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1. Introduction
In former times materials were more or less categorized by their electrical properties into
conductors and insulators. The discovery of the proportionality of voltage and current in
conductors (Ohm’s Law) and the introduction of the electrical conductivity led to the
possibility of more differentiation.
Afterwards additional classes of materials were found, e.g. semiconductors and supercon-
ductors. The latter received special attention as by decreasing the temperature below a
material specific critical temperature Tc the resistance dropped to an unmeasurable low
value. This superconducting state can be destroyed by an external magnetic field once it
exceeds a critical value Bc.
It took until the 1960s to find theoretial descriptions for superconductivity by theories of
Bardeen, Cooper and Schrieffer (BCS theory) [1] and Ginzburg and Landau (GL theory)
[2].

A new class of superconductors was discovered accidentally by the group of Abeles [3] in
1967. Their aim was to grow thin homogenous aluminum films. However, their thin films
revealed a granular structure with grain sizes from nanometers up to 10 nm and more
[4]. It turned out that granular aluminum had a much higher critical temperature and
critical magnetic field than bulk aluminum. The grain size distribution in those films was
found to depend on oxigen concentration. It could be narrowed down to 2nm ± 1nm by
optimizing process parameters [4, 5]. In their films the thickness exceeded the grain size
by several times and therefore can be treated as three dimensional films, which have been
studied since. Deutscher [6] reviews the most important findings over the last decades.
It was Anderson [7], who first came up with the idea, that materials that show Cooper
pairing can be transformed from a superconductor to an insulator, when considering
small superconductors coupled by Josephson coupling. Abeles further applied this idea
to granular systems [8].

In the end of the 1980s and in the beginning of the 90s two-dimensional superconducting
systems were studied. The focus was set on thin granular films, thin homogenous films and
Josephson junction arrays (JJA), which showed similar behaviour at low temperatures
[7].
Experiments on ultra-thin films (2D) showed that the thickness, which is connected to
the normal state sheet resistance, controls a transition from a superconducting to an
insulating state [9, 10]. The latter was found for RN above a value close to the quantum
resistance of Cooper pairs RQ = 6.45kΩ, while a state with global phase coherence was
seen for RN smaller, but close to RQ.
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1. Introduction

JJAs comprise an array of defined, periodical superconducting islands coupled by Joseph-
son links and are accessible experimental systems with easily controllable properties. In
the critical regime (RN ≤ RQ) the superconductor to insulator transition (SIT) can be
induced by an external magnetic field.

In this thesis two (ultra-thin) granular aluminum films have been characterized for its
electrical transport properties. The investigated samples have a normal state sheet
resistance tuned to a value close to RQ. The sample with RN(4K) < RQ shows a zero
resistive state at the lowest temperatures, while the sample with RN(4K) > RQ behaves
insulating without magnetic field. This is consistent with a disorder induced SIT.
A magnetic field induced SIT is found in the lower resistance sample (RN(4K) < RQ) as
well. A perpendicular magnetic field B⊥ < 50mT is sufficient to switch from state with
zero resistance to an insulating behaviour at the lowest temperatures.
In addition, in two samples a high resistive state arises by applying a higher perpendicular
magnetic field. This magnetoresistance can be separated into a positive magnetoresistance
for magnetic fields B⊥ < Bmax ≈ 2T and a negative magnetoresistance for higher fields.
The high resistive state is not present in parallel magnetic fields up to B∥ = 2.5T.
In the vicinity of the magnetic field induced SIT we find signatures for an anomalous
metallic state, as we see a low temperature saturation of the resistance.

The work starts with chapter 2, giving theoretical background information on super-
conductivity in general, followed by effects specific to two dimensions and at the end
discusses the properties of disordered and granular systems.
Chapter 3 focuses on low temperature filtering and the used measurement setups for DC
and AC characterization.
After that, the characterization (material, morphology, dimensions) of our samples is
described in chapter 4.
Chapter 5 deals with our experimental results of ultra-thin granular aluminum, which
have been put in perspective to earlier findings on JJA, ultra-thin granular films and
three dimensional homogenous granular films.
Additional results on niobium-silicon are presented in chapter 6.
Chapter 7 summarizes the findings and discusses open questions and further experiments.
Further information on cryogenic engeneering, including a more detailed description of
our home-made low temperature filters and their implementation, can be found in the
appendix A.
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2. Theoretical Background

2.1. Superconductivity
The two most prominent properties of superconductors are the perfect electrical con-
ductivity, i.e. zero resistive charge transport and the perfect diamagnetism, i.e. the
expelling of magnetic flux lines from the interior of the superconductor, below a criti-
cal temperature Tc. The first was discovered by Kamerlingh Onnes in 1911, who had
successfully liquified helium three years before. Using the liquid helium to cool down
mercury, lead and tin he found a vanishing electrical resistance in a small temperature
range around a critical temperature Tc specific for each corresponding material [11][12].
The second hallmark is known as the Meissner-Ochsenfeld-Effect after W. Meissner and R.
Ochsenfeld [13]. They had found that an external magnetic field was not only screened by
the superconductor, but is expelled when cooling down a superconducting material from
its normal state T > Tc to the superconducting state T < Tc. While the screening effect
can also be achieved by a "simple" ideal conductor, the expulsion can not be attributed
to ideal conduction, but has to originate from superconductivity. Materials with a perfect
diamagnetic response to an external magnetic field have a magnetic susceptibility χ = -1.

London Equations

In 1935 the two brothers F. and H. London described the electrodynamic properties by
deriving the following two London equations [14].

∂js
∂t

= nse
2
s

m
E (2.1a)

∇ × js = −nse
2

ms
B (2.1b)

with js being the supercurrent density, ns the charge carrier density, es the charge, ms
the mass, E the electric field and B the magnetic field. The subscript "s" is used to
divide between "normal" and "superconducting" electrons referring to a two-fluid model
by Gorter and Casimir in 1934 [15][16]. Later, in the BCS theory (see section 2.1.1), the
charge, mass and carrier density has been attributed to Cooper-Pairs, formed by two
interacting electrons due to an attractive force.
From Eq. 2.1b it becomes clear, that there should be a critical current density connected
to a critical magnetic field as both values are directly connected. Silsbee had already
predicted in 1926 [17] that superconductivity should break down for a current density
larger than a critial value, independent of the origin of the current.
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2. Theoretical Background

The prefactor Λ = ms
nse2

s
is the London parameter and can be rewritten as Λ = µ0λ

2
L.

λL is the London penetration depth for which an external magnetic field decreases
exponentially from its surface to its center.

λL(T ) =
√

ms
µ0nse2

s
(2.2)

Since the Cooper pair density near Tc varies with temperature as ns ∝ 1 − T
Tc

[15], the
temperature dependence of the penetration depth follows

λL(T ) = λL(0)√
1 − ( T

Tc
)4

(2.3)

No complete picture for the field of superconductivity had been accomplished until the
1960s [18]. Two publications turned this unsatisfactory state around. In 1950 Ginzburg
and Landau presented their macroscopic Ginzburg-Landau-theory (GL-theory) [2, 19] and
7 years later Bardeen, Cooper and Schrieffer brought up their microscopic BCS-theory
[1]. It was in 1986 Bednorz and Müller [20] found a new class of superconductors, namely
High-Temperature-Superconductors (High-Tc-S.C.), which could not fully be understood
with the two mentioned theories. The research in the field of superconductivity started
to grow again and is still a big and vivid field covering multiple different directions.
The following pages deal with the basic concepts of the BCS- and the GL-theory before
turning to more specific topics, e.g. two dimensional charge transport and disordered
systems. [16, 18]

2.1.1. BCS Theory
Cooper-Pairing due to Attractive Interaction

Cooper had already predicted that a weak attractive force between two electrons may
destabilize the ground state of a Fermi gas in 1956 [21]. The mechanism leading to the
attractive interaction had already been proposed in 1950 by Fröhlich [22] and Bardeen
[23], independently. The attractive interaction manifests itself in an exchange of "virtual"
phonons and can be viewed as follows: one electron with momentum k1 emits a phonon
with wave vector q and second electron with momentum k2 absorbs that phonon (see
Fig. 2.1a).

Due to momentum conservation

k1 + k2 = k′
1 + k′

2 = K (2.4)

the matrix element in the second-order perturbation theory reads as

ν(k1, k2, q) = g2ℏωq

(ϵk1+q − ϵk1)2 − (ℏωq)2) (2.5)

4



2.1. Superconductivity

Figure 2.1.: Virtual phonons and Fermi sphere. Figures taken from [16].

with g being the coupling constant for the electron-phonon interaction, ϵk1 the energy of
the electron with momentum k1 and ℏωq the energy of the exchange phonon. For the
interaction to be attractive the matrix elements has to be negative and it follows:

|ϵk1+q − ϵk1 | < ℏωq (2.6)

From Eq. 2.5 one can see, that a stronger coupling between electrons and phonons favors
superconductivity. Therefore, highly conducting metals do not become superconducting
as g is very small and the repulsion due to Coulomb effects is bigger than the attractive
force [16].

At T = 0 all single electron states are occupied up to the Fermi energy EF and only
states ϵ(k) in between EF ≤ ϵ(k) ≤ EF + ℏωD contribute to electron-phonon interactions,
where ωD is the Debye frequency.
When converted into the k-space the location of those state is a thin shell located around
the Fermi surface with δk, which can be see in Fig. 2.1b).

The two-particle wavefunction can be written as

ψ(r1, r2) = 1
V
eik1r1eik2r2 = 1

V
eikr = ψ(r) (2.7)

where r = (r1 − r2) is the relative coordinate and V the sample volume. As the two
electrons are permanentely scattered and recombined to states with different k, the
wavefunction of a Cooper-Pair can be rewritten as

ψ(r) =
∑

k

Ake
ikr (2.8)

where |Ak|2 is the probability for an electron pair to be in the state of (k,−k).
One may derive the eigenvalue E of a Cooper-Pair with the following Schrödinger equation[

− ℏ2

2m(∆1 + ∆2) + ν(r1, r2)
]
ψ(r1, r2) = Eψ(r1, r2) (2.9)

with potential ν(r1, r2), that includes effects of attractive interaction as well as repulsive.
After some math and assumptions, that can be found in various textbooks as well [16,
18], one ends up with the following expressions

E = 2EF − δE (2.10)

5



2. Theoretical Background

δE = 2ℏωD

1 − e
4

ν0D(EF)
(2.11)

δE can be understood as the binding energy, when pairing two electrons to form a
Cooper-Pair. From Eq. 2.10 it follows that the energy of the Cooper-Pair is indeed
smaller than 2EF corresponding to two single electrons.

BCS-Groundstate, Energy Gap and Excited States

Cooper-Pairs with angular momentum L = 0 and total spin S = 0 behave bosonic.
This configuration is called spin-singlet state. Cooper-Pairs therefore do not have to
obey the Pauli-Exclusion-principle for fermions and the wavefunction of the Cooper-Pair
groundstate is a superposition of all the states

|Ψ⟩ =
∏
k

|ψ⟩k =
∏
k

(uk |0⟩k + vk |1⟩k) (2.12)

where |1⟩k denotes an occupied state with (k ↑,-k ↓) and |0⟩k refers to an unoccupied
state. The arrows indicates the opposite orientaton of the spins of the electrons and
uk, vk are real probability coefficients. The ground state energy W0 = ⟨Ψ|H |Ψ⟩ can be
derived with the Hamiltonian

H =
∑

k

2ηkσ
+
k σ

−
k − ν0

V

∑
k,k′

σ+
k σ

−
k′ (2.13)

with η = ℏ2k2

2m −EF (the first term is the kinetic energy of a single electron), σ+
k and σ−

k

are the occupied and unoccupied states rewritten as Pauli spin matrices, respectively.

Finally, the value of W0 can be written as

W0 =
∑

k

ηk

(
1 − ηk

Ek

)
− ∆2

0
ν0

(2.14)

where the probability coefficients were replaced by

u2
k = 1

2

(
1 + ηk

Ek

)
, (2.15)

and
v2

k = 1
2

(
1 − ηk

Ek

)
(2.16)

together with the relation
E2

k = η2
k + ∆2

0 (2.17)

Important to note is that ∆0 is the energy gap for elementary excitations at T = 0 and
given by

∆0 = ℏωD

sinh[ 2
ν0D(EF) ]

(2.18)
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2.1. Superconductivity

To excite a Cooper-Pair a minimum energy of δEmin = 2∆0 is required. The excitations
are called "quasiparticles" or "Bogoliubov quasiparticles" and are a linear combination of
electrons and holes. The excitation spectrum for the quasiparticles following Eq. 2.17
can be seen in Fig. 2.2.

Figure 2.2.: Excitation spectrum. Figure taken from [16].

The energy gap is connected to the critical temperature by the simple, but important
form

∆0 = 1.76kBTc0 (2.19)

where kB is the Boltzmann constant and Tc the critical temperature of the material.
Nevertheless, Eq. 2.19 does not necessarily hold for every material and/or configuration
as some of the made assumptions might not be true for real metals, e.g. we assumed a
single phonon exchange mechanism and a spherical Fermi surface.

Near the critical temperature Tc the energy gap follows

∆(T )
∆0

= 1.74
√

1 − T

Tc0
(2.20)
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2. Theoretical Background

2.1.2. Ginzburg-Landau Theory
The Ginzburg-Landau theory is another milestone for the understanding of the exper-
imentally observed properties of superconductivity. The GL-theory is based on the
theory for second-order phase transitions proposed by Landau himself. In this "classical"
Landau theory the free energy is expanded into a power series of an order parameter Φ.
Argumenting that the equilibrium phase is achieved by minimizing gs, then αΦ0 +βΦ3

0 = 0
and gs can be written as

gs = gn + α(T )Φ2 + 1
2β(T )Φ4 (2.21)

Φ0 = 0 can be connected to the disordered phase for T > Tc and the solution

Φ2
0 = −α

β
(2.22)

with an ordered phase for T < Tc. For this conditions to hold true β must be positive for
all temperatures and

α

β
=
{

positive for T > Tc

negative for T < Tc

GL Free Energy and GL Equations

Up to now the order parameter Φ was treated as spatially invariant. This is one of
the changes that were made in deriving the GL theory. Here the order parameter is
associated with a macroscopic wavefunction for the superconducting state

Ψ(r) = Ψ0(r)e−iφ(r) (2.23)

where |Ψ0|2 = ns is the density of the superconducting particles.
The Gibbs free energy density can then be formulated to

gs = gn + α|Ψ(r)|2 + 1
2 |Ψ(r)|4 + ℏ2

2m |∇Ψ(r)|2 (2.24)

By taking the external magnetic field into account Eq. 2.24 translates to

gs = gn + α|Ψ(r)|2 + 1
2 |Ψ(r)|4 + 1

2µ0
|Ba −Bi|2 + 1

2m |(−iℏ∇ + 2eA)Ψ(r)|2 (2.25)

One sees that two additonal terms popped up. The first one accounts for the expulsion
energy needed to change the magnetic field from Ba to Bi and the second term takes into
account additional magnetic field effects, where ∇ was replaced with ∇ − 2ieA

ℏ , together
with −e being replaced with −2e due to the double charge of Cooper-Pairs [16].

From Eq. 2.25 the two important Ginzburg-Landau equations can be derived

1
2m(−iℏ∇ + 2eA)2Ψ + αΨ + β|Ψ|2Ψ = 0 (2.26)

8



2.1. Superconductivity

js = ieℏ
m

(Ψ∗∇Ψ − Ψ∇Ψ∗) − 4e2

m
|Ψ|2A (2.27)

together with the boundary condition

n(−iℏ∇ + 2eA)Ψ = 0 (2.28)

which accounts for the current perpendicular to the sample surface to vanish.

Important GL parameters

The GL-theory features two important parameters, namely the penetration depth λ and
the Ginzburg-Landau coherence length ξGL.
The penetration depth λ can be deduced by considering a sample much larger than the
penetration depth. Then Ψ is constant and only the last two terms of Eq. 2.26 do matter
and lead to |Ψ|2 = −α

β . Inserting into Eq. 2.27 gives the expression for the current
density

js = 4e2

m

|α|
β
A (2.29)

with A being the London gauge fixed vector potential. Eq. 2.29 is identical to the second
London equation Eq. 2.1b.
The penetration depth then can be written as

λ =
√

mβ

4µ0e2|α|
(2.30)

The second important parameter, the coherence length ξGL corresponds to the distance
over which the wavefunction Ψ, hence the Cooper pair density ns = |Ψ2|, changes from
zero at a phase boundary, e.g. a surface between a normal and a superconductor, to its
bulk value ns(x = ∞) = |Ψ2(∞)| reads as

ξGL = ℏ√
2m|α|

(2.31)

Fig. 2.3 presents a schematical visualization of the dependencies for the different pa-
rameters at the interface between a normal conductor and a superconductor in presence
of an external magnetic field Ba, where the x-direction indicates the direction from the
interface to the center of the superconductor.

For bulk superconductors one can express the thermodynamical critical magnetic field Bc
as the difference in the Gibbs free energies of the normal and the superconducting state.

Gn(T ) −Gs(T ) = B2
c (T )
2µ0

(2.32)

9



2. Theoretical Background

Figure 2.3.: Visualization of the GL parameters at the normal conductor/superconductor interface.
Figure taken from [16].

This thermodynamical critical field can be expressed in terms of the GL prefactors in the
following way

B2
c (T )
2µ0

= α2

2β (2.33)

and the temperature dependence follows

Bc(T ) ≈ Bc(0)
[
1 −

(
T

Tc

)2
]

(2.34)

Ginzburg-Landau Parameter κ

The ratio of the two parameters is called Ginzburg-Landau parameter κ, which separates
two types of superconductors.

κ = λ

ξGL
=

 < 1√
2 Type 1

> 1√
2 Type 2

(2.35)

The threshold value of κ as well as the distinction between two types of superconductors
was first discussed by Abrikosov in 1957 [24, 25]. He investigated what would happen
if κ would be large, i.e. λ > ξGL instead of the reverse case. Contrary to Type 1
superconductors, which favor to expell the magnetic field below Bc (Meissner-Ochsenfeld
effect) and turn normal conducting above, Type 2 superconductors generate phase-
boundaries by partly letting the external magnetic field penetrate. This mechanism is
energetically favorable due to a negative surface energy [18]. Single flux lines penetrate

10



2.1. Superconductivity

through the superconductor by increasing the external magnetic field from Bc1 to Bc2.
This mixed state is called Shubnikov phase. For B < Bc1 Type 2 superconductors behave
as Type 1 and for B > Bc2 superconductivity is destroyed.
In the center of the flux lines the order parameter/Cooper-Pair density is zero, i.e. a
normal conducting area is generated at the location of the maximum magnetic field. To
shield that normal conducting area from the superconducting surrounding supercurrents
are induced and that configuration is called Abrikosov vortex. This is sketched in Fig.
2.4.

Figure 2.4.: Visualization of an Abrikosov vortex. Figure taken from [16].

Assuming that each Abrikosov vortex consists of one flux quantum, the number of vortices
increases with increasing external magnetic fied. By finally crossing Bc2 global super-
conductivity is destroyed as the vortices do overlap, cutting off the last superconducting
path. Abrikosov predicted a square configuration for the vortices called "Abrikosov
lattice". Later it was shown that a triangular lattice should be more favorable. The latter
was confirmed by scanning electron mircoscopy [26] and later by scanning tunneling
microscopy [27, 28].

The upper critical field associated with the destruction of superconductivity may be
expressed in forms of the thermodynamical critical magnetic field and in terms of the
coherence length

Bc2(T ) =
√

2κBc(T ) = Φ0
2πξ(T )2 (2.36)

It is noteworthy, that the GL-theory at first was not commonly accepted and appreciated
until in 1959 Gor’kov [29] showed that in fact the GL-theory is a special, limiting case of
the BCS theory, when focusing on spatial variations [18]. It is only truely valid near the
critical temperature Tc, where the wavefunction Ψ is directly proportional to the energy
gap ∆. Nowadays the GL-theory is commonly accepted and the wavefunction Ψ can be
related to the center-of-mass motion of a Cooper pair.

11



2. Theoretical Background

Non locality and different limits

Experimentally it was found that the penetration depth λ is bigger than the theoretically
expected values. Pippard followed that the second London equation Eq. 2.1b needed a
correction, namely a nonlocal expression, when the electron mean free path is comparable
or greater than the skin depth in his nonlocal theory [30]. He further proposed that
the current density js is then given by an average electrical field in the environment
connected to the mean free path, instead of the local electric field connected with skin
depth. The important parameter ξem is called the electromagnetic coherence length and
connects to the BCS coherence length and the mean free path of normal conducting
electrons.

ξem = 1
ξ0

+ 1
ℓ

(2.37)

ξ0 can be derived from BCS theory and is given by

ξ0 = ℏvF
π∆0

≈ 0.18 ℏvF
kBTc0

(2.38)

with vF being the Fermi velocity.

In the so called London limit with λ, ℓ ≫ ξ0 the above mentioned corrections due to non
locality and electron scattering are very small and the penetration depth is given by the
London penetration depth λ = λL.

The Pippard limit accounts for λ ≪ ξ0 and ℓ ≫ ξ0. The correction to the penetration
depth is given by

λ ≈ (0.28λ2
Lξ0)

1
3 (2.39)

Most of the classical superconductors are part of this limitation, e.g. pure aluminum.
The measured penetration depth is therefore way larger than the one predicted by London.

If ℓ ≪ λ, which is called the dirty limit, the penetration depth is modified to

λ = λL(1 + ξ0
ℓ

)
1
2 (2.40)

For this case, the relation gives an increasing penetration depth by decreasing the mean
free path. That can be achieved by alloying the superconductor or by increasing disorder.

Flux Pinning and Flux Flow

As mentioned above, Type 2 superconductors with Bc1 < B < Bc2 are penetrated by
vortices, where each vortex carries one magnetic flux quantum Φ0. We concluded in the
previous sections, that the onset of resistance is given by Bc2. However, by applying
a current to a Type 2 superconductor in the Shubnikov phase, there will be a force,
the Lorentz force, acting on the vortices. The vortices start to move perpendicular to

12



2.1. Superconductivity

the current flow and thus create an electric field. That electric field is then parallel
to the current flow and effectively creates a voltage along the current path. Thus, for
B > Bc1 there should be a finite resistance, in contrast to the assumed zero bias state.
That "problem" is solved by taking into account a pinning force, which effectively cancels
out the Lorentz force. Such a pinning results from inhomogeneities or impurities in the
material at which the vortices are pinned, until the Lorentz force overcomes the pinning
force. It is that point that marks the onset of resistance. As the resistance is governed
by the flux flow, it is called flux flow resistance ρF and is proportional to it. When the
external magnetic field reaches Bc2 ρF = ρN, where the latter denotes the resistance in
the normal conducting state.

ρF = E

J
= B

Φ0
η

(2.41)

where E is the electric field and J the current density. η is called the viscous drag
coefficient, independent on magnetic field.
By having a linear slope in the R(B) curve one may therefore deduce η by

η = Φ0(
dR
dB

) (2.42)

and the upper critical magnetic field Bc2

Bc2 = ηρN
Φ0

(2.43)

Using the relation Bc2 = Φ0
2πξ2 for dirty superconductors

ξ =
√

Φ0
2πBc2

(2.44)

one may deduce the Ginzburg-Landau coherence length ξGL by investigating the flux
flow resistance. [16, 18]

2.1.3. Josephson Effect

Let us now consider two superconductors separated by, e.g. an insulating barrier of thick-
ness d. For the case of sufficiently small d Josephson predicted that Cooper-Pairs may
tunnel from one superconductor to the other through that barrier [31]. It is today clear,
that the effects predicted by Josephson occur whenever two superconducting reservoirs
are coupled by a weak link [18]. The most common weak links are the originally proposed
insulating barrier (S-I-S junction), a normal conducting metal that is proximitized to
be weakly superconducting (S-N-S junction) or a constriction, i.e. a narrowing in an
otherwise continuous geometry (S-c-S junction).
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2. Theoretical Background

Josephson Equations

The effects can be described by the following two expressions

Is = Ic sin(∆φ) (2.45)

and
d(∆φ)
dt

= 2eV
ℏ

(2.46)

where ∆φ = φ1 − φ2 is difference of the phases of the GL wavefunctions of the two
superconductors. The first Josephson equation Eq. 2.45 relates the supercurrent across
the junction with the phase difference, while the second Josephson equation Eq. 2.46
takes into account time varying phase differences.

DC Josephson Effect

If we do not apply an external voltage across the junction, then the phase difference ∆φ
is constant in time and Eq. 2.45 leads to a direct current given by the critical current Ic,
which is the maximum supercurrent the junction is able to carry, and the phase difference.
This effect is called the DC Josephson effect.

AC Josephson Effect

Things turn, by either applying a small voltage across the junction or by sending an
external current I above the critical current Ic through it for which the voltage across
the weak link jumps to a finite value given by its quasiparticle characteristics. In that
case the phase difference starts to oscillate in time as Eq. 2.46 predicts with frequency

ωJ = 2eV
ℏ

(2.47)

The supercurrent flowing through the junction is then given by

Is = Ic sin(ωJt+ φ0) (2.48)

The oscillating supercurrent is known as the AC Josephson effect.

In the zero magnetic field case the critical current the junction may carry is given by
material properties and is temperature dependent.

14
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Ambegaokar-Baratoff Relation

Ambegaokar and Baratoff [32] calculated the temperature dependence of the IcRN product
for tunnel junctions

Ic(T )RN = π∆(T )
2e tanh ∆(T )

2kBT
(2.49)

which for T = 0 simplifies to
Ic(0)RN = π∆(0)

2e (2.50)

where RN is the junction normal resistance and ∆ the BCS energy gap. Later on we use
the definition Ic0 = Ic(0).

Josephson Inductance and Josephson Energy

Two important parameters linked to the time dependence of the Josephson phase difference
and the critical current are the Josephson inductance and the Josephson energy [33]. By
rewriting the first Josephson equation to ∂I

∂φ = Ic cosφ, using Φ0 = h
2e and applying the

chain rule one can express the relation as

V = Φ0
2πIc cosφ

∂I

∂t
= L(φ)∂I

∂t
(2.51)

The inductance is associated with the inertia of charge carriers (Cooper-Pairs) in alter-
nating electrical fields and L(φ) = Φ0

2πIc cos φ is called kinetic inductance. Characteristic
for the Josephson junction is the Josephson inductance given by

LJ = Φ0
2πIc

(2.52)

The energy stored within the junction due to the time varying current and voltage can
be calculated to

E(φ) = −Φ0Ic
2π cosφ (2.53)

with the characteristic Josephson energy

EJ = −Φ0Ic
2π (2.54)

The Josephson inductance and energy are related by

EJ = LJI
2
c (2.55)

It should be noted, that by including an external magnetic field, the phase difference
∆φ has to be replaced with the gauge-invariant phase difference

γ = ∆φ− 2π
Φ0

∫
Ads (2.56)
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2. Theoretical Background

where A is the vector potential and the integral is along the distance s from one electrode
of the weak link to the other.

The external magnetic field therefore affects the Josephson junction in two ways. First it
can be seen from Eqs. 2.49 2.50 that the temperature dependent critical current Ic(T ) is
proportional to the BCS energy gap. For high magnetic fields the critical current and,
as Eq. 2.54 states, the Josephson energy will be affected and reduced by a decreasing
energy gap. On the other hand Eq. 2.53 relates the energy stored within the junction
with the phase difference across the junction. That phase difference is replaced by a
magnetic field dependent term, which means that the energy stored oscillates with a
cosine with magnetic field and differs from the Josephson energy. Examplarily for that
is the Fraunhofer diffraction pattern of the critical current in an extended Josephson
junction. Furthermore it is the basis for DC-SQUID devices. [18, 34]

RCSJ Model

To describe the behaviour of a true Josephson junction, where finite voltages have to be
included, the RCSJ (resistively and capacitively shunted junction) model can be used
[18]. As the name indicates an ideal Josephson junction following

Is = Ic0 sin(γ) (2.57)

is shunted in parallel by a resistor R and a capacitor C. The resistor causes dissipation
for the finite voltage case, while the capacitor corresponds to the geometric capacitance
between the electrodes of the junction.

The total current is the sum of the three parallel channels given by

I = Ic0 sin(γ) + V

R
+ C

dV

dt
(2.58)

and after rewriting V in terms of γ one ends with a second order differential equation

d2γ

dτ2 + 1
Q

dγ

dτ
+ sin γ = I

Ic0
(2.59)

Here τ = ωpt with ωp being the plasma frequency of the system and Q the quality factor.

Qualitatively the RCSJ model and its solution can be visualized by the tilted-washboard
model, which is an mechanical analog. A particle with mass M = ( ℏ

2e)2C and damping η
= ( ℏ

2e)2 1
R is affected by the potential

U(γ) = −EJ cos γ −
(ℏI

2e γ
)

(2.60)

with EJ = ℏ
2eIc0 the Josephson coupling energy. The total current I modifies the potential

in the following way. For I < Ic0 the particle is trapped inside a minimum of the cosine

16



2.1. Superconductivity

and V = 0. By increasing I the slope is tilted and at I = Ic0 the minima turn into
inflection points. For I > Ic0 only time dependent solutions are possible creating a
voltage drop across the junction.

Figure 2.5.: Tilted washboard model. Here the effects of an external magnetic field, EJ(B), are
not included. The phase difference is given by φ. Figure taken from [35].

For overdamped junctions (C small, Q ≪ 1) Eq. 2.59 simplifies to

dγ

dt
= 2eIc0R

ℏ

(
I

Ic0
− sin γ

)
(2.61)

with the solution for the voltage given by

V = R(I2 − I2
c0)

1
2 (2.62)

For I < Ic0 the voltage V = 0, while for very high currents it translates into Ohm’s law
with V = IR.

In the underdamped case (C large and Q > 1) the current voltage relation is hysteretic
showing a zero voltage branch and a finite voltage branch with V ≈ Ic0R in the RCSJ
model. For a real tunnel junction the voltage is given by the BCS energy gap V = 2∆/e,
before approaching Ohm’s law at high currents. In addition, the critical current is
separated into an escaping current Ic0 for increasing current from zero to infinite and a
retrapping current Ir0 for decreasing current from infinite to zero. Thermal fluctuations
may decrease the separation of the two critical currents and even completely destroy the
hysteretic behaviour. Then the value of the critical current Ic < Ic0 is independent on
the sweeping direction.[18]
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2.2. Superconductivity in Two Dimensions
By decreasing the thickness one approaches the 2D limit, where d < λ. In this regime
the properties of superconductors are different to the bulk properties. In the parallel
magnetic field configuration one has to replace the London penetration depth by an
effective penetration depth λeff given by

λeff ≈ λL

(
ξ′

0
d

)1/2
(2.63)

where ξ′
0 is the modified Pippard coherence length for nonlocal electrodynamics [18].

The critical parallel field for a thin film can then be written as

Bc∥ =
√

24Bc
λeff
d

(2.64)

where Bc denotes the thermodynamical critical field as defined in Eq. 2.32 and 2.33.
In perpendicular magnetic field configuration the critical magnetic field is approx-
imated by Bc2 as defined in Eq. 2.36 and replacing λ by λeff [18]. For very thin films
d ≪ λeff Pearl [36] has shown, that

λ⊥ ≈ λ2
eff
d

(2.65)

is a better description as it properly describes the screening length for the supercurrent.
The upper critical magnetic field for ultra-thin films is then given by

Bc⊥ =
√

2Bc
λ2

eff
dξ

(2.66)

2.2.1. Berezinskii-Kosterlitz-Thouless Transition
In section 2.1.2 the intermediate state of Type 2 superconductors Bc1 < B < Bc2 was
connected to single vortices, which can be viewed as flux penetrating through the material,
surrounded by a screening supercurrent. In thin superconducting films with d ≪ ξ a
magnetic vortex may spontanously be generated for T ≪ Tc0 even at B = 0. This leads
to a finite resistance even below the critical mean field temperature TC0. The vortex
shape resembles a pancake for which the magnetic field penetrates perpendicular to the
plane of the film.

The concept bases on a model by Kosterlitz and Thouless [37, 38] originally introduced for
the phase transition of a liquid without long range order to a state with long range order.
It is based on the XY-model and liquid helium. The KT-transition or BKT-transition
(Berezinskii had already described vortex-anti-vortex pairs earlier [39, 40]) is associated
with the creation of vortices at a temperature TBKT. Below that temperature a vortex is
not thermodynamically favoured. For T > TBKT however it is and can live as an excited
state. This theory was not applicable to superconductors, which is a charged superfluid.
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2.2. Superconductivity in Two Dimensions

The creation of one single vortex comes with a finite magnetic field and is not allowed as
an excited state in such a charged superfluid. In 1979 Halperin and Nelson [41] reworked
the theory and extended it to describe thin superconducting films by considering not
single vortices, but vortex-anti-vortex pairs with a net magnetic field that cancels out to
zero, i.e. vortex and anti-vortex show an opposite circulation sense. The nobel prize in
physics was awarded to Kosterlitz and Thouless in 2016 for their theoretical discoveries
of topological phase transitions and topological phases of matter [42].

The energy cost of a single vortex is given by

EV =
(

Φ2
0

4πλ⊥µ0

)
ln
(
λ⊥
ξ

)
(2.67)

where λ⊥ is the Pearl penetration depth and ξ the GL-coherence length. For the case that
the sample size R is smaller than the Pearl penetration depth, it has to be substituted
with R in the argument of the logarithm.
In the BKT regime vortex-anti-vortex pairs are created in a distance R12 separating the
vortex and the anti-vortex. The total energy of such a pair is not two times the energy
of a single vortex, but set by the inter vortex separation R12.

EV,pair = 2
(

Φ2
0

4πλ⊥µ0

)
ln
(
R12
ξ

)
(2.68)

The energy of the pair increases with increasing intervortex separation and acts as an
attractive force between the two components of the pair. By decreasing the distance R12
to ≈ ξ the vortex and the anti-vortex touch and annihilate each other.
The unbinding temperature TV-BKT separates two regimes. Below TV-BKT only pairs do
exist, while in the temperature region TV-BKT < T < Tc0 the pairs are broken up due to
thermal activation. This creates independently moving single vortices.
The transition temperature is found by comparing the energy cost to create a vortex-anti-
vortex pair (T < TBKT) with the gained entropy for two independently moving vortices
(T > TBKT)

kBTV-BKT ≈ Φ2
0

8πλ⊥µ0
(2.69)

A current passing through the sample creates a resistance only in the BKT phase with
free single vortices. Due to opposite circulation sense the vortices and anti-vortices move
into opposite directions and disappear at the edges of the sample. The resistance given
by flux flow as presented in section 2.1.2 follows a square root form [41, 43] as

R(T ) ∝ exp
(

−b
( T

TV-BKT
− 1)1/2

)
(2.70)

Experimentally the transition temperature may be found by studying current-voltage
characteristics. Above TV-BKT the voltage linearly depends on the current V ∼ I. Below
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TV-BKT there are no free vortices at I = 0, i.e. no linear resistance. The only vortices
generated are those from the current, which come in pairs. Therefore right below the
transition temperature the number of vortices increases with I2 and V ∼ Iα(T ) with
α(TV-BKT) = 3. The jump from V ∼ I to V ∼ I3 right at TV-BKT was confirmed by [44]
and is a hallmark of the BKT transition.

2.2.2. Superconducting Fluctuations
Thin disordered films do not show an abrupt jump to the zero resistive state at the
BCS mean field Tc0, but rather a decrease until the temperature decreases below the
vortex BKT transition temperature TV-BKT. However, for temperatures T > Tc(B) with
B > Bc2(T ) the conductivity is influenced by superconducting fluctuations connected to
a fluctuating finite amplitude of the order parameter.
There are two separate contributions to the conductivity for T > TC . The above
mentioned superconducting fluctuations, represented by a charge transport channel for
Cooper-Pairs (Cooper channel) and electron localization effect (diffusive channel).

An overview of the different contributions can be found in [45], where ultra-thin disordered
TiN films were analyzed by taking quantum contributions to the conductivity into account.

The diffusive channel takes into account weak localization (WL) and interelectron inter-
ferences due to Aronov-Altshuler effect (AA) [46].

Weak localization is generated by the interference of an electron with itself. If an electron
passes the same place twice for t < τΦ (τΦ is the time after which the electron loses its
phase memory due to inelastic scattering in the classical case), then the probability to
find that electron in that place is double the classical value. This leads to an effective
decrease in conductivity.
The Aronov-Altshuler term concerns two electrons that interfere with each other twice.
This leads to a constructive interference in case the two electrons exhibit the same phase
at a given time t = 0. The impact on conductivity is negligible for disordered films, but
the interelectron interaction reduces the densitity of states around the Fermi level.
A distinction of both effects is only possible in magnetic field, where the WL contribution
vanishes while the AA contribution is independent on magnetic field.

∆GAA = ∆GW L + ∆GID = G00A ln
(
kBTτ

ℏ

)
(2.71)

where A = αp+ B (αp originates from WL and B corresponds to AA), G00 = e2

2π2ℏ ≈
(81kΩ)−1 and the time τ is given by the mean free path l = νF τ for an elastic scattering
event.
B is in the order of unity and depends on Coulomb screening. α should be taken as 1 for
potenital, -1/2 for orbital and 0 for scattering interactions. p is connected to 1/τΦ.
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2.2. Superconductivity in Two Dimensions

The Cooper channel governs the effects due to creation of Cooper pairs, i.e. interacting
electrons with nearly oppsite momenta, due to fluctuations and the resulting consequences.
The Aslamazov-Larkin (AL) term [47] is directly connected to the increase of conductivity
due to the creation of Cooper pairs.

∆GAL = e2

16ℏ
T

(T − Tc)
(2.72)

As Cooper pairs are created above the critical temperature Tc the effective number of
normal electrons decreases, which leads to a decrease of conductivity given by the Drude
formula, (DOS-term) [48].

∆GDOS = G00 ln
( ln (T/Tc)

ln (kBTcτ/ℏ)

)
(2.73)

The third term is due to renormalization of the single-particle diffusion coefficient in
presence of fluctuations (DCR)

∆GDCR = 4
3G00 (ln ln (1/Tcτ) − ln ln (1/Tc)) (2.74)

and the last considered term originates from the coherent scattering of electrons on impu-
rites. This term is referred to as Maki-Thompson (MT) term [49–51] and can be positive
or negative depending on the conventional pair breaking parameter δ = (πℏ)/(8kBTτΦ).

∆GMT = G00β(T ) ln
(
TτΦ
ℏ

)
(2.75)

where β(T ) is the Larkin factor.

Superconducting fluctuations may play an important role even at low temperatures
T < Tc for magnetic field exceeding Bc2. The total conductivity is given by

∆G(T,B) = G0 + ∆GID + ∆GSF (2.76)

The correction ∆GID reads as

∆GID = G00B ln
(
kBTτ

ℏ

)
(2.77)

as shown in Eq. 2.71. The corrections above Bc2 at T ≪ Tc0 due to superconducting
fluctuations were calculated by [52]. The contributions AL, MT and DOS in the dirty
limit Tc0τ ≪ 1 can be written in a first loop approximation as

∆GSF = 2e2

3π2ℏ

[
− ln( r

h
) − 3

2r + ψ(r) + 4[rψ′(r) − 1]
]

(2.78)

Here r = (1/2γ)h/t with γ = 1.781 Euler’s constant. h = (B−Bc2/Bc2(0)) and t = T/Tc0.
ψ is the digamma function and ψ′ is the trigamma function.
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Figure 2.6.: a) Sheet resistance of 4 TiN samples fitted with all quantum fluctuation contributions.
Contributions of diffusive channel and superconducting fluctuations are separately
shown by red and blue dotted lines, respectively.
b) Fits of the Galitski-Larkin formula Eq. 2.78 for Tc = 2K and Bc(0) = 2.8T. a)
taken from [45], b) taken from [53]. Orig. [54].

2.2.3. Superconductor-Insulator Transition (SIT)

In three dimensional (3D) systems two distinct transitions separate the superconducting
state from a metallic state (SM transition) and the metallic state from an insulating
state (MI transition). Those transitions are reviewed in [55, 56].

In the two dimensional (2D) case, Refs. [7, 57] and [58] review the most important results
on the theoretical side and findings on the experimental side of the SIT.

It was Anderson who first came up with the idea that it should be possible to turn a
superconductor into an insulator in case it consists of superconducting islands connected
by (normal or insulating) Josephson weak links. The insulating state would then result
from localized Cooper pairs on the islands, decoupled from each other [7]. His work was
transfered onto granular systems by Abeles [8] and the theoretical proof of existence of
such a phase transition in granular superconductors was given by Efetov [59]. Fisher
predicted in 1986 [60] that the disorder induced transition should exactly happen at
or very close to the quantum resistance for Cooper pairs RQ = ℏ

(2e)2 = 6.45kΩ after
evaluating data of granular Sn [61, 62]. This was supported by measurements on granular
Pb, Al, In and Ga [10].
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In 1989 Haviland [63] presented measurements on homogenously disordered bismuth
films grown onto germanium, which revealed a transition from a superconducting state
to an insulating state with decreasing film thickness as well. In addition, the resistance
separating the superconducting and the insulating side is approximately RQ as predicted
for granular systems. However, it was also found that in lead films the separation
resistance was at a higher value i.e. differed from RQ.
In homogenously disordered thin films the origin of the transition is often referred to
self-granularity indicating a self-ordering into superconducting islands in a spatially
homogenous film [64, 65].
It was confirmed by simulations, that for sufficiently high disorder homogenously dis-
ordered films break into superconducting islands separated by an insulating sea [66].
Measurements on local density of states by scanning tunneling spectroscopy on TiN and
InOx films support this hypothesis [67].

The transition is referred to as disorder-driven superconductor insulator transition (D-
SIT) and has been found in various superconductors. There are amorphous e.g. InOx
[68] and Ga [9], polycristalline e.g. TiN [69] and granular e.g. Pb [70] films. Disorder
may be tuned in various ways, e.g. by thickness variation [71], thermal treatment [72]
or a variation of stochiometric concentration in relatively thick superconducting alloys
[73]. In the latter case for NbSi the SIT transition comes with an intermediate metallic
phase as predicted for the transition in 3D. That intermediate metallic phase can be
seen in Fig. 2.7a) for truely 2D amorphous lead films, where the transition was tuned by
thickness variation. However, such an intermediate metallic state is not always observed.
For example it is absent in case of TiN as seen in Fig. 2.7c).

Fig. 2.7 shows the thickness induced SIT for amorphous lead and lead grains with
diameter ≈ 20nm and height ≈ 5-8nm. Clearly visible is the temperature dependence of
the transition temperature in homogenously disordered films a), whereas the transition
temperature is independent on the film thickness for Pb grains in b).

The origin of the SIT is still debated and there are more than one scenario that give
rise to a superconductor insulator transition. In homogenous systems the mechanism
may be of fermionic or bosonic nature. The third model is based on the physics
of granular superconductors and is built on resistively shunted Josephson junction
arrays. This model can be applied to granular and homogenous 2D superconductors.
Another model involves percolation. In this model the superconductor has to be either
naturally inhomogenous or homogenous with order parameter amplitude fluctuations,
making it quasi-inhomogenous. That effect may play a role for the other three models as
in reality inhomogeneity is unavoidable.[58]

The superconducting state is characterized by an order parameter (see GL theory 2.1.2)

Ψ(r) = ∆(r) exp (iφ(r)) (2.79)

where ∆ is the superconducting gap amplitude and φ the phase. The Cooper pair density
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Figure 2.7.: SIT in a) amorphous and b) very small grains of Pb induced by thickness variation.
Thickness increases from top to bottom. Adapted from [57]. Data from [71].
c) D-SIT without intermediate metallic phase in TiN tuned by thickness reduction
using plasma etching. Figures taken from [69].

is given by
ns = |Ψ|2 = ∆2 (2.80)

The particle density ns and the phase are conjugate variable and are connected by the
uncertainty principle

∆ns∆φ ≥ ℏ (2.81)

Global phase coherence is achieved when the correlator

G(r) = ⟨Ψ(r)Ψ(0)⟩ (2.82)

remains finite at a long distance.

The fermionic scenario of localization is based on the work of Finkel’stein [74].
In this scenario the superconducting order parameter is suppressed by disorder in a
homogenously disordered system. The competition between attractive and repulsive
forces determines the low temperature behaviour. If attractive forces dominate, then
Cooper pairs are created, i.e. a superconducting state emerges. In case of strong repulsive
forces Cooper pairing is suppressed. Coulomb repulsion may be increased with increasing
disorder due to a reduced electron mobility originating from impurity scattering. Hence,
a superconductor-metal transition can be induced as for sufficiently high disorder Cooper
pairing is unfavoured. The suppression of the transition temperature Tc from the bulk
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Tc0 value should follow

Tc
Tc0

= exp
(

− 1
γτ

)[(
1 + (t00/2)1/2

(γτ − t00/4)

)
·
(

1 − (t00/2)1/2

(γτ − t00/4)

)]1/
√

2t00

(2.83)

with γτ = 1/ ln (kBTc0/ℏ) < 0 and t00 = (e2/2π2ℏ)/R□(300K) = G00R□(300K). Here
the sheet resistance at room temperature is used as a measure of the disorder.
In this scenario the insulating state evolves by Anderson localization of electrons after
the destruction of superconductivity. The intermediate metallic state between super-
conducting phase and insulating phase arises because the raising disorder leads to a
reduction of Cooper pairs and an increase of single electrons until the breakdown of
superconductivity. However, this disorder is not yet sufficient to localize normal charge
carriers. At higher levels of disorder Anderson localization leads to an insulating state.
The fermionic transition is rather a Superconductor-Metal-Insulator (SMI) transition
than a direct Superconductor-Insulator (SI) transition.
The predicted suppression of Tc given by Eq. 2.83 was found to be in good agreement
with experimental findings in homogenous thin films like TiN in the vicinity of the SIT
[67], but no intermediate metallic phase has been found (see Fig. 2.7c)).

Another explanation for a SIT is the bosonic scenario of localization. We have
already seen in Eq. 2.81 that phase and particle density are conjugate variables. In the
superconducting state the phase of the macroscopic wavefunction is well defined and the
particle number remains unknown. The opposite case is given when the particle number
is fixed and the phase is fluctuating. This corresponds to localized Cooper pairs, i.e.
local superconductivity is present, but global phase coherence is not achieved. Hence the
system behaves insulating as the superconducting gap amplitude remains finite indicating
Cooper pairing, but the correlator in Eq. 2.82 is suppressed.

For two dimensional, disordered superconducting films, the groundstate is composed by
Cooper pairs. However, due to the disordered nature of the film, global phase coherence
may not be established and an insulator should emerge without an intermediate metallic
phase [75–77]. Local superconductivity may exist in some areas, but no global supercon-
ductivity is found. The small superconducting islands may be effectively disconnected
from each other depending on external tuning parameters [75, 78]. Larkin [79] developed
a theory for the suppression of the vortex-BKT transition temperature in uniformly
disordered superconductors based on a bosonic approach. His idea is closely related to
the JJA model. The superfluid density is reduced by classical and quantum fluctuations.
A reduction of the superfluid density supresses the vortex-BKT transition temperature.
That means at a sufficient strong disorder the superfluid density as well as TV-BKT
approach 0, however the BCS critical temperature Tc0 is changed only insignificantly.
As the global superconducting state is absent due to the suppression of TV-BKT, but a
finite superconducting gap amplitude is present, this resembles superconducting islands
decoupled from each other.

25



2. Theoretical Background

In case of a granular superconductor the scenario of superconducting islands in a normal
or insulating matrix is naturally realized. Therefore granular superconductors are natural
model objects to study the bosonic scenario for a SIT. However, true granular systems
are very complicated objects. Related systems are artifical Josephson junction arrays [80,
81] and ultra-thin amorphous films patterned with a honeycomb lattice [82].
Historically, artifical Josephson junction arrays and granular superconductors were stud-
ied in parallel and showed similar effects. JJAs offer the possibility of an experimentally
accessible system, where the two tuning parameters EJ (Josephson coupling) and EC
(charging energy of a single junction) may be easily controlled [7]. Due to features of
JJAs, which they share with homogenously disordered and granular films, including a
phase transition from superconducting state to an insulating state with disorder, JJAs
are treated as a generic model for the latter two systems. The JJA model will be shown
in the next section 2.2.4.
We will capture some of the essential properties of granular metals and superconductors
in section 2.3.

In case the sample is in the vicinity of the disorder induced SIT (RN ≈ RQ, EJ ≈ EC),
then the transition may be induced by an applied magnetic field. This transition is
called B-SIT and is accompanied by the creation of a highly insulating state by a small
magnetic field in case the sample is still at the superconducting side for B = 0T. If
it is on the insulating side already, then a small magnetic field further increases the
resistance (see Fig. 2.8). This positive magnetoresistance (PMR) is followed by a negative
magnetoresistance (NMR) for higher fields.

Figure 2.8.: a) Magnetoresistance isotherms of four samples. The red curves correspond to
superconducting samples at T,B = 0 and blue curves to insulating samples at T,B
= 0.
b) Magnetoresistance isotherm of a sample on the superconducting side of the SIT
for various temperatures.
Material: TiN. Figures taken from [69] and [83].
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2.2. Superconductivity in Two Dimensions

SIT as Quantum Phase Transition

In context of the bosonic mechanism, Fisher [84] pointed out in 1990, that the Superconductor-
Insulator transition in thin metal films may be associated with a continuous quantum
phase transition (QPT) and is nowadays accepted as one of the prime examples [85].
QPTs occur between competing groundstates of many-body systems and result from
quantum fluctuations near critical points [86]. At T = 0 a quantum phase transition
arises as a parameter in the Hamiltonian of the quantum system is changed. The two
groundstates are separated by a quantum critical point.

R(T ) curves measured for thin Bismuth films [63] showed a separation into superconduct-
ing R(T )s (positive temperature coefficient) and insulating R(T ) (negative temperature
coefficient) around a fixed point without an intermediate metallic regime. The value of
the critical resistance coincided approximately with the quantum resistance for Cooper
pairs h/4e2. However, this critical value was found to be non-universal in later studies.
Nevertheless, a dual picture for the superconducting phase and the insulating phase was
applied to describe the SIT with Boson physics. In case of the B-SIT a critical magnetic
field Bc separates the superconducting side from the insulating side, while in D-SIT it is
a critical disorder ∆c for the critial point.
The superconducting side of the B-SIT consists of Bose condensed Cooper pairs and
vortices are localized in a vortex glass. On the insulating side, vortices are delocalized
by Bose condensation and Cooper pairs are localized in a Cooper pair glass. Right at
the critical point there is no Bose condensation at all and both vortices and Cooper
pairs diffuse with a finite resistance. Experimentally, that critical point with a metallic
behaviour may not be observed as it is an unstable point.
The D-SIT shows a similar picture but with critical disorder ∆c.

Near a quantum phase transition there are two correlation length, ξ and ξτ , which diverge
by approaching the critical point at T = 0. The first one accounts for spatial dimension,
while the latter accounts temporal dimensions. The transition happens at a critical
value g = gc, where g is a measure of disorder, magnetic field, etc. and enters a control
parameter δ = g−gc

gc
. As δ → 0 at T = 0, both correlation length diverge following

ξ(g) ∝ |δ|−ν (2.84)
ξτ (g) ∝ ξz (2.85)

where ν is the correlation length exponent and z the dynamical critical exponent. The
two exponents then represent universal behaviour.
As in experiments T = 0 is never reached, a modified model called finite-size scaling
is introduced. In this model the critical exponents may be determined even at a finite
temperature. In two dimension the resistance near the QPT is given by

R(B, T,E) = Rc · F
(

δ

T 1/zν
,

δ

E1/ν(z+1)

)
(2.86)
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with B - magnetic field, T - temperature, E - electric field and Rc a resistance prefactor.
The function F is system dependent, but does not have to be known for analysis.
A finite-size scaling leads to a collapse of R(T ) curves for exponents zν. This is examplarily
shown in Fig. 2.9, where calculated R(T ) curves in a) collapse in b) using finite-size scal-
ing. The two branches indicate the superconducting and the insulating side of the QPT.
For a more detailed description of continuous quantum phase transitions, a deeper in-

Figure 2.9.: Theoretical, calculated R(T ) curves shown for various ratios of B/Bc2(0). Calcula-
tions included corrections to the conductivity due to Aronov-Altshuler interelectron
interference effects as presented in section 2.2.2. The T ∗ = 20K. b) Finite size scaling
for the theoretical curves in a). Figures taken from [87].

sight to the theoretical background and finite-size scaling, please refer to Refs. [84, 86, 88].

Percolative Scenario

Shimshoni [89] and Sheshadri [90] suggested that the superconductor insulator transi-
tion could be percolative. That idea would be applicaple to films, which are naturally
inhomogenous, or to homogenous films, in case they are transformed into inhomogenous
films by order parameter amplitude fluctuations [91]. In 2007 Strelniker [92] set up a
percolation model for SIT in granular films. They modelled the granular superconductor
by a two-dimensional random resistor network, which might be dominated by Josephson
coupling by Cooper pair tunneling or by quasiparticle tunneling. In their modelling they
found good agreement with the temperature dependence found in various granular films,
e.g. Pb [71, 93], Al, Pb, In,Ga [10].

In those measurements the R(T ) curves followed an inverse activation law

R(T ) ∼ exp (T/T0) (2.87)

in a wide temperature range below the critical transition temperature Tc as seen in Fig.
2.7 and 2.10a).
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2.2. Superconductivity in Two Dimensions

The percolative scenario for the SIT involves inhomogeneities in the coupling strength
between the superconducting grains. On the superconducting side the path for the charge
transport is governed by islands coupled with a different critical current Ic. On the
insulating side the percolation path involves islands coupled with a different threshold
voltage VT. By crossing the SIT from the superconducting side to the insulating side the
number of superconducting paths approaches zero and the system is determined by the
weakest insulating paths.

Figure 2.10.: a) R(T ) curves in granular Pb with grain sizes ∼ 5-10nm measured by [94] for
different intergrain coupling strength. b) Theoretical plots to the model of [92].
Figures taken from [92].
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2.2.4. Josephson Junction Array Model

A regular network of superconducting islands weakly coupled by tunnel junctions is re-
ferred to as a quantum Josephson junction array. Such arrays are an ideal model to study
a variety of phenomena, e.g. phase transitions, frustration effects and vortex dynamics
and offer the possibility to be accessible in case of artificially produced arrays. In such arti-
ficial JJAs those phenomena may be tuned by different parameters in a controlled way [95].

Figure 2.11.: a) Sketch of an array of tunnel junctions with capacitive couling C between the
islands and C0 to ground. Encircled + and - signs depict a local excess and a deficit
of charge. Islands may be normal conducting or superconducting. In the latter the
coupling is due to Josephson tunneling EJ. Figure taken from [96].
b) SEM image of a part of an array: islands are 0.5µm x 1µm. Figure taken from
[81].

For Josephson junction arrays the interplay between the Josephson energy EJ and the
charging energy EC, given by the capacitance between two neighbouring electrodes,
controls the low temperature behaviour of the array. For arrays with EJ ≫ EC the
array turns superconducting, while in the opposite case the array shows an insulating
behaviour due to Coulomb blockade of Cooper pairs. If EJ ≈ EC, RN ≈ RQ then an
external magnetic field may induce the B-SIT. Fazio and van der Zant [95] presented a
good overview for quantum phase transitions in superconducting networks.

The Josephson energy (see section 2.1.3), related to the tunneling of Cooper pairs between
the islands, is given by

EJ = Φ0Ic
2π (2.88)

with the magnetic flux quantum Φ0 = h/2e and Ic the maximum critical current of the
junction in absence of thermal fluctuations and charging effects. The critical current can
be estimated from the superconducting energy gap ∆ and the normal state resistance
RN of the junction using the formula proposed by Ambegaokar and Baratoff, Eq. 2.49.
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2.2. Superconductivity in Two Dimensions

As an array consists of a number of Josephson junctions in series and in parallel, each
island is capacitively coupled to other islands denoted as Cij for island i coupled to island
j. In addition each island is capacitively coupled to ground with a capacitance C0.
In the nearest neighbour approximation, that problem simplifies as only directly connected
neighbouring islands are taken into account together with the coupling to ground. The
resulting approximation of the charging energy gives

EC = E
(e)
C = e2

2C for electrons (2.89)

For Cooper pairs with a charge 2e the charging energy is four times higher, i.e.
E

(CP)
C = 4E(e)

C . The electrostatic screening length takes into account the capacitance to
ground as is given by

Λ =
√
C/C0 =

√
E0/EC (2.90)

and measured in units of the lattice spacing/unit cell/plaquette.
In a distance up to Λ the Cooper pair interaction is logarithmically increasing and
exponentially decreasing for larger distances. Quantum effects play a crucial role when
EJ ≈ EC.

The Hamiltonian for such a quantum system is considered in the Quantum Phase Model
(QPM). In this model quasi-particle tunneling is ignored and only Cooper pair tunneling
in the superconducting quantum network is taken into account. The most general form
of the Hamiltonian reads

H = HC +HJ (2.91)

= 1
2
∑
i,j

(Qi −Qx,j)C−1
ij (Qj −Qx,j) − EJ

∑
<i,j>

cos (ϕi − ϕj −Aij) (2.92)

and can be approximated by

H ∼ 1
2
∑
i,j
QiC

−1
ij Qj − EJ

∑
<i,j>

cos (ϕi − ϕj −Aij) (2.93)

in case the effects Qx,i = 2eqx = ∑
jCijVx,j of an external gate voltage Vx,i is omitted.

The first term is the charging energy, where C−1
ij is the capacitance matrix of the system,

and the second term describes the Josephson tunneling with ϕi, ϕj the phases of the
corresponding superconducting islands i, j, respectively.

Eqs. 2.92 and 2.93 include the effect of a perpendicular magnetic field with vector
potential A. It enters the Hamiltonian by Aij = 2e

∫ j
i Adl, where the relevant parameter

is the magnetic frustration f .

f = (1/2π)
∑
P
Aij = Φ

Φ0
(2.94)

where P denotes the plaquette over which is summed.
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Zero Magnetic Field

In case the Josephson tunneling dominates (EJ ≫ EC) then the energy minimum is found
for aligned phases and a global superconducting phase emerges at low temperatures. In
the opposite limit (EC ≫ EJ) the islands of the array are superconducting, but the array
in total is insulating as the islands are effectively decoupled from each other due to the
large energy cost needed to transfer an extra charge onto an island.

By tuning the ratio of EJ/EC the system undergoes a superconductor to insulator
transition. A prominent picture of the SIT is the dual picture of vortices in the vortex-
BKT regime on the superconducting side (see section 2.2.1) and charges in the so-called
charge-BKT regime on the insulating side.
In the vortex-BKT regime a finite resistivity arises for T > TV-BKT as vortex-antivortex
pairs are broken up. In the charge-BKT regime a finite conductivity is generated for
T > TC-BKT as Cooper-pair/anti-Cooper-pair pairs (local excess and local deficit in the
Cooper pair density), referred to as Cooper-pair dipoles, are broken up. The transition
between the two low temperature phases was found to occur at EJ/EC = a(2/π2), where
the parameter a is slightly larger but close to 1. This is depicted in Fig. 2.12. The

Figure 2.12.: Phase diagram for vortex- and charge-unbinding transition in a superconducting
JJA depending on the ratio of EJ/EC. Quasi-particle tunneling is ignored. Figure
taken from [96].

transition temperatures in the classical limits are given by

kBTV-BKT = π

2ϵv
EJ for EC = 0 (2.95)

and
kBTC-BKT = 1

πϵq
EC for EJ = 0 (2.96)

ϵv and ϵq usually differ from each other, but are both in the order of unity [96].
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2.2. Superconductivity in Two Dimensions

However, for superconducting arrays in the vortex-BKT regime increasing capacitances
between the islands leads to a suppression of the transition temperature

kBTV-BKT =


πEJ

2

(
1 − 4

3π
E0
EJ

)
for C0 ≫ C

πEJ
2

(
1 − 1

3π
EC
EJ

)
for C0 ≪ C

(2.97)

with E0 being the self charging energy [96, 97].
On the insulating side in the charge-BKT regime a finite value of the Josephson coupling
leads to a suppression of the transition temperature

kBTC-BKT = 1
π
EC − 0.31E

2
J

EC
for EJ ≪ EC (2.98)

It is interesting to note, that the charge-BKT mechanism is achieved in arrays of normal
tunnel junctions as well. Here instead of Cooper-pair dipoles, single electron dipoles
(charge/anti-charge) are responsible for the transition into the insulating state. Due to
the reduced charge 2e− → e−, the charging energy EC is reduced to EC/4, which leads to

kBTC-BKT,N = 1
4πϵc

EC for EJ = 0 (2.99)

Below TC-BKT,N solitons of e−/e+ (excess and deficit of charge) are logarithmically bound,
while above the transition temperature free charges of ±e move independently.

Figure 2.13.: Comparison of the conductance of an array consisting of 190x60 plaquettes of alu-
minum tunnel junctions. S denotes the islands to be superconducting, N denotes the
islands to be in the normal state (B = 3T). Visible is the impact of superconductivity
on the transition temperature TC-BKT due to the increase of EC. Figure taken from
[98].
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The conductivity in the insulating state should vanish with the same dependence as
the resistivity in the superconducting state, i.e. with a square root dependence on
temperature. Instead an activated behaviour was found with

σ ∝ exp
[
− EA
kBT

]
(2.100)

where the activation energy was approximated by EA ∼ ∆ + 0.24EC [80, 99].
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2.2. Superconductivity in Two Dimensions

Finite Magnetic Fields

The second term in Eq. 2.92 periodically oscillates with magnetic field. Its periodicity is
determined by integer values of f , which corresponds to the case when an integer number
n = f vortices penetrates one plaquette of the lattice. The Josephson coupling for integer
values of f is exactly the same as in the f = 0 case for zero magnetic field. Due to the
periodicity the behaviour with increasing magnetic field reduces to 0 ≤ f ≤ 1. In the

Figure 2.14.: Longitudinal resistance Rxx, Hall resistance Rxy and Hall angle θ shown for frus-
trations −1 < f < 1 and various temperatures between 20mK (top) and 175mK
(bottom). The longitudinal resistance shows minima at f ± 1/2 embedded in the
expected peak for maximum frustration. Smaller dips in side lobes correspond to
other values of p/q. Figure taken from [81].

special case f = 1/2, the array is at its maximum frustration, where the groundstate is
constructed by alternating plaquettes of currents with opposite circulation sense. The
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Josephson coupling then is suppressed. This leads to oscillations in the resistance versus
magnetic field curves R(B) as seen in Fig. 2.14. In addition, that manifests in highly
non-linear current voltage characteristics (IVs) at the lowest temperatures (see Fig. 2.15).
For f = n, n integer, critical current Ic features are present indicating a current flow of
Cooper-pairs. Theoretically, for f = n + 1/2, n integer, the shape is represented by a
threshold voltage VT indicating a blockade for Cooper pair tunneling due to the maximum
frustration. However, for f = p/q with p and q integer, there might be many different
groundstates and their combined effect can lead to a shift of the critical (maximum)
frustration fc.

Figure 2.15.: Three selected low temperature (T = 15mK) IVs for f = 0, 0.1 and 0.27. Zero bias
regime exhibits a critical current feature (vertical line) in the non-frustrated case
f = 0 and a threshold voltage feature (horizontal line) for frustration f = 0.27.
Intermediate frustration f = 0.1 shows a finite slope. Inset shows the corresponding
R(T ) curves in the interval 0 < f < 0.27. The values of the sheet resistance varies
by a factor 104, while the magnetic field was changed by 0.44mT only. Figure taken
from [81].

By further increasing the magnetic field, the prefactor EJ in Eq. 2.92 will be affected by
the decreasing value of the superconducting gap ∆ as Cooper pairs are broken up. This
effectively drives the JJA into the insulating side by decreasing the ratio EJ/EC and hence
the overall resistance will increase (positive magnetoresistance). The resistance peaks in
the R(B), where the suppression of the conductivity associated by the suppression of EJ
is equaled out by the increasing impact of single electron transport on the conductivity
(negativ magnetoresistance).
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2.2. Superconductivity in Two Dimensions

As mentioned in the previous section, granular superconducting thin films are closely
related as they naturally consist of superconducting islands (sizes may be relatively
uniform or show a broad distribution) connected by various coupling energies given
by island size and interisland separation). In such granular systems disorder plays a
crucial role, while it is either absent in JJAs or may be induced by external parameters.
Due to striking similarities to granular films and even homogenously disordered films
("self-induced granularity" in the vicinity of the SIT) JJAs can be used as a model
capturing the most essential features for a wide class of systems [7]. However, the ratio
EJ/EC is replaced by the dimensionless conductance g (measured in e2

h ) for thin films.
Large values of g corresponds to superconductivity, small g to insulating behaviour and
gc denotes the critical conductance separating both regimes.
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2.3. Disordered and Granular Systems

2.3.1. Conduction in Disordered Solids

Disordered solids may be categorized into a) amorphous and polycristalline solids, b)
granular metals, c) doped semiconductors and d) two-dimensional electron gases (2DEGs).
Ref. [100] gives a very broad overview about the physics and conduction mechanisms of
those disordered electronic systems. The materials may behave metallic or insulating
depending on the locations of the Fermi energy. If the material behaves insulating, then
at higher temperatures the conduction follows an Arrhenius behaviour attributed to
thermal excitation of charge carriers (activated behaviour).

σ ∝ e
− EG

2kBT (2.101)

where EG is the energy gap between the bands of a doped semiconductor.

For lower temperatures it was found that the activation energy deviates from that be-
haviuor and decreases with temperature, which was first explained by Mott [101] and
Conwell [102]. The mechanism was called "hopping" and attributed to transitions between
impurities. Miller and Abrahams [103] showed that it can be viewed as a series of resistors
in a network connecting impurities.

Following the ideas of Anderson [104], Mott and Twose [105] came up with the idea,
that electronic systems may be described by localized wavefunctions with a sharp energy
boundary, called mobility edge. This energy separates localized states from delocalized
(extended states), where the transition is governed by the density of states and the
localization length. It was proposed by Mott that if the electrons around the Fermi
energy are localized, then the material would become insulating at low temperature,
while it would become metallic if the states are delocalized. This transition is called
Anderson transition. The minimum value for the metallic conductivity in 2D is given by e2

h .

The DC conductivity on the insulating side was described by Mott [106] in 1968. He
proposed a mechanism called Variable Range Hopping (VRH), where the charge carriers
may hop over larger distances, compared to the Miller Abrahams approach.

For non-interaction systems the temperature dependence of the conductivity follow Mott’s
law

σ = σ0 exp
[
−
(
T1
T

) 1
d+1
]

(2.102)

with d being the dimensionality of the system. Hence, for the case of a 2D film the
temperature dependence follows σ ∝ exp

(
−T− 1

3
)
.
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For interacting systems however, Efros and Shklovskii [107] derived the VRH by replacing
the constant Mott density of states by the Coulomb gap density of states.

σ = σ0 exp
[
−
(
T0
T

) 1
2
]

(2.103)

The conductivity in granular metals is often found to follow Efros-Shklovskii law with s
= 1

d+1 = 1
2 [108]. Nevertheless, s has also been found to be bigger than 0.5. For highly

insulating granular aluminum films Delahaye [109] reported s = 1.

That behavior resembles the classical activated behavior governed by an activation energy
due to thermal activation of charge carriers and the conductivity can be written as

σ = σ0 exp
[
−
(
T0
T

)]
= σ0 exp

[
−
(
EA
kBT

)]
(2.104)

2.3.2. Conduction in Granular Systems
True granular systems can be further devided into granular metals and granular su-
perconductors. Granular metals can be viewed as a random array of N-I-N junctions,
where the insulation layer may be either vacuum (free standing metallic islands) or an
insulating material (metallic islands in an insulating matrix). The transport properties
are determined by the tunneling conductance g between the grains, the charging energy
EC for a single grain, the mean level spacing for a grain δ and the mean electronic lifetime
ℏ/gδ.
For the case that the grains turn superconducting the granular system may be treated
as a random array of S-I-S (Josephson junctions) in the simplest way and adds another
tuning parameter to the system, namely the energy parameter ∆.
In reality one might have a broad set of different types of junctions coupled to each other
as some grains may be superconducting while others may be normal conducting. The ratio
of superconducting grains and normal conducting grains may depend on temperature,
grain size, external magnetic field, etc. A review of the properties of granular electronic
systems can be found in Ref. [110].

Granular Metals

Let us first examine the case without superconductivity. The coupling parameter g =
G/G0, G0 = 2e2

h , determines the transport properties. For g ≫ 1 (strong coupling) the
granular material behaves metallic, while for g ≪ 1 it behaves insulating. To understand
the insulating state one has to take into account not only Coulomb effects (blockade of
electron transport at low T) but also quantum interference effects leading to localization
of electrons, as mentioned in the section above.

In the metallic regime and at high temperatures Coulomb and interference effects can
be neglected and the conductivity can be written as the classical Drude formula. An
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important parameter is the characteristic energy Γ, which corresponds to the invers of
the life time of an electron inside a single grain.

Γ = gδ (2.105)

It becomes clear from Eq. 2.105 that the characteristic energy is connected to the grain
coupling g and the mean energy level spacing inside a grain.
After taking into account corrections due to Coulomb effects and interference effects the
critical conductance can be rewritten as

gc = ( 1
2πd) ln(ECδ) (2.106)

with d being the dimension of the system.
In the 3D case the system behaves metallic for g > gc. For g < gc it develops a Coulomb
blockade for which, below a certain temperature, insulating behaviour takes over. There-
fore gc separates superconducting and insulating state for T → 0.
In 2D there is no sharp transition from metal to insulator as low temperature conductivity
corrections (electron-electron interactions and localization) have to be taken into account.
For g < gc the system exhibits a strong Coulomb blockade, while for g > gc the system
is only weakly insulating at the lowest temperatures without a clear separation from the
metallic regime.

In the insulating regime, i.e. weak coupling, a periodic system becomes a Mott insulator
at the lowest temperatures. The transport is mediated due to electron hopping from
grain to grain and blocked due to the Coulomb gap at the lowest tempratures T ≪ ∆M.
The Mott gap is then given by the charging energy ∆Mott = EC and the conductivity is
given by the Arrhenius form

σ ∝ e− ∆M
T (2.107)

However, in most real granular samples the activated behaviour is not seen at the lowest
temperatures, but it is replaced by the Efros-Shklovskii law Eq. 2.103. This can not
be explained by a periodic model and suggests that disorder plays a crucial role in
the insulating regime. The deviation remained unexplained for a long time. Averin
and Nazarov [111] considered two tunneling processes through single grains, elastic and
inelastic co-tunneling. In the first case, an electron tunnels through a grain and has the
same energy before and after the process. In the ineleastic case the ingoing and outgoing
energies are different, therefore the grain is left behind with an electron-hole excitation.
Both mechanisms base on virtual states, that are inaccessible in a classical descripton.
Beloborodov [112] and Feigel’man [113] independently generalized the two processes to
the case of multiple co-tunneling processes through several grains. As the tunneling
probability decreases exponentially with distance or number of grains they argue that this
is equivalent to the Efros-Shklovskii behaviour, where the tunneling probability between
states near the Fermi surface does as well fall off exponentially.
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In granular metals a crossover is expected at a temperature T ∗, where the low temperature
Efros-Shklovskii law translates into a simple activated dependence at higher T .

Granular Superconductors

Granular superconductors are heavily influenced by the properties of the grains, e.g. size,
distance, etc.. This disorder, due to inhomogeneities exceeding the atomic level, may be
controled by the resistance of the interlayer (normal conducting or insulating). Another
important aspect is related to the question, whether superconductivity may exist on the
grains itself. [57, 110]

In 1959 Anderson concluded that the critical temperature for superconductivity of small
grains should be comparable or close to the bulk BCS Tc [114] and predicted that the
average mean level spacing δ should be smaller than the BCS energy gap ∆ for this
arguement to hold.

δ ≪ ∆ (2.108)

If on the other hand this condition is not fullfilled, conventional BCS theory is no longer
applicable and the grains can not get superconducting by themselves. Experimentally it
was found that below ≈ 5nm the electron spectrum of aluminum grains did not show
any features of superconductivity [115].

The transport properties of granular superconductors are very rich, vary for different
material systems and far from being understood. The most common model used is the
JJA model as discussed in section 2.2.4 based on superconducting networks reviewed by
Fazio and van der Zant [95].
In absence of magnetic field granular superconductors show a non-monotonic temperature
dependence. By decreasing temperature their resistivity increases due to enhancement of
Coulomb correlations, which decreases the current. Closer to the transition temperature
the resistivity starts to decrease and vanishes for even lower temperatures (see Fig. 2.16).
In addition, granular films with a normal state sheet resistance close to the critical value
RQ often exhibit a complicated reentrant behaviour, where the resistance first drops as
it would go superconducting but then increases for lower temperatures. This effect can
be seen in Fig. 2.17 and is attributed to be a consequence of the competition between
the conductance increase due to Cooper pairing and freezing of excitations due to the
opening of the superconducting gap in the density of states [110].
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Figure 2.16.: R(T ) curve of a granular aluminum film on germanium. An increase in resistance is
clearly visible until the grains turn superconducting and a finite Josephson coupling
EJ leads to a vanishing resistance below the critical temperature. Figure taken from
[116].
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Figure 2.17.: Thickness dependent R(T ) curves for granular aluminum and gallium films. Su-
perconductor to insulator transition happens in a small range of a few nm only.
Reentrant behviour is seen in both materials, but more pronounced in gallium data
set. Figure taken from [10].
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Upper Critical Field

We now turn to the behaviour in an applied magnetic field [18, 110]. For small tunneling
conductances the critical magnetic field of the sample is close to the critical field of a
single grain

Bgr
c = µ0H

gr
c =

√
5∆0

2R2D
(2.109)

where ∆0 is the BCS energy gap for T = 0, R = a/2 the grain radius and D the diffusion
coefficient in the grain.
However, for sufficient large tunneling conductances the critical field is rather given by
the bulk value

Bbulk
c = µ0H

bulk
c = Φ0

2π
∆0
Deff

(2.110)

with Φ0 the magnetic flux quantum and Deff being an effective diffusion coefficient for
the array given by Deff = gδa2.

The conductance separating the two regimes is given by a new characteristic conductance
value

g⋆ ≈ 0.16(aδ)−1√∆0D (2.111)

The mechanism leading to Eq. 2.109 and 2.110 was first considered by Larkin [117] and is
known as the orbital mechanism. However, as grain sizes shrink the Zeeman mechanism
becomes more and more important [18, 118].
In case the Zeeman mechanism dominates the orbital one, the critical magnetic field is
given by the Clogston value [119, 120]

Bz
c = µ0H

z
c = ∆0√

2µB
(2.112)

The critical size of a grain ac below which the Zeeman term dominates, can be estimated
by

ac ≈
√

5
D∆0m2 ∼ 1

kF

ETh
∆0

(2.113)

where kF is the Fermi momentum, m denotes the mass and ETh = ℏD/a2 is the Thouless
energy.
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2.3.3. Anomalous Metallic State in the Vicinity of the
Superconductor-Insulator Transition

Measurements taken over the last decades in two dimensional systems, which have been
declared by theory to exhibit a direct SIT, may be reinterpreted as they show signs of
an indirect transition with an intermediate metallic regime, i.e. the resistances saturate
at the lowest temperatures and can be continuously tuned by an external parameter.
An example are the thickness dependent R(T ) curves in Ref. [10]. Those curves have
been attributed to exhibit a true thickness/disorder driven SIT. While the thinner films
follow an insulating trend down to the lowest temperatures, thicker films show a low
temperature saturation of resistance (see Fig. 2.17). By further increasing the thickness
a true superconducting state is approached at low temperatures. The saturation value is
smaller than predicted by the Drude model for metals.
Similar saturations at values, up to orders of magnitude smaller than the Drude value,
have been found in other material systems, e.g. in two dimensional Josephson junctions
arrays [121], gated two dimensional semiconductor-superconductor arrays [122], In-InOx
composites [123], ultrathin amorphous gallium films [9] and in amorphous NbSi thin films
[124].
The intermediate metallic state in the vicinity of the SIT is referred to as anomalous
metallic state (AMS) and has been reviewed recently by Ref. [125], where the focus
was set on the transition from a true superconducting state to the anomalous metallic
state. The transition is referred to as superconductor to quantum metal transition, SQMT.

Most of the evidences for an AMS have been found in 2D systems. Observations of the
anomalous metal include a decreasing resistance with decreasing temperature, i.e. the
system behaves as it would approach a superconducting groundstate with zero resistance,
followed by a saturation at the lowest temperatures. The non-thermal parameters used to
tune the transition from superconducting to non-superconducting are manifold. Examples
for tuning parameters are microscopic or macroscopic disorder, charge carrier density
(modified by a gate voltage Vg), screening properties by a nearby groundplane and
magnetic field. Those experimental results are presented and discussed in Kapitulnik et
al. [125].
An AMS has been found in metal films with a normal state conductivity σ(2D)

D ≫ e2

h and
appears as an intermediate state. Tuning further away from the SQMT leads either to
a crossover to a normal metallic state or to a transition to an insulating state (metal-
insulator transition - MIT). No obvious dependence of the disorder of film morphology
has been found as an AMS has been seen in strong non-uniform systems, e.g. in naturally
granular films or in artificially prepared arrays of superconducting islands, as well as in
homogenous films, e.g. crystalline and amorphous. In some cases of strong disorder a
true, direct SIT is observed. The anomalous metal does indeed behave as it would be a
failed superconductor, instead of a normal metal.[125]
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Ic,r

Figure 2.18.: Data set of R(T )s of MoGe films presented in an Arrhenius plot for various magnetic
fields. The high temperature activated behaviour indicated by the linear curvature
is followed by a low temperature saturation of resistance. This saturation was taken
as indicator for the failed superconducting state. Figure taken from [125]. Data
from [126].

A recent example of a magnetic field driven SQMT, i.e. the transition from the supercon-
ducting state to the failed superconducting state of the anomalous metal, in amorphous
MoGe is presented in Fig. 2.18. The low temperature saturation has been attributed to
the anomalous metallic state. With increasing magnetic field the saturation resistance
increases [126]. The B-SQMT in highly metallic a-MoGe has been further studied by
Refs. [127, 128].

Ref. [125] argues that the electronic properties found for the anomalous metal can not
be understood on the basis of the standard paradigms for transport in disordered two
dimensional systems. There is up to date no satisfactory theory for the AMS and Ref.
[125] views this as one of the major open questions in condensed matter theory. The
authors of Ref. [125] argue that theories, e.g. classical percolation theory or fluctuation
superconductivity, as well as local bosonic theories inadequately describe the observed
phenomena in the anomalous metallic state.
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2.3. Disordered and Granular Systems

It was only recently, that the low temperature saturation of resistance on the insulating
side has received more attention. Ref. [123] studied the magnetic field induced SIT in
a random array of indium islands grown onto a gateable layer of InOx. By tuning the
intergrain coupling the authors find a wide range of magnetic fields, for which a low
temperature saturation of the resistance is found. The resistance saturates at values
higher then RQ and RN and the saturation value RQF increases with increasing magnetic
field. The continuous transition from the superconducting state to an insulating state
with an intermediate regime, which shows a low temperature saturation of resistance, is
referred to as an avoided SIT by the authors of [123]. Zhang et al. [123] find a failed
superconducting regime (RQF < RQ) for low magnetic fields and a failed insulating
regime (RQF > RQ) for higher magnetic fields. The transition from the superconducting
state through the two phases of the AMS to the insulating state is referred to as an
avoided magnetic field induced SIT. In addition, a logarithmic temperature dependence
for the resistivity and the conductivity on the superconducting and the insulating side,
respectively, of the avoided SIT has been found.

Ic,r

Figure 2.19.: Data set of R(T )s presented in an Arrhenius plot for various magnetic fields. For
magnetic fields below B ∼55mT the resistivity decreases with temperature and
saturates at RQF < RQ. For magnetic fields above B ∼55mT the resistivity
increases with decreasing temperature and shows a low temperature saturation
with RQF > RQ. Above a maximum in resistance at B ∼ 0.5T the a negative
magnetoresistance is observed. The highest field shown B = 4T shows an overall
smaller resistance. Figure taken from [123].
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Ref. [123] obtained the anomalous metallic phase under conditions of carefull electromag-
netic filtering. Exposure to external broadband noise or microwave excitation leads to a
superconducting tendency ruling out the origin of the AMS to be connected to improper
filtering or external irradiations. The authors conclude that the AMS is directly linked
to the granular/inhomogenous nature of the system and highlight the duality of the
resistivity and conductivity on the different sides of a true SIT.

In a follow-up paper Zhang et al. [129] further studied the transition from superconduc-
tor to insulator through an AMS in granular In/InOx composite tuned by an external
magnetic field. For this composite Ref. [130] had already shown a direct SIT with
magnetic field. The findings by the authors of Ref. [129] suggest that the AMS can
be separated into failed superconductor and failed insulator, where the first lives on
the superconducting side and the latter on the insulating side of the avoided B-SIT.
The saturation resistance separating the two regimes, failed superconductor and failed
insulator, is found to be ∼ 6.5kΩ/□ in Refs. [123, 129]. In Fig. 2.20 the phase diagram
proposed by the authors of Ref. [129] for two tuning parameters (intergrain coupling and
magnetic field) is shown.

Figure 2.20.: Proposed phase diagramm by [129] for disordered granular films. The two tuning
parameters are intergrain coupling strength X2 (depending on EJ/EC) and magnetic
field B, X1. Figure taken from [129].

48



2.3. Disordered and Granular Systems

The phase diagram consists of a superconducting region with global phase coherence (S),
a Bose-dominated insulator (I) (local superconductivity without global phase coherence),
and an anomalous metal (M) (regime with quantum fluctuations which lead to finite
resistances at T = 0K). Depending on the intergrain coupling (X2), a magnetic field
(X1) tuned transition may either be a direct SIT (red arrow) or a transition from super-
conducting state to the Bose-insulating state with an intermediate metallic state. The
AMS is further separated into failed superconductor and failed insulator. By increasing
the magnetic field first the superconductor exhibits a superconductor to quantum metal
transition (SQMT) to the failed superconducting state. The transition is driven by phase
fluctuations (blue arrows). Further increasing the magnetic field leads to a crossover to
the failed insulating regime of the AMS. This is indicated by the black dash-dotted line.
Applying the duality of phase and charge there is a charge fluctuation driven transition
to the Bose-dominated insulator, referred to as Quantum-Metal-to-Insulator-Transition
(QMIT). For high magnetic fields the Bose-dominated insulator is transformed into a
Fermi-insulator as Cooper pairs are broken up. Above the critical magnetic field Bc
superconductivity is completely gone and localization of single electrons due to disorder
and Coulomb interactions lead to an insulating behaviour.

Ref. [129] argues that due to the granular nature of their film, the material can be
modelled by superconducting grains embedded in a tunable intergrain matrix, where the
superconducting transition is dominated by phase fluctuations (EJ ≫ EC) [131–133]. In
that model local pair amplitude fluctuations depend on grain size [134] and global phase
coherence is established by percolation along a path with intergrain phase coherence [93,
135–137]. For a given pair of neighbouring grains ij, the Josephson coupling Eij is given
by the local superconducting gaps, ∆i and ∆j, and the normal state intergrain resistance
Rij

N. Due to the granular nature intergrain and self capacitances Cij and C0 have to be
taken into account. The intergrain charging energy EC,ij depends on local charge carrier
density, ni and nj, and the intergrain dielectric constant χij

N. The insulating state in that
model is a result of Coulomb blockade for Cooper pairs, which prevents Cooper pair
tunneling between adjacent grains. In granular films the coupling strength γ = EJ/EC
determines the occurence of the SIT [8, 59, 96]. In single resistively-shunted JJs with
EJ ≫ EC phase coherence is established for small bias currents. This leads to a zero
voltage supercurrent. At low temperatures activation is exponentially small and quantum
fluctuations of phase leads to quantum tunneling of the phase variable [138]. Hence, a
finite voltage state is established [139, 140].
There is a dual picture for EC ≫ EJ. Electric charge, which is the conjugate to the
phase, on the junction capacitance, results in a Coulomb blockade, hence an insulating
state. However, at small bias voltages quantum fluctuations of charge lead to a coherent
current of Cooper pairs, but also to dissipation due to single electron tunneling [141].
Ref. [129] transfers this model onto random arrays of JJs resulting from the random
nature of the granular film. The similarity of granular films and JJAs is supported by
the fact that the R(T ) curves can both be nicely fitted by empirical formulas 5.15 and
R□ = R0 exp

(−EA,S
kBT

)
+ RQF for JJAs. This agrees with the assumption of a duality
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picture with interchanging roles of number of charge carriers N and the phase Φ, strenght-
ened by the similar dependence in transport when exchanging resistivity and conductivity.
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3. Low Temperature and Measurement
Setups

Data presented in chapter 5 and chapter 6 were measured in a He3/He4-dilution refrigera-
tor designed by Oxford Instruments (Kelvinox 400HA) with a specified base temperature
of 10mK (see Tab. A.1). The insert, which includes the most important parts of the
cooling system, is combined with a low-loss dewar, including an outer-vacuum-chamber
(OVC) and a liquid nitrogen shield surrounding the liquid He4-bath. The dewar is
connected to a pipe, transporting the evaporated He4 to the faculty helium liquification
plant. Inside the dewar there is a 2D vector magnet. The magnets Z-Axis can reach a
maximum field of 7T, while the X-axis is limited to 3T. In addition, the Z-axis magnetic
field is compensated by compensation coils to shield the mixing chamber plate from the
magnetic field.
The insert consists of the dilution unit, 5 thermometers and 3 heaters. At the 1K-plate,
still plate and the mixing chamber plate heater and thermometer are combined so the
user may operate in different modes (open loop, PID-loop, etc.). There are measurement
(2x 24-way phosphor-bronze wiring) and additional thermometry (24-way constantan
wiring) lines from room temperature to the mixing chamber plate. As those lines were
delivered with the system they are properly laid and thermalized on each of the different
temperature stages.
The bottom part, mainly on or below the mixing chamber plate, received home-made
additions. This includes a coldfinger reaching down to the center of homogenous magnetic
field/sample space, a Magnicon SQUID-thermometer sitting next to the mixing chamber,
a calibrated germanium thermometer next to sample space as well as an ruthenium-oxide
thermometer, which was calibrated against the germanium/SQUID (see Tab. A.1). To
reduce noise and heating, the measurement lines and the thermometry lines are heavily
filtered using cold RC and silver-epoxy filters sitting on the mixing chamber plate.
In the next pages the home-made filtering, thermalization and thermometry is presented.
The last part then covers the measurement setups, including devices and electrical circuits.
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3. Low Temperature and Measurement Setups

3.1. Filtering, Thermalization and Thermometry

As mentioned above He3/He4 dilution refrigerators are able to continuously cool down
to temperatures around 10mK at the mixing chamber plate. Nevertheless, experiments
require additional electronical components to be implemented affecting the base temper-
ature Tbase of the operating system. Such elements may be separated into active and
passive.
Active elements rely on a source of energy, usually a DC source, and can inject power into
a circuit, e.g. transistors or diodes. Passive elements do not rely on a power source and
can not actively amplify the power of a signal. Such elements are resistors, capacitors
and inductors. However, they may increase a voltage or a current. Active elements
therefore continuously alter the temperature of the surroundings, which is not neces-
sarily true for passive elements as the signals passing through them are usually very small.

Assuming that the temperature of the cooling system is not altered by the above men-
tioned devices, then the temperature of a device under test (DUT) is ideally given by
Tel = Tbath. The latter is the temperature of the mixing chamber and at the lowest
temperature coincides with Tbase, the minimum temperature accessible in the system.

In reality, the electronic temperature Tel in the device under test can be significantly
higher than the bath temperature Tbath due to insufficient thermalization (thermally
decoupling of the DUT from the surroundings at Tbath) or inproper filtering of high
frequency radiation [142, 143]. Not ony should the DUT be very well thermally coupled
to the bath, the same holds for the sample holder, wires and other heat generating
elements. However, at very low temperatures thermalization becomes challenging as the
electron-phonon coupling decreases with T 5 [144, 145]. The dominant cooling mechanism
is then eventually given by the Wiedemann-Franz cooling via the wires, which decreases
with T 2 [144]. Obviously, the measurement lines connected to the DUT (as well as low
temperature thermometers) need to be very well thermalized and filtered.

Thermalization

Achieving thermal equilibrium between two materials in contact requires a heat flow Q̇
from one to the other. The temperature step between the materials can be calculated by

∆T = RKQ̇ (3.1)

where RK denotes the thermal boundary resistance known as Kapitza resistance. RK
should be kept reasonable small to decrease thermalization times. The surfaces of the
two materials should be pressed together with relatively high force. That increases the
effective area for the heat flow and increases thermal conductance. In addition, the
surfaces should be clean and ideally gold-plated to prohibit surface oxidation.[145]
Experimentally, proper thermalization can be achieved in different ways. Unshielded
wires (simple metallic wires with a thin insulation or coaxial wires) may be wound around
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3.1. Filtering, Thermalization and Thermometry

a cyclindrical copper anchor, which is screwed into the corresponding temperature stage.
To increase the effective area one needs to increase the number of windings and/or glue
the wire to the anchor with a thermally very good conducting material, e.g. silver epoxy.
Another possibility is to solder the inner conductor to a metallic strip, which is electrically
disconnected, but thermally connected to the thermal anchor. For coaxial cables the
outer conductor should be in direct contact to the thermal anchor.
For multi-wires with a shielding one could for example use metallic clamps that generate
force and press together the shielding and the outer conductors inside. Care must be
taken as too much force might break the insulation. A general other option is to use a
copper braid, tighten it around the wire and cover the contact area with a very good
thermally and electrically conducting material. The copper braid then should be screwed
to the thermal bath using high pressure.

Filtering

Noise may come in all kind of forms, ranging from frequency independent noise, e.g.
thermal noise and shot noise, to frequency dependent noise types, e.g. 1/f-noise [146].
All types/sources of external noise decrease measurement resolution as it shifts the signal
to noise ratio (SNR) to lower values.
The frequency independent thermal noise (Johnson-Nyquist noise [147, 148]) is always
present in resistors and therefore it has to be taken into account in our measurement
setup. The power spectral density is given by

ν̄2
n = 4kBTR (3.2)

and scales with temperature T and resistance R. This can be rewritten as the root mean
square of the voltage fluctuations

νn =
√

4kBTR∆f (3.3)

where ∆f is the bandwidth. This may expressed in term of a current noise simply by
dividing with the resistance R

in =

√
4kBT∆f

R
(3.4)

As temperature decreases both voltage and current noise decrease. However, the voltage
noise increases with increasing resistance whereas the current noise decreases with increas-
ing resistance. Most importantly, by decreasing the bandwidth ∆f by high frequency
filtering and shielding the measurement lines the thermal as well as extrinsic noise may
be significantly reduced.

Depending on the frequency of operation, low pass, band pass or high pass filters may be
used [149]. A comparison of filters operating in the microwave regime can be found in [150].
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In the following we focus on the low pass filtering as measurements here were performed
either with direct current or alternating current with very small frequencies (below a few
Hz).
Signals with frequency ω fed into a low pass filter may pass below a certain cutoff
frequency ωc and are attenuated for frequencies above. The cutoff frequency depends
on the filter design and usually denotes the frequency at which the power of the input
signal is reduced to its half, i.e. Pout = 0.5 Pin. That corresponds to an attenuation of
-3dB when expressing the power in decibel. In that case the voltage ratio Vout/Vin drops
to
√

1/2. The cutoff frequency is the invers of the time constant τ , which denotes the
time for a step-like signal to decay to a value of 1/e.

The final filtering implemented to gather the data presented in the next chapters consisted
of 3 different filter types: a) room temperature π filters b) cold RC filters and c) cold
Ag-epoxy filters. b),c) were located on the mixing chamber plate. All three types of filters
are passive, i.e. consist of combinations of resistances, capacitances and inductances and
do not require an external powersupply.

IN OUTC2C1

L
R1 R2

IN OUTC2C1

a) b) 

Figure 3.1.: a) Low-pass π filter circuit. b) Low-pass RC filters circuit. L denotes an inductance,
C a capacitance and R a resistance.

a) Each room-temperature π filter (see Tab. A.4) has its own small metal box. It
can be connected to the desired measurement line with a standard SMA connector.
The counterpart of the SMA connector is located in a breakout box, which splits the
25-way Fischer connector at the head of the insert into 25 single SMA-connectors. This
creates variability in choosing the desired lines and the possibility to work with filtered
or unfiltered lines depending on the requirements of the measurement.

Fig. 3.1a) shows the circuit diagram of that low pass π filter. It consists of one inductance
in series and two capacitances parallel to the load. The cutoff frequency of that simple
low pass filter is given by

ωc = 1√
LC

(3.5)

The total capacitance is at least 5500pF and the cutoff frequency ωc = 10MHz. The
filters used were commercial π filters by Tusonix.
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3.1. Filtering, Thermalization and Thermometry

b) Cold RC filters (see Tab. A.4) were connected to the measurement lines as well as to
the thermometry lines at the mixing chamber plate.

T [K]

a) b)C2C1 R1 R2

InOut

Cold 
Ground

Removable
Pins

Figure 3.2.: RC-Filters: a) front view containing throughputs for input and output together with
the input resistances R1 and output resistances R2 and the capacitors to ground C1
and C2. There is no direct electrical connection of the front side to ground. The only
connection to ground is through the capacitors, which are connected to a ground
plane on the backside via metallic feedtroughs. The ground plane is shorted to
insert ground with a copper braid. b) side view: Micro-D connectors (one for input
and one for output) soldered to removable pins connected to feedthroughs from the
rear side of the PCB to its front side. There is no electrical connection from the
pins/feedthroughs to the groundplane located on the rear side.

A sketch can be seen in Fig. 3.1b). The filter consists of two resistors in series and two
capacitors parallel to the load between the two resistors. The general cutoff frequency of
an RC filter is given by

ωc = 1
RC

(3.6)

In our case Eq. 3.6 rewrites as

ωc,1 = 1
R1(C1 + C2) (3.7)

and
ωc,2 = 1

R2(C1 + C2) (3.8)
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for the different current directions, where R1 and R2 are the input and output resistances
as shown in Fig. 3.1b).
The designed filter board has 16 filters in parallel, see Fig. 3.2. Each has an input
resistance of R1 = 820Ω and and output resistance of R2 = 1.2kΩ. The latter is irrelevant
for most applications. Inbetween, a total capacitance 27.1nF to ground is added consisting
of two parallel capacitors with C1 = 18nF and C2 = 9.1nF. The capacitors are connected
on the grounding side to a metal plate covering the rear side of the filter board. That
metal plate is then cold grounded with a low resistance copper braid to the insert ground.
To avoid ground loops, the PCB board is electrically disconnected from the gold-plated
copper anchor, which can be screwed to the mixing chamber plate.
The corresponding cutoff frequencies are both in the low kHz regime ωc,1 = 7.2kΩ and
ωc,2 = 4.9kΩ.

Below, in Fig. 3.3 the impact of the RC filters is presented. a) shows two base temperature
IVs for B = 0T and b) R(B)s at base temperature for the same NbSi sample measured
with an AC setup (see Fig. 3.12). The green curves were measured with π filters at room
temperature and low temperature Ag-epoxy filters (see below) as the Ag-epoxy filters
were implemented before the RC filters. The red curves corresponds to the final filter
setup, including the low temperature RC filter.

 no RC filter
 with RC filter

V

N(sheets) = 2

Figure 3.3.: Impact on measurements by RC filters. a) shows a comparison of two IV charac-
teristics. The green curve is measured without RC filter. The same measurement
is repeated with RC filters. The red curve shows a broad zero resistive state, while
the green curve exhibits a finite differential resistance around zero bias. In b) the
same impact is presented in comparison of two a R(B) measurements. The data were
collected together with two bachelor students, [151] and [152]. The figure is adapted
from [152].

Without RC filters (green curve) a clear deviation (finite slope) from the superconducting
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state (red curve) is visible in Fig. 3.3a). The non-RC filtered measurements did not
show superconducvitity at all. This is presented in Fig. 3.3b) for a set of magnetic
fields. The R(B) curve of the non-RC filtered measurement (green) shows a minimum of
resistance with R ∼ 200 Ω around B = 0T, while for the RC filtered (red) measurement
the resistance drops down to zero. The shape of the curves are similar, however the onset
of resistance takes place at higher magnetic fields with RC filters.

c) The Ag-epoxy filters acting as the third filtering stage are taking care of the very high
frequencies of 100MHz and above. Those filters are home made following some ideas of
Ref. [153] and modified to fit the measurement requirements. To make full use of the
filtering, they were combined with a shielded measurement environment reaching down
from the mixing chamber to the sample space.
A more detailed description on how the filters were built, placed into a filter-box and
combined with the coldfinger can be found in the appendices A.1 and A.2. A later
bachelor work, partly supervised by the author, followed the same approach for a different
low temperature system. A detailed summary of the working principle [153, 154] and a
description of the production process for the Ag-epoxy filters can be found there [155].
In the following the most important parts are presented.

The Ag-epoxy filters are designed to heavily attenuate signals with frequencies in the
microwave regime, i.e. between 150MHz and 10GHz. They are robust against thermal
cycling, i.e. cooling down and warming up between base temperature of a dilution
refrigerator and room temperature, and are designed to effectively take away energy
generated by resistive elements. Hence, they show a very good thermalization and are
quite simple to fabricate.
The filters are made of an insulated copper wire wound around a silver epoxy rod. The
rod has 4 chambers in series, where each chamber has 5 layers of 21 windings, i.e. 105
windings. This segmentation reduces parasitic or stray capacitances, that could severely
lower high frequency attenuation. The direction of winding is inverted for each segment
to cancel out induced magnetic fields due to the coil-like geometry. The insulated copper
wire is constantly covered with silver epoxy during winding. Therefore it is very well
embedded in an highly electrically and thermally conducting matrix.

Theoretical description

The filter geometry can be thought of as a coaxial cable and the filter attenuation can be
modelled by a distributed transmission line with skin-effect.
Consider a copper wire with diameter D, then a DC current may flow using the whole
crosssection with area A = Dπ

4 , while due to the skin effect an AC current with frequency
ω is forced to flow in an annulus with width δ only.

δ = 1
√
σCuµCuωπ

(3.9)

δ is the skin depth, σCu the conductivity of copper and µCu magnetic permeability.
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Therefore the effective crosssection for AC currents rewrites as

A = Dπδ (3.10)

By modelling the filter as a coaxial cable, consisting of an inner copper wire separated
from the outer silver epoxy conductor by an insulating layer (see Fig. 3.4a)) then the
skin effect also applies to the outer conductor. The resistance seen by an AC current
therefore increases with frequency and the total resistance can be written as

Rtot(ω) = RIC(ω) +ROC(ω) (3.11)

a) Coaxial cable model b) Skin effect

copper

insulation

silver-epoxy

D

dins

dAg-expoxy

current flow

Figure 3.4.: Sketch of a) coaxial cable model and b) skin effect. Figure adapted from [155]

The attenuation of a coaxial cable can be calculated by transmission line theory [149].

Attenuation(ω) = 20 log | exp (−γz)| (3.12)

where z is the length of the wire and γ reads as

γ =
√

(Rtot + 2πiωL)(G+ 2πiωC) (3.13)

where L is the inductance per meter and C the capacitance per meter.
Ref.[153] found an attenuation of 100dB for frequencies above 150MHz for their filter
design. Our filters are not identical and show less, but still good attenuation.
One of our filters can be seen in Fig. 3.5a) and a corresponding attenuation characterisa-
tion measurement in b).
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leads wound insulated copper wire 
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Figure 3.5.: a) Completed Ag-Epoxy filter with its components compared to a 1 Euro coin. b)
Damping characteristics for three different tests, where the attenuation has been
measured in reference to the frequency in a single Ag-epoxy filter. c) Larger picture
of an Ag-epoxy filter. d) and e) Impact of the Ag-epoxy filtering on measurement:
only with Ag-epoxy filter a critical current Ic is resolved. Data were collected by
[155] and adapted.

The filter performance was tested at room temperature. A small metal test box was
designed, where a metallic dividing wall separated input and output side. The different
curves in Fig. 3.5b) correspond to different approaches (See Fig. A.3 in appendix A.1).
In test I the filter was measured in an empty, but closed metal box. Then the output
side was filled with Eccosorb for test II. The final test III, the slits between cap and box
were sealed with silver epoxy.
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The attenuation between 10MHz and 1GHz slighty increases from 30dB to 50 dB. Above
1GHz it only further increases when shielding the filter by closing the test box output side
(blue curve). By adding a frequency damping Eccosorb in the output side and closing it,
the damping increases at 1GHz to values of approximately 100dB (red curve).
The impact of the filter in a measurement can be seen in Fig. 3.5d) and e). The data
were collected in a bachelor thesis [155]. The critical current in the IV curve is only
sharply defined with Ag-epoxy filters.
Finally, as the frequency range between 10kHz and 100MHz is covered with the room
temperature π filters and the low- temperature RC-filters, the overall attenuation should
be sufficient for our purpose.
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Filterbox

The results of the filter performance measurements suggested to use an electrically
shielded output that includes a volume of high-frequency damping Eccosorb. Therefore
a box has been designed, where 31 of those filters are implemented, see Fig. 3.6. The
filterbox follows the same design as the test box. Input and output are separated by
a metallic interlayer with drilled holes. The filters are placed into the holes. One half
of the filter reaches into the input side, the other into the output side. Both sides are
sealed with silver epoxy hermetically and electrically. Therefore no signals may enter the
output side, but only by passing through the filters.

Input

Output

In

Out

Eccosorb

Ag-epoxy
cover

Ag-epoxy
rodInsulated

copper wire

Shielded
coaxial cable

PCB

Input side
of filterbox

Metal plate
with holes for 
feedthrough

Micro-D connector

In

a) b)

Figure 3.6.: a) A vertical cut through the filterbox is sketched. A brass plate separates the input
from the output side. The Ag-epoxy filters reach half way from the inut into the
output. Both sides are covered with Ag-epoxy to increase thermal coupling to the
environment. The output side is in addition filled with high frequency damping
Eccosorb. b) Optical image of the input side. The Ag-epoxy filters, the Ag-epoxy
cover as well as copper wires and input micro-D connector can be seen.

To keep noise signals from coupling in after the filterbox, the electrically shielded
environment is extended down to sample space by using shielded coaxial cables with a
CuNi inner and outer conductor (see Tab. A.3).
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The setup below the mixing chamber stage can be seen in Fig. 3.7a), while b) shows the
final sample space, including sample holder, thermometers, etc..

a) b)

Mixing 
chamber

Ag-epoxy 
filterbox

Thermometer
calibration box

Coldfinger Shielded
coaxial
cables

Sealed 
Feethrough

Closed 
Sample
Space

SQUID-
Thermometer

PCB

Micro-D
connectors

Sample holderGermanium
thermometer

Rotator

RuOx
thermometer

Figure 3.7.: a) Coldfinger connected to the mixing chamber plate of our He3/He4 dilution refrig-
erator. The coldfinger puts the sample space in the correct distance to the mixing
chamber, so it is in the central, homogenous magnetic field of the two axis magnet
located in the dewar. b) The sample space, i.e. the volume where temperature and
sample are characterized, is presented. It includes thermometers, thermalizations,
sample holder and the wiring needed for read out.
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3.1. Filtering, Thermalization and Thermometry

Thermometry and Temperature Control

To make full use of the system, the AC resistance bridge and temperature controller
(Lakeshore Model 372) is combined with a scanner (Model 3726), which gives access to
16 independent 4-point resistance measurement channels. The Kelvinox 400HA provides
5 thermometers, two on the 1K-plate (1K-pot and sorb/charcoal trap for He4-exchange
gas), one for the still, coldplate and the mixing chamber. Those thermometers are
resistors with a negative temperature coefficient (RuOx, Cernox) and are accompanied by
3 heaters, sorb heater (warm-up heater), still heater and mixing chamber heater (sample
heater).
The combination of heater and thermometer next to each other may be used for powerful
control options, e.g. closed-loop-PID-control or temperature ramping.

Fig. 3.8 shows a sketch of the combination of the Lakeshore, scanner and the dilution
refigerator, where blue lines correspond to thermometry channels (input of resistance
bridge) and red to heater channels (output of resistance bridge). The advantages of

1K-pot

still

mixing
chamber

scanner

resistance
bridge

scanned thermometry
channels

dedicated control input

heater channels

sample heaterstill heater

1K-pot/
warm-up
heater

Figure 3.8.: Combination of AC resistance bridge for readout, scanner for channel switching and
dilution refigerator to provide low temperatures. Figure adapted from [156].

the Model 372, an overview over the broad set of applications, physical background
informations and operation instructions, when combined with a dilution refrigerator, are
provided in [156].
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3. Low Temperature and Measurement Setups

The most used mode of operation in this thesis was the closed-loop-PID-Control, which
allows to keep a stable temperature, e.g. at the mixing chamber/sample, for a very long
time while performing electrical measurements (current-voltage-characteristics) or while
sweeping the magnetic field (R(B)-curves). In addition it allows the user to change the
temperature setpoint and approach it safely without overheating or dramatic temperature
oscillations.
This mode is often referred to as feedback control and is commonly associated with
tempeature control. It uses the control sensor (of the dedicated input) to monitor the
temperature while actively adjusting the control heater output.
The heater output is given by

HeaterOutput = P
[
(e) + 1

I

∫
(e)dt + Dd(e)

dt

]
(3.14)

P denotes a (P)roportional factor called gain, the (I)ntegral is referred to as reset term
and D as (D)erivative or rate. The error (e) is given by the difference of the setpoint
and the feedback readout value. The value P is mostly found by trial and error as it
is connected to the properties of the load, sensor and controller. It therefore may be
found in a very broad range of values. The I part monitors the change of the error in
time, is given in seconds and acts as counterpart to the gain. The derivative part takes
into account very fast changing error signals and is usually turned off for steady state
operations. The impact of the different inputs of the PID-loop control by approaching a
new setpoint and its stability are shown in Fig. 3.9.
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Figure 3.9.: Response of temperature after a setpoint change. Presented are different settings
and combinations of the parameters P, I, and D. Figure adapted from [156].
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As the negative resistance coefficient thermometers come with a generic calibration curve
one has to actively check the actual temperature at the desired place, which usually is
the mixing chamber. We implemented additional thermometry, a SQUID-thermometer
(calibrated down to 6mK) next to the mixing chamber as well as a germanium thermome-
ter (calibrated down to 40mK) at the sample space.
Ideally, the temperature of the mixing chamber and the sample space should be equal.
However, in reality it may take a while until sample temperature approaches mixing
chamber temperature, especially when ramping to a new setpoint. By probing the sample
or due to external interferences sample temperature might be increased compared to the
mixing chamber temperature. The calibrated germanium thermometer is a reference
value to cross check deviations. We also calibrated a RuOx thermometer against the
germanium and the SQUID and placed it at a different location in the sample space.
The germanium and the RuOx thermometers were read out by the resistance bridge via
the filtered lines explained above. The SQUID thermometer was read out by a separate
hardware and converted into a temperature by a software delivered by Magnicon. The
principle of operation of the SQUID-thermometer is presented in [157–160]. The SQUID
gradiometer is glued onto a copper foil, which produces a temperature dependent mag-
netic noise due to Johnson-Nyquist noise. It inductively measures the magnetic noise and
analyses its power spectral density (PSD), which is proportional to the temperature. The
shape of the PSD, however, is temperature independent. The thermometer is calibrated
by the empirical equation

SΦ(f, T ) = S0(T )(
1 + ( f

fc
)P1
)P2

(3.15)

where fc, P1 and P2 are fit parameters at the reference temperature Tref using a Levenberg-
Marquardt algorithm. The measured temperature is then found by using

T = Tref
S0(T )
S0(Tref)

(3.16)

65



3. Low Temperature and Measurement Setups

3.2. Measurement Setups
Having discussed the cooling mechanism of the He3/He4 dilution refrigerator, temper-
ature control, thermalization and filtering, we finally turn to the measurement setups
for probing the samples. While most of the data is obtained from direct current (DC)
measurements, a small part is accumulated with alternating current (AC). Due to the
heavy filtering as presented in the last section as well as due to residual capacitances
to ground, care has to be taken when measuring at a finite frequency (RC-time). This
is even more important for high resistive samples. The frequencies used for the AC
measuremements are below a few Hertz, most of the time even below 1Hz, and the
integration times are long approx. a few seconds. The high resistances are therefore
measured using DC-current-voltage characteristics, while some of the lower resistive
measurements were performed using an AC technique.

By crossing the SIT from the superconducting regime to the highly insulating regime the
resistances cover a broad range from zero to above GΩ. Such a measurement can not be
accomplished by a single setup. To measure superconductivity a four-point measurement
should be used, where current and voltage may be measured independently. In addition,
wire resistances and contact resistances are excluded as no current flows through the
voltage probes. For low resistive samples the setup should be current biased, while for
high resistive samples a voltage bias setup is recommended. That is because the Joule
power generated by a fixed current through a resistor is given by

PJ = R · I2 (3.17)

while in case of a voltage biased resistor it writes as

PJ = V 2

R
(3.18)

However, a true four point measurement was not possible for the granular aluminum
samples due to a lack of working contacts at low temperatures. Either the number
was insufficient or their geometric position did not allow measurements in a four-point
geometry. We therefore adapted a voltage bias setup used for measurements of high
resistances in TiN samples [53] and added a preresistor RP. The value was varied for
different sets of measurements and/or temperature/magnetic field ranges. The lowest
preresistor was 17.9kΩ and the highest 1MΩ. It allows to extract resistances from as
low as ≈ 100Ω up to high resistances ≈ GΩ, depending on the state of the sample, by
two-point measuring the current only and calculating the voltage drop across the sample
VS by

VS = VB − IM ·R(P+W) (3.19)

Here VB is the bias voltage, IM the measured current and R(P+W) is the series resistance
consisting of the preresistor and the resistance of the wiring.
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From that current-voltage characteristic one may extract differential resistance
RS = dVS

dIM
. The zero bias resistance is the differential resistance around zero bias and

given by
RS,0 =

(
dVS
dIM

)
|I=0 (3.20)

Another way to find the zero bias resistance from the raw current-bias-voltage curve is
given by Rtot = RP + RW + RS,0 and

RS,0 = dVB
dIM

|I=0 −RP −RW (3.21)

By using an additional preresistor one effectively sets an upper limit for the current. This
can be important in case of a superconducting sample, when measured with a voltage
bias setup. The generated current may exceed low critical currents. In case of a super-
conducting or low resistive sample the adapted setup does rather behave current biased,
where the sample resistance accounts for the deviation of current from the theoretical
maximum Imax = VB/R(P+W). This setup is not ideal for low resistive samples, but the
best we can achieve considering a two point geometry.

For high resistive samples (RS ≫ RP) it is a true voltage bias setup as basically the
total bias voltage drops across the sample and the current is determined by the sample
resistance.
In some cases we measure the voltage drop VM across sample and measurement lines
with a Femto DLPVA voltage amplifier (amplification 100-104) in combination with
an Agilent HP458A voltmeter. This is indicated by the dotted box on the right in
Fig. 3.11. The voltage amplifier has a very high input resistance in the order of TΩ to
prevent current flow along the voltage wiring in case of a very high sample resistance.
As the ideal case of two separate voltage drops was not possible, this quasi-four-point
geometry is the closest we can get to a four point measurement. The minimum resis-
tance that can be measured is given by the resistance of the measurement wiring RW,
which is known to be approx. 4.5kΩ. The sample resistance is then given by VM/IM - RW.

In Fig. 3.10 and 3.11 the two most used setups for the IV characteristics are presented.
For high temperatures and/or relatively high currents/voltages the current was measured
after the sample in a double-ended configuration. For the lowest temperatures and very
small currents/voltages a single-ended approach was used. Tests had shown a smaller
current noise compared to the double-ended setup. The two setups were used for the
characterization of the granular aluminum samples. The measured samples are denoted
in the figures with device under test (DUT).
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1. Double-Ended DC Setup

Cryostat

Agilent
3458A
VA,I

Femto
DDPCA-S

Yokogawa
GS200
VY

DUT

Voltage
divider
10x

RP

R2

R1

Ag-Epoxy
Filter

RC Filter

π Filter

VB

RS

10y

Figure 3.10.: Double-ended DC setup used for high temperature IVs and for low temperature IVs
with relatively high bias.

A DC voltage source (Yokogawa GS200) provides a voltage VY, which might be downcon-
verted by an optional voltage-divider by a factor 10x. In some measurements x = 2 in
others x = 3. The corresponding resistances were R1 = 10kΩ combined with R2 = 100Ω
or R2 = 10Ω, i.e. conversion factors of 10−2 or 10−3. That voltage VB is applied over a
total resistance Rtot = RP + RW + RS. RW, the resistance of the wires, does include
filter resistances. The current IM is measured between sample/DUT and ground using a
transimpedance amplifier (Femto DDPCA-S). That device sets the ground potential and
transduces the flowing current into a voltage with a variable factor 10y, i.e. V A,I = 10y

IM, where y ranges inbetween 8 and 13.
That voltage is then read out by Agilent 458A voltmeter and the sample zero bias
resistance RS,0 is given by Eqs. 3.19 and 3.20.
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2. Single-Ended DC Setup
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Figure 3.11.: Single-ended DC Setup used for IV characteristics in the zero bias regime with low
excitation.

In contrast to Setup 1, one side of the sample is connected to ground. This increases
measurement resolution by decreasing current noise. The current has to be measured on
the ungrounded side.
The DDPCA-S therefore is biased at its bias port, which in normal operation is shorted
to ground. The input port is then connected to the sample. This allows to use a single
measurement line, while the second measurement line is shorted to ground at room
temperature. The biasing of the sample and conversion of the measured current into a
voltage is done by the same device. It should be noted that by using the bias port in
that configuration a built-in voltage-divider reduces the voltage by a factor 102.
VY is first divided by the optional voltage-divider with 10x. The resulting bias voltage
VB is then again divided by a factor 100. That bias voltage VB is in addition multiplied
by factor of -1, indicating a reverted current flow, i.e. the charge is pulled from ground
through the sample. This VB/100 is applied to the series of resistances Rtot = RP + RW
+ RS. The current, measured by the DDCPA-S, is transduced to a voltage and multiplied
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3. Low Temperature and Measurement Setups

by a factor 10y. The voltage VA,I is read out by an Agilent voltmeter connected to the
DDPCA-S read out port.

A set of variations (different preresistors and/or voltage dividers) of the two setups
were used for different resistance and temperature regimes. For example, at the lowest
temperatures around zero bias the following combination is used for the single-ended
setup. The maximum voltage applied by the source is e.g. 5V. It is downconverted to VB
= 5 · 10−4VS by the optional voltage divider with 1/100 and reverse mode operation with
1/100. A 1MΩ preresistor limits the current to Imax ≈ 5 · 10−10A. The voltage/current
ratio of 1010V/A at the DDPCA-S accounts for the read out voltage to stay below the
10V input voltage range of the voltmeter.
For the double ended setup e.g. a 1/1000 voltage divider was used in combination with a
100kΩ preresistor and the DDPCA-S operation in normal mode with a ratio of 108V/A.
With this combination one keeps the signal high at the source but stays at relatively
low bias values applied to the sample. The read out voltage is kept below 10V at the
voltmeter again.
The DC voltage at the source is swept by a list of predefined voltage values. To take into
account large RC times generated by the high sample resistance in combination with
the capacitance to ground, e.g. from measurement lines, as well as the low-pass filter
of the DDPCA-S of 0.7Hz, we use a waiting time of 2s after each voltage step before
readout. After that relaxation time the signal at the DDPCA-S should be at least 90%
of its saturation value at t = ∞. In addition, the integration time of the voltmeter input
was set to 20 number of power lines cycles (NPLC) to further reduce current noise by
averaging over a relatively long time of 400ms.

3. AC Setup

The AC setup (see Fig. 3.12) is used for the two niobium silicon samples as well as for
some measurements on granular aluminum, where the overall resistances ranged from
zero to a few ten kΩs. As the resistances are much smaller than in most measurements
of the granular aluminum, the RC times are significantly reduced allowing to measure
AC with very low frequencies.

Two different approaches to deduce the resistance are applied. In case of granular
aluminum the AC setup was used for a set of R(B) curves at temperatures T > 1K.
Sweeping the magnetic field with a rate of 50mT/min for a continuous R(B) curve does
not heat up the sample or surroundings. The AC resistance is continuously probed
measuring current and voltage while sweeping the magnetic field. For this type of
measurement the frequency is set to f = 0.4755Hz and the time constant to 10s.
For the granular aluminum there is no four-point measurement possible, therefore the
same optional voltage probe as shown in Fig. 3.11 is utilized.
For the niobium silicon the R(T,B) was measured with a different approach. As all those
measurements are carried out below a few hundreds of mK, a relatively fast continuous
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sweep with 20mT/min or more, leads to a constant elevation of sample temperature. We
therefore set a fixed temperature, e.g. 50mK, and stepsweep the magnetic field with
a rate of 25mT/min. After each step we let the temperature thermalize back to the
set temperature for 1 hour. During this time we monitored the resistance continuously
versus time. The saturation value of resistance at the end of the hour has been extracted
and assigned to the corresponding magnetic field and temperature. The frequency is set
to be f = 11.267Hz or f = 17.329Hz with time constants of 3s or 1s.

Cryostat
DUT

Voltage
Divider

RP

I
~ ~V

~ ~

SR 830

SR 830

Femto
DLPVA

Ag-Epoxy
Filter

RC Filter

π Filter
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VB

10z

RS

IM

 1
20

Figure 3.12.: Setup used for AC measurements of the zero bias differential resistance in NbSi and
selected measurements in grAl.

The AC setup consists of two Stanford lock-in amplifiers, locked onto the same frequency.
The first provides an output voltage VOut with frequency f . In some cases it is downcon-
verted by a voltage divider with a factor ≈1/20 (the corresponding resistances are R1
= 100Ω and R2 = 4.7Ω). The VB is applied to a preresistor, which is much larger than
the sample resistance RS by at least a factor 1000, e.g. 1MΩ. The measurements are
therefore current biased. The voltage drop VM is measured by the input of the master in
a four point geometry excluding measurement wiring and contact resistances after it is
amplified by a DLPVA with a factor 10z. z is in the range of 1-4. The corresponding AC
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current is measured either directly by the input of the second lock-in amplifier or it is
converted into a voltage by a DDPCA-S transimpedance amplifier. The corresponding
voltage is then measured by the input of the second lock-in amplifier. The latter case is
not shown in Fig. 3.12.

For all measurement setups the wiring at room temperature between the measurement
equipment and the insert is done with coaxial cables that end with BNC connectors. The
devices are plugged into electrical power points and each device receives its own insulating
transformer. A star-shaped like grounding scheme is established via the shielding of the
coaxial cables to the top part of the insert. A thick copper-braided cable connects the
top part of the insert to laboratory ground.
The measurements are automated using scripts based on Lab::Measurement [161]. The
measurement computer and the devices are connected with GPIB cables, but are electri-
cally disconnected by an optocoupler.
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4. Material and Sample Characterization

4.1. Overview on the 3D Granular Aluminum Material System

Our two dimensional ultra-thin films are provided by the group of Guy Deutscher1 and
were grown by Aviv Glezer Moshe. They used the same growth mechanism as for their
3D samples. Here we present an overview on their 3D material system.
In this growth process samples are prepared by thermally evaporating clean aluminum
pallets under controlled oxygen pressure onto a cold, liquid nitrogen cooled, or room
temperature substrate. A very narrow grain size distribution in the low nanometer
regime can be achieved, where the temperature of the substrate controls the grain size, its
distribution and the maximum critical temperature Tc. For room temperature substrates
the grain size is about 3nm ± 1nm [4] and the maximum critical temperature in those
films was found to be 2.2K [5, 162, 163]. By cooling the substrate to liquid nitrogen
temperatures the maximum transition temperature could be increased to 3.2K and the
narrow grain size distribution further decreased to 2nm ± 0.5nm [5, 164]. The increased

Figure 4.1.: Critical temperature plotted against resistivity in films with average grain size of
2nm. Black triangles: Tc extracted from measurements of the energy gap by THz
spectroscopy. Blue triangles: Tc directly measured by probing the resistivity in a
standard four-probe hallbar geometry. Figure taken from [165].

1Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801,
Israel
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critical temperature of granular aluminum compared to bulk aluminum is known for a
very long time and has been observed first by Abeles [166] in 1966. The origin of the
enhanced Tc and its dome-like shaped dependence on normal state resistivity is still
debated (see Fig. 4.1).
Due to their narrow grain size distribution films grown as presented above can be treated
as homogenously disordered films. Over the last years they have been studied extensively
for their transport properties and optical conductivity [163, 165, 167–172]. A possible
application for quantum circuits are superconducting microwave resonators [173, 174]
due to the high and tunable kinetic inductance in granular aluminum. The films studied
were all relatively thick, i.e. at least 20-30nm up to ∼ 100nm. As the grain sizes are in
the order of 2-3nm, the films can be considered three dimensional and no high resistive
state has been found.

a) b)

Figure 4.2.: a) Relativ resistance R(T )/R(300K) plotted against the temperature. Curvature
changes with increasing 300K-resistivity from a positive TCR to a negative TCR. b)
R(T ) of a low resistive sample, showing a negative curvature at high temperature, a
minimum of resistance at Tm and an increase to a maximum at TM. The inset shows
the logarithmic increase at low temperatures. Figure taken from [167].

In 2013 Ref. [167] reported results of transport measurements on thin granular films with
a grain size of 2nm close to the metal to insulator transition. As the films are about 100nm
thick they are treated as three dimensional, because their thickness is more than one
order of magntiude larger than the grain size. By measuring the R(T ) curves of the zero
bias resistance they find transition temperatures Tc consistent with the dome like shape
in Fig. 4.1. Above the individual critical temperature they find, that the normal state
properties near the metal to insulator transition show striking similarities to systems, like
CuMn and CuFe [175, 176]. Due to scattering of conduction electrons in a metal due to
magnetic impurities this dilute alloys show a negative magnetoresistance in samples with
a high resistivity, a minimum in the R(T ) at a temperature Tm followed by a logarithmic
increase of resistivity below Tm in samples with lower resistivity (metallic behaviour).
This behaviour is known as the Kondo effect [177]. The metallic samples in addition show
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a negative curvature with a positive TCR, i.e. the resistance decreases with decreasing
temperature, while the insulating samples show a negative TCR, i.e. an increasing
resistance with decreasing temperature. Fig. 4.2a) presents the R(T ) curves in reference
to the resistance at 300K. The room temperature resistivities increase from small (black)
to large (yellow) and are listed in the upper right corner. The lower right inset depicts
the used hallbar geometry. The above mentioned behaviour of positive TCR for low
resistivity samples towards a negative TCR for samples with high resistivity is visible. In
addition, in Fig. 4.2b) a single R(T ) is shown for a metallic sample. It exhibits a negative
curvature at high temperatures, a resisitivity minimum Tm and a log(T) dependence at
low temperatures. At a temperature TM the resistivity has a maximum below which the
resistivity starts to decrease towards the superconducting transition at a temperature
Tc < TM. The properties of the normal state above Tc are interpreted in terms of spin-flip
scattering of conduction electrons by local magnetic moments, which possibly are located
at the interface between metal and oxide of the grains. The theoretical description as well
as experimental findings have also been published in Ref. [168] and [169]. In the latter a
Mott transition [178, 179] is observed by probing the increase of the spin-flip scattering
rate of the conduction electrons as the grains inside the granular film are decoupled
(increasing ρN). The coupling strength is measured in terms of the room temperature
resistivity. The findings suggest, that the scattering of the conduction electrons by free
spins increases by several orders of magnitude. The increase of the normal state resistivity
is attributed to a decrease of the effective Fermi energy. Once the effective Fermi energy
approaches the electrostatic charging energy EC of a single grain at high resistivities, a
Mott transition to an insulating state is likely to occur. The critical resistivity observed
at the transition ρc(300K) ∼ 50000µΩcm is in agreement with previous measurements in
3D granular films close to the metal to insulator transition [169].
In Ref. [170] signatures for unconventional superconductivity, i.e. not in agreement with
predictions by the BCS theory, have been found in 3D granular aluminum films. By
measuring the complex transmission of superconducting granular aluminum films in the
THz optical range accompanied by measurements of the temperature dependence of the
BCS energy gap, they find good agreement with BCS predictions as long as the grains
are well coupled. However, for fairly decoupled grains they find an enhanced absorption
for frequencies lower than the energy gap. The absorption at sub-gap frequencies is not
in agreement with BCS predictions. Ref. [170] argues that the found deviations can not
be explained by thermally excited quasiparticles nor by inhomogeneity effects despite of
the granular nature of their samples.
A further study of the optical conductivity using THz spectroscopy near the Mott metal
to insulator transition by Ref. [165] indicates a crossover from BCS regime to a Bose-
Einstein-condensate (BEC). In the BCS regime the number of pairs in a coherent volume
is very large. In a BEC this number is in the order of unity. It was only recently
theoretical predictions regarding the evolution of strong- coupling ratio and the crossover
from BCS to BEC became availabe [180, 181]. Ref. [165] find an increase of the coupling
strength 2∆(0)/kBTc up to 4.51 by comparing the value of the optical gap determined by
fitting the conductivity data to the Mattis-Bardeen theory [182] to the BCS energy gap
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extracted from their tunneling data. The increase above the value of 2∆(0)/kBTc = 3.5,
as predicted by BCS theory, by increasing the room temperature resistivity, while the
critical temperature is not found to be strongly reduced by the grain decoupling, is again
consistent with a Mott transition. Ref. [165] argues that the good performance of high
kinetic granular aluminum resonators by Ref. [173] may in fact originate from the Mott
like metal to insulator transition instead of an Anderson like transition. A granular
system exhibiting a Mott type transition may be viewed as a network of Josephson
junctions between well defined aluminum grains, rather than as a highly disordered
superconductor [173]. Ref. [171] studied the temperature dependence of the upper critical

Figure 4.3.: Orbital critical field Hc2,orb plotted against 4.2K resistivity. Blue dots are mea-
surement data and the red line corresponds to the prediction by WHH theory. For
resistivities above 1000µΩcm the critical fields deviate from the prediction and sat-
urate at value of B = 7-8T. The deviation from the red curve is attributed to the
crossover to a Pauli limitation of the upper critical field. Figure taken from [171].

field of superconducting granular aluminium films with resistivities close to the metal to
insulator transition. They find a shift from orbital (low normal state resistivity at 4.2K)
to Pauli limited (high normal state resistivity at 4.2K) critical field (see Fig. 4.3) and
argue that this is due to a renormalization of the electron mass. In the regime of Pauli
limited critical fields the transition becomes of first order as predicted by [183, 184].
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a)

b)

Figure 4.4.: a) and b) present R(B) and R(T ) curves for a sample with ρ4.2K = 3400µΩcm. a)
With decreasing temperature the transition to the normal conducting state gets very
narrow. b) In between 4T and 5T the R(T )s display a non zero saturation resistance
smaller than ρ4.2K . Interestingly, there is a minimum in the R(T ) around B = 4.25T
and T ∼ 500mK. Figure taken from [171].

In Fig. 4.4 the R(B) and R(T ) curves are presented for a sample having a normal state
resistivity of ρ4.2K = 3400µΩcm, i.e. a high enough resistivity to be in the Pauli limited
regime as shown in Fig. 4.3. For low temperatures the R(B) curves show a very narrow
transition, while in the R(T ) curves around B = 4.25T the resistivity goes through a
minimum. The minimum occurs at a temperature compatible with the occurence of the
maximum in the upper critical field. To fit the temperature dependence of the upper
critical field of samples with ρ4.2K > 1000µΩcm to the Werthamer-Helfand-Hohenberg
(WHH) theory [185], the authors of Ref. [171] had to use Maki parameters α > 1. For
that case, the WHH theory predicts that the upper critical field, connected to a second
order transition, should decrease at lower temperatures.
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Fig. 4.5 shows the extracted upper critical fields for the corresponding temperatures of
the same sample as shown in Fig. 4.4. To do so, the resistivity versus magnetic field
curves were fitted to the theory of Fulde and Maki [186]. The upper critical field increases

Figure 4.5.: Low temperature part of the upper critical field versus temperature plot. The critical
field reaches a maximum at T ∼ 750mK and decreases for lower temperatures. Figure
taken from [171].

for decreasing temperatures until it reaches a maximum. For even lower temperatures
there is a downturn of the critical magnetic field as predicted by WHH theory for a Maki
parameter α > 1. Above the maximum the transition is a second-order transition, while
below the maximum it is a first order transition.
Ref. [171] argues that at the Mott transition, the effective Fermi energy reaches zero and
therefore at some point has to become equal to the energy gap. Then the number of
Cooper pairs in the coherence volume is in the order of unity and this can be treated as
a BCS to BEC crossover. For that crossover it is predicted, that the phase coherence
length ξphase and with it the orbital critical field saturates [187]. This is what has been
found in their measurement. In addition the found strong coupling of 2∆(0)/kBTc ∼ 5
does as well agree with the prediction of a BCS-BEC crossover.
Recent measurements of the evolution of the superconducting energy gap ∆ with THz
spectroscopy further support the approach of a BCS-BEC crossover, which is proposed
to be induced by the vicinity of a Mott transition [172].
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4.2. 2D Granular Aluminum - Sample Characterization
Our goal is to study films in the true two dimensional limit. We aim at the SIT and
transport properties in the insulating state. Hence, the requirements for our films were
a further decrease of thickness, designed to 5nm, combined with a sheet resistance in
the vicinity of the quantum resistance of Cooper pairs RQ = 6.45kΩ. Fig. 4.6 shows

a) b)

Figure 4.6.: Optical images of a) Sample 091220 - S b) Sample 090720 - I prepared for measure-
ments. They have been glued into the chipcarriers and bonded with aluminum bonds.
The design of the hallbars is different for both samples. For sample S both hallbars
are identical. The dimensions of the hallbars in b) for Sample I do vary in width.

optical images1 of the two samples presented below. Both films were patterened in a
hallbar geometry. The hallbar of Sample 091220, referred to as Sample S, has a width of
250-300µm (uncertainty in dimensions stem from mechanical mask for shadow evaporation
and evaporation executed with a small angle; see appendix A.3). Sample 090720, referred
to as Sample I, has a width of 50µm. Both hallbars are sketched again for clarity in
Fig. 4.7. The wider hallbar in Fig. a) for Sample S should have been an upgrade to the
design of b), where contact pads were very small. In addition, we encountered serious
problems on numerous samples to establish (good) electrical contacts to the films. The
bond wires did not stick to the granular film or if they did, there was a mechanical but
no electrical contact. Some samples could be measured at room temperature, but after
cooldown to low temperatures electrical connection was lost. The two samples measured
in this thesis are the ones that had enough working contacts at room temperature to be
measured in a standard four-point geometry and at least two properly working contacts
at low temperature for a two-point characterization. That is why both samples had to

1Photographs taken by S. Feyrer
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4. Material and Sample Characterization

be measured in a two-point geometry at low temperatures. The current path increased
to approx. 28 sheets for both samples. The room temperature resistances could be
measured with a four-point measurement and are listed in the table below together with
other important values.

150 100 50 100 50

40 50

500

400

w =

200µm

200µm

a) b)

µm

Figure 4.7.: Different hallbar designs: a) Current path designed to be 200µm, but increased to
values between 250-300µm due to fabrication resolution and growth under a small
angle. b) Design of various hallbars. Sample I corresponds to hallbar 12 with 50 µm
width and 400µm between voltage probes. Due to fabrication the on-chip design is a
mirror-image as seen in the optical image Fig. 4.6b). The design shown in b) was
designed and provided by A. Glezer Moshe.

Sample 091220 - S Sample 090720 - I
width 300µm 50µm

thickness 5-6nm 9-10nm
Nsheet(2-point) 28 28
Rsheet(RT) 1.78kΩ 5.375kΩ
Rsheet(4K) 2.96kΩ 7.75kΩ

Tc 2.3-2.4K 1.8-2.4K
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4.2. 2D Granular Aluminum - Sample Characterization

Morphology

The grain sizes, the size distribution as well as the critical temperature is known to
depend on growth properties such as substrate temperature, vacuum pressure and oxygen
concentration [165]. The film resistance may be tuned by the oxygen concentration
during growth. But does the film thickness matter? What happens if the film is very
thin, i.e. only a few nanometers? Does that impact the morphology and/or the shape of
the granules?

To answer this question, both samples have been scanned with a scanning electron
microscope2 and checked for their average film thickness using a DekTak profilometer3.
In addition a third unmeasured sample has been characterized with an atomic force
microscope4 for the thickness profile of the film A.2.

a) b)

1 µm 200 nm

Figure 4.8.: Sample S - SEM Images: a) 24.000x low Zoom image b) 69.000x high Zoom image.
The scale bars in a) and b) indicate 1µm and 200nm, respectively.

As Fig. 4.8 suggests, the reduction of thickness into the few atom layer limit does indeed
strongly affect the granular morphology of the films. There is a strong inhomogeneity in
the grain size distribution in contrast to films with thickness above 20nm. They show
grain sizes of 2-3nm depending on growth properties. The ultra-thin films show a broad
spectrum of grain size and distance. In Fig. 4.8a) only the large grains can be seen, while
in b) after a further zoom in, we get grain sizes ranging between 2nm and 80nm. While
the average distance between the grains is rather small, a few nm or less, the distance
between the biggest grains is roughly the same as their size, up to 80nm.

A reference sample, designed for a thickness of 5nm, with actual thickness of roughly
10nm, and a room temperature resistance comparable to Sample S, was investigated for
its thickness profile with an atomic force microscope.

2SEM by Zeiss
3DekTaK by Bruker
4AFM by Park
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4. Material and Sample Characterization

The AFM image in Fig. 4.9 has been analysed with the software Gwyddion5.

a) b)
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Figure 4.9.: Reference Sample - AFM Image: a) and c) show the same 1µm x 1µm wide window,
where the scalebars indicate 200nm. The colorscale is in pm. The lowest value is 0
and the highest value is 543pm. The ticks indicate steps of 50pm.
The black line in a) corresponds to the linetrace shown in b) and the black line in
c) to the linetrace in d). Both line traces show a thickness variation along its path
below ±100pm.

The thickness in that 1 micron x 1 micron wide window varies only little around a
random residual offset of approx. 0.3nm coming from the AFM (a big 3.74nm offset
corresponding to the minimum in the original data has been removed). The deviation of
thickness from the average value of ≈ 300pm is less than ± 100pm as shown by the line
traces in Fig. 4.9 b) and d). The distribution of thickness across the total scanning area
is shown in Fig. 4.10. The narrow distribution around the average thickness indicates a

5Free Software Gwyddion - gwyddion.net
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Figure 4.10.: Thickness distribution shown for the whole scanning area of 1µm x 1µm of Fig.
4.9a)/c). The maximum is at a random residual offset.

relatively flat surface and suggests that the aluminum grains are indeed encapsulated
into an aluminum-oxide matrix, as expected from thicker films.
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4. Material and Sample Characterization

We will now return to the SEM images. They have been analysed using python’s numpy
and open-cv packages to evaluate the distribution of the grain areas and from that the
distribution of the diameters. The processed SEM images of Fig. 4.8b) are shown in Fig.
4.11. From the scalebar we get a value of 1.63nm x 1.63nm per pixel, which is used in
the image processing algorithm to calculate grain area and from that the grain diameter.

200 nm

a) b)

c)

200 nm

Figure 4.11.: Processed SEM image of Sample S: a) grayscale image of Fig. 4.8b). In b) the
corresponding threshold image is shown. a) and b) have the same size and scalebar.
c) shows the extracted contours from the threshold image projected onto original
SEM image.
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Figure 4.12.: Grain area and diameter distribution for circular grains of a), b) sample S and c), d)
sample I on a double logarithmic scale. Plotted are the number N of counts versus
area/diameter. Both samples exhibit a similar grain size distribution. The grain
sizes vary between a few nm only up to ∼100nm. In both samples the number of
small grains below 10nm dominate.

From the contour area distribution, we can deduce the diameter distribution by assuming
a circular grain shape. The corresponding diameters lie in between a few nm and approx.
100nm.
Fig. 4.12 suggests, that sample S and sample I have approximately the same distribution
of grains (area, diameter), where the small grains with d < 10nm dominate. Weighting
the counts for the corresponding diameters by dav = ∑(Ni ∗ di)/Ntot, we get average
diameters of approximately 12nm for sample S and approx. 7nm for sample I.
The contour area algorithm rather underestimates the area for each grain. In addition,
islands with diameter below 5nm are hard to detect or appear as parts of bigger grains
due to image resolution. Due to the latter it is possible that a larger grain is shown
as a pile of very small grains. That shifts the distribution towards smalle values. We
apply a lower threshold to the grain diameter distribution and consider only grains with
a diameter above 5nm. The deduced average grain diameter is approx. 28nm for Sample
S and 13nm for Sample I.
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4. Material and Sample Characterization

In Ref. [8] Abeles proposed that the charging energy can be calculated by material and
geometrical properties only.

EC = e2

4πϵ0dκ
(4.1)

κ = ϵ

(
1 + d

2s

)
e is the electron charge, ϵ0 the vacuum permittivity, ϵ the relative permittivity, d the
grain size, and s the grain separation.
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Figure 4.13.: Calculated charging energies using Eq. 4.1 for three different grain separation values.

Fig. 4.13 shows calculated charging energies using Eq. (4.1) for a grain size distribution
as seen in Fig. 4.11 and for 3 different grain separations. The grain separation length s
was chosen to be around 0.5nm as known for films with higher thickness and the relative
permittivity for amorphous Al2O3 to be 8.5 [168].
Taking into account the average grain size to be in the order of 30nm for Sample S and
the average grain separation to be approximetely 0.5nm or less, one expects the charging
energy for single electrons to be a few hundred mK up to a few Kelvin. The same holds
true for Sample I, where even higher charging energies are expected due to the smaller
average diameter. In reality however, things are far more complex as the grain separation
might as well vary locally. That leaves a random network of grain sizes and separations.
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4.2. 2D Granular Aluminum - Sample Characterization

Nevertheless, those values should give an estimate for the order of the expected charging
energies.
Assuming some grains turn superconducting below a certain temperature, then the trans-
port would be composed by electrons and Cooper pairs. As the charge of a Cooper pair
is 2e, one expects a charging energy of 4E(e)

C for the same grain diameter and separation.

87



4. Material and Sample Characterization

4.3. 2D Granular Aluminum with Normal Conducting Grains
below Tc

As presented in section 4.2 our samples are two dimensional with thickness 5nm and
10nm and have a broad distribution of grain sizes from a few nm up to 100nm. In similar
ultra thin films Goldman [10] found superconductivity and evaluated the influence of the
film thickness. They found a sharp transition to an insulating state when decreasing the
thickness below a critical value of a few nm (thickness induced SIT). We want to study
the magnetic field induced superconductor to insulator transition and the behaviour of
the insulating state. A granular metal, without superconductivity in the grains, may
behave insulating with decreasing temperature, if the grains are weakly coupled [110]
(see section 2.3). This has to be distinguished from an insulating state by decoupling
the superconducting grains (see section 2.2.3). We therefore characterize our sample S
without superconductivity in the grains and destroyed superconductivity by applying a
magnetic field higher than the critical one.

In the high field regime (B ≫ Bc) superconductivity is destroyed and the disordered
system turns into a granular metal with weak coupling (see section 2.3). Transport in
this regime is mediated by electron hopping between the grains. Due to weak coupling
between the grains the system can be described by a Mott insulator, where the Mott gap
is determined by the Coulomb energy EC and the conductivity follows the activated form
of Eq. 2.107. However, the Mott gap may be significantly reduced for finite tunneling
conductances [112].
To study the low temperature behaviour of a granular metal in absence of supercon-
ductivity sample S was exposed to the maximum perpendicular magnetic field possible, 7T.

We can estimate an upper limit for the critical magnetic field needed to destroy super-
conductivity by assuming that the energy to break up the Cooper pairs is provided by
the magnetic field only. The effect of pair breaking is a consequence of the effect of the
external magnetic field on the electronic spins [18]. In the limit of neglected spin-orbit
scattering the pair breaking energy equals the energy of the magnetic field, leading to
µBB = ∆0. However, as Clogston [119] and Chandrasekhar [120] pointed out, there will
be a first-order transition to the normal conducting state when µBB = ∆0√

2 . This limits
the upper critical field with negligible spin-orbit scattering to the Pauli limited field BP
given by

BP = ∆0√
2µB

(4.2)

Then for a critical temperature Tc ≈ 2.3K and ∆0 = 1.76kBTc0 we get a ∆0 ≈ 350µeV.
Using Eq. 4.2 the upper critical field is limited to BP ∼ 4.23T.
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4.3. 2D Granular Aluminum with Normal Conducting Grains below Tc

Activated Behaviour and Low Temperature Saturation
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Figure 4.14.: Sample S: a) Arrhenius plot of the extracted zero bias resistances for magnetic fields
B > 3T. The black lines correspond to fits by R(T ) = R0 exp

(
EA

kBT

)
. For clarity

only fits to B = 3.25T, B = 3.5T and B = 7T are shown. The extracted activation
energies are plotted in b) versus the corresponding magnetic fields. While for B
< 3.5T EA shows an increase with decreasing magnetic field, it is independent for
higher fields. The prefactor R0 decreases for decreasing magnetic field below 3.5T.
For B > 3.5T it is approximately constant around R0 ≈ 3.25kΩ and only slightly
higher than the normal state resistance of RN= 3kΩ. (see Fig. 5.15 for full R0(B))

Fig. 4.14b) shows the Arrhenius behaviour for magnetic fields B > 3T. In a broad
temperature range 100mK < T < 700mK the resistance follows a linear dependence in
the Arrhenius graph, indicating an activated behaviour. The curves for 3.25T and 3.5T
show a magnetic field dependence of the linear slope. This regime will be examined later
and as for now it just means that for B < 3.5T the activation energy is given by EA(B).
For magnetic fields B > 3.5T the slope is independent of magnetic field, which indicates
that the superconducting gap has already vanished. In other words, B = 7T fulfills the
condition B ≫ Bc and the high field Fermi insulator state may be examined.
The activation energy extracted from simple linear fits by Eq. 2.104 to the slopes in the
Arrhenius graph is EA/kB = 0.21K +/- 0.01K for 3.5T < B ≤ 7T.

In Fig. 4.14 we presented magnetic field dependence of the Arrhenius curves down to
100mK and saw an activated behaviour. We will now turn to the lowest temperatures.
Therefore we remeasured the 7T dependence down to 15mK.
The IV curves of that measurement can be seen in Fig. 4.15a), while the Arrhenius
behavior is shown in Fig. 4.15b). A linear increase of resistance for decreasing temperature
is followed by a saturation at the lowest temperatures T < 80mK.
A similar temperature dependence, a high temperature activated behaviour followed by
a low temperature saturation, has been seen in Josephson junction arrays, where the
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Figure 4.15.: Sample S at 7T: a) IVs of 6 selected temperatures ranging between 15mK and 712mK.
At the lowest temperatures the IVs show a Coulomb blockade with a suppression of
current flow. The extracted zero bias resistances are plotted in b) in an Arrhenius
graph. At high temperatures the resistances fall onto a straight line for activated
behaviour. However, below 80mK the resistance values start to saturate.

islands were in the normal conducting state. Superconductivity was destroyed in the
same manner as in our case, i.e. by applying magnetic field above the critical Bc [80].
To explain their findings Ref.[80], it was suggested that there are two effects for charge
transport. The first deals with the activated temperature dependence of the resistance
and the second with the low temperature saturation.

The activated behaviour is attributed to the existence of charge solitons [188]. Adding a
single charge to a (normal conducting) electrode in an electrically neutral array creates
an electrostatical potential distribution, which is called soliton. Removing a single charge
creates the counterpart, an antisoliton.
By tunneling events, the solitons can move freely in the array.
The fundamental, thermally activated, excitation is a soliton/antisoliton pair. In case, the
charge is a single electron it is called single electron soliton (SES), in case it is a Cooper
pair it is called Cooper pair soliton (CPS). In the case of superconducting electrodes
both, SES and CPS can exist [80].

In this section we will only focus on SES, as the grains in our granular aluminum sample
have been turned normal conducting by applying a magnetic field B > Bc.
At the lowest temperatures the resistance does not follow the activated form, but saturates.
This is explained by taking quantum fluctuations into account. Ref. [80] investigated
a series of JJAs with different normal state sheet resistances RN. They found that the
saturation resistance, which they call RQF is critically dependent on the normal state
resistance of the individual junctions in the array.
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4.3. 2D Granular Aluminum with Normal Conducting Grains below Tc

For arrays with RN ≪ RQ with normal conducting electrodes one does not expect
insulating behaviour, because the energy uncertainty (lifetime uncertainty) of the state
of defined charge, given by δE ≈ ℏ/RNC, is much larger than EC [80, 189]. That means
that quantum fluctuations of charge create a finite conductance in the array down to the
lowest temperatures.
In the other extreme case RN ≫ RQ quantum fluctuations are negligible and the array
behaves insulating due to Coulomb blockade [190]. The authors of Ref. [80] describe
the crossover of the two extreme cases, taking into account both effects, i.e. thermal
activation of single electron solitons and the low temperature saturation due to quantum
fluctuations of charge. The empirical formula in Ref. [80] reads

G0 = 1
R0

=
(

1
RN

− 1
RQF

)
exp

(−EA
kBT

)
+ 1
RQF

(4.3)

and is an adaption of Eq. 2.104 with RQF as the temperature independent fluctuation
resistance.
Our sample S, which is evaluated in this section, has a normal state sheet resistance of
RN = 3kΩ ≈ RQ. That indicates that we are in the crossover regime and we therefore
apply Eq. 4.3 to our B = 7T data. The fit to the data is shown in Fig. 4.16.
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Figure 4.16.: Sheet conductance at 7T fitted to the formula given in Eq. 4.3. The fit nicely
reproduces the activated behaviour at higher temperatures and takes the low
temperature saturation into account.

91



4. Material and Sample Characterization

The resulting activation energy of EA/kB = 0.21K is in very good agreement with the
value extracted by the linear fits in Fig. 4.14. To fit the data, a normal state sheet
resistance of RN = 3.25kΩ was used. That value only slightly exceeds the measured
RN(T = 4K) = 3kΩ. The fit in addition gives a value of RQF = 152kΩ per sheet.
Ref. [80] measured three JJAs with RN ranging between 3.98kΩ and 4.49kΩ, which is
comparable to RN = 3kΩ of our sample S. For these samples, with the electrodes in the
normal conducting state, they extracted activation energies EA,N ∼ 0.2K-0.266K in good
agreement with our EA,N = 0.21K.
For periodic JJAs with RN ≫ RQ [99], the authors found a relation between the activation
energy EA and the charging energy of a single junction EC, EA = 1/4EC. That was
confirmed by Ref. [80]. However, for JJAs with a RN ≈ RQ Ref. [80] found deviations
from that ratio. The latter increases up to values of 0.7. In our sample the number of
junctions is unknown and we cannot deduce the charging energy by an independent way.
The ratio between the activation energy and the charging energy in our sample remains
an open question.
However, the measured activation energies fall well into the lower part of the expected
region for the single electron charging energies in the normal conducting state, ≈1K, as
calculated in Fig. 4.13.
While in the three arrays of Ref. [80] the resistance in the normal state increased only
slightly from its RN ∼ 4kΩ to RQF ∼ 6-7kΩ, we find a higher increase by a factor ∼50
from RN = 3kΩ to RQF = 152kΩ.
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Threshold Voltage

In Fig. 4.15a) we have already shown the evolution of the Coulomb blockade with
temperature. We now turn to the lowest temperature measured, T = 15mK. That curve
is shown in Fig. 4.17. For clarification only the positive bias voltages of the IV curve are
presented. The threshold voltage VT,N indicates the onset for the injection of SES.
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Figure 4.17.: Positive current/voltage branch of the IV measured at B = 7T and T = 15mK.
Onset of deviation from linear dependence at VT,N marked by the blue vertical line.

Similar to findings in JJAs with normal conducting electrodes by [80], we see a washed
out Coulomb blockade. That is attributed to quantum fluctuations. Therefore, there is
no sharp threshold voltage.
The red line is an extended linear fit around zero bias and the blue line indicates the
deviation of linear behaviour. The deduced threshold voltage, using this method, in
the normal state is VT,N = 19µV. The three arrays of [80] with a comparable RN as
our sample S did show a superconducting behaviour, i.e. a decreasing resistance with
decreasing temperature, but no threshold voltage in the state with normal conducting
electrodes was considered. They mention an array with very high RN = 151 kΩ, which did
show a threshold voltage of VT,N = 250µV. A theoretical calculated value for that array
is VT,N,th = 2.3mV. The authors argue that the deviation by a factor ∼10 is consistent
with quantum fluctuations, which lower the threshold for the injection of SES.
Our small value of VT,N = 19µV can be attributed to the suppresion of the threshold
voltage due to quantum fluctuations, too. This is in agreement with the washed out
Coulomb blockade as seen in Fig. 4.15.

By comparing our measurements on granular aluminum to periodic JJAs, where the
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grains and the electrodes have been turned normal conducting by a high magnetic field B
> Bc, we find strong similarities. That includes an activated behaviour at temperatures
80mK < T < 700mK and a low temperature saturation below 80mK. A washed out
Coulomb blockade without a sharp threshold voltage VT,N agrees with the explanation of
quantum fluctuations of charge to be responsible for the low temperature saturation [80].
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Early studies on ultra-thin films revealed a morphological difference for films grown on
Al2O3/glass-substrates [10, 61, 62, 191] and substrates with a predeposited amorphous
germanium underlayer [63, 192]. The first revealed a granular nature associated with a
disorder on length scales substantially larger than atomic level, but still smaller than
sample size. The second were homogenously disordered and believed to have disorder in
the atomic order. The difference has as well been noted in electron-tunneling studies by
[162, 193]. For granular films the density of states does only weakly depend on RN, but
for homogenously disordered films the effective density of states decreases monotonically
with increasing RN.
The low temperature behaviour drastically differs for the two categories. Homogenous
disordered samples either show a sharp transition to a zero resistive state or an insulating
behaviour with an increasing resistance down to the lowest temperatures. The transition
temperature Tc has been found to be well defined by the normal state sheet resistance,
which in turn is controlled by the film thickness. The critical temperature monotonically
decreases with increasing RN. The resistance separating the superconducting from the
insulating behaviour has been found to be material dependent.[192]
The ultra-thin granular films revealed a much more complex behaviour. The first note-
able property is that the critical temperature Tc is independent on thickness or RN.
Secondly, the resistance separating superconducting and insulating behaviour seems to
be independent on material. Global phase coherence and the resulting zero resistive
state has only been found for resistance values of RN smaller, but close to RQ = 6.45kΩ.
In addition, granular films starting with insulating behaviour for RN ≫ RQ exhibit a
reentrant behaviour, i.e. a local minimum in the R(T ) curve close, but below the critical
temperature Tc, as RN approaches RQ. Further decreasing RN leads to a low temperature
flattening out of the local minimum. As the resistance did not vanish, this was attributed
to a metallic behaviour. Finally, at values RN < RQ global phase coherence is achieved
and the resistance drops to an unmeasureable small value.[10]
A comparison between homogenous disordered Pb films and granular Pb films has been
shown in Fig. 2.7. The evolution of the R(T ) curves by varying the thickness reveals a
thickness/normal state resistance dependence of the critical temperature Tc for homoge-
nous disordered films, while for granular films TC is independent on thickness/normal
state sheet resistance. The same behaviour has been found for other material systems
including aluminum [10, 192]. The evolution of the R(T )s for ultra-thin granular alu-
minum can be seen in Fig. 2.17a). The transition temperature Tc does not depend on
thickness/normal state sheet resistance.
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However, for both classes the separation resistance was in the vicinity or close to the
quantum resistance RQ. Later studies on artificical Josephson junctions arrays [81] and
homogenously disordered films, e.g. TiN [69, 83], showed that a SIT could well be induced
by a magnetic field for RN ≤ RQ. For details see section 2.2.3.

As introduced in section 2.2.3 thin films with a sheet resistance RN close to the quantum
resistance RQ = 6.45kΩ may undergo a transition from a superconducting state to
insulating behaviour (d-SIT). In that critical region and RN < RQ a transition from
superconducting to insulating can be induced by an external magnetic field as well (B-SIT).

After the studies on ultra-thin granular films by [10, 61, 62, 191] the focus shifted towards
ultra-thin homogenous films [63, 192]. The development in microfabrication allowed to
process artificial Josephson junction arrays, where the competing effects of Josephson
coupling, charging and temperature could be studied in a defined and known geometry
[80, 81]. Therefore there are only few explicit studies on the magnetic field dependence of
ultra-thin granular films. In recent years granular systems received interest due to findings
and theoretical explanations of an anomalous metallic state between the superconducting
and the insulating phase of the SIT in two dimensions.

The main motivation for this thesis is to get a better understanding of the transport
properties of ultra-thin superconducting granular aluminum films as literature lacks of a
proper study of the impact of a magnetic field at low temperatures. Open questions are
connected to a possible magnetic field induced superconductor to insulator transition,
the nature of the insulating state and the mechanism driving the transition.

The sheet resistance of the two presented samples in this thesis is in the critical region
RN ≈ RQ (see section 4). The first section 5.1 discusses the temperature dependence of
the zero bias resistance in absence of magnetic field. After that we apply a perpendicular
magnetic field to both samples and evaluate the influence on the R(T ) curves (see section
5.2). Here the temperature was swept and the magnetic field was fixed at certain values.
For each magnetic field IV curves have been measured for a set of temperatures. We
used the same approach for a set of parallel magnetic fields to see differences to the
perpendicular orientation. In addition, to increase the number of magnetic field values
in the evaluation for the R(B), in section 5.3 temperatures have been fixed and the
magnetic field was swept continuously.
In sections 5.1, 5.2 and 5.3 we will see a low temperature saturation of resistance in the
vicinity of the magnetic field induced SIT. The results will be discussed in section 5.4.
Up to now we have only focused the zero bias resistance. In section 5.5 the differential
resistance at bias voltages exceeding the dielectric breakdown will be evaluated and
discussed.
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5.1. Temperature Dependence of the Zero Bias Resistance
R(T) across the Disorder-Induced SIT (B = 0T)

As shown in the previous pages at the start of chapter 5, ultra-thin granular films exhibit
a very rich temperature dependence. In this section we will take a look at the evolution
of the resistance of our two samples with temperature and we will for now focus on the
zero magnetic field case. The sheet resistance has been extracted in the linear zero bias
limit of current-voltage characteristics. The IV characteristics are measured across the
complete sample length of N = 28 sheets. In the following the differential resistance
corresponding to the slope of the IVs has been divided by a factor 28 to extract the
sheet resistance R□. The shape of the IVs does as well drastically change for different
temperature regimes and will be as well discussed.
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Figure 5.1.: SIT induced by disorder, where the sheet resistance at 4K is taken as a measure of
disorder. The two presented samples cross the critical region around RQ and show a
completely different low temperature behaviour. Sample I has a RN(4K) = 7.8kΩ and
sample S RN(4K) = 3kΩ. Green dotted vertical lines indicate different temperature
regimes labeled from I to V. The plateaus of region III and IV of sample S correspond
to R□ ≈ 750kΩ and R□ ≈ 500kΩ, respectively.

As shown in chapter 4, the two samples differ by a few kΩ per sheet at room temperature.
The sheet resistances of both samples show an increase by cooling down from room
temperature to 4K. Sample S starts at approx. 1.8kΩ and ends at 4K with a resistance of
approx. 3kΩ. Sample I increases from approx. 5.4kΩ to approx. 7.8kΩ, a value slightly
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above the quantum critical resistance. The resistance ratios comparing 4K and room
temperature resistances are 1.66 and 1.44, respectively.

The R(T ) curves of both samples are presented in Fig. 5.1. As expected for granular
films, both curves do not show a simple curvature, but are rich in detail. Similar to
what has been explained in chapter 5, by decreasing RN towards RQ a pure insulating
behaviour vanishes. Sample I (red) has a RN only slightly exceeding RQ at T = 4K.
RQ is indicated by the blue horizontal line. Below T ∼2K-2.3K the resistance decreases
and forms a local minimum at T ∼1K. By further decreasing temperature the resistance
starts to increase again.
Sample S (black) has a sheet resistance slightly below RQ at 4K. Its R(T ) is even more
complex. At approximately the same temperature as sample I the resistance starts to
drop. Instead of a decrease to a zero resistance state, the resistance flattens out down
to ∼1K. Further decreasing the temperature leads to a lower level of resistance, which
has the shape of a broadened V. It is only at a temperature below ∼250mK, where the
resistance finally drops down to zero, indicating the existance of global phase coherence.

Similar dependencies have been seen by Ref. [10, 61] in ultra-thin granular films of tin,
lead, gallium and aluminum. It is important to note, that their lowest temperature was
T ∼ 0.6K, while in our measurements the lowest temperatures were either T = 15mK
(sample S) or T = 28mK (sample I).
The reentrant behaviour and the plateaus in the R(T ) curves are connected to the
three important energy scales EJ (Josephson coupling), EC (charging/Coulomb energy)
and kBT (thermal energy). The first tries to align the phases of the wave functions
on neighbouring grains for global phase coherence, while the second tries to localize
charge carries onto the island. The latter corresponds to phase fluctuations of the order
parameter in the individual islands. The third energy is given by the temperature. On
the one hand EJ is directly coupled to the temperature dependent BCS energy gap
∆(T ) and on the other hand thermally excited charge carriers may effectively limit the
resistivity due to a finite conductivity when exceeding the charging energy.
The criterion for vanishing of phase fluctuations in a single junction [194] is given by

EJ > EC + kBT/2 (5.1)

where EC = e2/2C and EJ is given by EJ = RQ
RN

∆(T )
2 tanh (∆(T )/2kBT ), the standard

expression for an ideal SIS junction as derived by Ambegaokar and Baratoff (see section
2.1.3). For T = 0 this reduces to the well known condition by Abeles [8]

EJ > EC (5.2)

with EJ,0 = RQ
RN

∆0
2 .

As has been shown a single Josephson junction can be modelled in the RCSJ-model (see
section 2.1.3). The Hamiltonian for a single junction reads

H = 1
2[(2e)2/C]N2 + EJ(1 − cos(θ)) (5.3)
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In this tilted-washboard potential small zero point fluctuations in the bottom of a
potential well exist with energy

ℏωp = (8ECEJ)(1/2) (5.4)

Particle number N and phase θ are conjugate variables, which implies an uncertainty
relation of the form δNδθ > 1/2. Large charging energies prohibit strong fluctuations of
δN and lead to strong phase fluctuations δθ. These strong fluctuations of phase destroy
phase coherence up to the point, where condition Eq. 5.2 is fullfilled.[10]

Refs. [10, 61] explain the complex R(T ) curves measured on ultra-thin granular films with
the existence of temperature dependent percolation paths forming from the tunneling
junctions between single grains or clusters of grains. They argue that in an ordered
square array of identical junctions the overall resistance (R□) is given by the resistance
of a single junction Rsingle. However, in ultra-thin granular films the individual junction
resistances as well as the capacitances may drastically vary and result in a distribution
of both. This is given by the randomness of the grain sizes, cluster sizes and grain
separation distances.
Therefore, not all junctions may be phase-coupled at the same temperature, even if
all grains turn superconducting at the same temperature Tc. Below the critical tem-
perature there may exist clusters of phase-bonded grains. Any non-superconductive,
i.e. non-Josephson-like, connection between such clusters along the current path will
then dominate the measured resistance at T < Tc. Global phase coherence, i.e. a zero
resistive state, is approached once the percolation path spans across the total sample
and effectively short-circuits the residual non-superconducting connections.
Early models by Refs. [135, 194, 195] could reproduce transitions from insulating be-
haviour to reentrant to superconducting behaviour by making the percolation fraction pJ
depend on temperature and on tunnel distance. A more recent model by [92] predicts
an inverse Arrhenius law R ∼ exp(T/T0) (see Section 2.2.3). This dependence has been
found in a series of granular films, but does not explain our findings on ultra-thin films.
However, low temperature saturation of resistance, reentrant behaviour and striking
similarities to the data on ultra-thin granular films by [10, 61] have been found in
microfabricated Josephson junction arrays with small aluminum tunnel junctions (C
small, EC large) by [196, 197]. A possible existence of percolation paths inside a random
array might narrow down the distribution of size and separation distance of the grains
participating in the charge transport. This effectively better ordered structure may then
be modelled by periodic JJAs [10, 192].

Let us now take a closer look at the two R(T ) curves presented in Fig. 5.1 and separate
them into different temperature regions, starting with sample S.
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5. Measurement Results

As seen in Fig. 5.1 in the temperature region I (T > 2.8K) the sheet resistances of
both samples are in the vicinity of the quantum resistance of Cooper pairs RQ indicated
by the blue horizontal line.
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Figure 5.2.: Region I: IV characteristics for three selected temperatures above 2.5K.
The 4K (black), 3.5K (red) and 3K (blue) curves are linear for all bias currents. The
slope slightly decreases with decreasing temperature. This corresponds to the gradual
decrease of the resistance for T > 2.8K in Fig. 5.1.

The IVs in this temperature region are linear over the total bias range, I± 40 µA and
V± 3V (see Fig. 5.2). This indicates Ohmic behaviour, which is expected above the
critical temperature. The slopes of the resistances slighty decrease with decreasing tem-
perature, indicating a weak temperature dependence of the resistance as superconducting
fluctuations (see section 2.2.2) increase the conductivity above Tc.

In region II (1.9K < T < 2.8K) both samples show a sharper decrease of resistance
with decreasing temperature (compared to the decrease at higher temperature in region
I). This can be associated with the onset of superconductivity on the grains. The
corresponding critical temperature is Tc ∼ 2.3K, determined by the half-resistance
criterion, i.e. the resistance R□ dropped to half of the normal state resistance RN(4K)/2.
We find the onset of superconductivity in our two samples at approximately the same
temperature. The independence of Tc on RN has been linked to granular thin films by
Ref. [10].
The IVs in Fig. 5.3 reveal a regime for small bias currents with a linear slope that
decreases with decreasing temperature. That is directly linked with the decrease of the
resistance with decreasing temperature in that temperature region in Fig. 5.1. At a fixed
temperature, starting from zero current, in Fig. 5.3 an increasing bias current leads to
an increase in the slope at a critical current Ic,2. This increase continuously goes over
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Figure 5.3.: Region II: IV characteristics for five selected temperatures between T = 1.9K and T
= 2.5K. The linear resistance around zero bias decreases with decreasing temperature
and smoothly connects to the normal state resistance at high bias currents. The
deviation from linear resistance is denoted as Ic,1 for negative bias and Ic,2 for positive
bias currents. This is shown examplarily for T = 1.97K. The black lines are a guide
to the eye. With decreasing temperature both |Ic,1| and |Ic,2| increase.

into regime at high currents (I ≫ 30µ A), where the differential resistance approaches
the normal state sheet resistance RN(4K). The differential resistance in the high bias
regime of the IVs is the same as the zero bias resistance in the temperature region I (T >
Tc). That is a strong indicator for the existance of local superconductivity on the grains,
which can be destroyed by either temperature or bias current.
For negative bias currents we find a critical current |Ic,1| smaller than |Ic,2| for positive
bias currents. This is attributed to the sweep direction of the measurement. The curves in
Fig. 5.3 have been measured from negative to positive bias currents. The suspicion, that
the sweep direction influences the critical current will be verified in the next temperature
region.

In region III (0.85K < T < 1.9K), i.e. below Tc, local superconductivity is present
on the grains. However, the resistance saturates at a temperature independent plateau of
RN/3 as seen in Fig. 5.1. That indicates that phase fluctuations in some of the junctions
lead to a reduced (with respect to RN) but finite resistance. Using the arguments of Ref.
[10], due to the randomness of inhomogenous granular films there may be percolation
paths or clusters of superconducting grains with phase coherence. However, those can be
separated by non-superconducting junctions. That junctions without phase coherence
dominate the total measured resistance as they are in series with junctions having zero
resistance (aligned phases).
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The origin of the temperature independence in the broad range of T = 1K up to T
= 1.9K seen in Fig. 5.1 is not fully understood. To create such a plateau the effects
of EJ(T ) and EC + kBT have to cancel out for a certain range of temperature. This
means that for decreasing temperature the increasing effect of EJ(T ) is equal to the
decreasing effects of EC + kBT and therefore the sum of the effects is constant over that
temperature interval.

Different effects may compete due to a broad distribution of grain sizes and probably
grain separations. Charging effects given by EC and tunneling effects of Cooper pairs for
S-I-S junctions or S-N-S junctions, given by EJ and temperature dependent quasi-particle
tunneling. While the Josephson effect tries to align the phases, the charging effect tries
to disalign the phases of the superconducting wavefunctions over the grains (see sections
2.1.3 and 2.2.4).
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Figure 5.4.: Region III: IV characteristics for five selected temperatures between T = 0.85K and
T = 1.9K. The linear resistance around zero bias is temperature independent. The
absolut values of the critical currents Ic,1 and Ic,2 marking the deviation from linear
resistance still increases with decreasing temperature. This is examplarily shown for
the curve T = 0.98K. The black lines are guides to the eye.

The slope around zero bias starts to be temperature independent, which results in a
saturation of sheet resistance. Nevertheless, the critical currents |Ic,1| and |Ic,2| continue
to increase with decreasing temperature. |Ic,2| exceeds |Ic,1| at all temperatures. The
increase of the critical currents may be connected to an increase of the superconducting
energy gap ∆(T ) on the grains.
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Figure 5.5.: Sample S: a) The sweep direction from negative to positive bias currents (black) and
reverse (red) is presented to show symmetry around zero bias. In b) the temperature
dependence of the extracted critical currents for the sweep direction from negative to
positive currents is presented. For clarity the absolute value |Ic,1| is depicted. As has
been indicated in Figs. 5.3 and 5.4 the absolute values of the critical currents increase
for decreasing temperature, even as the zero bias resistance has already saturated at
a temperature T ∼ 1.8K (see plateau for 1K < T < 1.9K in Fig. 5.1).

We remeasured the IV at T = 1.42K for both sweep directions. The curves are presented
in Fig. 5.5a). The curves are symmetric around zero. We therefore identify a retrapping
current on the negative side and an escaping current for positive side. The retrapping
current is associated with the jump from the high voltage branch down to the low voltage
branch, while the escaping current is associated with the jump from the low voltage
branch to the high voltage branch.

A possible explanation for the hysteresis could be a heating effect. At a fixed temperature
T = 1.42K we ramp the current from zero to finite values and generate an increasing
Joule power P1 = R1 · I2 as the finite linear slope around zero bias corresponds to a
finite resistance R1. The Joule power increases the electronic temperature and supresses
the critical current. By exceeding the critical current superconductivity on the grains is
destroyed and the resistance jumps up to a higher resistance R2 = RN (linear slope at
high currents).
By ramping down the current we start at the high resistance R2 and therefore the Joule
power P2 = R2 ·I2 is high, meaning the critical current is even more suppressed. Therefore
superconductivity arises at lower currents Ic,1 compared to currents Ic,2 destroying the
superconductivity.
Another possible explanation for such a hysteresis is the effect of thermal fluctuations in
underdamped Josephson junctions. This effect is discussed in section 6.3.3. in the book
of Tinkham [18].
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In b) the extracted temperature dependence of both critical currents are shown. As all
the curves in Figs. 5.2 5.3 and 5.4 were measured from negativ to positive currents, we
extracted the negative values of Ic,1 and plotted the absolute value. The values of both
critical currents increase with decreasing temperature starting from 2K and saturate
below a temperature of 1.5K. However, the zero bias resistance has already saturated at
at temperature T = 1.9K.

In region IV (0.3K < T < 0.85K) there is an approximate plateau with a resistance
smaller than the plateau seen in region III. The average resistance of the plateau is
R□ ≈ 450Ω. The existance of that lower resistance plateau may be connected with the
approach of percolation paths across the granular sample. By decreasing the temperature
from region III to region IV two or more such percolation paths might get connected as
a non-superconducting junction connecting them gets superconducting. This Josephson
coupling leads to an overall decrease in resistance. However, as the resistance does not
drop to zero, superconducting and normal conducting junctions exist along the current
path.
Instead of being a flat plateau, the resistance seems to vary around that average value.
It first decreases below the average value and then increases again. This indicates that in
that temperature region, Josephson coupling and charging effects compete.
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Figure 5.6.: IV characteristics of Sample S at low temperatures. a) Medium bias regime up to
bias currents of 40nA and voltages of 1mV. b) Remeasured zero bias regime with
higher resolution. Inside the Coulomb blockade for Cooper pairs V < VT a zero
bias feature arises, which could not be resolved in a). The zero bias feature exhibits
critical current behaviour with a finite linear differential conductance. In addition,
in that temperature interval the zero bias differential resistance of R□ ≈ 450Ω is
approximately independent on temperature.

The IVs are linear for bias voltages V > 0.5mV (see Fig. 5.6a)). The differential resistance
is RN/3 and is temperature independent for 0.4K < T < 0.75K. The same resistance has
been found in region III for even higher bias voltages and at higher temperatures T >
1K. However, decreasing the bias voltage leads to a non-linearity in the IV. The curves
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bend towards zero current indicating a smaller differential conductance. While for T >
700mK the slope around zero bias is linear, it exhibits a blockade for current flow for
lower temperature for T = 395mK (blue).

The very low bias regime has been remeasured and is presented in Fig. 5.6b). For T
= 712mK (black) the curve is linear with a differential resistance smaller than RN/3.
However, by further decreasing the temperature two features arise. First, at bias voltages
around V = 25µV a Coulomb blockade for Cooper pairs is opening up with a thermally
smeared out theshold voltage VT. Secondly, instead of a zero current state below VT the
current smoothly crosses with a finite value over to a roughly temperature independent
differential resistance around zero bias of about 0.5kΩ. The zero bias feature shows a
critical current Ic below which the slope is linear and above which there is a jump to
the threshold voltage of the Coulomb blockade. Both, Ic of the zero bias feature and VT
of the Coulomb blockade are examplarily shown in Fig. 5.6b) for the green curve T =
332mK.
The plateau in temperature regime IV is directly connected with the temperature inde-
pendent slope around zero bias.
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In region V (T < 0.3K) Sample S shows another downturn of resistance towards
a zero resistive state. The downturn can be interpreted as the onset of global phase
coherence as the last non-superconducting junction along a percolation path spanning
across the complete length of the sample turns into a Josephson junction. This completely
superconducting path effectively shortens all other non-superconductive junctions and
leads to a sharp decrease of the measured resistance as seen in Fig. 5.1.

Fig. 5.7a) shows the temperature dependence of the medium scale IVs for zero applied
magnetic field at temperatures T < 300mK. The differential resistance in the higher bias
range is independent of temperature and has the same value as in region IV and III,
RN/3.
In the low bias regime Coulomb blockade is coming up for the lowest temperatures. The
low bias regime has been remeasured down to a temperature T = 15mK (see Fig. 5.7b)).
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Figure 5.7.: IV characteristics of Sample S in region V. a) Medium bias regime up to bias currents
of 40nA and voltages of 1mV. b) Remeasured zero bias regime with higher resolution.
With decreasing temperature the Coulomb blockade shows a sharp onset of current
flow at VT. The zero bias feature exhibits a temperature dependent differential
resistance R0(T ) as well as a temperature dependent critical current Ic(T ). With
decreasing temperature the smooth connection from the zero bias feature above Ic to
VT transforms into a discontinuous jump at the lowest temperatures.

Similar IV characteristics have been seen in Josephson junction arrays, including linear
behaviour in the high bias regime, a threshold voltage VT,S connected to a Coulomb
blockade and a supercurrent feature around zero bias. The role of vortices and charges
in Josephson junction arrays as well as their duality has been discussed in section 2.2.4.
The large scale IVs for a superconducting array of Ref. [121] and an insulating array of

Ref. [80] are shown in Fig. 5.8a) and b). In the high voltage regime IVs are linear with a
resistance RN for a single junction.
By decreasing the bias voltage for the superconducting array with RN < RQ there is a
sharp drop of current at a voltage Vp = N · 2∆0/e, where N is the number of junctions
and ∆0 is the BCS energy gap at T = 0K. The voltage Vp marks the onset of quasiparticle
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a) b)
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Figure 5.8.: Large scale IVs of a) a superconducting JJA with RN = 3.86kΩ at T = 15mK and b)
an insulating JJA with RN = 24.4kΩ at T = 25mK. The high bias parts are similar
for superconducting and insulating arrays. It is the low bias part that differs. Figure
a) adapted from [121] and b) from [80].

current flow at high bias. Below Vp there is a finite differential resistance, which goes
over into critical current Ic around zero bias.
For an insulating array the current drops at Vp as well, but the transition is not as sharp
as in a). Below Vp there is no vertical feature (supercurrent) around zero bias as seen for
the superconducting array.
The small scale IVs for the arrays shown in Fig. 5.8 drastically differ not only from their
large scale IVs (the small scale IVs are the low bias parts of the large scale IVs) but as
well as by comparing a superconducting with an insulating array. In Fig. 5.9 we present
the low bias part of the same arrays shown in Fig. 5.8. The small scale IV shown in
Fig. 5.9a) for a superconducting array consists of both, vortex tunneling and flux flow
behaviour. At higher bias there are collective jumps to a resistive state with Vp.

In a superconducting JJA, the Josephson coupling energy between the islands acts as a
pinning for vortices. An applied bias current acts as a driving force for vortices as the
Magnus force [198] counters the pinning from the Josephson coupling. The ratio of these
two forces separates two classes of transport mechanisms [121].
In case the pinning force is larger than the Magnus force, then the vortex motion is due
to tunneling of vortices through an energy barrier Eb. This energy barrier is connected
to the Josephson energy for a single junction by Eb = aEJ. As the barrier may as well
be overcome by thermal activation the temperature dependence in this case is thermally
activated. As the tunneling is independent on bias current, the slope around zero bias is
linear.
There is a depinning current Id above which the Magnus force is larger than the pinning
force. In this regime vortices are accelerated by the Magnus force. The IV characteristic
becomes non-linear. For even higher bias currents there is a row by row switching where
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Figure 5.9.: Small scale IVs of the same arrays as presented in Fig. 5.8. a) Superconducting
JJA with RN = 3.86kΩ: plotted is the current per junction i = I/N . The array
consists of NxN junctions, therefore the measured current corresponds to N times
the value of a single junction. id denotes the depinning current at which the low
bias vortex tunneling regime crosses over to the flux flow regime. At a sufficiently
high voltage ∼ 4µV the array exhibits a collective jump to Vp. The array shows
a hysteresis for the different sweep directions, similar to underdamped Josephson
junctions. b) Insulating JJA with RN = 24.4kΩ. A strong Coulomb blockade for
Cooper pair solitons is visible. Below VT,S the current flow is mediated by thermally
activated CPS only. VT,S marks the onset for the injection of CPS into the array.
VT,S is much smaller than Vp associated with the destruction of superconductivity
and the switching to quasiparticle dominated current flow. Figure a) adapted from
[121] (curves of two other arrays with different RN have been removed) and b) from
[80].

for each jump the voltage increases by 2∆0/e [199]. As all junctions, each with 2∆0,
switch to the resistive state the voltage Vp is N times the value of a single junction.

The small scale IV, shown in Fig. 5.9b), for an insulating array is dominated by charge
solitons (Cooper pair solitons (CPS) and single electron solitons (SES)), the dual to the
vortices in the superconducting arrays (see section 4.3 for details). Below a threshold
voltage VT,S the charge transport is mediated by thermally activated CPS following an
Arrhenius behaviour. In the small scale IVs VT,S therefore marks the onset of current
flow by the injection of CPS by an applied bias voltage. This voltage is significantly
smaller than Vp at which the charge transport switches to quasiparticles.

To compare the low bias part of the IVs measured for our sample S with the low bias
part of superconducting and insulating JJA Fig. 5.10 presents a further zoom around
zero bias of the data shown in Fig. 5.7b).
The black curve measured at T = 332mK exhibits a linear slope around zero bias, which
is smoothly connected to a higher voltage branch above a current Ic.
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Figure 5.10.: Zoom to low bias regime of Sample S: around zero bias there is a finite linear
slope. This is indicated by the black lines. The linear slope corresponds to a zero
bias resistance. With decreasing temperature the slope increases and therefore the
resistance decreases

By decreasing the temperature the linear slope around zero bias gradually increases for
T < 273mK, implying that the zero bias resistance R0 decreases with decreasing temper-
ature. This is indicated by the solid lines labeled with R0 in Fig. 5.10 and corresponds
to the approach of the zero resistive state in region V in Fig. 5.1. The critical current Ic
marks the deviation from the linear slope around zero bias. Following the analogy to Ref.
[121], then the critical current Ic is the depinning current Id below which the resistance
is mediated by vortex tunneling. However, we do not see the flux flow regime above Id.
We find that by exceeding Ic there is a sharp jump to a high voltage branch with VT,S
above which the current rapidly increases. Ic and VT,S have been denoted for T = 26mK
examplarily in Fig. 5.10. Both, Ic and VT,S, are temperature dependent. With decreasing
temperature Ic first decreases (black, red, blue curves) and then starts to increase for
even lower temperatures (blue, green, purple curves). VT,S increases with decreasing
temperature and saturates at V ∼ 30µV at the lowest temperatures. This voltage value
is much smaller than N · 2∆0

e = N · 2·350µV
e , where ∆0 = 350µeV for Tc = 2.3K and

N being the number of junctions along the current path. The threshold voltage VT,S
is actually smaller than the average threshold voltage of a single junction assuming N
identical junctions in series. We conclude that this voltage branch is the onset of current
flow by Cooper pair solitons, VT,S, as seen in insulating JJAs (see Fig. 5.9b)) instead of
being the onset of quasiparticle flow at Vp for superconducting JJAs as shown in Fig.
5.8a).
The small scale IVs of Sample S therefore show features seen in superconducting (critical
current Ic) and insulating (threshold voltage VT,S) JJAs.
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Ref. [121] found a hysteretic behaviour with sweeping direction in their IVs of supercon-
ducting JJAs as shown in Fig. 5.9. We therefore measured both sweep directions as well,
i.e. from low to high bias and from high to low bias. We find a hysteresis and a sharp
transition from a low resistance to a high resistance branch, too. Such a hysteresis and
sharp transition is known for underdamped single Josephson junctions (see section 2.1.3).

Fig. 5.11a) shows the dependence of the critical current from the sweep direction at T
= 15mK. Starting at zero current, we can identify an escaping current Ic,0 for which
the voltage does abruptly jump from the low bias branch to the high bias branch and
a retrapping current Ic,r for which the voltage drops down abruptly to the low voltage
branch when coming from high bias currents. The jumps are not vertical, but show a
backshift. This is attributed to the measurement setup and the use of a preresistor.
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Figure 5.11.: Sample S in zero magnetic field: critical currents at T = 15mK.

The same measurement has been repeated for various temperatures and the resulting
critical currents Ic,0(T ) and Ic,r(T ) are shown in Fig. 5.11b).
The separation of the critical currents into retrapping and escaping currents is clearly
visible below T ∼ 200mK. For higher temperatures both critical currents approach each
other until they are indistinguishable. This, according to theory section 2.1.3 and Ref.
[18], is caused by increased thermal fluctuations at higher temperatures, which lead to a
decrease of the escaping current and an increase of the retrapping current. In addition, we
see an increase of Ic with increasing temperature. This can be seen in Fig. 5.6b). With
increasing temperatures the localized Cooper pairs are delocalized by thermal activation
and contribute to the supercurrent.

Sample S having a RN < RQ, but still RN ∼ RQ, does show features of both, supercon-
ducting JJAs and insulating arrays. While around zero bias a supercurrent feature is
found (probably connected to vortex motion) it displays a threshold voltage VT,S for
the injection of Cooper pair solitons for finite bias voltages. As vortices and charges

110



5.1. Temperature Dependence of the Zero Bias Resistance R(T) across the Disorder-Induced SIT (B = 0T)

do display duality around the SIT and the sample is close to the transition, it seems
reasonable that there may be effects of both.

Sample I

Let us now have a look at R(T ) of sample I in Fig. 5.1. In contrast to sample S there is
no clear distinction of temperature regions. The T = 4K resistance RN is slightly larger
than RQ. As has been mentioned earlier, the onset of superconductivity on the grains is
at approximately the same temperature as in sample S, as expected for granular thin
films. However, region II, III and IV do not show a clear separation. Sample I exhibits a
reentrant behaviour with a local minimum of resistance around T = 1K. For T > 1K the
resistance smoothly connects to the normal state resistance RN(4K). For T < 1K the
resistance increases with decreasing temperature. This insulating behaviour indicates
that at T < 1K charging effects dominate. Instead of a global phase coherent state as
seen for sample S, the fluctuations of phase connected with a large charging energy EC
effectively block the supercurrent between the grains and increase the resistance above
the normal state value. At the lowest temperature the resistance has increased to a
value of ∼60kΩ, which is a factor ∼8 higher than RN and a factor ∼30 higher than the
minimum resistance measured in the local minimum at T = 1K.
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Figure 5.12.: Sample I: At high temperatures T > 400mK the slopes around zero bias are linear
and decrease with decreasing temperature. That corresponds to an increase of
resistance. Below T = 400mK the slope continues to decrease, however, at the
lowest temperatures a Coulomb blockade with a threshold voltage VT,S opens up.
Around zero bias there is a finite slope with R0 and a much smaller Ic.

Fig. 5.12 shows the temperature dependence of the IV curves of Sample I below
T = 700mK. Above T = 400mK the IVs are linear, but for lower temperatures the IV
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5. Measurement Results

characteristics show similarities to sample S. We see a Coulomb blockade opening with
decreasing temperature. The threshold voltage increases up to VT,S of approx. 35-40 µV
at the lowest temperatures T ∼ 28mK (see Fig. 5.12). The threshold voltage for the
injection of Cooper pair solitons is higher in sample I compared to sample S. In sample I,
localization effects are stronger as EC is larger and the ratio of EJ/EC is smaller. As
sample I lives on the insulating side of the disorder induced SIT (RN > RQ) for B = 0T
one expects charging effects to dominate. Larger localization effects lead to larger values
of VT,S as more voltage is needed to overcome the energy barrier.
In addition, there is no vertical feature around zero bias at the lowest temperatures.
However, we find a feature with linear slope and very small residual critical current.
The two green and purple linear lines denoted R0 in Fig. 5.12 indicate that at low
temperatures there is a large slope, i.e. a finite differential resistance. In Fig. 5.13 we
present the data again with a smaller scaling on the current axis. There is a zero bias
feature with a finite slope. The corresponding critical currents are very small, Ic < 20pA.
Below T = 83mK Ic is temperature independent. The same is true for the differential
zero bias resistance. The saturation value is approximately 60kΩ per sheet. In Fig. 5.13
the saturation resistance is indicated as R0(T = 42mK) is larger than R0(T = 28mK).
The supression of the supercurrent is in agreement with large phase fluctuations due to a
high EC.
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Figure 5.13.: Sample I: A further zoom in reaveals a linear regime around zero bias, where the
resistance increases for decreasing temperatures. At the lowest temperatures R0
saturates. Exceeding the corresponding critical current does not result in a jump to
VT,S. With increasing bias voltage the current first decreases to a non-zero minimum
smaller than Ic. For bias voltages above the minimum, the current starts to increase
slowly until it reached VT,S. At VT,S there is a sharp onset of current flow. This
behaviour is depicted for T = 28mK.
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5.1. Temperature Dependence of the Zero Bias Resistance R(T) across the Disorder-Induced SIT (B = 0T)

Summary

The presented findings are consistent with the bosonic theory of the superconductor to
insulator transition, that is induced by disorder (d-SIT). In case of granular films, the
sheet resistance at 4K has been taken as a reference value. The critical resistance for that
transition has been found close to the quantum resistance RQ = 6.45kΩ (see section 2.2.3)
in ultra thin granular films. The sheet resistance at T = 4K decides the low temperature
behaviour of our two samples. Sample S with a RN < RQ shows an decrease of resistance
with decreasing temperature, while sample I with RN > RQ shows an increase.
Especially below T < 0.25K the samples behave very different in the temperature depen-
dence of resistance. The temperature coefficient of the resistance is positive for sample S,
indicating the existence of a global phase coherent state at the lowest temperatures, and
negative for sample I, indicating insulating behaviour as phase fluctuations supress the
supercurrent between the grains, leading to a high resistive state.

Both samples share strong similarities to already existing measurements on ultra-thin
granular films by Refs. [10, 61]. This includes a critical temperature Tc, which marks
the onset of local superconductivity on the grains, being independent on RN. For decreas-
ing temperature the R(T ) curves show a lot of details, e.g. a reentrant behaviour with a
local minimum in resistance in sample I, plateaus in the R(T ) in sample S and a clear
separation of positive or negative TCR at the lowest temperatures T < 250mK. Those
properties are attributed to the competition of three energy scales, the Josephson coupling
energy EJ, the charging energy EC and the thermal energy kBT and the formation of
percolation paths.

In addition, when taking a look at the current voltage characeristics at T < 800mK, the
two samples do as well share similarities to Josephson junction arrays in the vicinity of
the d-SIT (EJ ∼ EC). The overall shape, e.g. the bias independent differential resistance
at high bias, a Coulomb blockade feature with a threshold voltage VT,S marking the
onset of current flow, is quite similar to findings in insulating JJAs by [80]. In insulating
Josephson junctions arrays VT,S relates to the injection of Cooper pair solitons.
For sample I and as well as for sample S we see a threshold voltage VT,S ∼ 30-40µV.
As sample I is on the insulating side of the d-SIT (RN > RQ) for B = 0T a threshold
voltage for the onset of charge transport by Cooper pair solitons is expected, as has been
seen in insulating JJAs (see Fig. 5.9b)). For sample S being on the superconducting side
(RN < RQ) we would not expect to find such a threshold voltage, but we do.
In addition, also in both samples there is a feature in the zero bias limit (see Fig. 5.10
for sample S and Fig. 5.13 for sample I). This feature exhibits a supercurrent in sample
S and a not expected finite voltage state in sample I.
Due to the fact that both samples are close (RN ∼ RQ) to the d-SIT (one below and one
above), there could be a competition of effects, which overlap near the critical point RN
= RQ. That might be the reason why in both cases we see threshold and zero bias feature.
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5. Measurement Results

For sample S, we identify a supercurrent around zero bias, which is hysteretical for the
different sweeping directions with an escaping and a retrapping current with a sharp jump.
That is consistent with findings in superconducting JJAs by [121]. For currents exceeding
the critical current [121] find a collective jump attributed to row-by-row switching with
2∆/e of each junciton. The total voltage after the jump is given by Vp = N · ∆/e, where
N is the number of junctions of the array. The same row-by-row switching and collcetive
jumping has been observed by [199].
The sharp jump observed in our sample S ends at a voltage V ∼ 30µV. This value is by
far smaller than the theoretical value of Vp = N · 2∆0/e in a superconducting periodic
array and the voltage is therefore attributed to the threshold voltage for Cooper pair
solitons VT,S as seen in insulating periodic JJAs [80].

The sharp jump from the low voltage/supercurrent branch to the high voltage branch is
not expected for granular, inhomogenous films with a very broad distribution in grain
sizes and separations. One would expect a smeared out, broad transition as different
junctions do have different critical currents. The very sharp nature of the jump in our
inhomogenous sample may be explained by the existence of a percolation path. This path
consists of a chain of superconducting grains coupled by Josephson links, i.e. the phases
of the superconducting wavefunctions are aligned. Due to the broad distribution of grain
sizes and separation distances, the coupling strength EJ/EC between different sets of
neighbouring grains may vary. By exceeding the critical current of the weakest link the
junction resistance goes from zero to its normal value. As a Joule power is generated by
the current and the normal resistance of the first destroyed link, the critical currents of
the other junctions are suppressed by heating. This heating leads to an avalanche effect
and the jump is very sharp. This transition effectively decouples the superconducting
grains and the sample switches from a global phase coherent state with a supercurrent to
an insulating state for I > Ic. In that insulating state with VT,S Cooper pair solitons are
injected with increasing bias voltage.

Sample I shows a similar characteristic IV curve as sample S, but the supercurrent is
suppressed due to the smaller ratio of the Josephson energy and charging energy. In
addition, instead of a supercurrent (as seen in sample S) there is a finite resistance in
the zero bias limit. The deviation of that finite slope starts at a current of Ic ∼ 10pA,
which is a factor ∼10 smaller than the critical current in sample S. Above the Ic we find
a continuous, but sharp connection to the threshold voltage VT,S.

The finite zero bias resistance found in our sample I is not in agreement with findings
in insulating Josephson junction arrays by [80], where the resistance increased up to
unmeasureable values of ∼1GΩ per sheet following activated behaviour. No saturation of
resistance has been found by [80] as long as the islands of the arrays were superconducting.
Our Sample I, however, does not diverge for T → 0, but shows a saturation at value of
60kΩ per sheet. That low temperature saturation will be discussed in Section 5.4.
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The emerging physical picture indicates that two dimensional granular aluminum can be
modelled with periodic Josephson junction arrays, where Josephson coupling between the
superconducting grains competes with charging effects. The two systems share strong
similarities even if the geometric dimensions do vary by a factor 10-1000 (grain sizes in
ultra-thin films are in the order of 1-100nm in width and length; the average area of a
unit cell in a JJA by [80] is ∼1µm2, i.e. a width and length of ∼ 1µm). In addition,
granular films are very inhomogenous, while periodic Josephson junction arrays are very
homogenous. It is not surprising, that we also find deviations, when comparing granular
films to periodic arrays (low temperature saturation of resistance, much smaller values of
Ic,VT,S). Our samples lie in the transition regime, where RN is very close to RQ. The
arrays of [121] had RN < 4kΩ and the arrays of [80] had RN > 13kΩ. Sample S with RN
∼ 3kΩ is comparable with the arrays by [121]. Sample I with a RN ∼ 7.75kΩ is right
above RQ. No array with similar RN has been measured by [80].
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5.2. Effect of Magnetic Field on the Resistance (B ̸= 0T)
As presented in sections 2.2.3 and 2.2.4 granular thin films can be modelled as a random
Josephson junction array. In case the arrays have a sheet resistance close to RQ and a
Josephson energy comparable to the charging energy EJ ∼ EC, the superconductor to
insulator transition may be induced by an applied magnetic field.

In section 5.1 it has already been shown that the sheet resistance at 4K of both samples
is close to RQ (see Fig. 5.1).
Sample S with RN < RQ is on the superconducting side and sample I with RN > RQ as
presented in section 5.1.

5.2.1. The Differential Zero Bias Resistance in Perpendicular Magnetic Field
We now turn to the intermediate magnetic fields and deduce the zero bias resistance from
the zero bias part of the measured IV curves.
In insulating artifical JJAs Ref. [80] found a temperature region 200mK < T < 500mK,
where the resistance could be described by activated behaviour expressed by

R(B, T ) = R0e
EA(B)/kBT (5.5)

The R(T ) curves of our granular films can be fitted to Eq. 5.5 in the same temperature
region. For a better understanding we present the R(T ) curves in an Arrhenius form,
where the resistance is shown in logarithmic scaling versus the inverse temperature 1/T .
By doing so the linear slope directly reveals EA, while R0 is the extrapolation of the linear
curve for T → ∞. We find the prefactor R0 to be magnetic field dependent as well, R0(B).

Sample S

The fits of our data to Eq. 5.5 are presented in Fig. 5.14 in Arrhenius form.
Starting from B = 0T the slope increases up to a maximum at a magnetic field of ∼2T.
By further increasing the magnetic field the slope decreases. For better visualisation we
separated the R(T ) curves into B < 2T and B > 2T.

In Fig. 5.14a) the R(T ) curves below B = 2T are shown. For B = 0T (lila) we see
an overall decrease of resistance with decreasing temperature. The activation energy is
negative and indicates a transition to a zero resistance state. By increasing the magnetic
field to 50mT (green) the slope changes sign to positive, i.e. insulating behaviour. That
means in sample S the SIT is induced by a magnetic field below 50mT. Further increasing
the magnetic field leads to an overall increase of the slope. The dependence on B is
non-monotonic. The slope of the blue 1T curve is smaller than the slopes of the curves
with a smaller (50mT) and higher (1.6T) magnetic field in Fig. 5.14a).
Above 1.6T the slopes saturate up to the maximum of 2T (black).
For magnetic field values above this maximum the slopes decrease monotonously with
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Figure 5.14.: Sample S: Magnetic field dependence of the R(T ) curves. a) shows magnetic field
values smaller than Bmax, while b) shows values above Bmax. In the high temperature
regime (T > 500mK, i.e. 1/T < 2) of a) the presented curves show a jump in
resistance between the lower two and upper three curves, i.e. between 50mT and
1T. In reality there is no jump, but a continuous transition. The apparent jump is
attributed to the selection of magnetic fields. The continuous transition is seen in
our complete set of magnetic fields.

increasing magnetic field (see Fig. 5.14b)) and saturate for B > 3.5T, i.e. the slope is
independent on magnetic field. The evaluation of the high magnetic fields (B > 3.5T) is
presented in Section 4.3. The independence of the slope is attributed to the destruction
of superconductivity in the grains. This results in a random array of N-I-N-junctions.
It is supported by the magnetic field evolution of the prefactor R0, presented in Fig.
5.15a). For magnetic fields above B = 3.5T the extrapolation of the linear slope is very
close to the normal state sheet resistance RN(4K) ∼ 3kΩ. However, for smaller magnetic
fields R0 decreases to an approximately constant value of ∼400Ω below B = 2T. This
indicates that below B = 3.5T local superconductivity on the grains and the openening
of the superconducting gap ∆ influences the resistance for T < Tc. Therefore the high
temperature extrapolation of the activation fit does not correspond to the normal state
for T > 4K, but to a state with a local minimum in resistance for 0.8K < T < Tc Rloc
< RN. This Rloc can be interpreted as the minimum resistance of a reentrant feature.
The high temperature extrapolation and the increase of R0 with increasing B is shown in
Fig. 5.15b), where the R(T ) for B = 0T (black curve) is the reference with RN(4K). The
plateaus for 0.3K < T < Tc have been discussed in section 5.1. With increasing magnetic
field the plateau for B = 0T is transformed into a local minimum.

In Fig. 5.14b) R(T ) curves apparently intersect in a single point at T ∼ 475mK and R ∼
6kΩ. However, due to our stepsizes in magnetic field and temperature, i.e. a relative small
number of points in that region, we can not distinguish between a true single crossing
point or a region where the different R(T )s intersect. Such an intersection region can be
caused by the increasing R0(B) and the decreasing EA(B) with increasing magnetic field
B. The magnetic field dependence of R0(B) can seen in Fig. 5.15a) and

117



5. Measurement Results

0 1 2 3 4 5 6 7
B [T]

0

0.5

1

1.5

2

2.5

3

3.5
R

0
,

[k
]

0 1 2 3 4
T [K]

101

102

103

104

105

R
 [

]

0T
0.05T
0.6T

2.5T
7T

a) b)

Figure 5.15.: a) Magnetic field dependence of prefactor R0. b) R(T ) curves for five selected
magnetic fields. The high temperature extrapolation of the corresponding fits are
R0(B). With increasing magnetic field R0 increases from a low value of ∼400Ω to
RN(4K) at high fields.

EA(B) in Fig. 5.17. To verify either a single crossing point or an intersection region a
measurement with very small stepsizes in temperature and magnetic field is necessary.

Now we turn to the magnetic field dependence of the slopes, which represent the activation
energy EA given by Eq. 5.5.
The above mentioned dependence has been studied by Delsing [80] in Josephson junction
arrays. For magnetic fields above Bc superconductivity is destroyed and the charge
transport is purely due to single electron solitons. The activation energy is magnetic
field independent and found to be EA,N = 1

4E
(e)
C . The high magnetic field case has been

discussed in section 4.3, where the concept of solitons (SES and CPS) was introduced
[80, 188].
In case of superconducting islands there is a competition on transport between Cooper
pair solitons and single electron solitons.
For insulating arrays in zero magetic field, one could think about two possible scenarios.
The first describes the transport by SES only. That means that Cooper pairs have to be
broken up. The activation energy reads

EA,SES(0) = ∆0 + 1
4E

(e)
C (5.6)

where the first term is the BCS energy gap, which has to be overcome to break up the
Cooper pairs and generate the single electrons. The second term is the charging energy
for single electrons.
If the charge transport would be due to Cooper pair solitons only then one would expect
an activation energy of four times of the activation energy of single electron solitons due
to the doubled charge.

EA,CPS(0) = 4 · EA,N = 4 · 1
4E

(e)
C = E

(e)
C (5.7)
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Ref. [99] found the ratio of ∆0/EC important. If ∆0/EC < 3/4 the charge transport is
dominated by SES, that are created by breaking up Cooper pairs. The magnetic field
dependence follows

EA(B) = ∆(B) + 1
4E

(e)
C (5.8)

where the first term is the magnetic field dependent BCS energy gap.
However, if the ratio ∆0/EC > 3/4 they find that a part of the charge transport is given
by CPS, which leads to a deviation from the above formula Eq. 5.8. Ref. [80] found the
critical value to be 2 instead of 3/4. For their arrays having ∆0/EC > 2 the activation
energy deviate from Eq. 5.8 as well and the activation energy is lower than this formula
predicts. This behaviour is shown in Fig. 5.16. Another important finding of arrays
fullfilling the condition ∆0/EC > 2 is, that they show oscillations of EA(B).
In our sample S (see Fig. 5.17) we see a similar dependence of the activation energy

Figure 5.16.: Dotted line correspond to EA(B) = ∆(B) + 1/4E(e)
C with EA(0) = ∆0 + 1/4E(e)

C .
Inset shows oscillations of EA with magnetic field in the small magnetic field range.
The ratio of ∆0/E(e)

C for that array is 2.49. Adapted from [80].

with magnetic field as Ref. [80]. These activation energies correspond to the slopes of
the curves in Fig. 5.14.

Below B = 2T the activation energy shows oscillations. Above 2T up to B = 3.5T the
activation energy monotonically decreases to a constant value for even higher magnetic
fields. This is attributed to the crossover from CPS to SES charge transport. Due to
the random nature of our film the ratio between EA and EC is unknown. We therefore
substituted the saturation value of EA = 1/4 EC with EA,N in Eq. 5.10. The fit to our
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Figure 5.17.: Sample S: Fit corresponds to EA(B) = ∆(B) +EA,N with EA(0) = ∆0 + EA,N and
Bc = 3.5T.

EA(B) data for pure single electron soliton transport is shown in Fig. 5.17. Our step size
in magnetic field is too large to resolve oscillations in detail. In section 5.3 we present
measurements with much smaller stepsize in magnetic field and discuss oscillations in
the R(B) curves.

Similar to what has been found in JJAs with ∆0/EC > 2, there is a transition from
Cooper pair dominated transport at low magnetic fields to single electron transport at
higher fields. The activation energy for the single electron transport follows Eq. 5.8. In
our sample above B = 2T we expect that the transport is dominated by single electrons as
∆ decreases with magnetic field. To fit our data to Eq. 5.8 the magnetic field dependence
∆(B) is necessary, but unkown for our samples. We therefore adapt the empiric approach
of [80], where the energy gap follows

∆(B) ≈ ∆0

(
1 −

(
B

Bc

)1.6
)1.5

(5.9)

The red curve in Fig. 5.17 is a fit of the data to

EA = ∆0

(
1 −

(
B

Bc

)α)β

+ EA,N (5.10)

with α and β as free parameters. ∆0 = 1.76kBTc with Tc= 2.3K. The critical magnetic
field value Bc = 3.5T as it marks the onset of magnetic field independence of EA. The
saturation value is EA/kB = 200mK. The fit describes the data best for α = 1.143 and β
= 1.565.
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The activation energy is magnetic field independent as long as there is no superconduc-
tivity. This is seen in our sample for B > 3.5T, where the transport is purely due to
single electrons. By decreasing the magnetic field the grains get superconducting with an
energy gap ∆(B) that increases with decreasing magnetic field. There is a competition
between Cooper pair and single electron transport. As we see that crossover from CPS
to SES the ratio of ∆0/EC has to be higher than 3/4 [80, 99].

Sample I

In the same manner as presented for sample S, we fitted the R(T ) curves of sample I
to the formula for activated behaviour Eq. 5.5. The curves are shown in Fig. 5.18. We
see the same dependence on magnetic field. Starting from B = 0T, the slopes increase
to a maximum around B = 2T (see Fig. 5.18a)) and decrease with further increase of
magnetic field (see Fig. 5.18b)). The B = 0T curve shows an upturn in resistance with
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Figure 5.18.: Sample I: Linear fits in the Arrhenius graphs indicate non-monotonic behaviour
with B and a deviation from activated behaviour at low temperatures.

decreasing temperature. That has already been shown in section 5.1 and attributed to
the fact, that this sample is on the insulating side of the disorder induced superconductor
to insulator transition, having a RN(4K) > RQ. The temperature dependence of the
resistance, the magnetic field dependence of the activation energy and a crossing point
in the R(T ) curves for magnetic fields above the maximum is very similar to what has
been shown for Sample S. However, in contrast to Sample S there is no transition to a
zero resistance state as the grains are superconducting, but no global phase coherence is
achieved.

The extracted activation energies are shown in Fig. 5.19. Compared to sample S the
magnetic field dependence of the activation energy is very similar. Coming from high
fields we see a monotonic increase of EA with decreasing magnetic field as explained for
single electron transport. Between 2T and 3.5T Eq. 5.10 fits our data for α = 1.155 and
β = 1.45. The deviation at lower magnetic fields, B < 2T, comes from the increasing
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Figure 5.19.: Sample I: Fits correspond to EA(B) = ∆(B) + EA,N with EA(0) = ∆0 + EA,N and
Bc = 3.5T
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Figure 5.20.: Sample I: a) Magnetic field dependence of prefactor R0. b) R(T ) curves for five
selected magnetic fields. The high temperature extrapolation of the corresponding
fits are R0(B). Similar as for sample S, R0(B) increases with increasing magnetic
fields to RN(4K) at high fields.
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contribution of Cooper pair solitons to the transport.

The prefactor R0,□ is approximately constant below B = 2T and increases to RN above
3.5T as superconductivity is destroyed. This is similar to sample S (see 5.15a).
The increase of R0,□ with magnetic field is attributed to the existence of the reentrant
feature (see Fig 5.20b) for sample I), which is present for B < 2T and vanishes for higher
B. Therefore R0,□ approaches RN at high fields.

Summary

Our two granular films have been modelled by periodic JJAs to investigate the tempera-
ture dependence of the zero bias resistance for different magnetic field values. Sample
S, being on the superconducting side of the d-SIT, can be driven across the SIT with
an applied perpendicular magnetic field B⊥ ∼50mT (B-SIT). Sample I, being on the
insulating side of the d-SIT, shows the same magnetic field dependence as Sample S on
the insulating side of the B-SIT. On the insulating side for both samples the R(T ) curves
follow activated behaviour in a temperature region 200mK < T < 500mK. This is in
good agreement with findings in insulating JJAs by [80].

From the fits of eq. 5.5 to the R(T,B) curves we extract the activation energy EA
and the prefactor R0. The activation energy is attributed to the thermal activation of
Cooper pair solitons below the threshold voltage VT,S. The magnetic field dependence of
the extracted activation energies can be separated into two regions by a magnetic field
Bmax ∼ 2T. Above B = 2T charge transport is dominated by single electron solitons and
at lower fields by Cooper pair solitons. Ref. [80] found the crossover for ∆0/EC > 2. As
we see that crossover, we expect our ratio to be ∆0/EC > 2, as well.
With increasing magnetic field the resistance at the lowest temperatures T < 30mK
reaches very high values of R□ > 107Ω in sample S and R□ > 108Ω in sample I. The
increase from normal conducting resistance RN to the highest observed resistances is a
factor of 104 − 105. Such an increase has been observed by [9, 192] in ultra-thin granular
films by decreasing the film thickness. However, their experimental setup did not allow
to study the magnetic field dependence of their films for B > 210mT.
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5. Measurement Results

5.2.2. The IV Characteristics in Perpendicular Magnetic Field

In the previous section 5.2.1 we extracted the temperature and magnetic field dependence
of the differential resistance in the zero bias limit. We now turn to the non-linear
resistance, i.e. the differential resistance for non-zero bias voltages. That has been done
with IV characteristics.
In Fig. 5.21 a selection of IVs for a set of magnetic fields is presented at the lowest
temperature measured for sample S and I.
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Figure 5.21.: Overview of current voltage characteristics measured for different magnetic fields
for both samples. Temperature for sample S in a) is T = 15mK, for sample I in b)
T = 28mK. Note the different scaling of the y-axis. Above the threshold voltage
VT there is a change of slope at B ≈ 2T attributed to the change from Cooper
pair soliton dominated transport at B < 2T to single electron soliton dominated
transport at B > 2T.

In Fig. 5.21a) the evolution of the IV curves with magnetic field for sample S is shown.
Sample I is presented in the same way in b).
In sample S in zero magnetic field (black curve) there is an insulating feature with a
threshold voltage VT,S of approx. 30µV. Near zero voltage there is a supercurrent peak
with Ic ≈100pA. The B = 0T curve of sample I shows a finite differential resistance
around zero bias voltage of about R□ ≈ 60kΩ. Both B = 0T curves have been discussed
in section 5.1.
The zero bias feature in both samples is supressed by applying a perpendicular magnetic
field as can be seen in Fig. 5.21a) and b) for B = 1T (red curve). With an applied
magnetic field B > 50mT both samples are beyond the magnetic field driven SIT, where
the charge transport is mediated by thermally activated CPS below a threshold voltage
VT,S. Above the threshold voltage CPS are injected due to the bias voltage, hence there
is a sharp increase of current with a low differential resistance. The bosonic scenario
for the magnetic field driven SIT has been presented in section 2.2.3 and further dis-
cussed for periodic JJAs in section 2.2.4. The most plausible picture for the B-SIT is
the duality between vortex/anti-vortex pairs and Cooper/anti-Cooper pairs on the su-
perconducting and insulating side, which undergo a thermally driven unbinding transition.
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5.2. Effect of Magnetic Field on the Resistance (B ̸= 0T)

Increasing the magnetic field leads to a weakening of the Josephson coupling EJ. The
injection of CPS is therefore shifted to higher voltage values VT,S. This effect can be
seen in Fig. 5.21a) for sample S and b) for sample I. This increase has a maximum for B
∼2-3T in sample S and B ∼2T in sample I. The corresponding threshold voltages are VT,S
∼125µV and VT,S ∼150µV, respectively. As shown in section 5.2.1 at that magnetic field
B ∼ Bmax the charge transport switches from CPS dominated to SES dominated. The
generated single electron solitons have a lower charging barrier to overcome compared to
the CPS. Therefore a higher magnetic field leads to a decrease of the threshold voltage
until it reaches VT,N, the threshold voltage for the case of normal conducting grains.

In addition we find that the onset of charge flow is washed out in the SES dominated
magnetic field range (B > Bmax). This can be attributed to quantum fluctuations of
charge with a higher impact on SES, due to their smaller EC, than on CPS [80].

Figure 5.22.: Current voltage characteristics of a highly insulating JJA with RN ≫ RQ. The
threshold voltage VT,S increases from B = 0T (black line) to intermediate magnetic
fields (B = 380G, dashed line). Further increasing the magnetic field leads to a
decrease of VT. At high fields (B = 1140G, dotted line) the threshold voltage is
smaller than the starting value at B = 0. It is denoted as VT,N as the magnetic field
is high enough to destroy local superconductivity in the array islands, effectively
turning the S-I-S junctions into N-I-N junctions with single electron soliton transport
only. Figure taken from [80].

A similar dependence of the threshold voltage VT,S has been observed in periodic Joseph-
son junction arrays by [80]. The array presented in Fig. 5.22 is insulating for B = 0T
with a high normal state sheet resistance RN = 151kΩ.
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5. Measurement Results

For both of our samples we find VT,S to be approximately the same value as the normal
state threshold VT,N. This may be attributed to the proximity to the SIT with RN ∼ RQ.
Quantum fluctuations may effectively decrease the threshold for the injection of CPS in
the vicinity of the SIT.
The insulating array of Ref. [80] is far from the SIT and hence quantum fluctuations
are negligible. Therefore the threshold voltage is not suppressed and higher than in the
normal state VT,S(B = 0T) > VT,N.

The differential resistance at V > VT,S is very small below Bmax, which supports the
approach of CPS injection. After the crossover to SES dominated transport above Bmax
the differential resistance above VT,S is shifted to higher values indicating a combination
of non-superconducting charge flow by SES and superconducting charge flow by CPS.
For magnetic field values B > Bc the charge flow is purely given by SES and hence the
differential resistance is magnetic field independent.
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5.2. Effect of Magnetic Field on the Resistance (B ̸= 0T)

5.2.3. Absence of Highly Insulating State in Parallel Magnetic Field
Up to now, we have only focused on perpendicular magnetic fields and attributed the
existence of the highly resistive state to magnetic flux lines penetrating the thin film
through normal areas in a random network of normal and superconducting regions. In
the perpendicular magnetic field configuration we have a length and width that exceeds
the thickness by orders of magnitude (l⊥ = 28x300µm = 8.4mm, w⊥ = 300µm and d⊥
∼6nm). By switching the orientation to parallel magnetic field this configuration changes
drastically. Then d∥ is either l⊥ or w⊥ and by orders of magnitude thicker than the other
remaining dimensions.

To see whether there are similar or different effects compared to the perpendicular
magnetic field orientation, we measured 5 parallel magnetic fields ranging from 0.5T
to 2.5T for temperatures between 15mK and 712mK. For each magnetic field B∥ and
temperature T an IV has been measured. An effective perpendicular magnetic field due
to misalignement was compensated (see section A.4). The evolution with temperature of
the current voltage characteristics is the same for all parallel fields. This is examplarily
shown for B = 0T in Fig. 5.23.
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Figure 5.23.: Sample S in zero field. Shown are the IVs for different temperatures. They have
been separated into different temperature ranges and discussed in section 5.1. With
decreasing temperature thermal effects vanish and the Coulomb blockade and the
zero bias feature become more pronounced.

With decreasing temperature the Coulomb blockade for Cooper pair solitons becomes
more pronounced as the impact of thermal effects (hopping) is significantly reduced.
Around zero bias a feature arises resembling a critical current. The temperature depen-
dence and the overall shape of the IVs in zero magnetic field have been discussed in
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5. Measurement Results

section 5.1.

We will focus on the magnetic field dependence of the IV curves at the lowest temperature
in parallel field configuration. The IV curves for the lowest temperature T = 15mK
are presented in Fig. 5.24. The threshold voltage decreases from VT,S ≈ 30µV to ≈
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Figure 5.24.: Sample S in parallel magnetic field orientation. The IVs have been measured at
T = 15mK for a set of magnetic fields. The overall shape does not change up to a
magnetic field B|| = 2.5T. The linear slopes for B = 0T, 0.5T, 1T and 1.5T around
zero bias are covered by the B = 2T and B = 2.5T curves.

20µV with increasing parallel fields up to B|| ∼2T. This is different to the findings in
perpendicular magnetic fields, where an increasing magnetic field leads to an increase
of the threshold voltage (see Fig. 5.25). The zero bias resistance, as well as the critical
current, slightly depend on parallel magnetic fields (see Fig. 5.26).
While in perpendicular magnetic field configuration (see Fig. 5.25) the slope between
B⊥ = 25mT and B⊥ = 50mT changes from vertical to almost horizontal, for parallel
magnetic fields up to B|| = 2.5T the slope only slightly changes (see Fig. 5.24). For T =
26mK the corresponding sheet resistances are presented in Fig. 5.26a).
A change in the slope from vertical to horizontal is associated with the suppression of
the zero bias supercurrent. In parallel fields this change is not seen and therefore the
supercurrent is not affected by the parallel magnetic field up to B∥ = 2.5T.
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Figure 5.25.: Sample S in perpendicular magnetic field at T = 15mK: black (0T) and red
(25mT) curve show a supercurrent feature, while blue (50mT) and green (100mT)
show a finite slope around zero bias. For perpendicular magnetic fields B > 50mT
the critical current Ic is significantly reduced. Note: green curve for B⊥ = 100mT
is measured at T = 64mK.

We extracted the zero bias resistance from the IV curves measured at T = 26mK in
parallel magnetic field orientation. The zero bias resistance is shown in the top panel of
Fig. 5.26, where we can see a positive magnetoresistance. The sheet resistance increases
from a zero resistive state to a sheet resistance of R□,|| ∼1kΩ. In perpendicular magnetic
field orientation and at the lowest temperatures we see a magnetoresistance dome with a
maximum at B⊥ ∼ 2T with a sheet resistance R□,⊥ > 100MΩ (see Fig. 5.29 in the next
section 5.3).
The escape currents extracted at T = 15mK, i.e. bias voltage is swept from zero to finite
values, are presented in the bottom panel of Fig. 5.26. The critical current decreases for
an increasing magnetic field to minimum at B = 1T. Further increasing the magnetic
field leads to an increase of critical current and a saturation for B > 2 T. To extract a
magnetic field dependence of either resistance or critical current more data points are
essential. If the additional measurement confirms our maximum for parallel magnetic
fields at Bmax,|| = 1T, it is smaller than the maximum found for perpendicular fields at
Bmax,⊥ = ∼2T.
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Figure 5.26.: Sample S: Top panel shows extracted zero bias resistances at a temperature T =
26mK. Bottom panel shows extracted critical escaping currents Ic,0 at a temperature
T = 15mK. While the zero bias resistance shows an increase with increasing magnetic
field, the critical current first decreases up to 1T and then starts to increase again.
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5.2. Effect of Magnetic Field on the Resistance (B ̸= 0T)

After having discussed the shape of the IV characteristics in dependence of temperature
and magnetic field, we now turn to the temperature dependence of the zero bias resistance
R□.
The deduced values of each IV is presented in Fig. 5.27. a) presents the R(T ) curves for
B < 1T, which exhibits a maximum in resistance at B = 1T, T ≈ 200mK. For higher
magnetic fields the R(T ) curves start to drop in resistance. That can be seen in b).
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Figure 5.27.: Sample S: a) R(T )s for B∥ < 1T and b) B∥ > 1T indicating a maximum of
magnetoresistance at B∥ = 1T.
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While the B∥ = 0T curve shows a non-monotonic behaviour, the curves for B∥ > 0T
show an upturn in resistance for decreasing temperatures in the temperature region ≈
200mK < T < ≈ 600mK. However, below a crossover temperature Tcross (temperature of
the maximum resistance) the resistance does not increase for decreasing temperatures,
but starts to decrease. This decrease of resistance has been already shown for the B =
0T case (see section 5.1). Due to a too large step size for the lowest temperatures we can
not assign the low temperature behaviour to a saturation in resistance nor to a vanishing
resistance at temperature below our minimum of T = 15mK.
The crossover temperature is shown in Fig. 5.28. With increasing parallel magnetic field,
the crossover is shifted towards lower temperatures and seems to saturate for B∥ > 1.5T.
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Figure 5.28.: Sample S: Temperature Tcross presented for parallel magnetic fields B||. For T >
Tcross the resistance increases with decreasing temperature, while for T < Tcross the
resistance decreases with decreasing temperatures.

Summary

For parallel magnetic field orientations (up to B|| = 2.5T) we find that the overall shape
of the IV curves is unaffected and resambles the curvature of the B = 0T curve. This is
very different to the perpendicular magnetic field orietation, where a B⊥ ∼50mT has
been found to be sufficient for a B-SIT.
The threshold voltage in parallel slightly decreases with increasing magnetic field B|| ,
while in perpendicular VT,S increases with increasing magnetic field B⊥. The deduced
zero bias resistance R□(B) at T = 26mK exhibits a small increase, but stays below 1kΩ.
This value is smaller than the normal state resistance RN = 3kΩ.
The temperature dependence of R□(T ) follows an insulating trend for
T > Tcross ∼ 200mK. Below the crossover temperature the resistance decreases with
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5.2. Effect of Magnetic Field on the Resistance (B ̸= 0T)

decreasing temperature. This behaviour is the same as for the B = 0T curve. The
maximum resistance value found in parallel orientation is ∼4kΩ, while the maximum
resistance in perpendicular magnetic field exceeds ∼100MΩ.
We see a critical current with values between 50pA and 100pA up to the maximum applied
parallel magentic field of B|| = 2.5T. This and the fact, that we do not observe resistance
values above the normal state sheet resistance RN = 3kΩ, leads to the conclusion that
there is no B-SIT up to a parallel magnetic field of B|| = 2.5T in our granular ultra-thin
film.

However, we see effects (dome-like R(T ), increase/decrease of R with B) in the R(T ) by
an applied parallel magnetic field. These effects might be explained by a small residual
perpendicular magnetic field due to insufficient compensation as well as due to tolerances
in the compensation curves for different parallel magnetic fields. A better alignment of
sample to the parallel field orientation and an increased resolution of the compensating
field is necessary.
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5.3. Oscillatory Magnetoresistance

We will now turn back to the behaviour in perpendicular magnetic fields. In section 5.2 we
presented R(T ) curves for fixed values of magnetic fields. We found insulating behaviour
in sample S for magnetic fields above B ∼ 50mT and in sample I for all magnetic fields
including zero field. The magnetic field dependence of the R(T ) on the insulating side of
the SIT can be separated into three regimes. For magnetic fields below a maximum Bmax
the resistance values increase with magnetic field and above they decrease. This positive
and negative magnetoresistance (PMR, NMR) resembles a dome like shape centered
around Bmax. For very high fields, exceeding the critical magnetic field Bc of the grains,
R(T ) is magnetic field independent.
A magnetic field dependence of the resistance as described above, including a positive
magnetoresistance followed by a negative magnetoresistance and a high field independence,
has been found, e.g. in homogeneously disordered TiN thin films (see Fig. 2.8).
From the linear slopes of the R(T ) in an Arrhenius plot we extracted the corresponding
activation energies (see Fig. 5.17). Comparing our EA(B) with periodic Josephson
junction arrays we find similarities in the overall shape. The oscillations in EA seen
in the low magnetic fields (see Fig. 5.16) could not be reproduced. Due to our large
magnetic field steps in the initial data in section 5.2 it is unclear whether there are no
oscillations or if they are not observed due to a lack of data points. In addition, due to
the randomness of our granular films it is an open question, whether oscillations of EA
or R□ do exist at all. In this section we therefore fix the temperature and sweep the
magnetic field continuously.
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Figure 5.29.: R(B) curves of sample S for three temperatures 65mK, 135mK and 200mK. The
shape of the R(B) is dome-like, i.e. for lower fields exhibits a positive magnetore-
sistance and for higher fields a negative magnetoresistance. The R(B) has been
further separated into four magnetic field regions.
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5.3. Oscillatory Magnetoresistance

In Fig. 5.29 we present R□(B) for three temperatures below T = 200mK measured
in sample S. The magnetic field ranges from B = -0.5T to B = 3T. We labeled the
individual sections in the R(B) from I to IV.
The low field (|B| < 0.5T) R(B)s are symmetric around B = 0T. In region I there
is a sharp increase in resistance from B = 0T to B = ± 100mT, that becomes even
more pronounced for lower temperatures. This increase is sketched in Fig. 5.31 with a
black line and reveals an exponential increase in resistance by applying a perpendicular
magnetic field. The resistance value of R□ ∼ 600-800Ω is higher than the extracted
value from the R(T ) with fixed magnetic fields. The T = 200mK value is comparable,
but with decreasing temperature we do not find the sharp drop of resistance as seen in
Fig. 5.1 for B = 0T. This difference of the resistances can be attributed to the different
measurement methods. While in the previously presented data, IV curves have been
recorded at a fixed temperature and magnetic field, for the R(B)s temperature is fixed,
however the magnetic field is ramped continously. In addition, while sweeping from
negative to positive magnetic fields two point IVs are ramped up and down continuously.
The combination of the magnetic field sweeprate and the time for each IV defines the
magnetic field stepwidth for the points in the R(B) curves. This leads to a further
increase of the minimum resistance observable with this method.
In the magnetic field range 100mT < B < 1T, we see two effects (region II). First, with
decreasing temperature the resistance saturates (curves for T = 65mK and T = 135mK
match). This low temperature saturation of resistance has already been pointed out in
section 5.2 and will be further discussed in section 5.4. Second, the R(B) curves exhibit
oscillations in magnetic field around an average resistance value which, at least for the
two lower temperatures, seems to be magnetic field independent.
By increasing the magnetic field above B = 1T (region III) the resistance values start
to increase. The positive magnetoresistance is superimposed with oscillations. The
resistance increases up to values R□ ∼ 107 − 108Ω at the magnetic field Bmax.
At higher magnetic fields B > Bmax (region IV) there is a negative magnetoresistance.
The R(B)s at the two lowest temperatures seem to exhibit oscillations on the NMR side
of the magnetoresistance dome as well.
The overall shape of the R(B) is in agreement with the findings in section 5.2. Below Bmax
there is a positive magnetoresistance, as with increasing magnetic field the Josephson
energy EJ,0 is decreased. Cooper pairs get localized, which leads to an increasing
resistance. When approaching Bmax the BCS energy gap starts to be supressed by the
external magnetic field. Increasing B leads to the formation of single electron solitons
due to the breaking up of Cooper pairs. The transport switches from Cooper pair to
single electron transport. The resistance decreases as single electrons experience a lower
threshold energy, EC,SES, for transport than Cooper pairs, EC,CPS (see section 4.3 for the
introduction of SES and CPS). That increases the conductivity with increasing magnetic
field up to the critical magnetic field Bc, where all Cooper pairs are broken up.
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Figure 5.30.: R(B)s for sample S (red) and sample I (black) at ∼135mK. At magnetic fields
around B = 0T both samples exhibit a sharp increase in resistance with increasing
magnetic field (region I). The overall resistance values of sample I are higher than
for sample S, which agrees with sample S being on the superconducting side of the
disorder driven SIT for B = 0T and sample I being on the insulatng side. The
field Bmax is ∼ 2T for both samples. Above Bmax both samples show a negative
magnetoresistance up to 3T.

Fig. 5.30 compares the magnetoresistances of sample S and sample I at a temperature
T ∼135mK. The R(B)s of both samples (sample S as well as sample I) exhibit a dome
like shape and show oscillations in magnetic field below their peak in resistance at
Bmax. The overall resistance values of sample I are an order of magnitude higher at
the same temperature and magnetic field compared to sample S. The R(B)s confirm
the dependence of the resistance on magnetic field and the tendency of sample I being
pushed further into the insulating regime as indicated in section 5.2. Considering the
logarithmic scaling of the y-axis in Fig. 5.30, the amplitude of the oscillations is one
order of magnitude samller for sample S than for sample I.

Let us now take a closer look at the oscillatory component in the R(B)s. The oscillations
in the R(B)s (and EA(B)) are most likely a manifestation of the Aharonov-Bohm effect
[200] and quantum interference [18]. For simplicity, we consider a periodic Josephson
junction array as seen in Fig. 2.11a) of section 2.2.4. An applied external magnetic field
B, perpendicular to the array plane, may penetrate through the normal regions and in
our case through the superconducting areas of the islands as typically λ > grain size. In
the model of a JJA a unit cell is given by superconducting islands enclosing a normal
conducting area Acell. This enclosed normal area defines the period of the oscillation.
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5.3. Oscillatory Magnetoresistance

Charge carriers (Cooper pairs) experience a phase shift by the non-zero vector potential
A [200]. The phase difference along a closed path encircling magnetic flux has to be 2π
periodic [18, 201]. After summing up all phase differences across junctions and islands
the gauge invariant phase difference is given by

γ = 2π
(
n− Φ

Φ0

)
(5.11)

The total gauge-invariant phase difference of the closed path around the unit cell is
constrained to 2πn and for each physical situation the equilibrium value n will be the
one which minimizes the free energy [201]. This gauge-invariant phase difference enters
Eq. 2.53 and the Josephson energy is given by

EJ(Φ) = EJ,0 cos(γ) = EJ,0 cos
(

2π Φ
Φ0

)
(5.12)

The external magnetic field B needed to achieve one flux quantum per unit cell given by.

B0 = Φ0
Acell

(5.13)

Eq. 5.12 can be rewritten in terms of the external magnetic field

EJ(B) = EJ,0 cos
(

2π B
B0

)
(5.14)

Variations of external magnetic field lead to an oscillating Josephson coupling. The
oscillation period B0 = Φ0

Acell
is defined by the area in the unit cell Acell, which is penetrated

by the magnetic field.
In insulating Josephson junction arrays with EC ≫ EJ, where the charge transport is
dominated by thermally activated Cooper pair solitons, this leads to oscillations in the
R(B) curves. The oscillating EJ increases/decreases the coupling strength between the
superconducting islands. Ref. [80] found oscillations in EA (see Fig. 5.16) with maxima
at B = (n+ 1/2)B0. The extracted B0 did well agree with the value calculated using
their predefined Acell. Oscillations in R(B) and/or EA with perpendicular magnetic field
are taken as a strong indicator for a superconducting ground state, i.e. that Cooper pairs
are localized onto superconducting grains separated by normal/insulating areas.
In the case of two dimensional granular aluminum the condition of superconducting
islands separated by normal conducting regions is naturally given. However, due to the
broad distribution of grain sizes, between a few nm and 100nm (see section 4.2), we
might have a broad distribution of the normal regions Acell between the grains as well.
The change of EJ should therefore be different for the individual enclosed paths around
unit cells with different geometry and average out over all unit cell of the granular array.
Suprisingly we observe oscillations in the R(B). In Fig. 5.31 we take a closer look at the
R(B) for T = 135mK. The maxima are indicated by blue lines and the minima by green
lines. We find different oscillation periods B0 for magnetic field region II and III. Region
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Figure 5.31.: Oscillatory components in the magnetoresistance of sample S for T = 135mK. The
maxima and minima are highlighted by the blue and green vertical lines. The black
sinusoidal curves are a guide to the eye. The oscillation period in region II is 330mT
and in region III ∼170mT. The black linear curve below B ∼ 100mT indicates the
exponential increase of resistance with increasing magnetic field around B = 0T.
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Figure 5.32.: Oscillatory components in the magnetoresistance of sample I for 156mK and
470mK. The oscillation period in the low fields is B0,II ∼ 330mT as in sample S.
The period changes for higher fields to B0,III ∼ 135mT (T = 156mK) and B0,III ∼
370mT (T = 470mK)
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II is shown with full lines and region III with dashed lines. Interestingly, the period of
region II is approximately two times the period found in region III.
Assuming a simple naive picture of flux penetrating through periodic square shaped unit
cells, then the oscillation period of B0 ∼ 330mT would correspond to unit cell with length
and width of approx. 80nm. While that picture is way too simple for a true granular film,
the length of 80nm is not too far off considering grain sizes between a few and ∼100nm.

In sample I we as well see oscillations with period ∼330-370mT in region II (see Fig.
5.32). In the simple picture that leads to the same length and width of unit cell, which is
not surprising as both samples have approximately the same grain size distribution. The
biggest grains are ∼100nm in both samples. For higher fields the oscillation period is
changing. That may be attributed to a change of the average cell area Acell. The trend
is that for higher fields the period decreases B0,III < B0,II, and by Eq. 5.13 Acell increases.

Summary

The magnetoresistance curves of both samples show a dome like shape with a positive
magnetoresistance below a magnetic field Bmax ∼2T and a negative magnetoresistance
above. This behaviour is attributed to the effect of the magnetic field on EJ for low
fields and on ∆0 for high fields. This leads to a crossover from CPS transport to SES
transport.
In addition, we find oscillations superimposed on the R(B) curves. Such oscillations arise
by a magnetic field penetrating a normal area surrounded by a ring of superconducting
grains coupled by Josephson junctions. These oscillations are described in the theory
for artifical periodic JJAs and have been experimentally observed [80]. In our samples
we have a distribution in grain sizes and distances and therefore no periodic structure.
Therefore, it is surprising, that we observe oscillations in R(B). On top of this we see
a change of the oscillation period at a magnetic field of B ∼ 1T in both samples. The
period shifts to smaller values at higher fields.
The explanation for the oscillations in the granular inhomogeous film remains an open
question. The oscillation period is defined by the normal area Acell between the super-
conducting grains. The distribution of Acell for both of our samples is unknown. In
chapter 4.2 we presented a broad grain size distribution and a random grain geometry.
A correlation between grain size distribution and the distribution of the normal areas
between them is therefor unknown as well. The observed oscillations indicate that the
distribution of normal area is not random, but that a specific size is dominating. The
extracted oscillation period of B0 ∼ 330mT corresponds to an area with width and length
of ∼80nm in a periodic square shaped structure. The shift to smaller oscillation periods
would require a change in size of the normal area as B0 = Φ0

Acell
.
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5. Measurement Results

5.4. Anomalous Metallic State in the Vicinity of the
Magnetic-Field-Induced SIT

In section 5.2 we discussed the magnetic field induced SIT and indicated that the R(T )
curves saturate at the lowest temperatures. Instead of following activated behaviour
(Eq. 5.5) all the way to T = 0K, there is a crossover to another regime below a specific
temperature, defined as Tcross. This can be seen in Figs. 5.14a) and 5.18a), for sample S
and sample I, respectively.
The temperatures for which the deviation from activated behaviour is found is presented
for some selected magnetic fields in Fig. 5.33.
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Figure 5.33.: Crossover temperature plotted versus applied perpendicular magnetic field for both
samples. For temperatures below the crossover temperature the R(T )s do not follow
activated behaviour as seen at higher temperatures. The overall tendency is that
the crossover shifts to lower values for higher magnetic field values. For sample
S the smallest magnetic field exhibiting a resistance increase at low temperatures
across a wide temperature range is 50mT.
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5.4. Anomalous Metallic State in the Vicinity of the Magnetic-Field-Induced SIT

In Fig. 5.34 we present four R(T ) for sample S a) and sample I b) down to the lowest
temperatures ∼20mK. Both samples show a deviation from activated behaviour and
saturate at the lowest temperatures. The R(T ) curves are fitted with two modified
activation formula Eq. 5.15 (red) and R□ = R0 exp

(−EA,S
kBT

)
+RQF (green). They take

the low temperature saturation of resistance into account. The activation energies ex-
tracted from those fits are comparable with the activation energies shown in the section 5.2.
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Figure 5.34.: R(T ) curves and the fits to the saturation formulas for conductivity (red) Eq. 5.15
and resistivity (green) R□ = R0 exp

(
−EA,S

kBT

)
+RQF. a) Sample S and b) Sample I. In

a) the fitting curve for the 0T case indicates a low temperature saturation given only
by a single point. This is not sufficient to be conclusive. In addition, a measurement
performed at 25mT did show the same curvature but no low temperature saturation,
see Fig. 5.35a).

To fit our R(T ) curves we follow Ref. [129] and apply the same duality of conductance and
resistance saturation for the R(T ) curves in the vicinity of the magnetic field induced SIT.
The basis is set by the saturation formula proposed by Ref. [80] for the low temperature
saturation found in the high field limit of insulating JJAs, which was also used in Section
4.3. The saturation model consists of a temperature independent quantum fluctuation
term and a temperature dependent term for the conductance due to thermal activation.
On the insulating side, i.e. a saturation of the conductance, the activation energy EA,I
and a proportionality prefactor G0 are introduced. The latter replaces the prefactor

1
RN

− 1
RQF

in Eq. 4.3.

G□ = 1
R□

= G0 exp
(−EA,I
kBT

)
+ 1
RQF

(5.15)

While the data are consistent with a thermally activated resistance R□ ∼ exp
(−EA,S

kBT

)
on the superconducting side, our sensitivity is insufficient to discriminate between super-
conductivity and a resistance saturation.
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5. Measurement Results

One sees in Fig. 5.34a) for sample S that at the lowest temperatures there is an indirect
transition from a zero resistive state at B = 0T to an insulating state with R□ > 108Ω at
B ∼ 1.9T with an intermediate metallic regime. Sample I (Fig. 5.34b)) shows a similar
behaviour but starts with an insulating trend and the crossover to a metallic state for B
= 0T already.

The data reveal an intermediate anomalous metallic state (AMS) in between the su-
perconducting and insulating phases of the magnetic field driven superconductor to
insulator transition. Such an anomalous metallic state has been seen in various two
dimensional material systems, e.g. in two dimensional Josephson junctions arrays [121],
gated two dimensional semiconductor-superconductor arrays [122], In-InOx composites
[123], ultrathin amorphous gallium films [9] and in amorphous NbSi thin films [124].

The anomalous metallic state has been theoretically presented in section 2.3.3 and re-
viewed by Kapitulnik et al. [125]. Zhang et al. [129] further investigated the AMS in
granular In/InOx composites and showed that the AMS consists of two phases, a failed
superconducting and a failed insulating phase, both arising due to quantum fluctuations,
i.e. phase and charge fluctuations, respectively. In addition, Zhang et al. [129] propose a
phase diagram for granular superconductors, see Fig. 2.20.

As mentioned before, the low temperature resistance is proposed by Ref. [129] to be
the sum of a temperature dependent activated term and a temperature independent
term associated with quantum fluctuations. In summary, the latter lead to macroscopic
quantum tunneling of the phase in case of the failed superconductor and of charge for the
failed insulator. The transition from a superconductor to the anomalous metal state is
referred to as Superconductor-to-Quantum-Metal Transition (SQMT) and is associated
with the destruction of global phase coherence [125, 131, 132], while the transition from
the anomalous metal to the insulating state as Quantum-Metal-to-Insulator Transition
(QMIT), where the quantum charge fluctuations prevent a Coulomb-blockade-driven
insulating state to be established [80, 96, 202]. In the following we present our data,
measured in granular aluminum, which are fully consistent with the scenario as explained
in section 2.3.3 and the resulting phase diagram for granular superconductors.

142



5.4. Anomalous Metallic State in the Vicinity of the Magnetic-Field-Induced SIT

5.4.1. Field-induced Superconductor-to-Quantum-Metal Transition in grAl
In Fig. 5.35a) four R(T ) curves in the low magnetic field range of sample S are shown.
The black horizontal line corresponds to the quantum resistance of Cooper pairs RQ.
We find a magnetic field driven SQMT transition for 25mT < B < 50mT, as for low
temperatures the resistance changes by factors and saturates at values larger than RQ. In
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Figure 5.35.: R(T ) curves at very low B for Sample S a) and Sample I b). The black horizontal
line corresponds to RQ = 6.45kΩ.

Fig. 5.35a) we see a downturn in resistance for magnetic fields of B = 0T and B = 25mT.
The resistance value of the zero magnetic field curve is below our measurement resolution
and indicates a zero resistive state. By applying 25mT the R(T ) as well shows a downturn.
However, the resistance does not drop to zero above our lowest temperature. The B =
50mT curve shows an upturn in resistance with a low temperature saturation at a value
RQF ∼ 10kΩ > RQ. The low temperature extrapolation of the green curve for 100mT,
shows an even higher RQF. That findings indicate a transition from a superconducting
zero resistive state to a quantum metal state by applying 50mT perpendicular. In the
magnetic field range between 25mT and 50mT we do not have a data set to show the
failed superconducting state with RQF < RQ. Above B = 50mT the values of RQF >
RQ indicate that we are in the failed insulating regime.
Sample I is in the failed insulator state for B = 0T as the resistance increases with
decreasing temperature and saturates at a value RQF > RQ, Fig. 5.35b).
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5. Measurement Results

5.4.2. Field-induced Quantum-Metal-to-Insulator Transition in grAl
In Fig. 5.35b) sample I has been investigated down to 28mK for magnetic fields below
B = 0.5T and found to be in the failed insulating state. In Fig. 5.36 we increase the
magnetic field up to B = 3.5T for sample I. As there is a peak in resistance around B =
2.1T, we separated the data into two plots. Fig. 5.36a) shows the R(T ) curves from 0.4T
to 2.1T, while 5.36b) shows the curves for B > 2.1T.
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Figure 5.36.: Sample I: a) R(T ) curves for magnetic field values below Bmax and b) for magnetic
fields above Bmax. The crossover from the anomalous metal state to a Bose insulator
is indictated by the vanishing of the saturation in the magnetic field range 0.5T -
2.1T. The resistance continuously increases for decreasing temperatures, however, it
does not follow activated behaviour as seen at higher temperatures.

In Fig. 5.36a), for better visualization, we have only shown five magnetic fields out of
more than 20. In addition to Fig. 5.34b), where we presented a resistance saturation at
low temperatures up to B = 1.7T, we here show curves above B = 0.5T which do not
saturate. A possible explanation could be the oscillating behaviour of the magnetoresis-
tance seen in both samples and shown in Fig. 5.32 for sample I. To resolve this issue
the magnetic field stepsize for the R(T ) measurements has to be decreased in a future
experiment to a value much smaller than the oscillation period B0 ∼ 330mT.
Even those R(T ) curves without saturation deviate from activated behaviour at the
lowest temperatures and show a lower resistance than predicted by R□ ∼ exp

(−EA,I
kBT

)
.

That crossover from curves with saturation to those without can be interpreted as the
crossover from failed insulating anomalous metal state to a true Bose insulating state
with increasing magnetic field.

By further increasing the magnetic field from Bmax ∼2T to B ∼ 2.75T, no saturation is
found and the overall resistance values decrease again (see Fig. 5.36b). The low tem-
perature data, T < 100mK, does as well deviate from activated behaviour below B < 2.5T.
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5.4. Anomalous Metallic State in the Vicinity of the Magnetic-Field-Induced SIT

Above B = 2.75T the sample approaches the normal state, i.e. the grains gradually
become normal conducting. By applying the proposed activation formula by [80], Eq.
5.15, for the normal conducting state, we expect the R(T ) curves to saturate at the
lowest temperatures for B > Bc due to quantum fluctuations of charge. This has been
shown for sample S at 7T in Fig. 4.15b). The fit to the data by Eq. 5.15 is presented in
Fig. 4.16.
For sample I, the R(T) curve, at the maximum applied magnetic field of B = 3.5T,
follows activated behaviour down to T = 26mK and we do not observe a low temperature
saturation. The saturation may either set in for higher magnetic fields or at temperatures
below our minimum temperature of T = 26mK in this measurement.

Summary

By evaluating the insulating R(T ) curves of our samples in section 5.2 we find, that
below a magnetic field dependent temperature Tcross the curves deviate from activated
behaviour. The curves show lower R□ values than expected from activated behaviour
and we find a saturation of resistance in the vicinity of the B-SIT.
This behaviour demonstrates the existence of an anomalous metal state (see Ref. [125]),
which may be separated into a failed superconducting state and a failed insulating state
[129]. For low magnetic fields we see a transition from the superconducting state of sample
S to a quantum metal state with B = 50mT (SQMT). For higher fields we see another
transition from the quantum metal state to a Bose-insulating state in a broad range
of magnetic fields (QMIT). At even higher fields superconductivity is destroyed in the
grains and the granular film turns into a Fermi-insulator (B > 3T in both samples). Our
findings are in agreement with the proposed phase diagram for granular superconductors
by [129] presented in Fig. 2.20 after a study in granular In-InOx composites.
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5. Measurement Results

5.5. The Differential Resistance at Bias Voltages ≫ Threshold
Voltage

Up to now we have focused mainly on the zero bias resistance. We will now turn to
the differential resistance measured at bias voltages Vbias ≫ VT, to see how the charge
transport is mediated in that regime.
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Figure 5.37.: Sample S above VT. The R(T )s are shown for a set of magnetic fields between B
= 0T and B = 3.5T. For B < 2T, the R(T )s saturate at Rmin. The temperature
at which the resistance approaches Rmin decreases with increasing magnetic field.
Magnetic fields above 2T increase the resistance from Rmin to higher values. The
lowest temperature part of the R(T )s crosses RN for B ∼ 2.8-2.9T. In the magnetic
field range 2.9T < B < 3.5T the TCR switches sign from positive to negative,
indicating an increase of resistance with decreasing temperature above B ∼ 3T.
The 3T curve is more or less temperature independent. Rc1 = 1.875kΩ and Rc2
= 1.5kΩ are the resistances used for the extraction of Bc(T ) (see Fig. 5.40 below)
using the half-resistance criterion Rc = (RN+Rref)/2 (see text below). The vertical
dotted line at T ∼ 800mK separates the low temperature, VB ∼mV, from the high
temperature, VB ∼V, region.

Fig. 5.37 presents the temperature dependence of the differential resistance measured
with voltages higher than the threshold voltage VT. While the low temperature part of
the R(T ), T < 800mK, was measured with a voltage bias at ≈ 1mV, the high temperature
part T > 800mK was measured with a voltage in the order of volts. The corresponding
currents were ≈ 20nA and ≈ 5µA. The smooth transition of the low temperature R(T )s
into the high temperature curves indicates, that the differential resistance above the
threshold voltage VT ≤ 150µV is roughly independent on bias voltage/current, i.e. follows
ohmic behavior. There is an offset of 85Ω between the low temperature part of the R(T )s
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5.5. The Differential Resistance at Bias Voltages ≫ Threshold Voltage

and the high temperature part of the R(T )s, that has been removed to match the zero
magnetic field R(T )s. In zero field the resistance exhibits a plateau of Rmin ∼ 750Ω down
to the lowest temperatures T = 61mK. That plateau has already been presented for T >
1K in section 5.1. By increasing the perpendicular magnetic field we see a decrease of
the critical temperature Tc with increasing magnetic field. The low temperature part
of the R(T )s smoothly crosses over from Rmin, above RN to a maximum in resistance
at B ∼ 4T and saturates at values close, but below this maximum for higher magnetic
fields up to 7T (curves for B > 3.5T are not shown in this plot). Interestingly, the lowest
temperature parts of the R(T ) in the transition regime 2T < B < 3T show magnetic
field dependent saturation values and the R(T )s for B = 2.6T, 2.7T and 2.8T even show
an upturn in resistance for very low temperatures. The minima in the R(T )s occur at R
= 1620Ω and T = 0.15K at B = 2.6T, R = 2175Ω and T = 0.185K at B = 2.7T and R
= 2650Ω and T = 0.215K at B = 2.8T. The R(T ) curves in Fig. 5.37 strongly resembles
R(T ) curves measured in 3D granular aluminum (see section 4.1), for which minima have
been found in the R(T )s at temperatures, which correspond to maxima in the Bc(T ). We
present the low temperature part of the R(T )s in Fig. 5.38 to compare it to Fig. 4.4b).
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Figure 5.38.: Sample S above VT. The low temperature part of the R(T )s reveal the crossover
from R(T )s with positive TCR to R(T )s with negative TCR. In the intermediate
magnetic field range we find a low temperature saturation arising from the plateau
of Rmin for B = 2T, 2.2T, 2.4T and 2.5T. The curves for B = 2.6T, 2.7T, and
2.8T show a high temperature positive TCR, which switches to a low temperature
negative TCR. The corresponding minima are marked with red circles. The black
dotted line indicates the approximately linear increase of the minima temperature
with magnetic field. The non-labelled low magnetic fields follow the same colour
coding as shown in Fig. 5.37.
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5. Measurement Results

We replot some selected temperatures in the R(B) configuration in Fig. 5.39. With
decreasing temperature we find the broad transition from the low resistive state to the
normal state to become very sharp below T ∼ 250mK. The same behaviour has been
found in Fig. 4.4a).
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Figure 5.39.: Resistive state above VT - R(B) curves for a set of temperatures listed left and right
to the plot. With decreasing temperature the transition becomes very sharp and at
B = 3T the TCR switches sign from positive to negative.
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Figure 5.40.: Bc(T ): Rc1 and Rc2 correspond to the criteria as explained in the text.

For a superconducting sample with zero resistance below Tc the half-resistance criterion
reads Rc = RN/2. However, in our data the resistance does not drop to zero, but saturates
at a value Rmin. To deduce the temperature dependence of the upper critical magnetic
two options may be applied, Rc1 = (RN+Rmin)/2 or Rc2 = RN/2. The resistance values
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of the two criteria are shown as red horizontal lines in Fig. 5.37. The temperature
dependence of the upper critical field Bc(T ) for both criteria is shown in Fig. 5.40.
The critical temperature for B = 0T is Tc,0 ∼ 2.3 − 2.4K and the critical magnetic field
at T = 0K Bc ∼ 2.6 − 2.7T. The temperature dependence of the critical magnetic field
follows a linear increase with decreasing temperatures with a slight decrease of the slope
below a temperature T ∼ 0.5K.

In a future experiment the transition from the "anomalous" RN/3 state to RN should be
measured with a much smaller stepsize or in a continuous magnetic field sweep.

Summary

In this section we studied the magnetic field dependence of the R(T ) curves extracted at
a bias voltage far above the zero bias limit. Instead of a drop to a zero resistive state, as
seen for 3D granular aluminum (see section 4.1), we find a temperature independent Rmin
∼ 750 Ω. This may be attributed to the reduced thickness of our samples compared to the
3D samples. In section 4.2 we have shown that the morphology (grain size distribution,
grain separation distances) of a granular aluminum 2D film is dramatically different to a
3D film.
Besides the saturation of resistance at Rmin for low magnetic fields, the magnetic field
dependence is similar to the findings for thick grAl in Ref. [171]. With increasing
magnetic field we see a shift of the critical temperature Tc of the anomalous state Rmin
to lower values. For magnetic fields B > 1.5T Rmin increases up to values of Rmin ∼
3.8kΩ > RN. This increase is attributed to the suppression of the local superconducting
energy gap ∆(B) on the grains. This transition with magnetic field becomes sharp for
the lowest temperatures.
For three R(T )s with magnetic fields in the transition we find minima for the temperature
coefficient resistance. The TCR switches from positive at the higher temperature side to
negative at lower temperatures side of the minima. Such minima in the R(T ) have also
been found in Ref. [171]. There the temperature of the minima was consistent with a
maximum found in their Bc2(T ) curves. To verify this for our sample we would need to
measure more R(T ) curves inside the transition with magnetic field.
The evalution of our Bc2(T ) gives a critical temperature of Tc,0 ∼2.3-2.4K and an upper
critical field Bc2(T = 0) ∼ 2.6-2.7T. Our film has a sheet resistance of RN = 3kΩ. RN
can be converted into a three dimensional resistivity ρ = RN · d. With d ∼ 6nm our ρN
∼ 1800µΩcm. A 3D film with comparable resistivity at 4K, ρ4.2K = 1687µΩcm, has a
critical temperature Tc = 2.62K and a upper critical magnetic field of Bc2 = 3.98T. The
critical temperature is comparable to our value and higher critical magnetic field value
may be attributed to the change of morphology.
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6. Niobium-Silicon in Perpendicular
Magnetic Field

In this chapter we report low temperature magnetic field properties of two amorphous
niobium-silicon thin film alloys. Due to its high tunability, e.g. varying the niobium
concentration, film thickness or heat treatment, NbxSi1−x is a good model to study the
SIT in homogenously disordered thin films. In strongly disordered superconductors the
electronic ground state is determined by the competition between Coulomb interaction,
disorder and superconductivity as has been shown for granular aluminum in chapter 5.
In contrast to granular aluminum thin films, NbSi thin films have been shown to be
continuous, amorphous and structurally non-granular down to a thickness of 2.5nm. The
electron mean free path is estimated to be comparable to the interatomic distance [72].

Figure 6.1.: Phase diagram as a function of niobium concentration and film thickness. The
black dots and red squares correspond to two different methods to determine the
critical thickness (see Ref. [203] for details). The dashed line is the best fit to
dc = d0

(
x−xc

xc

)α

and the dotted vertical line corresponds to the critical composition
xc. Picture taken from [203].
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Ref. [203] studied the thickness-tuned SIT for different niobium concentrations ranging
from x = 13, 5% to x = 18% and thicknesses between 20Å and 500Å. The reduction
of thickness progressively drives the system from the superconducting state towards an
insulating state. The relation between the critical temperature Tc and the film thickness
is found to be linear and scale with Tc ∼ 1/d. Ref. [203] presents a phase diagram for a
function of niobium concentration x and film thickness d (see Fig. 6.1).
The phase diagram reveals, that the critical thickness dc, separating the superconducting
regime from the insulating one, can be tuned by the film composition. With decreasing
niobium concentration dc seems to diverge with a power law given by dc = d0

(
x−xc

xc

)α
.

The critical concentration was found to be xc ∼ 12.4%, d0 ∼ 17 ± 7Å and α ∼ −0.9.
Interestingly, the critical thicknesses may be as large as a few hundred of Å. This is
much larger than what has been found in pure metal films (a few monolayers), e.g. [63],
or other alloys (few tens of Å), e.g. [204].

The two samples presented in this chapter have been provided by C. Marrache-Kikuchi1
and have a composition of 13,5% niobium and 86,5% silicon. For a niobium concentration
of x = 13, 5% we expect a transition to a superconducting, zero resistance, state at low
temperatures for films with a thickness above a critical thickness of dc ∼ 15nm and an
insulating behaviour for thinner films (see Fig. 6.1).
Sample one, a 23nm film, shows a transition to a superconducting state. It will be
referred to as NbSi-Superconducting (NbSi-S). The second sample was grown to
a film thickness of 5nm only and shows an insulating behavior with a low temperature
saturation at the lowest temperatures. As the saturation resistance is in the kΩ range,
the latter will be therefore named NbSi-Metallic (NbSi-M). The evolution of the
resistance with temperature in the zero magnetic field case can be seen in Fig. 6.5.

The samples consist of the following layers:

a) b)
NbSi - superconducting NbSi - metallic

SiO2 (25nm)

Al2O3 substrate

SiO2 (16nm)

Nb13,5Si86,5 (23nm)

Al2O3 substrate

SiO2 (25nm)

Nb13,5Si86,5 (5nm)

SiO2 (6nm)

Figure 6.2.: Composition of both NbSi samples a) NbSi-Superconducting, b) NbSi-Metallic.

Both samples have been grown onto Al2O3 substrate with a 25nm thick SiO2 under-
layer. To protect the thin NbSi film both samples have been capped with a SiO2 overlayer.

1Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
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a) b)

Figure 6.3.: a) Optical image of the sawtooth structured NbSi sample glued onto the silver sample
holder for good thermal connection. The sample holder consists of a PCB onto which
the mesurement lines are soldered. The final connection between PCB and sample is
done with aluminum bond wires. The image was taken by S. Feyrer. b) Sketch of a):
The pin layout is shown, where the red lines are the aluminum bondwires. Image
and figure taken from [151].

Both samples were provided with a sawtooth structure as seen in Fig. 6.3a). The
sawtooth pattern serves the purpose of supressing edge effects in co-deposition of Nb and
Si. They have been glued onto the same silver sample holder with PMMA-glue. The
pin configuration on the PCB board is presented in b) and is the same for both samples.
The measurements were performed in a four-point geometry, where the current was sent
through two outer contacts (4 and 11) and the voltage was measured over two inner
contacts (6 and 7) spanning over 2 sheets. The data on the superconducting sample was
collected together with two bachelor students [151, 152]. The metallic sample has been
measured after those thesis works together with A. Weitzel.
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A first characterization for sample NbSi-S in zero magnetic field was done by measuring
DC current voltage characteristics at T = 6K and at the lowest temperature of T ∼
11mK. Both curves can be seen in Fig. 6.4.
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Figure 6.4.: NbSi-S: Comparison of base temperature IV (red) and normal state IV at 6K in zero
magnetic field. The IV in the normal conducting state above the critical temperature
is linear with a sheet resistance R□ ∼ 750Ω. At base temperature T < Tc the IVs
reveal a zero voltage state below a critical current of Ic ∼ 125 − 150nA.

At 6K the zero bias differential resistance is R□(6K) = 750Ω, while the red curve at T
= 11mK shows a horizontal line around zero bias indicating a zero voltage state, hence
a zero resistive state for R□(11mK). The IVs are measured from negative bias currents
to positive bias currents. The asymmetry is attributed to electron heating effects. The
corresponding critical current is Ic = 150nA.
From this point on the measurements were performed by standard AC lock-in measure-
ments. For sample NbSi-S we use a current excitation of 10nA to stay in the zero bias
limit (I < Ic). The current excitation for the AC measurements of sample NbSi-M is I ∼
0.5nA. For AC currents with amplitude I > 1nA, we saw an impact in the R(T ) curves.
To avoid this electron heating effect we reduced our amplitude to 0.5nA.
In Fig. 6.5 both B = 0T R(T ) curves are presented. While the resistance of the super-

conducting sample drops from R□(350mK) approx. 640Ω down to a very small resistance
around the measurement resolution of 0.1Ω below T ≈ 70mK, the metallic sample shows
an upturn from R□(350mK) ≈ 8.5kΩ to a R□ of 12.5kΩ at the lowest temperatures T <
35-40mK. The behaviour in zero field is as expected for a thickness induced SIT for a
niobium concentration of x = 13, 5%, where Ref. [72] found a critical thickness dc ∼ 15nm.
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Figure 6.5.: Comparison of low temperature behaviour of the sheet resistance R□ in zero magnetic
field for sample NbSi-S (black data points) and NbSi-M (red data points). The blue
line indicates the resistance quantum for Cooper pairs RQ = 6.45kΩ. Sample NbSi-S
shows a sharp transition to a zero resistive state with Tc ∼ 86mK. For NbSi-M
the resistance increases with decreasing temperature but saturates at the lowest
temperatures.

The dependence of the two R(T ) curves on disorder (i.e. given by the sheet resistance at
T > Tc) as well as the absolute values of R□ presented in Fig. 6.5 agree well with the
data of Couëdo et al. [124] shown in Fig. 6.6. The authors of Ref. [124] focused on the
SIT in zero magnetic field, where the disorder has been tuned by thermal heat treatment
at various temperatures θht. The heat treatment was performed under a flowing nitrogen
atmosphere for one hour. The as-deposited films have experienced θht = 70°C due to
heating during the deposition process.
The authors of Ref. [124] found dissipative metallic phases, when tuning NbSi samples

across the superconductor to insulator transition. They find that all of their films fall into
one of four categories. Each has been identified in a 23nm thick amorphous Nb13,5Si86,5
sample, which is shown in Fig. 6.6a). The as-deposited film exhibits a zero resistive,
superconducting state below a well defined critical temperature Tc. The temperature
coefficient of resistance (TCR) is positive. Thermal treatment decreases the normal state
conductivity σN, i.e. increases disorder and hence RN. For heat treatments between
110°C and 140°C the low temperature TCR stays positive, but the sheet resistance is
finite at the lowest temperatures T = 10mK. In this regime they find a low temperature
saturation of resistance. The dissipative phase with positive TCR and a finite resistance
at the lowest temperature is referred to as metal 1.
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a) b)

Figure 6.6.: a) Set of R(T ) curves for different thermal treatments for a 23nm thin a-Nb13,5Si86,5.
The two insets show the transition from positive to negativ TCR with increasing tem-
perature of thermal treatment and the non-vanishing resistance at low temperatures
for a heat treatment of 110°. b) Set of R(T ) curves for different thermal treatments
for a 5nm thin a-Nb13,5Si86,5. The resistance increases as expected for insulating
behaviour due to d < dc, but saturates at the lowest temperatures. The resistance is
measured in units of h/e2. Figures taken from [124].

Further increasing the temperature θht above 140°C leads to a change of sign of the TCR.
The resistance increases with decreasing temperature. This is a signature of an insulating
behaviour. However, the resistance does not diverge in this regime, but saturates at a
finite resistance at the lowest temperatures. This regime is called metal 2.

The dependence of the shape of the R(T ) curves on disorder (given by thermal heat
treatment) of Ref. [124] shown in Fig. 6.6a) as well as the low temperature saturation of
resistance shown in Fig. 6.6a) and depicted in more detail on the insulating side of the
SIT in Fig. 6.6b) resembles the findings of an anomalous metallic state [125, 129] in the
vicinity of a magnetic field driven SIT in granular superconductors. Such an anomalous
metallic state and its two corresponding phases (failed superconductor and failed insula-
tor) have been shown by Ref. [129] in thin granular In/InOx composites. In addition, the
data for our ultra-thin granular aluminum films, presented in section 5.4, match well with
the proposed anomalous metallic state. In case of the presented NbSi data, following the
notation of Ref. [129], metal 1 is comparable to a failed superconducting state and metal
2 to a failed insulating state.

At even larger disorder the sample may become insulating with a diverging resistance at
the lowest temperatures. This behaviour has been seen by Ref. [124] in other insulating
NbSi samples with σN < e2

h , where the resistance follows the Arrhenius law for activated
behaviour R(T ) = R0 exp(T0/T ) down to the lowest temperatures. For the sample
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presented in Fig. 6.6 this regime was not reached. Ref. [124] closer investigated the metal
2 phase in a 5nm thin Nb13,5%Si86,5% sample. The curves for different heat treatments
are shown in Fig. 6.6b). As has been explained in that regime, the R(T ) shows an
insulating-like behaviour with a increasing resistance with decreasing temperature and
a low temperature saturation of resistance. Ref. [124] hypothesises that the metal 1

Figure 6.7.: Phase diagram as a function of thickness and normal state conductivity. The red line
separates the superconducting state from the metal 1/failed superconducting state,
while the blue line separates the metal 1/failed superconducting state from the metal
2/failed insulating state. At lower normal state conductivities, i.e. at higher normal
state sheet resistances, there is another transition marked by the vertical orange line
to a true insulating state with activated behaviour down to the lowest temperatures.
σc1, σc2 and σc3 represent the critical conductivities for the corresponding transitions
between the different phases in different samples. Figure taken from [124].

corresponds to a phase where short living Cooper pairs survive locally, but global phase
coherence is lost due to superconducting fluctuations. The importance of superconduct-
ing fluctuations is explained by the continuous evolution of the critical temperature to
smaller values during the transition form the superconducting state into the metal 1
state. However, it is argued that such a behaviour requires built in inhomogeneities,
which have not been found in NbSi and is morphologically homogenous. In the metal 2
phase the transport is governed by the normal state conductivity σN only. Therefore, it
is argued that there might be a crossover to a quasi-particle dominated regime, where
the saturation of resistance may be explained by a parallel channel of conduction, which
short-circuits localized fermions. The second metallic regime is found to terminate at
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σN ∼ e2/h, below which the transport shows activated behaviour down to the lowest
temperatures. The proposed phase diagram by [124] is shown in Fig. 6.7. It reveals
the two metallic phases in between the superconducting phase and the insulating phase
of NbSi. By approaching d → 0, the metal 2 phase vanishes, while the metal 1 phase
persists even for d → 0. The conductivity, which separates the superconducting state
from the metal 1 phase extrapolates to σQ = 4e2/h.

In section 5.4 we focused on metallic phases in the vicinity of the magnetic field induced
SIT in ultra-thin granular aluminum. The evaluation and theoretical explanation of this
anomalous metallic state followed Ref. [125] and [129]. By increasing a perpendicular
magnetic field, Ref. [129] showed that in natural granular In-InOx composites two inter-
mediate metallic phases arise in the vicinity of the magnetic field driven SIT, which are
governed by either phase or charge fluctuations and lead to a low temperature saturation
of resistance on the superconducting and insulating side of the SIT, respectively. The
used model consists of superconducting grains coupled by Josephson weak links, where
the interplay between EJ and EC is the tuning parameter.
NbSi is morphologically homogenous therefore the model of superconducting grains inside
an insulating matrix is not applicable. Nevertheless, the great similarity to granular
systems indicates an emergent electronic granularity [64, 65]. The underlying mechanism
of the superconductor to insulator transition in a-NbSi is still a controversial issue. While
both, fermionic as well as bosonic scenario, may lead to an insulating state, the nature of
the insulating ground state is an open question.
The strong similarities to granular films and hence the indication of an electronic gran-
ularity agrees with a bosonic scenario, where superconducting grains are coupled by
Josephson links. The activated behaviour found on the insulating side of the SIT is
therefore determined by charging energies. In a homogenously disordered system, like
NbSi, an effective electronic granularity may arise due to a diverging localization length
ξloc (self-induced granularity). However, until 2021 no signs of a bosonic insulating state
had been found. [205]
Humbert et al. [205] studied high resistive NbSi samples and found an overactivated
behaviour by approaching the SIT from the insulating side. The term overactivation
refers to an increase of the activation energy at the lowest temperatures. In an Arrhenius
plot, the linear slope (EA) at relatively high temperatures shows an upturn to a higher
activation energy at the lowest temperatures (see Fig. 6.8). Since the overactivated
behaviour is only found close to the SIT, Ref. [205] argues that this is connected to
superconductivity, which sets in locally in some effective grains. As the behaviour is
insulating, no global phase coherence is achieved. The authors conclude that the increase
of the activation energy at the lowest temperatures is due to the formation of Cooper
pairs. The existence of Cooper pairs on the insulating side of the SIT in NbSi is surprising,
because there has not yet been any evidence for a bosonic insulating state in that material
system and indicates a possible bosonic scenario for the SIT in a-NbSi [205].
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Figure 6.8.: Activated behaviour on the insulating side, but close to the SIT. The Arrhenius
plot shows a crossover from a high temperature activation to a low temperature
overactiation. The activation energy in the overactivated regime is higher than the
activation energy in the activation regime. Figure taken from [205].

In this thesis two NbSi samples have been exposed to a perpendicular magnetic field. All
above mentioned transitions from the superconducting to the insulating state in NbSi
have been performed in zero field. The response to an external magnetic field may add
another turning knob and reveal the nature of the electronic groundstate.
The superconducting sample is in its initial state, as-deposited (compare to Fig. 6.6a)
(purple curve)). The metallic sample had seen a heat treatment at a temperature of 90°C
for one hour (compare to Fig. 6.6b) (dark blue curve)) for B = 0T.
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6. Niobium-Silicon in Perpendicular Magnetic Field

6.1. Superconductor-Metal Transition
Sample NbSi-S is exposed to perpendicular magnetic fields up to 0.4T for temperatures
below T = 0.15K. In Fig. 6.9a) the magnetoresistance isotherms are shown, while in b)
the same data is presented in a R(T ) configuration. In b) the B = 0T curve is substituted
with the higher resolution R(T ) as shown in Fig. 6.5. We evaluate the upper critical
magnetic field Bc2(0) from the flux flow approach for the R(B) curves in Fig. 6.9a) and
from the R(T ) curves in Fig. 6.9b) using the half resistance criterion.
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Figure 6.9.: NbSi-S: a) R(B) for the different temperatures listed in the figure. The full lines
denoted as dR/dB are the slope in the corresponding R(B) curve used for the flux
flow criterion.
b) The same data points presented in a R(T ) configuration. The magnetic fields
presented are 0T(black), 10mT(red), 25mT(blue), 50mT(green), 100mT(cyan),
150mT(magneta), 200mT(brown), 250mT(teal), 300mT(indigo), 350mT(lime) and
400mT(coral). The black horizontal line corresponds to the critical resistance for the
half-resistance criterion, Rc = RN(6K)/2.

Upper critical field

By following the model of Bardeen-Stephen for flux flow resistance [18], presented in
section 2.1.2, we can extract the viscous drag coefficient η and the upper critical field
Bc2 at T = 0.
As it is only possible to extract a linear slope dR/dB for three temperatures (11mK,
27mK and 57mK) (see Fig. 6.9a)) and their values vary only little around ∼3.9kΩ/T,
unexpectedly no temperature dependence is found. Therefore, in the following we focus
on the T = 0K case only by taking the temperature independent average of the three
measured values.

A film thickness of d = 23nm leads to

η(T = 0) = Φ0
d(dR/dB) ∼ 2.3 · 10−11 T2m

Ω (6.1)
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6.1. Superconductor-Metal Transition

using the dR/dB ∼3.9kΩ/T. The upper critical field is given by

Bc2(T = 0) = ηρN
Φ0

= ηRN,□d

Φ0
∼ 192mT (6.2)

Another criterion for the upper critical field is the half resistance criterion, which is
applied to the R(T )(B)s, shown in Fig. 6.9b). The criterion reads Rc = R□(6K)/2 and
in our case Rc = 375Ω. From the R(T )(B = 0T) curve one can extract the critical
temperature Tc = 86.3mK, while the resistance vanishes completely below a temperature
of 70mK.
A BCS fit by Eq. 2.34 applied to the Bc2(T ) curve extracted for the criterion Rc = 375Ω
in the R(T ) curves for different magnetic fields gives: Tc(0) = 88.74mK and Bc2(0) =
195.8mT. The extracted Bc2(T ) values and the corresponding BCS fit by Eq. 2.34 are
shown in Fig. 6.10. The critical temperature value Tc0 from the extrapolation of the
fit to Bc2(T ) is in good agreement to the extracted 86.3mK from the single R(T ) curve
value with zero magnetic field.
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Figure 6.10.: NbSi-S: Bc2(T ) extracted from the half resistance criterion, Rc = RN(6K)/2, applied
to the R(T )s in Fig. 6.9b). The upper critical field Bc2 is denoted as Bc. The red
curve is a BCS fit to the data by Eq. 2.34.

The such determined upper critical magnetic field value is consistent with the value
extracted using the flux flow approach.
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6. Niobium-Silicon in Perpendicular Magnetic Field

From the upper critical field value a coherence length ξ(0) can be calculated with Eq. 2.44,
which is ξexp(0) ∼ 41nm for both cases, flux flow and BCS, respectively. The extracted
value for the coherence length is in good agreement with previous measurements of ξexp(0)
= 30nm by the group of D. Shahar2 (private communication with C. Marrache-Kikuchi).
The extracted values of ξ(0) ∼30-40 nm are in good agreement with an upper boundary
of ξexp(0) = 50nm. That value has been calculated using the dirty limit expression [18]
ξ(T = 0) = 0.855

√
ℏνFl
π∆ with ∆(T = 0) = 1.76kBTc, Tc = 0.1K, νF = 5 · 105m/s and

l = 0.5nm (private communication with C. Marrache-Kikuchi).

In addition, we see in Fig. 6.9a), that the two curves measured at the lowest temperatures
T = 11mK and T = 27mK match. That indicates a low temperature saturation of
resistance similar to what has been seen by Ref. [124] in NbSi for different temperatures
used for heat treatment and by Ref. [129] in granular In/InOx by applying an external
magnetic field. In both cases, failed superconducting and failed insulating regimes have
been observed connected with an anomalous metalic state.
Our data (Fig. 6.9) exhibits a low temperature saturation at resistance values smaller
than the normal state resistance R□(350mK) ∼ 640Ω with a TCR > 0. This indicates
a failed superconducting behaviour. However, at B ∼ 300 − 350mT the TCR switches
sign to TCR < 0 and the saturation resistance is larger than R□(350mK). The 300mT
curve (indigo) has a TCR > 0, while the next larger magnetic field 350mT (lime) shows
a negative TCR < 0. This can be interpreted as a transition to a failed insulating state.
These findings indicate an anomalous metallic state in the vicinity of the magnetic field
driven SIT in NbSi.
Following arguments of Ref. [124] (see section 6) and Ref. [125] (see section 5.4) the
failed superconducting phase can be attributed to superconducting fluctuations.
Below 50mT the sample is superconducting. The failed superconducting phase ranges
from B = 50mT, where the saturation resistance becomes finite, to 300mT-350mT. In
that magnetic field range the TCR switches sign. As shown above, the critical perpendic-
ular magentic field is Bc ≈ 195mT. In a magnetic field range slightly above the critical
magnetic field superconducting fluctuations may still persist. For B > 350mT (approx.
1.5 times the critical field) the fluctuations vanish completely and there should be a
crossover to the failed insulating phase. As no perpendicular magnetic field above B =
400mT was applied to that sample, there is not enough data for the failed insulating
phase in this sample. However, the failed insulating phase is further investigated in
sample NbSi-M, which is already in a state with TCR < 0 for B = 0T, in the next section.

2Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
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6.2. Failed Insulating Phase: Effect of Magnetic Field
In Fig. 6.11a) we show the temperature dependence of the resistance for a set of per-
pendicular magnetic fields. The corresponding R(B) curves are presented in b). The
overall resistance values increase with increasing magnetic field up to B = 1T. By further
increasing B the resistance values start to saturate up to 3T, above which it is roughly
independent on magnetic field.
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Figure 6.11.: NbSi-M: a) R(T )s for the magnetic fields denoted in the figure. b) The same data
points presented in a R(B) configuration together with additional magnetic fields
and for temperatures denoted in the figure. The low temperature data points at
B = 5T and 6T are unreliable, as the sample temperature deviated from thermal
equilibrium with bath temperature. The chosen thermalization times were to short.

We now take a look at the R(T ) curves in Fig. 6.11a). We find an insulating trend of
the resistance down to a temperature of T ∼ 40 − 50mK followed by a low temperature
saturation for T < 30mK. We fit the data to Eq. 5.15, proposed by Ref. [129] for the
failed insulating state of the anomalous metallic state, which includes a high temperature
activated behaviour and a low temperature saturation of resistance. The fits to our data
are presented in Fig. 6.12.
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Figure 6.12.: NbSi-M: Activated behaviour with low temperature saturation of resistance. Pre-
sented are some selected R(T ) curves including the fits to Eq. 5.15.
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Figure 6.13.: NbSi-M: Evaluation of the fitting parameters for activated behaviour with low
temperature saturation of resistance. a) and b) show the extracted activation
temperatures EA/kB and the low temperature saturation resistances denoted as
RQF as it resembles the saturation in the failed insulating state, where the saturation
is attributed to quantum fluctuation of charge.
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As the R(T ) curves for B > 0T consist of very few points (see Fig. 6.11a)), we first fit
the B = 0T curve to the proposed formula Eq. 5.15. We keep the high temperature RN
constant for the fits of B ̸= 0T. RN enters Eq. 5.15 as G0 = 1

RN
− 1

RQF
. That assumes

that the resistance at temperatures of at least 10 times the measurement interval does
not respond to an external perpendicular magnetic field.

The extracted activation energies are shown in Fig. 6.13a) and the corresponding satura-
tion resistance RQF in b).
At B = 0T the activation energy has a value of EA/kB ∼ 75mK and continuously increases
up EA/kB ∼ 150mK. We do not observe a saturation or a dome-like behaviour up to our
maximum magnetic field of 7T. The saturation resistance RQF increases more rapidly for
magnetic fields between 0T and 1T, then starts to slow down its increase and saturates
for B > 3T.

Summary

We investigated the temperature and magnetic field dependence of the zero bias resistance
in two niobium silicon samples. One sample shows a transition to a zero resistance state
below a critical temperature (NbSi-S) and the other sample shows an insulating behaviour
with a low temperature saturation (NbSi-M). Sample NbSi-S could be tuned continuously
into a metallic state by applying a perpendicular magnetic field. We find a saturation of
resistance for T < 30mK.
By applying a magnetic field to sample NbSi-M we find a positive magnetoresistance up
to B = 3T, above which the resistance saturates. The increase of resistance at the lowest
temperatures is about ∼25%. The R(T ) curves follow activated behaviour with activation
energies increasing from EA/kB ∼ 0.075K to EA/kB ∼ 0.15K. The saturation resistance
RQF follows approximately the same curvature as the R(B) at the lowest temperature
T = 10mK.

We see a transition from a superconducting state to a metallic state with a low tem-
perature saturation in NbSi-S, where the saturation resistance increases continuously
with increasing perpendicular magnetic field. At B = 400mT, the maximum applied
magnetic field, the resistance is approximately constant down to the lowest temperatures.
Higher magnetic fields than our maximum have to be applied to distinguish between a
persisting metallic state with a magnetic field independent resistance or a possible B-SIT
leading to an insulating state. In case of a magnetic field driven SIT the transition from
the superconducting state to the failed superconducting state is explained with phase
fluctuations (see Ref. [124] for fermionic scenario in NbSi and Ref. [129] for bosonic
scenario in granular In/InOx).
The origin of the failed insulating phase, as seen in sample NbSi-M, is still debated
whether it arises from a fermionic groundstate or a bosonic one.
In a fermionic scenario the insulating behaviour of sample with RN > RQ is attributed to
localized electrons as superconductivity is not present. The low temperature saturation
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following this model is still an open issue.
In case of a bosonic scenario, the insulating behaviour is attributed to localized Cooper
pairs on either physical grains (grAl, In-InOx) or on electronical, self-induced grains
(TiN). Ref. [129] gives an explanation for the low temperature saturation on the insulating
side, which bases on the duality of charge and phase. The Cooper pairs are localized
and quantum fluctuations of charge, which generate a temperature independent finite
conductivity, limit the increase of resistance to a finite value at the lowest temperatures.
The magnetic field dependence of the R(T )s in the insulating phase observed in NbSi-M
as well as the persisting low temperature saturation up to the highest magnetic field
applied, B = 7T, indicate that the groundstate of the failed insulating phase may be of
bosonic nature.
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7. Summary
This thesis presents measurements on ultra-thin granular aluminum films. The findings
are compared to periodic JJAs and measurements on other granular thin films. We find
agreements as well as surprising effects. This is also valid for niobium-silicon. The field
of granular and electronically disordered superconductors, especially with focus on the
magnetic field driven SIT, is an interesting field for future research.

The focus has been set on the low temperature transport properties of ultra-thin gran-
ular aluminum films (d < 10nm). We have measured current voltage characteristics
for perpendicular and parallel magnetic fields at different temperatures (T < 4K) and
extracted the corresponding zero bias resistances R□.

For pre-characterization scanning electron and atomic force microscopy was used. The
film morphology dramatically differs from that of thicker films (d ∼40-100nm) [170,
171]. As our films have been grown using the same growth process as for the thicker 3D
films [5, 164], we surprisingly find a broader distribution of grain sizes (∼1nm - ∼100nm)
compared to 3D films with 2-3nm. That indicates that the film thickness has an impact
on film morphology. It would be an interesting study to investigate the evolution of the
morphology with film thickness for the growth process used for granular aluminum. A
change in morphology from granular to homogenous films has been found by Jaeger et al.
[10] with film thickness. However, they used a different growth process.

We measured two samples with different normal state sheet resistances RN(T = 4K). One
sample has a RN = 7.75kΩ, i.e. above RQ = 6.45 kΩ, (Sample I) and the other a RN =
3kΩ, i.e. below RQ = 6.45 kΩ, (Sample S). In ultra-thin granular [10] and homogenous
films [63], as well as in artificial, periodic JJAs [80, 81], a normal state RN value in
the vicinity of RQ determines the low temperature dependence. The normal state sheet
resistance of our samples has been tuned to values RN ∼ RQ.
Due to the granular nature, our films consist of superconducting grains below Tc, which
are coupled by Josephson junctions in a random array. For periodic JJAs theory as well
as experimental results are available and can be compared to our findings.

At the lowest temperatures and zero magnetic field, we find that sample I (RN >
RQ) behaves insulating (for T < 1K) and sample S (RN < RQ) (for T < 0.3K) exhibits
a transition to a zero resistive state. This is consistent with the theory of a disorder
induced superconductor to insulator transition (d-SIT).
However, for temperatures 0.3K < T < 1.9K both samples deviate from either insulating
behaviour or from a zero resistive state. Sample I exhibits a reentrant feature, a local
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minimum in resistance, at a temperature T < Tc. Similar behaviour has been found in
various granular thin films. The reentrance can be attributed to the competition of the
charging energy EC, the Josephson energy EJ and the thermal energy kBT .
Sample S does not show a vanishing resistance in the temperature range 0.3K < T <
1.9K, smaller than Tc, but two temperature independent plateaus, meaning the sum of
the effects of EC, EJ and kBT has to be constant. As the temperature continuously
decreases it is unexpected that the effects of EC and EJ exactly compensate the decreasing
kBT over such a large temperature range. A further investigation of the plateaus in
dependence of e.g. sheet resistance or gate voltage could reveal more details on their origin.

By examining the current voltage characteristics (B = 0T) of sample I, we find a
threshold voltage marking the onset of current flow. In insulating periodic JJAs [80]
this is attributed to the injection of Cooper pair solitons. Nevertheless, we see a finite
differential resistance in the zero bias regime, whereas in insulating periodic JJAs with
RN ≫ RQ such a behaviour in the zero bias limit has not been observed.
Sample S shows a threshold voltage with a similar value as sample I, which indicates
insulating behaviour. However, in the zero bias limit, we find a small temperature
dependent supercurrent with Ic ∼100pA at the lowest temperature.
Therefore we see insulating and superconducting effects in both samples, but with differ-
ent distinctness. That can be attributed to the vicinity to the d-SIT (RN ∼ RQ).
In sample S at T = 15mK we find a sharp jump in the IV curve from the supercurrent
branch to the higher branch with finite voltage by exceeding the critical current. For
granular, inhomogenous films with a very broad distribution in grain sizes and sepa-
rations we would expect a smeared out, broad transition due to the different critical
currents of each individual junction. The origin for the sharp jump, as a signature of a
single junction, may be explained by e.g. a collective jump of all junctions in the array
or the breakdown of a junction in a percolation path. To distinguish the origin theo-
retical models have to be discussed followed by appropriate high resolution measurements.

By applying a perpendicular magnetic field (R(T )s for different Bs) to sample S
we find a transition from the superconducting state to an insulating state (B-SIT). We
examined the temperature dependence of the zero bias resistance for a set of magnetic
fields in both samples. In a temperature interval 200mK < T < 500mK the curves can
be modelled by activated behaviour. The extracted activation energy EA(B) is separated
into a low magnetic field range dominated by Cooper pair solitons and a high magnetic
field range dominated by single electron solitons. Such a crossover has also been found in
insulating JJAs with superconducting electrodes [80] and supports a bosonic scenario for
the B-SIT. The activated behaviour leads to high resistances R□ > 100MΩ at intermediate
magnetic fields B ∼ 2T and is caused by the suppression of the Josephson coupling
between the superconducting grains. The magnetic field dependence of the threshold
voltage follows the same trend as seen in insulating JJAs. With increasing magnetic field
VT,S increases to a maximum and then decreases to a magnetic field independent value
VT,N associated with the Coulomb blockade for single electron solitons only.
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In parallel magnetic field orientation the shape of the IV curves does not change with
increasing B|| and are comparable to the B = 0T curve. However, the zero bias resistance
slightly varies with temperature and magnetic field (R(T )s for different Bs). We do
not find highly resistive states up to B|| = 2.5T. The maximum measured resistance
in parallel configuration is R□ ∼4kΩ. This is in the same order of magnitude as the
normal state sheet resistance at 4K of RN = 3kΩ and by several orders smaller than the
maximum measured resistance in perpendicular configuration (R□ > 100MΩ). Therefore
we conclude that by applying a parallel magnetic field there is no or almost no decoupling
of the superconducting grains. The measured effects (dome-like R(T ), increase/decrease
of R with B) in the R(T ) by an applied parallel magnetic field might be explained by
a small residual perpendicular magnetic field due to insufficient compensation (offset
by misalignment) or due to tolerances in the compensation curves for different parallel
magnetic fields. A clarification may be achieved by a more detailed (decreasing stepsizes
of measured temperatures and magnetic fields as well as increasing the absolute value of
the magnetic field) and precise (better alignment and compensation) measurement.

To get a deeper insight in the fine structure of the R(B⊥) curve, we reduced the stepsize
of the magnetic field down to ∼7mT in sample S and ∼25mT in sample I. The magnetic
field dependence R(B⊥) reveals oscillations.
In periodic Josephson junction arrays such oscillations are connected to the existence of
equally large normal conducting areas, enclosed by superconducting electrodes coupled
by Josephson junctions. Magnetic flux penetrates the normal area, which determines the
oscillation period. Therefore in periodic JJAs oscillations in the R(B) are expected.
In our granular and inhomogenous system, there is a broad distribution in the size
of the normal areas. Therefore we expect a very broad distribution in the oscillation
periods. Oscillations with a fixed, single valued period should not be observable in our
granular system. In addition, the SEM and AFM pictures do not reveal any signs of
holes (macroscopic voids in the film structure) in our films. To understand our surprising
result further experiments and a theoretical model is necessary.

At low temperatures we find that our R(T ) curves deviate from activated behaviour. In
the vicinity of the B-SIT, on the insulating side, the resistance saturates at R > RQ.
This can be attributed to an anomalous metallic state (AMS). Our findings are in
agreement with a study on granular In-InOx composites [129] and the proposed phase
diagramm for granular superconductors. With increasing magnetic field we observe a
transition from the superconducting state to the failed insulating state of an anomalous
metallic state. A possible failed superconductor has not been seen. This can be attributed
to the magnetic field stepsize in our experiment. Further increasing the magnetic field
leads to a broad crossover from the anomalous metallic state to a Bose-insulating state.
To verify the existence of a proposed failed superconductor on the superconducting
side and a failed insulator on the insulating side of the B-SIT in ultra-thin granular
aluminum, a further experiment should focus on the temperature dependence of the zero
bias resistance close to the magnetic field driven SIT.
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7. Summary

The evaluation of the differential resistance at voltages far above the zero bias limit
(V ≫ VT) shows that for B = 0T the resistance saturates for T < 1.8K at a temperature
independent value Rmin ∼ 750Ω. With increasing magnetic field (B > 1.5T) the resistance
continuously increases from that minimum to a value slightly above the normal state
sheet resistance RN at B = 3.5T. This is drastically different to the very high sheet
resistances found in the zero bias limit for the same temperatures and magnetic fields.
The high applied voltage induces a current higher than the critical current of the individ-
ual Josephson junctions, but smaller than the critical current for the superconducting
state on the grains. This leads to a regime, where the charge transport is conducted
by Cooper pair solitons as well as single electron solitons. While Cooper pair solitons
carry charge without resistance, single electron solitons generate a finite resistance. The
ratio of Cooper pair solitons and single electron solitons is shifted towards the latter with
increasing magnetic field. This leads to an increase of resistance until superconductivity
is destroyed and the normal conducting state is reached.
The R(T ) and R(B) curves of our 2D film reveal strong similarities with resistance
measurements in the zero bias limit in 3D granular films.

In addition, we investigated two samples of niobium-silicon thin films. One sample
(NbSI-S) shows a transition to a state with zero resistance and the other (NbSi-M) shows
insulating behaviour with a low temperature saturation.
With increasing magnetic field NbSi-S can be tuned continuously from the zero resistive
state to a metallic phase. For magnetic fields, 50mT < B < 350mT, the resistance
decreases with decreasing temperature and saturates at values below RN at low temper-
atures. This can be attributed to a failed superconductor arising by superconducting
fluctuations. This is agreement with a fermionic as well as a bosonic scenario for a
possible SIT. For B > 350mT the resistance is approximately constant with decreasing
temperature. To distinguish betweeen a persisting metallic state or a possibly started
B-SIT, leading to an insulating state, magnetic fields higher than our maximum of B =
400mT have to be applied.
Sample NbSi-M is in a failed insulating state without magnetic field with a low temper-
ature saturation value R□ ∼12kΩ > RQ. By applying up to B = 7T the shape of the
R(T ) curves does not change. However, we observe a magnetoresistance of ∼25% and
an increase of the activation energy by a factor of 2. While the fermionic scenario does
not give an explanation for the low temperature saturation in the R(T ), in case of a
bosonic scenario, connected to an anomalous metallic state in the vicinity of the B-SIT,
the low temperature saturation is explained by quantum fluctuations of charge. For a
B-SIT with a bosonic groundstate, one would expect a positive magnetoresistance at
low field (localization of Cooper pairs) and a negative one at high fields (breaking up of
Cooper pairs for B > Bc). We find a positive magnetoresistance up to 3T, followed by a
possible high magnetic field saturation of resistance. To distinguish between a persisting
magnetic field independence (fermionic case) or a negative magnetoresistance (bosonic
case) measurements at higher magnetic fields than our maximum of B = 7T are necessary.
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In a nutshell, the morphology of our ultra-thin (2D) granular aluminum films dramatically
differs from the morphology of thicker films (3D). In case of zero magnetic field our
findings are consistent with the theory of a disorder induced SIT. By applying a small
perpendicular magnetic field to sample S a SIT is induced, which is followed by a high
resistive state. The high resistive state vanishes once the magnetic field exceeds the
critical magnetic field Bc. The transport properties (R(T) and R(B)) show similarities
to inhomogenous ultra-thin films (complex R(T), reentrant behaviour and an anomalous
metallic state), to homogenous disordered films, e.g. TiN, (R(B)-magnetoresistance) as
well as to periodic insulating Josephson junction arrays (oscillating component in the
magnetoresistance and the activated temperature dependence of the resistance). Those
findings are a strong indication for the bosonic nature of the magnetic field driven SIT in
ultra-thin granular aluminum.
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A. Appendix

A.1. Building Process for Ag-Epoxy Filters
The Ag-epoxy filters are home made following the ideas of Ref. [153] and show high
frequency damping combined with very good thermal properties. See section 3.1 for
details.

The filters are made out of a silver epoxy (EpoTeK E4110) rod around which an insulated
copper wire is wound. The electrical conductivity of the epoxy is σAg-epoxy ≥ 2 · 105 S/m.
The wire is made of 100µm copper and a 8µm polyurethan layer. The conductivities are
σCu = 5.95 · 107 S/m and σPu < 9.3 · 10−14 S/m. The dielectric constant of polyurethan
is ϵins ≈ 4.6. [154]

complete mold
(both parts combined 
with screws) 

empty 
volume 

filled with 
Ag-epoxy 

half mold (with 16 
empty cylindrical
volumes) 

cured Ag-epoxy rods

rod:
D = 6 mm
L = 38 mm

processed Ag-epoxy rod 

sketch

image 

chambers 1-4 cut out slits for 
wire feedthrough

L = 26 mm 

D = 4 mm 

Figure A.1.: Ag-epoxy rod: a) mold in different states of casting. b) processed rod prepared for
winding. Figures adapted from [155].

The first step is to fabricate the silver epoxy rods. Therefore a cylindrical mold was used.
The liquid Ag-epoxy was filled into the mold, then shaken heavily for approx. 15 minutes
to ensure there are no air bubbles encapsulated. After that the Ag-epoxy has to dry for
3-7 days at room temperature or 3 hours at a 80 degree celsius hot plate. Once cured the
chambers are routed by the mechanical workshop using the design shown in Fig. A.1b).
The chambers with length 3mm are separated by 0.3mm discs. The disc in the middle is
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slightly wider than the other two as it has to hold the filter in the filter box.
Each barrier separating two chambers has a slit cut into it serving as a feedtrough for
the wire and as a fixation while switching winding direction. The winding direction was
changed for each chamber so the generated magnetic fields by the current passing through
the coil-like wire is minimized. The slit was carfully carved by hand using a scalpel.
The winding of the filters was carried out together with M. Simmel and K. Lehar in the
electronics workshop.

hot-
plate

hotplate

wet
filters

winding 
machine

processed
epoxy rod

set of wooden
instruments

a) b) 

Figure A.2.: a) Image of a processed epoxy rod placed into the winding machine. We used wooden
intruments only to guide the wire while the machine is rotating. Wooden instruments
reduce the probability of damaging the wire insulation. b) After the winding process,
the wet filters are heated up to 80 degree celsius on a hotplate until they are dry.
We used a thick paper to prevent the hotplate from being in direct contact with the
wet Ag-epoxy. Figures adapted from [155].

The rod is placed into a winding machine by RUFF GmbH. A length of approx. 4m of
wire is used. Each chamber consists of 5 layers of 21 windings. The segmentation reduces
impact of stray capacitances. To ensure good electrical and thermal contact the rod and
the wire are constantly covered with liquid Ag-epoxy while winding. After another 3 hours
of curing at 80 degree the filters finally can be tested for their electrical properties, e.g.
resistance of the copper, shorts between inner conductor and "outer"/Ag-epoxy-conductor
and the high frequency damping. The DC resistance of the filter is approx. 10-12Ω.
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A.1. Building Process for Ag-Epoxy Filters

To check the high frequency damping, one filter was tested in a electrically shielded
environment (closed metal box). To further improve the filtering properties different
options were tested that could be used for low temperature purpose. The tests included
Ag-epoxy sealing of the metallic interlayer, sealing the lid of the box and filling Eccosorb
(high frequency damping material) into the output volume, which can be seen in Fig. 3.5.
For all tests the output side was closed with a metallic lid.

a) b) c)

metal test box SMA connector

Ag-epoxy filter separation wall

copper wire with 
polyurethan 
insulation

Output side filled 
with Eccosorb

Ag-epoxy 
sealing

Out

In In

Input side

Figure A.3.: Ag-epoxy filter test box: a) Filter with Ag-Epoxy sealed metallic interlayer. b) Filter
with Ag-Epoxy sealed metallic interlayer and Eccosorb filled into output side. c)
side view of b), where the Ag-Epoxy sealing is better visible.

The filter was then characterized by measuring the transmission coefficient S21 with a
Vector Network Analyzer by Rohde und Schwartz. The damping behaviour can be seen
in Fig. 3.5b) in Sec. 3.1. Test I corresponds to a closed box as seen in a). Test II
corresponds to a closed box as seen in b) and in test III the lid was sealed in the same
form as seen in c) for the slits between box and separation wall.
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A.2. Shielded Measurement Environment for mK-Purpose
As the filters were supposed to be located at the lowest temperature stage inside a
He3/He4-dilution refrigerator, the design of the electrically shielded volume had to take
into account very good thermal coupling in addition to very good electrical coupling of
the outer conductor to ground. This reduces relaxation times after temperature changes,
but also stops the incoming heat from higher temperature stages to reach measurement
volume.

To achieve those requirements we used the design as for the testbox. A sketch can be
seen in Fig. 3.6.
A brass plate separates the volume into an input side and an output side and provides
holes, where the filters are located. The filters are designed in such a way, that one-half
is in the input-side and the other is in the output side, sitting on the brass-plate by its
middle ring with a diameter larger than the diameter of the hole. To fix the position
of the filters we covered them with silver epoxy (see Tab. A.3) on both sides. This
also secures very good thermal coupling of the outer conductor to the brass plate. To
hermetically seal the output side the slits between the brass plate and the brass box
were also covered with silver epoxy, further improving thermal coupling. The top part of
the box is then in contact with the mixing chamber plate using screws for pressure. To
further reduce high frequency noise, the output side is filled with Eccosorb (see Tab. A.3).

This idea was used in two different filter boxes. One was designed for calibration of
low-temperature resistance thermometers right at the mixing chamber, the other for
continuously filtering the measurement/thermometry lines reaching down into sample
space with homogenous magnetic field.

Box 1: Thermometer Calibration

This box is designed to be in good thermal contact with the mixing chamber plate. It
is screwed to it from the bottom and is electrically shielded using brass overlappings.
The images can be seen in Fig. A.4. The box contains 5 Ag-epoxy filters going through
a brass plate from input (unfiltered) to output (filtered) side. The input is connected
with a Micro-D connector (see Tab. A.3) to which the filters are soldered to. From
this dead space the lines enter the real input volume through a small hole. To provide
the insulation to be scratched a heat shrink tubing was placed in the hole. The slits
connecting the input/output are covered with silver epoxy. The output side has a 5mm
thick layer of Eccosorb further increasing the high frequency damping, strip lines to solder
leads of a resistance thermometer onto as well as a metal cube with a thread. The metal
cube’s purpose is two-fold: first it acts as a fixation point for the thermometer, secondly
it increases the thermalisation of the thermometer to the surrounding temperature.
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A.2. Shielded Measurement Environment for mK-Purpose

b)

c)

a)
Input Output

finished and 
closed box

screws through mixing 
chamber plate

fixation point for 
thermometer

electrical connection 
to thermometer

Micro-D
connector 

Figure A.4.: Thermometer Calibration box: a) Input including Micro-D connector to dead space,
feedthrough with heat sink tubing to input space and filters glued into brass plate
with Ag-epoxy. b) Output including other half of filters covered with Eccosorb.
Striplines on the inner side of the box, denoted as electrical connection, are used
to solder the four leads of the thermometer to the insert wiring. The thermometer
(usually a small SMD encapsulated in Stycast inside a silver foil) is fixed by a screw
to a brass square, which is in good thermal contact to the box and the mixing
chamber. c) Finished, closed box.

A thick brass projection is added. It has 3 threads and can be used as optional positions
for thermalization of other/future parts. Another possibility is to add a calibrated
thermometer to check the real temperature of the box and hence of the thermometer to
be calibrated.
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Box 2: Filtering Measurement and Thermometry Lines

As presented in section 3.1 to match the requirements for filtered lines, which extend a
shielded environment down to the sample space, the metal filterbox located at the mixing
chamber is connected to the sample space, located at the bottom of the coldfinger, with
shielded CuNi cables (see Tab. A.3). This section will first cover the implementation of
the filters into the filterbox. The second part focuses on the coldfinger buildt to contain
sample space in the central magnetic field of the Oxford Instruments dewar and the
cabling connecting filterbox with sample space.

The idea of the filterbox follows the one of the calibration box shown above, where the
two volumes (input and output) are separated by a metal layer including holes for the
filters. The signal therefore has to go through the filters rather than bypassing them. To
minimize bypassing the slits are covered with electrical conducting Ag-epoxy and the
output side is partly-filled with Eccosorb (see sketch in Fig. 3.6).

Input

Micro-D 
connector 
(input)

feedthrough

dead space

Ag-epoxy covera) b)
insulated copper 
wires

brass filter box

brass cap

loose copper 
wires (unfinshed 
output)

feedthrough for 
shielded coax 
on output

Figure A.5.: Input of Ag-Epoxy filterbox: a) The measurement lines are connected to the filter
box with a Micro-D connection. The connector reaches into a dead space, where the
insulated copper wires of the filters are soldered to the rear side. The feedthorugh is
done with a heat shrink tubing. b) shows the box in a state, where the input was
finished and closed, but the output side remained to be dealt with.
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A.2. Shielded Measurement Environment for mK-Purpose

The unfiltered input side can be seen in Fig. 3.6. A zoom can be seen in Fig. A.5a). This
box is bigger than the box designed for thermometer calibration and contains 31 filters,
where each of the filters is glued with Ag-epoxy separately. The Ag-epoxy covering on
the edges of the box can be seen as well. As the Micro-D connector has 25 pins only, 6
filters are used as reserve in case one filter has a short to ground or does not work as
intended. The free lines of the reserves were wound up and can be see best in Fig. A.5a),
while b) shows the closed input side.

Output

The output side resembles a mirror of the input, but with an addition of a thick Eccosorb
layer completely covering the Ag-epoxy filters. Fig. A.6a) shows the output side after
the Eccosorb is hardened. The wires from the filters are soldered to strip lines on small
PCB boards. The strip lines were glued using a drop of Eccosorb in a way that the lines
are in a parallel configuration to the output feedthroughs. The inner conductors are very
weak and might break easily. The final connection can be seen in Fig. A.6b).

Eccosorb

feedthroughs for
shielded coax

2 PCBs for 
Measurements

1 PCBs for 
Thermometry

a) b)

PCB 
to filters

PCB
to sample

PCB with
gold-plated
copper striplines

CuNi coaxial cables 
to sample

critical region:
exposed, 
fragile inner 
conductor 

feedthrough cylindrical 
body consists of 8 
individual feedtroughs 

Figure A.6.: Output side of Ag-epoxy filter box: a) Unconnected output wiring ending with solder
connections on PCBs located on the hardened Eccosorb. b) A zoom shows how the
connection between filter side (insulated coper wire) and sample side (shielded CuNi
coaxial cable) via striplines is achieved. Special care has to be taken by soldering the
fragile inner conductor of the coaxial cable to the stripline (red square). Bending,
pushing or pulling on the coaxial cable rapidly leads to a disruption of the inner
conductor.
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Coldfinger and shielded sample space

As seen in Fig. A.6 the output side of the filterbox directly leads into shielded cables
(soldered, slits in box covered with Ag-epoxy). The connection of the filterbox and the
samples space in a distance of approx. 30cm was achieved by designing a coldfinger with
a high thermal conductivity. At its end a metal cyclinder defines the shielded sample
volume. The coaxial cables are fed through the top part of the metal cylinder using the
same cylindrical feedthrough body as seen in Fig. A.6. As thermometry and measurement
lines need to reach into sample space, the body has 25 individual feedthroughs. The
Ag-epoxy filter box and the coldfinger (including the shielded lines) were produced in
parallel. In the last step both were connected by soldering the ends of the coaxial cable
onto the striplines in the output side of the filterbox.

a) b) c)
silver top part

stainless steel

brass

silver + 
stainless steel
strips screwed 
together

Holder for 
PCB and 
Micro-D

Silver
strip

Stainless steel 
strip

Sample
Volume

Cut out for better access 
to inner part of cyclinder
prior to the next steps  

Figure A.7.: Coldfinger: a) Top view and b) side view. Some parts originally designed to be made
out of stainless steel have been replaced by silver parts to further increase thermal
contact between sample volume and mixing chamber. c) Bottom part of coldfinger,
where the connection between silver/stainless steel parts and brass cylinder can be
seen. The big threat is used to close the sample volume with a brass can.
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A.2. Shielded Measurement Environment for mK-Purpose

In Fig. A.7 the raw coldfinger can be seen. The materials chosen are silver for its
good thermal conductance, stainless steel for its stiffness and brass for its good thermal
conductance, but higher resistivity than silver. The idea was to reduce effects of currents
induced by the external magnetic field. To further decrease heating effects by induced
currents we cut out a quarter of the bottom part as indicated in Fig. A.7c).
The top end of the coldfinger is a pure silver plate, which is screwed directly to the bottom
of the mixing chamber plate. Three sets of strips connect the top part with the bottom
part. The first design consisted of one main strip being thicker than the other two and
made out of pure stainless steel to act as stabilization. The other two were a combination
of a silver strip and a stainless steel strip. To further increase thermal contact high purity
copper braids were added. For the final setup all three metal connections were replaced
by thicker pure silver only ones. In addition, the design of the brass bottom part was
reshaped. The mass was reduced and the previously closed bottom loop was opened on
one side. This was done to further reduce thermalization times and minimize currents
due to magnet field changed, as well as gaining easier access to the sample space. The

metal test box

a)b)

1.27

0
.3
0

1.
48

a)

c)Solder connection to 
Micro-D connector

Solder connection to 
coaxial cables

b)

Figure A.8.: Coldfinger - printed circuit board: a) Design including scales in mm. b) Front side
and c) back side. The walls of the holes for the soldering of the inner conductor of
the coaxial cables are covered with metal. The inner conductors were fed through
from the top to the back. Soldering happened on the backside.

inner conductor of the shielded lines are soldered to a printed circuit board (PCB) inside
the sample space. The PCB-board was designed by Dieter Riedl (electronics workshop)
and manufactured by Fischer Leiterplatten GmbH. The board consisted of strips lines
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connecting soldering feedtroughs for the incoming measurement lines on the one side and
soldering cups for a micro-D connector. The design of the PCB can be seen in Fig. A.8.
After all lines were soldered into the PCB we covered a small volume with Stycast to
prevent the fragile inner conductor from being damaged or disrupted.
Fig. A.9 covers the most important steps for the coldfinger. At first the cables were fed
through the brass feedtroughs. To keep them parallel distance keeper were used as seen
in a). Secondly, they were soldered into the soldering-feedthroughs of the PCB board in
b). To ensure the soldering connections to be stable and to minimize the risk for the

a)

c)

b)
Feedthrough Distance keepers

Distance keepersAuxiliary metal 
stabilizers

PCB with solder 
connections to 
coaxial cables and 
Micro-D connector

Critical region:
Volume with Sycast
protects fragile inner
conductor

Figure A.9.: Distance keepers not only keep the cables alinged in parallel configuration, it prevents
them from rotation as well. The auxiliary metal stabilizers are important to have a
fixed geometry while soldering into the PCB. They are removed after the Stycast is
cured. The PCB is carefully pushed up to its final position.

inner conductor of the cable to break, a cyclindrical volume was filled with Stycast (see
Tab. A.1). This can be seen in c). The material used is electrically non-conducting (no
short between inner conductor and cold ground), but thermally conducting (heat can
be transferred away). Then the metal stabilizers were removed and the PCB-board was
pushed up to its final position. The last step connects the finished filterbox to the open
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A.3. Metal Mask for Shadow Evaporation

ends of the shielded measurement lines. This connection can be seen in Fig. A.6b). The
bottom part of the insert in its final version can be seen in Fig 3.7.

A.3. Metal Mask for Shadow Evaporation
The shadow mask was designed to evaporate granular aluminum into a predefined struc-
ture (Hallbar like) under a small angle. Due to problems with bonding/contacting the
material the goal was to increase the number of working contacts while decreasing the
contact resistances. To do so, the idea was to grow gold contact pads in Step 1 and then
cover those with granular aluminum in Step 2. Ideally, one would first grow the granular
aluminum film and then put contacts on top. An in situ growth of gold onto the grAl
was not possible in Tel Aviv. The sample has to be taken out of the growth chamber
exposing it to air as it it transported to a second chamber. The surface immediately
starts to oxidize resulting in an oxide tunneling barrier between the gold-contacts and
the grAl.
The work-around is to first make gold contact and then evaporate the grAl. However, as
the gold contacts should be 10nm or more (for wedge bonding) their thickness exceeded
the thickness of the film (5nm), probabably leaving behind a gap at the edges. To have a
continuous film which covers the contact pad across the edge the growth is done under a
small angle of approx. 1 degree.
In Fig. A.10 the four different main components are shown, i.e. a) chip holder, b) wedge,
c) mask 1 for gold contact pads and d) mask 2 for granular aluminum hallbars on top of
gold contacts.
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Figure A.10.: All four components are 16mm in length and width. a) Chip holder (aluminum)
with 4 sample spaces with 5mm in length and width. b) Wedge (aluminum) with
increasing thickness starting from 0.9mm to 1.4mm indicated by the blue arrow.
The corresponding angle is 1.79°. c) Mask 1 (brass) with 4 sets structure. Each
structures consists of two rows with 6 squares. The squares have a length and
width of 0.5mm. The width of outermost squares is only 0.4mm. The squares are
separated by 0.3mm. d) Mask 2 (brass) for hallbars. The additional structures, in
reference to mask 1, which connects the contact pads/area, has a designed width of
0.2mm. The width increased to ∼ 0.25-0.3mm in the manufacturing process.
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The chip holder contains four sample spaces. Therefore up to 4 samples may be grown in
the same run. The wegde defines the tilt of the substrate. The top side is slightly thicker
than the lower side, i.e. thickness d increases (see Fig. A.10). It defines an angle of 1.79°.
Mask 1 is the shadow mask for step 1 defining the gold contacts, while mask 2 is used to
put the Hallbar geometry in Step 2.

Fig. A.11a) and b) shows the components combined for Step 1 (Sample Holder + Mask
1), while c) and d) show Step 2 (Wedge, Sample Holder + Mask 2).

b)

d)

a)

c)

Mask 1 Holder

Mask 1 Holder
Wedge

Contact Pads

Hallbars

Figure A.11.: Combination of the components for Step 1 (contact pads) shown as a top view in
a) and side view in b). The combination for Step 2 (Hallbar-like structure) for
deposition of the granular aluminum film is presented in c) and d).
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A.4. Add-on to Section 5.2.3: Compensation of Residual
Perpendicular Magnetic Field in Parallel Magnetic Field
Configuration

For the parallel magnetic field configuration it is important to compensate a perpendicular
magnetic field (Z-axis), which is generated by a slight tilt of the sample in respect to the
X-axis of the 2D vector magnet. The response of the sample to an applied perpedicular
magnetic field has been shown in section 5.2. Even small perpendicular fields in the
range of tens of mT do have a dramatic effect.

The used approach is to set the BX field of the 2D vector magnet to a fixed value and
sweep the BZ magnetic field component to find a minimum in R(BZ). That BZ,min,
denoted as compensation field, is exactly the magnetic field needed to cancel out the
residual Bperp generated by the tilt of the sample in the X-Y plane.

All of the presented measurements with parallel magnetic fields in section 5.2.3 have
been compensated using this method.

The impact of an uncompensated residual perpendicular magnetic field can be seen in
Fig. A.12 in the temperature evolution of the current voltage characteristics. Fig. A.13
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Figure A.12.: B∥ = 0.5T: a) Set of uncompensated IVs(T ). b) Set of compensated IVs(T ). The
temperature ranges from T = 712mK down to T = 64mK in a) and from T =
712mK down to T = 15mK in b). The Coulomb blockade with threshold voltage is
seen in both measurements. However, the zero bias supercurrent feature is only
present in b), when using the compensation method.

presents the measurements at BX = 500mT at T = 87mK in a uncompensated a) and
compensated b) configuration and indicates the suppression of the zero bias anomaly
with residual perpendicular magnetc field. The compensated data is similar to the B =
0T curve.
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A.4. Add-on to Section 5.2.3: Compensation of Residual Perpendicular Magnetic Field in Parallel Magnetic Field Configuration
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Figure A.13.: B∥ = 0.5T: a) Comparison of compensated and uncompensated IVs at T = 87mK.
The black curve is the uncompensated measurement and the red curve is the
compensated measurement. The deviation around zero bias is visible. In addition,
the uncompensated perpendicular field shifted the threshold voltage to higher values.
b) Compensation field BComp along the Z-axis for parallel magentic fields. The
red curve is a linear fit to the data. The slope is used to calculate the angle α
corresponding to the tilt of the sample in respect to the X-Y plane.

The corresponding tilt of the sample plane compared to the X-Y plane can be cal-
culated by evaluating the slope of compensation fields in respect to the applied BX
fields. The BZ values to find a minimum were 75mT for 0.5T, 159mT for 1T, 238mT
for 1.5T, 319mT for 2T and 397mT for 2.5T. This is shown in Fig. A.13b), where the
data is fitted to a linear slope. The tilt of the sample in the X-Y-plane is given by
α = tan−1(slope) = tan−1(0.15977143) ≈ 9°.
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A. Appendix

A.5. Devices and Materials

Name Company Description

Kelvinox HA 400 Oxford Instruments dilution refrigerator and su-
perconducting magnet system

Model 372 Lake Shore Cryotronics, Inc. AC-resistance bridge and tem-
perature controller

Model 3726 Lake Shore Cryotronics, Inc. scanner

low-loss dewar including 2-
axes magnet Oxford Instruments superconducting magnet (Z -

7T, X - 3T)

Mercury IPM Oxford Instruments magnet powersupply

Mercury IPS Oxford Instruments magnet powersupply

model Gr-200A-20-0,05A Lake Shore Cryotronics, Inc. calibrated germanium resis-
tor, thermometry

model RX-102B-RS Lake Shore Cryotronics, Inc.

initially uncalibrated RuOx
resistor, calibrated against
calibrated germanium ther-
mometer and Magnicon
MFFT

MFFT noise thermometer Magnicon GmbH SQUID thermometer

Table A.1.: Devices for the low temperature system and thermometry.
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A.5. Devices and Materials

Name Company Description

GS200 Yokogawa Test and Measure-
ment Corporation DC voltage/current source

3458A Agilent Technologies, Inc. 8 1/2 digit multimeter

SR830 DSP Stanford Research Systems lock-in amplifier

DDPCA-S FEMTO Messtechnik GmbH current-to-voltage transducer

DLPVA FEMTO Messtechnik GmbH voltage amplifier

SEM Auriga Carl Zeiss GmbH scanning clectron microscope

AFM Park Park Systems atomic force microscope

Table A.2.: Devices used for measurement setups and sample characterization.
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A. Appendix

Name Company Description

EPO-TEK E4110 Epoxy Technology electrically conductive silver
epoxy

Eccosorb CRS 117 Laird / Emerson and Cuming high-loss material for mi-
crowave frequency range

STYCAST 2850FT Henkel Loctite / Emerson
and Cuming

thermally conductive, electri-
cally insulative epoxy

LW-30 Ruff GmbH winding machine

Lackdraht 0.1 200GR -
CUL200/0.1 Bürklin/Distrelec copper wire with PU-

insulation

A2427 GVL Cryoengeneering

semi-rigid coaxial cable,
cupronnickel inner and outer
conductor, PTFE insulation,
low noise

25-MDM CINCH / Oxford Instruments 25-way Micro-D connector

copper clamps, gold-plated Mechanical Workshop, Elec-
tronical Workshop

thermalization of Magnicon
cabling

copper anchors, gold-plated Mechanical Workshop, Elec-
tronical Workshop

forms: cylindrical including
threads or 90 degree angle;
fixation points for copper-
braids and RC-filters

copper braids, gold-plated Electronical Workshop purpose: thermal shortcut

Table A.3.: Devices and materials used for filtering and thermalization.
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A.5. Devices and Materials

Name Company Description

Mouser Electronics-Nr.: 71-
TNPW0805820RBEEA Vishay

820Ω resistance, TNPW thin-
film, 0805-inch for surface
mounting

Mouser Electronics-Nr.: 71-
TNPW08051K20BEEA Vishay

1.2kΩ resistance, TNPW
thin-film, 0805-inch for sur-
face mounting

Mouser Electronics-Nr.: 81-
GRM21BC1H183FA1L Murata

9.1nF capacitor, GRM-series,
layered ceramics, 0603-inch
for surface mounting

Mouser Electronics-Nr.: 81-
GRM1885C1H912JA1D Murata

18nF capacitor, GRM-series,
layered ceramics, 0805-inch
for surface mounting

Mouser Electronics-Nr.: 800-
420153LF Tusonix EMI-Pi-filters, 5500pF, feed

through

Table A.4.: Devices for RC-filtering and Pi-filtering.
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