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The innate system constitutes a first-line defencemechanism against pathogens.

80% of the blood supply entering the human liver arrives from the splanchnic

circulation through the portal vein, so it is constantly exposed to

immunologically active substances and pathogens from the gastrointestinal

tract. Rapid neutralization of pathogens and toxins is an essential function of

the liver, but so too is avoidance of harmful and unnecessary immune reactions.

This delicate balance of reactivity and tolerance is orchestrated by a diverse

repertoire of hepatic immune cells. In particular, the human liver is enriched in

many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid

cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells –

namely Natural Killer T cells (NKT), gd T cells and Mucosal-associated Invariant T

cells (MAIT). These cells reside in the liver in a memory-effector state, so they

respond quickly to trigger appropriate responses. The contribution of aberrant

innate immunity to inflammatory liver diseases is now being better understood.

In particular, we are beginning to understand how specific innate immune

subsets trigger chronic liver inflammation, which ultimately results in hepatic

fibrosis. In this review, we consider the roles of specific innate immune cell

subsets in early inflammation in human liver disease.

KEYWORDS

Inflammation, Innate immnuity, Hepatitis (general), NK cells, MAIT cell, Gd T cell, NKT
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Introduction

Understanding the liver´s architecture and the niches formed by the different hepatic

immune cells is equally important to deciphering their immune roles. The liver is

subdivided into hepatic lobules, which consist of a portal triad (hepatic artery, portal

vein and bile duct), hepatocytes arranged in linear cords between a capillary network

(sinusoids) and a central vein (Figure 1). The blood flows from the portal triad to the

central vein. The vascular system connecting the portal triad to the central vein is mainly

constituted by liver sinusoidal endothelial cells (LSECs). Large fenestrae allow the exchange

of macromolecules and components from the sinusoids with hepatocytes (1, 2).

Interestingly, hepatocytes have different functions based on their zoning. Close to the

portal triad, hepatocytes are the first to interact with gut-derived antigens whereas

hepatocytes in proximity to the central vein are associated with detoxification (3). The
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gradual change in blood nutrients, oxygen and antigen load is

correlated with significant changes in hepatocytes´ gene expression

signature (3, 4). Immune cells could also perform different

functions according to their position within the liver. The

distribution of innate cells in the liver is based on different

chemokines, adhesion molecules and surface receptors (5). KCs

are located adherent in the sinusoids and emit extensions into the

Disse space. KCs along with LSECs constitute part of the

reticuloendothelial system, which clears debris and harmful

compounds in the blood. 65% of intrahepatic lymphocytes consist

of NK cells, NKT cells, MAIT cells and gd T cells (6–8) (Figures 2A,

B). NK cells are in close proximity to KCs in both mouse and

human models, suggesting a physical co-dependence (9, 10). NKT

cells are constantly surveilling the liver sinusoids and stop when

they detect inflammatory signals (9). CXCR6 was identified as a

receptor to regulate mouse intrahepatic NKT cell frequencies and its

ligand CXCL16 is overexpressed in macrophages and endothelium

near injury areas (10). Human gd T cells were identified in portal

sections and in association with biliary epithelium (11). Human

MAIT cells are reported to reside predominantly around bile ducts

(12). However, the distribution and frequency of innate cells during

inflammation are drastically changed with the recruitment of

immune cells to the site of inflammation (9).
Kupffer cells

KCs are liver-resident macrophages that constitute 15% of the

total human non-parenchymal liver cell count (13). They represent

the primary barrier against pathogens and toxic compounds

coming from portal circulation (14). KCs are antigen-presenting

cells (APC) and play a crucial role in inducing liver tolerance

through cell-to-cell contact, cytokines and other mechanisms such

as dioxygenase-dependent sequestration of tryptophan (15). Under

physiological conditions, KCs are the major reservoir of
Frontiers in Immunology 02
macrophages in the liver and can self-renew independently from

the bone marrow (16). Upon activation, KCs secrete chemokine

ligand 2 (CCL2) which promotes the infiltration of human

circulating monocyte-derived macrophages. Increased frequency

of CCR2+ monocytes participates in liver fibrosis in mouse

models (17, 18) and is indicative of pathology in human

acetaminophen-induced acute liver injury (19). However, it is not

yet clear whether liver-resident and circulating macrophages are

two distinguished populations with different functions. The

majority of pathogens coming from portal circulation are trapped

in the liver by KCs phagocytosis. KCs cooperate with other non-

parenchymal liver cells to clear potential infections (20). KCs can

also sense damage-associated molecular patterns (DAMPs)

expressed in hepatocytes that induce the secretion of a variety of

cytokines and chemokines to efficiently restore homeostasis (20).

When liver diseases compromise KCs function, aggravation of the

diseases can be foreseen due to secondary infections (21).
Mucosal-associated invariant T cells

MAIT cells are an abundant subset of hepatic T lymphocytes.

They constitute up to 30-40% of human hepatic CD8+ T cells (6, 7).

Their roles in pathogen defense and tissue repair have been

previously reported (22–24). MAIT cells have an invariant T cell

receptor (TCR) that recognizes the nonpolymorphic class Ib major

histocompatibility (MHC) class I-related protein (MR1) when

loaded with antigens. MAIT cells recognize riboflavin derivatives

which are necessary for metabolism of many bacteria. These cells

are considered an evolutionary system to defend hosts from

pathogens since mammals do not produce these metabolites.

Under inflammatory conditions, hepatocytes present the

riboflavin derivative 5-A-RU to MAIT cells and also secrete IL-7

which is known to shape MAIT cells towards a pro-inflammatory

state (7, 25). Upon activation, MAIT cells secrete large amounts of
FIGURE 1

Diagrammatic representation of the liver architecture. The classical hexagonal lobule constitutes the anatomic unit of the liver. The lobule´s
parenchyma is mainly formed by hepatocytes that are distributed along the sinusoids. The portal triad, formed by the hepatic artery (HA), the portal
vein (PV) and the biliary duct (BD), carries the blood supply towards the centroid of the lobule where it is collected by the central vein (CV). Within
the sinusoids, Kupffer cells (K) and Natural Killer cells (NK) are located in close proximity to the endothelium (beige). Other ILC-like cells such as iNKT
cells and T2NKT cells are constantly surveying the sinusoids. Closer to the triad, especially near the BDs, there is a high frequency of MAIT cells and
gd T cells.
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pro-inflammatory and pro-fibrogenic cytokines such as IFN-g,
TNF-a and IL-17 (26). Studies in humans demonstrated that

triggering MAIT cells in the absence of co-stimulation with

cytokines induces wound repair and tissue regeneration (24).

These studies suggest that under physiological conditions, MAIT

cells probably contribute to tissue repair and regeneration since

there is a constant influx of 5-A-RU present in human sera (27) but

promote inflammation under acute inflammation. The high

sensitivity for cytokines indicates that MAIT cells might be one of

the first contributors to early inflammatory responses.
Gamma-delta T cells

gd T cells are non-conventional subset of T lymphocytes with a

limited non-MHC-restricted TCR repertoire. They constitute around

1-10% of human circulating T cells (28). They can recognize a wide

variety of antigens and can be activated via pathogen-associated

molecular patterns (PAMPs), DAMPs or cytokines alone. Upon

activation, cells can execute cytotoxic as well as effector functions.

Moreover, gd T cells also play a role in tissue homeostasis (29). In

humans, the stratification of gd T cells is based on the Vd gene

segments used to produce their TCR. Vd1+ T cells are abundant in

the epithelium (30) and protect tissues via recognition of non-
Frontiers in Immunology 03
classical MHCs such as CD1a, CD1c and CD1d (31). Vd2+ T cells

are the most abundant subtype in circulation and can clear infections

in periphery organs (28, 32). They recognize phosphoantigens, which

are non-peptide low molecular weight antigens. Vd2+ T cells respond

rapidly in a Th1-like fashion to high amounts of self-

phosphoantigens (for example in tumor cells) or microbial

phosphoantigens (33, 34). The butyrophilin 3A (BTN3A) family

can trigger activation of Vd2+ T cells upon stimulation with

phosphoantigens (35). The heterodimer BTNL3/BTNL8 expressed

in APC was reported to mediate the TCR-dependent activation of

Vd2+ T cells by binding of the intracellular domain of BTNL3 with

phosphoantigens (36). Interestingly, the expression of BTNL8was not

detectable in human PBMC but it was highly expressed in regulatory

T cells after polyclonal stimulation (37). This suggests further

investigation into the role of the butyrophilin family in the

development of hepatitis and potential role in influencing Vd2+ T

cells. Vd3+ T cells are a heterogeneous group of T lymphocytes

enriched in the liver and also in some diseases such as leukaemia or

chronic viral infection (38). They recognize antigens presented by

CD1d molecules and respond by producing cytokines and killing of

CD1d+ cells (38). Recent evidences suggest that gd T cells may be

involved in liver diseases as previously shown in other autoimmune

diseases (28), especially due to the rapid and large secretion of

IL-17 (39).
A

B

FIGURE 2

(A) Diagram tree of the approximate frequency of liver-resident cells and a FACS-based gating strategy to identify each cell type. The liver is mainly
constituted by parenchyma (hepatocytes) and ILCs. Among ILCs, Kupffer cells and NK cells are the most abundant immune cells. The liver is also
characteristic for having a niche of unconventional T cells, namely iNKT cells, T2NKT cells, gd T cells and MAIT cells. (B) The main types of antigen
recognition by unconventional T cells through their T-cell receptors (TCRs), Kupffer cells and NK cells. Kupffer cells and NK cells are activated
through pattern recognition receptors. Additionally, NK cells have receptors that can sense healthy and stressed or dead cells.
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Natural killer T cells

NKT cells are a rare subset of T lymphocytes comprising less

than 1% of human peripheral blood T lymphocytes but enriched in

the liver (8, 40). NKT cells are known to express NK cell markers

like CD56, CD16 and CD161, and produce granzyme (40, 41). Their

restricted TCR repertoire recognizes antigenic lipids presented by

the MHC class I-like molecule CD1d (42, 43). Based on their TCR,

NKT cells have been divided into two subsets. Type I NKT, or

invariant (i)NKT cells, are the most studied group because they are

enriched in mouse liver and have a semi-invariant TCR. The

prototype ligand for iNKT cells is a-galactosylceramide (a-
GalCer) (44). Type II NKT cells (T2NKT) consist of a subset with

more diverse TCR. The major ligand recognized by T2NKT cells is

sulfatide, which is a glycolipid enriched in the myelin of the central

nervous system, pancreas, kidney and liver (45). It is difficult to

study T2NKT cells because there is a lack of tools to identify and

characterize them. Recently, we proposed a novel strategy to isolate

and characterize T2NKT cells in humans but the low number of

cells in blood is still a limitation (40). The role of iNKT cells and

T2NKT cells in liver diseases have been mainly studied using

transgenic mice models of CD1d-knockouts or TCRVa14-
knockouts, which lack iNKT cells. These studies suggest that, in

general, iNKT cells play a pro-inflammatory phenotype whereas

T2NKT cells suppress inflammation through direct and indirect

inhibition of inflammatory cells, including iNKT cells (46–49). We

described a novel subpopulation of T2NKT cells that expresses

regulatory T cell markers such as FoxP3 and CD25 (40). FoxP3+

T2NKT cells were found both in the periphery and in the liver and

may explain some of the regulatory functions reported previously.
Natural killer cells

NK cells are a major component of the liver’s innate immune

cell compartment. They account for almost 50% of human

intrahepatic lymphocytes (50). Human hepatic NK cells are

classified into three different subsets based upon their

transcriptional, phenotypical and functional features (50). Liver-

resident NK cells are CD56bright CD69+ CXCR6+ CCR5+ and highly

cytotoxic (51–54). These cells are long-lived tissue-resident subsets

(55). Interestingly, a subset of liver-resident CXCR6+ NK cells was

described as having a memory-like responsiveness against -

vesicular stomatitis virus (VSV), human immunodeficiency virus

(HIV) and influenza (56). Memory-like NK cells produce higher

amounts of IFN-g after rechallenge with the virus. The third NK cell

subset is transient circulating NK cells, which are CD56dim CD69-

CXCR6- CCR5- and show less cytotoxic activity. They can secrete

high amounts of pro-inflammatory cytokines such as TNF-a and

GM-CSF (57–59). The regulation of NK cell activity consist on a

balance between activating and inhibitory receptors displayed on

their surface (60). NK cells survey the liver and induce apoptosis in

infected or aberrant cells via different mechanisms such as FasL or

TRAIL (61, 62). Under inflammatory conditions, NK cells kill

hepatic stellate cells (HSCs) to resolve inflammation and limit
Frontiers in Immunology 04
liver fibrosis via granzyme-induced apoptosis and IFN-g secretion
(62, 63). NK cells are fundamental for the proper protection of the

liver and aberrant functions have been reported in several liver

diseases. Over the past decade, studies on NK cells suggest very

heterogeneous populations with distinctive transcriptomes and

cellular interactions (64).
Innate immune cell subsets and early
liver inflammation

Liver inflammation is the first step to resolving and healing

from different hepatocellular stress. When not effective,

inflammation can become pathogenic. Hepatitis is a hallmark of

liver disease (65) (Figure 3). It is important to identify which cells

are precursors of early liver inflammation to avoid unnecessary

harm. A recent report highlights the importance of the

inflammasome in early inflammation (66). KCs express a variety

of pathogen recognition receptors (PRRs) to cover a wide range of

dangers. Some of these dangers overactivate the inflammasome,

which triggers pyroptosis, a form of cell death accompanied by cell

membrane rupture and release of pro-inflammatory IL-1b and IL-

18 (67). These cytokines are responsible for the recruitment and

activation of innate immune cells (68, 69). The direct cytotoxic and

effector functions of innate immune cells can restore homeostasis.

However, innate immune cells can also have early involvement in

disease processes when the danger is not resolved (e.g. chronic viral

infection) or because of repeated insults (e.g. alcohol or drug abuse)

(Supplementary Table 1) . Innate immune cells can also recruit

other immune cells from the liver and peripheral circulation.

Overall, innate immune cells are suggested to be the precursors of

the inflammatory niche because of their optimal location,

preactivated state, enrichment in the liver and strong

effector functions.
FIGURE 3

Hepatitis is a hallmark of the majority of liver diseases.
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Viral hepatitis

Hepatotropic viruses such as hepatitis A, B, C, D and E (HAV,

HBV, HCV, HDV and HEV) possess mechanisms to escape from

the hosts´ antiviral immunity. When the viruses replicate, often the

innate immunity detects viral components, hence triggering an

acute inflammatory response resulting in the killing of infected

hepatocytes. Since the infection is not properly resolved, viruses

remain in a latent state and replicate opportunistically. This

progressively leads to chronic liver inflammation (70). In

particular, HBV and HCV are the main causes of chronic liver

disease and are estimated to affect 257 million (data from WHO

2015) and 115 million people (71), respectively. Together they

represent the most common cause of liver cirrhosis, liver cancer

and viral hepatitis-related deaths (72).

HBV is directly mutagenic and induces low-grade inflammation

progressing into HCC (73). HBV-infected hepatocytes release

PAMPs such as glycoproteins, secreted HBsAg or free viral

nucleic acids that are recognized by the innate immune system.

Human KCs release pro-inflammatory cytokines to orchestrate an

antiviral response which also arrests hepatocyte replication, hence

viral replication (74). Studies in mice demonstrated the antiviral

roles of NK cells and NKT cells (75, 76). HBV patients present

higher levels of NK cells in blood compared to HBV-negative

controls (77, 78) and are deemed as the major contributors to

HBV clearance (79). A positive correlation was found between NK

cell activation levels and HBV clearance (79). NK and NKT cell

numbers from peripheral blood correlated to the frequency of

HBcAg-specific cytotoxic T lymphocytes (CTLs) (80). However,

infiltration of circulating NK cells can contribute to liver injury (81).

NK cells from HBV patients produced higher levels of TNF-a and

induced in vitro expression of TRAIL in hepatocytes (82). This

study showed that infiltrated circulating NK cells could induce

apoptosis of non-infected hepatocytes via TRAIL (82). Additional

studies in mice and patients show that NK cells could also

exacerbate liver injury via TNF-a, Fas/FasL and NKG2D/

NKG2DL pathways (83, 84). NKT cells and KCs secrete induced

nitric oxide synthase (iNOS) as a viral eradication mechanism (85,

86). Moreover, the frequency of NKT cells was increased to normal

values with virus clearance (80). These results suggest that

circulating NK cells and NKT cells are recruited in the liver

causing a reduction in their frequencies in blood. In contrast,

peripheral MAIT cells were significantly decreased in HBV-

related liver failure patients compared with chronic HBV patients

(87). The study suggested that MAIT cells are recruited in the liver

and promote a strong inflammatory response damaging the liver.

MAIT cells were also reduced in patients with middle/late-stage

compared with early-stage liver failure (87). Similar to NK cells and

NKT cells, patients that showed disease improvement had an

increment in the frequency of MAIT cells (87). In another two

studies exploring changes in peripheral gd T cells in HBV patients,

gd T cells were less abundant in liver failure patients and correlated

with disease severity (88). Activation of gd T cells with PMA/

Ionomycin induced the greatest amount of pro-inflammatory TNF-

a and IL-17 in liver failure patients (89). However, another study

indicated that gd2 T cells exhibited impaired proliferation and
Frontiers in Immunology 05
chemotaxis (90). The same study showed in vitro that gd2 T cells

inhibit Th17 T cells through cell-to-cell contact and produce high

amounts of IFN-g (90). These results suggest that NK cells and NKT

cells are the first-line of defense against HBV infection. Failing to

clear the infection, MAIT cells and gd T cells contribute to chronic

inflammation. IFN-a therapy is effective in 20-30% of chronic HBV

patients (91). The low response rates may be attributed to the wide

spectrum of different clinical conditions. Based on the current

understanding of the role of NK cells in HBV clearance, IFN-a is

likely to improve the cytotoxic function of liver-resident NK cells by

targeting HSC cells and reduce fibrosis (92). It is necessary to

investigate whether IFN-a therapy response is subjected to the

frequency of circulating NK cell infiltration.

HCV-induced inflammation is partly triggered by non-structural

proteins of the virus (93) but the major contributor to HCV-hepatitis

are the inflammatory immune cells. In vitro studies show that HCV-

infected hepatocytes produce several pro-inflammatory cytokines

including IL-6, IL-8, MIP-1a and MIP-1b as a response to IL-1b
secreted by HSCs (94) or IL-1b and TNF-a by KCs (95). Similar to

HBV infection, human circulating MAIT cells were generally

reported to be depleted with markers of exhaustion and

hyperactivation (96–98). Additional studies suggest that hepatic

MAIT cells are major contributors to hepatitis and fibrosis given

the nature of the cells. Repetitive IL-12 stimulation or IL-7 secretion

by hepatocytes was a sufficient stimulus to induce secretion of the

pro-inflammatory cytokines IFN-g, TNF-a and IL-17 (7, 26).

Intrahepatic gd T cells were shown to be cytotoxic against human

hepatocytes in culture (99). We have recently identified a subset of

CD8+ gd T cells that were more abundant in baseline peripheral

blood of melanoma patients that had hepatitis after ICI therapy

versus non-hepatitis cohort. ICI therapy might induce gd T cells

cytotoxic activity against hepatocytes as observed in HCV infection.

NK cells were shown to be compromised in HCV patients allowing

the virus to replicate (78, 100). IFN-a therapy induced activation of

NK cells and further improved the clearance of the virus (101). NKT

cells were also reported to play a role in HCV resolution and

progression. The frequency of activated CD38+ or CD69+ iNKT

cells strongly correlated with alanine transaminase levels (102).

Increased levels of activated iNKT cells were observed during

acute inflammation and chronic HCV infection without apparent

functional differences (102). The frequency of activated iNKT cells

declined spontaneously in resolving patients (102). These data

suggest that HCV infection could be mainly managed by NK and

NKT cells. Viral clearance also involves other ILC-like cells such as

MAIT cells and gd T cells. Under inflammatory conditions, host

hepatocytes switch to an antiviral state to prevent further viral

replication. If the infection is not properly resolved, we propose a

model where NK cells and MAIT cells have an exhausted phenotype

while iNKT cells and gd T cells promote pathogenesis by targeting

infected hepatocytes.
Alcohol-induced hepatitis and drugs

The liver is vital for the detoxification of substances that are

harmful to the body. Liver detoxification consists mainly of
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converting ingested drugs into water-soluble metabolites via

xenobiotic biotransforming enzymes (103). This allows drugs to be

efficiently secreted through urine. However, in an attempt to

solubilize drugs, some compounds are converted into their active

form. Acetaminophen, also known as paracetamol, leads to reactive

metabolites causing apoptosis and necrosis of hepatocytes (104). In

the case of alcohol, free radicals and acetaldehyde are harmful by-

products that can lead to significant liver damage over time. Drugs

and alcohol can also damage the intestine barrier leading to more

bacteria translocation to the bloodstream (105, 106). The influx of

gut microbiota and its metabolites activate the immune system

through PAMPs and DAMPs (107–110). KCs were reported to be

major contributors to the development of alcohol-related liver

disease (ALD). Intestine permeability is directly associated with

KC activation (111, 112). Exposing mice to LPS and alcohol-

derived reactive oxygen species (ROS) has shown to induce TNF-a
secretion by KCs (113, 114). In a paracrine manner, IL-1ß secretion

by KCs had a significant effect on the pathological progression of

ALD (115). A rat model of ALD with depletion of KCs resulted in

impaired progression of the pathology suggesting a key role of KCs

(116). NK cells were less frequent in alcoholic patients (117) and

were less cytotoxic compared to healthy individuals (118). A reduced

expression of the activating receptor NKG2D and production of

IFN-g in mice suggests that NK cells cannot efficiently kill activated

HSCs (119). Chronic ethanol feeding in mice increased CD1d by

enterocytes (120). Similarly, patients affected by alcohol misuse also

show increased expression of CD1d in the small intestine (120). An

in vitro study showed that CD1d increased the loading of aGalCer
following increasing concentrations of ethanol and thus, could

increase stimulation of iNKT cells (121). Many studies in mice

suggest that iNKT cells have a pathogenic role in the development of

ALD. It was reported that iNKT cells crosstalk with KCs through IL-

1b, promote inflammation and recruit neutrophils (122, 123). CD1d

blocking antibodies could partially prevent liver injury (123).

Intestinal iNKT cells were observed to migrate to the liver and,

collectively with liver iNKT cells, showed a chronic activated

phenotype with downregulation of TCR, increased apoptosis and

FasL expression (120). In vitro experiments from the same study

confirmed that iNKT cells could kill hepatocytes via Fas-FasL

mechanism (120). Activation of T2NKT cells by sulfatide inhibited

iNKT cell hepatic damage (124, 125). In a concanavalin A-induced

hepatitis mouse model, injection of lysophosphatidylcholine (LPC)

activated T2NKT cells and prevented liver injury by iNKT cells

(125). Another study described the crosstalk of T2NKT cells with

plasmacytoid dendritic cells and recruitment of anergic iNKT cells to

the mouse liver via IL-12 andMIP-2 (126). As mentioned above, our

group recently identified a novel population of human FoxP3+

T2NKT cells that might exert immunoregulatory functions in this

scenario (40). Alcoholic-related cirrhosis and severe alcoholic

hepatitis patients had a dramatic depletion and hyperactivated

circulating MAIT cells (127, 128). Dysfunctional MAIT cells could

explain the susceptibility to infection of these patients (127, 128). In

another study, MAIT cells had an exhausted phenotype and partially

recovered with patient´s alcohol abstinence (129). MAIT cells may

contribute to the pathogenesis of ALD via IL-17 secretion (129).

Surprisingly, only a few reports have described the role of gd T cells
Frontiers in Immunology 06
in ALD. In a mouse study following binge ethanol drinking, gd T

cells were described to produce higher amounts of IL-17A than non-

binge ethanol-drinking mice (130). The activation of gd T cells was

IL-1ß-dependent, possibly by KCs (130). However, under acute-on-

chronic ethanol consumption, gd T cells did not produce further IL-

17A. Instead, CD4+ T cells were the major contributors. This

suggests that KCs could play a predominant role in the

development of ALD. KCs orchestrate an inflammatory response

that involves pro-inflammatory iNKT cells and gd T cells. Alcohol

could directly affect MAIT cells and NK cells causing depletion and

impaired functions such as the inactivation of HSCs by NK cells, and

tissue repair by MAIT cells.
Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD), characterized by an

excessive accumulation of fat in hepatocytes, is the most common

indication for liver transplant in Western countries and the leading

cause of liver transplantation in women (131, 132). It is estimated

that 23-25% of the global population have NAFLD to some degree

(133). Etiologically, it is suggested that the adipose tissue from

patients with NAFLD predisposition release free fatty acids (FFA)

and pro-inflammatory mediators into the circulation (134, 135). As

a result, an inflammatory response is triggered in the liver.

Lipotoxicity, mitochondrial dysfunction and endoplasmic

reticulum stress are key inducers of the inflammatory cascade

(136). Higher frequencies of KCs were observed in liver biopsies

of non-alcoholic steatohepatitis (NASH) patients (137). Depletion

of KCs in rats exposed to a high-fat diet (HFD) prevented the

development of steatosis (138). In vitro experiments showed that

TNF-a was responsible for the increased accumulation and the

reduced oxidation of fatty acids in hepatocytes (139).

Immunohistological stainings revealed a complex crown-like

structure consisting of KCs surrounding dying steatotic

hepatocytes. Cholesterol crystals are accumulated in the center of

these structures (140). Interestingly, previous exposure of KCs to

cholesterol crystals showed to precondition the cells towards a pro-

inflammatory innate memory-like state (141). Similar observations

were taken from macrophages cultured with oxidized low-density

lipoproteins (142). Likewise to the effect of alcohol, NK cells of

obese individuals had lower NKG2D expression (143) and impaired

cytotoxicity (144, 145). Another study showed that there were no

differences between NK cells from healthy individuals and NAFLD,

while higher expression of NKG2D in NK cells was found in NASH

patients (146). Data from mice and humans suggest that iNKT cells

have a dual role in NAFLD. More specifically, it is hypothesized that

iNKT cells have a protective role during early stages of simple

steatosis. In different mouse models of hepatosteatosis, like ob/ob

mice, animals fed with HFD or a choline-deficient diet, iNKT cells

were apoptotic and showed decreased intrahepatic frequency (147–

149). Adoptive transfer of hepatic mononuclear cells but not

CD1d-/- mononuclear cells regulated hepatic steatosis via IL-10

(150). However, in other instances, opposite results were reported.

Mice fed with HFD developed adipose tissue inflammation and

glucose intolerance (151). This was significantly exacerbated by
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aGalCer-dependent activation of iNKT cells (151). In the liver,

iNKT cells could be directly activated via hepatic CD1d molecules,

exacerbate steatosis and decrease insulin sensitivity by promoting a

pro-inflammatory cytokine environment (152). This could suggest

that iNKT cells play a protective role during early stages of simple

steatosis but exacerbate the disease in chronic steatosis. It would

also be interesting to study the potential effect of iNKT cell

migration from tissues like the intestines as discussed earlier.

T2NKT cells might also play dual roles. In HFD mice, T2NKT

cells initiate inflammation in the liver and adipose tissue and

promote obesity and insulin resistance (153). However, adoptive

transfer of T2NKT cells in HFD obese mice induced prolonged

weight loss and glucose tolerance (154). The heterogeneity and

impact of fat in intrahepatic T2NKT cell populations remains

unclear. The frequency of human NKT cells is decreased in

steatosis (155) but increased accordingly to the progression of

NAFLD, especially IFN-g+ and IL-4+ cells (156–158). NASH

patients had a 4-5 fold relative increase in liver NKT cells (158).

CD1d expression was reported to be increased in liver

immunohistochemical samples of NAFLD and correlated with

disease progression (156). Taken together, NKT cells are reduced

in the early stages of simple steatosis. A pro-inflammatory response

is protective against obesity. In advanced NAFLD, NKT cells are

increased and pathogenic. Circulating MAIT cell frequency was

reported to decrease while the number of intrahepatic MAIT cells

was increased in NAFLD patients’ livers and it tended to be greater

with disease progression (159). MAIT cells from NAFLD patients

had increased secretion of IL-4 and reduced expression of IFN-g
and TNF-a (159). The current knowledge about the role of gd T

cells in NAFLD is mostly based on mice models. gd T cells can

recognize molecules presented by CD1d and its differentiation is

dependent on hepatocyte CD1d (160). gd T cells are high producers

of IL-17A in steatohepatitis (161), a key cytokine known to induce

fibrosis and ROS production (162, 163). In HFD mice, IL-17+ gd T

cells are elevated (164). Additionally, adoptive transfer and gene

knockout experiments in HFD mice demonstrated that gd T cells

exacerbate steatohepatitis and liver damage (160, 161). In humans,

NAFLD patients showed decreased frequencies of Vd2+ T cells, but

elevated frequencies of Vd2- T cells compared to healthy controls

(143). Overall, the progression of NAFLD to NASH is a process

derived from the increased cellular oxidative stress that leads to the

activation of inflammatory pathways (165). Accumulation of ROS

induces the expression of TNF-a which can trigger necrotic cell

death (166). In line with these results, NK cells were suppressed by

ROS (167). KCs develop an apparent pro-inflammatory immune

memory state by contact with cholesterol crystals. gd T cells

promote pathogenesis through IL-17 secretion, while NKT cells

and MAIT cells exacerbate steatosis by secretion of Th2 cytokines

which also contributes to fibrosis (168).
Liver autoimmunity

The three main autoimmune liver diseases are autoimmune

hepatitis (AIH), primary biliary cirrhosis (PBC) and primary

sclerosing cholangitis (PSC). AIH affects portal tracts and liver
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lobules by lymphoplasmacytic infiltrates while PSC and PBC

mainly affect bile ducts. The etiologies of these diseases are yet

unknown, but several studies suggest a common immune-mediated

liver injury. The dysregulation of immune regulatory networks causes

the activation and expansion of autoreactive T cells and B cells (169,

170). The innate system plays an important role in the regulation of

the adaptive system. In AIH, an increased frequency of cytotoxic

circulating NK cells in the liver was observed in an experimental

mouse model of AIH (171). In humans, the frequency of circulating

CD56bright NK cells was higher in untreated AIH, while the frequency

of circulating CD56dim NK cells was reported to be reduced in active

AIH patients or while in remission (171, 172). Our knowledge about

NKT cells in liver autoimmunity is mainly based on mouse models.

In AIH, concanavalin-induced hepatitis is the preferred model. iNKT

cells were reported to upregulate FasL expression to mediate

cytotoxicity against hepatocytes (173). Activation of iNKT cells via

a-GalCer exacerbates the disease and is suggested to be carried out

via IL-4 and TNF-a secretion (174, 175). Inflammation was also

promoted via the secretion of IL-17 (176). MAIT cells were reported

to be depleted and exhausted in the periphery in patients (177).

Chronic stimulation of MAIT cells due to an increased influx of

bacteria antigens and chronic inflammation may lead to MAIT cell

function impairment. Induction of the exhausted state by repetitive

stimulation with IL-12 and IL-18 showed that MAIT cells reduced

IFN-g production but maintained expression of the proinflammatory

cytokine IL-17 (177). The frequency of circulating gd T cells was

increased in patients with AIH, PSC and PBC (8). Vd1+ T cells,

known to produce high levels of IFN-g and granzyme B, were

especially incremented in patients with AIH (178). Another study

showed that gd T cells with low expression of TOX were enriched in

AIH patients and had prediction potential (179). TOX deficiency was

suggested to promote the expression of IL-17A in gd T cells (179). In

general, IL-17 secretion was reported in iNKT cells, MAIT cells and

gd T cells. Although the clinical profile of the distinctive autoimmune

liver diseases is different, current studies support common

immunological pathways. Taking for instance the role of circulating

NK cells, the frequency of these cells was reported to be increased and

a higher expression of cytotoxic molecules such as perforin was found

in PBC and PSC patients compared to healthy individuals (180, 181).
Liver transplantation

Liver transplantation represents a major hepatic injury. One of

the unavoidable injuries is caused by oxygen deprivation. After liver

resection, blood flow is restricted for a period of time and the organ

becomes hypoxic. This leads to different forms of cell death like

apoptosis, ferroptosis, pyroptosis and necrosis (182). After

reperfusion, innate immune cells from the recipient migrate to the

liver and induce inflammation or tolerance (183). The degree of

ischemia-reperfusion injury (I/R) is correlated to the risk of liver

rejection (184, 185). I/R injury increased the expression of monocyte

chemoattractant protein-1 (MCP-1) and it was associated with

poorer graft function (186). This observation was correlated with

the increased recruitment of monocytes 2 hours after reperfusion

(186). The role of NK cells is dependent on activating and inhibitory
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receptors expressed in hepatocytes as well as cytokines secreted by

neighbour cells. In I/R injury, components of the inflammasome in

KCs like NLRP3 and AIM2 are hyper-activated (187, 188).

Inflammasome-derived IL-18 secretion can induce FasL (189) and

IFN-g production in NK cells (190). IFN-g was reported to induce

expression of Fas receptor in hepatocytes and neutralization of IFN-g
secretion by NK cells could protect mice from tissue damage (191).

Due to the increased demand for livers and the increasing prevalence

of NAFLD, the debate of using steatotic livers for transplant is on the

table (192). Steatosis is deemed to cause oxidative stress in the liver,

which worsens the graft´s condition with I/R injury. In a

retrospective, exploratory study, steatotic livers showing signs of I/

R had a significantly worse one-year survival rate, while the survival

rate was not conditioned in healthy livers´ by I/R injury (193). In this

study, gd T cells were suggested to exacerbate liver rejection in

steatotic livers (193). NKT cells were reported to promote I/R injury.

After reperfusion, NKT cells rapidly expand in the liver and produce

IFN-g (194, 195). Depletion of NKT cells with antibodies or both

NKT cells and NK cells significantly reduced I/R injury (196). The

role of MAIT cells in liver I/R injury remains to be elucidated. In

focal cerebral ischemia, MAIT cells were reported to play a pro-

inflammatory role (197).
Immunotherapy-associated liver
reactions

Cancer immunotherapies, especially immune checkpoint

inhibitor (ICI) therapy, have opened new clinical perspectives for

cancer patients and is fast becoming one of the main pillars of

cancer treatment. ICI therapy uses monoclonal antibodies blocking

T cell receptors that are used by cancer cells to evade the immune

system. Immune-related adverse events (irAEs) are the result of

immune activation derived from ICI therapy. The incidence of ICI-

derived hepatitis is approximately 1-3% for programmed cell death

1 (PD1) inhibitors and 3-9% in cytotoxic T-lymphocyte-associated

protein 4 (CTLA4) inhibitors (198). The combination of a-PD1/
CTLA4 increases the rate of hepatitis (198). CTLA4 plays an

important role in downregulating the immune response. The

expression of CTLA4 is upregulated in T cells after activation and

competes with the costimulatory receptor CD28 to bind to its ligand

CD80/CD86 on APC (199). PD-1 is expressed on T cells and B cells

and it promotes self-tolerance. Upon binding to its ligand PD-L1, it

drives T cell apoptosis or regulatory phenotype. Thus, ICI therapy

can arguably impair liver immunotolerance. In acute liver injury, a-
PD1 therapy improved the bacterial clearance function of KCs

(200). A study treating melanoma patients with a-PD1 showed that
NK cell frequency in blood was not affected while NKT frequency

was significantly increased (201). Another study observed no

changes in either the number or function of MAIT cells in

melanoma patients treated with a-PD1 therapy (202). gd T cells

showed no apparent functional changes upon PD-1 blockade in

vitro (203). The frequency of gd T cells in melanoma patients

treated with a combination of a-PD1/CTLA4 remained unchanged

(204). Overall, these data suggest that innate immune cells are not

drastically affected by ICI therapies, with the exception of KCs and
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NKT cells. Immune-suppressive KCs expresses PD-1 to suppress T

lymphocytes in acute liver injury (200). a-PD-1 therapy has shown
to invigorate bacteria clearance, but it also suggests that KCs may

have impaired tolerogenic function to self-antigens reactive T cells.

NKT cells also responded to a-PD-1 therapy and exert increased

anti-tumor functions by secretion of IFN- g secretion of

inflammatory cytokines (205).
Innate immune cells as diagnostic and
therapeutic targets

The innate immune system is also involved in immune

homeostasis and healthy tissue turnover. This is accomplished via

three steps consisting of early inflammation, amplification of the

inflammatory signal and resolution. Liver fibrosis is a consequence of

inflammation and inefficient resolution. Liver biopsy is the gold

standard for diagnosing cirrhotic liver disease, yet it is estimated to

miss 10-30% of cases (169). Additionally, biopsy is not ideal because

of invasiveness, pain, hypertension and bleeding (206). An optimal

approach would be to identify early inflammation before fibrosis

development. This could improve patient’s treatment and prognosis.

Blood markers bring promising perspectives to detect liver damage

and abnormal functions (207). The current scoring system for

diagnosis and prognosis of fibrosis includes serum proteins

(albumin), bilirubin, liver enzymes (aminotransferases, alkaline

phosphatase, g-glutamyl transferase) and direct markers of

extracellular matrix turnover (type IV collagen, matrix

metalloproteinases). However, there is room for improvement

regarding specificity (etiology) and sensitivity (disease stages) (206).

The immune system has emerged as an interesting diagnostic and

therapeutic target in liver inflammation. Innate immune cells are the

frontline defenders in the liver and participate in the initiation,

amplification and resolution of inflammation. Identifying immune

changes in innate immune cell´s surface expression markers and

frequencies can bring future perspective to the diagnosis of low-grade

inflammation and also novel therapies. As discussed in this review,

depletion of innate immune cells in mice models with hepatitis was

able to attenuate several liver diseases. Noteworthy, the close

relationship between innate immune cells with DAMPs and

cytokines signaling suggests taking into consideration all three

factors for the future of liver immunomonitoring and therapies.
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