W) Check for updates

Received: 30 September 2021 Accepted: 25 November 2022

DOI: 10.1112/jlms.12712

Journal of the London
RESEARCH ARTICLE Mathematical Society

Fractional-order operators on nonsmooth
domains

Helmut Abels’ | Gerd Grubb?

IFakultit fiir Mathematik, Universitit

Regensburg, Regensburg, Germany Abstract

2Department of Mathematical Sciences, The fractional Laplacian (—A)a, ae (0, 1), and its gen-
Copenhagen University, Copenhagen, eralizations to variable-coefficient 2a-order pseudodif-
Denmark

Email: grubb@math ku.dk ferential operators P, are studied in L,-Sobolev spaces

of Bessel-potential type HCSI. For a bounded open set

Correspondence Q C R", consider the homogeneous Dirichlet problem:
Helmut Abels, Fakultit fiir Mathematik, . . " . .

Universitiit Regensburg, 93040 Pu=fin Q, u =0 in R" \ Q. We find the regularity
Regensburg, Germany. of solutions and determine the exact Dirichlet domain

Email: helmut.abels@ur.de Dyog (the space of solutions u with f € H ;(ﬁ)) in cases

where Q has limited smoothness C*7, for 2a < 7 <
®, 0 < s < T — 2a. Earlier, the regularity and Dirichlet
domains were determined for smooth Q by the sec-
ond author, and the regularity was found in low-order
Holder spaces for 7 = 1 by Ros-Oton and Serra. The H fl-
results obtained now when 7 < co are new, even for
(—=A)“. In detail, the spaces D
transmission spaces H, g(”m)(ﬁ), exhibiting estimates in

s, are identified as a-
terms of dist(x, Q)* near the boundary.

The result has required a new development of methods
to handle nonsmooth coordinate changes for pseudod-
ifferential operators, which have not been available
before; this constitutes another main contribution of
the paper.

MSC 2020
35815, 35R11 (primary), 35505, 47G30, 60G52 (secondary)

© 2023 The Authors. Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article
under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

J. London Math. Soc. (2) 2023;107:1297-1350. wileyonlinelibrary.com/journal/jlms | 1297


mailto:grubb@math.ku.dk
mailto:helmut.abels@ur.de
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/jlms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12712&domain=pdf&date_stamp=2023-01-15

1298 | ABELS AND GRUBB

1 | INTRODUCTION

The present work has two main purposes. One is to solve the regularity question and determine
the domain for the Dirichlet problem for (—A)“ and its fractional-order generalizations, in L,-
Sobolev spaces over domains of finite smoothness degrees between C19 and C®. The other is to
develop a tool that has been missing in the theory of pseudodifferential operators: nonsmooth
coordinate changes. It plays an important role in the solution of the regularity question.

The fractional Laplacian (—A)%, 0 < a < 1, and its generalizations P of the same order 2a, have
been much studied in recent years, with applications in probability, finance, differential geometry,
and mathematical physics. To mention some of the studies through the times: Blumenthal and
Getoor [13], Hoh and Jacob [37], Kulczycki [43], Chen and Song [19], Jakubowski [41], Bogdan,
Burdzy, and Chen [14], Cont and Tankov [20], Caffarelli and Silvestre [18], Gonzales, Mazzeo,
and Sire [25], Ros-Oton and Serra [50, 51], Abatangelo [1], Felsinger, Kassmann, and Voigt [23],
Bonforte, Sire, and Vazquez [15], Dipierro, Ros-Oton, and Valdinoci [21], and Abatangelo, Jarohs,
and Saldana [2]. They refer to many more works, also with applications to nonlinear problems.
From its action on R" one defines the homogeneous Dirichlet problem:

Pu=fonQ, suppucQ, 1.1)

on bounded open subset Q of R" (with some boundary regularity). For operators P with
Re fQ Putidx > 0, there is unique solvability for f € L,(Q) by a variational argument. One of
the fundamental questions in then: How do the solutions look? The variational theory gives that
the solution belongs to H*-functions supported in Q, but is u in fact more regular? And will higher
regularity of f increase that of u? This is often called the regularity question. Early results of Vishik

and Eskin (see [22]) imply, for example, for a > % that u is H ‘”%_5. More precisely, one can ask:
What is the Dirichlet domain for P; the space of functions u solving (1.1), when f runs through a
Sobolev space H® (ﬁ)?

It was an important step forward when Ros-Oton and Serra [50] showed that for f € L (Q),
u is Holder-continuous with a singularity d(x)? at the boundary (where d(x) ~ dist(x, dQ) near
0Q, extended smoothly to a positive function on Q),

feL,(Q)=>u/d® e C*(Q), (1.2)

for small & > 0. Q was assumed to be C!; a later study lifted o up to a. The methods were delicate
potential-theoretic arguments, based on the representation of (—A)? as a real singular integral
operator; they were later extended to other real translation-invariant singular integral operators.

A very different method was introduced by one of the present authors [31]: Fourier analysis in
the form of pseudodifferential operator (pdo) theory. This theory (necessarily for complex func-
tions) is designed to allow x-dependent operators (not translation-invariant), taking care of the
composition rules that arise, which make the theory quite technical. Here it was shown when Q
is a C*-domain that if, say, u € H 3(5) and s > 0,

feCc®Q) < uedc®Q), (1.3)

fEH)(Q) < u€Dqy,y,, (1.4)
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where D, ¢, is a certain space contained in H ;”‘1(5) +d*H Z+a(5) fors+a— é > 0 (and ¢ 7),
1 < g < o; here H; denotes the L,-Sobolev space of Bessel-potential type. For 0 < s < % —a,
Dysq=H ;”‘1(5) (the H ;+2a(IR”)-functions supported in Q).

In detail, the space D, ; , equals the so-called a-transmission space Hf;(Hza)(ﬁ) introduced in
[31]. (1.4) was in [30] extended to a wealth of other scales of function spaces, including Holder-
Zygmund spaces C%; here f € Ccs(Q) implies u € Cs+20(Q) + deCs+e(Q) (when s, s + a,s + 2a &
N), the component in deCs+e(Q) described more precisely in [34].

There is a large gap between the results (1.2) and (1.4), in that the former allows low smoothness
of the domain Q and correspondingly shows smoothness of u in a low range, whereas the latter,
under a very high smoothness assumption on Q, shows results in the full scale s > 0.

This gap remained open until recently. Ros-Oton with coauthor Abatangelo presented a study
[3] treating the regularity question for translation-invariant real singular integral operators, lifting
(I2)toa =a+swhen f € Cs(ﬁ),QisCHfWithT >a,forO<s<t—awiths,a+s,2a+s &
N. This allows 7 to be a step a lower than we assume below, but does not exhibit a more pre-
cise domain, and does not treat Sobolev spaces. Abatangelo and Ros-Oton[3] give important
consequences for regularity questions for the obstacle problem.

One may also compare with the standard knowledge for second order strongly elliptic differen-
tial operators (cf. Gilbarg-Trudinger [24, Theorem 8.13]), where a = 1: When Qisa C2*S-domain,

s € Ny, the Dirichlet solutions for f € ﬁS(Q) lie in EHZ(Q) nH! (5); this allows a first step lower
regularity of Q than we do.

We shall in the present paper fill the gap in the category of L,-Sobolev spaces, showing that the
characterizations (1.4) can also be obtained when Q has finite smoothness C'*7, for s in a finite
interval whose upper bound follows 7 linearly. This is the first treatment of the fractional-order
operators acting in L,-Sobolev spaces over domains with limited but high smoothness, giving
correspondingly high regularity of solutions.

In this connection there enters a condition on the behavior of the operator P at dQ, the a-
transmission condition, known from [31] to be necessary for (1.3) on smooth domains. Part of our
work consists in finding the appropriate generalization of this condition to nonsmooth domains,
as well as generalizing the O-transmission condition of Boutet de Monvel [16, 17] and of Grubb
and Hormander [36]. The a-transmission condition is satisfied in all directions when P of order
2a is even, that is, its symbol p(x, &) has a graded symmetry property in &, cf. Section 2.2 below.
This holds for (—A)%. We can now show a result that is new even for (—A)%:

Theorem 1.1. Let1 < g <o0,0<a<1,7>2a,let QCR" beabounded CY™-domain, and let
P be an even pseudodifferential operator of order 2a with symbol depending C* on x (that is, p €
CTS?%(R" x R"), cf. Section 2.2 below).

There is a family of spaces D, ; 4, equal to the a-transmission spaces H g (S+2a)(5) (cf. Definition 4.3
below), such that the following holds:

1°r*P: u - (Pu)|y maps D, 5,4 continuously into H;(ﬁ)foro <s<71-2a

2° Let P moreover be strongly elliptic. If u € H 3(5) is a solution of the homogeneous Dirichlet
problem (1.1), then (1.4) holds for 0 < s < T — 2a. This shows that D, ; , is the Dirichlet domain for

P with data in Hfz(ﬁ):

Dysq = fu € HIQ) | (Pwlg € HY(Q)}: (1.5)
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The definition of the a-transmission spaces H a([)(ﬁ) over C'*7-domains Q (¢ < 7 + 1) involves

the order-reducing operators E¢ connected with the a-transmission condition. Here H, a<s+2a)(Q)

equals H S+2a(Q) ifs < = —q,andis,ifr > 1, included in H S““(Q) + daH”a(Q) for larger s, with

decC 1+T(Q R, )equal to the distance to dQ in a neighborhood of Q. The condition t > 1 assures
that d is differentiable in a neighborhood of 0Q and normal coordinates exist. In cases 2a < 7 < 1,
which can only occur if a < %, there is a local interpretation of the inclusion, cf. Remark 4.7.

We show furthermore that for u € HZ(S+2a)(§), the function u/d“ has boundary value in

1
BZ+a 1(6Q)whens+a — é > 0, cf. Theorem 4.6 below.

It is a new result that the exact Dirichlet domains D, ; , have been found in cases where Q has
limited smoothness. A remarkable fact is that these Dirichlet domains are universal, depending
on a, s, and g, but not on the symbol of P within the class of even, strongly elliptic )do’s with
CT-smooth symbols.

Our analysis has a number of other new applications for nonsmooth domains, for example, (1)
solution of evolution problems by functional analysis as in [33], where the determination of the
Dirichlet domain leads to precise results, and (2) solution of nonhomogeneous boundary value
problems with local Dirichlet conditions as in [30]. They are worked out in [35].

At the end, we include some consequences in Holder and Holder-Zygmund spaces that follow
by use of embedding theorems by letting g — oo; this expands the scope of [3] to our classes of
pseudodifferential operators.

It would of course be interesting to extend the general principles to other scales of function
spaces, namely, the Triebel-Lizorkin spaces Fls) q and the Besov spaces BS (1nclud1ng Holder-
Zygmund spaces B} = C?), as it was done in smooth cases in [30] after the treatment in
Bessel potential spaces H fl in [31]. But even for integer-order operators, the basic results [4] on
pseudo-differential boundary problems with nonsmooth x-dependence have so far only been
established in H S-Spaces (plus immediate consequences by interpolation), so a substantial
additional work would be required.

The new results are based on a development of pseudodifferential theory that makes
non-smooth coordinate changes possible beyond the principal symbol level; this is the other main
contribution from the present work.

Recall that pseudodifferential operators were originally developed from singular integral oper-
ators as a systematic calculus (containing differential operators) that could handle compositions
of x-dependent operators and constructions of inverses in elliptic cases, by use of the mechanisms
of Fourier transformation F (Seeley [54], Kohn and Nirenberg [42], Hormander [38], and others).
From a symbol p(x, £) depending smoothly on x, & € R" (except possibly at £ = 0) one defines
the operator P = OP(p(x, §)) by

Pu(x) = (27)" / ¢ p(x, E)Fu(?) dé, (16)
RV!

for nice functions u, extended to general u as so-called oscillatory integrals.

Theories for boundary value problems for do’s, resembling those for differential operators,
were soon set up in Boutet de Monvel [16, 17] and further developed in, for example, Rempel-
Schulze [49], Grubb [26, 28], acting on C*®-domains Q C R". The definitions of appropriate
symbol classes were focused at first on the behavior with respect to &, but after some years,
non-smooth behavior in x was also introduced (cf., for example, Kumano-go and Nagase [45],
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Beals and Reed [12], Marschall [46, 47], Witt [58], or Taylor [56, 57]). Presently, we focus on sym-
bols p(x, §) in classes CTSTO(R" X R™), with C™-smoothness in x and standard estimates in £. For
boundary value problems, a nonsmooth generalization of the calculus of Boutet de Monvel for
integer-order ¢do’s was worked out in Abels [4].

In the study of boundary value problems, one needs not only the x-dependence in the symbol
to be less smooth than C*; one also needs to be able to apply the theory to domains Q with non-
smooth boundary. When localization techniques are used, this means that one needs to perform
changes-of-variables with nonsmooth transition functions. For some questions it is sufficient to
do this only at the principal symbol level, with estimates for the remainder operators (since the
result is possibly sought in low-regularity spaces anyway); this has been done, for example, in
applications to the Navier-Stokes problem (cf. Abels [5], with Terasawa [11]) and spectral theory
(cf. Abels, Grubb, and Wood [7]). Invariance under smooth coordinate changes for nonsmooth
pseudodifferential operators and boundary value problems were discussed by Jiménez and the
first author in [8].

Full symbol rules for nonsmooth changes of variables have not to our knowledge been estab-
lished anywhere (for example, [47] leaves out this point, [10] works with a restrictive symbol
condition that avoids the issue). Changes of variables are of course also interesting for interior
problems, for example, if one wants to let one coordinate play a special role.

Since the behavior of a symbol under a coordinate change has a nice exact expression when
one allows symbols ‘in (x, y)-form’ (also called amplitude functions), which define operators by
formulas

Au(x) = Q2m)™" /

e N Ea(x, y, Ou(y) dédy = OP(a(x, y, O)u, .7)
R2n

the question of how to reduce an operator OP(a(x,y, £)) to the form OP(p(x, £)) is intimately
related to the change-of-variables question. For this question one has to establish the validity of
(1.7), as well as set up the formula for the reduction with appropriate remainder terms, and to our
knowledge neither of these points has been treated before when the y-dependence is nonsmooth.
We shall show the following theorem.

Theorem 1.2. Lett > 0and m < T.
1° Leta € CTS{”O(IR”’ X R™). Then (1.7) has a meaning as an oscillatory integral, cf. Theorem 3.1
below for the details. It defines an operator OP(a(x, y, £)) mapping continuously

OP(a(x,y, £) : HI(R") — H3(R"™),
when |m|, |s|, and |s + m| are < 7, and 1 < q < co. Moreover, for any nonnegative integerl < t,

OP(a(x,y, §)u(x) = Z OP(p,(x, §)u(x) + OP(r(x, y, §)u(x), (1.8)

lal<l

where p,(x,&) = %6;‘D?a(x,y, Oly—x € CT_|°‘|STO_|“|(R” x R™) and r(x,y,£) € Cf_lS;"‘o_l(RZ” X

R"), with r(x, x, £) = 0. Here the operators map continuously

OP(p,(x,£)) : Hy " ¥I(R") > HE(R™) for|s| <7 —lal,
OP(r(x,y,8)): HEIHM_D*(IR”) - HZ([R”) for0<s <min{r — 1,7 — m}.
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2° Let p € C'ST(R" XR"). Under a Cl**-diffeomorphism F: R" — R" such that c, <
| det(VF(x))| < C, with ¢, C, > 0, P transforms to an operator P,

P =F*PF*! = OP(q(x,y,8)) + Ry,

whereq € CTS;"O([R{Z” X R"),R; : Lq(R”) - H;(R")fors < min{r, 7 — m}, and OP(q(x,y, £)) isas
under 1°; in particular reducing to x-form as in (1.8).

We address the problem on subsets of R", because that is what is asked for in the probabilistic
and financial applications. Based on the work of Jiménez and the first author [8] for nonsmooth
operators on smooth manifolds, the various results are likely to carry over without trouble to
suitable nonsmooth domains in smooth manifolds. The case where the basis manifold itself is
nonsmooth would demand a larger effort because of various conditions between the regularities
of the manifolds, the symbols, and the order of the function spaces.

The structure of the manuscript is as follows: In Section 2 we summarize necessary preliminar-
ies on function spaces and (nonsmooth) pseudodifferential operators. The first main results are
established in Section 3, where pseudodifferential operators with nonsmooth symbols in (x, y)-
form, oscillatory integrals for them, and their reduction to x-form operators, are discussed. These
results are applied to treat nonsmooth coordinate changes for nonsmooth pseudodifferential
operators, and Theorem 1.2 is proved. In Section 4, the description of u-transmission spaces is
generalized from the smooth case to nonsmooth domains. In Section 5, we introduce general ver-
sions of a u-transmission condition for nonsmooth pseudodifferential operators, and show their
mapping properties in relation to the u-transmission spaces, as a key to the regularity results.
Finally, in Section 6 the results of the preceding sections are applied to show regularity results
for the homogeneous Dirichlet problem for even, strongly elliptic pseudodifferential operators on
nonsmooth domains, proving Theorem 1.1.

2 | PRELIMINARIES
2.1 | Function spaces

Recall that the standard Sobolev spaces W;([R”), 1 < g < 0 and s > 0, have a different character
according to whether s is integer or not. Namely, for s integer, they consist of L -functions with
derivatives in L, up to order s, hence coincide with the Bessel-potential spaces H Z(R”), defined
for s € R by

Hy(R") = {u € S'R") | F7'(§)’D) € Ly(R™)}. (€3))

Here F is the Fourier transform (&) = Fu(§) = fR,, e~y (x) dx, and the function (£) equals

1
(1€]? + 1)2. For noninteger s, the Wf]—spaces coincide with the Besov spaces BZ(R”) = B; q(IR"),
defined, for example, as follows: For 0 < s < 2 and measurable f : R” — C,

R2n |x —y[n+as

dxdy < oo; (2.2)

and Bf1+’ R") = (1 -A)" 2Bfl([R{") for all t € R. The Bessel-potential spaces are important
because they are most directly related to L,(R"); the Besov spaces have other convenient proper-
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ties, and are needed for boundary value problems in an H ;-context, because they are the correct

— (8) .
range spaces for trace maps y ju = (8, ), —o:

.1
— — s—j—=
7;: HyRD.By®}) - By~ "(R"™), fors—j—2>0, 2.3)

surjectively and with a continuous right inverse; see, for example, the overview in the introduction
to [27]. For q = 2, the two scales are identical, but for q # 2 they are related by strict inclusions:
Hs C Bs when q > 2, HS D BS when q < 2. When q = 2, the index q is usually omitted. We will
always use BS as abbrev1at10n of BS

We shall also use the spaces Ck (IR”) = Ck(R”) of k-times differentiable functions with uniform
norms |[uflck = SUP|g <k xern D u(x)| (k € Ny), and the Holder spaces C*(R"), 7 = k + o with
k € Ny,0 < o < 1,also denoted as C*-7(R"), with norms ||u|c- = ||u]|cx + SUP) =k ety IDFU(X) —
D*u(y)|/1x — y|°. The latter definition extends to Lipschitz spaces C!(R"). There are similar
spaces over subsets of R”. Finally, we denote C;"(R”) = Nren C’;([R{”).

The halfspaces R’} are defined by R} = {x € R" | x,, Z 0}, with points denoted as x = (x/, x,,),
x' = (xy, ..., X,_1)- When y € C*7(R"™!) for some 7 > 0, we define the curved halfspace R} by

= {x € R" | x, > y(x')}.

Also bounded C'**-domains Q will be considered. By this we mean that Q C R" is open and
bounded, and every boundary point x;, has an open neighborhood U such that, after a translation
of X, to 0 and a suitable rotation, U n Q = U N R, for a function y € CH*T(R"1) with y(0) = 0.
(In some texts, a hypothesis on connectedness of Q is included here, but we do not need this.)

Restriction from R" to R’} (or from R" to Q, respectively, Q= R" \ 5) is denoted as r*, exten-

sion by zero from R’} to R" (or from Q, respectively, CQ to R™) is denoted as e*. (The notation is
also used for Q = Rg). Restriction from @z or Q to OR", respectively, 0Q is denoted as .

By d(x) we denote (as in [31, Definition 2.1] for the C*®-case) a function that is C'*7 on Q,
positive on Q and vanishes only to the first order on 0Q (that is, d(x) = 0 and Vd(x) # 0 for x €
Q). On bounded sets it satisfies near 0Q:

Cldy(x) < d(x) < Cdy(x) 2.4)

with C > 0, where dy(x) equals dist(x,dQ) on a neighborhood of dQ and is extended as a
correspondingly smooth positive function on Q.

Whent > 1,d, itself can be taken C'*7. This holds since there is then a tubular neighborhood of
0Q where d,(x) plays the role of a normal coordinate; its gradient equals the interior unit normal
vector v(x) (cf., for example, Priiss and Simonett [48, pp. 65-66]). Since v is C7, d,, is C'**. Then
moreover, d/d, is a positive C*-function on Q.

We take dj(x) = x,, in the case of R} . For R;’, the function d(x) = x,, — y(x’) satisfies (2.4) near
6IR” and does so globally on R” if we choose the extension of d(x) further away from GR” to equal

x, + C;, where C; > sup, |y(x’)| Then when 7 > 1, d/d,, is a positive function in CT(R},)
Along with the spaces H ;([R”) defined in (2.1), there are the two scales of spaces associated with
Q fors € R:

EZ(Q) ={ueD'(Q)|u=r"UforsomeU € H;(IR”)}, the restricted space,
— _ (2.5
H;(Q) ={ue H;(R”) | suppu C Q}, the supported space;
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1304 | ABELS AND GRUBB

here supp u denotes the support of u. EZ(Q) isin other texts often denoted as H ;(Q) or H ; (5), and

H f] (5) may be indicated with a ring, zero, or twiddle; the current notation stems from Hérmander
[40, Appendix B2]. There are similar spaces with B;.

Besides for the H; and B;—spaces, there are in [30] for C*°-domains established the relevant
results in many other scales of spaces, namely, Besov spaces Bf)’ g for 1 < p,q < o and Triebel-
Lizorkin spaces FIS)’ q (for the same p, g but with p < co). We shall not pursue this in the present
work, except that we want to refer to the Holder-Zygmund scale B o0’ also denoted as C{. Here
C? identifies with the Hélder space C* when s € R, \ N, and for positive integer k satisfies ck—s >
Ci‘ o Cck-11 5 C’g for small € > 0; moreover, CS DL, D Cg (with strict inclusions everywhere).
Similarly to (2.5) we denote the spaces of restricted, respectively, supported distributions

C.(Q) ={ueD(Q)|u=rUforsome U € CS(R")},

C3(Q) = {u € C5(R™) | suppu C Q}

the star can be omitted when s € R, \ N.

2.2 | Pseudodifferential operators

A pseudodifferential operator (do) P on R" is defined from a symbol p(x, §) on R" x R" by

Pu = OP(p(x,&))u = /

., e p(x, )i(§) d§ = F ! (p(x, §)Fu(E), (2.6)
using the Fourier transform F and the notation d§ = (2z)™" d§. We refer to textbooks such as
Kumano-go [44], Hérmander [40], Taylor [55], Grubb [29], and Abels [6] for the rules of calculus,
in particular the definition by oscillatory integrals in [6, 40]. For precision, the notation Os — /[ is
often used when an integral is understood as an oscillatory integral.

The symbols p of order m € R were originally taken to lie in the symbol space S{f‘O(R” X R™),

consisting of complex C*®-functions p(x, &) such that afj 6? p(x, &) is O((€)™~1el) for all «, B, for
some m € R, with global estimates for x € R" (as in [40, start of Section 18.1] and [28]). P (of
order m) then maps HZ([R”) continuously into Hg_m([R”) for all s € R, cf. (2.1). P is said to be
classical when p has an asymptotic expansion p(x,§) ~ ) jeng P i(x, &) with p ; homogeneous in
& of degree m — j forall || > 1 and j € N, such that

aﬁag( p(x, &) — ZN pj(x,8)) is O((&)" ) forall a, f € NI, J € N 2.7)

For a complete theory one adds to these operators the smoothing operators (mapping any H ;(R”)
into [, Hf](IR”)), regarded as operators of order —oo. (For example, (—A)® fits into the calculus
when it is written as OP((1 — £())|£]%%) + OP(¢(€)|€]%%), where ¢ (&) is a C*®-function that equals
1 for [€] < % and O for |£] > 1; the second term is smoothing.)

In the present study we moreover consider symbols with limited smoothness in x. For later
purposes we here replace x € R" by X € R", where n’ will usually be n or 2n.
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The space CTS{”O([R”’ X R") fort > 0, m € R, n/,n € N consists of functions p : R" X R" — C

that are continuous w.r.t. (X, £) € R” x R" and smooth with respect to £ € R", such that for every
a € Nj we have: agp(x, £) is in C*(R"") with respect to X and satisfies for all ¢ € R", a € Ng»

195 P+ Oll gy < Cal§)™ 1, (2.8)
with C, > 0. We equip the symbol space with the semi-norms

|p|k,CTS{’?0(Rn’an) = ﬁllagli ;;ﬂ51<§>—m+|a| ||6?p(-, g)llcf(l}&”’) fork € N,,. (2.9)

The following theorem is well known.

Theorem 2.1. Let7>0,1<q<oo, m € R and p € C*°S{\ (R" X R"). Then OP(p) extends to a
bounded linear operator

OP(p): Hf;m([R”) - H;(R”) forall |s| < 7.
Moreover, for every s € (—t, ) there is some k € N and C > 0 such that
FOPPI £ zs+m m) g mmy) < CIPlecrsn sy for all p € ST,(R™ X RY).

The mapping properties follow from [46, Theorem 2.7]. The boundedness of the operator norm
by a symbol semi-norm is a consequence of the closed graph theorem or the Hahn-Banach
theorem, cf., for example, [9, Theorem 3.7].

The subspace of classical symbols C'S™(R" x R™) consists of those functions that moreover
have expansions into terms p; homogeneous in & of degree m — j for || > 1, all j, such that for
allé eR", a € N(’)‘,J €Ny,

|I6?(p(-, - Zj<]pj(" a)”cr(w’) < Ca,]@)m_J_l“l- (2.10)

A classical symbol p(x, &) (and the associated operator P) is said to be strongly elliptic when
Re py(x,&) > c|€|™ for |€]| > 1, with ¢ > 0. Moreover, a classical pdo P = OP(p(x, &)) of orderm €
R is said to be even, when the terms in the symbol expansion p ~ Y jeng Pj satisfy

pj(x,—é') = (—l)jpj(x,f) forallx e R"|¢| 2 1,j €N,. (2.11)

(The word ‘even’ is short for even-to-even parity, meaning that the terms with even j are even
in £, and the terms with odd j are odd in £.) Similarly, p is odd (short for odd-to-even parity) if

p~ ZjeNO pj, where
- j+1 .
pj(x,=§) = (=1)/"'p;(x,§) forallx € R",|£| > 1,j €N,.

Note that when p is even of order m, p — p, is odd of order m — 1.

In part of the present paper, we consider symbols that are moreover assumed to satisfy a u-
transmission condition, as introduced in the smooth case by Hormander [39, 40] and Grubb
[31], see Section 4.1. To handle operators with such properties, we must introduce order-reducing

85U8017 SUOWIWOD 8A 181D 3|eal|dde au Aq peuAoB a1 BN YO ‘88N JO S9N 10} A1R1q1T 8UIIUO AB]IM UO (SUONPUO-PUR-SULBYWO0 B | 1A le.q Ul |uo//Sdiy) SUORIPUED PUe sl | 8U) 89S *[£202/70/50] U0 Ariqiauluo Ao|im ‘Bingsusbiey eesienun Aq ZT22T Sw|lZTTT 0T/I0p/L0o A3 |1m AleiqipuljuO'0csyewpUO|//Sdny Woiy pepeojumoq ‘v ‘€202 ‘05.69vT



1306 | ABELS AND GRUBB

operators. There is a simple definition of operators Eﬂ_r onR", t € R,
=t _ t — ; t.
B, = OP(xL), xi(&)=(&")xiE,); (212)

they preserve support in @2, respectively, because the symbols extend as holomorphic functions
of §,, into C, respectively; C . ={z € C : Imz Z 0}. (The functions ((¢") + i&,,)" satisfy only part
of the estimates (2.7) with m =t, but the do definition can be applied anyway.) There is a
more refined choice A’,, cf. [27, 31], with symbols A’ (£) that do satisfy all the required estimates,

and where Z = A'. These symbols likewise have holomorphic extensions in &, to the complex

half-spaces C, so that the operators preserve support in @i, respectively. Operators with that
property are called ‘plus’, respectively, ‘minus’ operators

There is also a pseudodifferential definition A adapted to the situation of a smooth domain
Q, by [27, 31].

It follows from the Lizorkin multiplier theorem and the definition of the spaces H ;(IR") in terms

of Fourier transformation that the operators define homeomorphisms &', : H? (IR”) 5 H STHRM),
foralls € R The special interest is that the ‘plus’/‘minus’ operators also deflne homeomorph1sms
related to R and Q, forall s € R:

g - ~ st
g\ Hy(R) —» H'(R)), r'Ele - H JRD =~ H, (R,
AV @ S E@), rrADet EZ(Q);EZ_[(Q),

with similar rules for A’. Moreover, the operators £/ and r*E' e* identify with each other’s
adjoints over @i, because of the support-preserving properties. There is a similar statement for
A and r*A’e*, and for Agf) and r* A®e™ relative to the set Q.

3 | NONSMOOTH COORDINATE CHANGES

Since some of the proofs of the results in this chapter are quite technical, we have moved them to
the Appendix, in order to keep the flow of the presentation leading to results on fractional-order
boundary problems.

Basic rules of calculus for pseudodifferential operators with nonsmooth symbols were set up
by Kumano-go and Nagase [45], Beals and Reed [12], Marschall [46, 47], and Witt [58], however,
leaving out the question of nonsmooth coordinate changes. To our knowledge, this question has
been open since then, and it is this that we want to work out now. A basic step is the reduc-
tion of operators defined by symbols in (x, y)-form to symbols in x-form, in particular to handle
the remainders arising from this. The definition of operators from symbols a(x, y, §) (also called
amplitude functions) follows from known facts when a is C” in x and C* in y, see, for example,
[10], but a definition when a is merely C7 in y has not to our knowledge been established in detail;
this is the first thing we undertake here.

Symbol classes and their seminorms were defined in the preliminaries section. In the following
letr >0,m €R,a € CSP" (R xR").

The first task is to show the existence of oscillatory integrals for nonsmooth (x, y)-form symbols,
and to find derived x-form operators.
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FRACTIONAL-ORDER OPERATORS ON NONSMOOTH DOMAINS 1307

Assuming T > m, we have to give a meaning to,

OP(a)u(x) = Os —/ e a(x,y, Ou(y) dy dt

R

= lim / 2(ey, ) Ea(x, y, Eyuly) dy de
E— RZV:

for every u € S(R"), x € R"*, where y € S(R?") with x(0,0) = 1. To this end (and for other
purposes later on) we shall use a Taylor expansion

a(ey,8) = Y 22380, Olyee 0 = 0T+ Y, 0= 05,3, 6), (3.)

o<l la|=l

where | € N, with | < 7 and

_ |OC| ! |la|—177a 1 a
ra(xsysg) - ?A (1_t) (aya)(x’(l _t)x+ty’ g)dt— aaya(xuya g)ly:x' (32)
We have here subtracted the ath precise term from the usual remainder term, to achieve that
ro(x,x,6)=0 forall x,& € R™.

Note that r, € CT‘|°‘|S;’,“O(R2" X R™). Hence for every 8 € NI!
Idgra(x,y, £)| < Cglx — y|mint=lellicgym=Ibl - forall x,y, & € R". (3.3)

We will use a dyadic partition of unity (¢;) ey, of R" in the proof. More precisely, let ¢; €
Cy'(R™), j € Ny, be a partition of unity such that

suppg; C {§ € R" [ 27! <€ <271} (3.4)
and ¢;(§) = ¢;(2'77¢) forall j > 1, £ € R™.

For later purposes we show existence of the oscillatory integral in a more general form. We
denote by [o] the largest integer < o.

Theorem3.1. Leta € CTS;"O([RZ” XR"), 7> 0,me R,y €N, and assumethatm < t + |y|. Then
forevery x € R" and u € S(R") the limit

OP(y = aCx.y, OC) = lim [ ey, )6y = .y, Dy dy g

exists and coincides with

> - OP@IDS T alx,y, D)l Ju(x) + Y, OBy — )77, (x, y, (),

lel<l ™ la|=1

where | = max{[m — |y|],0} < 7, and

OP(y =03 ) = | k.32 =Yy dy,
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|k (3, ¥, X = ¥)| < g(x — y) for some nonnegative g € L,(R"), and

ka,y(x’y’z) = ZjeNoka%j(x’y’ 2),

Kay,j(x,¥,2) =/ eiz'§(x_y)a+yra(x,y,§)¢j(§)d§
RY[
forallx,y,z € R" with z # 0.

The proof of Theorem 3.1 is given in the Appendix.
It will be convenient to observe.

Lemma3.2. Leta € C*ST| (IRZ” R™),7>0meER, y e N, and assume thatm < 7 + |y|. Then
foreveryx e R" and u € S(IR") and B € Nj with § <

OP((y - x)/a(x, y, E)u(x) = OP((y - x)y—ﬁ’Dﬁ aCx, y, E)u(x).

The proof of Lemma 3.2 is given in the Appendix.
We also have the following.

Corollary 3.3. Leta € CTS;"O(IRZ” X R™), T > 0, m € R, and assume that m < 1. Setting

Po(x,§) = —,6;‘D§‘a(x,y, Oly=x>
we have for every |l € Ny with 1 < t:

OP(a(x, y, )u(x) = D, OP(py(x, Ou(x) + Y, OPDFr(x,y, )u(x),

] <! o] =l
where p,(x,&) € CT‘|“|S’"_|°‘|(IR" X [R”) and D?”a 1S CT‘ISTO‘I(IRZ" X R") for all || =1 (as
defined in (3.2)), wu‘hD a(x x,&) =

Proof. The equality follows directly from Theorem 3.1 with y = 0 and Lemma 3.2 appliedtoa = r,,

and y = 8 = a. The statements on D?”a follow from (3.2)ff. O

The next task is to determine the mapping properties of (x, y)-form operators.

The following result will be the basis for all further results on mapping properties of (x, y)-form
operators. It applies not only to remainders, but also to full operators, without a graded expansion
that would reduce the regularity with respect to x.

Theorem 3.4. Leta € CTS’” (Rz" X R™") with |m| < 7, and let1 < q < . Then
OP(a(x,y,£) : HI™(R") » HI(R")
is a bounded linear operator, provided that |s| < T, |[s+ m| < T.

The proof of Theorem 3.4 is given in the Appendix.
We observe a particular conclusion for the remainder terms (3.2), in case s > 0.
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Corollary 3.5. Letr, beasin (3.2) and Corollary 3.3, letm < 7,1 € Nywithl < 7,1 < g < o0, and
letseRsuchthat0<s<t—1s+m< 1. Then

OP(DEry(x,y,6): Hy ™" (R") - H(R™) (3.5)
is bounded. Moreover, there is some k € N and CS’q > 0 such that

” OP(D?}'O{(X, Y, ‘E))”C(ngmil)*— (R"),Hg(Rn)) < Cs,q |a|k,CTSY‘ZO([R2”XR")'

Proof. If m — | > —(t — 1), we can apply Theorem 3.4 directly with 7 and m replaced by 7/ = 7 — [
and m’ = m — [; this gives

OP(D{ry(x,y,€)) : Hy'"!(R") — Hy(R™),

and (3.5) holds a fortiori. If m — I < —(r —[), we note that —(t — ) < —s, so that Dg‘ra S
CT‘ISq"O_l([RZ” X R") C CT_ISI_(S)(IRZ” x R"); here Theorem 3.4 can be applied with 7 and m
replaced by 7/ = 7 — l and m"" = —s, giving

OP(Dre(x,, €)1 HJ(R™) — Hy(R™).

This is as desired since in this case (s + m — 1), = 0.
Finally, the boundedness of the operator norm by a symbol semi-norm is a consequence of the
closed graph theorem. It can be shown in the same way as in the proof of Theorem 5.13 below. []

The next result will help improve remainder estimates; it is related to statements given in Taylor
[57, Proposition 9.5].

Theorem 3.6. Leta € CTSTO(RZ” X RM) with m < t and
6;‘55a(x,y,§')|y:x =0 forallx,& €eR"and|a|+ |B] < 7.
Moreover, let 1 < q < o0. Then
OP(a(x,y,8) : Ly(R") - H (R")
is a bounded linear operator provided that 0 < s < min(t — m, 7).
The proof of Theorem 3.6 is given in the Appendix.

Remark 3.7. We note that, ifa € CTS{”“O(RZ" X R") with 0 € m < 7 satisfies a(x,y, &) = 0 for all
x,y,& € R" with |x — y| < 6 for some § > 0, then the conditions of Theorem 3.6 are satisfied.
In particular, if p € CTSK‘O(R” X R™) with 0 < m < 7 and ¢, € C;°(R") are such that suppp N
supp ¥ = @, then

» OP(p(x, &))(pu) € H;(IR") forallu € L,(R"),0<s < 7.

The third task is to establish rules for coordinate changes, by use of the results on
(x,y)-form operators.
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In the following, let F: R" — R" be a C!-diffeomorphism with DF € C*(R")™", and p €

CTSTH(R" X R™) for some m < 7 and 7 > 0. Moreover, let

(Pu)(x) = (P(uoF~))(F(x)) = (F*PF*~'u)(x) forallu € S(R"), (3.6)
where (F*v)(y) := v(F(y)) and (F* 1u)(x) := u(F~1(x)). We will first consider the case that

sup |[VF(x) —I| < % (3.7)

XERM

Then one obtains for all u € S(R") and x € R":
Pu(x) = Os— / O p(F (), pu(F () dz d
R n

=Os— / e g(x, y, EHu(y) dy dé, (3.8)
RZn

where a well-known formula for coordinate changes (explained, for example, in [6, Proof of
Theorem 3.48]) gives

q(x,, &) = p(F(x), A(x, )" €)| det A(x, )| " | det V ,F(y)], (3.9)
1
Ary) = [ V.FGe iy =)
0

for all x,y, & € R". Here q(x,y,£) € CTSTO(IRZ” x R™) and A(x,y) "7 = (A(x,y)")T. We note
that (3.7) ensures det A(x,y) # 0 for every x,y € R". In our nonsmooth case, the existence of the
limit in the oscillatory integral in (3.8) follows from Theorem 3.1. The existence of this limit also
implies the existence of the limit in the oscillatory integral preceding it. Moreover, using that for
every 7/ € (0, 7] there is some C > 0 such that

|laoF = allcer ) < Cllallexgan IF = id TS foralla € CT(R™),

one verifies in a straightforward manner that for every r, > 0 and k € N, there is some Cj,
independent of F such that

. 1 ymin(1,7—7')
|q - plk’cflsfo(RZ"XR") < Ck”F —id ||c1+r(Rn) |p|k+1,CTS{f‘O(R"xR") (3-10)

for all p e C*ST(R" xR") and C'-diffeomorphisms F such that DF € CT(R")™", ||F —

id ||c1+c < 1y and (3.7) holds since
”A - I”CT(R”XR”) S C”F - ld ”CH'T(R")'

We shall now apply the Taylor expansion in (3.1) and Corollary 3.3 to g. This gives that for any
N eNywithN <7,

Pu(x) = ) OP(g,(x, §)u(x) + OP(Fy(x, y, )u(x),

lee|<N
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FRACTIONAL-ORDER OPERATORS ON NONSMOOTH DOMAINS 1311
where
9o (x,8) = 5“D§q(x y,§ )|y=x, (3.11)
Ay o= Y N / (1 - 0N 8EDE G x 4 1y = ). O di = Y g, (x,).
|a| -~ & |a|=N

Theorem 3.8. Let p € C*ST\((R" X R") withm <t andt > 0, let F be a C'-diffeomorphism with
DF € C*(R™)™" such that (3 7) holds true, |a| < N < 7 and let q be defined as in (3.11). Then
q, €CT I""Sm ol x [R”)and Fy € CT™ NS”‘_N([RZ" x RM) with Fy(x, x,£) = 0forallx, & € R™,
Moreover, for every ro > 0,7 € (N, 7], and k € N, there is some Cy, independent of F such that

min(1,7—7")
|q0 - P|k,cr/5%(Rann) < Ck”F —id ”CHT(R") |p|k+1,CTS;VfO(Rn><Rn),

min(1,7—7")
|qo¢ |k cr/ |a\5m |0¢\(Rann) Ck ”F ld ”CH'T(R”) |p|k+1,CTS;'}0(|R"XR")’

min(1,7—7")
ld”c1+f(w) |P|k+1,CTsf’O(R"xR")

|}’N|k CT/_NSZa N(RZ"XR”) Ck”F
foralll < |a| < N, provided that |F —id || ;14 < 1y,

Proof. The first statements follow easily from the definitions. Morever, as for (3.10) one can verify
the stated estimates in a straightforward manner. O

For general C'**-diffeomorphisms we obtain the following.

Theorem 3.9. Let p € C*ST\|(R" XR") with m <7 and 7> 0, let F: R" - R" be a Cl-
diffeomorphism with DF &€ CT([R”)"X" such that

< |det(VF(x))| £ C, forall x € R" (3.12)
forsome cy,C, > 0. Then there is some q € CTSTO([R”’ X R") such that
Pu = F*PF*~lu = OP(q(x,y,))u + Ru forallu € S(R"), (3.13)
where
R: Lq(R") - H;(IR") forall s < min(t — m, 7).
Moreover, forany N € Ny with N < 7

OP(g(x,y,§) = ) OP(gu(x,£)) + OP(Fy(x,y, £)),

lx|<N

where the entries are defined by (3.11), with A(x,y) = /01 V, F(x +t(y —x))dt for every y € R"
sufficiently close to x.

Proof. Since VF € C™(R") and satisfies (3.12), there is some § > 0 such that A(x, y) is invertible
for every x,y € R" with |x —y| <§. Now choose 3 € Ci°(R") with =1 on B5/2(O) and
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suppy C Bs(0). Then
Pu=0s— / eV E(x — y)pCx, Euly) dy dé
[RZn

+0s— / V(L — P(x — y)pCx, Eu(y) dy d€ = P'u + OP(alx, y, ),
R2n

where
OP(a(x,y,£)): Ly(R") —» HZ(IR") for all s < min(z — m, 1)

by Theorem 3.6 since a(x,y, §) = 0if |x — y| < §/2. Moreover,

P'u(x) = Os — / ! FCIDIY(F(x) — 2)p(F(x), u(F~(2)) dz dn
R2n

— 0s— / g, y, Eu(y) dy de,
R n
where

q(x,y, ) = p(F(x) — FM)p(F(x), Ax,y) " E)| det Ax, y)| | det V ,F ()| (3.14)

for all x,y, & € R". The rest follows in the same way as in the proof of Theorem 3.8, since
N(FXx) = F(¥))|=y = 1 and 95 (n(F(x) — F(y)))l,=, = 0 for every |a| <N. O

Proof of Theorem 1.2. The first part is a consequence of Corollary 3.3, Theorem 2.1 applied to p,,
and Corollary 3.5 applied to r,. Theorem 3.8 implies the second part. O

4 | PRELIMINARIES FOR OPERATORS ON DOMAINS

4.1 | The u-transmission spaces for the halfspace and
other smooth domains

For Q equal to R’} or abounded smooth domain, the special u-transmission spaces were introduced
for all u € C by Hérmander [39] for g = 2, cf. the account in [31] where the spaces are redefined
and extended to general g € (1, o). In the present paper we take u real with u > —1. The spaces
are defined by use of the order-reducing operators recalled in Section 2.2:

-

— —s—u - 5SH 1
A(5) =1 :+/‘e+Hq [R}) = A+“e+Hq [RY), fors>pu— 7
Hq (R+) =9 s —n 1

Hq(R+), fors</,¢—?,

4.1

KO ) AE:“ )e+ﬁ;_ﬂ((2), fors >y — i,
HO@={ " _
K (), fors<p— 2.

L
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1 1 . . . 1
Here = =1 — =; for convenience of notation we have included the cases s < u — = (as men-

tioned in [31, Definition 1.5]), although they play a very small role in regularity studies. The spaces
) —. gy —.
decrease with growing s: Hy ©@) c Hy “)(Q) whens > s

Remark 4.1. From the definition and the interpolation properties of Bessel potential spaces it
follows that H, g (s)(Q) is preserved under complex interpolation in s when s > u — i.

We now list some further properties, formulated for Q with the convention that Aif) is replaced
by &, or AL, when R’ is considered. There holds (cf. [31, Definition 1.8])

+ A(H)

llull I A ullgos gy, When s > - 7 (42)

H#(S)(Q) (Q) s

Observe in particular that

A — 175(0 _ _11
HAO@) = @ fors — e (- 1.1

(4.3)
S (0 u(s) ry
H;(Q) CH; " (Qc H;,IOC(Q) forall s € R,
since e+ﬁ (Q) D HS “(Q) for all s > u — =, with equality ifs — u € (—— —) and since A( #
is elliptic. We have moreover, for s > u,
HY@Q c HY(Q) = HY(Q. (4.4)

The great interest of the spaces H f; (S)(ﬁ) lies in the following facts.

* Pseudodifferential operators P of order m satisfying the u-transmission condition map these
—S—m
spaces into standard spaces H q (Q), by [31, Theorem 4.2],
I Pullgs-n,

< Cllull fors> u— ql (4.5)

Q) HI‘(S) (5)

* When P furthermore is strongly elliptic, the spaces are the solution spaces for the homogeneous
Dirichlet problem, cf. [31, Theorem 4.4].

Example 4.2. To demonstrate how (4.1) enters into the picture, we give a simple example: Let
P = OP(p(£)), where the C*®-function p(¢) is homogeneous of degree 2a and even for |&] > 1
and strongly elliptic satisfying Re p(§) > ¢ > 0 for § € R". The Dirichlet problem on R,

r*Pu= fonR!, suppucC @Z,

is uniquely solvable for f € L,(R"), when u is sought in H a(@i); this follows by applying

the Lax-Milgram lemma (cf., for example, [29, Section 12.4]) to the sesquilinear form s(u,v) =
. —n . —n

/R" r*Puodx on HYR_). A precise description of the domain D(Pp) = {u € H*(R,) | rtPu e

Lz([R{” )} can be found by letting Q = AZ“PAZ¢; it defines a bijection Q. = r*Qe™ in L,(R" ). Here

Q is of order 0 and satisfies Boutet de Monvel s O-transmission condition at dR" ; hence, Q, is

also a bijection in ﬁ;(Rﬁ) forall 1 < g < o0, s > —1/q’. When this is carried back to P, we see
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1314 | ABELS AND GRUBB

that r* P maps the a-transmission space A;aeﬂ?f;a([l%ﬁ) = Hg(ﬁza)(ﬁi) bijectively to HZ(R;‘).

In particular, D(Pp,) = H a(2a)(@:).

We note that the spaces do not depend on P. As a very special case of (4.5), since A(f) satisfies
the u-transmission condition, so does the composition P = Agf‘)ocp for any ¢ € C;°(R"); hence,
forany s > u — % there is some C > 0 such that

”(Pu”H{;(”(ﬁ) ~ ”r+A(+M)¢“”Ef;“(Q) < C”“”H{]‘(”(ﬁ) forallu € Hg(S)(Q),

cf. also (4.2). Thus the multiplication by ¢ maps Hg (S)(ﬁ) into itself (also for lower s, since the

property is well known for the spaces H 3(5)).
With d defined as in (2.4) (in particular, d can equal d,), there are local weighted boundary
operators

.1
. — s—pu—j—=
yiu=T(u+1+ jyy;w/d"): HYQ) - B, (00 (4.6)

defined fors > u + j + é, herey; denotes the jth normal derivative y ju = (6{;v)| a0, and I'denotes

the Gamma function. There is a hierarchy (cf. [31, Section 5]), Hg(s) (5) D Hé” H)(S)(ﬁ) DD
Hé’”j)(s)(ﬁ) fors>pu+j— %, and

ue Hé“”xs)(ﬁ) = ue Hg(s)(ﬁ) with ygu = .. = yﬁ.‘_lu = 0; 4.7

this is of importance for the study of nonhomogeneous boundary conditions.

Defining &,(Q) = etdre (©), we have for bounded smooth domains that (1) H: g (s)(Q) =
Py . . . Sy —n —n —n —n
&,(Q), which is dense mif;(s)(ﬂ). For R, ﬂst;(s)([R{Jr) =&MR)N ﬂst;(S)([R+), and £,(R,)N
E'(R™) is dense in Hg(s)(R+).
It was shown in [31] that

HEO@) € HS(@Q) + e*d“H, (), fors > u+ Ls—u—1gN, (4.8)

and the inclusion holds with H ;(5) replaced by H ;_E Q) if s — u— é € N. There is a similar

statement on R” with d replaced by x,,.
In a recent paper [34], the representations (4.8) were sharpened by an identification of which

functions in e+d"ﬁZ_M(Q) actually enter in H g (s)(ﬁ).
For the Holder-Zygmund scale C?, the u-transmission spaces are defined analogously by

Cf(s)(ﬁ) = A(;M)e‘LEi_M(Q), fors>u—1,
Q) = Cs(Q, fors<pu—1,

and all the properties listed above for H fl-spaces carry over to the C{-spaces. The formulas hold
with H fl replaced by C? and é, é replaced by 0, 1. In particular, there is the analog of (4.8):

CEI@Q) c C3(@) +e*d T, (@), fors > p,s—p &N, (4.9)
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and the inclusion holds with Ci (Q) replaced by Ci_g (5) if s — u € N. There is a similar statement
on R’} with d replaced by x,,.

4.2 | Definitions in nonsmooth cases

Recall that for any C!-diffeomorphism F : R"” — R" with DF € C*(R")™" and0< s < 1+ 7 we
have that

F*: H(R") > HS(R") : u > uoF (4.10)

isbounded. In the case s < 1 + [7], this follows by interpolation from the corresponding statement
for H;"([R”), m=0,..,1+[7].Inthe case 1 + [7] < s < 1 + T one uses that

6xj (uoF)(x) = (Vu)(F(x)) - 6ij(x) foru e H(SI(IR"),

where VuoF € HfI—l(R”) sinces—1<1+([7], 6ij € CT(R™)", and one can apply well-known
multiplication results for Bessel potential spaces, namely, that fg € H;(R") for any f € C*(R"),
g € H;([R{”) if [t| <7 and 1 < g < o, cf,, for example, the book by Runst and Sickel [52, Sec-
tion 4.7.1]. This result also follows from Theorem 2.1 for p(x, £) = f(x). The mapping is a bijection

if also D(F~1) € CT(R?)™",
In the following, let R} = {x € R" | x, > y(x")} for some y € C*7(R" 1) with 7 > 0, and let

F,: R" - R" be such that
F,(x) = (,x, —y(x") forallx € R", where X' = (Xy,..., X,_); (411)

note that for both F, and F ! (defined by F,(x)™! = (x',x, + y(x))) the differential is in
CT(RV[)VIXH‘
Moreover, we consider a bounded open set Q C R with C'**-boundary.

Definition 4.3. Letu > —1,7> 0,1 < g < oo, and let u — % <s<1l+r.
1° For the set R} with y € CHr(R" 1), we define

u(s) -1 u(s) ™
u€H; (Ry) = quy €H, ®,),
and provide Hy (s)(@:) with the inherited norm. In other words,
—n —n
HYO®RY) = F2(HLO®RY)). (4.12)

2° When Q is a bounded C'**-domain, each point x, € dQ has a bounded open neighborhood
U C R" and ay € C*7(R"*1), such that (after a suitable rotation) QN U = R}Vj N U. We denote

by Hg (S)(ﬁ) the setof allu € H ; loc(Q) such that for each x,, with a ¢ € C°(U) withp =1ina
neighborhood of x,,, we have

. _ —n
F:Ygu) := (pu)oF, ' € HLO[®)

in the rotated situation, with F, defined by (4.11).

85U8017 SUOWIWOD 8A 181D 3|eal|dde au Aq peuAoB a1 BN YO ‘88N JO S9N 10} A1R1q1T 8UIIUO AB]IM UO (SUONPUO-PUR-SULBYWO0 B | 1A le.q Ul |uo//Sdiy) SUORIPUED PUe sl | 8U) 89S *[£202/70/50] U0 Ariqiauluo Ao|im ‘Bingsusbiey eesienun Aq ZT22T Sw|lZTTT 0T/I0p/L0o A3 |1m AleiqipuljuO'0csyewpUO|//Sdny Woiy pepeojumoq ‘v ‘€202 ‘05.69vT



1316 | ABELS AND GRUBB

3° There are similar spaces defined with H Z replaced by C%, g, ¢’ replaced by o, 1.
From the inclusions (4.8) and (4.9) in the halfspace case we obtain the following.

Proposition 4.4. Let u > —1 and u — ? <s<l+twiths—u<1+rt, andlety € CH(R*1).
There is a function d as in (2.4)ff. such that (with € > 0):

= HZ(@;), fors<pu+ 31,

HM(S)(@”) q
q ¥ e — e —

CHO®)) +dtetH, "(R)), fors>pu+ }1

where (—¢) is active if s — p — % eN.

Moreover, the mapping yg‘ Tu D+ 1)(u/d”)|aR; is continuous:

1
Koo ppu(s) TR famn 1
Y - Hy (Ry)—>Bq (alRy), fors—u—a > 0.

If T > 1, then one can replace d by d,, chosen as a C'**-function coinciding with the distance to
6IR;’ near 6R;, as indicated after (2.4).

There are similar results in C: -spaces with % replaced by 0.

Proof. The properties of H' f; (s)(R;’) follow from (4.1) and (4.8)ff, since the function x/; carries over
to the function d* where d(x) = x,, — y(x’) has the mentioned properties, and since F*~! maps
H ;(R”) and H;_“ (R™) to themselves. Similarly, the properties of C% (S)([R{;}) are carried over from
(4.9). The definition of the trace follows from (4.6) for Q = R}.

If T > 1, we can replace d(x) = x,, — y(x") by dy(x), since d(x) = f(x)d,(x), where f € C’(@:)

is strictly positive, and multiplication with a CT(@Z)-functions maps H fl_“ (@:) into itself. O

For the use of local coordinates, we need to know how the multiplication by regular functions
acts in the transmission spaces.

Proposition 4.5. Let u> —1 and o > 0. If u > 0, assume that c > u and u — % <s<o.If
—1<u<0, assume that c > u+1 and u— & < § < 0 — 1. Then multiplication by a function
@ € C7(R") maps Hg(s)(@}i) into itself.

Consequently, if y € C°(R"1), then multiplication by a function ¢ € C°(R") maps Hf;(s)(@:)
into itself.

1 1 u(s) mmN _ rrsioh . .
Proof. Fors — u € (—?, 5), Hy R, = H;(IRJr),Where the property is well known since |s| < o,
so we can assume § > u. There holds in general:

ve Hf;(s)(@i) = Nve e+ﬁZ_M(Rﬁ). (4.13)

85U8017 SUOWIWOD 8A 181D 3|eal|dde au Aq peuAoB a1 BN YO ‘88N JO S9N 10} A1R1q1T 8UIIUO AB]IM UO (SUONPUO-PUR-SULBYWO0 B | 1A le.q Ul |uo//Sdiy) SUORIPUED PUe sl | 8U) 89S *[£202/70/50] U0 Ariqiauluo Ao|im ‘Bingsusbiey eesienun Aq ZT22T Sw|lZTTT 0T/I0p/L0o A3 |1m AleiqipuljuO'0csyewpUO|//Sdny Woiy pepeojumoq ‘v ‘€202 ‘05.69vT



FRACTIONAL-ORDER OPERATORS ON NONSMOOTH DOMAINS | 1317

Let u eHg(S)(ﬁi), and let ¢ € CJ(R"). To show that gu er;(s)(@i), we must show that
u K
N, (pu) € e+Hq (R%). Here

A (pu) = oA Lu + [AY, plu.

For the first term, A/j_u S e+HZ_M(Rﬁ) by hypothesis, and multiplication by ¢ is known to preserve
this space since |s — u| < o. It remains to show that

(A, glu€etH, "(R). (4.14)

Here we shall borrow some continuity properties shown later in Theorem 5.13 and Corollary 5.14.
The operator [A‘fr, @] may be written as a 1do in (x, y)-form,

(AL, @] = OP(a(x,y,8));  a(x,y,&) = 2{(E)(@(x) — o),

satisfying the global u-transmission condition and with symbol in C?S#(R?" x R").
If u > 0, we apply Theorem 5.13 with T = o, m = u, and s replaced by s/, to conclude that

1y —n —s'
rHIA ol HYETO®RY) — H (RY), (4.15)

when ¢ > u, 0 < 8’ < 0 — u. The operator preserves support in ﬁi since A’i does so. With s’ =
s — u we conclude that when o > u, u < s < o,

Uoa () h —s—H
[N 9] HEO®R)) - et H, “(RD). (4.16)

If u € (—1,0), we apply Corollary 5.14 below with T = o, m = u, and s replaced by s’, to conclude
that (4.15) holdswheno > u + 1,0 < s’ < o — u — 1. Withs’ = s — uwe conclude that (4.16) holds
wheno>pu+1l,u<s<o—1.

For the last statement, we note that when u € H f; (s)(ﬁ;l), then pu € Hf; (s)(ﬁb holds if
(gc>u)oF}j1 € Hg(s)(ﬁi), by Definition 4.3. Here (gc>u)oF}j1 = (qooFy_l)(quy_l), where gooFy_1 €

CZ(IR"), so the statement follows from what was proved in the case of @z. O
The inclusions (4.8)ff. are shown for bounded C'*7-domains as follows.

Theorem 4.6. Let u > —1and u — % <s<twiths —u <, and let Q C R" be a bounded C'*7*-
domain with T > 1. Then (with e > 0)

= H3(Q), fors < u+ é
c H5(Q), ors=pu+ 1,
) A S (417)
CH;(Q)+dge+Hq (Q), fors—,u—EERJr\N,

C HS Q)+ dffetH, "(Q) fors—u— é EN.
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K.

Moreover, the mappingy, : u — I'(u+ 1)(u/ dg )50 is continuous:

1
S—U——
H q

yhHEYQ - B, 10Q),  fors—pu— é > 0.

There are similar results in C5-spaces, with q, q replaced by o, 1.

Proof. We formulate the proof for H ;-spaces; the proof for C?-spaces is similar. We can assume
s>u+ é, noting that the identity is known when s € (u — i, u+ é), and the spaces decrease
with increasing s.

Letu € Hf;(s)(ﬁ) and let x,, U, 7, be as in Definition 4.3 2°. Let € C(U) satisfy Y = o.
Let U’ be the interior of the set where ¢ = 1. By Proposition 4.4 with d = d,,

ou=w+ dge+v =yYw + dge+zpv with pw € Hf](a),z,bv € ﬁz_”(ﬂ), (4.18)

using that multiplication by ¢ preserves the space, by Proposition 4.5.
There is a finite set of points {x,;};—; _; such that [ J; U] > 6Q holds for the associated data

{U;7i>9:> Ul 9;}. Supply these sets with an open set Uy D Q\ U; U] with ﬁg C Q, and let
fori >’ 1’, where the ¢;u satisfy (4.18).

Summation over i gives the statement in (4.17) with d replaced by d,,. (Note that the functions
d, in the different charts are consistent near 00, and their extensions further away play no role
since u isin H Z ’IOC(Q) anyway).

The statement on the trace operator follows from Proposition 4.4 in a similar way. O

Remark 4.7. 1If we replace the assumption 7 > 1 in Theorem 4.6 by 7 > 0, we still obtain the
following local inclusion: If u € Hf;(s)(Q) and x,,U,y,¢ are as in Definition 4.3.2°, then by
Proposition 4.4:

n

ou =w + d*etv withw € H;(@:), vE ﬁz_ﬂ(@y),
where d may depend on y.

Also higher traces as in (4.6) can be defined; we intend to take up their applications in
later works.

The concepts are applied to the fractional Laplacian (—A)® and its generalizations primarily for
a € (0,1), but also higher values of a are of interest. The a-transmission spaces enter as solution
spaces for the homogeneous Dirichlet problem. The (a — 1)-transmission spaces allow the defini-
tion of nonzero Dirichlet and Neumann traces; this is the reason that we have made an effort to
include cases u € (—1,0) in the treatment.

The following commutation result will be needed later.

Proposition 4.8. Let p € C*ST(R" X R") for somet > 0,7 ¢ N,m €R, and ¢ € C;°(R"). Then
there is some q € CTSTO_I(R" X R™) such that

[OP(p), plu = OP(q)u forallu € S(R").

Moreover, if p € CTS™(R" X R"), then g € CTS™1(R" X R") and, if p is even, then q is odd.
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Proof. First of all we have

[P, p]u(x) = Os —/

[ ¢ pe. 0) — L) dy df

=08 /R eI px, )y — x) - ©Cx, y)u(y) dy dE

— 05— /R D p(x,£) - @k, Yuly) dy d

for allu € S(R") and x € R", where ® € C;"([R” X R™)" is defined by

1
d(x,y) = / (Vo)(x + t(y — x)) dt forall x,y € R".
0
Hence

a(x,y,§) = D¢ p(x, §) - D(x,y) forall x,y,& e R" (419)

defines a symbol in CTSTJ LR" x R" X R"; o0) as defined in [10]. Therefore, because of [10,
Theorem 4.15], there is some g = a; € C*S{ L(R" x R™) such that

[P, p]u(x) = Os —/

el a(x, y, Ou(y) dy dé = OP(q)u(x)
RZn

for allu € S(R"), x € R". More precisely,
a;(x,8) = Os—/ e Va(x,x +y,n+&E)dydy forallx,& € R"
RZn

and it follows first from [10, Theorem 4.15] that a; € C*S]";"(R" x R"). In order to see that a;, €
CTS-1(R™ X R™) one uses that

6?aL(x, £)=0s —/ e'iy'”(dg‘a)(x,x +y,n+&)dydn forallx, & eR"
R2n

due to [10, Theorem 2.11], where 6fa € CTSino_lal_l(R" X R™ X R"; 00). Applying [10, The-
orem 4.15] again, we obtain da; € CTS(')',IO_W'_1
TSR X RY),

Finally, we note that, using a Taylor expansion of a(x, x + y,n + &) with respect to 5 (around

0) in a standard manner, it is easy to show that we have the asymptotic expansion

(R"xR") for all « €Ny, that is, g =aqa; €

a (&)~ Y L =0iDsa(x,y, )l

aeNg al &7y

Moreover, a € C*S" 1(R?" x R") if p € C*S"™(R" x R™). Using the asymptotic expansion one
easily observes that ¢ = a; € C*S"™1(R" x R"). Furthermore, one verifies in a straightforward
manner that a and g = g; are odd if p is even. O
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There is a corollary to Proposition 4.8, showing that an operator sandwiched between smooth
functions with disjoint supports acts like an operator of arbitrarily low order and the same Holder
smoothness.

Corollary 4.9. Let p € C*ST (R" X R") forsomet > 0,7 € N, m € R, and let p,1 € C;°(R") with
disjoint supports. For any N € N thereisa qy € CTS{”O_N([R” X R™) such that

® OP(p)ypu = ¢ OP(gn)u forallu € S(R").

(If p € C*S™(R" X R"), then qy € CTS™N(R" x R") and, if p is even, then qy is even for even N,
odd for odd N.)

Proof. Setting ¥, = ¥, we can for N =1,2,... choose a nested sequence of Cl‘)"’-functions Py
with supports disjoint from supp @, such that 3, is 1 on suppypy_; for all N. By Proposi-
tion 4.8, ¢ OP(p)y, = [OP(p), o] = ¢ OP(q,) withq, € CTS;””‘O_l(R" X R"). Since 19, = Py, we
can repeat the argument with

@ OP(p)Y, = ¢ OP(p)Yoh; = ¢ OP(q)¢; = ¢[OP(q,),¥;] = ¢ OP(q,),

where g, € C*'ST' 2(R" x R"). Continuing in this way, with the Nth step being

® OP(p)y = ¢ OP(p)popn = ¢ OP(qn)¥n = ®[OP(qn), Y] = @ OP(gn 1),

shows the main assertion. The last statement follows from the corresponding statement in
Proposition 4.8. ]

5 | NONSMOOTH TRANSMISSION CONDITIONS
5.1 | Transmission conditions for nonsmooth symbols

For the consideration of »)do’s P on open subsets of R” one needs conditions that govern their
behavior at a boundary. There have been many contributions through the times, mainly for
1pdo’s with smooth x-dependence. The transmission property in case of a smooth open set Q
is the property that r*Pet maps C*(Q) n &(R") into C*(Q). Necessary and sufficient condi-
tions for this property have been established in several works, and sufficient conditions have
been introduced under additional requirements (for example, parameter-dependence) — called
transmission conditions. (References are given in Example 5.2 below.)

For some do’s P, r*Pe* does not preserve C*(Q), but maps another space d*C*(Q) into
C®(Q); they satisfy the so-called u-transmission condition, where the above-mentioned case is
the case u = 0.

We now consider nonsmooth situations: P = OP(p(x, £)) is a pdo with symbol p in C*S™(R" x
R™), and it is considered relative to an open subset Q C R" with C'**-boundary. The definition of
the u-transmission condition from [39] and [31] (and [40, Section 18.2] with a different notation)
will here be generalized to be the requirement that the difference between p and a certain symbol
obtained by twisted reflections of the homogeneous symbol terms vanishes to the order 7 at 0Q.
In details:
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Definition 5.1. Let m,u € Rand 7 € R,. Let p(X, £) € CTS™(R" x R") with the expansion in
homogeneous terms p(X, §) ~ ¥ ey, Pj(X, §).

1° p(X, &) will be said to satisfy the u-transmission condition with respect to @z at X, when
there holds for all j € Ny, o € N,

9 p;(X,0,~1) = ei”(’"—zﬂ—f—|°‘|)a? p;(X,0,1). (5.1)

Forn’ = n, X = x, p(x, &) will be said to satisfy the u-transmission condition with respect to @:,
when for all x’ € R"™!, j € Ny, « € N7,

aﬁagpj(x’,o, 0,-1) = ein(m—zﬂ—f—'“Daffag p;(x',0,0,1), for || < 7. (5.2)

2°Forn’ = nor2n,X = xor(x,y), p(X, &) will be said to satisfy the extended u-transmission
condition with respect to @Z, when there is an € > 0 such that for the points X in the region
{0 < x,, < &}, respectively, {0 < x,,, ¥, <&}, (5.1) holds for j € Ny, & € Nj. The condition is said to
be global if all € > 0 can be used.

3° For an open set Q with C!'*7-boundary, analogous conditions are formulated with (x’,0)
replaced by x, € 49, (0, 1) replaced by v(x,), and x = (x/, x,,) replaced by x = x,, + tv(x,), X, €
0Q and 0 < t < ¢ (with ¢ playing the role of x,,).

Note that in 2°, equalities for X-derivatives as in 1° follow simply by differentiating the identi-
ties (5.1) up to order [7]. Note also that addition of an integer to u does not change the formulas;
the conditions depend only on p(mod Z).

We need the extended O-transmission condition in order to apply the results of Abels [4], where
the mapping properties for truncated integer-order operators depend on an extended definition
of Poisson operators.

Example 5.2.

(1) Thecase u = 0. The operators considered by Boutet de Monvel [17], Grubb [26, 28, 29], Rempel
and Schulze [49] are of integer order and satisfy the O-transmission condition with 7 = 0. In
[16] also noninteger-order classical )do’s were included. Grubb and Hérmander [36] treated
operators of arbitrary orders with symbols in S;flé—spaces, giving general conditions that are
necessary and sufficient for the transmission property. Abels [4] introduced a generalization
to operators of integer order with finite C*-smoothness (defining a slightly different version
of the global 0-transmission condition).

(2) General u. Simple examples of symbols satisfying the global u-transmission condition with
respect to @Z are x' (&) = ((¢') +i&,)* and its truly ydo variant 2} (see (2.10)ff.); here
;(io(o, +1) = /1‘1’0(0, +1) = (xi)*. Note that A* is of O-transmission type.

(3) Even symbols. When P is of order m = 2a and even, cf. (2.11), it satisfies the a-transmission
condition with respect to any halfspace, so it in fact fulfills the global a-transmission condition
relative to any C'*7-domain. Examples of operators in this category are: fractional powers of
elliptic differential operators, including (—A)“. (cf. [31, Lemma 2.9 and Example 3.2].) Note
that the symbol p’ = p — p,, considered as a symbol of order m’ = m — 1, is odd. If m = 2a,
hence m’ = 2a — 1, p’ satisfies the a-transmission condition.

The conditions are preserved under multiplication in the following way.
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Proposition 5.3. When p(X,£) € C'S"(R" xR") and p'(X,&) € C*S™ (R" x R"), satisfy-
ing the (extended) p-transmission, respectively, u'-transmission condition, then p(X,&)p' (X, &) €
crsmm (R x RM) satisfying the (extended) (u + u')-transmission condition.

Proof. This follows straightforwardly from the definition, using that C? is preserved under mul-
tiplication. The jth term in pp’ is (pp'); = Y11= ;Prp;, homogeneous of order m +m' — j,
where

pr(X,0, _gn)pl’(X, 0,-¢,) = eiﬂ(m+m’_2(#+,u’)—j)pk(X’ 0, §n)Pl’(X’ 0,&,). m

The O-transmission condition for p(X, &) can also be expressed by formulations in terms of
pX,&,z,) = F 1 2 where it means smoothness from the right.

Theorem 5.4. Let me R and 7 € @+, and let p(X,§) € CTS"™(R" x R"). Then D satisfies the
0-transmission condition with respect to @Z at X((5.1) with u = 0) if and only if r*p(X, &', z,) =
r+7-’§_1_)z p(X, &) satisfies

”6"‘ pj(X,0,z,) € C°°(R+) all j € Ny, € N. (5.3)

When p(X, &) satisfies the extended O-transmission condition with respect to @z, p moreover
satisfies the estimates, for all j, k,1 € Ny, a € Ng_l:

Lk+i-
1250, 05t By &' 2l e, () < Chaad€/Y™ 277, (54)

z58% 051 B &' 2l crwi,, vy < ChtalE yrrThl-lal (5.5)

whereU = {x € R" | x,, € [0,¢)}ifn' = nandU = {(x,y) € R*" | xn,yn € [0,e)}ifn’ = 2n. Inthe
case that p satisfies the global 0- transmlsszon condition with respect to R, the estimates (5.4)~(5.5)
hold true with U = IR + respectively, [R + X IR +

Proof. Many of the ingredients in the proof were already present in [16]. The details we give below
make use of later developments.
First let m € Z. Here (5.2) takes the form

agpj(Xa 0’ _gn) = (_l)m_j_lala?pj(x’ 0’ gn)’ (56)

and clearly holds also with £, and —§,, interchanged (is in some texts in fact written as such),
so it is two-sided, valid also with respect to @i. In [17], and in many later works, for exam-
ple, [4, 28, 29, 53] it is replaced by a condition where p as a function of &, takes values in
the space H =F, _¢ (e*S(R,) ® e~ S(R_)) @ C[£,,] with certain estimates; they imply (5.3)-
(5.5), and vice versa. The equivalence of (5.6) with the H-estimates is shown in [17], and in [28,
Theorem 2.2.5] in a situation with a parameter. We shall not take up further space here with details.

Now let m € R\ Z. First consider the case where m < —1. We study each homogeneous term
in the symbol individually; take, for example, p,. Consider p,(X,0,&,) at a fixed X. It is homo-
geneous in &, of degree m for |£,| > 1. By the rules of Fourier transformation of homogeneous
functions of one variable we have, as shown in detail, for example, in [31, Lemma 2.7] (which takes
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the behavior for |£,,| < 1 into account), that the twisted parity property

pO(X’ 0’ _gn) = einmp()(X’ Os §n) fOI' |§n| > 1’

holds if and only if r* p,(X, 0, z,,) is zero on R, modulo C®(R, ). Likewise, the £-derivatives have
the corresponding twisted parity if and only if r+ "6“ Do(X,0,z,)is zero on R, modulo Ce(R )
This shows the equivalence with (5.3) for j = 0.

The consequences can be further analyzed: Since p,(X, §) is a symbol of order m, one has that

19 €405 Dol . ) < Cioaad€Y™ 217 for k> m + 1~ fal +2,
and hence z*3! 8% 9% BoisinL,, (R)and

L
IZ58% 051" Bolle,, ) < 1258% 05 Pollz,, () < Crpa (€)™ 277, .7)

for such indices. When &’ = 0, the left entry is moreover, a fortiori, bounded for all lower values
of k € Ny, in view of the smoothness for z, — 04 shown above. In particular,

g/po(X 0 Zn) € S(R+) (5-8)

as a function of z,,.

We can extend the estimates to £’ # 0 by a Taylor expansion in &’, using the estimates for £’ = 0
(and handling remainders by use of symbol estimates), as in the detailed proof of [31, Theorem
2.6].

The estimates moreover hold with 6§ inserted, for || < [7]. This shows that estimates (5.4)
hold for p, with 7 replaced by [7]. When 7 = [t] + 0, 0 € (0, 1), we also apply the considerations
to (88 py(X, &) — a° L Do(Y,E)/IX —Y|° for |B| =[], X #Y; these functions likewise have the
twisted parity property allowing to conclude the smoothness for z,, — 0+ of the inverse Fourier
transformed function when &’ = 0, with estimates as above. This can, as above, be extended to
estimates of the type (5.4) with 7 replaced by 0. The validity with uniform bounds in X,Y then
implies that (5.4) holds for p,.

There are similar proofs for the other terms p;.

Larger values of m are included as follows: When a positive integer r is chosen so large that
m — 2r < —1, then the above analysis applies to ¢(X, &) = p(X,§)1 + X_, )" Nowp =g +
El 1 q§' +qé ﬁr. The above analysis carries over directly to the first two terms. The third term
leads to the function r+D§r g, which is also included in the analysis.

For the last estimate (S.g), we use that p — )’ j<s Pj satisfies estimates like (5.7) with m — —co
whenJ — o0, so that when the term is added to the finite sum for j < J, the estimates cover more
of the desired indices, the larger J is taken. O

Corollary 5.5. Let m,u € R and T € R, and let p(X,&) € C'S™(R" x R"). Then p satisfies
the (extended) u-transmission condition with respect to ﬁi ifand only if b(X, &) = p(X, € )/1;” €3
satisfies the equivalent conditions in Theorem 5.4 with m replaced by m — .

One can here replace /1;“ (&) by any other invertible symbol (X, £) € C*S™H(R" x R™) satisfying
the (extended) (—u)-transmission condition, for which 1/I(X,§) isin CTS“([R", X R™) satisfying the
(extended) u-transmission condition.
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Proof. Note thatb = pll” is of order m’ = m — u with homogeneous terms b i =D j}‘;# of degree
m’ — j. The system of identities (5.2) for p is equivalent with the analogous system of identities for
b with m, u replaced by m — u, 0. To check this, it suffices in view of the homogeneity to evaluate
the symbols for £, = +1. Since 2,7(0, £1) = (&i)™# = e¥#7/2, b satisfies

b(X,0,=1) = " by(X,0,1) = py(X, 0, ~1)e/2 — 7"~ py (X, 0, 1)e~H7/2
= e""™/2[ py(X,0, 1) — "2 p (X,0,1)] = 0,

by the hypothesis on p,. The lower order terms and derivatives are checked similarly, and then
Theorem 5.4 readily applies.
The last statement is likewise straightforward, in view of Proposition 5.3. [

As a special case, the even 2a-order symbols fit into the setup as follows.

Example 5.6. Leta € R, and let p(X, &) € CTS%(R" XR™). Assume that p is even, cf. Example
5.2. Then p satisfies the global a-transmission condition with respect to [R{i with m = 2a, and

b=pa®isinC’S 2(R" xR") satisfying the global O-transmission condition with respect to ﬁi.

5.2 | Mapping properties over the halfspace and smooth sets

In preparation for showing mapping properties of do’s P = OP(p(x, )) truncated to the
half-space R”, we shall consider the Poisson-type operators that arise in connection with the
truncation. Recall that there holds (as a version of Green’s formula):

k-1 _1—
Dfle+u = e+D’r§u - 12120 yiux) ® Dfi =5(x,),

cf., for example, [28, (2.2.39)]. (We are here using the complex trace operator yju(x’ )=
Dﬂu(x’ ,0)=i"J (aiu)l xn=0') Then when r*P is applied to the extension by zero of a normal

derivative of a functionu € S (@Z) — which will usually have a jump at x,, = 0 — one finds
. k-1 1 k-1
rtPDketu — rtPetDfu = —lr+PZl=0 Yu®DE8(x,) = —LZZZO Kp j—1-1¥Us
with K, ,v = r*P(u(x") ® D}, 6(x,,)). (5.9)

The application of the ®do P = OP(p(x, £)) is understood as an application by Fourier trans-
formation for each fixed x (considered as a parameter). If p is independent of x,,, satisfying the
O-transmission condition with respect to @:, K, ¢ is the Poisson operator with symbol-kernel
k(x',z,,&) =rtp(x', ¢, z,), as defined in [17, 28, 29]. If p depends on x,,, one can for smooth
symbols use an expansion derived from the Taylor expansion of p in x,, to define the operator,
but in case of limited smoothness in x, this is unsatisfactory. In [4], this point is solved for non-
smooth symbols by allowing a more general definition of Poisson operators incorporating the
x,-dependence, and requiring the global O-transmission condition for the involved #do’s.

The estimates in Theorem 5.4 assure precisely that when p(x, &) € CTS™(R" x R") satisfies
the global 0-transmission condition introduced in Definition 5.1, the function r* p is a Poisson

symbol-kernel as in [4, Definition 4.1] with d = m, lying in the space CTS{”O(IR”X[R”_I, S(R +))

85U8017 SUOWIWOD 8A 181D 3|eal|dde au Aq peuAoB a1 BN YO ‘88N JO S9N 10} A1R1q1T 8UIIUO AB]IM UO (SUONPUO-PUR-SULBYWO0 B | 1A le.q Ul |uo//Sdiy) SUORIPUED PUe sl | 8U) 89S *[£202/70/50] U0 Ariqiauluo Ao|im ‘Bingsusbiey eesienun Aq ZT22T Sw|lZTTT 0T/I0p/L0o A3 |1m AleiqipuljuO'0csyewpUO|//Sdny Woiy pepeojumoq ‘v ‘€202 ‘05.69vT



FRACTIONAL-ORDER OPERATORS ON NONSMOOTH DOMAINS | 1325

defined there. The general definition of a Poisson operator from a symbol-kernel k(x, ¢’,z,) €

CTST (R <R, S(R,))is

OPK(k(x, &', z,))v = / e R(x, &, z,)0(E) dt’ (5.10)

Rn—1

Zp=Xn

For the operator in (5.9), the calculation is, when v € S(R""!) and rules for Fourier
transformation of distributions are applied:

K, =r"P(x") @ D)8(x,)) = r*F; . [p(x,&, §)0(ENE] ]

E-x
= rt L D] B, & 20N,
= Pl (8 2 )0, = OPK (R, (x. € 20,
where

Bpr(6, 82,0 =1 P [P, €86 = D] p(x.€',2,), (51

a Poisson symbol-kernel in CTSI”O+ "(R"xR"1, S(R +)). We have shown the following lemma.
Lemma 5.7. Let p(x,&) € CTS™(R"XR") satisfy the global 0-transmission condition, let r € N,
and define K, by (5.9). Then K, is the Poisson operator OPK(IEP,,), where Ep,r(x,f’,zn) €

CTSTH(R"XR"1, S(R,)) is defined by (5.11).

For integer-order nonsmooth do’s there is a deduction of such Poisson operators in [4, Lemma
5.4].

We shall now show that when P = OP(p(x, £)) is a C*-smooth pseudodifferential operator sat-
isfying the extended O-transmission condition w.r.t. @i, then the truncated version P, = r*Pe™

preserves regularity in @1 up to orders dominated by 7. There holds as follows.

Theorem 5.8. Lett > 0,1 < g < oo and m € R. When P = OP(p(x, &)) with p € C*S™(R"xR")
satisfying the extended 0O-transmission condition according to Definition 5.1, then the truncated
version P, = r*Pe™ satisfies

| ==stm —s . 1
P, : Hq RY) - Hq(IRﬁ), for|s| < Twiths +m > -7 (5.12)
. —n —S
P, : H;er(RJr) - Hq(IRﬁ), for|s| <t

Proof. Assume in the following that |s| < 7. The second statement is an immediate consequence
. . —i,
of Theorem 2.1 since H;”"(IRJr) is a closed subspace of H;”"(IR"). When —% <s+m< é, the

first statement also follows immediately, since I?f;m([Rﬁ) identifies with H f]”"(@i) then.

To show the first statement for higher s, we use a method similar to that of [4, Lemma 5.6]. (The
iterative proof in [36] does not adapt well, since commutation of P with D; introduces a decrease
in the Holder smoothness.)

Assume to begin with that P satisfies the global 0-transmission condition. Let us show that the
estimate holds for s + m € (k — é,k + é), k=1,2,.. with [s| < 7. Fix k and write s = s, + k,
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Sp+me (—é, é). Setting r(§) = (Z;‘zl é’}”‘ +1)~!, we write p as a sum of three terms:

p(x,§) = p1(x, &) + pa(x, §) + p3(x, §),
PiCe§) = X P OFOE, pax,©) = Pl IO, ps(x,§) = px, Dr(E),

defining operators P; = OP(p;(x, §)) satisfying the global 0-transmission condition.
We can write

+p 4+ - N+ vk ,+ — §VL 4+ ky o+ Tk
r*Pe" = Z}_er OP(pré’j)Dje = ijlr OP(pr&’j)e D;,

. . o . —m+
since the tangential derivatives D; commute with et. When u € Hm % ([R") then D’.‘u €
m+50

(R”) ~ ers(’([R ), so since OP(pré’k) is of order m — k, r* OP(prgk)eJr maps H (Rﬁ)

to H " q (Rﬁ). Summing over j we see that r* P,et has the desired mapping property.
For P,, we have that

rtPyetu=r" OP(prgylf)D’;eJru =7t OP(pré',’f)eJrD’;u +rt OP(prfﬁ)[D’;, etlu.

The term r* OP(pré rlf )e+D,’j u is treated like the terms in P, defining an operator with the desired
mapping property. The other term satisfies, by (5.9) applied to OP(pré 1; ),

rt OP(préMDE, e lu = —ir* OP(prfk)zl Oylu®Dk =ls(x,)

21 -0 prf"k 1Yt

with Poisson operators defined by Lemma 5.7. Here K prek k—1-1 is a Poisson operator with symbol-

— s+m—I—1 —
kernel in CTS’lno_l_l(R”xR"‘l, S(R,)), hence continuous from B, Y(R*1) to H;(Rﬁ) for

1
s s+ E
|s| < 7, by [4, Theorem 4.8]. The trace operator y[c goes from H :rm(Rﬁ) to B, (R"1) for

anys > —m + l, so K prek, k117U € " (IR” ). Altogether, P, has the asserted mapping property.

The term P; is easily treated: Since P3 is of order m — 2k, it maps Hm 2kJrs"H((lRi") =
Hm k+sg

+k —k+ +
FT®Y to HYY(RY). Here H, T (RT)D H, @) = HIT(®Y), so rtPset maps
— —so+k —m+k —sg+k
m+S°([R{”) to HSOJr (R%), and a fortiori Hm+ +SO(IR%") to HS0+ (R2).
We have then obtalned (5.15)for all |s| < Twiths + m + - € R, \ N. The intermediate integer

values are included by interpolation. This ends the proof i 1n the case where P satisfies the global
O-transmission condition with respect to @1.

Finally, consider the case where the 0-transmission condition is only satisfied for x with 0 <
X, <& somee > 0.Letn(x,),(x,) € C8°(IR), supported in (—¢, €), equal to 1 on a neighborhood
of 0, and such that 7 = 1 on a neighborhood of supp ¢,. Then

The term P, satisfies the global 0-transmission condition, and hence has the asserted mapping
. —s+ . — e
properties. For the term P5, 7t Pset actson H :1 m(Rﬁ) ason H 3+m(Ri), so it likewise has them. For
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the middle term P,, we note that since 1 — # and ¢, have disjoint supports, we can by Corollary 4.9
for any large N write

P, =(1—-n)PS, = (1-n)Qy,
where Q has symbol in C*S™ N (R" x R"). Now e+ﬁ;+m(ﬂ%ﬁ) C H;M(R") for some large M for
the considered values of s, and this will be mapped into Hfl“s (R™) (any 6 > 0) by P, when N is

chosen large enough in the above representation, by Theorem 2.1. O

Asacorollary we get the mapping property for operators satisfying the extended u-transmission
condition.

Corollary 5.9. Lett > 0,1 < g < o0, and u > —1. Let P have symbol C*S™(R" XR") satisfying the
extended u-transmission condition with respect to ﬁi. Then

+p . ppHlmts) e
r'P: Hy R,) — Hq([Rii), (5.13)
holds for |s| < .

Proof. By Corollary 5.5, the ydo B = PA;“ , of order m — u, satisfies the extended O-transmission
condition. By Theorem 5.8,

r*B: e+ﬁs+m_M(IR”) — H (R"), for Is| < Twiths+m—pu>—2<,
q + qy T+ q
. —y —n —S
r*B: Hf;rm “(IR+) - Hq(Rﬁ), for |s]| < .
Let |s| < 7. Recalling that H“(MH)(@H) = A_“e+ﬁs+m_u([R”) fors +m — u > —<, we infer that
g q + + q + M q

m—u+s

+p — pFRAH - ATH+TT
rYP=r BA+.A+qu

_ pyu(m+s) =1 s
R?) = HY "R - H (RY),

for |s| <t with s +m — u > —%. Fors+m—pu< é, we use that Hg(m”)(@i) = H;"“(@Z) by
definition. O

There is in particular a consequence for operators as in Example 5.6.
Corollary 5.10. Let7 > 0and 1 < g < co. When P is even of order 2a > 0 as in Example 5.6, then
. 2 —n —=s
rtP: HIP®R)) - H(RY), forls| <. (5.14)
The result can be generalized to bounded smooth domains by tools that are already available in
the literature, namely, the result of Abels and Jiménez [8] that C*S™(R" X R") is preserved under

C*-transformations, and the localization explained, for example, in [32].

Theorem 5.11. Lett>0,1<q < o0, and u > —1. Let QO C R" be a bounded C*-domain, and
let P = OP(p(x, &)) with p € C*S™(R"xR") satisfying the extended u-transmission condition with
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1328 | ABELS AND GRUBB

respect to Q. Then the restricted operator r* P has the mapping property:
rtp: HY(Q) - H, (), for|s| <. (5.15)
Proof. Fors+m —u < %, the statement follows immediately from Theorem 2.1. For s + m — u >

—&, we use local coordinates and a subordinated partition of unity, as in [32, Remark 4.3ff.]. It is

described there how Q has a cover by bounded open sets U; with diffeomorphisms x; : U; — V;
such that U; n Q ismapped to V; NR",i =0,...,I;, and there is a subordinated partition of unity
{;}j=0,..; where for each pair j, k there is an index i = i(j, k) such that ¢;, ¢, € C°(U;). Choose
also §; in C3*(U) satisfying {0, = ¢;. Letu € Hg(m”)(ﬁ), and let u, = o, u = ¢, uy, then Pu =
D ik ng“ iUk Here the operators Pj = ¢ jPQ’ x Carry over via x; to operators 1_’jk acting over V;
with symbols in CTS?*(R" x R") in view of Proposition 4.8 and [8], satisfying the u-transmission
condition with respect to @i, and uy, carries over tou, € Hy Wﬂ)(@i). Now we apply Corollary 5.9

to each P KUy carry the contributions back to Q, and sum over j and k to end the proof. O

A similar result holds for Q = [R; wheny € Cb°°(R”_1).

5.3 | Mapping properties of (x, y)-form operators over the halfspace

As a preparation for the treatment of operators on nonsmooth sets we consider operators with
symbols in (x, y)-form on R’. We begin with an observation on remainders:

Corollary 5.12. Letr, and m < t be as in Corollary 3.3, with | < t, and let u > 0. Then
-1 —n —s
rt OP(DEr,(x,y, ) : Hy " IY®Y) - H (R?)

isboundedif0< s<tands+m<t,ands+m<u+1+ cl]' Moreover, there is some k € N and
Cs,my > 0 independent of a such that

a
” OP(Dg rol(xi yﬁ g))IIE(H(/;((m_l"'3)+)(@i)’ﬁ‘;(Ri)) < CS,m,ﬂ|a|k,CTSTO'
Proof. We use that
u((m=I+s),) ;=hy _ pp(stm=1), —=n
H) Q@) =BT ®Y)
since(m—1+s), <u+ é. Hence
—1 —n —=5
1 OP(DEr(x, 3, ) Hy "R - Hy®RY),

with the mentioned estimates, because of Corollary 3.5. O

‘We now show a mapping property for restricted (x, y)-form operators, with limitations on both
u,m, and s.
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Theorem 5.13. Let 1<qg<o0, >0, 0Ssus<m<rt,and uy—m<s<t—m, and let a €
—n
CTS™(R?" x R™), satisfying the global u-transmission condition with respect to R + Then

. prm(ms) fogd
rt OP(alx, y, £): Hy ™ (R}) - H (R?)

is bounded. Moreover, there is some N € N and C > 0 such that

S,m,u,q

r* OP(a(x,y, misy =n.=s, . <C aly crgm . 5.16
” ( ( y 5))”£(Hg¢( +)(R+),Hq(R+)) s,m,,u,ql |N,C SLO ( )

Proof. We will prove the statement in the cases s = u — mand s = 7 — m — ¢ for € > 0 sufficiently
small. Then the general statement follows by complex interpolation since s + m > u > u — %, cf.

Remark 4.1.
Case s = u — m: In this case we have

n —n ]
H‘/;(m+s)(R+) — Hg('u)(R_'_) = Hg(R+) C Hg([R”)
and
= —H—m
rt OP(pa(X, %’)) : H’g(Ri) - Hq (R:l_)

by Theorem 3.4, using that |[u —m|=m—-u<m<7and u <.

Case s =7 —m —¢, ¢ > 0 sufficiently small: We can assume 7 —m ¢ N without loss of
generality. (Otherwise replace T by some 7/ € (s + m,7).) Then k :=[s] = [t —m], if ¢ >0 is
sufficiently small.

First we consider the case k =0. Then 0 <s=7—-m—¢<7—m <1l We use again the
expansion in Corollary 3.3 with [ = [m]. Here Theorem 3.6 yields:

— —=5
r* OP(DEr,(x,y, )1 Hy"™(R)) & e*LyRY) » H (R)

because ofD?ra IS CT‘[m]S%—[m](RZ” xR") and s < 7 — [m] — (m — [m]) = © — m. Moreover,

r* OP(p,(x, £) : HY ™" @R - H, (RY)

by Corollary 5.9. This shows the case k = 0.
Next we consider the case k > 1. We shall use that s = s’ + k with s’ € [0,1) and

—s 8 —
vE Hq(Rﬁ) = Jdve Hq(lRﬁ) forall || = kand 8 =0,
with corresponding norm equivalences. Let |§| = k. The composition of the differential operator
65 with rt OP(a(x, y, £)) is a finite sum
k
85rt OP(a(x,y, ) = Y, (£)r OP@la(x,y, )£V 7) = Y r* OP(ag ;(x, 3, §)),
0<y<p Jj=0

where ag ;(x,y,£) € CT-ismtk—j(R2" x R"). Here the result for the case k = 0 yields that

ks —i) —n —s’
r* OP(ag): HA™ @R} - H, (R")
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1330 | ABELS AND GRUBB

sinces’ =s—k<t—j—(m+k—j)=r-m—kandm+k—j<t—jduetok =[rt—m]<
T — m. This treats the case |B| = k. For the case |3| = 0 we apply the first case directly in a
similar way.

Finally, the last statement is a consequence of the closed graph theorem. More precisely, let

CTSZ‘"(IRZ” X R") :={a € C'S™(R*" x R") | a satisfies the global u-transmission condition}

and consider the mapping

OP, : C°S™ (R™ X R") cmﬁ’"*”@b,ﬁf}mg» : a e rtOP(a(x,y, £)).

Note that CTSL”N([R{Z” X R™) is a closed subspace of the Fréchet space CTSi"O(IRZ” X R™) and
therefore a Fréchet space. If (a;),cn C CTSZ“,”(RZ” X R") is such that
G ~ oo @ INCTST (R XRY),
. ), —Nn . =S
r* OP(a(x,7,8)) =40 A in LCHA®R)),H LR,
then foranyu € £, N &’ and a suitable subsequence

rt OP(ai(x,y, O)u(x) =4 o Aulx) for almost every x € R'}.

Moreover, using the representation in Theorem 3.1 of OP(a(x, y, &))u(x) with a replaced by q, it
is easy to observe that

rt OP(a(x,y, E)u(x) =4 r* OP(a(x,y, &))u(x) for all x € RY}.

Hence Au(x) = r* OP(a(x, y, £))u(x) for almost all x € R and allu € &N &'. This shows the

closedness of OP, since £, N €’ is dense in H} (m“)(@i). Hence OP, is continuous and therefore
bounded, which yields the last statement. O

Also cases where y and m are in (—1, 0) can be included, with a loss of Holder-regularity by one
step.

Corollary 5.14. Let 7 >0, and m > u > —1, and let a € C'S™(R** x R") satisfy the global
u-transmission condition with respect to Ri. Ifm<t—landu—m<s<t—m-—1,then

r* OP(a(x,y,£)) : H{"™®R}) - H (R")
is bounded. Moreover, there is some N € N and C; ,,, ,, > 0 such that

rt OP(a(x,y, mas)=n.=s, o < C aln cram . 5.17
I (alx,y 5))”[1(Hf;( +)(R+)’Hq(R+)) smpul@n.c s (5.17)

Proof. We use that by definition,

ulm+s) oty =1 = () S —H _ =1 gyt D(m+s+1) 7
Hq (R+) T+ e Hq (RD - “+Hq (R+)’
where E} =3, +OP((¢")). Here OP((¢')): HY ™" D®RY) - HIHDI®RT) since the

operator commutes with e*. Thus for every u € Hf;(m“) (@2) there are v € H((I“ +1)<m+s+1)(@1)
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andw e H é” H)(MH)@Z) (depending continuously on u) such that u = 9, v + w. Moreover,
rt OP(a(x, y,§))d, v =r" OP(a(x,y, §)i§,)v —r* OP@, a(x,y,&))v,

where a(x, y, £)i§, € CTS™(R?" x R") and 6, a(x,y,§) € CTLS™(R?" x R™") satisfy the global
(u + 1)-transmission condition. Considering ayn a(x,y, &) and a(x,y, £) as symbols of order m +
1, we get from Theorem 5.13 that all three maps r* OP(a(x, y, £)i&,), r* OP(, a(x,y, £)), and
r* OP(a(x,y, £)) are bounded from Hé““xmﬂﬂ)(ﬁb to EZ(RD, when7>0,0< u+1<m+
l1<t,and(u+1)—(m+1) <s<7—(m+ 1). Inview of the assumption —1 < u < m, the latter
conditions reducetom < 7 —1, u —m < s < 7 — m — 1. Then when they hold,

rt OP(a(x,y,&))u = r* OP(a(x,y, £)i, v —r* OP(9,, a(x,y,&))v + rt OP(a(x,y, ))w

belongs to ﬁZ(Rﬁ), and the corresponding map is bounded.
The last statement follows likewise from Theorem 5.13. O

The results can be generalized to symbols satisfying the extended u-transmission condition.

6 | THE HOMOGENEOUS DIRICHLET PROBLEM ON NONSMOOTH
DOMAINS

We shall now apply the analysis to the homogeneous Dirichlet problem for those ¢do’s that are
close generalizations of the fractional Laplacian, namely, operators P of order 2a with an even sym-
bol. As already noted, they satisfy the global a-transmission condition with respect to any choice
of normal coordinate. The homogeneous Dirichlet problem is, for strongly elliptic operators,

Pu=fonQ, suppucC Q, (6.1)

where the solution u is sought in H*(R"), and it is known in the smooth case [31] that it is Fred-
bt ; g
holm solvable for f € H (Q), with u € Hg(Hza)(Q), when s > —a — &. Our present aim is to

extend the regularity result to symbols p and open sets Q with C'*7-boundary, for s as large as
possible relative to the Holder exponents.

6.1 | Coordinate changes at a boundary, boundedness over
nonsmooth domains

AsinSection4.2,R} = {x € R" | x,, > y(x")}forsomey € C**(R"!)withz > 0,and F, : R" —
R" is a C1*7-diffeomorphism such that Fy(R;‘) = R’. We take F,(x) = (X', x,, — y(x')) forall x €
R",where x’ = (x,, ..., x,,_;). Moreover, let p € C*S?**(R" x R") be even and 7 > 2a and let p, be
the transformed operator:

(P u)(x) = (P(uOFy_l))(F},(x)) = (F;PF;’_lu)(x) for allu € S(R"), (6.2)
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and let ||y || c1(gny < 1o for some ry, € (0,1]. We assume for simplicity that r,, is so small that
sup |VF,(x) —I| < % (6.3)
XERM

Then one obtains by the results of Section 3 that for all u € S(R") and x € R"

P,u(x) = Os— /R” /W ei(x_y)'gq},(x,y, Hu(y)dy dé&, (6.4)
where

4,53, 8) = PUF, (), A, (x,y) T E)| det A, (x, I det V, E, ), 63
1
Ay = [ VG i)
0

forallx,y,£ € R". Here qy(x,y, SHe C’S;”O(IR{Z” X R™). Moreover, forevery0 < 7/ < Tandk € N,
there is some C), independent of y and p such that

min(t—7’,1)
19y = Pl v 52 anspmy < Cull¥ llgriegn-iy [Plics1,cos2 (mansmy (6.6)

forall y € C**7(R"™1), ||yl c1+e(gn-1y < Fo, since

”F}, - ld ||CT(RV1) S C”y”clﬂ'(Rn—l), “A)/ - I“C‘L’(RanVI) S Cll)/”cl#—‘r(uyt—l).

In order to apply the results to the nonlocal equations on R;‘, we have to extend (6.2) and (6.4)
toueH S(HZQ)(@Z). First of all, OP(q,) extends to a bounded linear operator from H(R") to

Hq‘“(R”) because of Theorem 3.4, due to 0 < a < 2a < 7. Moreover, F;j and F;’_l map Hg(IR") to
itself since 0 < a < 7. Because of det DFy(x) =1,

/ (F;w)()(x) dx = / u()(E; o)) dx forallu,v € SR,
RA R

Hence F;," and F}’f 1 map Hq‘“(R") to itself as well. Therefore we obtain
Pu= F;"PF;"_Iu = OP(g,(x,y,E))u (6.7)

for all u € HJ(R™). In particular, we obtain the identity for all u € Hg(a)(@i) = Hs(@i), and
conclude

r+F;‘PF;"’_1u =r" OP(q,(x,y,))u

forallu € H;’(a)(@i). Note that Hg(”za)(@b C Hg(a)(@i) forany s > —a.
In the case of a classical even symbol p this leads to following.

Theorem 6.1. Let p € CTS**(R" X R") be even, where 0 < a < 1, lety € C'**(R" ) and N < 1,
let q, be the transformed symbol (6.5), and let P, = OP(q,(x,y,£)). Then g, € C*S**(R*" X R")
satisfies the global a-transmission condition. Moreover, with 1 < q < oo,

—n —S
r*P, = r* OP(q,(x,y,£)): HI*P(®R)) — H(R")
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is bounded for any s € R such that —a < s < 7 — 2a. Furthermore, for any r, > 0 there is some
c > 0,0 > 0and k € N, independent of p and y such that

S,10,9
8
I, = OP(PC D ot 7y < Corna W Moy Pliccrsisansary (69)
provided that ||y || o1+ < 1.

Proof. Since p is even, it is easy to observe that g,, is even as well. Therefore g, € CTS?%(R?" x R™)
satisfies the global a-transmission condition and we can apply Theorem 5.13 to g,.. This implies
the statement for the mapping properties of rt OP(q,(x,y, £)). To show (6.8) one chooses some
7! € (0, 7) sufficiently close to 7, 6 = min(r — 7/, 1) and applies (5.17) for r+Py —rt OP(p(x,§)) =
rt OP(g,(x,y, &) — p(x, &) and with 7’ instead of 7. Moreover, one uses (6.6). O

Corollary 6.2. Let0 < a < 1and 7 > 2a, and let p € C*S?>*(R" x R") be even. Then P = OP(p)
maps

+p . pra(s+2a) " 7 rmon
r'P: Hg (Ry) - Hq(Ry),
continuously for —a < s < 7 —2a.

Proof. Follows directly from Theorem 6.1, since F}’,"(H;(Hza)(@’i)) = HZ(HZ“)(@:), using that

F},_ly = F*, maps H}(R") to itself (since |s| <1+ 7). O

Corollary 6.3. Let0 < a < 1 and T > 2a, and let p € C*S**"1(R" x R") be odd. Then P = OP(p)
maps

+p. a(max(a,s+2a-1)) ;5" 7 ron
rtP: H ®R,) — H (RD),
continuously for —a < s < 7 —2a.

Proof. We first consider the case that max(a, s + 2a — 1) = a, thatis, s < 1 — a. Then
a(max(a,s+2a-1)) 5™\ _ rra/gh
H, (lRy)—Hq(IRy)
and
rtP: HYR) - H.(R")
A 4 a vy

because of Theorem 3.4, =7 < —a < s<T—2a <7, p € CTS** (R" x R") C CTSf’as(IR" X R™),
and |a —s| < 7.

Next we consider the case s > 1 — a. Then max(a,s+2a—1)=s+2a—1and 7 > s+ 2a >
1 + a. We use that

fEH,®) < 6if €H, R} foralllal<1,

and write %P = OP(a,(x, y, §)) for some even a, € C*™"15%¢(R" x R"). In the case 7 > 1 + 2a,
Corollary 6.2 implies that

—s—1

rt OP(ag(x,y,§): H{ P V®)) - H (RD),
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dueto2a <t—1and —a <s—1<7—1-2a.In the case 7 < 1+ 2a we use that a,(x,y,§) =
qy(x,y,g)(ié’)“ +09%q,(x,y, &) if |a| = 1, where qy(x,y,é’)(ié’)"‘ € CTS?%(R" x R") is even and
6%q,(x,y,£) € CT152271(R" x R"). Again using Corollary 6.2 implies that

r* OB(g, (x,y, ) : HI V@) — H, (R,
dueto2a < 7and —a < s—1 < 7 — 2a. Moreover,
+ a . @)™ _ rrarpn 1. on
r OP(d5q,(x,y,8): H 7 (Ry) = Hq(Ry) - H, (Ry)

becauseof —a<s—1<7t—1l,a<7t—1landa—s+13>2a—1duetos < 7 — 2a < 1. Altogether
this yields the desired mapping properties. O

For general domains we obtain the following theorem.

Theorem 6.4. Let0 < a < 1andt > 2a, let Q be a bounded C'**-domain, and let P = OP(p(x, £))
where p € C*S?*(R"XR") is even. Then

rtP: H{P9(Q) - H (Q) (6.9)
holds for —a < s <17—2a,1< g < 0.

Proof. Letu € Hg(s+2a)(§) and let xo, U, 7, be as in Definition 4.3 2°. Let ¢ € C°(U) satisfy
e = ¢.Let U’ be the interior of the set where ¢ = 1.In the translated and rotated situation, where
the objects will be marked with an underline, we then have that pu € H, (s+2a)(|R;); and then by
Corollary 6.2, r*P(pu) € I?;(R;}), and also r*P(pu) lies there. Thus in the original position,
rtyPou € EZ(Q).

By Corollary 4.9, (1 — $)Ppu = (1 — ) OP(qy)u with gy € C*S{ N (R" x R") for arbitrarily
large N. Take N > 7 + 2a. By Theorem 2.1, OP(q,) maps Hf]““‘N([R”) into Hy(R") for |s| <.
When s € [—a, 7 — 2q), Hg(s+2a)(5) C Hg(a)(ﬁ) = H(‘;(ﬁ) is thus mapped by r*(1 —3) OP(qy)
into HZ(Q).

Altogether, we see that r*Ppu € EZ(Q).

.....

.....

belongs to Hg(”za)(ﬁ) by Proposition 4.5. Moreover, g;u = ¢;o;u for i > 1, where the initial

considerations apply to ¢;u to show that r*Pp,o,u € EZ(Q).
Summation over i gives the mapping property for u. O

6.2 | Elliptic regularity in an almost flat curved halfspace
We now turn to the study of regularity properties of solutions of elliptic problems in this context.

Also here, we restrict the attention in the present paper to even operators; this suffices for the
treatment of (—A)“ and its pseudodifferential generalizations.
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In the following let p € S?*(R" X R") and p € C*S?%(R" x R") be strongly elliptic and even,
and assume that for some1 < g < 0 and s > 0

rt OP(p): Hg(t”a)(@:) N ﬁ;(Rﬁ) is invertible for t = s, ', (6.10)

where s’ :=min(s — 1, —a). Moreover, let y € C1*7(R"*1), R} ={x €R" | x, > y(x")}, and let

F,: R" — R" be as in the preceding section. For the following it is assumed that s +2a < 7.

Finally, let P, be defined as in (6.7).
Proposition 6.5. Let p € S?*(R" X R") and p € C*S?**(R" x R") be strongly elliptic and even, with

p invertible as in (6.10), and let 0 < s < T — 2a. There are some k € N and § = §(p, s,q) > 0 such
that

+p . pra(t+2a) " Tt ron
r'P,: H, (R+)—>Hq(R+)
is invertible fort = sandt = s’ := max(s — 1, —a) if
|ﬁ_ p|k,cfsf%(Rann) < 6 and ”7”C1+7([R"*1) < 8.

— —t
Proof. Because of (6.10), there is some ¢ > Osuch thatr*P, : Hy (Hza)(Ri) - H (R})isinvertible
fort =sandt = s, provided

r+OP_—r+P a(s+2a) =1\ 775 oy < E-
I (p) V”L’,(Hq( POR ) H (R)

Moreover, because of Theorems 5.13 and 6.1, there are some k€N, 6 >0 and some C >0
independent of p and y with |ply crg2amnxgrn) < 1, |7 [lcr4wny < 1 such that

+ =) _ T
”V OP(p) r Py HE(H:;(HM)(ﬁi)’H;(RZL—))
+ ™y + + +
< ”r OP(p) -r OP(p)”£(Hg(t+2a)(ﬁ:’—)’ﬁtq(Ri)) + ”r OP(p) -r Py”[:(Hg(H-Za)(ﬁ:)’ﬁtq(Ri))

= 6
< Clp - plk,CTSIZ%(R”XR”) + C”y”C1+r(Rn)

for t = s and ¢ = s’. Hence there is some & > 0 such that the right-hand side is smaller than ¢,
provided |p — p|k,czsf%(Rann) < dand |yl ci+rrn-1y < 6. O

Next, we apply the preceding result to obtain a local regularity result in IR;}. Denote {x € R" |
|x = xo| <1} =B,(xp).

Theorem 6.6. Let 0 < s < T — 2a. Assume that y € C'*7(R"~1) satisfies y(0) = 0, Vy(0) = 0, and
a(s’+2a) ;5 .
thatu € H, (Ry) is a solution of

rfPu=f inR}
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forsome f € Lq(Rg) with leRl(O) € ﬁ;(ﬂ%}rj N Bg, (0)) for some R, > 0, where s’ = max(s — 1, —a).
Then there is some R > 0 such that

u=v in IR;’ N Br(0)

for some v € Hg(”za)(@;l).

We assume for simplicity that R; = 1. By a suitable scaling in space, one can always reduce to
this case. The idea of the proof is to rescale in space and localize in order to apply the results for
operators close to a constant coefficient pseudodifferential operator, that is, Proposition 6.5. For
the rescaling we define for R > 0

Yr(x") = R7'n((x', 0)y(Rx"),
Pr(x, &) = n(x)py(Rx, §) + (1 — n(x))py(0, §),
p(x, &) = py(0, ),

forall x,& € R", x' = (xy,...,X,_1), Where 7 € C(R™) with 7 =1 on B;(0) and supp7 C B,(0).
To assure that OP(p) is invertible, we can in view of the strong ellipticity assume that p,(0, &)
has been modified for || < 1 such that Re p,(0,&) > ¢ > 0 for all £ € R" (also done for py(x, &)
with x in a small neighborhood of 0). Then P= OP(p,(0, &)) satisfies (6.10), cf. Example 4.2.
Furthermore, forv: R" — C and R > 0 we define ozv : R” — C by

(ox0)(x) = V(RX) for all x € R".
Define moreover
qr(x, &) = po(Rx, R™'E) = R™**py(Rx, £),

and note that since py(Rx,R™'&) = R=2%p,(Rx, &) for all |£| > 1 and R € (0,1] by the homo-
geneity, gp(x,§) = 0 for all [§] > 1, R € (0,1]. Hence gg € C*S]°(R" x R"). Now P, = OP(p,)
satisfies for all x € R" and suitablev : R" — C:

oR(Pov)(x) = /

R

R DU = [ (R RIDTNE) .
Since pg(x, &) = py(Rx, &) if |x| < 1, this may by use of gy be written:
op(Pov)(x) = R24(OP(pp)o(v))(x) + (OP(qr)ox (0)(x) for |x| < 1. 6.1)
Moreover, we show a technical lemma in order to control remainder terms.

Lemma 6.7. Foranyk € NandR € (0,1],

Rmin(l,r) Rmin(l,r).

lYrllc1+z@n-1y < C |pr — ﬁlk,CTSf%(R"XR") <C

Proof. Using y(0) = 0, Vy(0) = 0 we have

1
y(Rx') = /0 (Vy(sRx') — Vy(0))ds - R,
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and therefore

sup |y(Rx")| < C|R|"+min(@D),

[x"]<2
since Vy € CT(R"™!). Now let « € N} ! with |a| < 1 + 7. Using
3% (y(Rx")) = RI*I(8% y)(RX"),

one obtains in the same way

sup 3% (7 (Rx'))| <

|x']<2

C|R|1+min(r,1) if |O(| =1,
CIR[1l < C|RVFminDif || > 2,

since 8%y € CTH-lel(R"71), 8% y(0) = 0if |a| = 1,and R < 1.
Now let |a| = 1 + [7]. Then one obtains

193, (r(Rx")) = 87, (y(Ry"))

sup
|11y 1<2,%" " [x" = y'|*
3% y)(Rx")) — (3% y)(RyY'
¢ ap JEDRD DR e
X!y €RN-1 x! £yl |Rx’ - Ry/ |T

Therefore |[R™1y(R-)|| < CR™In(LT) This implies

CH7(B,(0))
”yR“C”T([R") = ||77R_17(R')||C1+f(m) < C'||R_17(R')||C1+r(m) < CR".

In a similar manner one shows for every a, 8 € N, with |B| < T

sup [856%(py(Rox, £) — po(0, )| <

[x|<2,

C,gRm1(gy -0
Ca’ﬁR|5|<§'>m—|oc| < Ca’ﬁRmin(1,1)<§>m_|a| i 40

and, if || = [1],

166%(po(Rx, £) — po(Ry, £)|
sup

<C RT( >m—|cc|
Ixl,lyl<2 lx — y|==I7l xR

for all £ € R" and R € (0,1]. From this one derives the second statement in a straightforward

manner with the aid of the product rule.

O

Proof of Theorem 6.6. First of all, because of Proposition 6.5 and Lemma 6.7, there is some R €

(0,1] such that

+ . pra(t+2a) mh Tt (n
r'P, t Hy ([R+)—>Hq(|R+)
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is invertible for t = sand t = s’, where P, u= F;RPRF;I;_lu forallu H;‘(R”). For the following
we fix such an R. Then we have that

+ . pra(s+2a) mh 7 =h
Pyt HYCPO®) )~ H(®, )

is invertible. )
Now we localize the given solution u € Hy (s'+2a) ([RZ). To thisend lety € C;°(B,(0)) with ¢ = 1
on Bl/z(O) and set Pp(x) = P(x/R) = (Gl/Rzp)(x) for all x € R". Then

rtPy(ru) = rtyppPu+ g =PprtPu+g=9¢pf+g=: f in R7, (6.12)
where P, = OP(p,), g := Pprt(Py— P)u+ r*[Py, Pglu, and [Py, 1] = OP(q) for some odd
q € C'S**"(R" x R") due to Proposition 4.8 and P,—P = OP(p,— p), where p,—p €

CT'S?*~1(R" x R") is odd. Therefore g and p,— p satisfy the a-transmission condition and
—_— A
we conclude that g € H;(IR{;‘) because of u € Hg(z‘”s )(RZ), 2a + s’ = max(a, s+ 2a — 1) and

Corollary 6.3. Hence f € ﬁZ(R;’) since fIBl(O) € HZ(IR; N B,(0)).
Moreover, by the definition of y,

Rx e [R; NB(0) ifandonlyif x e R;’R N B;(0).
Hence (6.12) in [R;‘ N Bx(0) is equivalent to
r*Pr(og(w)) = R*(og(f) — OP(gg)(Yor(w))  in R} N B, (0)

because of (6.11) and o (u) = oxr(¥ru). Moreover, since supp(yoru) is compactly contained in
B;(0), and thus contained in B;(0) for some 4 < 1, we have Pp(poru) € EZ(R" \ B;(0))) because
of Remark 3.7. Hence

rtPr(por(w)) = h in R;R

for some h € EZ(R;‘R). Since this equation has a unique solution in Hg(za”)(@:;) and in

Hg(z‘l“,)(@:;), we conclude ¢pog(u) € H g(za”)(@;;). Scaling back implies u = 0'in B ,(0) N R

for some U € Hg(za“)(ﬁZ). O

Corollary 6.8. Let0 < s < T — 2a. Assume thaty € C'*7(R"™1) satisfies y(0) = 0, Vy(0) = 0 and
. —n
thatu € HZ(R},) is a solution of

r*tPu=f in Ry

for some f € Lq(Ry) with leR o € ﬁ;(R;} N Bg, (0)) for some R, > 0. Then there is some R > 0
1
such that

u=v in IR;’ N B (0)

forsomev € H g(s+2a)(§;).
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Proof. If s <1 —a, then the statement follows directly from Theorem 6.6 since s’ = —a and
7 — R

Hg(s +2a)([R{;l) =H ;‘([RZ) in that case. Let us consider the case s > 1 — a. Then we see from the

proof of Theorem 6.6 that
r*P(Pru) = Ppf + rry [P, Yglu =: f' inRj,
where Pru € Hg(aﬂ)(@;). Moreover, if ) € C5°(Bg/»(0)) such that 7) = 1 on Bg /4(0), then
[P, Pglu = OP(n(x)p(x, E)@r(x) — Pr(¥)u = OP(n(x)p(x, §)(1 — pr(¥)u
= nP((1 - Yp)u) € H)(R")
because of Remark 3.7 and supp# n supp(l — 3z) = @. Hence f' € EZ(R;‘ N Bg/4(0)). Therefore
we can apply Theorem 6.6 to hpu and f” again to conclude the statement of the corollary, provided
that s < 2 — a. Repeating this argument finitely many times with the help of Corollary 4.9, we
obtain the statement in the general case. O
6.3 | Elliptic regularity in a bounded domain
Now we are in the position to prove the following.
Theorem 6.9. Let1 < q < oo, a € (0,1), 7>2a,and 0<5<7—2a Let Q CR" be a bounded
C 1+’-doma_in, and let p € CTS?*(R" x R™) be an even and strongly elliptic symbol, P = OP(p(x, £)).
Ifue Hg(Q) solves
rfPu=f inQ (6.13)
forsome f € ﬁsq(Q), thenu € Hg(”za)(ﬁ).
Proof. Let x,, € 0Q be arbitrary. Moreover, let y € C1*7(R"~!) and R,, > 0 be such that
QN Bg,(x9) = Ry N By (x,)

(after a suitable rotation). By a simple translation and rotation we can always reduce to the case
X, =0, y(0) = 0, and Vy(0) = 0. It suffices to show that there is an R € (0, R,] such that

u=v in R} N Br(x,)
for some v € Hg(za”)(ﬁ;l). Now let € C5*(Bg, (X)) With § = 1 on By /5(xo). Then
r'Pu) =¢ProPu+g=9f+g  inRj,

—1- L=
where ¢ :=rt[P,dJu e H, Q(R;’) C Ly(R}) since u € HY(Q), and q € CTS2 IR X R") C
Crsio(Rn X R™). Moreover, g| Bry/4(0) S EZ(R)’/’ N By, /4(0)) because of Remark 3.7 and the same
observations as in the proof of Corollary 6.8. Hence Corollary 6.8 implies that there isan R > 0
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such that
u=v in R;’ N Bx(0)

for some v € Hg(”m)(ﬁ;). Hence the statement of the theorem follows. O

Combining Theorem 6.9 with the forward mapping property shown in Theorem 6.4 we find the
following.

Corollary 6.10. Hypotheses as in Theorem 6.9. A function u € H 3(5) solves (6.13) for some [ €
75 . . a(s+2a) /7~
Hq(Q) ifand only ifu € H, Q). _ B

Hence the Dirichlet domain (1.5) for P with data in H () equals H g (s+20) Q).

Proof of Theorem 1.1. The result 1° is a consequence of Theorem 6.4, and 2° is shown above in
Corollary 6.10. O

The theorem applies to (—A)? in the way that (—A)* = P; + P,,where P; = OP((1 — %(&))|£]?%)
satisfies the hypotheses and P, is smoothing, so that rt(—A)u = f € EZ(Q) is turned into

rtPiu=f,with f, =f—rtPu e HZ(Q) since P, is smoothing.
There is a corollary on regularity in Holder spaces.

Corollary 6.11. Hypotheses as in Theorem 6.9. 1° If f € Ei(Q) for some s € (0,7 — 2a), thenu €
C95299(Q) for every small e > 0. When T > 1, it satisfies

St+a—¢

u € CST20=¢(Q) + d%*C (Q). (6.14)

If2a <1and2a <7 <1, it satisfies a local version of (6.14), cf. Remark 4.7.
2°If f € L (Q), thenu € C***™(Q) for every small € > 0, satisfying (6.14) ff. with s replaced by
0.

Proof. We use the Sobolev embedding property H{ (R") C C!"/97¢(rn"), which implies H H D@ c
- — —_ —S
C9="979(Q)) in view of Definition 4.3 (whena < t —n/q—¢e <t <1+71).For1°, f € C,(Q)c

ITIZ_g/z(Q) implies whenn/q < ¢/2 thatu € H Z(HZG_E/ Q) c C96+20-9((), and (6.14)ff. follow

from Theorem 4.6 and Remark 4.7. For 2°, we conclude similarly from f € L,(Q) C L,(Q) =
HZ(Q) thatu € H g(za)(ﬁ) c c9%979(Q), when n/q < ¢, with the ensuing descriptions. O

APPENDIX

Proof of Theorem 3.1. We use (3.1) with [ = max{{m — |y|],0}. Since 8;‘a(x,y, §)|y=x(y -
x)*u(y) = (6;‘a)(x, x, E)(y — x)%u(y) is smooth with respect to (y, &), the existence of

i [ ey, 0068 (85,3, Do ) Cx = y)*u) dy d = OP(pJuC)
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follows from standard results on oscillatory integrals. Here
Do(x,8) = 6;‘Dg‘a(x,y, Oly=x for all x, & € R",

because of the calculation rules for oscillatory integrals. Therefore it only remains to show the
existence of the oscillatory integrals for (y — x)**"r,(x,y, &). Now we use that

[ e e 5 =0 ey, ) dy d

- / / SN ey, BNy — X (. y, €) dE u(y) dy = / k(% 9, x — Y)u(y) dy,
R JRP RN
where

e2) 1= 0= 0 [ ey e ) = T ke 2)

R JENy

kE,j(x’y’Z) = (y_x)CH—y/

g eiz'g)((gy, Eé’)ra(x, Y, g)g)J(g) dg

Using (3.3) one shows in the same manner as in the proof of [6, Lemma 5.14] that for every N € N,
there is some Cy > 0 such that

lke j(x,y,2)| < Cylx — y|F¥E |z =N/ (mm=1)

forallz #0,j € Ny, e € (0,1),x,y € R", where 6 = min{r — [, 1}. Using

Yok y= Y k@yo+ Y k.2,

jeNg 2/g]z|7 2>|z|™!

one can derive in the same way as in the proof of [6, Theorem 5.12] that the series ) ieNg kE’ j (x,y,2)
converges absolutely and uniformlyin |z| > §,x,y € R" foranyd > Otoafunctionk, : R"” X R" X
(R"\ {0}) — C that satisfies for any N € N,

Cylx = y| 18 z)=m=n(z)=N ifm+n>0,
|k (x,y,2)] <4 Cpnlx =7+ +1og |z|")Wz)™N ifm+n=0,
Cylx — y|HIr+9(z)=N ifm+n<o,

for all x,y € R", z#0, £ € (0,1), j € N,. Now, if we choose N € N,, sufficiently large and z =
x — y, theright-hand side isin L; (R") with respect to y since T + |y| > m. Hence by the dominated
convergence theorem the limit

lim [ x(ey,e)e ™4 (y — x)* M (x,y, Eu(y) dy dt = / ke, (X, y,x = y)u(y)dy
n Rn

=0 JR2

exists, where k., and k, , ; are as in the theorem. This concludes the proof. O
Proof of Lemma 3.2. First of all, note that both oscillatory integrals exist because of Theorem 3.1,

D?a € CTS;"O_W(RZ" X R™),and m — |3| < T + |y| — |B|. Moreover, it is sufficient to consider the
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case 3 = ¢, for some k € {1, ..., n}. The general case follows inductively. In view of Theorem 3.1,
it only remains to show that

OP((y — )™ 15 (x, ¥, §)u(x) = OP((y — x)** 7% Dy, 15(x, ¥, §)u(x).

By Theorem 3.1 applied to D¢, a we have
OP((y = x)°*74D 1, oy, D) = [ Ty yx = )y,
[Rn
where I%a’y(x,y, z) = ZJENO Ea’y,j(x,y,z) and

Barg(eor2) = [ 50 =07 4D ., D9y (O,

R

For z = x — y # 0, an integration by parts yields

oy (it =)= [ D8 = 0, (e Dy () 8

Rn

- / Oy — ) oy (x, 3, §)Dg, (6 dE
Rn

=Koy Gy x = y) = [ @Iy — )% (x, y, )D;, @;(£) dE.

R

By the results in the proof of Theorem 3.1

2 Ea,y,j(x’y’x_y) and Z ka,y,j(x,y,x—y)

jeNg JENy

converge absolutely for every x # y. Hence the same is true for

Z ei(x—y)-§(y - x)“”‘ekra(x,y, ’g’)ngqu@) ds.
JEN, /R"

Hereforx # yand N € N
[ = xS (e, D, )
[Rn

= |x— y|—2N/ ei(x—Y)-§(y _ x)a+y—ek(_A§)N(ra(x’y’ g)ng(Pj(%—)) de,
Rn.
where

‘(—Ag)N<ra(x,y, §)D§k¢j(§)) < CN(§)’”‘2N for all £ € R".

Hence choosing N € N such that m —2N < —n, we can apply the dominated convergence
theorem to conclude
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D / eI (y — ) T Ur (x, y, §)Dg, @ (§) dE
Rn

JENy
= > b=y / Oy — ) (AN (rg(x,3,€) Y D #y(§)) dE =0,
JENy R JENg

because of 0 = Z;io nggoj(é') for all £ € R". Thus Ea,y(x,y, x—y) = kg, (x,y,x —y)forall x #
y, and the statement of the lemma follows. O

Proof of Theorem 3.4. First we treat the case s > 0 by splitting it up in several cases. Afterward the
case s < 0 follows by duality.

Case me [0,1] and 0 <s < 1: Let us define o :=mand ¢ :=7t—mifr—m<1,and ¢ €
(s,1) arbitrary if T —m > 1. Then a € C9+GSTO(R2” X R™), and [57, Proposition 9.8] yields the
boundedness of

OP(a(x,y, )1 H3"(R") — H3(R").
Case m € (—1,0) and 0 < s < 1: We use the decomposition

OP(a(x, y,§)) = OP(a(x, x, §)) + OP(b(x, , §)),

where b(x,y,&) = a(x,y,£) — a(x, x, £). Because of Theorem 2.1, it is sufficient to show the cor-
responding mapping property for OP(b(x, y, £)). Since b € C*ST* (R** x R") C C*S} (R*" x R")
and b(x, x,£) = 0 for all x, £ € R", [57, Proposition 9.5] yields that

OP(b(x,y,8)): Hg(IR{") - H;“(R") forall -7 <0<0,0<t<T. (A1)

If s + m < 0, we can choose 0 = s + m € (—7,0] and t = —m € [0, 7) and obtain the desired map-
ping property. If s + m > 0, we use that H;+m([R") o Lq(R") and (A1) witho=0and t = s to
conclude that OP(b(x, y, £)): Hf;m(lR”) - H(S](R”) is bounded.

Casem € (—1,1]and s > 1: Letk = [s],s’ = s — k € [0,1). We use that

ue H;(IR") ifand only if Jfu € H;,(IR") forall || <k

for u = OP(a(x,y, £))f for some f € H;er(R”).
First let m € [0, 1]. Using that

[0y, OP(a(x, y, §)] = OP(S, a(x,y, §) + 9, a(x,y,§))

forall j =1,...,n one obtains

85 OP(a(x,y.E)f = Y. OP(ag(x,y. £ f

0gB<a

for some ag € CTIFIST (R¥" x R") C C*7KST (R?" X R"), where 0<s' =s—k <7 :=7-k

and 0 < 8’ + m = s+ m —k < 7/ because of |s]|, |s + m| < 7. Moreover, 6;‘_5]“ € H;’“"(R”). By
the preceding cases,

OP(ag(x,y,§): H} ""(R") - H (R")

is bounded. Altogether this yields the boundedness of OP(a(x, y, £)) in this case if m € [0,1].
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Ifme(-1,0)and 1 < |a| < k,thena =a’ + e; for some j € {1, ..., n}. Using

3., OP(atx,y, )f = OP(alx,y, D& ) + OP(, atx,y, ),

one obtains similarly as before

32 OP(a(x,y, E)f = Y, OP(a}(x,y, &) +al(x,y, )35 *f

0gp<ga!

for some a;g € CTRH M (R x R") and ag € CTKS™ (R* x R") € C*7KSY (R*" x R™). Since
m + 1 € (0, 1), one obtains by the preceding cases that

OP(aj(x,y,€)): Hy ™ (R™) - Hj (R"), OP(a](x,,£)): Hj (R") - H} (R")

are bounded dueto 0< s+ m+1=s+m—-k+1<7—k+1and 0<s' <7 — k. This yields
the statement in this case since 6;‘/_5]” is in H;'+m+1(R") forall f € H;””(R”) and0g B <o,
where |a’| < k — 1, and the case a = 0 is easy.

Case m € [0,7) and s > 0: Now let 0 < m < 7 and s > 0 and set m’ = [m]. We use that there
are polynomials p;, : R"” — R of order at most m’ and g, € S?,O(IR” X R™), independent of x, k =
0, ..., n such that

" =3 a©pe),

cf., for example, [6, Proof of Theorem 6.8]. Hence
n
a,y, ) = Y, _ a3, Hp(§),
where a; € C*ST m' (R2" x R"). Combining this with the general relation
OP(b(x, , £)if)) = OP(b(x, y, £))d;, + OP(3, b(x, y, £), (A2)
we have the representation

OP(a(x.y.£) = Y . . OP(a,(x., )3

for some a,, € Cf‘m’Si”O‘ m'(R21 x RM). Because of the case “m € [0,1] and s > 0”, we conclude
that

OP(a(x,y,£) - H™ ™ (R") > H3(R")
is bounded for every |a| < m’. This implies the statement in this case.
Case: m € (—7,0) and s > 0: Let m’ € N, be such that m + m’ € (—1,0], that is, m’ = [—-m].

First we consider the case s =0. As noted above, (£)" = Y@ ()P (8), for some g €
S? o(R" X R") independent of x and polynomials p; of order at most m’ < 1. Hence

OP(a(x,y, §) = OP(a(x,y, (D)™ (D)™ = Y OP(alx,y, ©)pi(D)g(Dy),
k=0
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where G € S (IR” X R™) is independent of x and §,(D,) : Hm(R”) - H’”+m (R™). Therefore
it remains to show that

OP(a(x,y, O)pi(Dy) : H ™™ (R™) > H3(R")

is bounded. Using that p,(D,) is a differential operator of order m’ and (A.2) one obtains the
representation

OP(a(x,y, ENpeD) = X ) OP(ag k(x, . £)
for some a,, , € Cf‘m/S;”‘; m’(RZ" X R™). Hence the case “m € (—1,0] and s > 0” implies that
OP(a i (x,y,§)) 1 HIF™ (R™) > Ly(R™).
Altogether we conclude that
OP(a(x,y,8)) : H'(R") = L,(R")
is bounded. Next let s € [-m,7) and s’ = s — m'. Using
u € HY(R") ifandonlyif &%ue H;’(R") for all |a| < m’
for u = OP(a(x,y, £))f for some f € H ;me(R”), it is sufficient to show that
3% OP(a(x, y, §): HX™(R") - HS (R")
is bounded for all || < m’. Similarly as before
03 OP(a(x,y,§)) = OP(a,(x,y,$))

for some a, € C™~ |"".S"nJrl‘7‘|([R2” X R") C CT™ S’"+m (R?" x R™), where 0<s+m<s =5—
m <t :=17—-m' By the preceding cases,

OP(a(x,y,§)) 1 HI™(R™) = H 7™ (R") > HI (R")

is bounded. Now the mapping properties for general s € [0, 7) follow by interpolation between
thecases =0and s € [-m, 7).

Case s < 0: By the assumptions of the theorem, |s| < 7 and |s + m| < 7. First we consider
the case that additionally s € (—7, —m). Since |m| < 7, there are some s, which satisfy all these
assumptions. Note that in the case m < 0 this condition is trivial. By the case “s > 0” we obtain
that

OP(a(x,y, §))" = OP(a(y, x, ) : H'®R") — H""(R")
since s’ := —s—m € (0,7) and —7 < —s = s’ + m < 7. Hence we conclude by duality that
OP(a(x,y,£)) : H3™(R") » H3(R")

if additionally s € (—t, —m). Interpolation with the case s > 0 yields the statement for all s €

(-7, 7 —m). O
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Proof of Theorem 3.6. It is sufficient to consider the case m > 0 since CTS{”’O([RZ” XR") C
CTS(I),O([RZ’1 x R™) and min(t —m,7) =tif m < 0.

Let us first consider the case 0 < s < 1.Since 0 < s < 7 — m is arbitrary andB(S;;([R{”) (S8 H;(R")
for any € > 0, it is sufficient to prove that

OP(a(x,y,£): L,(R") - B, (R")

is a bounded linear operator for any 0 < s < min(t — m, 7). To this end we use that

OP(a(x,y, & ))u(x) = / k(x,y,x —y)u(y)dy forallu € S(R"), x € R", (A3)

Rn

where k : R" X R" x (R" \ {0}) - C is smooth with respect to the third variable and satisfies for
anya € Njand N € N

10%kC., ., 2)llorrony < Canlzl ™11 + 12D forallz # 0.
Here k can be defined as

n
ZjeNokj(xaya Z) for all xX,y,zZ € R ,Z 7& 0,

where k;(x,y,z) = Pg_iz(a(x,y, e;(§)) and p; € CP(R™), j € Ny, is a smooth dyadic partition
of unity as in (3.4)ff. The proofs in [6, Section 5.4] carry directly over to the present situation.

Moreover, (dj‘k)(x,y, z)|y=x = 0 since 5;‘a(x,y, §)|y=x =0 for all x,& € R" and |«a| < 7, and
we have for any N € N:

- 1 sa «
k(x,y,2)| = |k(x,y,Z) —~ Zlalqa(dyk)(x,x,z)z I
< Cylx = y[Flzl ™"+ 1zD7Y, (A4)
and in particular
lk(x,y,x =) < Cylx =y 7™ (1 + |x =y 7N,

where |z|7*""*7(1 + |z|)™N isin L, (R™) with respect to z for sufficiently large N € Nsincem < t.
Now let (A, f)(x) := f(x+ h) — f(x) for any x,h € R" and f : R"” — C. Then

(A, OP(a(x, y, §))u)(x) =/| | 2|hl(k(x +hy,x+h—y)—k(x,y,x —y)u(y)dy
x=y|<

; / (k(x + By, x — ) — k(x, 9, x — )G dy =1 + I,
|x—=y|=2|h|

In order to estimate I; we use that

lk(x + h,y,x+h—y)—k(x,y,x —y)| < |k(x + h,y,x + h — )| + [k(x,y,x — y)|

< C(|x +h _y|—n—m+r + |x _yl_m_m_H)-
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Hence Young’s inequality implies
ey €€ [z B 275l
Iz|<2]h|
< C,lhlr_m”u”Lq([R") < C’|h|s||u||Lq(Rn)
for any s < T — m and |h| < 1. In order to estimate I, we use

Iz=/ (kGe+ Ry, x+h = y) = k(x + By, x = Y)u(y) dy
|x—y|>2|h|

+ / (k(x + h,y, x — y) — k(x, 9, x — @) dy = I, +1,.
[x—y|>2|h|

For the second integral we use that for any |x — y| > 2|h|
lk(x + h,y,x — y) = k(x,y,x = )| < Cy|h[7|x —y[ """ @ + |x = y)7N
< CpIRP X =y TS+ x =y,

Therefore
IWallz, ) < Cilhl® / 217"+ (2D 7 dzllully ey < CRIE Il ey
Rn
for any s < T — m and |h| < 1 and sufficiently large N. Furthermore, for any |x — y| > 2|h|

lk(x+h,y,x+h—y)—k(x+h,y,x —y)|

1
/ D,k(x +h,y,x +sh—y)dsh| <Cylx+h—y||x -y A+ |x =y VA
0

SCIRPIx =y (1 + e =y D7V,
by (A.4) with k replaced by D,k and since
Sx =yl <lx =yl —lhl < lx+sh—y| <|x =yl +|h| < 3[x -y
for every s € [0, 1]. Thus we obtain as before
IW1llz, ) < Cilhl® /R T 12N dzlully geny < CRE Tl o)
for any s < T —m, |h| < 1, and suitable N € N. Altogether we obtain

14, OP(a(x, y, ENully @y < ClAINully, gmy

uniformly in || < 1 for any s < T — m. Moreover, one obtains by similar, but simpler estimates
Il OP(alx, y, ENullp @y < Cllullg, n)-

This implies the boundedness of OP(a(x, y, £)) : Lq(R") - Bfl,oo(lR{") forany0 < s <7—m.
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Finally, let s > 1. Now let k € N such thats = k + s’ with s’ € [0,1). We use thatu € H;(IR”) if
and only if 0%u € H;’(R”) for every |a| < k. For |a| < k we have

szorac )= 3 (§) orelatry. 065

0gp<a P
where 8% a(x, y, £)(i&)*F € CT‘|5|S;"J|“|_|6|(R2" x R™). Because of
0<s' =s—k<s—la|<t—m—|a|=(r—|B])—(m+ |a| — |B]),

we can apply the case “0 < s <1” to aﬁa(x, y,E)(i€)*F (with s’ instead of s) and obtain the
result. O
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