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The achievement of large values of the light–matter coupling in nanoengineered photonic structures can lead to multiple
photonic resonances contributing to the final properties of the same hybrid polariton mode. We develop a general theory
describing multi-mode light–matter coupling in systems of reduced dimensionality, and we explore their phenomenol-
ogy, validating our theory’s predictions against numerical electromagnetic simulations. On one hand, we characterize
the spectral features linked with the multi-mode nature of the polaritons. On the other hand, we show how the interfer-
ence between different photonic resonances can modify the real-space shape of the electromagnetic field associated with
each polariton mode. We argue that the possibility of engineering nanophotonic resonators to maximize multi-mode
mixing, and to alter the polariton modes via applied external fields, could allow for the dynamical real-space tailoring of
subwavelength electromagnetic fields.
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1. INTRODUCTION

Confining light below the Abbe diffraction limit [1] by storing a
part of the electromagnetic energy in the kinetic energy of elec-
tric charges [2] opened the door to a number of groundbreaking
real-world applications, which has contributed to the great success
of the field of nanophotonics. In a nanophotonic device, the high
energy density of the electromagnetic field makes it relatively easy
to couple with different kinds of localized material excitations and
reach the strong light–matter coupling regime, originally achieved
in cavity quantum electrodynamics (CQED) atomic systems [3].
In such a regime, light and matter degrees of freedom hybridize,
leading to novel, polaritonic excitations of a mixed light–matter
character [4,5].

Standard theoretical models used to describe strong coupling
consider a single optically active matter transition coupled to a
single photonic mode. Although some care has to be used when
performing calculations on such a reduced Hilbert space [6–9],
this single-mode approximation has enabled modeling of a wide
range of CQED systems with remarkable easiness and generality.
However, the requirement is that the energy spacing between the
considered resonances and the neglected ones is much larger than
the strength of light–matter coupling, thus permitting to integrate
out excited modes with negligible populations.

However, the ongoing race for record coupling strengths
[10,11] has led to situations in which higher-energy electronic
states cannot be neglected, requiring a model that considers the

coupling of multiple matter excitations to the same photonic
mode. We refer to this regime as the very-strong coupling (VSC)
regime, first predicted by Khurgin in 2001 [12]. The hybridization
of multiple excited matter states has an important consequence: the
matter component of the polariton, represented itself by a linear
superposition of different bare matter wave functions, has a wave
function different from each of the bare states [13]. Following a
2013 proposal [14], such an effect was observed for the first time in
2017 [15], as a modification of approximately 30% of the Wannier
exciton Bohr radius in GaAs microcavities, and it has been then
the object of further theoretical investigations that confirmed
the findings [16,17]. Larger numbers of matter states that can be
hybridized by coupling with the photonic field could correspond
to a broader design space for the resulting electronic wave function.
This idea led to the study of systems with a continuum of ionized
excitations [18,19] and eventually to the discovery of novel bound
excitons stabilized by the photonic interaction [20], and to novel
polaritonic loss channels [21].

In this paper, we theoretically investigate the possibility of both
multi-mode electronic and multi-mode photonic hybridization,
leading to a modification of the spatial electromagnetic profiles of
the resulting polariton modes. Given the possibility of fast [22,23]
in situ tuning of the light–matter interaction by optical and elec-
trical means, subcycle multiwave mixing nonlinearities between
different polariton states [24] or even all-optical subcycle switch-
ing [25,26], such an approach could open the door to dynamical
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manipulation of subwavelength fields, with potential disruptive
applications for, e.g., on-chip optical tweezers [27].

Although to the best of our knowledge it was never explicitly
discussed in these terms, the regime of photonic VSC has been
already described for cold atoms trapped in an optical lattice [28]
and reached in various systems, as superconducting qubits cou-
pled to microwave photons in a long transmission-line resonator
[29,30]. Moreover, it has been theoretically [31] and experimen-
tally [32] demonstrated in microcavities, where the coupling
strength becomes larger than the bare excitation frequencies. In
such a regime, the diamagnetic term of the Hamiltonian creates a
dominant real-space repulsive interaction localized at the dipole
position, which expels the electromagnetic field and may even lead
to light–matter decoupling [31,32]. It has also been experimentally
observed that, in plasmonic nanocavities, the greatly enhanced
coupling between molecular excitons and gap plasmons causes a
significant modification of the plasmonic mode profile [33].

Here, we focus on Landau polaritons, where the giant electronic
dipoles of cyclotron resonances (CRs) of two-dimensional electron
gases (2DEGs) are coupled to strongly enhanced light fields of
subwavelength THz resonators. After initial predictions in Ref.
[34], multiple experimental realizations followed, some of which
established world records for the largest light–matter coupling ever
achieved in any CQED system [32,35–37].

In the first part of the paper, we will develop a theory describing
multi-mode light–matter strong coupling in CQED. Although the
theory is completely general and can be applied to arbitrary polari-
tonic platforms, for the sake of concreteness, we specialize it to the
case of Landau polaritons on which we will test it. Our approach
highlights the main electronic and optical features observable
for this multi-mode coupling. In the second part, we apply our
formalism to structures based on planar plasmonic metasurfaces.
To this end, we perform numerical simulations using a commer-
cial finite element method (FEM) software. These simulations
verify the predictions of our theory and demonstrate how multi-
mode photonic hybridization can lead to a modification of the
electromagnetic spatial profile of the polariton modes.

2. THEORY OF MULTI-MODE LIGHT–MATTER
COUPLING

In this section, we develop a theory for the light–matter coupling
between M photonic resonator modes and the CRs of a 2DEG
with a charge carrier density N2DEG and an effective mass m∗.
Following Kohn’s theorem [38], we neglect Coulomb interactions
between the electrons, which manifest in the nonlinear suscep-
tibility of strongly driven Landau electron systems [39], but have
no role in the determination of the optical resonances. Moreover,
while our theory technically describes a single quantum well (QW)
hosting the entire electron distribution, it is equally valid in densely
packed multi-QW structures as usually employed in experiments,
where the intensity of the electromagnetic field does not vary sig-
nificantly within the thickness of the multi-QW stack. Following
the elegant theory from Ref. [37], we can write the Hamiltonian of
our system as

Ĥ = Ĥcav +

N∑
j=1

~ωc ĉ †
j ĉ j +

e 2

m∗

N∑
j=1

Â−(r j ) Â+(r j )

+ i

√
~ωc e 2

m∗

N∑
j=1

[
ĉ †

j Â+(r j )− ĉ j Â−(r j )
]
, (1)

where ĉ j is the Bosonic lowering operator for the electrons, leading
to a transition from the j th to the ( j − 1)th Landau level with
a transition energy ~ωc , and Ĥcav is the Hamiltonian describing
the bare electromagnetic field in the resonator. In case of high
electron density and strong in-plane confinement of both the
2DEG and the electromagnetic field, plasmonic modes hosted
by the system can be nonnegligible and lead to the formation
of magneto-plasmon modes with a renormalized frequency of

ω̃c =

√
ω2

c +ω
2
P , where ωP is the 2D plasmon frequency for

the 2DEG [21]. However, a correct estimation of ωP not only
takes into account the in-plane confinement of the 2DEG, but
also includes the screening of the metallic resonator in proximity
of the electrons, leading to a reduction of the plasmon energy
[40–42]. For our structures, this effect strongly limits the extent of
renormalization such that we disregard plasmon effects.

In Eq. (1), we introduced the non-Hermitian vector potentials
written in terms of the in-plane component of the vector potential
Â(r) as

Â±(r)=
Âx (r)∓ i Â y (r)

√
2

. (2)

The full vector potential can be expressed as a sum of photonic
modes with dimensionless spatial field profiles fν(r), frequencies
ων , and second-quantized bosonic annihilation operators âν as

Â(r)=
∑
ν

√
~

2ε0εr (r)ωνVν
fν(r)

(
â †
ν + âν

)
. (3)

Here, the vector fields fν(r) are eigensolutions of Maxwell’s equa-
tions for the bare cavity, and they are thus orthogonal over the full
domainV [43]: ∫

V
f∗ν(r)fµ(r)dr= Vνδν,µ, (4)

with Vν the mode volume of the νth photon mode and εr (r) the
background, non-resonant dielectric constant. The amplitudes of
the non-Hermitian vector potentials then take the form

Â−(r)=
∑
ν

√
~

2ε0εr (r)ωνVν
fν(r)

(
â †
ν + âν

)
,

Â+(r)=
∑
ν

√
~

2ε0εr (r)ωνVν
f ∗ν (r)

(
â †
ν + âν

)
, (5)

with

fν(r)=
fν,x (r)+ i fν,y (r)

√
2

. (6)

Crucially, the orthogonality condition in Eq. (4) holds only if
the integral is performed over the entire three-dimensional space,
while the integral of two orthogonal modes over any sub-domain
does not vanish in general. This concept is illustrated in Fig. 1 for
the model case of a planar microcavity (a), (b) and for a split-ring
resonator (c), (d), integrated over either the full three-dimensional
volume (a), (c) or a thin, quasi-two-dimensional surface (b), (d). In
both cases, two orthogonal modes (red and blue arrows) become
non-orthogonal when the integral is performed over a quasi-two-
dimensional slice of the overall volume. To understand how this
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finding is relevant for our systems, we can consider as an example
the third term of Eq. (1), the so-called diamagnetic term of the
light–matter interaction Hamiltonian, which contains generally
non-vanishing expressions of the form

N∑
j=1

f ∗ν (r j ) fµ(r j )= N2DEG

∫
S

f ∗ν (z, r‖) fµ(z, r‖)dr‖, (7)

where S is the sample surface, z is the out-of-plane position of
the 2DEG, and r‖ is the in-plane position. Placing a 2DEG at the
center of the planar microcavity, or below the split-ring resonator,
will thus result in an interaction of different photon modes that is
mediated and modulated by the coupling to the electrons. We now
elucidate this insight further, showing how it is relevant also for the
dipolar light–matter interaction described by the fourth term of
Eq. (1). To this aim, let us call M the number of photonic modes in
the frequency region of interest. Their wave functions, restricted
over the sample surfaceS, span a space of dimension at most M. We
can thus always introduce M orthonormal basis functions overS,∫

S
φ∗ν (r‖)φµ(r‖)dr‖ = δν,µ, (8)

such that

fν(z, r‖)=
∑
µ≤ν

αν,µφµ(r‖). (9)

It is always possible to choose the basis such that α1,1 is real and
αν,µ = 0 if ν <µ. Using Eq. (9), the degree of non-orthogonality
between the resonator modes with respect to the QW plane can be
captured by defining the overlap matrix

Fν,µ =
∫
S

f ∗ν (z, r‖) fµ(z, r‖)dr‖ =
∑

γ≤min(ν,µ)

α∗ν,γαµ,γ , (10)

and its normalized version

ην,µ =
Fν,µ√

Fµ,µFν,ν
, (11)

both of which may assume values from zero to one. These matrices
quantify the spatial overlap of any pair (µ, ν) of photon modes over
the QW plane. A diagonal matrix ην,µ ∝ δν,µ implies vanishing
overlap between the photon modes, while a fully populated matrix
corresponds to a strong overlap.

By introducing a set of collective Bosonic matter operators,

b̂µ =
1

√
N2DEG

N∑
j=1

φµ(r j ,‖)ĉ j , (12)

with the in-plane position r j ,‖ of the j th electron, we can finally
write the Hamiltonian in Coulomb gauge as

Ĥ =
∑
ν

~ων â †
ν âν +

∑
ν

~ωc b̂†
ν b̂ν

+

∑
ν,µ

hν,µ
(
â †
ν + âν

) (
â †
µ + âµ

)
+

∑
ν

∑
µ≤ν

[(
g ν,µb̂µ + g ∗ν,µb̂†

µ

) (
â †
ν + âν

)]
. (13)

Orthogonal modes

Non-orthogonal modes

(a) (c)

(b) (d)

Fig. 1. Sketch of how orthogonal resonator modes can become non-
orthogonal when coupled over an active region occupying only part of
the resonator volume. Shown are the case of a planar microcavity (a),
(b) and a split-ring resonator (c), (d). Two electromagnetic modes are
shown by red and blue arrows, and the active region, corresponding to the
full three-dimensional volume (a), (c) or a thin, quasi-two-dimensional
surface (b), (d), is shaded in light red.

Here,

g ν,µ = αν,µ

√
~2ωc N2DEGe 2

2m∗ε0ε̄rωνVν
,

hν,µ =
∑
γ≤ν,µ

g ν,γ gµ,γ
~ωc

(14)

represent coupling parameters, g ν,µ is the vacuum Rabi energy
quantifying the coupling between the photonic mode ν and the
matter mode µ, while hν,µ quantifies the diamagnetic coupling
between two photonic modes mediated by the matter. In Eq. (14),
we also introduced the background dielectric constant of the QW
material ε̄r . This Hamiltonian is bosonic and quadratic, which
allows us to determine its eigenmodes by Hopfield diagonalization
[44]. Moreover, it presents some important features. First, the
light–matter interaction term displays cross-interactions between
different spatial modes, in both the diamagnetic term [second line
of Eq. (13)] and in the light–matter coupling term [third line of
Eq. (13)]. Second, it presents so-called antiresonant terms, prod-
ucts of two creation or two annihilation operators. Those terms,
which cannot be intuitively interpreted as describing excitation
exchanges between different fields, become important in the ultra-
strong coupling regime [10,11]. They cannot be neglected when
the vacuum Rabi energy becomes comparable to the energies of
the bare light and matter modes, with a ratio of 0.1 being usually
considered the threshold to enter the ultrastrong coupling regime.
Starting from such a value, the antiresonant terms have in fact led
to measurable shifts in the polaritonic frequencies [45] as well as
to more exotic phenomenology, as the presence of a nonnegligible
population of virtual excitations in the ground state [46].

Following the Hopfield approach, we diagonalize the
Hamiltonian by introducing the hybrid multi-mode polariton
operators

p̂µ =
∑
ν

(
xν,µâν +wν,µb̂ν + yν,µâ †

ν + zν,µb̂†
ν

)
, (15)
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whereby (xν,µ, wν,µ, yν,µ, zν,µ) are real-valued Hopfield coeffi-
cients. The dressed polariton frequenciesω p

µ are the eigenvalues of
the polariton eigenequation

~ω p
µ p̂µ =

[
p̂µ, Ĥ

]
. (16)

The Hopfield transformation can subsequently be inverted as(
âν + â †

ν

)
=

∑
µ

(xν,µ − yν,µ)
(

p̂µ + p̂†
µ

)
, (17)

allowing us to find the coupled electric field components
corresponding to the non-Hermitian vector potential:

Ê−(r)=
∑
ν,µ

√
~ων

2ε0ε̄rVν
fν(r)(xν,µ − yν,µ)

(
p̂†
µ + p̂µ

)
,

Ê+(r)=
∑
ν,µ

√
~ων

2ε0ε̄rVν
f ∗ν (r)(xν,µ − yν,µ)

(
p̂†
µ + p̂µ

)
. (18)

From Eq. (18), we can clearly see that, as expected from our initial
discussion, the electric field corresponding to the polaritonic mode
p̂µ is a linear combination of all bare electromagnetic mode profiles
fν(r), each weighted by the Hopfield coefficients. When the vac-
uum Rabi energies in Eq. (14) become comparable to the energy
spacing between different resonator modes, multiple terms of such
a linear combination can become nonnegligible. In this case, the
interference of different bare electromagnetic modes weighed by
the relative Hopfield coefficients can strongly modify the spatial
profile of the polariton electromagnetic mode, the hallmark of
photonic VSC described in the Introduction.

We stress that we have developed an inherently lossless theory
based on a system Hamiltonian. This model is justified because
we deal with systems in which we can identify discrete, albeit
broadened, independently addressable electromagnetic modes.
The VSC physics is due to the interaction between the optically
active material and these intra-cavity modes. Losses then cause
only a Lorentzian broadening, which can be taken into account
a posteriori using one of the perturbative schemes that have been
devised for systems in the ultrastrong coupling regime [47,48],
without affecting the VSC phenomenology object of this paper.
This is proven by the fact our lossless theory fits well the numerical
FEM results, even if the highest photonic mode is substantially
broadened. A finite linewidth can be understood as a frequency
uncertainty, which translates in an uncertainty of the same order
on the value of the cyclotron frequency corresponding to a specific
interference figure. For such a reason, when comparing snapshots
of field profiles between the lossless Hamiltonian theory and lossy
FEM results, we will fit the cyclotron frequency within half of the
resonance linewidth.

The opposite case, VSC with a continuum, has been achieved,
both the standard electronic version [20] and the photonic one
[30], and multiple approaches have been developed to study the
coupling with a photonic continuum in the ultrastrong coupling
regime [19,46]. These are nevertheless not relevant for the system
considered here but rather a topic for future investigations.

Note moreover that systems with structured photonic con-
tinua can be described as multiple interacting resonances [49,50].
However, this is unrelated to the VSC effect we study here, as
in such a case, the interaction is a weak coupling effect between

spectrally overlapping modes, independent of the coupling with
optically active material.

3. SEMI-ANALYTICAL RESULTS

To highlight the role of the normalized overlap factors for the
coupling strength, we now assume a single pair of photonic modes
(M = 2) with frequencies ω1 and ω2 and mode volumes V1 and
V2. Their non-orthogonality is quantified by a single overlap
parameterη2,1. By expliciting Eq. (10), we arrive at

F1,1 = α
2
1,1,

F2,2 = |α2,1|
2
+ |α2,2|

2,

F2,1 = α
∗

2,1α1,1, (19)

which leads to

α1,1 =
√
F1,1,

α2,1 =
F∗2,1√
F1,1
=
√
F2,2η

∗

2,1,

α2,2 =

√
F2,2 −

|F2,1|
2

F1,1
=
√
F2,2

√
1− |η2,1|

2. (20)

Defining the renormalized mode volume as Ṽν = Vν
Fν,ν , Eq. (14)

leads to expressions for the coupling strengths:

g 1,1 =

√
~2ωc N2DEGe 2

2m∗ε0ε̄rω1Ṽ1

,

g 2,1 =

√
~2ωc N2DEGe 2

2m∗ε0ε̄rω2Ṽ2

η2,1,

g 2,2 =

√
~2ωc N2DEGe 2

2m∗ε0ε̄rω2Ṽ2

√
1− |η2,1|

2. (21)

For the given basis, the interpretation of these coefficients is that
the photonic mode ν = 1 is coupled to only a single matter mode,
µ= 1. In contrast, the coupling strength for the photonic mode
ν = 2 originates from simultaneous coupling to both matter
modes owing to the non-vanishing overlap parameterη2,1.

To show the peculiar spectroscopic features expected in systems
with nonnegligible overlap between the photonic modes, we plot
in Fig. 2 the spectra obtained by diagonalizing the Hamiltonian
in Eq. (13) for two resonator modes. The three cases concern
settings of vanishing overlap [η2,1 = 0; (a), (b)], medium overlap
[η2,1 = 0.5; (c), (d)], and maximum overlap [η2,1 = 1; (e), (f )],
whereby in each case, the left and right panels show spectra as a
function of the cyclotron frequency and electron density N2DEG,
respectively.

We can point out two characteristic signatures for the overlap.
First, we consider varying the cyclotron frequency [(a), (c), (e)]. For
vanishing mode overlap η2,1 = 0 [(a)], we observe the opening of
separate polariton gaps for each pair of photonic mode and matter
excitation. On the contrary, maximum overlap of η2,1 = 1 [(e)]
leads to the emergence of an S-shaped resonance (blue curve). In
this case, the mode structure originates from the coupling of a
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Fig. 2. Polaritonic eigenmodes arising from the diagonalization
of Eq. (13) with M = 2 photonic resonances of frequencies ω1 and
ω2 = 2ω1 (green dashed lines) coupled to the 2DEG hosting the
cyclotron resonance, ωc (red dashed line). The three rows correspond
to the case of zero overlap between the two photonic modes [η2,1 = 0; (a),
(b)], medium overlap [η2,1 = 0.5; (c), (d)], or perfect overlap [η2,1 = 1;
(e), (f )]. Panels in the left column (a), (c), (e) are shown as a function of
the cyclotron frequency ωc with resonant couplings in the zero overlap
case (η2,1 = 0) g 1,1 = 0.5~ω1 atωc =ω1 and g 2,2 = 0.25~ω2 atωc =ω2.
Panels in the right column (b), (d), (f ) are shown for a fixed value of the
cyclotron frequency ωc = 0.5ω1 as a function of the electron density
N2DEG. The reference density N0

2DEG corresponds to resonant couplings in
the left column. Panel (e) displays an S-shaped polariton curve (blue solid
line) due to a perfect overlap.

single matter excitation µ= 1 to both photonic modes ν = 1, 2,
simultaneously, leading to three polariton branches in total. The
S-shaped center mode is confined between the cavity frequencies
ω1 and ω2, thus manifesting a double-mode nature. Second, we
analyze the mode structure as a function of electron density [(b),
(d), (f )]. Here, we see that at larger densities and thus larger cou-
plings, two modes blueshift in the case of vanishing overlap, while
a single mode blueshifts in the presence of substantial overlap. We
attribute this behavior to the contribution of the diamagnetic term,
which, being of higher order in N2DEG, becomes dominant at very
large densities and tends to blueshift the upper polariton of each
set of polaritonic solutions, taking into account that polaritonic
modes never cross their bare components [31,51]. Nevertheless, in
the case of maximum overlap, the diamagnetic term between the
two photonic modes leads to a repulsion of the upper polaritons,
leading to an anti-crossing behavior above a certain critical value of
the electronic density.

d)

e)

η2,1=0.95

η2,1=0.32

f)

Fig. 3. Sketch of the structure including the hexagonal negative THz
resonator (violet shape) fabricated on top of the GaAs substrate (white
region), and the QW hosting the 2DEG (light red region), whose area
occupies either the whole unit cell (a) or a limited area enclosing the
central gap (d). In the other panels, we show numerical calculations of the
transmission as a function of cyclotron frequency ωc at a fixed electron
density N0

2DEG = 3× 1012 cm−2 (b), (f ) and as a function of electron
density at a fixed cyclotron frequency ωc = 0.8 THz (c), (g). Panels (b),
(c) illustrate results for the structure in panel (a), and panels (f ), (g) for the
structure in panel (e). The calculated values of η2,1 are shown in (a), (d).
Blue solid lines highlight the fitted polaritonic resonances.

4. NUMERICAL RESULTS

To explore the relevance of our theory for experiments with Landau
polaritons, we used a commercial FEM software to compute the
complex field distribution and transmission spectra without any
fitting parameter.

Our structure is a negative resonator (cut from a gold surface,
Fig. 3) [52] of hexagonal shape, fabricated on top of a gallium
arsenide (GaAs) substrate [white areas in Figs. 3(a) and 3(d)],
with the CRs hosted in three GaAs QWs, each doped at a density
N2DEG/3 [light red regions in Figs. 3(a) and 3(d)], so that the total
surface carrier density is N2DEG. The approach we used to simulate
the metamaterial coupled to the doped multiple QW stack was
reported by Bayer et al . [32], and we will briefly resume the main
steps below.

To reduce the numerical complexity of modeling the dielectric
environment composed of several QWs and corresponding barri-
ers, we employ an effective medium approach describing the full
QW stack as a layer of a total thickness of dQW = 210 nm and total
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surface density N2DEG [53]. The CR of the 2DEG is implemented
as a gyrotropic medium, where the dielectric tensor of a plasma of
charge carriers magnetically biased along the z direction describes
the two-dimensional polarization response of the CR in the plane
perpendicular to the magnetic field:

εCR =

 εxx(ω) iεxy(ω) 0

−iεxy(ω) εxx(ω) 0

0 0 ε̄r

 , (22)

with

εxx(ω)= ε̄r −
ω2

P 3D(ω+ i0)

ω
[
(ω+ i0)2 −ω2

c

] ,
εxy(ω)=

ω2
P 3Dωc

ω
[
(ω+ i0)2 −ω2

c

] . (23)

Here, ωP 3D is the characteristic plasma frequency describing
the oscillation of the electrons with a homogeneous 3D density
N2DEG/dQW, and0 is the phenomenological scattering rate. In the
z direction, we employ only the background dielectric constant,
as the confinement inhibits a plasma response. For the gold meta-
material, we use the dielectric constant εAu = 105

+ 105i [32] to
approximate the response of a perfect metal. In the x − y direc-
tion, we employ periodic boundary conditions to reflect the array
character of our structure. Maxwell’s equations are subsequently
solved numerically. The transmission is derived from the electric
field amplitude calculated in the far field and is expected to predict
the experimental results across the entire spectral range with high
accuracy.

To explore the direct impact of the overlap over the optical
spectrum, we consider two types of QW designs. In the first layout,
the 2DEG covers the whole unit cell area [Fig. 3(a)]. We refer to
this design as unstructured . A second layout is instead realized by
in-plane confinement of the 2DEG within a small rectangular
patch at the center of the resonator [Fig. 3(d)]. We refer to this
layout as structured .

The numerical transmissions for the four samples are shown in
Figs. 3(b) and 3(e) as a function of the cyclotron frequency, and in
Figs. 3(c) and 3(f ) as a function of the electron density N2DEG. The
simulation is performed considering an exciting electromagnetic
wave that is linearly polarized along the gap (x ) direction, and
incident perpendicularly to the metamaterial plane. From the
transmission spectrum at low electronic density, shown in Fig. 4(a),
we recognize M = 2 active photon resonances within the given fre-
quency range, whose in-plane field profiles along the gap direction
are plotted in Figs. 4(b) and 4(c).

In the structured case, the patch acts as a Fabry–Perot resonator
for the quasi-2D plasmonic excitations of the electron gas in the
QWs [54]. This leads to a non-vanishing frequency for the funda-
mental plasmonic mode to which the lower polariton in Fig. 3(e)
would converge for a vanishing cyclotron frequency. We estimated
the fundamental plasmon mode frequency using the formula [40]

ωP
0
=

√
N2DEGe 2π

2m∗ε0εeffW
, (24)

with W the patch width and εeff the effective permittivity taking
into account the screening of the gold resonator by averaging the
screened and unscreened portions of the QW area. The resulting

20

20
-20

-20

f=0.78 THz 20

20-20
-20

f=3.55 THz

(a)

(b) (c)

Fig. 4. Transmission spectra for the resonator (a). The resonances with
frequencies up to 5 THz are identified by black arrows, and the corre-
sponding in-plane field distribution along the gap direction is plotted for
each of the M = 2 resonances in (a) with bare frequenciesω1 = 0.78 THz
(b) andω2 = 3.55 THz (c).

value is ωP
0
≈ 0.2 THz. Although for the sake of completeness,

we did use such a value in our simulations for the structured QWs,
we notice that for such low frequencies, the polaritons have van-
ishing photonic components and the transmission spectra are not
noticeably affected by the exact value ofω0

P .
Once we calculated the overlap parameter as in Eq. (11) for the

two configurations, we employed our multi-mode theory to fit
simultaneously the resonances for the spectra of both theωc -sweep
and the N2DEG-sweep, considering the matter resonance as the
magnetoplasmon mode ω̃c and treating the normalized mode
volumes Ṽν as fitting parameters.

From the discussion in the previous section, we expect that
passing from the unstructured to the structured sample, as the inte-
gration surface is reduced, not only the normalized mode volumes
Ṽν will vary, but also the modes will become less orthogonal, thus
increasing the overlap parameter η2,1. This is indeed the case as can
be seen by the calculated values of η2,1 = 0.32 for the unstructured
sample in Fig. 3(a) and of η2,1 = 0.95 for the structured sample in
Fig. 3(d) derived by Eq. (11).

Comparing the transmission spectra for the different configu-
rations allows us to recognize, albeit in attenuated form, the main
differences in the spectral features predicted by the theory (marked
on the plots by blue solid lines). At first glance, we notice that the
single polariton anti-crossings are well resolved in the unstructured
case, as they mainly arise from one-to-one coupling of photonic
modes to orthogonal matter excitations. In the structured platform
instead, we observe a reduction of the polariton splitting, and the
appearance of an S-shaped resonance. The reduction of the polari-
ton splitting is mainly due to the fact that reducing the integration
area for the single mode leads to a larger normalized mode volume
Ṽν , and as such to a smaller coupling strength. On the other hand,
the confinement of the 2DEG around the central gap of the res-
onator increases the overlap between modes, which becomes close
to one, leading to the appearance of the characteristic S-shaped
polariton.

We report in Fig. 5 the in-plane electric field distributions along
the gap direction for the coupled modes of the hexagonal resonator
platform in the structured configuration. The reported data sets
are extracted from the FEM simulation and calculated by our
multi-mode theory, and are plotted on the right and left sides of
(a)–(e). The simulation field maps for a given coupled mode are
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Fig. 5. Simulated transmission spectrum as function of ωc at N2DEG = 3× 1012cm−2 for the hexagonal resonator shown in Fig. 3(d), corresponding to
the overlap factor η2,1 = 0.95. The colormaps (a)–(e) represent the in-plane electric field profile along the gap direction |E x | (y -component results negli-
gible), extracted on the QW plane, corresponding to the coordinates marked by the green arrows. The bottom panels (f )–(i) display the weight |xν,µ − yν,µ|
of the photonic mode ν in the polariton modeµ, as appearing in Eq. (18) for all polariton modes, with the coordinates of the colormaps above marked by
dashed green lines. The (f )–(i) plots are ordered following an ascendant order for the polariton frequencies.

obtained by simulating the far-field excitation of the system at the
specific value of ωc , marked by the green arrows in the ωc -sweep
transmission plot, with excitation frequency corresponding to that
of the polariton mode.

The corresponding theoretical electric field profiles are instead
obtained by Eq. (18) as linear combinations of the numerically
extracted fields of the uncoupled resonances, shown in Fig. 4,
weighed by the photonic coefficients displayed in Figs. 5(f )–5(i).
Note that, as explained at the end of Section 2, the linear super-
position is calculated at a cyclotron frequency fitted within half
of the resonance linewidth from the nominal one. By observing
the field maps, we can notice that these refer to three different
cases: Figs. 5(a), (c), and (e) display field distributions similar to the
uncoupled ones, as the weight of one of the two modes is greatly
dominant over the other. Figure 5(d) displays a case in which
the two photonic weights are comparable, and the electric field
map is noticeably different from either of the bare ones. Finally,
in Fig. 5(b), our theory predicts the field of the bare photonic
mode mainly localized in the central gap, while the simulation
shows the electric field diffracting in the far field of the plasma
waves, although remaining confined on the area of the QW patch.
This effect is related to the one recently investigated in Ref. [21].
Here, the authors point out how the electromagnetic field, con-
fined in the resonator gap, can excite a continuum of propagative
high-wave-vector plasmonic waves leaking away energy from the
polaritonic resonances. In our case, the main difference is that the
patch acts as a Fabry–Perot resonator. Even if higher-order discrete
modes are quasi-resonant with one more polaritonic branch, the
energy of the excited modes remains confined in the patch and
has thus only a limited effect on the polaritonic resonances [55].

Our two-mode Hopfield model misses this effect, which could
nevertheless be correctly described expanding the basis to include
many discrete plasmonic modes of the patch [18] or alternatively
using a theory able to deal with continuum spectra [19].

Finally, Fig. 6 highlights the modification of the in-plane elec-
tric field driven by the multi-mode hybridization for the specific
case of the second polariton mode across the anti-crossing point
with the higher photonic frequency ω2 = 3.55 THz. The cal-
culated electric field maps in (c) refer to the cyclotron frequency
values marked by the vertical black dashed lines in (a) and (b)
[same as Fig. 5(g)]. We can clearly see how changing the cyclotron
frequency varies the electric field map, displacing the minimum of
the field across the subwavelength central gap, a feature suggestive
of potential applications in subwavelength sensing and optical
tweezers.

Our results thus demonstrate that, by optimizing the resonator-
2DEG structure, we are able to dynamically modify the subwave-
length electromagnetic field profile, moving its maxima by varying
the applied magnetic field.

5. CONCLUSION

In conclusion, we theoretically investigated the multi-mode
coupling between the CRs of a 2DEG and highly confined THz-
resonator modes. We developed a general theory describing
multi-mode coupling taking into account the non-orthogonality
of the electromagnetic modes. We highlighted specific spectral
features due to the presence of multiple photonic modes and
demonstrated the possibility to tune the level of inter-mode cou-
pling by lateral confinement of the 2DEG. Finally, using these
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Fig. 6. Evolution of the electric field map for the second lower polari-
ton mode. (a) Frequency dispersion for the second and fourth coupled
modes (blue solid lines) as a function of the cyclotron frequency (red
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(b) Photonic weight components (ν = 1 blue dotted curve, ν = 2 red
dotted curve) for the second (lower) polariton mode. (c) In-plane electric
field profiles corresponding to the frequency coordinates marked by the
vertical green dashed lines in (a) and (b).

effects opens up the possibility to dynamically tailor the spatial
profile of subwavelength electromagnetic modes by varying the
applied static magnetic field. This approach can potentially be
used to realize subwavelength optical tweezers to trap and move
nanoparticles over sub-micrometer distances.

The theoretical results encourage us to explore novel exper-
imental methods and setups allowing to observe the predicted
modification of the electric field profiles, driven by the coupling.
Moreover, we aim to investigate further different resonator con-
figurations to maximize the effects of multi-mode hybridization,
heading towards novel quantum technological applications, based
on a controllable and potentially dynamical tuning of highly
confined electromagnetic fields.
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