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Abstract
When a data set is repeatedly clustered using unsupervised techniques, the resulting 
clusterings, even if highly similar, may list their clusters in different orders. This so-
called ‘label-switching’ phenomenon obscures meaningful differences between clus-
terings, complicating their comparison and summary. The problem often arises in the 
context of population structure analysis based on multilocus genotype data. In this 
field, a variety of popular tools apply model-based clustering, assigning individuals 
to a prespecified number of ancestral populations. Since such methods often involve 
stochastic components, it is a common practice to perform multiple replicate analyses 
based on the same input data and parameter settings. Available postprocessing tools 
allow to mitigate label switching, but leave room for improvements, in particular, re-
garding large input data sets. In this work, I present Crimp, a lightweight command-line 
tool, which offers a relatively fast and scalable heuristic to align clusters across repli-
cate clusterings consisting of the same number of clusters. For small problem sizes, an 
exact algorithm can be used as an alternative. Additional features include row-specific 
weights, input and output files similar to those of CLUMPP (Jakobsson & Rosenberg, 
2007) and the evaluation of a given solution in terms of CLUMPP as well as its own 
objective functions. Benchmark analyses show that Crimp, especially when applied to 
larger data sets, tends to outperform alternative tools considering runtime require-
ments and various quality measures. While primarily targeting population structure 
analysis, Crimp can be used as a generic tool to correct multiple clusterings for label 
switching. This facilitates their comparison and allows to generate an averaged clus-
tering. Crimp's computational efficiency makes it even applicable to relatively large 
data sets while offering competitive solution quality.

K E Y W O R D S
cluster correspondence, cluster matching, cluster relabelling, label switching, population 
structure
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1  |  INTRODUC TION

Unsupervised cluster algorithms, which aim to identify relevant 
groups within a set of objects (e.g. individuals or sequences), are 
widely used in many areas of biological data analysis. A clustering 
is often represented as a matrix of membership coefficients, which 
quantify the degree (e.g. probability or proportion) to which each 
clustered object (row) is assigned to each cluster (column). Typically, 
the identified clusters do not have meaningful labels and, in the ab-
sence of ordering constraints, are listed in arbitrary order. Therefore, 
given a matrix of membership coefficients, each permutation of its 
columns represents an equivalent clustering. This ambiguity is a 
major reason for incongruence of membership matrices across mul-
tiple clusterings of the same data, commonly referred to as ‘label-
switching’ phenomenon (Jakobsson & Rosenberg, 2007; Jasra et al., 
2005; Stephens, 2000). Since many cluster algorithms involve sto-
chastic components, even the results of repeated runs of the same 
algorithm, using identical parameter settings and input data, may be 
affected. In order to compare or summarize a number of similar clus-
terings, it can be useful to align corresponding clusters across mul-
tiple clusterings. The presented program, Crimp (Cluster Relabelling 
based on IMPurity minimization), allows to rearrange a number of 
membership matrices of identical shapes in order to minimize differ-
ences caused by label switching. Ideally, the remaining differences 
should be attributable to either noise or truly different ways of 
grouping the data, sometimes referred to as ‘genuine multimodality’ 
(Jakobsson & Rosenberg, 2007).

An important application area of Crimp is the analysis of pop-
ulation structure via model-based clustering as performed by 
STRUCTURE (Pritchard et al.,  2000) and several related meth-
ods such as Frappe (Tang et al.,  2005), ADMIXTURE (Alexander 
et al., 2009), fastStructure (Raj et al., 2014) and MavericK (Verity & 
Nichols, 2016). To account for the stochasticity inherent to most of 
such methods, it is a common practice to perform multiple replicate 
analyses. Several tools are available to compare or summarize the 
obtained clusterings. These, as well as the presented strategy, rely 
solely on the membership coefficients rather than other cluster-
associated parameters. As the most widely used tool to mitigate label 
switching in this context, CLUMPP (Jakobsson & Rosenberg, 2007) 
aims to align multiple clusterings such that all pairwise similarities 
between membership coefficient matrices are maximized. Popular 
web servers for postprocessing population genetic clusterings allow 
to generate input files for CLUMPP (e.g. STRUCTURE HARVESTER; 
Earl & vonHoldt, 2012) or include it as part of their analysis pipeline 
(e.g. Clumpak; Kopelman et al.,  2015). The latter (‘CLUMPP across 
K’) extends CLUMPP's functionality to allow a comparison of clus-
terings comprising different numbers of clusters and to detect dis-
tinct clustering modes (i.e. to cluster the clusterings themselves) 
using a Markov clustering algorithm (van Dongen, 2000). pong (Behr 
et al., 2016), which provides functionality similar to Clumpak, imple-
ments a somewhat different approach: For each pair of membership 
matrices, it first infers an optimal one-to-one mapping between their 
corresponding columns. In the case of moderate problem sizes, this 

can be done using an exact optimization algorithm. The distances 
between pairwise aligned clusterings are then used to group clus-
terings into modes, subject to a prespecified distance threshold. 
Since, depending on the latter, there is only limited conflict among 
the clusterings belonging to the same mode, their clusters are simply 
ordered according to one randomly chosen representative cluster-
ing. This avoids directly optimizing an alignment of all clusterings, 
which would imply a much larger search space. Like Clumpak, pong 
further allows to compare clusterings that differ in their number of 
clusters, assuming that decreasing the latter by one can be accom-
modated by merging two clusters while preserving the other ones. 
The R package pophelper (Francis,  2017), another toolkit from this 
category, uses either CLUMPP or a relabelling algorithm proposed 
by Stephens (2000) as implemented in the R package label.switching 
(Papastamoulis, 2016) to align clusterings of identical size. The lat-
ter method minimizes the Kullback–Leibler divergence between in-
dividual membership matrices and an averaged membership matrix 
through an expectation maximization (EM)-like algorithm.

When applying CLUMPP to larger problem instances, only its 
greedy heuristics, often only the rougher LargeKGreedy algorithm, 
are practically feasible. Since these algorithms cannot revert subop-
timal decisions when progressively building up a candidate solution, 
it may be difficult for them to find high-quality solutions – a prob-
lem that is aggravated by large problem sizes. The cluster matching 
facilities provided by pong and pophelper, which both aim at a wider 
scope than CLUMPP, seem to be more scalable but also lack some of 
CLUMPP's functionality such as certain output options and the con-
sideration of row-specific weights. The latter may be desirable, for 
instance, when clustering differently sized populations rather than 
individuals. The presented program, which superficially resembles 
CLUMPP's functionality, aims to fill this gap and, within this limited 
scope, provides even better performance and scalability to large 
problem sizes than the aforementioned tools. The objective func-
tions used by Crimp solely depend on impurity measures applied to 
rows of a single, averaged matrix of membership coefficients, which 
avoids a number of matrix–matrix comparisons that quadratically in-
creases with the number of clusterings. Crimp, which is a low-level 
implementation written in C, can be used as a standalone command-
line tool. Like CLUMPP, it can be applied in combination with existing 
tools for summarizing or visualizing population structure analyses or 
also in different contexts.

2  |  ALGORITHMS AND IMPLEMENTATION

The membership coefficients of a single clustering, comprising C ob-
jects and K clusters, can be written as C × K matrix, often referred 
to as Q-matrix. Since we deal with R replicate clusterings, let cijk 
(i = 1, … ,C; j = 1, … ,K; k = 1, … ,R) denote the membership co-
efficient which quantifies the degree to which the ith object belongs 
to the jth cluster, subject to the kth clustering. Based on the individual 
membership coefficients, an averaged matrix 

(

aij
)

 can be computed 
with aij =

1

R

∑R

k=1
cijk. The membership coefficients are allowed to take 
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    |  707LAUTENSCHLAGER

values from the interval 
[

0, 1
]

 and each row of a Q-matrix, whether in-
dividual or averaged, sums up to 1. In the following, we will effectively 
swap columns of the individual Q-matrices, thus these matrices and 
(

aij
)

 will vary depending on the current state of column ordering. In 
fact, this is accomplished using a list of column index permutations 
without changing the original matrices. To simplify the notation, how-
ever, I will stick with the above notion of swapping columns. Based on 
the intuition that an incorrect alignment of clusters leads to a homog-
enization of the averaged membership coefficients, the implemented 
objective functions are formally based on impurity measures, namely 
Shannon entropy and Gini impurity. In ecology, the latter measure, also 
known as Gini–Simpson index, can be interpreted as the probability 
of interspecific encounter (PIE; assuming sampling with replacement) 
when applied to species abundances (Hurlbert, 1971). Applied to allele 
frequencies at a given locus, it represents the expected heterozygo-
sity under Hardy–Weinberg equilibrium (see e.g. Nei, 1973). Similar to 
CLUMPP, optional weights wi allow to control the influence of specific 
objects (for each i = 1, … ,C, wi > = 0). This can be useful, if, for ex-
ample, the clustered objects are populations represented by a differ-
ent number of sampled individuals. W =

∑C

i=1
wi denotes the sum of 

these weights.
One objective function is defined as the weighted mean of the 

row-wise Shannon entropy of 
(

aij
)

:

where aijlog
(

aij
)

≔ 0 if aij = 0.
Assuming equal weights wi for each row index i , this objective 

function is linearly related to the total row-wise Kullback–Leibler 
divergence ∑C

i=1

∑K

j=1

∑R

k=1

�

cijklog
cijk

aij

�

 between individual Q-matrices 
and the averaged matrix 

(

aij
)

 (see Supplementary Material). The 
latter quantity, which is often minimized using Stephens' clus-
ter relabelling method, can be expressed as D + CRoE, where 
D =

∑C

i=1

∑K

j=1

∑R

k=1

�

cijklog
�

cijk
��

 and CR are invariant to column 
swapping. Therefore, minimizing oE is equivalent to minimizing the 
total Kullback–Leibler divergence, yet Crimp differs from Stephens' 
method by using non-EM-like algorithms. A prototypical cluster re-
labelling tool based on this approach has been included in AllCoPol 
(Lautenschlager et al.,  2020) for use in a very specific context. 
However, the formerly used algorithm and its naive Python imple-
mentation are several orders of magnitude slower than the pre-
sented program and only suitable for relatively small problem sizes.

By default, however, Crimp minimizes the mean row-wise Gini 
impurity:

A practical advantage of using the Gini impurity over the Shannon 
entropy is that the former does not involve logarithms and therefore 
allows faster computation. oG can be interpreted in various ways (see 
Supplementary Material for derivations). Assuming equal weights wi 

for simplicity, it can be expressed as oG = 1 −
1

K
−

1

C

∑C

i=1

∑K

j=1

�

aij−
1

K

�2

, 
which can be seen as a linear function of the variance of the averaged 
membership coefficients. Therefore, minimizing oG is equivalent to 
maximizing the variance of the averaged coefficients or, equally, min-
imizing the variance of matched individual coefficients, which follows 
from the law of total variance. For this interpretation, an alignment 
of all R Q-matrices can be viewed as a clustering of all CKR individ-
ual membership coefficients into CK clusters of size R each. In case 
of equal weights wi, equation (2) can further be expressed in terms of 
pairwise matrix comparison as

where A = 1 −
1

K
−

1

RC

∑C

i=1

∑K

j=1

∑R

k=1

�

cijk−
1

K

�2

 and B =
1

2R2C
 are in-

variant to column reordering. In other words, minimizing oG minimizes 
the squared deviations between matched membership coefficients 
across all pairs of Q-matrices.

Two neighbourhood-based optimization algorithms are imple-
mented, both of which proceed by successively swapping two col-
umns of one coefficient matrix at a time. Using auxiliary arrays to 
store intermediate results enables an evaluation of candidate solu-
tions in (C) time because only small parts of the objective function 
have to be updated from solution to solution. In contrast, a naive 
evaluation would require (CKR) runtime per candidate solution. To 
avoid an accumulation of rounding errors in the course of incremen-
tal updates, the membership coefficients are internally stored using 
integers, providing a precision of 6 decimal places. As in CLUMPP, 
raw membership coefficients read from the input are normalized 
such that each row of a Q-matrix sums up to 1.

By default, a random restart hill-climbing heuristic is used to 
minimize the objective function: Starting from random column per-
mutations, it repeatedly evaluates all possible swaps of two columns 
within each Q-matrix. To avoid any bias caused by the order of col-
umns and clusterings in the input file, the order of tested swaps is ran-
domized using a lightweight xoshiro128** (Blackman & Vigna, 2021) 
pseudorandom number generator. Since it would likely be inefficient 
to evaluate the complete swap neighbourhood of a given solution 
(i.e. K(K − 1)R

2
 candidate solutions) before selecting the next one, each 

improving swap is instantly accepted. The search terminates if the 
current solution cannot be improved by any single swap of two col-
umns. To mitigate its susceptibility to plateaus and local optima, this 
hill-climbing procedure is repeated for a predefined number of runs.

As an alternative, an exhaustive search algorithm is imple-
mented, exploiting the fact that all permutations of a set can be 
generated in ways such that two consecutive permutations differ 
only by an interchange of two elements (for an overview of the so-
called bell-ringing algorithms, see Knuth, 2014). This principle can 
be utilized to generate all (K!)R−1 clustering alignments (i.e. com-
binations of column index permutations) such that only one swap 
must be evaluated for each possible solution. In contrast to the 
presented heuristic, this approach guarantees finding a global op-
timum. However, because the number of solutions to be evaluated 

(1)oE = −
1

W

C
∑

i=1

(

wi

K
∑

j=1

(

aijlog
(

aij
))

)

(2)oG =
1

W

C
∑

i=1

(

wi

(

1 −

K
∑

j=1

a2
ij

))

(3)oG = A + B

C
∑

i=1

K
∑

j=1

R
∑

k=1

R
∑

l=1

(

cijk−cijl
)2
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708  |    LAUTENSCHLAGER

quickly becomes prohibitive, it is only applicable to small problem 
sizes.

Eventually, different output files are written for the best solu-
tion found: a list of column index permutations, the matrix of 
averaged membership coefficients and, optionally, the aligned indi-
vidual Q-matrices. For a given solution, Crimp also allows to calculate 
CLUMPP's similarity scores H and H′ although these cannot be op-
timized directly.

3  |  BENCHMARK ANALYSES

To compare the performance of different tools capable of align-
ing STRUCTURE-like Q-matrices, Crimp v1.1.0 along with CLUMPP 
v1.1.2, pong v1.4.7 and pophelper v2.3.0 was applied to four exem-
plary data sets. As biological examples, the small ‘arabid’ (K = 3 , 
C = 95, R = 9) and the larger ‘chicken’ (K = 19, C = 600, R = 100; 
Rosenberg et al.,  2001) data sets, both distributed with CLUMPP, 
were analysed. In addition, the two simulated data sets ‘largeK’ 
(K = 100, C = 1000, R = 100) and ‘largeR’ (K = 25, C = 250, R = 1000) 
were used to demonstrate Crimp's scalability to high values of K and 
R, respectively. Those are based on repeated runs of K-means clus-
tering applied to structured random data (see kmeans_largeK.r and 
kmeans_largeR.r for details). As opposed to the biological data sets, 
the simulated data sets consist of binary Q-matrices, representing 
hard clusterings (partitions).

Because of differences regarding scope and output options, 
a fair comparison of Crimp and CLUMPP with pong and pophelper 
is difficult to achieve and the obtained results depend on the fol-
lowing decisions. Each tested program was configured to output 
the optimized permutations of column indices while other output 
was suppressed where possible. While pophelper's alignK() func-
tion allows rearranging Q-matrices, the applied permutations of 
column indices are not accessible. On the other hand, writing the 
aligned Q-matrices to disk using pophelpers's clumppExport() func-
tion turned out to be very slow and may not be part of a typical 
pophelper workflow. To circumvent these problems, pophelper was 
only used to read the input matrices, and the stephens() function 
provided by the label.switching package was then manually called 
with default options, as it is internally done by pophelper (see 
pophelper.r). Eventually, the optimized permutations were written 
using the R function write.table(). In the following, the described 
workflow will be referred to as pophelper/label.switching. In the case 
of pong, the input matrices are partitioned into different clustering 
modes and separate column index permutations are reported for 
each mode. To enforce a single mode comprising all Q-matrices, 
its similarity threshold parameter was set to 0. To achieve a be-
haviour similar to that of CLUMPP, pong was configured to use the 
G distance for cluster comparison. In addition, pong's default met-
ric, the Jaccard Index, was used.

Each analysis was run 25 times and, for each replicate, the order 
of clusters and clusterings in the input was permuted. It was ensured 
that the measured runtimes were not distorted by memory swapping 

and analyses were interrupted after a maximum of 3600 seconds for 
the largeK data set and 1800 seconds for the other data sets. To 
evaluate the obtained column index permutations, the input matri-
ces were rearranged using an external script, thus mitigating differ-
ent rounding behaviour of the tools to be compared. Crimp, which 
can be utilized to evaluate its input without further optimization, 
was then used to calculate CLUMPP's similarity scores H and H′ as 
well as its own cost functions oG and oE. Since none of the tested 
tools exhibited noteworthy parallelization, runtime was measured as 
elapsed real time. Peak memory consumption was measured as the 
maximum resident set size. All analyses were serially performed on a 
Dell Optiplex 7010 desktop PC with an Intel i5-3470 CPU and 12 GB 
RAM. Averaged results for the chicken, largeK and largeR data sets 
are shown in Table 1.

For the small arabid data set, only CLUMPP and Crimp were used 
because they are able to account for the differently sized popula-
tions. Apart from one outlier run when performing only one itera-
tion of Crimp's heuristic using oE, both programs consistently found 
the common global optimum of H, H′, oG and oE, independently of 
the used algorithm and the optimized objective function. Runtimes 
ranged from less than 1 millisecond to about 1 min (see Table S1). 
While, in this context, Crimp's speed advantages are of little practical 
relevance, using oG, its exhaustive search is about two orders of mag-
nitude faster than that of CLUMPP.

In the case of the larger chicken data set, for which either 
CLUMPP's and Crimp's exhaustive search is infeasible, each of the 
four evaluated scores revealed a similar pattern. Crimp using oG is 
the fastest tool and its solutions are consistently among the best. 
Interestingly, optimizing oE directly is not only slower due to com-
putationally more expensive solution evaluation, but also seems 
to be more susceptible to local optima or plateaus as it requires 
a higher number of hill-climbing runs to reliably find high-quality 
solutions. Within the allowed runtime, both pong and pophelp-
er/label.switching are able to find solutions superior to those of 
CLUMPP, but less optimal than those of Crimp. As expected, 
pophelper/label.switching performs best in terms of the mean en-
tropy, but even from this perspective, Crimp using oG yields bet-
ter scores in a shorter time. In contrast, CLUMPP's LargeKGreedy 
algorithm leads to considerably worse scores, at least within the 
allowed number of at most 100 greedily constructed solutions. For 
30,000 greedily constructed solutions, amounting to a runtime of 
approx. 47 h in our setting, Jakobsson and Rosenberg  (2007) re-
port a similarity score H  =  0.5546, which is similar to pong and 
pophelper/label.switching, but still noticeably lower than the values 
obtained by Crimp.

Applied to the large simulated data sets, pong did not finish 
within the imposed runtime limits. In the case of the largeR data 
set, Crimp using oG was again the fastest option while yielding the 
best scores, followed by pophelper/label.switching and Crimp using 
oE. Similar behaviour was observed for the largeK data set, where 
minimizing oG with Crimp takes 20 s to obtain oE  =  0.88 on aver-
age, whereas pophelper/label.switching, although directly minimiz-
ing the latter score, remains at 1.07 after 1459 s. For both data 
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    |  709LAUTENSCHLAGER

TA B L E  1  Benchmark results (mean and standard deviation) for the chicken, largeR and largeK data sets. Here, only methods for which all 
25 replicate runs finished within a maximum of 1800 s (chicken, largeR) or 3600 s (largeK) are listed

Data set Method oE ↓ oG ↓ H ↑ H′ ↑ Memory [kB] Runtime [s]

chicken Crimp (oG, heuristic, 1 it.) 0.6868 ± 0.0032 0.1820 ± 0.0015 0.6039 ± 0.0043 0.7432 ± 0.0028 7316 ± 42 0.4 ± 0.0

Crimp (oG, heuristic, 5 it.) 0.6838 ± 0.0023 0.1806 ± 0.0010 0.6076 ± 0.0028 0.7456 ± 0.0018 7275 ± 75 1.0 ± 0.0

Crimp (oG, heuristic, 20 it.) 0.6825 ± 0.0001 0.1800 ± 0.0000 0.6093 ± 0.0000 0.7468 ± 0.0000 7293 ± 72 3.5 ± 0.1

Crimp (oG, heuristic, 100 
it.)

0.6825 ± 0.0000 0.1800 ± 0.0000 0.6094 ± 0.0000 0.7468 ± 0.0000 7313 ± 53 16.7 ± 0.2

Crimp (oE, heuristic, 1 it.) 0.7492 ± 0.0618 0.2067 ± 0.0237 0.5438 ± 0.0560 0.7042 ± 0.0363 7282 ± 86 3.6 ± 0.9

Crimp (oE, heuristic, 5 it.) 0.6909 ± 0.0080 0.1842 ± 0.0030 0.5983 ± 0.0076 0.7396 ± 0.0049 7280 ± 82 16.1 ± 1.6

Crimp (oE, heuristic, 20 it.) 0.6840 ± 0.0026 0.1813 ± 0.0014 0.6059 ± 0.0036 0.7445 ± 0.0024 7305 ± 54 64.8 ± 6.9

Crimp (oE, heuristic, 100 
it.)

0.6820 ± 0.0010 0.1803 ± 0.0006 0.6085 ± 0.0017 0.7462 ± 0.0011 7299 ± 61 317.0 ± 10.4

CLUMPP (H, 
LargeKGreedy, 1 it.)

0.8869 ± 0.0512 0.2474 ± 0.0218 0.4626 ± 0.0423 0.6516 ± 0.0274 42,507 ± 58 6.6 ± 0.0

CLUMPP (H, 
LargeKGreedy, 5 it.)

0.8449 ± 0.0294 0.2297 ± 0.0108 0.4971 ± 0.0208 0.6740 ± 0.0135 42,494 ± 54 29.0 ± 0.0

CLUMPP (H, 
LargeKGreedy, 20 it.)

0.8203 ± 0.0256 0.2201 ± 0.0083 0.5172 ± 0.0160 0.6870 ± 0.0104 42,500 ± 46 113.2 ± 0.1

CLUMPP (H, 
LargeKGreedy, 100 
it.)

0.7927 ± 0.0113 0.2117 ± 0.0039 0.5334 ± 0.0078 0.6975 ± 0.0051 42,493 ± 56 562.4 ± 0.1

CLUMPP (H′, 
LargeKGreedy, 1 it.)

0.9185 ± 0.0545 0.2598 ± 0.0237 0.4404 ± 0.0430 0.6373 ± 0.0279 42,482 ± 56 6.6 ± 0.0

CLUMPP (H′, 
LargeKGreedy, 5 it.)

0.8358 ± 0.0337 0.2275 ± 0.0119 0.5024 ± 0.0218 0.6774 ± 0.0141 42,509 ± 53 29.0 ± 0.0

CLUMPP (H′, 
LargeKGreedy, 20 it.)

0.8031 ± 0.0198 0.2152 ± 0.0074 0.5260 ± 0.0141 0.6928 ± 0.0092 42,497 ± 58 113.2 ± 0.1

CLUMPP (H′, 
LargeKGreedy, 100 
it.)

0.7954 ± 0.0131 0.2116 ± 0.0037 0.5335 ± 0.0076 0.6976 ± 0.0049 42,501 ± 60 562.4 ± 0.1

pong (G) 0.7507 ± 0.0397 0.1982 ± 0.0119 0.5634 ± 0.0289 0.7170 ± 0.0188 794,319 ± 316 52.4 ± 0.8

pong (Jaccard) 0.7589 ± 0.0457 0.2012 ± 0.0140 0.5551 ± 0.0343 0.7116 ± 0.0223 794,528 ± 286 321.4 ± 7.6

pophelper/label. switching 0.7325 ± 0.0704 0.2039 ± 0.0317 0.5578 ± 0.0620 0.7134 ± 0.0402 179,113 ± 13,901 9.4 ± 1.1

largeR Crimp (oG, heuristic, 1 it.) 1.0352 ± 0.0139 0.3584 ± 0.0036 0.1410 ± 0.0044 0.4049 ± 0.0030 28,864 ± 63 5 ± 1

Crimp (oG, heuristic, 5 it.) 1.0227 ± 0.0079 0.3550 ± 0.0018 0.1451 ± 0.0021 0.4077 ± 0.0015 28,864 ± 63 24 ± 3

Crimp (oG, heuristic, 20 it.) 1.0195 ± 0.0063 0.3528 ± 0.0009 0.1477 ± 0.0011 0.4095 ± 0.0008 28,868 ± 61 97 ± 4

Crimp (oG, heuristic, 100 
it.)

1.0185 ± 0.0053 0.3520 ± 0.0004 0.1487 ± 0.0005 0.4102 ± 0.0004 28,880 ± 38 490 ± 11

Crimp (oE, heuristic, 1 it.) 1.1816 ± 0.0501 0.4124 ± 0.0181 0.0780 ± 0.0206 0.3612 ± 0.0142 28,885 ± 32 28 ± 4

Crimp (oE, heuristic, 5 it.) 1.1333 ± 0.0360 0.3957 ± 0.0128 0.0971 ± 0.0147 0.3745 ± 0.0102 28,869 ± 54 143 ± 10

Crimp (oE, heuristic, 20 it.) 1.0980 ± 0.0209 0.3827 ± 0.0074 0.1122 ± 0.0087 0.3849 ± 0.0060 28,895 ± 36 571 ± 22

CLUMPP (H, 
LargeKGreedy, 1 it.)

1.4782 ± 0.0462 0.4633 ± 0.0153 0.0227 ± 0.0162 0.3229 ± 0.0112 214,294 ± 66 428 ± 0

CLUMPP (H′, 
LargeKGreedy, 1 it.)

1.4646 ± 0.0432 0.4582 ± 0.0148 0.0280 ± 0.0156 0.3266 ± 0.0108 214,269 ± 68 429 ± 0

pophelper/label. switching 1.0709 ± 0.0332 0.3768 ± 0.0128 0.1198 ± 0.0144 0.3901 ± 0.0100 304,898 ± 334 348 ± 113

(Continues)
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sets, CLUMPP 's LargeKGreedy algorithm yields the least optimal 
scores.

Whichever of the four benchmark data sets is considered, on 
average, even a single run of Crimp's heuristic using oG (i.e. the fast-
est configuration), leads to results equal to or better than all tested 
alternative tools. Compared to the latter, its results also tend to be 
more consistent as indicated by relatively low standard deviations, in 
particular, when minimizing oG. Besides, Crimp, followed by CLUMPP, 
shows the lowest memory demands.

4  |  DISCUSSION

In the case of the data sets used for benchmarking, all considered 
quality measures (H, H′, oG, and oE) are strongly correlated. While 
Behr et al.  (2016) recommend using the Jaccard index for pairwise 
comparisons instead, this comes at the cost of increased runtime 
requirements and an arbitrary threshold parameter, currently not 
exposed to the user. It should also be noted that enforcing a sin-
gle mode in pong may be problematic because it is focused on align-
ing pairs of Q-matrices rather than reconciling multiple matrices 
simultaneously.

As demonstrated, especially when applied to larger data sets, 
Crimp tends to outperform alternative tools in terms of runtime, solu-
tion quality and consistency. Its advantage in speed may become 
even more relevant if executed multiple times, for instance, in the 
course of Clumpak-like analyses. Crimp's default objective function 
based on the Gini impurity, which emulates pairwise matrix com-
parison, not only allows faster computation than the mean Shannon 
entropy but also seems to lead to a better convergence behaviour of 
the implemented heuristic. However, the latter advantage might be 
problem specific.

Especially in the context of repeated K-means clustering, it may 
be tempting to utilize the averaged membership matrix as a kind of 
consensus clustering (for an introduction to the latter, see Strehl & 
Ghosh, 2002). It should be noted that, for such use, additional post-
processing steps may be desirable, such as merging similar clusters 
or removing more or less empty ones if present. For the analysis 
of population structure, K-values approaching 100 or above may 
appear uncommon at first glance. However, this magnitude is not 
unrealistic, for instance, when analysing domestic animal breeds 
(e.g. Funk et al., 2020; Leroy et al., 2009; Papachristou et al., 2020).

Unlike Clumpak, pong and pophelper, Crimp is restricted to clus-
terings comprising the same number of clusters and does not pro-
vide additional functionality for mode detection and visualization. 
Nevertheless, its application helps to recognize real differences 
between clusterings, whether these may be regarded as noise or 
genuine multimodality. Moreover, Crimp can easily be integrated 
into common, CLUMPP-based workflows as a much faster and often 
more accurate alternative, applicable even to use cases that could 
not be handled satisfactorily before. Its heuristic can be controlled 
via a single, intuitive parameter, namely the number of hill-climbing 
runs to be performed.

As opposed to the implementation of Stephens' cluster relabel-
ling by the label.switching package, Crimp's performance does not 
depend on external solvers but is based on efficient solution eval-
uation. As a consequence, it comes as a lightweight tool without 
dependencies beyond the C standard library. Future work may be 
dedicated to extended functionality or interfacing with other tools 
and programming languages.

AUTHOR CONTRIBUTIONS
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Data set Method oE ↓ oG ↓ H ↑ H′ ↑ Memory [kB] Runtime [s]

largeK Crimp (oG, heuristic, 1 it.) 0.8802 ± 0.0058 0.3150 ± 0.0019 0.1999 ± 0.0024 0.4371 ± 0.0017 42,500 ± 53 20 ± 4

Crimp (oG, heuristic, 5 it.) 0.8729 ± 0.0049 0.3126 ± 0.0010 0.2029 ± 0.0013 0.4392 ± 0.0009 42,500 ± 51 95 ± 8

Crimp (oG, heuristic, 20 it.) 0.8709 ± 0.0044 0.3119 ± 0.0008 0.2038 ± 0.0010 0.4398 ± 0.0007 42,519 ± 43 391 ± 17

Crimp (oG, heuristic, 100 
it.)

0.8668 ± 0.0038 0.3106 ± 0.0006 0.2055 ± 0.0008 0.4410 ± 0.0005 42,510 ± 49 1945 ± 35

Crimp (oE, heuristic, 1 it.) 1.0834 ± 0.0324 0.3890 ± 0.0115 0.1105 ± 0.0132 0.3741 ± 0.0093 42,519 ± 49 77 ± 13

Crimp (oE, heuristic, 5 it.) 1.0279 ± 0.0205 0.3704 ± 0.0076 0.1321 ± 0.0089 0.3893 ± 0.0063 42,499 ± 52 387 ± 33

Crimp (oE, heuristic, 20 it.) 1.0087 ± 0.0131 0.3630 ± 0.0050 0.1407 ± 0.0059 0.3955 ± 0.0042 42,492 ± 54 1564 ± 50

CLUMPP (H, 
LargeKGreedy, 1 it.)

1.4180 ± 0.0390 0.4349 ± 0.0121 0.0599 ± 0.0130 0.3386 ± 0.0091 323,705 ± 69 258 ± 0

CLUMPP (H, 
LargeKGreedy, 5 it.)

1.3933 ± 0.0253 0.4277 ± 0.0071 0.0678 ± 0.0077 0.3441 ± 0.0054 323,715 ± 59 1268 ± 1

CLUMPP (H′, 
LargeKGreedy, 1 it.)

1.4261 ± 0.0283 0.4380 ± 0.0089 0.0565 ± 0.0096 0.3362 ± 0.0068 323,682 ± 71 258 ± 0

CLUMPP (H′, 
LargeKGreedy, 5 it.)

1.3894 ± 0.0220 0.4245 ± 0.0055 0.0713 ± 0.0060 0.3466 ± 0.0042 323,707 ± 68 1270 ± 0

pophelper/label. switching 1.0723 ± 0.0172 0.3856 ± 0.0071 0.1148 ± 0.0081 0.3772 ± 0.0057 526,858 ± 1606 1459 ± 343

As indicated by the arrows, oE and oG are to be minimized, whereas H and H′ are to be maximized. For each data set and quality criterion, the best 
average results obtained are highlighted in bold.

TA B L E  1  (Continued)
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