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Abstract: Although there are numerous advantages of the IoT in industrial use, there are also some
security problems, such as insecure supply chains or vulnerabilities. These lead to a threatening
security posture in organizations. Security analytics is a collection of capabilities and technologies
systematically processing and analyzing data to detect or predict threats and imminent incidents. As
digital twins improve knowledge generation and sharing, they are an ideal foundation for security
analytics in the IoT. Digital twins map physical assets to their respective virtual counterparts along the
lifecycle. They leverage the connection between the physical and virtual environments and manage
semantics, i.e., ontologies, functional relationships, and behavioral models. This paper presents the
DT2SA model that aligns security analytics with digital twins to generate shareable cybersecurity
knowledge. The model relies on a formal model resulting from previously defined requirements. We
validated the DT2SA model with a microservice architecture called TWINSIGHT, which is publicly
available, open-source, and based on a real industry project. The results highlight challenges and
strategies for leveraging cybersecurity knowledge in IoT using digital twins.
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1. Introduction

Organizations utilize emerging technologies around the Internet of Things (IoT) to
stay competitive and build knowledge. In the Industrial Internet of Things (Industrial
IoT), sensors complement existing systems to enact more data leading to more accurate
predictive maintenance. Thereby, intertwining two complementary worlds is crucial in
enabling IoT use cases. Most commonly, information technology (IT) systems are connected
to operational technology (OT), processing volumes of data to gain new knowledge about
machines. This intertwining is a tremendous cybersecurity challenge for organizations, as
the OT remains reachable via the internet. Additionally, the myriad of lifecycle participants,
devices, and systems creates an opaque and complex scenario. Knowing the IoT systems
well is necessary for efficient cybersecurity management.

Lifecycle-centric cybersecurity management is crucial. Most recently, supply-chain
attacks have been emerging, compromising the chain’s weakest link. The ENISA states
that half of the attacks are attributed to advanced persistent threats (APT) groups, mainly
accessing data [1]. Consider a manufacturer of machines, i.e., cyber-physical systems,
vending IoT assets built out of physical components from suppliers to business customers.
Business customers own IoT assets and operate, maintain, and recycle IoT assets through
external service providers. From this example, different lifecycle participants interact with
an IoT system, each opening up new attack vectors. Nevertheless, attacks are not limited to
supply-chain attacks. Many well-known attacks exist, e.g., Sybil attacks, wormhole attacks,
ransomware attacks, and distributed denial service attacks [2]. These attacks can take place
throughout the lifecycle of an IoT system, and they are getting more advanced and harder
to detect.
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Security analytics is a paradigm to enhance cybersecurity in the Industrial IoT. It
applies big data analytics techniques aggregating and internalizing external cybersecurity
knowledge [3]. Security analytics collects data from various sources and allows the cor-
relation of data, e.g., whether an incident happened or is even likely to happen. Security
analytics is essential to organizations, but the less efficient the models, the less efficient the
security analytics. Nevertheless, APTs urge organizations to rely on internal and external
knowledge covering the unforeseeable as well as possible. Thus, generating knowledge
needs to come along with sharing. Sharing knowledge between lifecycle participants about
threats and incidents improves cybersecurity [4,5]. For instance, over 90% organizations
state that they rely on actionable cybersecurity knowledge from third parties and part-
ners [6]. As generating valuable knowledge to be shared is challenging, organizations
deploying complex and lifecycle-centric IoT systems require different and novel approaches.

The Industrial IoT requires more cooperation and collaboration between lifecycle
participants (see ISO 27036) and more advanced techniques to cope with sophisticated
cybersecurity attacks. The industry has long used the digital twin paradigm to map a
physical asset to its virtual representation through the lifecycle by replicating or simu-
lating the IoT [7]. Its use is not limited to operational scenarios, e.g., digital twins assist
security testing, enhance cyber situational awareness, and improve intrusion detection
systems [8,9]. Estimates say that 80% of organizations instrument some forms of digital
twins for cybersecurity scenarios, whereby 85% of security officers agree that digital twins
unleash even more efficient detection and mitigation [10]. By abstracting physical assets,
digital twins reduce the complexity of problem solving and provide a semantic layer to
the virtual representations. Thereby, they ensure a more detailed analysis of the physical
asset’s state and historical data, leveraging security analytics on top of the data structure of
digital twins.

Digital twins show potential in knowledge generation (coupled with security analytics)
and knowledge sharing. By bringing security analytics and digital twins together, we aim
to enhance cybersecurity in the Industrial IoT along the lifecycle and push cybersecurity
knowledge-sharing research. We address the research gap that no unified framework for
digital-twin-based security exists and add a replication-based intrusion detection approach
to it. This will help future research in the development of digital-twin-based security
analytics. The following research question guides this paper: “How can one align security
analytics and digital twins?” Recent research has already examined digital twins and secu-
rity analytics specifically but not as a whole. By aligning security analytics with digital
twins, this paper contributes to a more secure Industrial IoT by generating cybersecurity
knowledge and demonstrating how to share this knowledge throughout the lifecycle. Our
contributions are summarized in the following:

1. We comprehensively align security analytics with digital twins and illustrate how to
generate and share cybersecurity knowledge between lifecycle participants.

2. We provide a novel formal model for digital twins and security analytics. This formal
model assists in implementing digital-twin-based security analytics use cases.

3. We envision the DT2SA model for digital twins and security analytics. This model
integrates the Industrial IoT and mediates a global understanding for further research
and practical adoption.

4. We instantiate the DT2SA model by implementing a microservice architecture lever-
aging digital twin-based security analytics based on a real-world research project.
TWINSIGHT enables digital-twin-based threat and incident detection using open-
source software.

This paper is structured as follows. Section 2 provides the fundamental background
knowledge on digital twins and security analytics. We further discuss related research.
In Section 3, we conceptually elaborate on knowledge generation and sharing in the cy-
bersecurity domain resulting in requirements. Section 4 takes up these requirements and
puts entities and their relationships shaping a formal model. While Section 4.3 outlines the
DT2SA model based on the formal model, Section 6 validates the DT2SA model concern-
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ing the requirements and introduces TWINSIGHT, a digital-twin-based security analytics
microservice architecture. Section 7 concludes the paper and highlights future research.

2. Background and Related Work

In the following sections, we present relevant background on digital twins for security
operations in Section 2.1 and for security analytics in Section 2.2. Section 2.3 highlights the
related work and existing research focusing on digital twins, security analytics, and knowl-
edge generation and sharing.

2.1. Digital Twins for Security Operations

The digital twin paradigm is deeply grounded in the Industrial IoT, representing a
physical asset (e.g., an entity, system, process, or person) that is mapped throughout its
lifecycle to a virtual counterpart built on semantics [7]. The digital twin relies on descriptive
and dynamic asset data, dynamic environment data, historical asset and dynamic data,
and semantics [11]. The application scenarios are diverse and are not limited to operational
use. The application of digital twins for cybersecurity scenarios is a trend in research,
e.g., Lopez et al. are developing an authorization mechanism through digital twins in
5G environments. Technically, digital twins are executed via so-called operational modes,
i.e., simulation, analysis, and replication, which differ as follows:

• Analytics—using state data with statistical analysis.
• Simulation—using specification data with emulation or simulation techniques.
• Replication—using specification and state data with emulation or stimuli techniques.

These operation modes serve different use cases and enable various application sce-
narios, e.g., intrusion detection, security testing, security training, or penetration testing [8].
Digital twins are also considered an additional layer of security for the IoT that manages
incident response [12]. Of course, digital twins present new cybersecurity challenges,
but this has already been addressed by research [13]. However, we treat digital twins as an
additional layer for more efficient security analytics.

2.2. Security Analytics

In the era of big data, new technologies are emerging to support efficient real-time
data processing and analysis, which has led to the term big data analytics [14]. Of course,
the need for big data processing in IoT is obvious and key to dealing with the vast amount of
heterogeneous IoT data. Big data processing technologies provide a widely used foundation
for further analysis. Siow et al. [15] provided an excellent summary of big data analytics in
IoT and defined the following five analytical operations:

• Descriptive analytics: What has happened?
• Diagnostic analytics: Why did it happen?
• Discovery analytics: What is happening?
• Predictive analytics: What will happen?
• Prescriptive analytics: What should one do?

Descriptive or diagnostic analytics provides hindsight, discovery analytics provides
insight, and predictive or prescriptive analytics provides foresight. From a cybersecurity
perspective, big data analytics is crucial.

Due to the large amount of (un)structured security-relevant data, traditional security
information and event management (SIEM) systems are reaching their performance lim-
its [16]. Security analytics is concerned with applying big data processing technologies
to cybersecurity and describes the aggregation and analysis of security-relevant data [3].
However, there is no clear definition of security analytics. We define security analytics
as follows:

Security Analytics is a repertoire of capabilities and technologies for the systematic
processing and analysis of data to identify threats and imminent incidents.
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We see security analytics as an evolution of SIEM with additional operations, e.g., in-
trusion detection systems, behavioral or network analysis [17], and knowledge sharing.

2.3. Related Work

Big analytics and security analytics.is trending. Ackoff [18] defined the DIKW and
presented how to generate wisdom from data. Siow et al. [15] summarized five analytic
operations for big data analytics and their alignment with the DIKW. These operations could
be anchored in the security analytics domain [3] and were already aligned with security
analytics [19]. We go beyond these analytic operations to illustrate how cybersecurity
knowledge can be generated by linking operations, expertise, and digital twins.

Generating and sharing cybersecurity knowledge has already been addressed. The in-
cident response process shows data, observables, indicators of compromise, and inci-
dents [20]. Böhm et al. [4] elaborated on knowledge transformation in security analytics
and formalized different types of knowledge, i.e., explicit and implicit knowledge. We aim
to improve knowledge generation and share research by linking security analytics with
digital twins to promote knowledge generation in cybersecurity.

Eckhart et al. have developed CPS Twinning and CPS Replication, both frameworks
for creating and deploying digital twins for cybersecurity scenarios [21]. Digital twins for
security operations can be equipped with various capabilities, such as analytics, penetration
testing, and intrusion detection. For example, Dietz et al. [22] integrated digital twin security
simulations into a security operations center to assist analysts with security testing and
monitoring IoT assets. Damjanovic-Behrendt [23] defined a microservice architecture of the
digital twin that refers to security analytics as data analytics. Other service management
tasks, such as incident detection and responding, complement security analytics. Since some
research already presented digital twins for security analytics, we comprehensively go beyond
this understanding and formalize security analytics and related knowledge sharing with
digital twins. In doing so, we select an application scenario to demonstrate our overall model.

In summary, the existing literature does not comprehensively address security an-
alytics in IoT. While there are approaches to align particular analytical operations with
digital twins, a comprehensive view still needs to be provided. Our goal is to establish a
comprehensive model and bring the previously practice-oriented security analytics into the
realm of science. In this way, we will create a balance and improve the use of cybersecurity
knowledge in IoT.

3. Managing Cybersecurity Knowledge

The following sections make steps towards the formal model. We first describe the
generation of knowledge in Section 3.1. After, we illustrate knowledge sharing between
lifecycle participants interacting with digital twins in Section 3.2. We then describe require-
ments for the formal model in Section 3.3, resulting in the intertwining of environments in
Section 3.4.

3.1. Cybersecurity Knowledge Generation

Without knowledge, there is nothing to share. As already mentioned, knowledge is a
product of information [18], whereby knowledge generation requires human interaction.
In doing so, humans explore data, find insights, formulate hypotheses, and generate knowl-
edge repetitively (sensemaking loop) [24]. However, generating knowledge is challenging
and requires interaction with data and models. Research and industry cope with analytical
operations by describing the appropriate mix of technologies, techniques, and cognitive
abilities. The literature summarizes these analytical operations as descriptive, diagnostic,
detective, predictive, and prescriptive ones [15]. We analyzed blog posts from several large
organizations, i.e., IBM and Microsoft, confirming this notion but not all covering detec-
tive/discovery analytics. However, these five operations ensure knowledge generation all
throughout the process.
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Cybersecurity is also concerned with analytics. For example, there is an overlap be-
tween big data analytics and security analytics for deriving patterns for incident detection.
There are similarities between the incident response process [20] and the DIKW [18]. Aside
from the naming, the data, observables, indicators of compromise, and incidents share
the same relationships as the DIKW. We summarize and transfer these concepts into the
cybersecurity context. Figure 1 shows our approach to generating cybersecurity knowledge.
Descriptive operations contextualize data into observables that describe specific events
within an attack. Diagnostic operations involve analysis and correlation of historical observ-
ables, i.e., forensic investigation. Detective operations are suitable for detecting incidents
based on indicators of compromise in real-time, e.g., intrusion detection systems. Predictive
and prescriptive analytic operations are used to predict incidents and derive actions.

Figure 1. Cybersecurity knowledge generation.

In practice, analysts elaborate observables from many unstructured data sources
(i.e., IP addresses). Malicious IP addresses represent so-called indicators of compromise.
When they occur in a particular combination with other indicators of compromise, we refer
to them as incidents. Nevertheless, these operations are part of the sensemaking loop, since
knowledge is shaped by human interaction. Now that we know how knowledge is created
in cybersecurity, we examine knowledge sharing.

3.2. Cybersecurity Knowledge Sharing

Knowledge sharing is critical in the Industrial IoT because it is a playground for
different players and technologies. It includes many heterogeneous devices, a variety
of communication protocols, and standards under development. From a manufacturing
perspective, the collaboration between supply chain participants is broader than services
and systems. Data must also be available across organizational boundaries. Digital twins
have emerged as a paradigm to meet management within the circular economy [25]. They
have proven their strength in sharing knowledge with lifecycle participants as long as
communication channels are kept secure [26].

Collaboration between lifecycle participants must be strengthened, as this will improve
observables and indicators of compromise through external knowledge [4]. For example,
the greater the knowledge about indicators of compromise, the more efficient security
analytics. To promote collaboration among lifecycle stakeholders, we must first understand
their roles in the Industrial IoT. We summarize the leading roles in Industrial IoT: man-
ufacturer, supplier, distributor, maintainer, and owner (see Figure 2). Since digital twins
promote knowledge sharing in the Industrial IoT, we illustrate their bidirectional commu-
nication with their physical counterparts. A physical asset consists of several components
from multiple suppliers assembled by a manufacturer. A distributor brokers the asset to
an owner, who contracts a maintainer to provide services and maintenance. Digital twins
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communicate bidirectionally and serve as a single point of truth, eliminating information
asymmetry. For example, they notify an owner if an incident occurs or report vulnerabilities
to a supplier or manufacturer. Given this knowledge generation and sharing notion, we
can define the key requirements.

Figure 2. Cybersecurity knowledge sharing.

3.3. Requirements

Aligning security analytics and digital twins requires determining requirements con-
cerning digital twins, security analytics, and knowledge sharing. We define the require-
ments as follows:

REQUIREMENT 1 (DIGITAL TWIN). The digital twin comprises a physical, a virtual,
and a communication component [7,27]. It describes descriptive, dynamic, environmental,
historical, and semantical data [11]. For cybersecurity operations, the digital twin operates
in simulation, analytics, and replication modes [21,28].

REQUIREMENT 2 (SECURITY ANALYTICS). Security analytics is characterized by
heterogeneous data, data warehouses, technologies, system monitoring, and dashboards [3].
It demands descriptive, diagnostic, detective, predictive, and prescriptive operations [15].

REQUIREMENT 3 (KNOWLEDGE). Security analytics enables knowledge generation,
which is key for sharing [4,24], whereby digital twins enrich security analytics.

3.4. Intertwining Environments

We denote the primary entities and their relationships using an entity-relationship
model (cf. Figure 3) in preparation for the formal model. Gray-colored blocks and dashed
lines represent the logical components. Here, we represent the physical environment and
the virtual environment as the main components in Industrial IoT. It should be noted that
the lifecycle participants and the digital twin data can be mapped to both the physical
and virtual environments. However, this plays only a minor role. Furthermore, we define
security analytics as an internal component of the virtual environment [23]. The digital twin
can be either in one of the three modes of operation: simulation, replication, or analytics.

The physical environment contains physical assets, i.e., IoT devices. A physical asset
goes through its lifecycle with different lifecycle participants intertwined. A physical asset
is assigned for a lifecycle phase at a given time, and other assets may pass through the
same phase. Since digital twins are physical assets, they follow their physical counterparts
through the lifecycle. They interact with the same and possibly other lifecycle participants
that fit into the current lifecycle phase of the physical asset. In addition, digital twins have
specific data, especially metadata, state, and historical data. Security analytics is placed
above the digital twin, benefits from the semantics layer, and processes a set of digital
twin data.
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Figure 3. Security analytics through the intertwining of physical assets and digital twins.

4. Formal Model

We develop the formal model for digital-twin-based security analytics in the Industrial
IoT in the following. This formal model is key to approaching the DT2SA model that
supports digital-twin-based knowledge generation and sharing, enabling collaboration
between lifecycle participants. Note that this model only abstractly illustrates which
data can be coupled to which operation mode of the digital twins and security analytics
operation. In Section 4.1, we define the formal model for the physical environment, and
in Section 4.2, that for the virtual environment also containing security analytics described
in Section 4.3.

4.1. Physical Environment

The physical environment comprises the physical asset and its associated lifecycle
phases. We view physical assets as tangible and intangible artifacts of an organization.
The term physical is used to distinguish between real-world and virtual-environment assets.
It includes processes, software, and hardware (i.e., IoT). Thus, we define physical IoT assets
as I := {i1, ..., in}.

LIFECYCLE. These physical assets progress through different lifecycle phases—e.g., from
design to operation to recycling. We define the lifecycle phases as L := {l1, ..., lm} and assign
exactly one lifecycle phase at a given time e to a physical asset: f : ie 7→ l | i ∈ I ∧ l ∈ L.
Within a lifecycle phase, participants interact with physical assets, which we define as
follows: P := {p1, ..., pk}. Due to this formal definition, a physical asset is always situ-
ated in exactly one phase of the lifecycle at a given time and interacts with the respective
lifecycle participants.

4.2. Virtual Environment

The virtual environment describes the digital twin and the relation to several lifecycle
participants and respective data. This paper considers the digital twin as a mapping to
the physical asset. As the digital twin operates one of the three operation modes, namely,
analytics, replication, and simulation [28], we define the operation mode analytics as Tana,
the replication as Trep, and the simulation as Tsim. All digital twins are summarized through
T := {t1, ..., tl} and mapped to the physical assets as follows: g : t 7→ i | t ∈ T ∧ i ∈ I.
As digital twins T are mapped to physical assets A, and these to lifecycle phases L, we
conclude ( f ◦ g) ⇔ T ⇒ L. Thus, the digital twin is in the same lifecycle phase as the
physical asset.

DIGITAL TWIN DATA. We further define the digital twin data as D := {d1, ..., dp}. As al-
ready depicted, digital twins have several types of data, namely, descriptive and dynamic
asset data, dynamic environment data, historical asset data, and semantics. Descriptive data
Ddesc includes specifications and static data of a physical asset, such as year of manufacture,
model number, or identifiers. Dynamic asset data (we refer to as state data Dstate) bundles
all operational and asset-specific data that virtually represent assets given data structures
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dynamically. Dynamic environment data Denv are external stimuli that surround physical
assets, e.g., data captured through external interfaces (i.e., sensors). Dynamic environment
data do not only refer to data captured by the asset, e.g., network data. Historical asset data
Dhist are a collection of persisted data. Semantics Dsem represent models that yield relevant
data relations (this is also knowledge and wisdom, according to the DIKW). Note that it is
not possible to have machines produce wisdom. Wisdom is also perceived differently by
each lifecycle participant. Last, we define security-related data as Dsec. The latter holds all
data for security operations, e.g., policies, SIEM rules, signatures, or threat intelligence data.
These data types relate to each other. We define Dhist as the historical data storage that
aggregates various types of data, whereby ∃d ∈ D(d ∈ Dstate ∨ d ∈ Denv ∨ d ∈ Dsec). Ddesc
is considered not to change over time. The data types Dstate, Denv, and Dsec are historically
stored and a subset of data type Dhist is exceeded if a certain threshold s is breached (i.e.,
the arrival time of data dt). We specify this exceeding or persistence as follows, where s is a
timely restricted threshold:

persist(di) =

{
di ∈ (Dstate ∨ Denv ∨ Dsec) i f dt > s

di ∈ Dhist otherwise.

4.3. Security Analytics

As described above, we consider security analytics as big data analytics from a cyber-
security perspective, distinguishing between analytical operations, namely, descriptive,
diagnostic, detective, predictive, and prescriptive [3,15]. We define all analytical operations
as A := {a1, ..., aq}, whereby a ∈ A holds the respective results of one analytical operation
(generated knowledge). Additionally, analytical operations O yield subsets, i.e., analytical
operations categories: (Adesc ∪ Adiag ∪ Adet ∪ Apred ∪ Apres) ⊆ A. We consider all analytical
categories, as we provide an approach to holistically integrating security analytics. Digital-
twin-based security analytics involves knowledge and bidirectional communication with
the physical environment.

KNOWLEDGE. We assume data, information, knowledge, and wisdom as the foun-
dation of analytical operations but do not distinguish between these knowledge types as
described by Böhm et al. [4]. We consider the sensemaking process a black box, as it is
hard to define rationales, but we include cybersecurity knowledge. We refer to specific
knowledge about observables as Kobs, knowledge about indicators of compromise as Kind,
and learning about incidents as Kinc.

INCIDENT RESPONSE. One of the core properties of digital twins is the bidirectional
communication to real-world assets. Therefore, we also specify incident response. Incident
response is part of security analytics and involves security orchestration and response.
Thereby, playbooks are vital defining actions C := {c1, ..., cs} given certain knowledge about
incidents Kinc and threats. Integrating digital twins T into the incident response process is
called orchestration, and a reaction to an event using digital twins is a response. A response
to an incident is triggered by an event and solved through the orchestration of digital twins.
Digital twins enable the orchestration, so we define the orchestration O concerning digital
twins as O ◦ T, and the response is as follows:

response := ((k 7→ ot), c | c ∈ C, k ∈ Kinc, ot ∈ (O ◦ T))

DESCRIPTIVE ANALYTICS. Descriptive analytics descriptively summarizes the data
in context, using visualizations and statistical methods. This analytical operation relies
on historical data to provide hindsight and identifies relevant observables. Descriptive
analytics requires the operation mode Tana. We define a descriptive operation as follows:

Adesc := (d, t | d ∈ Dhist, t ∈ Tana) 7→ Kobs

DIAGNOSTIC ANALYTICS. Diagnostic analytics goes beyond descriptive analytics
and investigates the causes of phenomena (i.e., incidents). Due to this retro perspective,
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diagnostic operations incorporate historical data and identify indicators of compromise
in observables. Diagnostic operations also require the operation mode Tana and integrate
knowledge about observables Kobs. We define a diagnostic operation as follows:

Adiag := (d, k, t | d ∈ Dhist, k ∈ Kobs, t ∈ Tana) 7→ Kind

DETECTIVE ANALYTICS. Detective analytics generates new insights and relies on
methods such as signatures or rules from a cybersecurity perspective. This analytical
operation is often termed discovery analytics in big data analytics and links insights
from historical data. We evolved this idea by appending insights from real-time data,
which is highly relevant in the case of real-time event correlation (i.e., SIEM). Detective
analytics can be in either operation mode, Trep or Tsim. A detective operation links several
indicators of compromise to incidents. It involves knowledge about observables to generate
knowledge about incidents Kinc. This knowledge defines analytical and SIEM typical
measures, e.g., signatures or rules. Detective operations rely on all kinds of data. We define
detective operations as follows:

Adet := (k, t | k ∈ Kind, t ∈ Trep ∨ t ∈ Tsim) 7→ Kinc

PREDICTIVE ANALYTICS. Predictive analytics utilizes data and knowledge to predict
the future. Thereby, predictive operations deploy semantics (i.e., mathematical models or
simulations) and involve knowledge about incidents to predict if an incident is likely to
happen. Predictive operations rely on the results of detective operations Adet and create
new incident knowledge K′inc. Predictive operations can also be in operation mode Trep or
Tsim. Predictive operations also rely on all kinds of data. We define a predictive operation
as follows:

Apred := (a, k, t | a ∈ Adet, k ∈ Kinc, t ∈ (Trep ⊕ Tsim)) 7→ K′inc

PRESCRIPTIVE ANALYTICS. Prescriptive analytics identifies, evaluates, and suggests
appropriate security orchestration to mitigate an incident. Thereby, simulations play a
decisive role in deriving decisions from the different scenarios, e.g., through what–if simula-
tions. Prescriptive operations can also be either in operation mode Trep or Tsim and require
results of the analytical operations Adet or Apred. Further, prescriptive operations iden-
tify appropriate actions for incident response activities out of existing knowledge about
incidents Kinc. Prescriptive operations may encompass all kinds of data. We define a
prescriptive operation as follows:

Apres := (a, k, t | a ∈ (Adet ⊕ Apred), k ∈ Kinc, t ∈ (Trep∨ ∈ Tsim)) 7→ C

KNOWLEDGE SHARING. We adopt parts of the data-sharing concept from Dietz et al. [29]
in our sharing principles for digital twin data. We add the sharing of cybersecurity knowledge
K and security-related data Dsec. We assume that roles have access to digital twins, dependent
on permissions. If permission is granted, roles are invited to access digital twin data, including
existing knowledge and models. Further, lifecycle participants can contribute expertise and
write relevant descriptive and security-related data entries or semantics.

read := (t, d, k | t ∈ T, d ∈ D, k ∈ K)

write := (t, d, k | t ∈ T, d ∈ (Ddesc ⊕ Dsem ⊕ Dsec), k ∈ K)

5. DT2SA Model

Based on the formal model in Section 4, we envision the DT2SA model. Figure 4 shows
the respective model. We adopt the functional view of the Industrial Internet Reference
Architecture (IIRA) [30], based on the five domains: the control domain, information
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domain, operations domain, functional domain, and business domain. This reference
architecture ensures the DT2SA model is embedded in the IoT. In the following, we explain
the respective domains of our DT2SA model.

Figure 4. DT2SA model.

CONTROL DOMAIN. The control domain seamlessly captures physical assets and their
data. Physical assets refer to artifacts in the Industrial IoT, such as processes, machines,
or plants. In this context, physical assets collect data through essential interactions, such as
machine-to-machine communication. Asset-specific data of interest includes descriptive,
state-related, and security-related data. Physical assets, i.e., machines, are arranged in
networks. These networks also generate operational and security-related data, such as
network traffic. However, the overarching task of the physical environment is to make all
relevant data from the physical assets and their environment available to their respective
digital twins. The control domain uses various networks for data transmission. The data
pass through so-called proximity, access, and service networks. Proximity networks are
responsible for short-range communication and access networks for long-range commu-
nication. Service networks are enterprise networks that handle communications between
business applications.

INFORMATION DOMAIN. The information domain is responsible for data acquisition,
processing, and persistence. The physical environment feeds the respective digital twins
with data and receives data and commands from the digital twins. Digital twins thus claim
bidirectional communication with the physical environment. Technically, bidirectional
communication is realized by so-called event-based messaging platforms that rely on hubs
or brokers based on publish/subscribe messaging. However, the information domain
includes historical, state, and semantic data. The use of different data stores manages the
diversity of data. The digital twin in analytics mode processes historical data in a batch-
processing pipeline. Digital twins using replication and simulation modes rely heavily on
real-time data in a stream processing pipeline. Each pipeline supports different analytical
operations. Descriptive and diagnostic operations are coupled with the digital twin’s
analytics mode to provide hindsight. Detective operations are time-dependent and should
be coupled with the replication mode. The digital twin constantly feeds detective operations
with real-time state data. Predictive and prescriptive operations build on both simulation
and replication modes. Both modes of operation are the foundation for predicting incidents
or recommending incident response operations.



Information 2023, 14, 95 11 of 20

FUNCTIONAL DOMAIN. The functional domain operates through rule-based decisions.
From a cybersecurity perspective, we map incident response activities to the functional
domain because incident response orchestrates assets using predefined logic. For example,
incident response is automated using playbooks to secure the IoT [12]. Digital twins
provide an additional layer of security and orchestrate physical assets. Incident response is
also event-based, receiving information and knowledge from human experts and digital-
twin-based security analytics. However, the incident response process is triggered by
analytical operations.

BUSINESS DOMAIN. The business domain includes descriptive and diagnostic operations.
The business domain promotes the exchange and generation of knowledge. For example,
visualized information obtained from descriptive and diagnostic operations helps to identify
correlations and gain insights. This knowledge can further optimize digital twin models and
analytical operations. We see the potential of a dedicated knowledge-sharing and management
platform to explore previously untapped knowledge in cybersecurity visually.

6. Proof of Concept

We validate our DT2SA model in regard to its applicability to an ongoing research
project. In Section 6.1, we investigate to what extent all requirements of the DT2SA model
have been met. Next, we validate our prototype TWINSIGHT in Section 6.2 and evaluate
the applicability of our model to the existing literature on digital-twin-based security
analytics in Section 6.3. In Secion 6.4, we define our experimental setting leading to results
in Section 6.5, which we discuss thoroughly in Section 6.6.

6.1. DT2SA Components

In Section 3.3, we defined the key requirements for the DT2SA model. In the following,
we assess and discuss the fulfillment of each requirement.

DIGITAL TWIN (R1). The DT2SA model includes physical assets, virtual represen-
tations, communication management, data management, and modes of operation. It
seamlessly integrates physical assets into digital twins, making virtual representations
indistinguishable from physical assets through synchronization and communication. It
also addresses all relevant mechanisms for data management, including how to retain and
process data. All requirements for the digital twin are met.

SECURITY ANALYTICS (R2). The DT2SA model incorporates security analytics through
the variety of data and semantics used by analytical operations. The model also incor-
porates different data from different data stores. Although technologies are essential to
the implementation of the model, less attention has been paid to them. We also touched
on the incident response process that manifests the interaction with the physical asset
and the orchestration of cybersecurity operations. We considered all analytical operations
to cover security analytics fully. Less attention was paid to interactive dashboards and
system monitoring, as these functional components can be effortlessly added and only
make the model unnecessarily overcomplex. However, our model covers almost all features
of security analytics.

KNOWLEDGE (R3). The DT2SA model enables the generation and sharing of knowl-
edge among lifecycle participants. For cybersecurity knowledge generation and sharing,
the model proposes the integration of key lifecycle participants through digital twins and
security analytics. The model also embeds the knowledge hierarchy through the formal
model. Information sharing is not addressed in detail.

The DT2SA model addresses almost all requirements and provides relevant perspec-
tives on digital twins and security analytics. Although the requirements are met, there is
a lack of applicability in practice. Therefore, we refer to an ongoing research project and
implement TWINSIGHT to validate our model further.
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6.2. Use Case: SISSeC

To further validate the DT2SA model, we implement a microservice architecture
called TWINSIGHT. TWINSIGHT relates to SISSeC, an ongoing research project in Germany.
SISSeC aims to securely connect a printed circuit board (PCB) manufacturer’s machine and
sensor data to a cloud via an edge gateway. The PCB manufacturer’s overall goal is to
collect data and predict likely future operating conditions of machines with digital twins.
From a cybersecurity perspective, these digital twins should enable intrusion detection.
The project also aims to make security-relevant data available to lifecycle participants via a
marketplace. In this way, lifecycle participants and third parties can share their knowledge.

We instantiate the DT2SA model for SISSeC. The PCB manufacturer requires state
data, descriptive data, and environmental data to use our model. We focus on a drilling
and milling machine and its system-specific operational data. This machine sends data
over the proximity network to the edge node, which forwards the data to the cloud.
The cloud contains digital twins that enable bidirectional communication, and thus, control
of the machines. To instantiate the DT2SA model, we formulate two main objectives
of TWINSIGHT: incident detection and threat detection. Then, we choose the analytical
operation that satisfies this goal: the detective operation. The next step is to choose an
appropriate operation mode for the digital twin.

6.3. Applicability

Before specifying a concrete operation mode for detective operations in SISSeC, we
validated the applicability of our DT2SA model to existing literature dealing with digital
twins, in particular, intrusion or anomaly detection. Given our use case, we only considered
operational modes that enable detective operations, so we focused on simulation and
replication modes. In the following, we list relevant literature that presents concrete
instantiations of our DT2SA model:

• Simulation mode [9,22,23,31–39];
• Replication mode [21,36,40–42].

We found that more papers deal with simulation mode and less deal with repli-
cation mode. This literature can also serve as references to provide concrete ideas on
using simulation- or replication-based digital twins for security analytics. For example,
simulation-based digital twins are utilized for incident prediction [35], and state-replication-
based digital twins are used for intrusion detection [21]. These approaches fit into the
DT2SA model and follow the same scheme: digital twins organize data and models
and make them available for subsequent analytic operations. In simulation models for
machine learning training, we found, among other things, historical data. Most of the
data used are real-time or specification data. Based on the SISSeC use case, the fact that
replication-based digital twins for IDS have not been explored, and the lack of sharing
capabilities, we develop an experimental environment for replication-based digital twins
for detective operations.

6.4. Experimental Setup

We implement TWINSIGHT for digital-twin-based incident and threat detection con-
taining detective operations. TWINSIGHT is publicly available on GitHub. Figure 5 shows
the settings in TWINSIGHT. The developments in TWINSIGHT are driven by the SISSeC use
case and are intended to illustrate how detective security analytics can be implemented
with replication-based digital twins. Note that this experimental setup focuses on only
a specific part of the DT2SA framework: replication-based digital twins and detective
operations. In this way, we aim to gain new insights into replication-based digital twins
and detective security analytics and determine whether the DT2SA model covers these
aspects. In the following, we describe these components in more detail.
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Figure 5. TWINSIGHT setting implemented in the research project SISSeC.

PHYSICAL ENVIRONMENT. The physical environment consists of identical drilling
and milling machines relying on Raspberry Pis for data transfer. Depending on the setup,
a machine consists of several Raspberry Pis. We use Raspberry Pi 3B+ models running
Raspbian GNU/Linux 11 with 1GB RAM. These devices are interconnected using an event-
based messaging architecture. More specifically, the devices communicate via MQTT 3.1
with an MQTT broker. In doing so, each client implements the Paho MQTT client library in
Python. We can now use MQTT to collect device-related data, such as the state of an asset.
Interesting setup details follow in the virtual environment.

VIRTUAL ENVIRONMENT. Eclipse Ditto is the digital twin software built on an MQTT
broker that manages messages received from clients. Eclipse Ditto implements an event-
based API that allows the definition of device representations and messages. We model each
drilling and milling machine in Eclipse Ditto using the built-in JSON schema. In addition,
Eclipse Ditto allows us to define connectors, which we use as a bridge to the MQTT broker.
Of course, messaging would allow for device orchestration and response, but we focus only
on security analytics, not incident response. As Eclipse Ditto only stores the current state
of a machine, Apache Kafka collects real-time data; and Logstash subscribes to all topics,
transforms messages, and stores them in Elasticsearch. These applications are deployed on
a virtual machine running Ubuntu 20.04.3 LTS with 12 GB of RAM, six cores, and 60 GB
of storage.

SECURITY ANALYTICS. We implement detective security analytics using Wazuh and
its native Kibana integration. Wazuh is open-source software that performs sophisticated
security operations and incident response. It relies on agents installed on the assets to be
monitored and orchestrated. Kibana is used only for the virtual representation of agent-based
information. Both applications also run on the same machine as the virtual environment.

6.5. Results

In implementing replication-based digital twins for detective security analytics, we
gained insights and results that we would like to share. Our research provides results
related to implementation, security analytics, digital twins, the IoT, and knowledge sharing.

IMPLEMENTATION. We support lifecycle participants by aligning digital twins and
their modes of operation with security analytics. The formal model makes implementing
software based on digital twins more feasible. We have found that replication-based
digital twins fit real-time data processing, and the literature confirms that simulation works
decoupled from the live system, e.g., Dietz et al. [43]. Using an event-based microservice
architecture ensures flexibility and real-time data processing. We have also found that
selecting an appropriate mode of operation, assets, and data is more efficient when starting
with the desired goal of security analytics. We consider this to be top-down DT2SA.

SECURITY ANALYTICS. Since most requirements are sufficiently met, the DT2SA
model does not lack essential components. In particular, more security monitoring and an
interactive dashboard can easily be added. Nevertheless, these features are not considered
core features of security analytics. We also found that security analytics technologies,
e.g., Wazuh, do not work properly with device representations. They are designed to access
a machine’s resources using agents. In modern organizations, machines no longer consist
of a single component but form complex systems of systems. In such environments, these
components should be monitored in relation using security analytics. Appendix A shows
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the Wazuh user interface and two views that visualize the detection of incidents and threats
in real-time and point out the problem at hand. Figure A1 shows all integrated assets and
threats with Wazuh agents. Figure A2 shows all attacks against a specific asset. Looking
at complex systems that consist of multiple components (and agents) makes traditional
security analytics inefficient. Security analytics should integrate asset representations and
exploit relationships between assets when considering digital twins. However, correlating
events related to complex systems of systems and digital twins is paramount. More efficient
analytics should enable the mapping and correlation of agents from assets to digital twins
to realize their full potential. Nonetheless, security analytics would benefit from systems of
systems approaches for improving the visualization and resolution of security events.

DIGITAL TWINS. Digital twin software allows for easier data processing and analysis,
as states are updated dynamically. Eclipse Ditto, a replication-based digital twin focus-
ing on states and functions, provides dynamic user management that defines roles and
their privileges.

We found that built-in user management enables fine-grained sharing of digital twin
data among lifecycle participants. We also found a research gap on digital twins in analytics
mode. In addition, we learned in SISSeC that it is possible to implement certain application
scenarios with digital twin software. Nevertheless, security analytics is only one of many
possible application scenarios for digital twins. Thus, TWINSIGHT can be extended to other
analytic operations, and even to more sophisticated security operations.

In addition, digital twins are ideally suited as the ground truth of knowledge. We
consider digital twins as hubs for managing device-specific and security-related data.
As discussed earlier, they ensure the correct mapping of components, which allows us to
model system of systems. Listing 1 shows an Eclipse Ditto device representation, including
security-related information and analytics results. In our use case, we included relevant
common platform enumerations (CPE) to query vulnerabilities related to the digital twins’
components. We can also map IDS agents to a specific digital twin to include the most recent
alert in the device representation. The application scenarios and extensions of security
analytics are numerous and not limited to component mapping, vulnerability queries,
or relationships with IDS agents.

Listing 1. Digital Twin Definition in Eclipse Ditto.

{
"thingId": "SISSeC:Lenz_DRB610_1",
"policyId": "SISSeC:policy",
"attributes": {
"manufacturerID": "4302",
"manufacturerName": "Manufacturer",
"dateCode": "20160516",
"model": "Model",
"type": "Drill & Mill Machine",
"image": "/ resources /...",
"location": "Hall 1",
"measurements": {...},
"security": {
"cpe": [
{
"name": "Raspberry Pi Model 4",
"usage": "Edge Device",
"enum": "cpe:2.3:h:raspberrypi:raspberry_pi_4_model_b:-:*:*:*:*:*:*:*"
}
],
"alert": {
"sensor": "A002",
"msg": "test alert",
"src_ip_mac": "10.10.10.10",
"dst_ip_mac": "10.10.10.20",
"src_port": "123",
"dst_port": "5065",
"time": "27/08/2022",
"packet_len": "80",
"protocol": "TCP",
"ether_type": "0000"
}
}
}
}

Digital twins take security analytics to a new level in knowledge generation and
sharing. As shown in Figure 6, our TWINSIGHT UI leverages security-related knowledge
from digital twins to inform security professionals and enable knowledge sharing. The user
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interface integrates device representation (digital twin) and highlights current threats,
potential attacks, and granted shares. We believe system-of-systems alerts would lead to
more intuitive interaction with Wazuh security analytics software by reducing complexity
through digital twins. The alerts would point directly to a system-of-systems component
and help understand the big picture and impact of threats and incidents.

Figure 6. TWINSIGHT UI combining security analytics and digital twins.

INTERNET OF THINGS. Indeed, Wazuh relies heavily on an agent-based architecture.
Due to its dependence on agents, not all IoT devices are sufficiently addressable. In IoT,
a distinction is made between controllable and addressable devices. Addressable devices
are reachable via IP addresses and controllable via a controller, i.e., a hub. Wazuh only
allows observing addressable devices and leaves out controllable devices, so IoT security
analytics still differs from traditional approaches. Controllable devices must be monitored
differently to detect and mitigate threats or incidents efficiently.

KNOWLEDGE SHARING. Knowledge sharing in cybersecurity is still in its infancy but
will likely increase in the coming years. For example, we found it still difficult to obtain
data from machines or their components because the interfaces are not standardized or
intentionally hidden. We encountered this problem when we tried to access the interfaces
of the machines to get the state data for the digital twin. It took a few months before we
could get initial access and start modeling the digital twins. We received excellent feedback
from the SISSeC working group, particularly on digital twins as a cybersecurity knowledge
generation and sharing facilitator. In this context, data will be shared with the machine
maintainer. The PCB manufacturer plans to use parts of TWINSIGHT to generate and share
knowledge between the machine owner and IT maintenance. This means that problems
can be addressed remotely and do not necessarily have to be solved on-site.

6.6. Discussion

Our research contributes to the scientific community and industry. We also point out
the limitations of our research.

SCIENTIFIC CONTRIBUTION. We have summarized research on big data analytics
and linked knowledge generation and sharing to cybersecurity. We have formulated a
model that envisions digital twins for more efficient security analytics in organizations.
We have demonstrated the workings of the digital twin and clarified that simulations are
not the only contributors to cybersecurity operations. The overall model helps researchers
understand digital twins and aims to draw attention to the use of digital twins for security
operations, especially analytics.

PRACTICAL CONTRIBUTION. We have implemented a microservice architecture
demonstrating replication-based digital twins for security analytics. We have shown how
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threat and incident detection can be handled using digital twins, providing a playground
for further use cases. Organizations can leverage open-source technologies to deploy their
digital twins using the DT2SA model or build sophisticated use cases from scratch using
our model. We also highlighted the digital twin paradigm to increase user adoption and
make the IoT even more secure. We also drew attention to security analytics technologies,
e.g., Wazuh, and their lack of abstraction to form even more complex system of systems.
These technologies should take steps toward an asset-specific view that allows users to
define complex systems of systems connected to Wazuh agents.

LIMITATIONS. During our research, we encountered several challenges that needed to
be solved. Due to the different solution strategies and limited resources, there are limitations
to our research. We did not elaborate on access control models. These models provide
a clear perspective on inherent roles and grant data access to digital twins. In addition,
we validated our model only concerning detective operations. We can only estimate the
feasibility of other analytical operations and refer to other literature. However, further
research is needed to validate our model in more detail.

7. Conclusions and Future Work

This research aims to leverage cybersecurity knowledge to secure the IoT. We promote
cybersecurity knowledge generation and sharing by aligning security analytics with digital
twins. Digital twins enable security analytics with high fidelity because they bring seman-
tics and exploit bidirectional communication with their physical counterparts. They take
security analytics to a new level, enabling lifecycle centrality and integration among lifecy-
cle participants. This integration promotes the secure sharing of cybersecurity knowledge,
such as security states, misconfigurations, or vulnerabilities.

We answered the research question "How can one align security analytics and digital
twins?" by starting with the foundations of knowledge generation and sharing. We then
defined a formal model that elaborates the DT2SA model for adapting security analytics
to digital twins. To our knowledge, the DT2SA model is the first to define security ana-
lytics comprehensively. We contributed to best practices for research and organizations
and bridged the gap between them. Our open-source microservice architecture TWIN-
SIGHT demonstrated practical feasibility and is a starting point for on-building analytical
operations. We want to highlight possible future research directions:

• Future research should address decision support for selecting digital twin modes
and analytic operations. In particular, whether an analytic operation supports a
particular application scenario should be investigated. The goal is to assist analysts
in selecting appropriate operation modes for their scenarios. However, the digital
twin offers significant cybersecurity opportunities that need to be more fully explored
and exploited.

• There is still a considerable need for research, especially in the area of security analytics,
since research has focused only on intrusion detection. For example, research should
address different analytics implementations based on digital twins. In particular, secu-
rity monitoring for IoT is urgently needed, as heterogeneous IoT assets form opaque
IoT networks. In addition, security analytics research should compare traditional
security analytics approaches, such as those implemented in Wazuh, with system-of-
systems approaches. It is of the highest interest to evaluate whether analysts using
system-of-systems approaches are even more efficient at detecting incidents. Our
TWINSIGHT UI highlights opportunities for this evaluation. In addition, there is a
significant need for research in implementing a Wazuh plugin for modeling com-
plex system of systems. Finally, future research should work to leverage digital twin
recommendations to secure controllable and addressable IoT networks proactively.

While security analytics generates knowledge, digital twins improve overall knowl-
edge generation and enable cybersecurity knowledge sharing. Organizations should
leverage cybersecurity knowledge and focus more on digital twins and security analytics.
In addition, supply chains should pay more attention to digital twins and their potential
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for cybersecurity to address sophisticated attacks and APTs. We believe that the digital
twin (system of systems) will continue to emerge as a cornerstone of collaboration between
lifecycle participants by leveraging cybersecurity knowledge in the Industrial IoT.
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Appendix A. Security Analytics Using Wazuh

This appendix shows the need for integration and modeling a complex system of
systems in Wazuh. Since machines nowadays consist of multiple components, security
analytics technology should provide semantic modeling capabilities to analyze systems of
systems and their respective components.

Figure A1. Analyzing all events of all assets in Wazuh (A shows all agents).

https://github.com/philipempl/twinsight
https://github.com/philipempl/twinsight
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Figure A2. Analyzing events of one asset in Wazuh (B showcases the agent filter).
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