
Mol Ecol Resour. 2023;23:705–711.  | 705wileyonlinelibrary.com/journal/men

Received: 10 September 2022  | Revised: 30 October 2022  | Accepted: 1 November 2022

DOI: 10.1111/1755-0998.13734

R E S O U R C E A R T I C L E

Crimp: An efficient tool for summarizing multiple clusterings in
population structure analysis and beyond

Ulrich Lautenschlager

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Author. Molecular Ecology Resources published by John Wiley & Sons Ltd.

Evolutionary and Systematic Botany
Group, Institute of Plant Sciences,
University of Regensburg, Regensburg,
Germany

Correspondence
Ulrich Lautenschlager, Evolutionary and
Systematic Botany Group, Institute of
Plant Sciences, University of Regensburg,
Universitätsstr. 31, D- 93053 Regensburg,
Germany.
Email: ulrich.lautenschlager@ur.de

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Number: OB 155/13- 1

Handling Editor: Kimberly J. Gilbert

Abstract
When a data set is repeatedly clustered using unsupervised techniques, the resulting
clusterings, even if highly similar, may list their clusters in different orders. This so-
called ‘label- switching’ phenomenon obscures meaningful differences between clus-
terings, complicating their comparison and summary. The problem often arises in the
context of population structure analysis based on multilocus genotype data. In this
field, a variety of popular tools apply model- based clustering, assigning individuals
to a prespecified number of ancestral populations. Since such methods often involve
stochastic components, it is a common practice to perform multiple replicate analyses
based on the same input data and parameter settings. Available postprocessing tools
allow to mitigate label switching, but leave room for improvements, in particular, re-
garding large input data sets. In this work, I present Crimp, a lightweight command- line
tool, which offers a relatively fast and scalable heuristic to align clusters across repli-
cate clusterings consisting of the same number of clusters. For small problem sizes, an
exact algorithm can be used as an alternative. Additional features include row- specific
weights, input and output files similar to those of CLUmpp (Jakobsson & Rosenberg,
2007) and the evaluation of a given solution in terms of CLUmpp as well as its own
objective functions. Benchmark analyses show that Crimp, especially when applied to
larger data sets, tends to outperform alternative tools considering runtime require-
ments and various quality measures. While primarily targeting population structure
analysis, Crimp can be used as a generic tool to correct multiple clusterings for label
switching. This facilitates their comparison and allows to generate an averaged clus-
tering. Crimp's computational efficiency makes it even applicable to relatively large
data sets while offering competitive solution quality.

K E Y W O R D S
cluster correspondence, cluster matching, cluster relabelling, label switching, population
structure

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.wileyonlinelibrary.com/journal/men
mailto:￼
https://orcid.org/0000-0003-1886-2277
http://creativecommons.org/licenses/by-nc/4.0/
mailto:ulrich.lautenschlager@ur.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13734&domain=pdf&date_stamp=2022-11-22

706  |    LAUTENSCHLAGER

1  |  INTRODUC TION

Unsupervised cluster algorithms, which aim to identify relevant
groups within a set of objects (e.g. individuals or sequences), are
widely used in many areas of biological data analysis. A clustering
is often represented as a matrix of membership coefficients, which
quantify the degree (e.g. probability or proportion) to which each
clustered object (row) is assigned to each cluster (column). Typically,
the identified clusters do not have meaningful labels and, in the ab-
sence of ordering constraints, are listed in arbitrary order. Therefore,
given a matrix of membership coefficients, each permutation of its
columns represents an equivalent clustering. This ambiguity is a
major reason for incongruence of membership matrices across mul-
tiple clusterings of the same data, commonly referred to as ‘label-
switching’ phenomenon (Jakobsson & Rosenberg, 2007; Jasra et al.,
2005; Stephens, 2000). Since many cluster algorithms involve sto-
chastic components, even the results of repeated runs of the same
algorithm, using identical parameter settings and input data, may be
affected. In order to compare or summarize a number of similar clus-
terings, it can be useful to align corresponding clusters across mul-
tiple clusterings. The presented program, Crimp (Cluster Relabelling
based on IMPurity minimization), allows to rearrange a number of
membership matrices of identical shapes in order to minimize differ-
ences caused by label switching. Ideally, the remaining differences
should be attributable to either noise or truly different ways of
grouping the data, sometimes referred to as ‘genuine multimodality’
(Jakobsson & Rosenberg, 2007).

An important application area of Crimp is the analysis of pop-
ulation structure via model- based clustering as performed by
STrUCTUrE (Pritchard et al., 2000) and several related meth-
ods such as FrappE (Tang et al., 2005), aDmiXTUrE (Alexander
et al., 2009), FaSTSTrUCTUrE (Raj et al., 2014) and mavEriCK (Verity &
Nichols, 2016). To account for the stochasticity inherent to most of
such methods, it is a common practice to perform multiple replicate
analyses. Several tools are available to compare or summarize the
obtained clusterings. These, as well as the presented strategy, rely
solely on the membership coefficients rather than other cluster-
associated parameters. As the most widely used tool to mitigate label
switching in this context, CLUmpp (Jakobsson & Rosenberg, 2007)
aims to align multiple clusterings such that all pairwise similarities
between membership coefficient matrices are maximized. Popular
web servers for postprocessing population genetic clusterings allow
to generate input files for CLUmpp (e.g. STrUCTUrE HarvESTEr;
Earl & vonHoldt, 2012) or include it as part of their analysis pipeline
(e.g. CLUmpaK; Kopelman et al., 2015). The latter (‘CLUmpp across
K’) extends CLUmpp's functionality to allow a comparison of clus-
terings comprising different numbers of clusters and to detect dis-
tinct clustering modes (i.e. to cluster the clusterings themselves)
using a Markov clustering algorithm (van Dongen, 2000). pong (Behr
et al., 2016), which provides functionality similar to CLUmpaK, imple-
ments a somewhat different approach: For each pair of membership
matrices, it first infers an optimal one- to- one mapping between their
corresponding columns. In the case of moderate problem sizes, this

can be done using an exact optimization algorithm. The distances
between pairwise aligned clusterings are then used to group clus-
terings into modes, subject to a prespecified distance threshold.
Since, depending on the latter, there is only limited conflict among
the clusterings belonging to the same mode, their clusters are simply
ordered according to one randomly chosen representative cluster-
ing. This avoids directly optimizing an alignment of all clusterings,
which would imply a much larger search space. Like CLUmpaK, pong
further allows to compare clusterings that differ in their number of
clusters, assuming that decreasing the latter by one can be accom-
modated by merging two clusters while preserving the other ones.
The R package popHELpEr (Francis, 2017), another toolkit from this
category, uses either CLUmpp or a relabelling algorithm proposed
by Stephens (2000) as implemented in the R package LabEL.SwiTCHing
(Papastamoulis, 2016) to align clusterings of identical size. The lat-
ter method minimizes the Kullback– Leibler divergence between in-
dividual membership matrices and an averaged membership matrix
through an expectation maximization (EM)- like algorithm.

When applying CLUmpp to larger problem instances, only its
greedy heuristics, often only the rougher LargeKGreedy algorithm,
are practically feasible. Since these algorithms cannot revert subop-
timal decisions when progressively building up a candidate solution,
it may be difficult for them to find high- quality solutions – a prob-
lem that is aggravated by large problem sizes. The cluster matching
facilities provided by pong and popHELpEr, which both aim at a wider
scope than CLUmpp, seem to be more scalable but also lack some of
CLUmpp's functionality such as certain output options and the con-
sideration of row- specific weights. The latter may be desirable, for
instance, when clustering differently sized populations rather than
individuals. The presented program, which superficially resembles
CLUmpp's functionality, aims to fill this gap and, within this limited
scope, provides even better performance and scalability to large
problem sizes than the aforementioned tools. The objective func-
tions used by Crimp solely depend on impurity measures applied to
rows of a single, averaged matrix of membership coefficients, which
avoids a number of matrix– matrix comparisons that quadratically in-
creases with the number of clusterings. Crimp, which is a low- level
implementation written in C, can be used as a standalone command-
line tool. Like CLUmpp, it can be applied in combination with existing
tools for summarizing or visualizing population structure analyses or
also in different contexts.

2  |  ALGORITHMS AND IMPLEMENTATION

The membership coefficients of a single clustering, comprising C ob-
jects and K clusters, can be written as C × K matrix, often referred
to as Q- matrix. Since we deal with R replicate clusterings, let cijk
(i = 1, … ,C; j = 1, … ,K; k = 1, … ,R) denote the membership co-
efficient which quantifies the degree to which the ith object belongs
to the jth cluster, subject to the kth clustering. Based on the individual
membership coefficients, an averaged matrix

(

aij
)

 can be computed
with aij =

1

R

∑R

k=1
cijk. The membership coefficients are allowed to take

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  707LAUTENSCHLAGER

values from the interval
[

0, 1
]

 and each row of a Q- matrix, whether in-
dividual or averaged, sums up to 1. In the following, we will effectively
swap columns of the individual Q- matrices, thus these matrices and
(

aij
)

 will vary depending on the current state of column ordering. In
fact, this is accomplished using a list of column index permutations
without changing the original matrices. To simplify the notation, how-
ever, I will stick with the above notion of swapping columns. Based on
the intuition that an incorrect alignment of clusters leads to a homog-
enization of the averaged membership coefficients, the implemented
objective functions are formally based on impurity measures, namely
Shannon entropy and Gini impurity. In ecology, the latter measure, also
known as Gini– Simpson index, can be interpreted as the probability
of interspecific encounter (PIE; assuming sampling with replacement)
when applied to species abundances (Hurlbert, 1971). Applied to allele
frequencies at a given locus, it represents the expected heterozygo-
sity under Hardy– Weinberg equilibrium (see e.g. Nei, 1973). Similar to
CLUmpp, optional weights wi allow to control the influence of specific
objects (for each i = 1, … ,C, wi > = 0). This can be useful, if, for ex-
ample, the clustered objects are populations represented by a differ-
ent number of sampled individuals. W =

∑C

i=1
wi denotes the sum of

these weights.
One objective function is defined as the weighted mean of the

row- wise Shannon entropy of
(

aij
)

:

where aijlog
(

aij
)

≔ 0 if aij = 0.
Assuming equal weights wi for each row index i , this objective

function is linearly related to the total row- wise Kullback– Leibler
divergence ∑C

i=1

∑K

j=1

∑R

k=1

�

cijklog
cijk

aij

�

 between individual Q- matrices
and the averaged matrix

(

aij
)

 (see Supplementary Material). The
latter quantity, which is often minimized using Stephens' clus-
ter relabelling method, can be expressed as D + CRoE, where
D =

∑C

i=1

∑K

j=1

∑R

k=1

�

cijklog
�

cijk
��

 and CR are invariant to column
swapping. Therefore, minimizing oE is equivalent to minimizing the
total Kullback– Leibler divergence, yet Crimp differs from Stephens'
method by using non- EM- like algorithms. A prototypical cluster re-
labelling tool based on this approach has been included in AllCoPol
(Lautenschlager et al., 2020) for use in a very specific context.
However, the formerly used algorithm and its naive Python imple-
mentation are several orders of magnitude slower than the pre-
sented program and only suitable for relatively small problem sizes.

By default, however, Crimp minimizes the mean row- wise Gini
impurity:

A practical advantage of using the Gini impurity over the Shannon
entropy is that the former does not involve logarithms and therefore
allows faster computation. oG can be interpreted in various ways (see
Supplementary Material for derivations). Assuming equal weights wi

for simplicity, it can be expressed as oG = 1 −
1

K
−

1

C

∑C

i=1

∑K

j=1

�

aij−
1

K

�2

,
which can be seen as a linear function of the variance of the averaged
membership coefficients. Therefore, minimizing oG is equivalent to
maximizing the variance of the averaged coefficients or, equally, min-
imizing the variance of matched individual coefficients, which follows
from the law of total variance. For this interpretation, an alignment
of all R Q- matrices can be viewed as a clustering of all CKR individ-
ual membership coefficients into CK clusters of size R each. In case
of equal weights wi, equation (2) can further be expressed in terms of
pairwise matrix comparison as

where A = 1 −
1

K
−

1

RC

∑C

i=1

∑K

j=1

∑R

k=1

�

cijk−
1

K

�2

 and B =
1

2R2C
 are in-

variant to column reordering. In other words, minimizing oG minimizes
the squared deviations between matched membership coefficients
across all pairs of Q- matrices.

Two neighbourhood- based optimization algorithms are imple-
mented, both of which proceed by successively swapping two col-
umns of one coefficient matrix at a time. Using auxiliary arrays to
store intermediate results enables an evaluation of candidate solu-
tions in (C) time because only small parts of the objective function
have to be updated from solution to solution. In contrast, a naive
evaluation would require (CKR) runtime per candidate solution. To
avoid an accumulation of rounding errors in the course of incremen-
tal updates, the membership coefficients are internally stored using
integers, providing a precision of 6 decimal places. As in CLUmpp,
raw membership coefficients read from the input are normalized
such that each row of a Q- matrix sums up to 1.

By default, a random restart hill- climbing heuristic is used to
minimize the objective function: Starting from random column per-
mutations, it repeatedly evaluates all possible swaps of two columns
within each Q- matrix. To avoid any bias caused by the order of col-
umns and clusterings in the input file, the order of tested swaps is ran-
domized using a lightweight XoSHiro128** (Blackman & Vigna, 2021)
pseudorandom number generator. Since it would likely be inefficient
to evaluate the complete swap neighbourhood of a given solution
(i.e. K(K − 1)R

2
 candidate solutions) before selecting the next one, each

improving swap is instantly accepted. The search terminates if the
current solution cannot be improved by any single swap of two col-
umns. To mitigate its susceptibility to plateaus and local optima, this
hill- climbing procedure is repeated for a predefined number of runs.

As an alternative, an exhaustive search algorithm is imple-
mented, exploiting the fact that all permutations of a set can be
generated in ways such that two consecutive permutations differ
only by an interchange of two elements (for an overview of the so-
called bell- ringing algorithms, see Knuth, 2014). This principle can
be utilized to generate all (K!)R−1 clustering alignments (i.e. com-
binations of column index permutations) such that only one swap
must be evaluated for each possible solution. In contrast to the
presented heuristic, this approach guarantees finding a global op-
timum. However, because the number of solutions to be evaluated

(1)oE = −
1

W

C
∑

i=1

(

wi

K
∑

j=1

(

aijlog
(

aij
))

)

(2)oG =
1

W

C
∑

i=1

(

wi

(

1 −

K
∑

j=1

a2
ij

))

(3)oG = A + B

C
∑

i=1

K
∑

j=1

R
∑

k=1

R
∑

l=1

(

cijk−cijl
)2

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

708  |    LAUTENSCHLAGER

quickly becomes prohibitive, it is only applicable to small problem
sizes.

Eventually, different output files are written for the best solu-
tion found: a list of column index permutations, the matrix of
averaged membership coefficients and, optionally, the aligned indi-
vidual Q- matrices. For a given solution, Crimp also allows to calculate
CLUmpp's similarity scores H and H′ although these cannot be op-
timized directly.

3  |  BENCHMARK ANALYSES

To compare the performance of different tools capable of align-
ing STrUCTUrE- like Q- matrices, Crimp v1.1.0 along with CLUmpp
v1.1.2, pong v1.4.7 and popHELpEr v2.3.0 was applied to four exem-
plary data sets. As biological examples, the small ‘arabid’ (K = 3 ,
C = 95, R = 9) and the larger ‘chicken’ (K = 19, C = 600, R = 100;
Rosenberg et al., 2001) data sets, both distributed with CLUmpp,
were analysed. In addition, the two simulated data sets ‘largeK’
(K = 100, C = 1000, R = 100) and ‘largeR’ (K = 25, C = 250, R = 1000)
were used to demonstrate Crimp's scalability to high values of K and
R, respectively. Those are based on repeated runs of K- means clus-
tering applied to structured random data (see kmeans_largeK.r and
kmeans_largeR.r for details). As opposed to the biological data sets,
the simulated data sets consist of binary Q- matrices, representing
hard clusterings (partitions).

Because of differences regarding scope and output options,
a fair comparison of Crimp and CLUmpp with pong and popHELpEr
is difficult to achieve and the obtained results depend on the fol-
lowing decisions. Each tested program was configured to output
the optimized permutations of column indices while other output
was suppressed where possible. While popHELpEr's alignK() func-
tion allows rearranging Q- matrices, the applied permutations of
column indices are not accessible. On the other hand, writing the
aligned Q- matrices to disk using popHELpErS's clumppExport() func-
tion turned out to be very slow and may not be part of a typical
popHELpEr workflow. To circumvent these problems, popHELpEr was
only used to read the input matrices, and the stephens() function
provided by the LabEL.SwiTCHing package was then manually called
with default options, as it is internally done by popHELpEr (see
pophelper.r). Eventually, the optimized permutations were written
using the r function write.table(). In the following, the described
workflow will be referred to as popHELpEr/LabEL.SwiTCHing. In the case
of pong, the input matrices are partitioned into different clustering
modes and separate column index permutations are reported for
each mode. To enforce a single mode comprising all Q- matrices,
its similarity threshold parameter was set to 0. To achieve a be-
haviour similar to that of CLUmpp, pong was configured to use the
G distance for cluster comparison. In addition, pong's default met-
ric, the Jaccard Index, was used.

Each analysis was run 25 times and, for each replicate, the order
of clusters and clusterings in the input was permuted. It was ensured
that the measured runtimes were not distorted by memory swapping

and analyses were interrupted after a maximum of 3600 seconds for
the largeK data set and 1800 seconds for the other data sets. To
evaluate the obtained column index permutations, the input matri-
ces were rearranged using an external script, thus mitigating differ-
ent rounding behaviour of the tools to be compared. Crimp, which
can be utilized to evaluate its input without further optimization,
was then used to calculate CLUmpp's similarity scores H and H′ as
well as its own cost functions oG and oE. Since none of the tested
tools exhibited noteworthy parallelization, runtime was measured as
elapsed real time. Peak memory consumption was measured as the
maximum resident set size. All analyses were serially performed on a
Dell Optiplex 7010 desktop PC with an Intel i5- 3470 CPU and 12 GB
RAM. Averaged results for the chicken, largeK and largeR data sets
are shown in Table 1.

For the small arabid data set, only CLUmpp and Crimp were used
because they are able to account for the differently sized popula-
tions. Apart from one outlier run when performing only one itera-
tion of Crimp's heuristic using oE, both programs consistently found
the common global optimum of H, H′, oG and oE, independently of
the used algorithm and the optimized objective function. Runtimes
ranged from less than 1 millisecond to about 1 min (see Table S1).
While, in this context, Crimp's speed advantages are of little practical
relevance, using oG, its exhaustive search is about two orders of mag-
nitude faster than that of CLUmpp.

In the case of the larger chicken data set, for which either
CLUmpp's and Crimp's exhaustive search is infeasible, each of the
four evaluated scores revealed a similar pattern. Crimp using oG is
the fastest tool and its solutions are consistently among the best.
Interestingly, optimizing oE directly is not only slower due to com-
putationally more expensive solution evaluation, but also seems
to be more susceptible to local optima or plateaus as it requires
a higher number of hill- climbing runs to reliably find high- quality
solutions. Within the allowed runtime, both pong and popHELp-
Er/LabEL.SwiTCHing are able to find solutions superior to those of
CLUmpp, but less optimal than those of Crimp. As expected,
popHELpEr/LabEL.SwiTCHing performs best in terms of the mean en-
tropy, but even from this perspective, Crimp using oG yields bet-
ter scores in a shorter time. In contrast, CLUmpp's LargeKGreedy
algorithm leads to considerably worse scores, at least within the
allowed number of at most 100 greedily constructed solutions. For
30,000 greedily constructed solutions, amounting to a runtime of
approx. 47 h in our setting, Jakobsson and Rosenberg (2007) re-
port a similarity score H = 0.5546, which is similar to pong and
popHELpEr/LabEL.SwiTCHing, but still noticeably lower than the values
obtained by Crimp.

Applied to the large simulated data sets, pong did not finish
within the imposed runtime limits. In the case of the largeR data
set, Crimp using oG was again the fastest option while yielding the
best scores, followed by popHELpEr/LabEL.SwiTCHing and Crimp using
oE. Similar behaviour was observed for the largeK data set, where
minimizing oG with Crimp takes 20 s to obtain oE = 0.88 on aver-
age, whereas popHELpEr/LabEL.SwiTCHing, although directly minimiz-
ing the latter score, remains at 1.07 after 1459 s. For both data

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  709LAUTENSCHLAGER

TA B L E 1  Benchmark results (mean and standard deviation) for the chicken, largeR and largeK data sets. Here, only methods for which all
25 replicate runs finished within a maximum of 1800 s (chicken, largeR) or 3600 s (largeK) are listed

Data set Method oE ↓ oG ↓ H ↑ H′ ↑ Memory [kB] Runtime [s]

chicken Crimp (oG, heuristic, 1 it.) 0.6868 ± 0.0032 0.1820 ± 0.0015 0.6039 ± 0.0043 0.7432 ± 0.0028 7316 ± 42 0.4 ± 0.0

Crimp (oG, heuristic, 5 it.) 0.6838 ± 0.0023 0.1806 ± 0.0010 0.6076 ± 0.0028 0.7456 ± 0.0018 7275 ± 75 1.0 ± 0.0

Crimp (oG, heuristic, 20 it.) 0.6825 ± 0.0001 0.1800 ± 0.0000 0.6093 ± 0.0000 0.7468 ± 0.0000 7293 ± 72 3.5 ± 0.1

Crimp (oG, heuristic, 100
it.)

0.6825 ± 0.0000 0.1800 ± 0.0000 0.6094 ± 0.0000 0.7468 ± 0.0000 7313 ± 53 16.7 ± 0.2

Crimp (oE, heuristic, 1 it.) 0.7492 ± 0.0618 0.2067 ± 0.0237 0.5438 ± 0.0560 0.7042 ± 0.0363 7282 ± 86 3.6 ± 0.9

Crimp (oE, heuristic, 5 it.) 0.6909 ± 0.0080 0.1842 ± 0.0030 0.5983 ± 0.0076 0.7396 ± 0.0049 7280 ± 82 16.1 ± 1.6

Crimp (oE, heuristic, 20 it.) 0.6840 ± 0.0026 0.1813 ± 0.0014 0.6059 ± 0.0036 0.7445 ± 0.0024 7305 ± 54 64.8 ± 6.9

Crimp (oE, heuristic, 100
it.)

0.6820 ± 0.0010 0.1803 ± 0.0006 0.6085 ± 0.0017 0.7462 ± 0.0011 7299 ± 61 317.0 ± 10.4

CLUmpp (H,
LargeKGreedy, 1 it.)

0.8869 ± 0.0512 0.2474 ± 0.0218 0.4626 ± 0.0423 0.6516 ± 0.0274 42,507 ± 58 6.6 ± 0.0

CLUmpp (H,
LargeKGreedy, 5 it.)

0.8449 ± 0.0294 0.2297 ± 0.0108 0.4971 ± 0.0208 0.6740 ± 0.0135 42,494 ± 54 29.0 ± 0.0

CLUmpp (H,
LargeKGreedy, 20 it.)

0.8203 ± 0.0256 0.2201 ± 0.0083 0.5172 ± 0.0160 0.6870 ± 0.0104 42,500 ± 46 113.2 ± 0.1

CLUmpp (H,
LargeKGreedy, 100
it.)

0.7927 ± 0.0113 0.2117 ± 0.0039 0.5334 ± 0.0078 0.6975 ± 0.0051 42,493 ± 56 562.4 ± 0.1

CLUmpp (H′,
LargeKGreedy, 1 it.)

0.9185 ± 0.0545 0.2598 ± 0.0237 0.4404 ± 0.0430 0.6373 ± 0.0279 42,482 ± 56 6.6 ± 0.0

CLUmpp (H′,
LargeKGreedy, 5 it.)

0.8358 ± 0.0337 0.2275 ± 0.0119 0.5024 ± 0.0218 0.6774 ± 0.0141 42,509 ± 53 29.0 ± 0.0

CLUmpp (H′,
LargeKGreedy, 20 it.)

0.8031 ± 0.0198 0.2152 ± 0.0074 0.5260 ± 0.0141 0.6928 ± 0.0092 42,497 ± 58 113.2 ± 0.1

CLUmpp (H′,
LargeKGreedy, 100
it.)

0.7954 ± 0.0131 0.2116 ± 0.0037 0.5335 ± 0.0076 0.6976 ± 0.0049 42,501 ± 60 562.4 ± 0.1

pong (G) 0.7507 ± 0.0397 0.1982 ± 0.0119 0.5634 ± 0.0289 0.7170 ± 0.0188 794,319 ± 316 52.4 ± 0.8

pong (Jaccard) 0.7589 ± 0.0457 0.2012 ± 0.0140 0.5551 ± 0.0343 0.7116 ± 0.0223 794,528 ± 286 321.4 ± 7.6

popHELpEr/LabEL. SwiTCHing 0.7325 ± 0.0704 0.2039 ± 0.0317 0.5578 ± 0.0620 0.7134 ± 0.0402 179,113 ± 13,901 9.4 ± 1.1

largeR Crimp (oG, heuristic, 1 it.) 1.0352 ± 0.0139 0.3584 ± 0.0036 0.1410 ± 0.0044 0.4049 ± 0.0030 28,864 ± 63 5 ± 1

Crimp (oG, heuristic, 5 it.) 1.0227 ± 0.0079 0.3550 ± 0.0018 0.1451 ± 0.0021 0.4077 ± 0.0015 28,864 ± 63 24 ± 3

Crimp (oG, heuristic, 20 it.) 1.0195 ± 0.0063 0.3528 ± 0.0009 0.1477 ± 0.0011 0.4095 ± 0.0008 28,868 ± 61 97 ± 4

Crimp (oG, heuristic, 100
it.)

1.0185 ± 0.0053 0.3520 ± 0.0004 0.1487 ± 0.0005 0.4102 ± 0.0004 28,880 ± 38 490 ± 11

Crimp (oE, heuristic, 1 it.) 1.1816 ± 0.0501 0.4124 ± 0.0181 0.0780 ± 0.0206 0.3612 ± 0.0142 28,885 ± 32 28 ± 4

Crimp (oE, heuristic, 5 it.) 1.1333 ± 0.0360 0.3957 ± 0.0128 0.0971 ± 0.0147 0.3745 ± 0.0102 28,869 ± 54 143 ± 10

Crimp (oE, heuristic, 20 it.) 1.0980 ± 0.0209 0.3827 ± 0.0074 0.1122 ± 0.0087 0.3849 ± 0.0060 28,895 ± 36 571 ± 22

CLUmpp (H,
LargeKGreedy, 1 it.)

1.4782 ± 0.0462 0.4633 ± 0.0153 0.0227 ± 0.0162 0.3229 ± 0.0112 214,294 ± 66 428 ± 0

CLUmpp (H′,
LargeKGreedy, 1 it.)

1.4646 ± 0.0432 0.4582 ± 0.0148 0.0280 ± 0.0156 0.3266 ± 0.0108 214,269 ± 68 429 ± 0

popHELpEr/LabEL. SwiTCHing 1.0709 ± 0.0332 0.3768 ± 0.0128 0.1198 ± 0.0144 0.3901 ± 0.0100 304,898 ± 334 348 ± 113

(Continues)

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

710  |    LAUTENSCHLAGER

sets, CLUmpp 's LargeKGreedy algorithm yields the least optimal
scores.

Whichever of the four benchmark data sets is considered, on
average, even a single run of Crimp's heuristic using oG (i.e. the fast-
est configuration), leads to results equal to or better than all tested
alternative tools. Compared to the latter, its results also tend to be
more consistent as indicated by relatively low standard deviations, in
particular, when minimizing oG. Besides, Crimp, followed by CLUmpp,
shows the lowest memory demands.

4  |  DISCUSSION

In the case of the data sets used for benchmarking, all considered
quality measures (H, H′, oG, and oE) are strongly correlated. While
Behr et al. (2016) recommend using the Jaccard index for pairwise
comparisons instead, this comes at the cost of increased runtime
requirements and an arbitrary threshold parameter, currently not
exposed to the user. It should also be noted that enforcing a sin-
gle mode in pong may be problematic because it is focused on align-
ing pairs of Q- matrices rather than reconciling multiple matrices
simultaneously.

As demonstrated, especially when applied to larger data sets,
Crimp tends to outperform alternative tools in terms of runtime, solu-
tion quality and consistency. Its advantage in speed may become
even more relevant if executed multiple times, for instance, in the
course of CLUmpaK- like analyses. Crimp's default objective function
based on the Gini impurity, which emulates pairwise matrix com-
parison, not only allows faster computation than the mean Shannon
entropy but also seems to lead to a better convergence behaviour of
the implemented heuristic. However, the latter advantage might be
problem specific.

Especially in the context of repeated K- means clustering, it may
be tempting to utilize the averaged membership matrix as a kind of
consensus clustering (for an introduction to the latter, see Strehl &
Ghosh, 2002). It should be noted that, for such use, additional post-
processing steps may be desirable, such as merging similar clusters
or removing more or less empty ones if present. For the analysis
of population structure, K- values approaching 100 or above may
appear uncommon at first glance. However, this magnitude is not
unrealistic, for instance, when analysing domestic animal breeds
(e.g. Funk et al., 2020; Leroy et al., 2009; Papachristou et al., 2020).

Unlike CLUmpaK, pong and popHELpEr, Crimp is restricted to clus-
terings comprising the same number of clusters and does not pro-
vide additional functionality for mode detection and visualization.
Nevertheless, its application helps to recognize real differences
between clusterings, whether these may be regarded as noise or
genuine multimodality. Moreover, Crimp can easily be integrated
into common, CLUmpp- based workflows as a much faster and often
more accurate alternative, applicable even to use cases that could
not be handled satisfactorily before. Its heuristic can be controlled
via a single, intuitive parameter, namely the number of hill- climbing
runs to be performed.

As opposed to the implementation of Stephens' cluster relabel-
ling by the LabEL.SwiTCHing package, Crimp's performance does not
depend on external solvers but is based on efficient solution eval-
uation. As a consequence, it comes as a lightweight tool without
dependencies beyond the C standard library. Future work may be
dedicated to extended functionality or interfacing with other tools
and programming languages.

AUTHOR CONTRIBUTIONS
UL conceived the methodology, implemented the software, carried
out the analyses and wrote the manuscript.

Data set Method oE ↓ oG ↓ H ↑ H′ ↑ Memory [kB] Runtime [s]

largeK Crimp (oG, heuristic, 1 it.) 0.8802 ± 0.0058 0.3150 ± 0.0019 0.1999 ± 0.0024 0.4371 ± 0.0017 42,500 ± 53 20 ± 4

Crimp (oG, heuristic, 5 it.) 0.8729 ± 0.0049 0.3126 ± 0.0010 0.2029 ± 0.0013 0.4392 ± 0.0009 42,500 ± 51 95 ± 8

Crimp (oG, heuristic, 20 it.) 0.8709 ± 0.0044 0.3119 ± 0.0008 0.2038 ± 0.0010 0.4398 ± 0.0007 42,519 ± 43 391 ± 17

Crimp (oG, heuristic, 100
it.)

0.8668 ± 0.0038 0.3106 ± 0.0006 0.2055 ± 0.0008 0.4410 ± 0.0005 42,510 ± 49 1945 ± 35

Crimp (oE, heuristic, 1 it.) 1.0834 ± 0.0324 0.3890 ± 0.0115 0.1105 ± 0.0132 0.3741 ± 0.0093 42,519 ± 49 77 ± 13

Crimp (oE, heuristic, 5 it.) 1.0279 ± 0.0205 0.3704 ± 0.0076 0.1321 ± 0.0089 0.3893 ± 0.0063 42,499 ± 52 387 ± 33

Crimp (oE, heuristic, 20 it.) 1.0087 ± 0.0131 0.3630 ± 0.0050 0.1407 ± 0.0059 0.3955 ± 0.0042 42,492 ± 54 1564 ± 50

CLUmpp (H,
LargeKGreedy, 1 it.)

1.4180 ± 0.0390 0.4349 ± 0.0121 0.0599 ± 0.0130 0.3386 ± 0.0091 323,705 ± 69 258 ± 0

CLUmpp (H,
LargeKGreedy, 5 it.)

1.3933 ± 0.0253 0.4277 ± 0.0071 0.0678 ± 0.0077 0.3441 ± 0.0054 323,715 ± 59 1268 ± 1

CLUmpp (H′,
LargeKGreedy, 1 it.)

1.4261 ± 0.0283 0.4380 ± 0.0089 0.0565 ± 0.0096 0.3362 ± 0.0068 323,682 ± 71 258 ± 0

CLUmpp (H′,
LargeKGreedy, 5 it.)

1.3894 ± 0.0220 0.4245 ± 0.0055 0.0713 ± 0.0060 0.3466 ± 0.0042 323,707 ± 68 1270 ± 0

popHELpEr/LabEL. SwiTCHing 1.0723 ± 0.0172 0.3856 ± 0.0071 0.1148 ± 0.0081 0.3772 ± 0.0057 526,858 ± 1606 1459 ± 343

As indicated by the arrows, oE and oG are to be minimized, whereas H and H′ are to be maximized. For each data set and quality criterion, the best
average results obtained are highlighted in bold.

TA B L E 1  (Continued)

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

    |  711LAUTENSCHLAGER

ACKNOWLEDG EMENTS
I would like to thank Elmar Lang for the helpful discussion, Christoph
Oberprieler for supporting this work and Tankred Ott for his com-
ments on the manuscript. I also thank the anonymous reviewers who
provided feedback on this work. Open Access funding enabled and
organized by Projekt DEAL.

FUNDING INFORMATION
This work has been partially supported by a Grant (OB 155/13–
1) of the German Research Foundation (DFG) in the frame of the
Priority Programme SPP 1991 ‘Taxon- omics – New Approaches for
Discovering and Naming Biodiversity’ to Christoph Oberprieler.

CONFLIC T OF INTERE S T
The author declares that he has no competing interests.

DATA AVAIL ABILIT Y S TATEMENT
Crimp's source code along with precompiled binaries for Linux and
Windows, usage guidelines, benchmark code and the largeK and
largeR data sets are freely available at https://github.com/ulila utens
chlag er/crimp and archived at Zenodo (Lautenschlager, 2022). The
arabid and chicken data sets are available as part of the CLUmpp
software package (Jakobsson & Rosenberg, 2007).

ORCID
Ulrich Lautenschlager https://orcid.org/0000-0003-1886-2277

R E FE R E N C E S
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model- based

estimation of ancestry in unrelated individuals. Genome Research,
19(9), 1655– 1664.

Behr, A. A., Liu, K. Z., Liu- Fang, G., Nakka, P., & Ramachandran, S. (2016).
pong: Fast analysis and visualization of latent clusters in population
genetic data. Bioinformatics, 32(18), 2817– 2823.

Blackman, D., & Vigna, S. (2021). Scrambled linear pseudorandom num-
ber generators. ACM Transactions on Mathematical Software, 47(4),
36:1– 36:32.

Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website
and program for visualizing STRUCTURE output and implementing
the Evanno method. Conservation Genetics Resources, 4(2), 359– 361.

Francis, R. M. (2017). pophelper: An R package and web app to anal-
yse and visualize population structure. Molecular Ecology Resources,
17(1), 27– 32.

Funk, S. M., Guedaoura, S., Juras, R., Raziq, A., Landolsi, F., Luís, C.,
Martínez, A. M., Musa Mayaki, A., Mujica, F., Oom, M. D. M.,
Ouragh, L., Stranger, Y. M., Vega- Pla, J. L., & Cothran, E. G. (2020).
Major inconsistencies of inferred population genetic structure esti-
mated in a large set of domestic horse breeds using microsatellites.
Ecology and Evolution, 10(10), 4261– 4279.

Hurlbert, S. H. (1971). The nonconcept of species diversity: A critique
and alternative parameters. Ecology, 52(4), 577– 586.

Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster match-
ing and permutation program for dealing with label switching and
multimodality in analysis of population structure. Bioinformatics,
23(14), 1801– 1806.

Jasra, A., Holmes, C. C., & Stephens, D. A. (2005). Markov chain Monte
Carlo methods and the label switching problem in Bayesian mixture
modeling. Statistical Science, 20(1), 50– 67.

Knuth, D. E. (2014). The art of computer programming, volume 4A:
Combinatorial algorithms, part 1. Addison- Wesley Professional.

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose,
I. (2015). Clumpak: A program for identifying clustering modes
and packaging population structure inferences across k. Molecular
Ecology Resources, 15(5), 1179– 1191.

Lautenschlager, U. (2022). ulilautenschlager/crimp: Crimp v1.1.0. Zenodo.
Lautenschlager, U., Wagner, F., & Oberprieler, C. (2020). AllCoPol:

Inferring allele co- ancestry in polyploids. BMC Bioinformatics, 21(1),
441.

Leroy, G., Verrier, E., Meriaux, J. C., & Rognon, X. (2009). Genetic diver-
sity of dog breeds: Between- breed diversity, breed assignation and
conservation approaches. Animal Genetics, 40(3), 333– 343.

Nei, M. (1973). Analysis of gene diversity in subdivided populations.
Proceedings of the National Academy of Sciences, 70(12), 3321– 3323.

Papachristou, D., Koutsouli, P., Laliotis, G. P., Kunz, E., Upadhyay, M.,
Seichter, D., & Medugorac, I. (2020). Genomic diversity and popu-
lation structure of the indigenous Greek and Cypriot cattle popula-
tions. Genetics Selection Evolution, 52(1), 43.

Papastamoulis, P. (2016). label.switching: An R package for dealing with
the label switching problem in MCMC outputs. Journal of Statistical
Software, 69(1), 1– 24.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population
structure using multilocus genotype data. Genetics, 155(2), 945– 959.

Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE:
Variational inference of population structure in large SNP data sets.
Genetics, 197(2), 573– 589.

Rosenberg, N. A., Burke, T., Elo, K., Feldman, M. W., Freidlin, P. J.,
Groenen, M. A. M., Hillel, J., Mäki- Tanila, A., Tixier- Boichard, M.,
Vignal, A., Wimmers, K., & Weigend, S. (2001). Empirical evaluation
of genetic clustering methods using multilocus genotypes from 20
chicken breeds. Genetics, 159(2), 699– 713.

Stephens, M. (2000). Dealing with label switching in mixture mod-
els. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 62(4), 795– 809.

Strehl, A., & Ghosh, J. (2002). cluster ensembles— a knowledge reuse
framework for combining multiple partitions. Journal of Machine
Learning Research, 3, 583– 617.

Tang, H., Peng, J., Wang, P., & Risch, N. J. (2005). Estimation of individ-
ual admixture: Analytical and study design considerations. Genetic
Epidemiology, 28(4), 289– 301.

van Dongen, S. (2000). Graph clustering by flow simulation (PhD thesis,
University of Utrecht).

Verity, R., & Nichols, R. A. (2016). Estimating the number of subpopu-
lations (k) in structured populations. Genetics, 203(4), 1827– 1839.

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Lautenschlager, U. (2023). Crimp: An
efficient tool for summarizing multiple clusterings in
population structure analysis and beyond. Molecular Ecology
Resources, 23, 705–711. https://doi.org/10.1111/1755-
0998.13734

 17550998, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13734 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/ulilautenschlager/crimp
https://github.com/ulilautenschlager/crimp
https://orcid.org/0000-0003-1886-2277
https://orcid.org/0000-0003-1886-2277
https://doi.org/10.1111/1755-0998.13734
https://doi.org/10.1111/1755-0998.13734

	Crimp: An efficient tool for summarizing multiple clusterings in population structure analysis and beyond
	Abstract
	1|INTRODUCTION
	2|ALGORITHMS AND IMPLEMENTATION
	3|BENCHMARK ANALYSES
	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES

