]-modules, there are two main dif-
ficulties one has to deal with when trying to implement a simplification
algorithm.

1.) Z[G] is not a PID, hence there is no Smith normal form. In particular,
there is no known algorithm that transforms any given matrix (of a
differential) over Z[G] into a form from which one may read off only
indecomposable summands of the corresponding chain complex.

2.) Basis changes correspond to elementary row and column operations
on the matrix representatives of the differentials. However, these op-
erations change the basis of the image and kernel of the differential,
respectively, which means that one has to do the corresponding inverse
operations on preceding and succeeding differentials. More precisely, if
we are given a complex of free modules

· · · −→ Ci−1 di−1

−→ Ci di−→ Ci+1 di+1

−→ Ci+2 −→ · · ·
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then:

elementary row opera-
tion changes basis of
im di

−→ perform inverse column oper-
ation on di+1

elementary column op-
eration changes basis of
ker di

→ perform inverse row operation
on di−1

However, these inverse operations may introduce new non-zero entries,
again because Z[G] is not a PID and we have no Smith normal form.

homca tries to solve problems 1.) and 2.) by performing a reduction
algorithm that runs twice through every differential in the complex. It
starts at the lowest homological degree moving to the highest, and performs
at each differential row and column operations that introduce strictly more
0’s in the matrix. When it has reached the highest homological degree, the
algorithm runs backwards through every differential again in order to undo
non-zero entries that were introduce because of 2.). However, this time we
only perform elementary column operations so that differentials of higher
homological degree don’t get changed again; we consider them as “done”.
Again, because Z[G] is not a PID this algorithm may not yield the best
result in terms of producing most zero entries in every matrix, but in our
sample computations it has almost always produced optimal results.

Let us now take a closer look at the steps involved when executing
homca. The start is always given by parsing an output file of khoca, from
which we initialize the chain complex.

Step 1: Initialize zgcomplex from khocaoutput.txt including homological
and quantum degrees.

Step 2: Reduction Algorithm First Iteration
Let Am, . . . , An be the matrices of the differentials of zgcomplex in ascending
order with respect to homological degree. Starting at Am and moving
towards An, search in each Ai for elementary row and column operations
that introduce strictly more zeros. If a row operation is performed, do
inverse column operation on Ai+1, and if a column operation is performed,
do inverse row operation on Ai−1 (with Am−1 := 0 and An+1 := 0).

Step 3: Reduction Algorithm Second Iteration
Perform Step 2 in reversed order : start at An, move towards Am, and
only search for column operations that introduce strictly more zeros. If a
column operation is performed, do the corresponding inverse row operation
on the preceding differential.

Step 4: Search for direct summands in zgcomplex
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This is done by homca as follows: suppose we are given

· · · −→
a⊕
j=1

Rj
Ai−1

−→
b⊕

j=1

Rj
Ai

−→
m⊕
j=1

Rj
Ai+1

−→
n⊕
j=1

Rj −→ · · ·

where each Rj = Z[G]. For each k, let cj1 , . . . , cjh be the non-zero entries
in the k-th column of Ai. Then we store an object of the form

Rjh

Rjh−1

Rk

...
...

Rj1

cjh

cjh−1

cj1

where a tower of Rj’s is to be understood as a direct sum. Call Rk the source
and the Rjl the targets of the k-th column of Ai. Check if Rk appears as
a target of some column in Ai−1, check if any of the Rjl form the source
of a non-trivial column in Ai+1, and then merge the corresponding objects
together. So for instance, if Ai−1 contains (labels of the arrows ignored)

Rv

Rw Rk

and Ai+1 contains

Rjh−1
Rp

then we merge the objects to

Rjh

Rv Rjh−1
Rp

Rw Rk

...
...

Rj1

cjh

cjh−1

cj1
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This process causes backwards and forwards reactions through all preceding
and succeeding differentials of Ai, where we have to search for matching
sources and targets of columns that we need to append to the current object
as above. If there’s nothing left to be merged, we have found a direct
summand and finish by constructing the differentials of the summand from
the given arrows.

We refer the reader for more details to the source code of homca found
at https://github.com/dilt1337/homca, which contains detailed com-
ments about the algorithms and methods implemented. One may also find
an installation guide for homca under the same link.

As an example, Figure 11.2 and Figure 11.3 at the end of this chap-
ter show the khoca output of the Cotton Seed knot 14n288160 and the
corresponding homca output, respectively.

11.3.2 tenpro

When defining a new invariant, it is always desirable to find good examples
that exhibit special behaviour of the invariant. Moreover, such examples
may lead to theorems, as it was the case with our Theorem 7.5 that λ can
grow arbitrarily big. When search for a knot K such that λ(K) = n for
a given nN, we knew for two reasons that connected sums of the Cotton
Seed knot CS = 14n268810 might be a good candidate: first, because in
general JK1#K2K = JK1K⊗JK2K, and second because the piece of odd rank
in JCSK is different from a pawn since sF2(CS) ̸= sF3(CS). Using khoca
and homca, we figured that the piece of odd rank in JCSK is a staircase
S1 for which one can easily compute λ(S1) = 1. Expecting that in general
λ(Sn) = n, all we had to do is to find a way to effectively compute tensor
products JCSK⊗n to check that this Z[G]-complex has the staircase Sn as
piece of odd rank and then prove that λ(JCSK⊗n) = n.2 This is where the
program tenpro by the author comes into play [Ilt21b]. tenpro takes as
input two chain complexes overMZ[G] (specified by the user by hand or via
two khoca output files containing Z[G]-complexes), computes their tensor
product and then decomposes it into summands using homca. This way,
we verified for several n that JCSK⊗n has Sn as piece of odd rank, and in
fact many of the results in Chapter 11 were verified using the combination
of khoca, homca, and tenpro.

The aim of this section is to explain the algorithm implemented by
tenpro that computes the tensor product of two complexes over MZ[G].
Before we start, let us mention that tenpro is written in Python and Sage-
Math and available at https://github.com/dilt1337/tenpro, where also
an installation and usage manual can be found. We assume that the reader
is familiar with forming the tensor product of two general chain complexes.

2Of course, one can also simply compute the case n = 2 by hand giving S1 ⊗ S1 = S2 and
then start working out the proof for general n. But it’s always desirable to be able to verify
the hypothesis on more than one example.

https://github.com/dilt1337/homca
https://github.com/dilt1337/tenpro
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Let (A, dA), (B, dB) be chain complexes overMZ[G], so that each chain
module of A respectively B is a direct sum of (grading shifted) copies of
Z[G]. Write

A = Am
dmA−→ Am+1 dm+1

A−→ · · ·
dn−1
A−→ An−1 dnA−→ An

B = Bp dpB−→ Bp+1 dp+1
B−→ · · ·

dq−1
B−→ Bq−1 dqB−→ Bq

for some m,n, p, q ∈ Z, where

Ai ∼=
li⊕
k=1

Rk, Bj ∼=
zj⊕
f=1

Rf

with Rk
∼= Rf

∼= Z[G] for each k and f . Here, we omit quantum shifts for
better readability but they are of course included in tenpro. We further
identify the differentials with their matrix corresponding to the standard
basis of a direct sum of Z[G]’s. Now, the important part when forming
A ⊗ B is to define how we choose a basis on the resulting chain modules.
So, we start by ordering summands in tensor products Ai ⊗Bj as follows:

Ai ⊗Bj =
( li⊕
k=1

Rk

)
⊗
( zj⊕
f=1

Rf

)
∼=

li⊕
k=1

zj⊕
f=1

Rk ⊗Rf ,

and each Rk ⊗ Rf is generated by 1 ⊗ 1 over Z[G] for every k and f . In
tenpro, the basis element 1⊗1 of Rk⊗Rf is encoded as array [ki, fj], with
subscript being the homological degree of Ai and Bj, respectively. We
order the corresponding basis on Ai⊗Bj in lexicographical order. Overall,
tenpro stores the basis of Ai ⊗Bj as an ordered list of arrays:

[1i, 1j], [1i, 2j], . . . , [1i, (zj)j], [2i, 1j], . . . , [(li)i, (zj)j]. (11.5)

For A⊗B, we start with a diagram as follows.

⊗ Am Am+1 · · · An

Bp Am ⊗Bp Am+1 ⊗Bp · · · An ⊗Bp

Bp+1 Am ⊗Bp+1 Am+1 ⊗Bp+1 · · · An ⊗Bp+1

...
...

...
. . .

...

Bq Am ⊗Bq Am+1 ⊗Bq · · · An ⊗Bq

dmA dm+1
A dn−1

A

dpB

dp+1
B

dq−1
B
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From this, we form the chain complex A⊗B as follows:

Am ⊗Bp −→ (Am+1 ⊗Bp)⊕ (Am ⊗Bp+1) −→
(Am+2 ⊗Bp)⊕ (Am+1 ⊗Bp+1)⊕ (Am ⊗Bp+2) −→ · · ·

· · · −→
⊕

i=0,...,h

Am+h−i ⊗Bp+i −→ · · · −→ An ⊗Bq

As one can see, we order the summands in a descending fashion with respect
to the homological degree of A. On

⊕h
i=0A

m+h−i⊗Bp+i we use the standard
ordered basis induced by summands, so that using (11.5) it reads

[1m+h, 1p]h, [1m+h, 2p]h, . . . , [(lm+h)m+h, (zp)p]h,

[1m+h−1, 1p+1]h, . . . , [(lm)m, (zp+h)p+h]h.
(11.6)

The subscript h at each bracket tracks the homological degree. We write
Lh for the ordered set containing (11.6). Let’s look at the differentials.
Consider ⊕

i=0,...,h

Am+h−i ⊗Bp+i
dhA⊗B−→

⊕
i=0,...,h+1

Am+h+1−i ⊗Bp+i.

Both domain and range of dhA⊗B have an ordered basis as in (11.6), stored
in Lh and Lh+1, respectively. tenpro builds the matrix of the differential
dhA⊗B now as follows. Pick elements X = [km+h−i, fp+i]h ∈ Lh and Y =
[em+h+1−j, gp+j]h+1 ∈ Lh+1 where k ∈ {1, . . . , lm+h−i}, f ∈ {1, . . . , zp+i},
e ∈ {1, . . . , lm+h+1−j} and g ∈ {1, . . . , zm+j}. Suppose that X is at position
v in Lh and Y is at position w in Lh+1, respectively. Then we determine the
matrix entry (dhA⊗B)v,w by comparing the numerical values of the entries of
X and Y , including subscripts. For this, we write

ab
.
= cd :⇐⇒ a = c, b = d a, b, c, d ∈ Z

Then we have the following cases:

1. km+h−i
.
= em+h+1−j: then p+ i = p+ j − 1 and we set

(dhA⊗B)v,w = (dp+iB )g,f

2. fp+i
.
= gp+j: then m+ h− i = m+ h+ 1− j − 1 and we set

(dhA⊗B)v,w = (−1)c+1(dm+h−i
A )e,k,

where c := (p+ i) mod 2.3

3. Neither km+h−i
.
= em+h+1−j nor fp+i

.
= gp+j: then we set

(dhA⊗B)v,w = 0
3In our sign convention, each horizontal arrow of even homological degree of B gets a minus

sign in the commutative diagram of A⊗B.
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Doing this for each pair of entries in Lh and Lh+1 builds the matrix dhA⊗B.
Observe that if one fixes an element in Lh and compares it with all other
elements in Lh+1 as above, one builds a column of dhA⊗B (this is how it’s
implemented in tenpro).

Example 11.10. In the following, let Ri = Z[G] for i = 1, 2. Consider the
complexes

A = R1︸︷︷︸
=A0

d0A−→ R1 ⊕R2︸ ︷︷ ︸
=A1

d1A−→ R1︸︷︷︸
=A2

B = R1 ⊕R2︸ ︷︷ ︸
=B0

d0B−→ R1︸︷︷︸
=B1

where
d0A =

(
G
2

)
, d1A =

(
−2 G

)
, d0B =

(
G
2

)
In the notation above, we have

l0 = 1, l1 = 2, l2 = 1, z1 = 2, z2 = 1.

For the tensor product A⊗B, consider the diagram below.

⊗ R1 R1 ⊕R2 R1

R1 ⊕R2 R1 ⊗ (R1 ⊕R2) (R1 ⊕R2)
⊗2 R1 ⊗ (R1 ⊕R2)

R1 R1 ⊗R1 (R1 ⊕R2)⊗R1 R1 ⊗R1

d0A d1A

d0B

This yields

A⊗B =R1 ⊗ (R1 ⊕R2)
d0A⊗B−→ ((R1 ⊕R2)⊗ (R1 ⊕R2))⊕ (R1 ⊗R1)

d1A⊗B−→ (R1 ⊗ (R1 ⊕R2))⊕ ((R1 ⊕R2)⊗R1)

d2A⊗B−→R1 ⊗R1

For h = 0, 1, 2, 3, the ordered sets Lh containing the basis of the chain
modules in A⊗B (as in (11.6)) are given by

L0 : [10, 10]0, [10, 20]0

L1 : [11, 10]1, [11, 20]1, [21, 10]1, [21, 20]1, [10, 11]1

L2 : [12, 10]2, [12, 20]2, [11, 11]2, [21, 11]2

L3 : [12, 11]3
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Let us now step-by-step show how to construct the first differential d0A⊗B.
We follow the convention of tenpro and build column by column. So, for
the first column, fix [10, 10]0 ∈ L0, compare with elements in L1 respecting
the order, and distinguish the cases 1. – 3. above:

• [10, 10]0 ↔ [11, 10]1: This is case 2., so we obtain

d0A⊗B =


−G ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

 .

• [10, 10]0 ↔ [21, 10]1: This is case 3., so we obtain

d0A⊗B =


−G ∗
0 ∗
∗ ∗
∗ ∗
∗ ∗

 .

• [10, 10]0 ↔ [21, 10]1: This is case 2., so we obtain

d0A⊗B =


−G ∗
0 ∗
−2 ∗
∗ ∗
∗ ∗

 .

• [10, 10]0 ↔ [21, 20]1: This is case 3., so we obtain

d0A⊗B =


−G ∗
0 ∗
−2 ∗
0 ∗
∗ ∗

 .

• [10, 10]0 ↔ [10, 11]1: This is case 1., so we obtain

d0A⊗B =


−G ∗
0 ∗
−2 ∗
0 ∗
G ∗

 .

For the second column, we proceed exactly the same. Fix [10, 20]0 ∈ L0

and compare:
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• [10, 20]0 ↔ [11, 10]1: This is case 3., so we obtain

d0A⊗B =


−G 0
0 ∗
−2 ∗
0 ∗
G ∗

 .

• [10, 20]0 ↔ [11, 20]1: This is case 2., so we obtain

d0A⊗B =


−G 0
0 −G
−2 ∗
0 ∗
G ∗

 .

• [10, 20]0 ↔ [21, 10]1: This is case 3., so we obtain

d0A⊗B =


−G 0
0 −G
−2 0
0 ∗
G ∗

 .

• [10, 20]0 ↔ [21, 20]1: This is case 2., so we obtain

d0A⊗B =


−G 0
0 −G
−2 0
0 −2
G ∗

 .

• [10, 20]0 ↔ [10, 11]1: This is case 1., so we obtain

d0A⊗B =


−G 0
0 −G
−2 0
0 −2
G 2

 .

We hope that by now the algorithm is clear to the reader. As an exercise, we
invite the reader to write down the remaining matrices using the algorithm
and compare with our results:

d1A⊗B =


2 0 −G 0 0
0 2 0 −G 0
G 2 0 0 G
0 0 G 2 2

 , d2A⊗B =
(
G 2 −2 G

)
.
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Frobenius algebra: Z[a, b][X] / (1*Xˆ2 + b*X + a).

[[0]; [(-b)]]

[[0, 0]; [(-b), 0]]

[[0, 0]; [0, 0]; [(b), 0]; [(-2), 0]]

[[(-b), 0, 0, (2*a)]; [0, 0, 0, 0]; [0, (-b), 0, 0];
[(-2), (-2), 0, 0]; [(2), 0, (2), (b)]]

[[0, 0, 0, 0, 0]; [0, (-b), 0, 0, 0]; [0, 0, 0, 0, 0];
[(2), (2), (2), (-b), 0]]

[[0, 0, (bˆ2 + -4*a), 0]; [(-b), 0, (bˆ2 + -4*a), 0];
[0, 0, (b), 0]; [(2), 0, 0, 0]]

[[(b), 0, (-bˆ2 + 4*a), 0]; [(-2), 0, (2*b), 0];
[(2), (2), (-4*b), (b)]; [0, 0, 0, 0]]

[[0, 0, 0, 0]; [0, 0, 0, (-b)]]

[[(-b), 0]; [0, 0]]

[[0, (b)]; [0, 0]]

[[0, (-b)]]

[[0]]

[[(-b)]]

[[3, 17, 22, 16, 21], [3, 1, 10, 0, 9], [3, 21, 14, 20, 13], [2, 22, 7,
23, 8], [2, 14, 3, 15, 4], [2, 11, 18, 12, 19], [3, 13, 26, 12, 25], [3,
6, 11, 5, 10], [2, 19, 26, 20, 28], [3, 0, 5, 27, 4], [3, 25, 18, 24,
17], [2, 6, 23, 7, 24], [2, 2, 15, 3, 16], [3, 9, 2, 8, 1]]

Result:
Reduced Homology:
Equivariant homology:
tˆ-7qˆ14 + tˆ-6qˆ12 + tˆ-6qˆ12 + tˆ-5qˆ10 + tˆ-5qˆ10 + tˆ-4qˆ8 + tˆ-4qˆ8
+ tˆ-4qˆ8 + tˆ-4qˆ10 + tˆ-3qˆ6 + tˆ-3qˆ6 + tˆ-3qˆ6 + tˆ-3qˆ8 + tˆ-3qˆ8
+ tˆ-2qˆ4 + tˆ-2qˆ4 + tˆ-2qˆ6 + tˆ-2qˆ6 + tˆ-1qˆ2 + tˆ-1qˆ2 + tˆ-1qˆ4 +
tˆ-1qˆ4 + tˆ0qˆ0 + tˆ0qˆ2 + tˆ0qˆ2 + tˆ0qˆ4 + tˆ1qˆ0 + tˆ1qˆ2 + tˆ2qˆ-2
+ tˆ2qˆ0 + tˆ3qˆ-2 + tˆ3qˆ-2 + tˆ4qˆ-4 + tˆ5qˆ-6 + tˆ6qˆ-8

Figure 11.2: The khoca output for the Cotton Seed knot 14n22180, giving its Z[G]-
complex. It contains (from top to bottom) the Frobenius system used (with b = −G
and a = 0), the matrices of the differentials, the PD-notation of the knot, and the
Poincaré polynomial of the Z[G]-complex.
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Summands of rank 2:

hdeg start: -7, hdeg stop: -6, length: 2
R1{14} −→ R2{12}
(−G)

hdeg start: -6, hdeg stop: -5, length: 2
R1{12} −→ R2{10}
(−G)

hdeg start: -4, hdeg stop: -3, length: 2
R1{8} −→ R1{6}
(−G)

hdeg start: -3, hdeg stop: -2, length: 2
R2{6} −→ R2{4}
(−G)

hdeg start: -2, hdeg stop: -1, length: 2
R3{6} −→ R3{4}
(G)

hdeg start: 0, hdeg stop: 1, length: 2
R4{4} −→ R2{2}
(−G)

hdeg start: 0, hdeg stop: 1, length: 2
R4{4} −→ R2{2}
(−G)

hdeg start: 1, hdeg stop: 2, length: 2
R1{0} −→ R1{−2}
(−G)

hdeg start: 2, hdeg stop: 3, length: 2
R2{0} −→ R1{−2}
(G)

hdeg start: 3, hdeg stop: 4, length: 2
R2{−2} −→ R1{−4}
(−G)

hdeg start: 5, hdeg stop: 6, length: 2
R1{−g} −→ R2{−8}
(−G)
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Summands of rank 3:

hdeg start: -1, hdeg stop: 0, length: 2
R1{2} −→ R1{0} ⊕R2{2}(
G
−2

)
Summands of rank 4:

hdeg start: -5, hdeg stop: -3, length 3
R1{10} −→ R3{8} ⊕R4{10} −→ R5{8}(
G
−2

)
(
G −2

)
hdeg start: -4, hdeg stop: -2, length 3
R2{8} −→ R3{6} ⊕R4{8} −→ R4{6}(
−G
−2

)
(
2 −G

)
hdeg start: -2, hdeg stop: -0, length 3
R1{4} −→ R2{2} ⊕R4{4} −→ R3{2}(
−G
2

)
(
2 G

)
Piece of odd rank:

hdeg start: -1, hdeg stop: 0, length: 2
R1{2} −→ R1{0} ⊕R2{2}(
G
−2

)
Figure 11.3: The homca output for the Cotton Seed knot 14n22180. Shown are direct
summands of a certain rank. For each summand, it shows the beginning (hdeg start)
and ending (hdeg end) homological degree, and the length of the summand (i.e. number
of appearing homological degrees). Within a summand, Rj{q} stands for the j-th copy
of Z[G] in the corresponding chain module of J14n22180K, with quantum degree q. The
differentials are ordered according to the arrows from left to right. At the bottom it
shows the single piece of odd rank, from which one may read off the non-equal Rasmussen
invariants sF2

= 2 and sF3
= 0.



Chapter 12

λ and Rational Tangles

One of our main results states that the λ-invariant yields a lower bound on
the proper rational unknotting number uq of a knot, see Theorem 7.4. The
key step in the proof is to show that if two knots K and J are related by a
proper rational replacement, then λ(K, J) ≤ 1. For this we have to relate
the Bar-Natan complex of different rational tangles, as follows.

First, we need to compute the Bar-Natan complexes of rational tangles.
For this we heavily rely on a result by Thompson [Tho17], who showed
that the Bar-Natan complex of a rational tangle T over the category of
dotted cobordisms is homotopy equivalent to a so-called zigzag complex.
However, we work over categories of cobordisms without dots, and so we
require the analogue of Thompson’s result in this more general setting. We
also use Kotelskiy-Watson-Zibrowius’ theorem [KWZ19, Theorem 1.1] that
Bar-Natan’s category of 4-ended tangles and cobordisms is equivalent to
a category coming from a quiver with two vertices and four edges, which
yields a quite simple calculus for chain complexes of 4-ended tangles. This
forms the content of Section 12.1.

Second, we need to study zigzag complexes themselves in order to prove
Proposition 10.15, which states that for rational tangles in a fixed ball with
fixed base point and connectivity (up to equivalence), the pseudometric
given by λ (see Proposition 10.14) is in fact equal to the discrete met-
ric. This implies λ(S, T ) ≤ 1 for two rational tangles S, T , from which
λ(K, J) ≤ 1 and ultimately λ(K) ≤ uq(K) will follow. The analysis of
zigzag complexes is the subject of Section 12.2, which also contains the
proof of Theorem 7.4.

For simplicity we will in the following only consider positive rational
tangles, i.e. rational tangles R(x) with x ∈ Q+ (see Section 8.3). However,
since R(−x) is the mirror image of R(x) and the dual of the Bar-Natan
complex of a tangle corresponds to the Bar-Natan complex of its mirror
image, everything admits a straightforward generalization.
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12.1 The Bar-Natan complex of rational tangles

The Bar-Natan complex [T ]• of an oriented rational tangle T is by our def-
inition a complex over Mat(Cob3,•

/l (4)) (considered up to homotopy equiva-
lence), where Cob3,•

/l (4) is the Z[G]-enriched category of 4-ended unoriented
crossingless tangle diagrams with base point, and cobordisms between them
(see Section 9.4). Recall that in Section 9.1, we have found by using deloop-
ing and simplifying cobordisms that Cob3

/l(2), and hence also Cob3,•
/l (2), is

equivalent to the category MZ[G]. A similar strategy gives the following
analogue for Cob3,•

/l (4), which is a reformulation of a theorem by Kotelskiy,
Watson and Zibrowius.

Theorem 12.1 ([KWZ19, Theorem 1.1]). Consider the Z[G]-enriched
category with the two objects and , and Z[G]-morphism modules
consisting of compositions of the identity (product) cobordisms

I : → , I : →

and the obvious saddle cobordisms

S : → , S : → ,

modulo the relation
S3 = GS.

We grade the Z[G]-morphism modules according to Definition 8.37. Then
the inclusion of the additive graded closure of this category into Cob3,•

/l (4)
is an equivalence of categories.

Notation. As already present in Theorem 12.1, we abuse notation and
denote both identity and saddle cobordisms with I and S, respectively.

Theorem 12.1 gives us a compact notation for Cob3,•
/l (4): objects are iso-

morphic to (quantum) grading shifted sums of and , and morphisms
are equal to Z[G]-linear combinations of I, S and S2.

Convention. Following [KWZ19], we write D := S2 −G for convenience.
Also, we will in the following mostly omit homological and quantum grad-
ings without further mention.

Remark 12.2. Observe that

1. SD = DS = 0;

2. D2 = −GD;

3. deg I = 0, degS = 1, and degD = 2.

Let us now move towards the analogue of Thompson’s result mentioned
at the beginning of Chapter 12 by introducing the notion of a zigzag com-
plex.
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Definition 12.3. Let

C = Cp dp−→ Cp+1 dp+1

−→ · · · d
q−1

−→ Cq

be a graded chain complex over Mat(Cob3,•
/l (4)), so that each Ck is a formal

direct sum of grading shifted objects in Cob3,•
/l (4), i.e.

Ck =

lk⊕
j=0

Okj {rkj } ∈ ob(Mat(Cob3,•
/l (4))),

and each differential dk is a matrix consisting of morphisms in Cob3,•
/l (4).

C is called a zigzag complex if it satisfies the following:

1. Each Okj {rkj } is either {rkj } or {rkj }.

2. If
∑q

i=p li = n + 1, then there are in total n non-zero entries in all
differentials combined.

3. Each non-zero entry in a differential is one of the following five maps
(ignoring grading shifts):

S : → , S2 : → , S2 : →

D : → , D : →

4. There is at least one entry in some differential that is a saddle S.

5. If m is a non-zero entry at position (i, j) in dk, then there is one of
the following cases:

(a) There is exactly one more non-zero entry m′ in either the i-th
row or the j-th column of dk, and if m = D then m′ = S or S2,
and if m = S or S2 then m′ = D;

(b) m is the only non-zero entry in the i-th row and j-th column of
dk, and if k ̸= 0, then there is precisely one non-zero entry m′ in
the j-th row of dk−1, and if m = D then m′ = S or S2, and if
m = S or S2 then m′ = D.

The definition of a zigzag complex certainly looks confusing, but has in
fact a very simple intuition behind it. The following lemma explains this
and follows directly from Definition 12.3.

Lemma 12.4. Let C be a zigzag complex. Then there exists an enumera-
tion A0, . . . , An of all appearing objects Okj {rkj } in C and an enumeration
m1, . . . ,mn of all non-zero entries in the differentials of C, such that:

1. Each mi is a morphism Ai−1 → Ai or Ai → Ai−1 increasing homolog-
ical degree by 1; and
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2. Two consecutive morphisms mi,mi+1 are either S and D (or vice-
versa), or S2 and D (or vice-versa).

Moreover, this enumeration is unique up to reindexing given by A′
i := An−i

for i = 0, . . . , n and m′
i := mn+1−j for j = 1, . . . , n.

Notation. Given a zigzag complex C with an enumeration as in
Lemma 12.4, we write (C,

⊕n
i=0Ai,

∑n
i=1mi). For the reindexed complex,

we write (C,
⊕n

i=0An−i,
∑n

i=1mn+1−i).

Note that reindexing does not change the isomorphism type of the zigzag
complex.

Convention. From now on, we will always consider an enumeration part
of the data of a zigzag complex.

The enumeration as in Lemma 12.4 allows for a very simple depiction
of the chain complex, which also explains why it’s called a zigzag complex;
see Figure 12.2 for an example. Moreover, using this depiction one may
easily write down chain maps and homotopies between zigzag complexes by
simply specifying directed arrows with non-zero labels between the objects,
which correspond to entries in the matrices of the actual chain maps and
homotopies over Mat(Cob3,•

/l (4)) (a missing arrow is interpreted as zero in
the matrix). See Figure 12.3 for an example.

Now, let us encode zigzag complexes further using the following type of
graphs.

Definition 12.5. Let us consider a directed finite graph with two types
of vertices, • and ◦. Let us call an edge connecting a • and a ◦ vertex a
saddle edge. Such a graph is called a zigzag graph if it satisfies the following
conditions.

1. The graph has the shape of a line, i.e. there are exactly two vertices of
valency 1 (which we call the ends), and all other vertices have valency
2.

2. There is a partition of edges into odd and even edges, such that all
saddle edges are odd, and if two edges are adjacent, then one of them
is odd and the other one even.

3. All saddle edges are directed like this: ◦ → •.

4. There is at least one saddle edge.

Note that because there is at least one saddle edge, the partition of
edges into odd and even edges is unique.

Definition 12.6. The graph of a zigzag complex (C,
⊕n

i=0Ai,
∑n

i=1mi) is
defined as the zigzag graph with a vertex corresponding to each Ai, where
we assign a • if Ai = and a ◦ if Ai = (shifts ignored), and one
directed edge corresponding to each mi.
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↭ ◦ •

↭ • •

↭ • •

↭ ◦ ◦

↭ ◦ ◦

S saddle
odd

S2

odd

D
even

S2

odd

D
even

Figure 12.1: Summary of the correspondence between objects and differentials of zigzag
complexes (left column) and vertices and edges of zigzag graphs (right columns).

One easily checks that the graph of a zigzag complex really is a zigzag
graph. Moreover, every zigzag graph is the graph of a zigzag complex;
and the graph of a zigzag complex determines the zigzag complex up to
reindexing, and up to global shifts in homological and quantum degree. The
correspondence between zigzag complexes and zigzag graphs is summarized
in Figure 12.1.

Let us now recursively define a zigzag graph zz(x) for all positive ratio-
nal numbers x ∈ Q+ by the following rules:

zz(1) = ◦ −→ • (12.1)

zz(1/x) is obtained from zz(x) by switching ◦ and •, and reversing
the directions of all edges.

(12.2)

zz(x+ 1) is obtained from zz(x) by replacing each edge as shown
in Table 12.1.

(12.3)

Note that these cases are exhaustive, since two adjacent •-vertices can-
not both be ends (because there is at least one saddle edge), and since a
saddle edge is always directed from ◦ to •. Let us check that zz is well-
defined. Indeed, ◦ → • is a zigzag graph, and one may verify that (12.2)
and (12.3) map zigzag graphs to zigzag graphs. Every positive rational
number can be obtained from 1 by a sequence of x 7→ 1/x and x 7→ x+ 1.
Moreover, that sequence is unique up to inserting or removing two consec-
utive x 7→ 1/x. Since applying (12.2) twice has no effect, (12.1) to (12.3)
indeed define zz(x) for every positive rational x.

We are now ready to state our generalization of Thompson’s theorem.

Theorem 12.7. Let R(x) be the unoriented rational tangle correspond-
ing to a positive rational number x. Let T be the tangle R(x) equipped
with some orientation o. Then, the Bar-Natan complex [T ]• is homotopy
equivalent to a zigzag complex with graph zz(x).
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zz(3/7) =

•
•

•
◦

◦
•

•
•

•
◦



•

≃

A9= {12}

A8= {10}

A7= {8}

A6= {7}

A5= {5}

A4= {6}

A3= {8}

A2= {6}

A1= {4}

0A0= {3}

C0 C1 C2 C3 C4 C5

d9=S2

d8=D

⊕

d7=S

⊕

d6=D

d5=S

⊕

d4=D

⊕

d3=S2

d2=D

d1=S

d0=(S ) d1=

(
D 0
0 S
0 D

)
d2=

(
S2 D 0
0 0 S

)
d3=( 0 D ) d4=(S2 )

Figure 12.2: As an illustration of the correspondence between zigzag graphs and zigzag
complexes, and of Theorem 12.7: on the top, the zigzag graph zz(3/7); on the bottom, a
zigzag complex (with C omitted) that is homotopy equivalent to the Bar-Natan complex
of the rational tangle R(3/7) endowed with some orientation. The left subscript gives
the homological degree.
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Replace by

• •odd • ◦ ◦ •

not an end • •even not an end • •

not an end • •even end • • ◦

◦ • ◦ ◦ •

◦ ◦ ◦ ◦

• •odd • ◦ ◦ •

not an end • •even not an end • •

end • •even not an end ◦ • •

• ◦ • ◦ ◦

◦ ◦ ◦ ◦

Table 12.1: How to obtain zz(x+1) from zz(x): each edge e in zz(x) falls into a unique
one of the six cases shown in the left column of the table. Apply the rule, i.e. replace
e by the graph Γe in the right column in the same row. In this way, each of the two
vertices v, w adjacent to e in zz(x) are replaced by vertices ve, we in zz(x+ 1), namely
the leftmost and the rightmost vertex in Γe. If two edges e and f of zz(x) are adjacent
to a common vertex v, identify the vertices ve and vf in zz(x + 1). Note that this is
possible since ve and vf always have the same type: in fact, ve has the same type as v
if v (or equivalently, ve) is not an end.

The proof follows essentially [Tho17] with the necessary modifications.
On proceeds by induction over the number of transformations y 7→ 1/y
and y 7→ y + 1 necessary to reach R(x) from R(1). The main ingredient
in the induction steps is then Bar-Natan’s divide-and-conquer strategy for
simplifying complexes, which consists of a combination of delooping (see
Figure 8.20) and Gaussian elimination (see Lemma 8.79). We refer the
reader for details of the proof to [ILM21, Theorem 5.6].

Remark 12.8. Since the Bar-Natan complex of the mirror image of a tan-
gle is isomorphic to the dual of the Bar-Natan complex of that tangle,
Theorem 12.7 yields a rather simple representative of the homotopy equiv-
alence class of the Bar-Natan complex of any rational tangle, up to global
shifts in homological and quantum degree. These shifts depend on the ori-
entation of the tangle; since they do not matter for our work on λ, we will
neglect them. Thompson computes the shifts in [Tho17, Theorem 5.1].
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12.2 The λ-distance between rational tangles

We start with an analysis on the zigzag graph zz(x) for x ∈ Q+.

Lemma 12.9. Let x ∈ Q+. For every non-saddle edge e of the zigzag
graph zz(x), there is a subgraph Γe of zz(x) as follows for some n ≥ 1
(in the following, a missing arrowhead means that the edge’s direction is
unknown):

Γe =

A1 A2 . . . An

B1 B2 . . . Bn,

e

such that for each i with 1 ≤ i < n, the vertices Ai and Bi are of the same
type (◦ or •), and the edges between Ai and Ai+1 and between Bi and
Bi+1 are either both directed to the right, or both to the left (in the above
drawing of Γe); and such that moreover, one of the following statements is
true:

1. An and Bn are of the same type, An has no outgoing external edge
(i.e. an edge towards a vertex in zz(x) \Γe), and Bn has no incoming
external edge.

2. n ≥ 2, and

An−1 An

Bn−1 Bn

looks like
◦ ◦

◦ •.

3. n ≥ 2, and

An−1 An

Bn−1 Bn

looks like
• ◦

• •.

Similar to the proof of Theorem 12.7, the proof of Lemma 12.9 proceeds
by induction over the number of transformations y 7→ 1/y and y 7→ y + 1
necessary to reach x from 1. One has to do an extensive case distinction,
and we refer the reader to [ILM21, Lemma 5.9] for a proof.

The existence of a subgraph Γe for non-saddle edges as in Lemma 12.9
allows for a statement about multiplication on the individual Ai’s in a
zigzag complex C.

Lemma 12.10. Let x ∈ Q+, and let (C, d) = (
⊕n

i=0Ai,
∑n

i=1 di) be a
zigzag complex corresponding to zz(x). Then, for every i ∈ {1, . . . , n},
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there exists a homotopy h : C → C such that h◦d+d◦h = f ·(idAi
+ idAi−1

)
with f = S2 if di is odd (i.e. di = S or di = S2), and f = D if di is even,
i.e. di = D.

Proof. By reindexing C if necessary, we assume w.l.o.g. that di is a map
Ai−1 → Ai. If di is S, then let h be given by S : Ai → Ai−1. Then, for
h ◦ dj to be non-zero, the target of dj and the domain of h must match;
this happens only if j = i, or j = i + 1 ≤ n and di+1 is a map Ai+1 → Ai.
In the latter case, we nevertheless have h ◦ di+1 = 0, since h is S and di+1

is D. Similarly, one sees that dj ◦ h = 0 unless j = i. Overall, we find

h ◦ d+ d ◦ h =
n∑
j=1

h ◦ dj + dj ◦ h = h ◦ di + di ◦ h = S2 · (idAi
+ idAi−1

)

as desired. If di is not S, denote by e the edge in zz(x) corresponding to
di. Since e is not a saddle edge, by the previous Lemma 12.9 there is a
subgraph Γ satisfying (i), (ii) or (iii). The part of C corresponding to Γ is
the following (drawn in black):

Ai−1 Ai−2 . . . Ai−k

Ai Ai+1 . . . Ai+k−1.

di−1

di

di−k+1

di+1

h0 h1

di+k−1

hk−1
(12.4)

Let the homotopy h, drawn in (12.4) in red and dashed, be defined as the
sum

h =
k−1∑
j=0

hj : Ai+j → Ai−j−1

with hj equal to (−1)i−j times the identity cobordism if the domain and
target of hj are both or both ; and hj equal to (−1)i−j times S if one
of the domain and target of hj is , and the other . Note that the latter
case only happens if Γ satisfies (ii) or (iii) and j = k−1. Now, h◦d+d◦h is
equal to the sum of the following terms α, βj, γj, δ (all other compositions
of hj and dk vanish because target and domain do not match):

di ◦ h0 + h0 ◦ di︸ ︷︷ ︸
α

+
k−1∑
j=1

di−j ◦ hj−1 + hj ◦ di+j︸ ︷︷ ︸
βj

+

k−1∑
j=1

di−j ◦ hj + hj−1 ◦ di+j︸ ︷︷ ︸
γj

+ di−k ◦ hk−1 + hk−1 ◦ di+k︸ ︷︷ ︸
δ

.

Now, observe that α equals f · (idAi
+ idAi−1

) with f = S2 if di is S2 and
f = D if di is D. So it just remains to show that the terms βj, γj and δ are
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0. For each j, one of βj and γj is 0 because targets and domains do not
match; and the other term is 0 because the squares in (12.4) anticommute
(remember that di−j and di+j both point to the left, or both to the right).
This is also true for the last square in case that Γ satisfies (ii) or (iii), in
which case that square respectively looks like

S2

S

±1 ∓S or

.

S

S2

±1 ∓S

Finally, in case Γ satisfies (i), δ is 0 because targets and domains mismatch.
If Γ satisfies (ii) or (iii), δ is 0 either for the same reason, or because hk−1

is S and di−j and di+j are D.

The following lemma is well-known (see e.g. [Ble85, KWZ21]), and can
easily be checked inductively.

Lemma 12.11. For i ∈ {1, 2}, let pi and qi be coprime integers. Then
R(p1/q1) and R(p2/q2) have the same connectivity if and only if p1 ≡ p2
(mod 2) and q1 ≡ q2 (mod 2).

Let us call an end of a zigzag graph even or odd depending on whether
the unique edge adjacent to it is even or odd.

Lemma 12.12. Let p, q ∈ Q+ be coprime and let zz(p/q) be the corre-
sponding zigzag graph.

1. If both p and q are odd, then the ends of zz(p/q) are given by one of
the following configurations:

end ◦ • · · · ◦ • end

end ◦ ◦ · · · ◦ • end

end ◦ • · · · • • end

end • ◦ · · · • ◦ end

end • ◦ · · · ◦ ◦ end

end • • · · · • ◦ end

odd odd

odd odd

odd odd

odd odd

odd odd

odd odd

(12.5)

2. If p is odd and q even, then the ends of zz(p/q) are given by one of
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the following configurations:

end ◦ ◦ · · · ◦ ◦ end

end ◦ • · · · ◦ ◦ end

end ◦ • · · · • • end

end ◦ ◦ · · · ◦ ◦ end

end ◦ ◦ · · · • ◦ end

end • • · · · • ◦ end

odd even

odd even

odd even

even odd

even odd

even odd

(12.6)

3. If p is even and q odd, then the ends of zz(p/q) are given by one of
the following configurations:

end ◦ ◦ · · · ◦ • end

end • • · · · • • end

end • ◦ · · · • • end

end • ◦ · · · ◦ ◦ end

end • • · · · • • end

end • • · · · ◦ • end

even odd

odd even

odd even

odd even

even odd

even odd

(12.7)

Proof. We advise the reader who wishes to go through the proof in detail to
have a printed copy of Table 12.1 at hand. Let us start with the following
claim.

Claim: Given x ∈ Q+ with x ̸= 1, the only edges appearing in zz(x)
that connect an end are among the following:

end ◦ • ◦ • end

end • ◦ • ◦ end

odd odd

odd odd
(12.8)

end ◦ ◦ ◦ ◦ end

end ◦ ◦ ◦ ◦ end

even even

odd odd
(12.9)

end • • • • end

end • • • • end

even even

odd odd
(12.10)
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We prove the claim by induction on the steps necessary to reach x from 1
using the transformations y 7→ 1/y and y 7→ y + 1. The claim is clearly
true for x = 1, since zz(1) only consists of an odd saddle edge. So suppose
that the statement is true for zz(x). In order to show that it also holds for
zz(x+1), we have to examine Table 12.1. It is not difficult to see that the
only new edges introduced in zz(x+1) connecting an end are either saddle
edges, or one of the following:

end ◦ ◦ ◦ ◦ end

end ◦ ◦ ◦ ◦ end

even even

odd odd

This shows that the claim also holds for zz(x + 1). Now recall that one
obtains zz(1/x) from zz(x) by switching ◦ and •, and reversing the direc-
tion of all edges. In particular, now new edges are introduced. This means
that saddle edges connecting an end remain saddle edges connecting an
end in zz(1/x). Furthermore, the edges in (12.10) are precisely the edges
in (12.9) obtained under the transformation x 7→ 1/x, and vice-versa. Thus
the claim also holds for zz(1/x).

The statement is clearly true for zz(1), so suppose it holds for zz(x).
The transformation x 7→ 1/x switches the roles and with it the parity of
p and q. Now observe that the configurations in (12.5) are clearly closed
under switching ◦ and • and reversing edges. On the other hand, doing
the same on any case in (12.6) yields a case in (12.7) and vice-versa, which
corresponds to the interchanged roles and parities of p and q under the
transformation x 7→ 1/x. Hence the statement holds for zz(1/x) as well.

It remains to show the statement for x 7→ x+1. Note that this will also
show that (12.5) to (12.7) are the only possible configurations appearing.
Let x = p/q with p, q ∈ Q+ coprime. In order to show that the statement
holds for zz(x + 1), we have to check depending on the parity of p and
q what edges adjacent to ends can appear, and how they get replaced in
Table 12.1. The possible configurations of parities and ends in zz(x) and
zz(x + 1) respectively are summarized in the table below, which is taken
from the proof of [ILM21, Lemma 5.12]:

parities of p, q ends of zz(x) parities of p+ q, q ends of zz(x+ 1)
odd, odd odd ◦, odd • even, odd even ◦, odd •
even, odd even ◦, odd • odd, odd odd ◦, odd •
even, odd even •, odd • odd, odd odd ◦, odd •
odd, even even •, odd ◦ odd, even even ◦, odd ◦
odd, even even ◦, odd ◦ odd, even even ◦, odd ◦

In what follows we will list zigzag graphs up to rotation by 180 degrees.
Suppose first that x+1 = (p+ q)/q with both p+ q and q odd, so that p is
even and q odd. By the claim we know the possible configurations of edges
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connecting these ends, and Table 12.1 tells us how they get replaced:

zz(x) with p even, q odd zz(x+ 1) with p+ q odd, q odd
end ◦ ◦ · · · ◦ • end

even odd
end ◦ ◦ · · · ◦ • end

odd odd

end ◦ ◦ · · · • • end
even odd

end ◦ ◦ · · · • ◦ end
odd odd

end • ◦ · · · • • end
odd even

end • ◦ · · · • ◦ end
odd odd

end • • · · · • • end
odd even

end • ◦ · · · • ◦ end
odd odd

Observe that the second entry in the table cannot appear, as it results in
two odd ◦-ends. All the above configurations of edges connecting ends in
zz(x+ 1) are listed in (12.5), proving the statement.

For the other cases we proceed similarly. Assume that x+1 = (p+ q)/q
with p+q even and q odd. Then both p and q are odd, and by the previous
case we simply have to check how the edges in (12.5) get replaced:

zz(x) with p odd, q odd zz(x+ 1) with p+ q even, q odd
end ◦ • · · · ◦ • end

odd odd
end ◦ ◦ · · · ◦ • end

even odd

end ◦ ◦ · · · ◦ • end
odd odd

end ◦ ◦ · · · ◦ • end
even odd

end ◦ • · · · • • end
odd odd

end ◦ ◦ · · · ◦ • end
even odd

Finally, suppose that p+ q is odd and q even. Then p odd and q even,
and we have to check again two cases. Assume first that zz(p/q) has an
even •-end and an odd ◦-end. Then using the claim and Table 12.1, we get
the following configurations and replacements:

zz(x) with p odd, q even zz(x+ 1) with p+ q odd, q even
end ◦ • · · · • • end

odd even
end ◦ ◦ · · · • ◦ end

even odd

end ◦ ◦ · · · • • end
odd even

end ◦ ◦ · · · • ◦ end
even odd

end ◦ • · · · ◦ ◦ end
odd even

end ◦ ◦ · · · ◦ ◦ end
even odd

end ◦ ◦ · · · ◦ ◦ end
odd even

end ◦ ◦ · · · ◦ ◦ end
even odd

All these configurations are listed in (12.6), thus completing the proof.

The upcoming Proposition 12.13 is the heart of the proof of Theo-
rem 7.4. It is the analog of Lemmas 3.1 and 3.2 in [AD19], and a gener-
alization of [ILM21, Lemma 5.13], which only dealt with the case p and q
odd.

Proposition 12.13. Let p, q ∈ Q+ be coprime. Let (C,
⊕n

i=0An,
∑n

i=1mi)
denote the zigzag complex corresponding to zz(p/q). Further, let (C ′, d′)
be the complex

C ′
0 =

d′=S−−−−−−→ {1} = C ′
1,
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which is (up to global shifts) the Bar-Natan complex of R(−1) equipped
with some orientation, coming from a negative crossing. Then there exist
ungraded chain maps f : C → C ′ and g : C ′ → C such that:

1. If both p and q are odd, then

f ◦ g ≃ G · idC′ , g ◦ f ≃ G · idC

2. If p is odd and q is even, then

f ◦ g ≃
(
S2 0
0 G

)
, g ◦ f ≃ D · idC

3. If p is even and q odd, then

f ◦ g ≃
(
G 0
0 S2

)
, g ◦ f ≃ D · idC

Proof. Suppose first that both p and q are odd. Then by Lemma 12.12,
zz(p/q) has an odd ◦-end and an odd •-end, and one end has an incoming
edge and the other has an outgoing edge. By reindexing if necessary, we
may assume that A0 corresponds to the odd ◦-end and An to the odd •-
end in zz(p/q). Then again by Lemma 12.12, A0 has an outgoing and An
an incoming edge, with m1,mn ∈ {S, S2}. Let us define f : C → C ′ and
g : C ′ → C as follows:

· · ·m1

id

mn

−D−D

S

id

Here we define

f := (id : A0 → C ′
1) + (−D : An → C ′

0)

g := (id : C ′
0 → An) + (−D : C ′

1 → A0)

The map f is set to be zero on summands other than A0 and An. Clearly,
f and g are ungraded chain maps. Moreover,

f ◦ g = −D · idC′ , g ◦ f = −D · (idA0 + idAn)

Let h′ : C ′ → C ′ be the homotopy defined by S : C ′
1 → C ′

0. Then

d′ ◦ h′ + h′ ◦ d′ = G · idC′ − f ◦ g,

so f ◦ g is homotopic to multiplication with G as desired. Regarding g ◦ f ,
we apply Lemma 12.10 to obtain for every i ∈ {1, . . . , n} a homotopy



12.2. The λ-distance between rational tangles 271

hi : C → C such that d ◦ h+ h ◦ d = u · (idAi
+ idAi−1

) where u = S2 if mi

is odd and u = D if mi is even. Define

h =
n∑
i=1

(−1)i+1hi

Then it is easy to see that

d ◦ h+ h ◦ d = G · idC −g ◦ f,

showing that g ◦ f is homotopic to multiplication with G as desired.
Next, suppose that p is odd and q is even. Then by Lemma 12.12,

zz(p/q) has an even end and an odd ◦-end. By reindexing C if necessary, we
may assume that A0 corresponds to the even end, and that An corresponds
to the odd ◦-end. In order to define f : C → C ′ and g : C ′ → C, we will
only be interested in An, which by Lemma 12.12 has an outgoing edge with
mn ∈ {S, S2}. Consider

· · · mn

id

S

−D

Here we define

f := id: An → C ′
1 g := −D : C ′

1 → An

and set f and g to be zero on other summands. Clearly f and g are
ungraded chain maps, and

f ◦ g = −D · idC′
1
, g ◦ f = −D · idAn

Let h′ : C ′ → C ′ be the homotopy defined by S : C ′
1 → C ′

0. Then

d′ ◦ h′ + h′ ◦ d′ = S2 · idC′
0
+G · idC′

1
− f ◦ g

as desired. Now since zz(p/q) has an even and an odd end, we have by
Lemma 12.10 that for every i ∈ {1, . . . , n/2} there exists a homotopy
h2i−1 : C → C such that

h2i−1 ◦ d+ d ◦ h2i−1 = D · (idA2i−1
+ idA2i−2

).

Define h : C → C as

h = h0 + h2 + · · ·hn−2 =

n/2∑
i=1

h2i−2.
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Then
d ◦ h+ h ◦ d = D · idC −g ◦ f

as desired.
Finally, suppose that p is even and q odd. Then by Lemma 12.12,

zz(p/q) has an even end and an odd •-end. By reindexing C if necessary, we
may assume that A0 corresponds to the even end, and that An corresponds
to the odd •-end. In order to define f : C → C ′ and g : C ′ → C, we will
only be interested in An, which by Lemma 12.12 has an incoming edge with
mn ∈ {S, S2}. Consider

· · · mn

−D

S

id

Here we define

f := −D : An → C ′
0 g := id: C ′

0 → An

and set f and g to be zero on other summands. Clearly f and g are
ungraded chain maps, and

f ◦ g = −D · idC′
0
, g ◦ f = −D · idAn .

Let h′ : C ′ → C ′ be the homotopy defined by S : C ′
1 → C ′

0. Then

d′ ◦ h′ + h′ ◦ d′ = S2 · idC′
1
+G · idC′

0
− f ◦ g

as desired. Similar to the previous case, since zz(p/q) has an even and an
odd end, we have by Lemma 12.10 that for every i ∈ {1, . . . , n/2} there
exists a homotopy h2i−1 : C → C such that

h2i−1 ◦ d+ d ◦ h2i−1 = D · (idA2i−1
+ idA2i−2

).

Define h : C → C as

h = h0 + h2 + · · ·hn−2 =

n/2∑
i=1

h2i−2.

Then
d ◦ h+ h ◦ d = D · idC −g ◦ f

completing the proof.

Remark 12.14. Proposition 12.13 is a generalization of [ILM21, Lemma
5.13] which dealt with the case p and q odd. However, the proof contained
a gap: it assumed that the odd •-end has no outgoing edge. This gap is
now closed with the new Lemma 12.12, and the proof of Proposition 12.13
provides the correct arguments.
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C′
1 C′

0
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S

1

D

−1

−1

S2

1

S

D

−1

−1

S

S

1

D

−1

S

S

D

−1
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1
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1
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−D
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1

δ

Figure 12.3: Illustration of the proof of Proposition 12.13. In the top row, a zigzag
complex C with graph zz(3/7) (compare Figure 12.2). On the bottom row, the
complex C ′. In light and dark blue, the ungraded chain maps f : C → C ′ (going
down) and g : C ′ → C (going up). Red and dashed, the required homotopies.
Homological and quantum degree shifts are omitted from the diagram.

We now need to examine rational replacements (first seen in Defini-
tion 7.6) more closely.

Definition 12.15. Two unoriented link L,L′ ⊂ S3 are related by a rational
replacement if, after an isotopy, there exists a ball B ⊂ S3 whose boundary
sphere intersects L and L′ transversely, such that L\B◦ = L′ \B◦, and the
two tangles T = L ∩B and T ′ = L′ ∩B are rational. If T and T ′ have the
same connectivity, we say that the rational replacement is proper. If there
is a homeomorphism between B and the unit ball that sends T to R(x)
and T ′ to R(y) for some x, y ∈ Q ∪ {∞}, we speak of an x by y rational
replacement.

It is a frequently used fact that a crossing change may be seen as −1
by 1 rational replacement, but also as 0 by 2 rational replacement. The
following lemma generalizes this.

Lemma 12.16. Let S, T be rational tangles in a ball B, let x, y ∈ Q∪{∞},
and let φ be a homeomorphism of B to the unit ball B0 such that φ(S) =
R(x) and φ(T ) = R(y). Then there exists z ∈ {−1} ∪ [0,∞), and a
homeomorphism φ′ : B → B0 such that φ′(S) = R(−1) and φ′(T ) = R(z).

Proof. Let ψ1 be a homeomorphism of B0 with ψ1(R(x)) = R(∞). Then
ψ1(R(y)) = R(y′) for some y′. Let ψ2 be a homeomorphism of B0 such that
ψ2(R(∞)) = R(∞) and ψ2(R(y

′)) = R(y′′) with y′′ ∈ (0, 1] ∪ {∞}. Such a
ψ2 may be constructed by adding a certain number of twists to the right
side of the ball. Finally, let ψ3 be the homeomorphism of B0 that sends
R(w) to R(1/w−1) for all w ∈ Q∪{∞}. Then ψ3 ◦ψ2 ◦ψ1 ◦φ(S) = R(−1)
and ψ3 ◦ ψ2 ◦ ψ1 ◦ φ(T ) = R(z) for z ∈ {−1} ∪ [0,∞), as desired.



274 12. λ and Rational Tangles

Proposition 10.15. Fix a ball with four end points on it, one of them
distinguished as base point. On the set of equivalence classes of unoriented
rational tangles in that ball with fixed connectivity, the pseudometric given
by λ is in fact equal to the discrete metric. That is to say, λ(S, T ) = 1 for
inequivalent rational tangles S and T .

Proof. By Lemma 12.16, there exists x ∈ {−1} ∪ [0,∞) and a homeomor-
phism that sends S to R(−1) and T to R(x). Since S and T are not equiv-
alent, we have x ̸= −1. Since the connectivities of S and T are the same,
Lemma 12.11 implies that x = p/q with both p and q odd (in particular,
p/q ̸= 0). By Proposition 10.11, λ is equivariant under homeomorphisms,
and so we have λ(S, T ) = λ(R(−1), R(x)). So it will be sufficient to show
that λ(R(−1), R(x)) = 1.

By Theorem 12.7, [R(x)]• is homotopy equivalent to a zigzag complex
C with graph zz(x). By Proposition 12.13, there are ungraded chain maps
f : [R(−1)]• → C and g : C → [R(−1)]• with g ◦ f ≃ G · id[R(−1)]• and
f ◦ g ≃ G · idC , showing λ(R(−1), R(x)) ≤ 1.

Let D be the following 2-input planar arc diagram:

* *

Then D(R(−1), R(2)) is the unknot, and D(R(x), R(2)) is the two-bridge
knot K corresponding to x + 2 = (p + 2q)/q. Since x + 2 > 1, this is a
non-trivial knot, and so we have λ(K) > 0 because λ detects the unknot
(see Proposition 7.7).1 Overall, using Lemma 10.8, we get

λ(R(−1), R(x)) ≥ λ(D(R(−1), R(2)),D(R(x), R(2))) = λ(K) > 0.

This concludes the proof.

Let us restate and prove our main theorem.

Theorem 7.4. For all knots K, one has λ(K) ≤ uq(K).

Proof. To show λ(K) ≤ uq(K), it is sufficient to show the following: if
two knots K and J are related by a proper rational replacement, then
λ(K, J) ≤ 1. So let knots K, J related by a proper rational replacement
be given. By definition, there exists a 4-ended tangle T , such that K is the
union of T with a rational tangle S, and J is the union of T with a another
rational tangle S ′. Since the replacement is proper, S and S ′ have the same
connectivity. So λ(S, S ′) ≤ 1 by Proposition 10.15, and thus λ(K, J) ≤ 1
by Proposition 10.13.

1Here, we do not even need Kronheimer-Mrowka’s theorem that Khovanov homology detects
the unknot, but only the (much easier) theorem that Khovanov homology detects the unknot
among two-bridge knots (in fact, already the Jones polynomial can be seen to accomplish that).
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