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Existence and uniqueness of solutions for a class of models for stress-modulated
growth is proven in one spatial dimension. Themodel features themultiplicative
decomposition of the deformation gradient𝐹 into an elastic part𝐹𝑒 and a growth-
related part 𝐺. After the transformation due to the growth process, governed
by 𝐺, an elastic deformation described by 𝐹𝑒 is applied in order to restore the
Dirichlet boundary conditions and, therefore, the current configurationmight be
stressedwith a stress tensor 𝑆. The growth of thematerial at each point in the ref-
erence configuration is given by an ordinary differential equation for which the
right-hand side may depend on the stress 𝑆 and the pull-back of a nutrient con-
centration in the current configuration, leading to a coupled system of ordinary
differential equations.

1 INTRODUCTION

In the past 20 years, the broad area of biomechanics has gained an increasing interest in the mathematical community
in view of the many challenging questions that are related to the analysis of the models that have been proposed. One
approach is inspired by models for crystal plasticity in terms of modern continuum mechanics in the framework of non-
linear theories, which were developed, for example, in Refs. [1, 2]. They are based on amultiplicative decomposition of the
total deformation gradient into an elastic part and a plastic part. Here, the plastic part encodes the permanent deformation
of the initial reference configuration due to plastic deformation and the elastic part describes the subsequent elastic defor-
mation of the plastically deformed reference configuration onto the currently observed configuration. These ideas have
been adapted for growth processes, for example in Refs. [3–9], where the initial deformation of the reference configura-
tion due to plastic deformation is replaced by an initial deformation due to the growth processes in the material. A theory
based on a split of the process into two distinct subprocesses, namely the volumetric, stress-free growth, and the subse-
quent mechanical response, has been developed in Refs. [10–14], see also the references therein. One particular feature of
these models is that they predict residual stress [15]. On the one hand, significant progress was achieved in the study of
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F IGURE 1 Left panel: The bar in its reference configuration (0, 𝐿0); the properties are piecewise constant as in Example 1 with
𝑋𝐼 = 𝐿0∕2. Middle panel: The bar after unrestricted growth in the virtual configuration (0, 𝐿(𝑡)); the growth is stronger in the left part of the
bar. Right panel: The bar after the elastic deformation that restores the boundary conditions; the material in the left part of the bar is softer
and the compression is stronger; the stress in the material is constant.

shape transitions in an incompressible sphere [16] including stability and buckling. On the other hand, it is, for example,
an open problem to calculate the opening angle produced by a given residual stress field in a soft biological tissue, see,
for example, Refs. [17, 18]. Applications to growth under gravity [19, 20] have also been investigated. A different approach
to problems related to growth processes in the presence of an active environment like a blood vessel is based on a free
boundary fluid–structure interaction problem and was proposed in Yang et al. [21]; very recently, significant analytical
progress was achieved in Refs. [22, 23]. First rigorous results for the coupling of a diffuse interface equation and the effects
of nonlinear elasticity in relation to tumor growth, the Allen-Cahn und Cahn-Hilliard systems have been presented in
Refs. [24–26]. Ideas to understand mechanical properties for plant tissues in the context of homogenization were devel-
oped in Piatnitski and Ptashnyk [27]. Closely related questions concerning buckling, a phenomenon that is ubiquitous in
nonlinear elasticity, have been investigated in Balbi and Ciarletta [28]. Finally, it is a challenging open problem to couple
the nonlinear elasticity model with porous medium equations [29–31].
In this article, we focus on one aspect in this broad context, namely stress-modulated growth, that is, the interplay of

growth processes with elastic stress. Our main purpose is to present a complete and self-contained analytical treatment in
the sense of existence and uniqueness of solutions for one particular class of models, and, therefore, we concentrate on a
one-dimensional situation. Major obstacles that must be addressed in order to extend our results to a higher-dimensional
case, are commented on in Section 7.
The multiplicative decomposition of the deformation gradient: The model we are interested in is closely related to the

one-dimensional models in Goriely [13], Ch. 4. We consider a growing body in one dimension, that is, a material that is
constrained to a straight line and that can undergo a change in its conformation by a change in density or length, but
not by effects like buckling, bending, or twist, which were considered in Bressan et al. [32]. Suppose that the body is
given in its initial reference configuration at time 𝑡 = 0 by the interval 𝐼0 = (0, 𝐿0) ⊂ ℝ with 𝐿0 > 0. As it is customary
in morphoelasticity, we introduce a natural or virtual configuration of the material after unconstrained growth at time 𝑡,
𝐼𝑣(𝑡) = (0, 𝐿(𝑡)), and the current or deformed configuration, 𝐼𝑐(𝑡) = (0, 𝓁(𝑡)). Since the configuration 𝐼𝑣(𝑡) can be realized
by an interval, we refer to it in this particular one-dimensional situation as the natural configuration of the material at
time 𝑡 but keep using the index 𝑣. The goal is to determine, for a given time horizon 𝑇, a deformation 𝑦 ∶ 𝑄𝑇 = 𝐼0 ×

(0, 𝑇) → ℝ such that 𝑦(𝐼0, 𝑡) is the current configuration of the growing body at time 𝑡. Here, we employ the hypothesis of
a multiplicative structure, namely that the deformation gradient 𝜕𝑋𝑦(𝑋, 𝑡) is given by a product of an elastic part 𝐹𝑒(𝑋, 𝑡)
and a growth-related part 𝐺(𝑋, 𝑡) such that the equation

𝜕𝑋𝑦(𝑋, 𝑡) = 𝐹𝑒(𝑋, 𝑡)𝐺(𝑋, 𝑡) (1.1)

is satisfied, see Figure 1. It is a very special aspect of the one-dimensional situation that 𝑦 is determined from this equa-
tion and suitable boundary conditions in 𝑋 as soon as 𝐹𝑒 and 𝐺 have been found. Before giving the precise definition,
we discuss the interpretation of 𝐹𝑒 and 𝐺. The growth-related factor 𝐺 in the deformation gradient prescribes the local
change of an infinitesimal material element in the body due to unconstrained growth, that is, 𝐺 is the deformation
gradient of the deformation from the reference configuration into the natural deformation. Again, due to the special
structure in one dimension, there exists a potential 𝑔 in the variable 𝑋, the deformation due to growth, with 𝑔(0, 𝑡) = 0

and 𝜕𝑋𝑔(𝑋, 𝑡) = 𝐺(𝑋, 𝑡) and it is required that 𝑔(⋅, 𝑡) is a bijection for all 𝑡 fixed. This is, for example, the case if 𝐺 > 0, an
assumption, which will be satisfied in our model.
As in Goriely [13, Section 4.2], we assume that the growing body is confined by two rigid plates, which leads to the

boundary conditions 𝑦(0, 𝑡) = 0 and 𝑦(𝐿0, 𝑡) = 𝓁0 for all 𝑡 ∈ (0, 𝑇). In the following, we assume that 𝐿0 = 𝓁0 but we keep
the distinct symbols to indicate the distinct configurations, namely, the reference configuration and the currently observed
configuration. This identification is not necessary but convenient since it leads to a stress-free initial configuration.
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Elastic stress after growth due to boundary conditions: The boundary conditions for the growingmaterial will, in general,
be violated after unrestricted growth, which leads to the natural configuration 𝐼𝑣(𝑡) = (𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)). Therefore, a
superimposed elastic deformation 𝜙 = 𝜙(𝑧, 𝑡) of the natural configuration 𝐼𝑣(𝑡) is needed in order to restore the boundary
values and this elastic deformation is obtained as a minimizer of a hyperelastic variational integral defined in the natural
configuration. This requires an assumption on the elastic properties of the material after growth. Our model is based
on the assumption that the material point 𝑋 in the reference configuration and the material point 𝑔(𝑋, 𝑡) in the natural
configuration have the same elastic properties. Hence, it suffices to define a stored energy density𝑊 ∶ [0, 𝐿0] × (0,∞) →

ℝ in the reference configuration and this stored energy density induces the stored energy density 𝑊𝐺 in the natural
configuration via𝑊𝐺(⋅, 𝑝) = 𝑊(𝑔−1(⋅, 𝑡), 𝑝). Consequently, the elastic deformation 𝜙(⋅, 𝑡) is a minimizer of a hyperelastic
variational integral

∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝑊𝐺(𝑧, 𝜕𝑧𝜙(𝑧, 𝑡))d𝑧 = ∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝑊(𝑔−1(𝑧, 𝑡), 𝜕𝑧𝜙(𝑧, 𝑡))d𝑧 (1.2)

subject to the boundary conditions 𝜙(𝑔(0, 𝑡), 𝑡) = 0 and 𝜙(𝑔(𝐿0, 𝑡), 𝑡) = 𝓁0. The matrix 𝐹𝑒 in Equation (1.1), the elastic
contribution to the total deformation gradient, is given by 𝐹𝑒(𝑋, 𝑡) = (𝜕𝑧𝜙)(𝑔(𝑋, 𝑡), 𝑡). The Euler–Lagrange equation for
the variational problem implies that the total stress

𝑆(𝑡) = (𝜕𝑝𝑊)(𝑔−1(𝑧, 𝑡), 𝜕𝑧𝜙(𝑧, 𝑡)) (1.3)

in the system is constant in 𝑧. The deformation due to growth, 𝑔(⋅, 𝑡) ∶ [0, 𝐿0] → ℝ, 𝑋 ↦ 𝑔(𝑋, 𝑡) and the deformation due
to elastic forces, 𝜙(⋅, 𝑡) ∶ [𝑔(0), 𝑔(𝐿0)] → ℝ, determine the total deformation 𝑦(⋅, 𝑡) = 𝜙(𝑔(⋅, 𝑡), 𝑡).
The reaction–diffusion equation for the nutrients: Themodel is completed by a reaction–diffusion equation for nutrients

in the current configuration of the form

−𝜕𝑥(𝐷(𝑥, 𝑡)𝜕𝑥𝑛(𝑥, 𝑡)) = −𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡) for 𝑥 ∈ (0, 𝓁0), 𝑡 ∈ (0, 𝑇) (1.4)

subject to boundary conditions 𝑛(0, 𝑡) = 𝑛𝐿 and 𝑛(𝓁0, 𝑡) = 𝑛𝑅 with 𝑛𝐿, 𝑛𝑅 > 0 where the diffusion constant 𝐷 and the
absorption rate 𝛽 depend on space and time. The specific choice of the constants at time 𝑡 in the current deformation is
part of themodel and in order to illustrate a class ofmodels, which can be treated by our theory, the following assumptions
are made for the two stages in the deformation process, first, the change in the reference configuration due to growth or
absorption and then the change from the natural configuration to the observed configuration due to elastic deformation.
The key properties are 𝐻2 regularity of the nutrient concentration and validity of a maximum principle as shown in
Lemma 10 and more general models can be considered as long as these two properties hold.
For the growth process, it is assumed that the diffusion coefficient and the absorption rate of the material gener-

ated by growth at time 𝑡 in 𝑧 = 𝑔(𝑋, 𝑡) in the natural configuration 𝐼𝑣(𝑡) are given by the diffusion coefficient and the
growth rate of material in the reference configuration at time 𝑡 = 0 in 𝑋. Thus, the diffusion constant 𝐷𝑣 and the reac-
tion rate 𝛽𝑣 in the natural configuration after growth according to 𝐺(⋅, 𝑡) ∈ ∞([0, 𝐿0]) are given, at 𝑧 = 𝑔(𝑋, 𝑡) and time
𝑡 ∈ [0, 𝑇], by

𝐷𝑣(𝑧, 𝑡) = (𝐷0◦𝑔
−1)(𝑧, 𝑡) , 𝛽𝑣(𝑧, 𝑡) = (𝛽0◦𝑔

−1)(𝑧, 𝑡) .

The transformation of the diffusion constant and the reaction rate during the elastic deformation of the material is based
on the assumption that the diffusion in the current configuration corresponds to the diffusion in the natural configuration
via the change of variables given by the elastic deformation 𝜙. That is, if 𝑛𝑣(⋅, 𝑡) is the solution of the reaction–diffusion
equation on 𝐼𝑣(𝑡)with coefficients𝐷𝑣(⋅, 𝑡) and 𝛽𝑣(⋅, 𝑡) and if𝑛(⋅, 𝑡) is the solution of the reaction–diffusion equation on 𝐼𝑐(𝑡)
with coefficients𝐷(⋅, 𝑡) and 𝛽(⋅, 𝑡), then, at𝑥 = 𝜙(𝑧), the equation𝑛(𝑥, 𝑡) = 𝑛𝑣(𝑧, 𝑡)holds. The corresponding equations for
𝑛𝑣(⋅, 𝑡) and 𝑛(⋅, 𝑡) are given for all test functions 𝜓𝑣 ∈ 𝐻1

0(𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)) by

∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝐷𝑣(𝑧, 𝑡)𝜕𝑧𝑛𝑣(𝑧, 𝑡)𝜕𝑧𝜓𝑣(𝑧)d𝑧 = −∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝛽𝑣(𝑧, 𝑡)𝑛𝑣(𝑧, 𝑡)𝜓𝑣(𝑧)d𝑧
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and for all test functions 𝜓 ∈ 𝐻1
0(0, 𝓁0) by

∫
𝓁0

0

𝐷(𝑥, 𝑡)𝜕𝑥𝑛(𝑥, 𝑡)𝜕𝑥𝜓(𝑥)d𝑥 = −∫
𝓁0

0

𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)𝜓(𝑥)d𝑥 ,

respectively.
By a change of variables in the weak equation for 𝑛(⋅, 𝑡), we find, with 0 = 𝜙(𝑔(0, 𝑡), 𝑡) and 𝓁0 = 𝜙(𝑔(𝐿0, 𝑡), 𝑡), that

∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝐷(𝜙(𝑧, 𝑡), 𝑡)𝜕𝑥𝑛(𝜙(𝑧, 𝑡), 𝑡)𝜕𝑥𝜓(𝜙(𝑧, 𝑡))𝜕𝑧𝜙(𝑧, 𝑡)d𝑧 = −∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝛽(𝜙(𝑧, 𝑡), 𝑡)𝑛(𝜙(𝑧, 𝑡), 𝑡)𝜓(𝜙(𝑧, 𝑡))𝜕𝑧𝜙(𝑧, 𝑡)d𝑧 .

Since 𝜙 is a diffeomorphism, 𝜓(⋅, 𝑡) = (𝜓◦𝜙)(⋅, 𝑡) ∈ 𝐻1
0(𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)) is an admissible test function and the weak

equation after the change of variables can be rewritten as

∫
𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝐷(𝜙(𝑧, 𝑡), 𝑡)𝜕𝑧[𝑛(𝜙(𝑧, 𝑡), 𝑡)]𝜕𝑧𝜓(𝑧, 𝑡)
1

𝜕𝑧𝜙(𝑧)
d𝑧 = −∫

𝑔(𝐿0,𝑡)

𝑔(0,𝑡)

𝛽(𝜙(𝑧, 𝑡), 𝑡)𝑛(𝜙(𝑧, 𝑡), 𝑡)𝜓(𝑧, 𝑡)𝜕𝑧𝜙(𝑧, 𝑡)d𝑧 .

The requirement that this equation corresponds to the reaction–diffusion equation in the natural configuration leads to
the assumptions

𝐷𝑣(𝑧, 𝑡) = 𝐷0(𝑔
−1(𝑧, 𝑡)) =

𝐷(𝜙(𝑧, 𝑡), 𝑡)

𝜕𝑧𝜙(𝑧, 𝑡)
⇔ 𝐷(𝑥, 𝑡) = 𝐷0(𝑔

−1(𝜙−1(𝑥, 𝑡), 𝑡))𝜕𝑧𝜙(𝜙
−1(𝑥, 𝑡), 𝑡)

and

𝛽𝑣(𝑧, 𝑡) = 𝛽0(𝑔
−1(𝑧, 𝑡)) = 𝛽(𝜙(𝑧, 𝑡), 𝑡)𝜕𝑧𝜙(𝑧, 𝑡) ⇔ 𝛽(𝑥, 𝑡) =

𝛽0(𝑔
−1(𝜙−1(𝑥, 𝑡), 𝑡)

𝜕𝑧𝜙(𝜙−1(𝑥, 𝑡), 𝑡)
.

If the material experiences strong growth, the corresponding elastic deformation is a strong compression and the
associated diffusion constant is small.
In order to have the usual elliptic regularity estimates at our disposal, we assume in the following that 𝐷0, 𝛽0 ∈

𝑊1,∞([0, 𝐿0]) and that there exist constants 𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥, 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥 ∈ (0,∞) with

∀𝑋 ∈ [0, 𝐿0] ∶ 𝐷0(𝑋) ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] , 𝛽0(𝑋) ∈ [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥] . (1.5)

General assumptions for the growth dynamics: The foregoing discussion shows that the deformation gradient 𝐺 of the
growth map 𝑔 is the basic variable: For a given 𝐺, one finds the growth map 𝑔 by integration, the natural configuration
𝐼𝑣, the subsequent elastic deformation 𝜙 ∶ 𝐼𝑣 → 𝐼𝑐 as a minimizer of the hyperelastic variational problem and the current
diffusion coefficient 𝐷 and absorption rate 𝛽, which determine the nutrient concentration 𝑛. The deformation 𝑦 from the
reference configuration onto the deformed configuration can be used to define the nutrient configuration in the reference
configuration as 𝑁 = 𝑛◦𝑦. It remains to state an evolution equation for 𝐺. Here, we follow the approach that 𝐺 satisfies
at each point 𝑋 ∈ [0, 𝐿0] an ordinary differential equation of the form

𝐺̇(𝑋, 𝑡) = (𝐺(𝑡, 𝑋), 𝑆(𝑡), 𝑁(⋅, 𝑡), 𝑋) , 𝐺(𝑋, 0) = 1 , (1.6)

that is, the rate of growth depends on the stress 𝑆(𝑡) and the nutrient concentration 𝑁(⋅, 𝑡) in the system at time 𝑡. Since
the model prescribes the growth at every point 𝑋 ∈ [0, 𝐿0], it is natural to use the space ∞([0, 𝐿0]) of all measurable
and bounded functions together with the supremum norm as the basic function space for the variable 𝐺. Moreover, the
evolution equations at each point 𝑋 are coupled to the state of the system at all points in [0, 𝐿0] since both the stress 𝑆
in the system as well as the referential description of the nutrient concentration 𝑁 are nonlocal functions. Therefore, we
interpret the evolution (1.6) as an evolution of the system in the Banach space ∞([0, 𝐿0]) on a time interval [0, 𝑇] with
𝑇 > 0.
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BANGERT and DOLZMANN 5 of 29

Definition 1. A function 𝐺 ∈ 𝐶1([0, 𝑇];∞([0, 𝐿0])) determines a solution of the one-dimensional growth problem with
initial condition 𝐺0 ∈ ∞([0, 𝐿0]) with 𝐺0 > 0 everywhere if 𝐺 is a solution of the ordinary differential equation

𝐺̇ = ̂(𝐺) , 𝐺(0) = 𝐺0

in the Banach space ∞([0, 𝐿0]). Here, for 𝑋 ∈ [0, 𝐿0] and 𝐺 ∈ ∞([0, 𝐿0]),

̂(𝐺)(𝑋) = (𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋)
with a suitable function  (see Section 6 for the precise assumptions) where 𝑆 = 𝑆(𝐺) ∈ ℝ and𝑁 = 𝑁(𝐺) = 𝑛(𝐺)◦𝑦(𝐺) ∈

𝐻1(0, 𝐿0) denote the elastic stress due to the elastic deformation and the nutrient concentration in the reference
configuration according to Equations (1.3) and (1.4).

Our main result states that a unique solution of the growth problem in the sense of Definition 1 exists provided that the
constitutive functions𝑊, 𝐷0, 𝛽0, and  satisfy natural assumptions that guarantee, for example, that the variational prob-
lem has a unique solution with 𝜙′ > 0, that the diffusion equation satisfies 𝐻2 regularity and a maximum principle, and
that all quantities are Lipschitz continuous as functions of the growth tensor 𝐺, see Theorem 3 for the precise statement.
The decomposition (1.1) is, thus, given by

𝜕𝑋𝑦(𝑋, 𝑡) = 𝐹𝑒(𝑋, 𝑡)𝐺(𝑋, 𝑡) = (𝜕𝑧𝜙)(𝑔(𝑋, 𝑡), 𝑡)𝜕𝑋𝑔(𝑋, 𝑡) .

Since we consider 𝐺 to be the basic unknown in the system and not 𝑔, the antiderivative of 𝐺 in 𝑋, we define 𝑦 as the
antiderivative of 𝐹𝑒(𝑋, 𝑡)𝐺(𝑋, 𝑡) in 𝑋 and interpret the decomposition for 𝜕𝑋𝑦 as a pointwise identity.
We illustrate this concept with a few examples and begin with the situation without any feedback of the growth in

the body onto the local growth via the stress or the nutrient concentration in the material. The only dependence of the
growth on the material point 𝑋 is given by a growth coefficient 𝛾(𝑋), which we assume to be piecewise constant on two
subintervals of [0, 𝐿0].

Example 1 (pure growth). Suppose that 𝑋𝐼 ∈ (0, 𝐿0), 𝛾0, 𝛾1 ∈ ℝ, 𝛾0, 𝛾1 > 0, that 𝛾 ∈ ∞([0, 𝐿0]) is given by 𝛾(𝑋) =

𝜒[0,𝑋𝐼]𝛾0 + 𝜒(𝑋𝐼,𝐿0]𝛾1 and that

̂ ∶ ∞([0, 𝐿0]) → ∞([0, 𝐿0]) , 𝐺 ↦ ̂(𝐺) with ̂(𝐺)(𝑋) = (𝐺(𝑋), 𝑋) = 𝛾(𝑋)𝐺(𝑋) .

Then, the evolution of𝐺 is determined from the initial condition𝐺(0) = 𝐺0 ∈ ∞([0, 𝐿0]) via𝐺(𝑡, 𝑋) = 𝐺0(𝑋) exp(𝛾(𝑋)𝑡).
The function 𝑔 is Lipschitz continuous in 𝑋 and at the beginning of the growth process modeled by the initial condition
𝐺0(𝑋) = 1 for all 𝑋 ∈ [0, 𝐿0] given by

𝑔(𝑋, 𝑡) = ∫
𝑋

0

𝐺(𝑈, 𝑡)d𝑈 = ∫
𝑋

0

𝐺0(𝑈) exp(𝛾(𝑈)𝑡)d𝑈 =

{
𝑋 exp(𝛾0𝑡) if 𝑋 ≤ 𝑋𝐼 ,

𝑋𝐼 exp(𝛾0𝑡) + (𝑋 − 𝑋𝐼) exp(𝛾1𝑡) if 𝑋 > 𝑋𝐼 .

In fact, for all 𝑡, the map 𝑔(⋅, 𝑡) is bijective and bi-Lipschitz.

Suppose that the elastic properties of thematerial in the reference configuration at a point𝑋 are given by a stored energy
density𝑊(𝑋, ⋅). Since we assume that the elastic properties do not change during the growth process, the stored energy
density of the material after growth in the natural configuration [𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)] is given by

𝑊𝐺 ∶ [𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)] × (0,∞) → ℝ , (𝑧, 𝑝) ↦ 𝑊𝐺(𝑧, 𝑝) = 𝑊(𝑔−1(𝑧, 𝑡), 𝑝) .

To be specific, we postpone the discussion of the corresponding variational problem to Section 3 and illustrate the
ideas along the lines of Example 1. Assume that 𝜅0, 𝜅1 ∈ (0,∞) and that𝑊0 ∶ (0,∞) → ℝ is a smooth and strictly con-
vex function with 𝑊0(𝑝) → ∞ as 𝑝 → 0 and 𝑊0(𝑝)∕𝑝 → ∞ as 𝑝 → ∞. Suppose that 𝜅 ∶ [0, 𝐿0] → ℝ is given by 𝜅 =
𝜒[0,𝑋𝐼]𝜅0 + 𝜒(𝑋𝐼,𝐿0]𝜅1 and that𝑊(𝑋, 𝑝) = 𝜅(𝑋)𝑊0(𝑝). The Euler–Lagrange equation for theminimizer 𝜙 of the variational
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6 of 29 BANGERT and DOLZMANN

F IGURE 2 Left panel: The reference configuration and the graph of 𝐺. Values 𝐺 < 1 correspond to absorption, values 𝐺 > 1 to growth.
Right panel: The elastic deformation 𝜙𝐺 with 𝐿0 = 1, 𝑋𝐼 = 0.8, 𝐺 = (0.9, 5.5), 𝑧𝐼 = 0.72, 𝑔(𝐿0) = 1.82, 𝓁0 = 1, 𝑥𝐼 = 0.534.

integral (1.2) implies that the stress

𝑆(𝑡) = (𝜕𝑝𝑊𝐺)(𝑧, 𝜕𝑧𝜙(𝑧, 𝑡)) = 𝜅(𝑔−1(𝑧, 𝑡))(𝜕𝑝𝑊0)(𝜕𝑧𝜙(𝑧, 𝑡))

is constant and therefore, 𝜕𝑧𝜙(⋅, 𝑡) is constant on [𝑔(0, 𝑡), 𝑔(𝑋𝐼, 𝑡)] and (𝑔(𝑋𝐼, 𝑡), 𝑔(𝐿0, 𝑡)], respectively, and an explicit
formula for 𝜙(⋅, 𝑡) can be obtained from the boundary conditions and the continuity of the stress. The composition
𝑦(𝑋, 𝑡) = 𝜙(𝑔(𝑋, 𝑡), 𝑡)with 𝜕𝑋𝑦(𝑋, 𝑡) = (𝜕𝑧𝜙)(𝑔(𝑋, 𝑡), 𝑡)𝜕𝑋𝑔(𝑋, 𝑡) = (𝜕𝑧𝜙)(𝑔(𝑋, 𝑡), 𝑡)𝐺(𝑡, 𝑋) determines the deformation of
the reference configuration onto the deformed configuration. In Figure 2, a sketch of the situation with a given growth
tensor 𝐺 as a graph over the reference configuration and the elastic deformation as a graph over the natural configuration
is shown.
It is illustrative to rewrite the equation for 𝑆 for elastic deformations with 𝜕𝑧𝜙 small. In this case, we may assume in the

sense of a local Taylor series expansion that𝑊0(𝑝) = (1∕2)(𝑝 − 1)2 and we obtain an explicit representation for 𝜕𝑧𝜙,

𝑆(𝑡) = 𝜅(𝑔−1(𝑧, 𝑡))(𝜕𝑧𝜙(𝑧, 𝑡) − 1) ⇔ 𝜕𝑧𝜙(𝑧, 𝑡) =
𝑆(𝑡)

𝜅(𝑔−1(𝑧, 𝑡))
+ 1 .

Note that 𝑔 is the antiderivative of a measurable and bounded function and thus Lipschitz continuous. Therefore, the
regularity of 𝜕𝑧𝜙 depends on the properties of 𝜅. If 𝜅 is merely positive, measurable, and bounded, the same is true for 𝜕𝑧𝜙.
However, if 𝜅 is positive and at least Lipschitz continuous, 𝜕𝑧𝜙 is Lipschitz continuous as a concatenation of Lipschitz
continuous functions. The Lipschitz constant depends on global bounds on 𝑆, on 𝜅, on the Lipschitz constant of 𝜅, and on
bounds for 𝜕𝑋𝑔 = 𝐺, which appear in the calculation of the Lipschitz constant of 𝑔−1, only.

Example 2 (coupling via stress). Consider the situation in Example 1 and assume that 𝜇 ∈ 𝑊1,∞(ℝ) is bounded and
increasing. Suppose that the evolution is given by

̂ ∶ ∞([0, 𝐿0]) → ∞([0, 𝐿0]) , 𝐺 ↦ ̂(𝐺) with ̂(𝐺)(𝑋) = 𝛾(𝑋)𝜇(𝑆(𝐺))𝐺(𝑋)

where 𝑆(𝐺) denotes the stress in the body after stress-free growth given by𝐺 and subsequent elastic deformation. The fact
that 𝜇 is increasing reflects the assumption that tensile stress favors growth within certain limits and that compressive
stress inhibits growth and may lead to absorption. Of course, other assumptions can be made.
A typical example is the family of functions

𝜇(𝑆) = 𝑎 arctan(𝑆 − 𝑏) + 𝑐 , 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 > 0 .

If 𝑏 is interpreted as a homeostatic stress, the linearization about 𝑏 coincides with the model in Goriely [13, Section 4.4.3].
As in Example 1, once the map 𝐺(⋅, 𝑡) is known at time 𝑡, we can calculate the elastic deformation, which is piecewise

affine and continuous and determines the stress in the body. Thus, the right-hand side in Equation (1.6) (no dependence
on 𝑁) is well-defined and we can solve the ordinary differential equation in the Banach space ∞([0, 𝐿0]). This can be
achieved based on Picard–Lindelöf’s theorem on existence and uniqueness if the right-hand side is a Lipschitz continuous
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BANGERT and DOLZMANN 7 of 29

1

0.5
0 0

F IGURE 3 The solution of the diffusion equation with 𝑥𝐼 = 0.538, 𝐷0𝐿 = 1, 𝐷0𝑅 = 8, 𝛽0𝐿 = 1, 𝛽0𝑅 = 8, 𝜙′𝐺𝐿 = 0.72, 𝜙′𝐺𝑅 = 0.41, 𝑛𝐿 = 1,
𝑛𝑅 = 1.

function in 𝐺. Therefore, the key step in the proof of the existence theorem is the verification of the Lipschitz continuity
of all relevant terms on the right-hand side of the ordinary differential equation.

Example 3 (Coupling via stress and nutrients). Finally, we consider the situation in Example 2 and assume that there
exists a Lipschitz continuous function 𝜂 ∶ ℝ → ℝ such that

̂ ∶ ∞([0, 𝐿0]) → ∞([0, 𝐿0]) , 𝐺 ↦ ̂(𝐺) with ̂(𝐺)(𝑋) = 𝛾(𝑋)𝜇(𝑆(𝐺))𝜂(𝑁(𝐺)(𝑋))𝐺(𝑋) .

The function 𝜂 = idℝ is an admissible choice since the solutions of the reaction–diffusion equation are bounded and
nonnegative. Here,𝑁 = 𝑛◦𝑦 denotes the referential description of the nutrient concentration. In Figure 3, a sketch of the
nutrient concentration as a graph over the current configuration is shown.

In order to ensure the Lipschitz continuity of the right-hand side in the evolution equation (1.6), we need assumptions
concerning the constitutive function ̂ and the stored energy density𝑊. The assumptions on𝑊 and will be formulated
in Sections 3 and 6, respectively.
The paper is organized as follows: Section 2 recalls preliminary results that will be used throughout the paper. In Sec-

tion 3, the assumptions concerning the stored energy density𝑊 are stated and uniform a priori estimates are derived. The
critical Lipschitz dependence of the stress and the nutrients on the growth tensor is proven in Sections 4 and 5, respec-
tively. Section 6 presents the assumptions on the growth dynamics  and the general existence and uniqueness theorem.
In Section 7, some ideas concerning further developments are presented.

Notation. Following customary notation in continuummechanics (also used in the textbook [13]), we use capital letters
with a subscript 0 to denote objects in the initial reference configuration, capital letters to denote the objects in the natural
configuration and small letters to denote the objects in the current configuration, indicating the time 𝑡 as an argument.
The independent spatial variable is denoted by 𝑋, 𝑧, and 𝑥 in the reference configuration, the natural configuration, and
the deformed configuration, respectively. If 𝑓 is a function of one independent variable, we write 𝑓′ for the derivative.
However, in order to underline the dependence of the domain, we also use the symbols 𝜕𝑋 , 𝜕𝑧, and 𝜕𝑥 for total derivatives.

We use standard notation for function spaces like Lebesgue spaces 𝐿𝑝(𝐼), Sobolev spaces𝑊𝑘,𝑝(𝐼), 𝐻𝑘(𝐼) = 𝑊𝑘,2(𝐼), or
spaces of differentiable functions 𝐶𝑘(𝐼) on an open interval 𝐼. If 𝐼 = [𝑎, 𝑏] is a closed interval, we write 𝐶𝑘([𝑎, 𝑏]) if the
one-sided derivatives exist on the boundary of the interval. The space of all bounded and measurable functions endowed
with the supremum norm is denoted by ∞([𝑎, 𝑏]). Partial derivatives are written as 𝜕𝑝𝑊 = 𝑊𝑝 and if a function 𝑓(𝑥, 𝑡)
of two variables is considered as a function of one variable with the other variable fixed, then we use an index notation,
that is, for 𝑥 fixed, we write 𝑓;𝑥(𝑡). Here we write the semicolon in order to avoid confusion with partial derivatives. For
example,𝑊𝑝𝑝;𝑋 ∶ (0,∞) → ℝ is defined by𝑊𝑝𝑝;𝑋(𝑝) = 𝜕𝑝𝑝𝑊(𝑋, 𝑝).
A significant part of the analysis is devoted to proving that dependent variables are Lipschitz continuous in their argu-

ments. Suppose that𝜒 = 𝜒(𝐺) is a function, we frequentlywrite the argument𝐺 as an index, that is,𝜒𝐺 = 𝜒(𝐺). Moreover,
for 𝐺1, 𝐺2, we use the notation 𝜒𝑖 = 𝜒(𝐺𝑖), 𝑖 = 1, 2. For example, this is applied to 𝜒 ∈ {𝜙, 𝑦, 𝑆,𝑊} indicating the elastic
deformation, the total deformation, the stress, or the induced elastic energy. Moreover, in order to obtain global existence
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8 of 29 BANGERT and DOLZMANN

via Picard–Lindelöf’s theorem, it is crucial to obtain uniform control on the constants. This will be achieved by stating all
estimates for a suitable ball in ∞([0, 𝐿0]). Fix 𝐺0 ∈ ∞([0, 𝐿0]), 𝑅1 ∈ (0,∞) with

inf
𝑋∈[0,𝐿0]

𝐺0(𝑋) − 𝑅1 = Γ0 > 0 , sup
𝑋∈[0,𝐿0]

𝐺0(𝑋) + 𝑅1 = Γ1 < ∞ . (1.7)

Then, every 𝐺 ∈ 𝐵1 = 𝐵(𝐺0, 𝑅1) ⊂ ∞([0, 𝐿0]) satisfies inf 𝐺 ≥ Γ0 and sup𝐺 ≤ Γ1. It is the goal of our analysis to verify
that estimates involving 𝐺 ∈ 𝐵1 only depend on Γ0 and Γ1. We say that a constant on the right-hand side of an estimate
depends only on global constants if the constant depends only on Γ0, Γ1, 𝑅1 in Equation (1.7), 𝐿0, 𝓁0, the elastic energy
density𝑊, for example, through derivatives of𝑊 and the function 𝜃 in Equation (W2), and bounds on the coefficients in
the reaction–diffusion equation in (1.5).

2 PRELIMINARIES

Before discussing the properties of the solutions of the ordinary differential equation, which determines the growth
dynamics and the induced variational problem, which provides the elastic deformation, we recall some basic proper-
ties of Lipschitz functions that will be used in the verification of the assumptions of Picard–Lindelöf’s theorem. If 𝑋 and
𝑌 are normed space, we denote the topological dual space of 𝑋 by 𝑋′ and we denote the space of all bounded and linear
maps from 𝑋 into 𝑌 by (𝑋, 𝑌). For 𝑓 ∶ 𝑈 ⊂ 𝑋 → 𝑌 we define

𝐿𝑓 = sup
𝑥1,𝑥2∈𝑈,𝑥1≠𝑥2

‖𝑓(𝑥1) − 𝑓(𝑥2)‖𝑌‖𝑥1 − 𝑥2‖𝑋
since the domain 𝑈 is always clear from the context. Any Lipschitz continuous function is bounded on bounded sets.
For example, if 𝑓 ∶ 𝐵(0, 𝑅) ⊂ 𝑋 → 𝑌 is Lipschitz continuous, for all 𝑥 ∈ 𝐵(0, 𝑅) the uniform estimate ‖𝑓(𝑥)‖𝑌 ≤ 𝐿𝑓 ⋅ 𝑅 +‖𝑓(0)‖𝑌 follows.
Lemma 1. Let 𝑋, 𝑌, 𝑍 be normed spaces.

(a) If 𝑓 ∶ 𝑈 ⊂ 𝑋 → 𝑌 and 𝑔 ∶ 𝑉 ⊂ 𝑌 → 𝑍 are Lipschitz continuous functions with 𝑓(𝑈) ⊂ 𝑉, ℎ = 𝑔◦𝑓 ∶ 𝑈 → 𝑍 is
Lipschitz continuous with 𝐿ℎ ≤ 𝐿𝑓𝐿𝑔.

(b) If 𝑓 ∶ 𝑈 → 𝑌 and 𝑓′ ∶ 𝑈 → 𝑌′ are Lipschitz continuous and bounded,

ℎ ∶ 𝑈 → ℝ , 𝑥 ↦ 𝑌⟨𝑓(𝑥), 𝑓′(𝑥)⟩𝑌′

is Lipschitz continuous with

𝐿ℎ ≤ sup
𝑈

‖𝑓′‖𝑌𝐿𝑓 + sup
𝑈

‖𝑓‖𝑌𝐿𝑓′ .
An analogous formula holds for 𝑓, 𝑔 ∶ 𝑈 → 𝑌 with 𝑌 a Banach algebra and ℎ(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥).

(c) If 𝑟 ∈ (0,∞) and 𝑓 ∶ 𝑈 ⊂ 𝑋 → [𝑟,∞) is Lipschitz continuous and bounded from below,

ℎ ∶ 𝑈 → ℝ , 𝑥 ↦ ℎ(𝑥) =
1

𝑓(𝑥)

is Lipschitz continuous with 𝐿ℎ ≤ 𝐿𝑓∕𝑟
2.

(d) If 𝑐0, 𝑐1 ∈ (0,∞) with 𝑐0 < 𝑐1, 𝐴0 ∈ ℝ, 𝑟, 𝑠 ∈ ℝ with 𝑟 < 𝑠, 𝑎 ∈ 𝐿∞([𝑟, 𝑠]; [𝑐0, 𝑐1]),

𝐴 ∶ [𝑟, 𝑠] → ℝ , 𝑥 ↦ 𝐴(𝑥) = ∫
𝑥

𝑟

𝑎(𝜉)d𝜉 + 𝐴0

is bi-Lipschitz, that is, 𝐴−1 exists and 𝐴 and 𝐴−1 are Lipschitz continuous with 𝐿𝐴 ≤ 𝑐1 and 𝐿𝐴−1 ≤ 1∕𝑐0.
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BANGERT and DOLZMANN 9 of 29

Proof. If the assumptions in (a) hold, then for all 𝑥1 and 𝑥2 ∈ 𝑈,

‖𝑔(𝑓(𝑥1)) − 𝑔(𝑓(𝑥2))‖𝑍 ≤ 𝐿𝑔‖𝑓(𝑥1) − 𝑓(𝑥2)‖𝑌 ≤ 𝐿𝑓𝐿𝑔‖𝑥1 − 𝑥2‖𝑋 .
Similarly, in the situation (b) for all 𝑥 ∈ 𝑈,

|𝑌⟨𝑓(𝑥1), 𝑓′(𝑥1)⟩𝑌′ − 𝑌⟨𝑓(𝑥2), 𝑓′(𝑥2)⟩𝑌′ | ≤ |𝑌⟨𝑓(𝑥1) − 𝑓(𝑥2), 𝑓
′(𝑥1)⟩𝑌′ | + |𝑌⟨𝑓(𝑥2), 𝑓′(𝑥1) − 𝑓′(𝑥2)⟩𝑌′ |

≤ sup
𝑈

‖𝑓′‖𝑌𝐿𝑓 + sup
𝑈

‖𝑓‖𝑌𝐿𝑓′ .
To prove (c) for all 𝑥1, 𝑥2 ∈ 𝑈,

|||| 1

𝑓(𝑥1)
−

1

𝑓(𝑥2)

|||| = |𝑓(𝑥1) − 𝑓(𝑥2)||𝑓(𝑥1)𝑓(𝑥2)| ≤ 𝐿𝑓|𝑥1 − 𝑥2|
𝑟2

.

Finally, in (d) 𝐴 is strictly monotonically increasing, 𝐴−1 exists and for all 𝑥1, 𝑥2 ∈ [𝑟, 𝑠]

|𝐴(𝑥1) − 𝐴(𝑥2)| = |||||∫
𝑥2

𝑥1

𝑎(𝜉)d𝜉
||||| ≤ 𝑐1|𝑥1 − 𝑥2| .

For 𝑦1, 𝑦2 ∈ [𝐴(𝑟), 𝐴(𝑠)] with 𝑦𝑖 = 𝐴(𝑥𝑖), 𝑖 = 1, 2 we find

|𝐴−1(𝑦1) − 𝐴−1(𝑦2)| = |𝑥1 − 𝑥2| ≤ |||||∫
𝑥2

𝑥1

𝑎(𝜉)

𝑐0
d𝜉

||||| ≤ 1

𝑐0
|𝐴(𝑥2) − 𝐴(𝑥1)| .

This argument completes the proof. □

Lemma 2. Suppose that 𝓁0, 𝐿0 ∈ (0,∞), 𝑦1, 𝑦2 ∈ 𝑊1,∞([0, 𝐿0], [0, 𝓁0]) are strictly increasing, bijective, bi-Lipschitz and that
there exist 𝜖 > 0, 𝑎 > 0 with ‖𝑦1 − 𝑦2‖𝐶0([0,𝐿0]) ≤ 𝜖 and 𝑦′

𝑖
≥ 𝑎 almost everywhere on [0, 𝐿0] for 𝑖 = 1, 2. Then,

‖𝑦−11 − 𝑦−12 ‖𝐶0([0,𝓁0]) ≤ 𝜖

𝑎
.

Proof. Fix 𝑥 ∈ [0, 𝓁0] and define 𝑋𝑖 = 𝑦−1
𝑖
(𝑥), 𝑖 = 1, 2. Then 𝑦1(𝑋1) = 𝑥 = 𝑦2(𝑋2) and

|𝑦1(𝑋1) − 𝑦2(𝑋1)| = |𝑦2(𝑋2) − 𝑦2(𝑋1)| = |||||∫
𝑋2

𝑋1

𝑦′2(𝑋)d𝑋
||||| ≥ 𝑎|𝑋1 − 𝑋2|

and hence

|𝑦−11 (𝑥) − 𝑦−12 (𝑥)| = |𝑋1 − 𝑋2| ≤ 1

𝑎
|𝑦1(𝑋1) − 𝑦2(𝑋1)| ≤ 𝜖

𝑎

and the assertion follows if we take the maximum in 𝑥 ∈ [0, 𝓁0]. □

Next, we state a version of Picard–Lindelöf’s theorem, which will be used in the existence proof.

Theorem 1 [33, Theorem 2.13]. Let 𝑋 be a Banach space, 𝑥0 ∈ 𝑋, 𝑅0, 𝑇0 > 0, 𝑡0 ∈ ℝ, and let

𝐵0 = {𝑥 ∈ 𝑋 ∶ ‖𝑥 − 𝑥0‖ ≤ 𝑅0}

and

𝐼0 = {𝑡 ∈ ℝ ∶ |𝑡 − 𝑡0| ≤ 𝑇0} .

Assume that 𝑔(⋅, ⋅) is a continuous map of 𝐼0 × 𝐵0 into 𝑋 and that there exist 𝐾0 and𝑀0 > 0 such that

‖𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦)‖ ≤ 𝐾0‖𝑥 − 𝑦‖ 𝑥, 𝑦 ∈ 𝐵0, 𝑡 ∈ 𝐼0
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10 of 29 BANGERT and DOLZMANN

and

‖𝑔(𝑡, 𝑥)‖ ≤ 𝑀0 𝑥 ∈ 𝐵0, 𝑡 ∈ 𝐼0 .

Let 𝑇1 be such that

𝑇1 ≤ min(𝑇0, 𝑅0∕𝑀0) , 𝐾0𝑇1 < 1 .

Then there exists a unique solution 𝑥(⋅) of

d𝑥(𝑡)

d𝑡
= 𝑔(𝑡, 𝑥(𝑡)) , |𝑡 − 𝑡0| ≤ 𝑇1 , 𝑥(𝑡0) = 𝑥0 .

3 THE HYPERELASTIC VARIATIONAL PROBLEM

In this section, we recall the fundamental existence result for hyperelastic variational problems in one spatial dimension
in Ball [34] and state the precise assumptions that are needed to ensure the existence of a minimizer on 𝑔([0, 𝐿0], 𝑡) =

[𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)], the natural configuration induced by a growth tensor 𝐺 ∈ 𝐵1 at time 𝑡. We drop the dependence on 𝑡,
and consider 𝑔 = 𝑔(𝑋) with 𝑔′ = 𝜕𝑋𝑔 = 𝐺 as a function of the independent variable 𝑋 only. The variational problem can
be formulated as follows: Suppose that [𝑔(0), 𝑔(𝐿0)] ⊂ ℝ is an interval with nonempty interior. It is the goal to minimize
the variational integral

𝐼𝐺[𝜙] = ∫
𝑔(𝐿0)

𝑔(0)

𝑊𝐺(𝑧, 𝜙
′(𝑧))d𝑧 = ∫

𝐿0

0

𝑊(𝑋, 𝜙′(𝑔(𝑋))𝐺(𝑋)d𝑋 (3.1)

in the class of admissible functions

𝐺 = {𝜙 ∈ 𝑊1,1(𝑔(0), 𝑔(𝐿0)) ∶ 𝐼𝐺[𝜙] < ∞, 𝜙(𝑔(0)) = 0, 𝜙(𝑔(𝐿0)) = 𝓁0} (3.2)

with 𝓁0 > 0 given. Here, 𝑊𝐺 denotes the free energy of the body in the natural configuration which, by assumption,
is given by 𝑊𝐺(𝑧, ⋅) = 𝑊(𝑔−1(𝑧), ⋅) for 𝑧 ∈ [𝑔(0), 𝑔(𝐿0)]. In the following, we state the assumptions concerning 𝑊 that
are needed in the existence and regularity results for the associated energy𝑊𝐺 . They include fundamental assumptions
in continuum mechanics and do not impose upper bounds on the stored energy density. In Remark 1, we indicate the
implications of the assumptions on𝑊 on the function𝑊𝐺 .

(W1) Regularity:𝑊 ∈ 𝐶0([0, 𝐿0] × (0,∞); [0,∞)),𝑊(𝑋, 1) = 0 for all 𝑋 ∈ [0, 𝐿0], and for all 𝑋 ∈ [0, 𝐿0] fixed,𝑊(𝑋, ⋅) ∈

𝐶1(0,∞) with 𝜕𝑝𝑊 ∈ 𝐶0([0, 𝐿0] × (0,∞)).
(W2) Structure and growth conditions: There exists a convex function 𝜃 ∶ (0,∞) → ℝ with 𝜃(𝑝) ↗ ∞ as 𝑝 ↘ 0 and

𝜃(𝑝)∕𝑝 ↗ ∞ as 𝑝 ↗ ∞ with the following property: For all 𝑋 ∈ [0, 𝐿0] fixed, 𝑊(𝑋, ⋅) is strictly convex with
𝑊(𝑋, 𝑝) ≥ 𝜃(𝑝) on (0,∞).

(W3) For all 𝜆 ∈ (0,∞): ∫ 𝐿0
0

𝑊(𝑋, 𝜆)d𝑋 < ∞.
(W4) Additional regularity for𝑊: 𝜕𝑝𝑊 ∈ 𝐶1([0, 𝐿0] × (0,∞)) and 𝜕𝑝𝑝𝑊 > 0.

As a first implication of the foregoing assumptions, we state an important consequence, which follows from the uniform
lower bound 𝜃 for𝑊(𝑋, ⋅) andwill serve as an a priori estimate. These assumptions can beweakened to cover, for example,
the situation in Example 1, see Section 7.

Lemma 3. Suppose that𝑊 satisfies (W1)–(W2), that 𝑆 ∈ ℝ, 𝐸 ⊂ [0, 𝐿0], 𝐸 ≠ ∅, and that 𝜋 ∶ 𝐸 → (0,∞) is a function with
the following property: For all 𝑋 ∈ 𝐸 ∶ 𝜕𝑝𝑊(𝑋, 𝜋(𝑋)) = 𝑆. Then there exist constants 𝑃0, 𝑃1 ∈ (0,∞), which depend only
on 𝜃 and 𝑆 such that for all 𝑋 ∈ 𝐸 ∶ 𝜋(𝑋) ∈ [𝑃0, 𝑃1]. Moreover, if Σ0, Σ1 ∈ ℝ with Σ0 < Σ1, then 𝑃0 and 𝑃1 can be chosen
uniformly for 𝑆 ∈ [Σ0, Σ1] and depend only on 𝜃, Σ0, and Σ1.
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BANGERT and DOLZMANN 11 of 29

Proof. If 𝑆 = 0, then by (W1), (W2) 𝜋 ≡ 1 on 𝐸 and it suffices to choose 𝑃0 ≤ 1 and 𝑃1 ≥ 1. Suppose next that 𝑆 < 0. Then
by (W1), (W2) 𝜋 < 1 on 𝐸 and the upper bound follows with 𝑃1 ≥ 1. To prove the lower bound, by (W1), (W2) for all𝑋 ∈ 𝐸

the derivative 𝜕𝑝𝑊(𝑋, ⋅) is negative and strictly increasing on [𝜋(𝑋), 1) with𝑊(𝑋, 1) = 0 and by (W1), (W2),

𝜃(𝜋(𝑋)) ≤ 𝑊(𝑋, 𝜋(𝑋)) = 𝑊(𝑋, 𝜋(𝑋)) −𝑊(𝑋, 1) = ∫
𝜋(𝑋)

1

𝜕𝑝𝑊(𝑋, 𝑠)d𝑠

= ∫
1

𝜋(𝑋)

|𝜕𝑝𝑊(𝑋, 𝑠)|d𝑠 ≤ (1 − 𝜋(𝑋))|𝜕𝑝𝑊(𝑋, 𝜋(𝑋))| ≤ |𝑆| .
By (W2),𝑚 = min(0,∞) 𝜃 ∈ (−∞, 0], the set𝑀 = {𝑝 ∈ (0,∞) ∶ 𝜃(𝑝) = 𝑚} is bounded from below and wemay define 𝑝0 =
min𝑀 > 0. By convexity, 𝜃 is strictly decreasing on (0, 𝑝0]. In fact, if 𝑎, 𝑏 ∈ (0, 𝑝0) with 𝑎 < 𝑏 and 𝜃(𝑎) = 𝜃(𝑏) > 𝜃(𝑝0),
there exists a 𝜆 ∈ (0, 1) with

𝜃(𝑏) = 𝜃(𝜆𝑎 + (1 − 𝜆)𝑝0) ≤ 𝜆𝜃(𝑎) + (1 − 𝜆)𝜃(𝑝0) < 𝜃(𝑏) ,

which yields a contradiction. Define 𝑃0(𝜃, 𝑆) = (𝜃|(0,𝑝0])−1(|𝑆|). Since 𝜃 is strictly decreasing on (0, 𝑝0), 𝜃 > |𝑆| on
(0, 𝑃0(𝜃, 𝑆)) and hence 𝜋(𝑋) ≥ 𝑃0(𝜃, 𝑆). Note that 𝑃0(𝜃, 𝑆) is decreasing as a function of 𝑆 on (−∞, 0].
If 𝑆 > 0 then by (W1), (W2) 𝜋 > 1 on 𝐸 and it suffices to choose 𝑃0 ≤ 1 to guarantee the lower bound. By (W1), (W2),

for all 𝑋 ∈ 𝐸, the derivative 𝜕𝑝𝑊(𝑋, ⋅) is positive and strictly increasing on (1, 𝜋(𝑋)] with𝑊(𝑋, 1) = 0 and hence

𝜃(𝜋(𝑋)) ≤ 𝑊(𝑋, 𝜋(𝑋)) = 𝑊(𝑋, 𝜋(𝑋)) −𝑊(𝑋, 1) = ∫
𝜋(𝑋)

1

𝜕𝑝𝑊(𝑋, 𝑠)d𝑠

≤ (𝜋(𝑋) − 1)𝜕𝑝𝑊(𝑋, 𝜋(𝑋)) ≤ 𝜋(𝑋)𝑆 .

Since by (W2) 𝜃(𝑝)∕𝑝 ↗ ∞ for 𝑝 ↗ ∞ and since 𝜃(𝑝)∕𝑝 is continuous on (0,∞), we may define

𝑃1(𝜃, 𝑆) = sup{𝑝 ∈ [1,∞) ∶ 𝜃(𝑝)∕𝑝 = 𝑆} < ∞ .

Since 𝜃(𝜋(𝑋))∕𝜋(𝑋) ≤ 𝑆, 𝜋(𝑋) ≤ 𝑃1(𝜃, 𝑆), which establishes the upper bound. Note that 𝑃1(𝜃, 𝑆) is increasing in 𝑆 on
[1,∞).
Finally, assume that Σ0, Σ1 ∈ ℝ with Σ0 < Σ1. Define

𝑃0(𝜃, Σ0, Σ1) = 𝑃0(𝜃,min{Σ0, 1}) , 𝑃1(𝜃, Σ0, Σ1) = 𝑃1(𝜃,max{Σ1, 1}) .

This choice of 𝑃0 and 𝑃1 provides uniform bounds for 𝑆 ∈ [Σ0, Σ1] as asserted. □

Now, we explore the consequences of (W4) in the subsequent lemma. The additional regularity is required in the case
that the evolution equation for 𝐺 depends on the nutrients since the formula for the time-dependent diffusion coefficient
introduces the term 𝜙′

𝐺
◦𝜙−1

𝐺
for which regularity can only be deduced from additional assumptions on𝑊.

We first observe that assumption (W2) implies that for all𝑋 ∈ [0, 𝐿0], themap 𝜕𝑝𝑊(𝑋, ⋅) ∶ (0,∞) → ℝ, 𝑝 ↦ 𝜕𝑝𝑊(𝑋, 𝑝)

is strictly increasing and bijective. Thus, there exists a uniquely defined function 𝜋0 ∶ [0, 𝐿0] × ℝ → (0,∞) such that for
all 𝑋 ∈ [0, 𝐿0] and for all 𝑆 ∈ ℝ, the equation 𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆)) = 𝑆 holds. We use the notation

𝜋0(𝑋, 𝑆) = (𝜕𝑝𝑊(𝑋, ⋅))−1(𝑆) .

The theorem on implicit functions implies that 𝜋0 is differentiable in 𝑋. Before we prove this in detail, we note that for
all 𝑋, the function 𝑆 ↦ 𝜋0(𝑋, 𝑆) is continuous. To see this, suppose there were a sequence (𝑆𝑘)𝑘∈ℕ converging to 𝑆 ∈ ℝ

for which 𝜋0(𝑋, 𝑆𝑘) does not converge to 𝜋0(𝑋, 𝑆). Since 𝑆𝑘 is bounded, Lemma 3 implies that 𝜋0(𝑋, 𝑆𝑘) is uniformly
bounded and we may assume without loss of generality that the sequence 𝜋0(𝑋, 𝑆𝑘) converges to 𝜋̄ ≠ 𝜋0(𝑋, 𝑆). However,
the continuity of 𝜕𝑝𝑊 implies

𝜕𝑝𝑊(𝑋, 𝜋̄) = lim
𝑘→∞

𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆𝑘)) = lim
𝑘→∞

𝑆𝑘 = 𝑆
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12 of 29 BANGERT and DOLZMANN

and, by the uniqueness of the solutions of this equation, 𝜋0(𝑋, 𝑆) = 𝜋̄. This observation leads to a contradiction since this
argument can be applied to any subsequence.

Lemma 4. Suppose that𝑊 satisfies (W1)–(W4). Then,

𝜋0 ∶ (𝑋, 𝑆) ↦ 𝜋0(𝑋, 𝑆) = (𝜕𝑝𝑊(𝑋, ⋅))−1(𝑆)

is uniformly separately Lipschitz continuous on compact intervals. That is, for all 𝑆0, 𝑆1 ∈ ℝwith 𝑆0 < 𝑆1 there exist constants
𝐿𝜕𝑝𝑊−1,𝑋 and 𝐿𝜕𝑝𝑊−1,𝑆 , which depend only on the derivatives of 𝜕𝑝𝑊 such that for all 𝑋, 𝑋 ∈ [0, 𝐿0], 𝑆, 𝑆 ∈ [𝑆0, 𝑆1]

|𝜋0(𝑋, 𝑆) − 𝜋0(𝑋, 𝑆)| ≤ 𝐿𝜕𝑝𝑊−1,𝑋(𝑆0, 𝑆1)|𝑋 − 𝑋| ,
|𝜋0(𝑋, 𝑆) − 𝜋0(𝑋, 𝑆)| ≤ 𝐿𝜕𝑝𝑊−1,𝑆(𝑆0, 𝑆1)|𝑆 − 𝑆| .

Proof. We first consider 𝑆 ∈ ℝ fixed and prove that the map 𝜋0(⋅, 𝑆) ∶ (0, 𝐿0) → (0,∞) is differentiable. Suppose that
(𝑋0, 𝑝0) ∈ (0, 𝐿0) × (0,∞) is a solution of the equation 𝜕𝑝𝑊(𝑋, 𝑝) = 𝑆. Since 𝜕𝑝𝑊 ∈ 𝐶1((0, 𝐿0) × (0,∞)) with 𝜕𝑝𝑝𝑊 > 0,
wemay apply the theoremon implicit functions. Thus there exists an open neighborhood𝑈 of𝑋0 in (0, 𝐿0), an open neigh-
borhood 𝑉 of 𝑝0 in (0,∞), and a differentiable function 𝑝(⋅, 𝑆) ∶ 𝑈 → 𝑉 such that on𝑈 × 𝑉, the equation 𝜕𝑝𝑊(𝑋, 𝑝) = 𝑆

holds if and only if 𝑝 = 𝑝(𝑋, 𝑆). Since the solution of this equation with 𝑆 fixed is uniquely determined, necessarily
𝑝(⋅, 𝑆) = 𝜋0(⋅, 𝑆) on𝑈 and since 𝑋0 ∈ (0, 𝐿0) is arbitrary, 𝑝(⋅, 𝑆) = 𝜋0(⋅, 𝑆) ∈ 𝐶1(0, 𝐿0). For 𝑆 ∈ ℝ fixed, Lemma 3 implies
with 𝐸 = (0, 𝐿0) and 𝜋(⋅) = 𝜋0(⋅, 𝑆) that the function 𝜋0(⋅, 𝑆) is uniformly bounded with values in [𝑃0, 𝑃1]. The derivative
with respect to 𝑋 follows from implicit differentiation,

𝜕𝑋𝜋0(𝑋, 𝑆) = −𝜕𝑋𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆))∕𝜕𝑝𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆))

and since 𝜋0(⋅, 𝑆) is uniformly bounded, there exists a constant 𝑐0 > 0 with 𝜕𝑝𝑝𝑊 ≥ 𝑐0 on [0, 𝐿0] × [𝑃0, 𝑃1]. Therefore,
𝜕𝑋𝜋0(⋅, 𝑆) is uniformly bounded on (0, 𝐿0) and these bounds imply that the Cauchy criterion for the existence of the limits
lim𝑋→0 𝜋0(𝑋, 𝑆) and lim𝑋→𝐿0 𝜋0(𝑋, 𝑆) is satisfied. Consequently, 𝜋0(⋅, 𝑆) ∈ 𝐶0([0, 𝐿0]). The local Lipschitz continuity of
𝜋0(⋅, 𝑆) in the first argument follows from the mean value theorem and the assumption 𝜕𝑝𝑊 ∈ 𝐶1([0, 𝐿0] × (0,∞)) since
the bounds in Lemma 3 are uniform for 𝑆 in compact intervals.
In the discussion preceding this lemma, we already proved that 𝜋0(𝑋, ⋅) is continuous as a function in the second

argument. Thus, it remains to prove differentiability in 𝑆 with uniform bounds. Fix 𝑋 ∈ [0, 𝐿0], 𝑆 ∈ ℝ, and Δ𝑆 ≠ 0 with
𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆)) = 𝑆, 𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆 + Δ𝑆)) = 𝑆 + Δ𝑆. Then,

Δ𝑆 = 𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆 + Δ𝑆)) − 𝜕𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆))

= ∫
1

0

𝜕𝑝𝑝𝑊(𝑋, 𝑡𝜋0(𝑋, 𝑆 + Δ𝑆) + (1 − 𝑡)𝜋0(𝑋, 𝑆))(𝜋0(𝑋, 𝑆 + Δ𝑆) − 𝜋0(𝑋, 𝑆))d𝑡

and hence, in view of 𝜕𝑝𝑝𝑊 ≥ 𝑐0 > 0,

𝜋0(𝑋, 𝑆 + Δ𝑆) − 𝜋0(𝑋, 𝑆))

Δ𝑆
=

[
∫

1

0

𝜕𝑝𝑝𝑊(𝑋, 𝑡𝜋0(𝑋, 𝑆 + Δ𝑆) + (1 − 𝑡)𝜋0(𝑋, 𝑆))d𝑡

]−1

.

By the continuity of 𝜋0 in 𝑆, we may pass to the limit Δ𝑆 → 0 and obtain

𝜕𝑆𝜋0(𝑋, 𝑆) =
[
𝜕𝑝𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆))

]−1
.

The explicit formula implies that 𝜕𝑆𝜋0 is uniformly bounded for 𝑋 ∈ [0, 𝐿0] and 𝑆 ∈ ℝ on compact intervals. □

Remark 1. The subsequent existence theorem in Theorem 2 is applied to the functional 𝐼𝐺 defined via the energy den-
sity 𝑊𝐺(𝑧, ⋅) = 𝑊(𝑔−1(𝑧), ⋅) where 𝑔 is bi-Lipschitz. In fact, if (W1)–(W3) hold for 𝑊, then the induced function 𝑊𝐺

satisfies (W1)–(W3) as well with [0, 𝐿0] replaced by [𝑔(0), 𝑔(𝐿0)]. Moreover, since the change of variables concerns only
the independent variables, (W2) is satisfied with a fixed function 𝜃 independent of 𝑔. Assumption (W3) ensures that the
class of admissible function𝐺 is not empty. For𝐺, the identity map, we define = {𝜙 ∈ 𝑊1,1(0, 𝐿0) ∶ 𝐼[𝜙] < ∞, 𝜙(0) =

0, 𝜙(𝐿0) = 𝓁0}.
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BANGERT and DOLZMANN 13 of 29

Theorem 2 [34]. Suppose that𝑊 satisfies (W1)–(W3). Then there exists a function 𝜙 ∈ ,whichminimizes 𝐼 in. Moreover,
𝜙 ∈ 𝐶1([0, 𝐿0]) withmin[0,𝐿0] 𝜙

′ > 0 and the Euler–Lagrange equation

d

d𝑋
(𝜕𝑝𝑊(𝑋, 𝜙′(𝑋))) = 0

holds on [0, 𝐿0]. In particular, the stress 𝜕𝑝𝑊(𝑋, 𝜙′(𝑋)) is constant on [0, 𝐿0].

Proof. The assertion follows from Theorems 1 and 2 in [34]. For completeness, we verify the assumptions (H) in Ball [34]:
(H1),𝑊 being a Carathéodory function, is weaker than our assumption (W1); the growth conditions (H2),𝑊(𝑋, 𝑝) → ∞

for𝑝 → 0+ and almost all𝑋 ∈ [0, 𝐿0], and (H3),𝑊(𝑋, 𝑝) ≥ 𝜓(𝑝) for all 𝑝 and almost all𝑋with𝜓 convex and𝜓(𝑝)∕𝑝 → ∞

for𝑝 → ∞, follow from (W2); (H4) is (W3); (H6),𝑊(𝑋, ⋅) is𝐶1 for almost all𝑋 ∈ [0, 𝐿0] and𝑊𝑝 is aCarathéodory function,
is contained in (W1); finally, the additional assumptions in Theorem 2 needed to conclude that 𝜙 ∈ 𝐶1([0, 𝐿0]) concerning
continuity and strict convexity are included in (W1) and (W2). Since 𝜙 ∈ 𝐶1([0, 𝐿0]) the Euler–Lagrange equation holds
pointwise. In fact, the proof in Ball [34] shows that there exists a constant 𝐶 with 𝜕𝑝𝑊(𝑋, 𝜙′(𝑋)) = 𝐶 a.e. on [0, 𝐿0]. Since
𝜙 ∈ 𝐶1([0, 𝐿0]) and 𝜕𝑝𝑊 ∈ 𝐶0((0, 𝐿0) × (0,∞)), the equation holds in [0, 𝐿0]. □

Theorem 2 corresponds to the case 𝐺 ≡ 1 in the following Corollary.

Corollary 1. Suppose that𝐺 ∈ 𝐵1 = 𝐵(𝐺0, 𝑅1)with Equation (1.7) and that𝑊 satisfies (W1)–W(3). Then there exists amini-
mizer𝜙𝐺 of 𝐼𝐺 in Equation (3.1) in the class𝐺 in Equation (3.2).Moreover,𝜙𝐺 ∈ 𝐶1([𝑔(0), 𝑔(𝐿0)])withmin[𝑔(0),𝑔(𝐿0)] 𝜙

′
𝐺
> 0

and the Euler–Lagrange equation

d

d𝑧
(𝜕𝑝𝑊𝐺(𝑧, 𝜙

′
𝐺
(𝑧))) = 0

holds on [𝑔(0), 𝑔(𝐿0)]. In particular, the stress 𝜕𝑝𝑊𝐺(𝑧, 𝜙
′
𝐺
(𝑧)) is constant on [𝑔(0), 𝑔(𝐿0)].

Proof. This follows from the observations concerning𝑊𝐺 in Remark 1. □

Corollary 2. Suppose that the assumptions in Theorem 2 or Corollary 1 hold. Then the corresponding variational problems
have unique minimizers.

Proof. This follows from the strict convexity of𝑊(𝑋, ⋅) and𝑊𝐺(𝑧, ⋅), respectively. □

Lemma 5. Suppose that𝑊 satisfies (W1)–(W3) and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7). Then there exist constants 𝑃0,
𝑃1,Σ0,Σ1 ∈ ℝ, which only depend onEquation (1.7) and the function 𝜃 in (W2) and𝑊 with 0 < 𝑃0 < 𝑃1 andΣ0 < Σ1 and the
following property: If𝐺 ∈ 𝐵1 with Equation (1.7) and if 𝜙𝐺 ∈ 𝐶1([𝑔(0), 𝑔(𝐿0)]) denotes theminimizer obtained in Corollary 1,
then 𝑆𝐺 ∈ [Σ0, Σ1] and 𝜙′𝐺 ∈ [𝑃0, 𝑃1] on [𝑔(0), 𝑔(𝐿0)].

Proof. Fix 𝐺 ∈ 𝐵1 with the properties in the assertion of the lemma. If 𝐿𝐺 = 𝑔(𝐿0) − 𝑔(0) = 𝓁0, then 𝜙𝐺 = id |[𝑔(0),𝑔(𝐿0)] is
the unique minimizer of 𝐼𝐺 in𝐺 with 𝜕𝑝𝑊(⋅, 𝜙′

𝐺
) = 0 and it suffices to choose Σ0 ≤ 0 ≤ Σ1.

Suppose next that 𝐿𝐺 > 𝓁0. By construction, 𝐿𝐺 ≤ Γ1𝐿0 and by the mean value theorem, there exists a 𝜉 ∈ (𝑔(0), 𝑔(𝐿0))

with

𝜙′
𝐺
(𝜉) =

𝜙𝐺(𝑔(𝐿0)) − 𝜙𝐺(𝑔(0))

𝑔(𝐿0) − 𝑔(0)
=
𝓁0 − 0

𝐿𝐺
< 1 ,

and, since 𝜕𝑝𝑊𝐺(𝜉, ⋅) is increasing with a unique zero in 𝑝 = 1,

0>𝑆𝐺 = 𝜕𝑝𝑊𝐺(𝜉, 𝜙
′
𝐺
(𝜉)) = 𝜕𝑝𝑊𝐺(𝜉,

𝓁0
𝐿𝐺

) ≥ 𝜕𝑝𝑊𝐺(𝜉,
𝓁0
Γ1𝐿0

)

= 𝜕𝑝𝑊(𝑔−1(𝜉),
𝓁0
Γ1𝐿0

) ≥ inf
𝑋∈[0,𝐿0]

𝜕𝑝𝑊(𝑋,
𝓁0
Γ1𝐿0

) = Σ0 > −∞ .
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14 of 29 BANGERT and DOLZMANN

If 𝐿𝐺 < 𝓁0 and 𝐿𝐺 ≥ Γ0𝐿0, then there exists, by the mean value theorem, a 𝜉 ∈ (𝑔(0), 𝑔(𝐿0)) with

𝜙𝐺(𝑔(𝐿0)) − 𝜙𝐺(𝑔(0))

𝑔(𝐿0) − 𝑔(0)
=

𝓁0 − 0

𝐿𝐺
= 𝜙′

𝐺
(𝜉) > 1,

and, since 𝜕𝑝𝑊𝐺(𝜉, ⋅) is increasing,

0 < 𝑆𝐺 = 𝜕𝑝𝑊𝐺(𝜉, 𝜙
′
𝐺
(𝜉)) = 𝜕𝑝𝑊𝐺

(
𝜉,

𝓁0
𝐿𝐺

)
≤ 𝜕𝑝𝑊𝐺

(
𝜉,

𝓁0
Γ0𝐿0

)
= 𝜕𝑝𝑊

(
𝑔−1(𝜉),

𝓁0
Γ0𝐿0

)
≤ sup

𝑋∈[0,𝐿0]
𝜕𝑝𝑊

(
𝑋,

𝓁0
Γ1𝐿0

)
= Σ1 < ∞.

Hence, for all 𝐺 ∈ 𝐵1, 𝑆𝐺 ∈ [Σ0, Σ1] and Σ0, Σ1 depend only on 𝓁0, 𝐿0, Γ0, Γ1, and𝑊. The assertion follows from Lemma 3
with 𝐸 = [0, 𝐿0] and 𝜋(𝑋) = 𝜙′

𝐺
(𝑔(𝑋)) since 𝜙𝐺 satisfies the Euler–Lagrange equation 𝜕𝑝𝑊𝐺(𝑧, 𝜙

′
𝐺
(𝑧)) = 𝑆𝐺 and since

𝑔 ∶ [0, 𝐿0] → [𝑔(0), 𝑔(𝐿0)] is bijective. □

Example 4. Consider a body for which the elastic response is determined by a free energy density𝑊 with 𝑋 dependent
modulus of elasticity, that is,𝑊(𝑋, 𝑝) = 𝜅(𝑋)𝑊(𝑝)where𝑊 ∈ 𝐶2(0,∞) satisfies (W1) and (W2). If the stress in the system
is given, 𝜕𝑝𝑊(𝑋, 𝑝) = 𝑆, then we can solve for 𝑝 due to the strict monotonicity of the bijective map 𝜕𝑝𝑊 ∶ (0,∞) → ℝ

and find

𝜅(𝑋)𝜕𝑝𝑊(𝑝) = 𝑆 ⇔ 𝑝 = (𝜕𝑝𝑊)−1
(

𝑆

𝜅(𝑋)

)
If 𝜅 is Lipschitz continuous and bounded, 𝜅 ∈ 𝑊1,∞(0, 𝐿0; [𝜅0, 𝜅1])with 𝜅0 > 0, and if 𝑆 is contained in a compact interval
𝑆 ∈ [𝑆0, 𝑆1], then the assertions in Lemma 4 are satisfied since (𝜕𝑝𝑊)−1 is continuously differentiable with bounded
derivative on compact sets. A typical example for𝑊 ∶ (0,∞) → [0,∞) is the function 𝑝 ↦ 𝑊(𝑝) = (𝑝 − 1∕𝑝)2.

4 LIPSCHITZ DEPENDENCE OF THE STRESS ON THE GROWTH TENSOR

In Example 2, a model system was introduced in which the ordinary differential equation for 𝐺(𝑋, 𝑡) is nonlocal since it
depends on the stress𝑆(𝑡), which is determined from the elastic response of thematerial on [𝑔(0, 𝑡), 𝑔(𝐿0, 𝑡)]. In this section,
we prove that the map 𝐺 ↦ 𝑆(𝐺) is Lipschitz continuous. To verify this fact, we consider this map as a composition of
three maps: The maps which associate to a growth tensor 𝐺, the growth deformation 𝑔, the elastic deformation 𝜙, and
finally, the constant stress 𝑆 in the body. Based on this result, existence for the system in Example 2 can be proven by
Picard–Lindelöf’s theorem, see Theorem 3 and the discussion in Section 7.

Lemma 6. Suppose that𝑊 satisfies (W1)–(W4) and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7). Then, the map 𝑆 ∶ 𝐵1 → ℝ,
𝑆 ↦ 𝑆(𝐺) is of class 𝐶1 and there exist constants𝑀𝑆,𝐺 and 𝐿𝑆,𝐺 , which depend only on 𝐺0 and 𝑅1 such that

‖𝑆‖𝐶0(𝐵1) ≤ 𝑀𝑆,𝐺 ,

sup
𝐺∈𝐵1

‖‖‖‖ 𝜕𝑆𝜕𝐺 (𝐺)
‖‖‖‖(∞([0,𝐿0]);ℝ)

≤ 𝐿𝑆,𝐺 .

In particular, 𝑆 is globally Lipschitz continuous on 𝐵1 with Lipschitz constant 𝐿𝑆,𝐺 .

Proof. By assumption, the estimates in Equation (1.7) hold for all 𝐺 ∈ 𝐵1 and by Lemma 5 there exist Σ0, Σ1 ∈ ℝ, Σ0 ≤ Σ1
with 𝑆(𝐺) ∈ [Σ0, Σ1]. All constants depend only on𝐺0,𝑅1,𝑊, and 𝜃 since the constantsΣ0,Σ1 depend, in view of Lemma 5,
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BANGERT and DOLZMANN 15 of 29

only on 𝐺0, 𝑅1,𝑊. For 𝐺 ∈ 𝐵1 fixed, we denote by 𝜙𝐺 ∈ 𝐶1([𝑔(0), 𝑔(𝐿0)]) the unique minimizer in

𝐺 = {𝜙 ∈ 𝑊1,1(𝑔(0), 𝑔(𝐿0)), 𝐼𝐺[𝜙] < ∞, 𝜙(𝑔(0)) = 0, 𝜙(𝑔(𝐿0)) = 𝓁0} ⊂ 𝑊1,1(𝑔(0), 𝑔(𝐿0))

of the variational integral

𝐼𝐺[𝜙] = ∫
𝑔(𝐿0)

𝑔(0)

𝑊𝐺(𝑧, 𝜙
′(𝑧))d𝑧 ,

the existence and regularity of which is guaranteed by Corollary 1. Moreover, there exists an 𝑆(𝐺) ∈ ℝ such that the
Euler–Lagrange equation

𝑊𝑝(𝑔
−1(𝑧), 𝜙′

𝐺
(𝑧)) = 𝑆(𝐺) on [𝑔(0), 𝑔(𝐿0)]

holds. Since 𝑔 is bijective, the substitution 𝑋 = 𝑔−1(𝑧) or 𝑔(𝑋) = 𝑧 implies that for all 𝑋 ∈ [0, 𝐿0]

𝜕𝑝𝑊(𝑋, 𝜙′
𝐺
(𝑔(𝑋))) = 𝑆(𝐺) or (𝜙′

𝐺
◦𝑔)(𝑋) = 𝜋0(𝑋, 𝑆(𝐺))

and since 𝑔′ exists for almost all 𝑋, for almost all 𝑋 ∈ [0, 𝐿0]

𝜙′
𝐺
(𝑔(𝑋))𝑔′(𝑋) = (𝜕𝑝𝑊(𝑋, ⋅))−1(𝑆(𝐺))𝑔′(𝑋) = 𝜋0(𝑋, 𝑆(𝐺))𝐺(𝑋) .

By the properties of 𝜋0(𝑋, 𝑆) = (𝜕𝑝𝑊(𝑋, ⋅))−1(𝑆) in Lemma 4, 𝜙′
𝐺
◦𝑔 is continuous as a function of 𝑋 on [0, 𝐿0], hence

measurable, and an integration in 𝑋 shows that

𝓁0 = 𝜙𝐺(𝑔(𝐿0)) − 𝜙𝐺(𝑔(0)) = ∫
𝐿0

0

d

d𝑋
[𝜙𝐺◦𝑔](𝑋)]d𝑋 = ∫

𝐿0

0

𝜋0(𝑋, 𝑆(𝐺))𝐺(𝑋)d𝑋 .

Define Φ ∶ (Σ0 − 1, Σ1 + 1) × 𝐵1 → ℝ by

(𝑆, 𝐺) ↦ Φ(𝑆, 𝐺) = ∫
𝐿0

0

𝜋0(𝑋, 𝑆)𝐺(𝑋)d𝑋 − 𝓁0

and note that each pair (𝑆(𝐺), 𝐺) satisfies the equationΦ(𝑆(𝐺), 𝐺) = 0. Moreover, since 𝜕𝑝𝑊(𝑋, ⋅) ∶ (0,∞) → ℝ is strictly
increasing and onto, also 𝜕𝑝𝑊(𝑋, ⋅)−1 ∶ ℝ → (0,∞) is strictly increasing and onto, thus, the integral is strictly increasing as
a function of 𝑆 aswell and there exists, for every𝐺 ∈ 𝐵1, exactly one 𝑆 ∈ [Σ0, Σ1] such thatΦ(𝑆, 𝐺) = 0.Weuse the theorem
on implicit functions to prove that the map 𝐺 ↦ 𝑆(𝐺) is locally of class 𝐶1 and that 𝜕𝑆∕𝜕𝐺 is uniformly bounded in 𝐵1.
In order to prove that Φ ∈ 𝐶1, it suffices by Ambrosetti and Malchiodi [35, Prop. 1.2] to show that the partial derivatives
exist and are continuous. Fix (𝑆, 𝐺) ∈ (Σ0 − 1, Σ1 + 1) × 𝐵1. Since Φ is linear in 𝐺, for all Δ𝐺 ∈ ∞([0, 𝐿0])

𝜕Φ

𝜕𝐺
(𝑆, 𝐺)[Δ𝐺] = ∫

𝐿0

0

𝜋0(𝑋, 𝑆)Δ𝐺(𝑋)d𝑋 .

This map is linear and bounded since

sup
0≠Δ𝐺∈∞([0,𝐿0])

‖‖‖‖𝜕Φ𝜕𝐺 (𝑆, 𝐺)[Δ𝐺]
‖‖‖‖(∞([0,𝐿0]);ℝ)

⋅ ‖Δ𝐺‖−1∞([0,𝐿0])
≤ ∫

𝐿0

0

𝜋0(𝑋, 𝑆)d𝑋

and by Lemma 4, the integrand is continuous as a function of 𝑋 and uniformly bounded for 𝑋 ∈ [0, 𝐿0] and 𝑆 ∈ [Σ0 −

1, Σ1 + 1]. Moreover, this derivative is continuous on its domain (Σ0 − 1, Σ1 + 1) × 𝐵1 since the integrand is Lipschitz
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16 of 29 BANGERT and DOLZMANN

continuous in 𝑆, uniformly bounded in 𝑆 and 𝑋 on compact sets and independent of 𝐺. For Δ𝑆 ∈ ℝ, we find

𝜕Φ

𝜕𝑆
(𝑆, 𝐺)[Δ𝑆] =

d

d𝜖
|||𝜖=0Φ(𝑆 + 𝜖Δ𝑆, 𝐺) =

d

d𝜖
|||𝜖=0 ∫ 𝐿0

0

𝜋0(𝑋, 𝑆 + 𝜖Δ𝑆)𝐺(𝑋)d𝑋

= ∫
𝐿0

0

d

d𝜖
|||𝜖=0𝜋0(𝑋, 𝑆 + 𝜖Δ𝑆)𝐺(𝑋)d𝑋 = ∫

𝐿0

0

𝜕

𝜕𝑆
(𝜕𝑝𝑊(𝑋, ⋅))−1(𝑆)Δ𝑆𝐺(𝑋)d𝑋

=

[
∫

𝐿0

0

1

𝜕𝑝𝑝𝑊(𝑋, 𝜋0(𝑋, 𝑆))
𝐺(𝑋)d𝑋

]
Δ𝑆

and we may identify the derivative with real number.
Since 𝑆 is contained in the compact interval [Σ0 − 1, Σ1 + 1] and, since by Lemma 4, 𝜋0(⋅, ⋅) is separately

Lipschitz continuous on compact intervals, {𝜋0(𝑋, 𝑆), 𝑋 ∈ [0, 𝐿0], 𝑆 ∈ [Σ0 − 1, Σ1 + 1]} is contained in a compact
set and 𝜕𝑝𝑝𝑊(𝑋, 𝜋0(⋅, ⋅)) is uniformly bounded from below and from above. Finally, 𝐺 ∈ 𝐵1 is bounded from below
by Γ0 and therefore, 𝜕Φ∕𝜕𝑆 is uniformly bounded from below on (𝑆0 − 1, 𝑆1 + 1) × 𝐵1 by a positive constant, which
depends only on the global constants. The continuity of this derivative on its domain (Σ0 − 1, Σ1 − 1) × 𝐵1 follows from
the continuity of 𝜋0 in Lemma 4 and the theorem on dominated convergence.
Thus, we may apply the theorem on implicit functions. Suppose that Φ(𝑆, 𝐺) = 0. Then there exists an open neighbor-

hood 𝑈 of 𝑆 in ℝ and an open neighborhood 𝑉 of 𝐺 in ∞([0, 𝐿0]) and a 𝐶1 function 𝑆 ∶ 𝑉 → 𝑈, 𝐺 ↦ 𝑆(𝐺) such that
Φ(𝑆, 𝐺) = 0 in 𝑈 × 𝑉 if and only if 𝑆 = 𝑆(𝐺). Since the stress is uniquely determined from 𝐺, 𝑆(𝐺) = 𝑆(𝐺) on 𝑉 and the
regularity of 𝑆 has been established.
The formula for the differentiation of implicit functions shows that for all Δ𝐺 ∈ ∞([0, 𝐿0])

𝜕𝑆

𝜕𝐺
(𝐺)[Δ𝐺] = −

(
𝜕Φ

𝜕𝑆
(𝑆, 𝐺)

)−1[
𝜕Φ

𝜕𝐺
(𝑆, 𝐺)[Δ𝐺]

]
and thus 𝜕𝑆∕𝜕𝐺 is uniformly bounded in 𝐶0((Σ0 − 1, Σ1 + 1) × 𝐵1,(∞([0, 𝐿0]), ℝ)). Finally, the mean value theorem in
Banach spaces implies for 𝐺1, 𝐺2 ∈ 𝐵1, in view of the convexity of 𝐵0, that

|𝑆(𝐺1) − 𝑆(𝐺2)| ≤ 𝐶(Γ0, Γ1)‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .

Therefore, 𝑆 is globally Lipschitz continuous on 𝐵1. □

5 LIPSCHITZ DEPENDENCE OF THE NUTRIENTS ON THE GROWTH TENSOR

The inclusion of a dependence onnutrients in the evolution equation for the growth tensor𝐺 leads to additional difficulties
since the domain of 𝑛𝐺 is the deformed configuration, normalized to be the interval [0, 𝓁0]. Therefore, Lipschitz continuity
of the map 𝑦𝐺 = 𝜙𝐺◦𝑔 is needed in order to control the change of variables in 𝑁𝐺 = 𝑛𝐺◦𝑦𝐺 . Moreover, the assumptions
in our model lead to the factor 𝜙′

𝐺
◦𝜙−1

𝐺
in the expression for the diffusion coefficient 𝐷𝐺 and the reaction rate 𝛽𝐺 . In the

following, we illustrate how to obtain the Lipschitz continuity on 𝐵1 = 𝐵(𝐺0, 𝑅1) for this specific model. The analysis of
similar models is expected to be analogous. We begin by investigating the dependence of the elastic deformation 𝜙𝐺 on 𝐺.
Since 𝜙𝐺 is defined on [𝑔(0), 𝑔(𝐿0)], it is necessary to consider 𝜙𝐺◦𝑔 ∶ [0, 𝐿0] → ℝ.

Lemma 7. Suppose that the assumptions (W1)–(W4) hold and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7). Then there exist
constants 𝐿𝑦,𝐺 and 𝐿𝜙′◦𝑔,𝐺 , which depend only on global constants such that for all 𝐺1, 𝐺2 ∈ 𝐵1, the following assertions
hold:

(i) The map 𝑦 ∶ 𝐵1 → 𝐶0([0, 𝐿0]), 𝐺 ↦ 𝑦𝐺 = 𝜙𝐺◦𝑔 is Lipschitz continuous, that is,

‖𝑦1 − 𝑦2‖𝐶0([0,𝐿0]) = ‖𝜙1◦𝑔1 − 𝜙2◦𝑔2‖𝐶0([0,𝐿0]) ≤ 𝐿𝑦,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .
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BANGERT and DOLZMANN 17 of 29

(ii) The map 𝜙′◦𝑔 ∶ 𝐵1 → 𝐶0([0, 𝐿0]), 𝐺 ↦ 𝜙′
𝐺
◦𝑔 is Lipschitz continuous, that is,

‖𝜙′1◦𝑔1 − 𝜙′2◦𝑔2‖𝐶0([0,𝐿0]) ≤ 𝐿𝜙′◦𝑔,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .

Proof. By Lemma 5, there exist 𝑃0, 𝑃1, Σ0, Σ1 ∈ ℝ, which depend only on global constants such that for all 𝐺 ∈ 𝐵1, the
bounds 𝜙′

𝐺
∈ [𝑃0, 𝑃1], and 𝑆𝐺 ∈ [Σ0, Σ1] are true. By Corollary 1, the Euler–Lagrange equation implies that the stress is

constant and that there exists a constant 𝑆𝐺 ∈ [Σ0, Σ1] with

𝜕𝑝𝑊(𝑔−1(⋅), 𝜙′
𝐺
(⋅)) = 𝑆𝐺 on [𝑔(0), 𝑔(𝐿0)]

and, since 𝑔 ∶ [0, 𝐿0] → [𝑔(0), 𝑔(𝐿0)] is bijective, on [0, 𝐿0],

(𝜙′
𝐺
◦𝑔)(⋅) = 𝜋0(⋅, 𝑆𝐺) .

Lemma 4 ensures that 𝜋0 is Lipschitz continuous as a function of 𝑆 on [Σ0, Σ1] and that the Lipschitz constant is
independent of𝑋 ∈ [0, 𝐿0]. Since themap𝐺 ↦ 𝑆𝐺 is Lipschitz continuous by Lemma 6, we obtain that for all𝐺1,𝐺2 ∈ 𝐵1

‖𝜙′1◦𝑔1 − 𝜙′2◦𝑔2‖𝐶0([0,𝐿0]) = sup
𝑋∈[0,𝐿0]

|𝜙′1◦𝑔1 − 𝜙′2◦𝑔2|(𝑋) = sup
𝑋∈[0,𝐿0]

|𝜋0(⋅, 𝑆1) − 𝜋0(⋅, 𝑆2)|(𝑋)
≤ 𝐿𝑊−1

𝑝 ,𝑆(Σ0, Σ1)|𝑆1 − 𝑆2| ≤ 𝐿𝑊−1
𝑝 ,𝑆(Σ0, Σ1)𝐿𝑆,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) ,

that is, the second assertion. To prove the first assertion, recall that (𝜙𝑖◦𝑔𝑖)(0) = 0, and that 𝜙𝑖◦𝑔𝑖 ∈ 𝑊1,∞(0, 𝐿0), 𝑖 = 1, 2.
By the fundamental theorem of calculus and the chain rule, see Gilbarg and Trudinger [36, Lemma 7.5], for all𝑋 ∈ [0, 𝓁0]

|𝑦1(𝑋) − 𝑦2(𝑋)| = |(𝜙1◦𝑔1)(𝑋) − (𝜙2◦𝑔2)(𝑋)| ≤ ∫
𝑋

0

|(𝜙1◦𝑔1)′(𝑈) − (𝜙2◦𝑔2)
′(𝑈)|d𝑈

≤ 𝐿0‖(𝜙′1◦𝑔1)𝑔′1 − (𝜙′2◦𝑔2)𝑔
′
2‖𝐿∞(0,𝐿0)

≤ 𝐿0‖[(𝜙′1◦𝑔1) − (𝜙′2◦𝑔2)]𝑔
′
1‖𝐿∞(0,𝐿0) + 𝐿0‖𝑔′1 − 𝑔′2‖𝐿∞(0,𝐿0) ⋅ ‖𝜙′2◦𝑔2‖𝐿∞(0,𝐿0)

and hence in view of (ii) and the global bounds 𝜙′
𝑖
∈ [𝑃0, 𝑃1], 𝑖 = 1, 2,

‖𝑦1 − 𝑦2‖𝐶0([0,𝐿0]) = ‖𝜙1◦𝑔1 − 𝜙2◦𝑔2‖𝐶0([0,𝐿0]) ≤ 𝐿0(Γ1𝐿𝜙′◦𝑔,𝐺 + 𝑃1)‖𝐺1 − 𝐺2‖𝐿∞(0,𝐿0) .

Thus, the proof of the first assertion is concluded since for 𝐺 ∈ ∞([0, 𝐿0]) and 𝑔(𝑋) = ∫ 𝑋

0
𝑔(𝑈)d𝑈 the identity 𝑔′ = 𝐺

holds almost everywhere. □

Before we prove Lipschitz continuity of the diffusion coefficient as a function of 𝐺 defined on 𝐵1, we derive uniform
Lipschitz estimates for the functions 𝑋 ↦ 𝑦𝐺(𝑋), 𝑥 ↦ (𝜙′

𝐺
◦𝜙−1

𝐺
)(𝑥) and, as a consequence, as stated in the Lemma 9, for

𝑥 ↦ 𝐷𝐺(𝑥).

Lemma 8. Suppose that (W1)–(W4) hold and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7). Then there exist constants 𝐿𝑦,𝑋 and
𝐿𝜙′◦𝜙−1,𝑥 such that the following assertions hold:

(i) for all 𝐺 ∈ 𝐵1 and for all 𝑋1, 𝑋2 ∈ [0, 𝐿0]

|𝑦𝐺(𝑋1) − 𝑦𝐺(𝑋2)| ≤ 𝐿𝑦,𝑋|𝑋1 − 𝑋2| ;
(ii) for all 𝐺 ∈ 𝐵1 and for all 𝑥1, 𝑥2 ∈ [0, 𝓁0]

|(𝜙′
𝐺
◦𝜙−1

𝐺
)(𝑥1) − (𝜙′

𝐺
◦𝜙−1

𝐺
)(𝑥2)| ≤ 𝐿𝜙′◦𝜙−1,𝑥|𝑥1 − 𝑥2| ;
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18 of 29 BANGERT and DOLZMANN

(iii) for all 𝐺 ∈ 𝐵1 and for all 𝑋1, 𝑋2 ∈ [0, 𝐿0]

|(𝜙′
𝐺
◦𝑔)(𝑋1) − (𝜙′

𝐺
◦𝑔)(𝑋2)| ≤ 𝐿𝜙′◦𝑔,𝑋|𝑋1 − 𝑋2| .

Proof. By Lemma 5, there exist 𝑃0, 𝑃1, Σ0, Σ1 ∈ ℝ, which depend only on the global constants such that for all 𝐺 ∈ 𝐵1
the bounds 𝜙′

𝐺
∈ [𝑃0, 𝑃1] and 𝑆𝐺 ∈ [Σ0, Σ1] hold. Since for almost all 𝑋 ∈ [0, 𝐿0], 𝑔′(𝑋) = 𝐺(𝑋) ∈ [Γ0, Γ1], both 𝑔 and 𝜙𝐺

are Lipschitz continuous and hence 𝑦𝐺 is Lipschitz continuous. The Lipschitz constant depends only on global constants
and this fact proves (i). To prove (ii), recall that for all 𝐺 ∈ 𝐵1 the Euler–Lagrange equation 𝜕𝑝𝑊𝐺(𝑧, 𝜙

′
𝐺
(𝑧)) = 𝑆𝐺 holds

and since the map 𝑔 ∶ [0, 𝐿0] → [𝑔(0), 𝑔(𝐿0)] is bijective, we find for all 𝑋 ∈ [0, 𝐿0] that 𝜕𝑝𝑊(𝑋, (𝜙′
𝐺
◦𝑔)(𝑋)) = 𝑆𝐺 and

this equation is equivalent to (𝜙′
𝐺
◦𝑔)(𝑋) = 𝜋0(𝑋, 𝑆𝐺). By Lemma 4, 𝜙′𝐺◦𝑔 is Lipschitz continuous in 𝑋 ∈ [0, 𝐿0] and the

Lipschitz constant is uniformly bounded in 𝑆 ∈ [Σ0, Σ1], proving (iii). Therefore,

𝜙′
𝐺
◦𝜙−1

𝐺
= (𝜙′

𝐺
◦𝑔)◦(𝑔−1◦𝜙−1

𝐺
) = (𝜙′

𝐺
◦𝑔)◦𝑦−1

𝐺

is Lipschitz continuous by Lemma 1 since

𝑦𝐺(𝑋) = 𝑦𝐺(𝑋) − 𝑦𝐺(0) = ∫
𝑋

0

𝑦′
𝐺
(𝑈)d𝑈 = ∫

𝑋

0

(𝜙′
𝐺
◦𝑔)(𝑈)𝑔′(𝑈)d𝑈

with 𝜙′
𝐺
◦𝑔 ∈ [𝑃0, 𝑃1] and 𝑔′ ∈ [Γ0, Γ1] and 𝑃0, Γ0 > 0. □

Recall that throughout the paper,we assume that the assumptions (1.5) concerning the reaction–diffusion equationhold.
The next lemma proves that the maps 𝐺 ↦ 𝐷𝐺 and 𝐺 ↦ 𝛽𝐺 are Lipschitz continuous. The property is crucial in the
verification of the Lipschitz dependence of the nutrients on 𝐺.

Lemma 9. Suppose that (W1)–(W4) hold and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with (1.7). Then the mappings

𝐷 ∶ 𝐵1 → 𝐶0([0, 𝓁0]) , 𝐺 ↦ 𝐷𝐺 = (𝜙′
𝐺
◦𝜙−1

𝐺
) ⋅ (𝐷0◦𝑦

−1
𝐺
) ,

𝛽 ∶ 𝐵1 → ∞([0, 𝓁0]) , 𝐺 ↦ 𝛽𝐺 = [𝜙′
𝐺
◦𝜙−1

𝐺
]−1 ⋅ (𝛽0◦𝑦

−1
𝐺
)

are bounded and Lipschitz continuous, that is, for all 𝐺1, 𝐺2 ∈ 𝐵1 the estimates

‖𝐷1 − 𝐷2‖𝐶0([0,𝓁0]) ≤ 𝐿𝐷,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]), ‖𝛽1 − 𝛽2‖𝐶0([0,𝓁0]) ≤ 𝐿𝛽,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0])

hold. Moreover, for all 𝐺 ∈ 𝐵1 the coefficients 𝐷𝐺 and 𝛽𝐺 are uniformly elliptic and Lipschitz continuous, that is, there exist
constants 𝐿𝐷,𝑥 and 𝐿𝛽,𝑥 such that for all 𝑥1, 𝑥2 ∈ [0, 𝓁0]

|𝐷𝐺(𝑥1) − 𝐷𝐺(𝑥2)| ≤ 𝐿𝐷,𝑥|𝑥1 − 𝑥2|, |𝛽𝐺(𝑥1) − 𝛽𝐺(𝑥2)| ≤ 𝐿𝛽,𝑥|𝑥1 − 𝑥2|.
and

𝐷𝐺 ∈ [𝑃0𝐷𝑚𝑖𝑛, 𝑃1𝐷𝑚𝑎𝑥], 𝛽𝐺 ∈

[
𝛽𝑚𝑖𝑛

𝑃1
,
𝛽𝑚𝑎𝑥

𝑃0

]
.

All constants depend only on the global constants.

Proof. By Lemma 5, there exist 𝑃0, 𝑃1 ∈ (0,∞), which depend only on the global constants with 𝜙′
𝐺
∈ [𝑃0, 𝑃1] on

[𝑔(0), 𝑔(𝐿0)]. For all 𝑥 ∈ [0, 𝓁0]

|(𝜙′1◦𝜙−11 )(𝑥) − (𝜙′2◦𝜙
−1
2 )(𝑥)| = |(𝜙′1◦𝑔1◦𝑦−11 )(𝑥) − (𝜙′2◦𝑔2◦𝑦

−1
2 )(𝑥)|

≤ |(𝜙′1◦𝑔1)(𝑦−11 (𝑥)) − (𝜙′1◦𝑔1)(𝑦
−1
2 (𝑥))| + |(𝜙′1◦𝑔1)(𝑦−12 (𝑥)) − (𝜙′2◦𝑔2)(𝑦

−1
2 (𝑥))| .
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BANGERT and DOLZMANN 19 of 29

For the first term, we use Lemma 8 (iii) and find

|(𝜙′1◦𝑔1)(𝑦−11 (𝑥)) − (𝜙′1◦𝑔1)(𝑦
−1
2 (𝑥))| ≤ 𝐿𝜙′◦𝑔,𝑋|𝑦−11 − 𝑦−12 |(𝑥) ≤ 𝐿𝜙′◦𝑔,𝑋‖𝑦−11 − 𝑦−12 ‖𝐶0([0,𝓁0]) .

By Lemma 2 and since 𝑦′ = (𝜙′◦𝑔)𝑔′ ∈ [Γ0𝑃0, Γ1𝑃1] almost everywhere, we may define a constant 𝐿𝑦−1,𝐺 such that

‖𝑦−11 − 𝑦−12 ‖𝐶0([0,𝓁0]) ≤ (Γ0𝑃0)
−1𝐿𝑦,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) = 𝐿𝑦−1,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .

The second term is bounded by ‖𝜙′1◦𝑔1 − 𝜙′2◦𝑔2‖𝐶0([0,𝐿0]) and can be estimated by Lemma 7. Both inequalities imply
sup

𝑥∈[0,𝓁0]
|(𝜙′1◦𝜙−11 )(𝑥) − (𝜙′2◦𝜙

−1
2 )(𝑥)| ≤ (𝐿𝜙′◦𝑔,𝑋𝐿𝑦−1,𝐺 + 𝐿𝜙′◦𝑔)‖𝐺1 − 𝐺2‖∞([0,𝐿0])

and hence Lipschitz continuity in 𝐶0([0, 𝓁0]). Consequently, the map 𝐵1 → 𝐶0([0, 𝓁0]), 𝐺 ↦ 𝜙′
𝐺
◦𝜙−1

𝐺
is Lipschitz contin-

uous and the Lipschitz constant depends only on the global constants. By definition, 𝐷𝐺(𝑥) = (𝜙′
𝐺
◦𝜙−1

𝐺
) ⋅ (𝐷0◦𝑦

−1) and
the second factor in this formula is estimated by Lemmas 1 and 2 as follows: For all 𝑥 ∈ [0, 𝓁0],

|(𝐷0◦𝑦
−1
1 )(𝑥) − (𝐷0◦𝑦

−1
2 )(𝑥)| ≤ 𝐿𝐷0,𝑋‖𝑦−11 − 𝑦−12 ‖𝐶0([0,𝓁0]) ≤ 𝐿𝐷0,𝑋𝐿𝑦−1,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .

Since the map 𝐷 ∶ 𝐵1 → 𝐶0([0, 𝓁0]), 𝐺 ↦ 𝐷𝐺 is the product of two bounded and Lipschitz continuous functions with the
same domain and range and since 𝐶0([0, 𝓁0]) is a Banach algebra, the proof of the Lipschitz continuity of 𝐷𝐺 in 𝐺 follows
from Lemma 1.
To prove the Lipschitz continuity of the mapping 𝐺 ↦ 𝛽𝐺 = [𝜙′

𝐺
◦𝜙−1

𝐺
]−1𝛽0◦𝑦

−1
𝐺
, note that

1

𝜙′1◦𝜙
−1
1

−
1

𝜙′2◦𝜙
−1
2

=
𝜙′2◦𝜙

−1
2 − 𝜙′1◦𝜙

−1
1

(𝜙′1◦𝜙
−1
1 ) ⋅ (𝜙′2◦𝜙

−1
2 )

.

Since the denominator is bounded from below by 𝑃20, the map [𝜙′◦𝜙−1]−1 ∶ 𝐵1 → 𝐶0([0, 𝓁0]), 𝐺 ↦ [𝜙′
𝐺
◦𝜙−1

𝐺
]−1 is

Lipschitz continuous. The Lipschitz continuity of 𝛽0◦𝑦−1 follows as the Lipschitz continuity of the map 𝐷0◦𝑦
−1 and thus

the Lipschitz continuity of 𝐺 ↦ 𝛽𝐺 has been established.
Finally, 𝜙′

𝐺
◦𝜙−1

𝐺
∈ [𝑃0, 𝑃1] and this estimate implies the uniform ellipticity for 𝐷𝐺 and 𝛽𝐺 , respectively. This argument

completes the proof of the lemma. □

As a first step towards proving that the map 𝐺 ↦ 𝑛𝐺 is Lipschitz continuous, we prove regularity and a maximum
principle for the reaction–diffusion equation.

Lemma 10. Suppose that 𝐷0, 𝛽0 ∈ 𝑊1,∞([0, 𝐿0]) satisfy Equation (1.5), that (W1)–(W4) hold and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with
Equation (1.7). Then there exists a constant𝑀𝑛,𝐻2 , which depends only on the data of the problem such that the unique weak
solution in𝐻1(0, 𝓁0) of the reaction–diffusion equation induced by 𝐺 ∈ 𝐵1 with

−(𝐷𝐺𝑛
′
𝐺
)′ + 𝛽𝐺𝑛𝐺 = 0 in [0, 𝓁0] ,

𝑛𝐺(0) = 𝑛𝐿 ,

𝑛𝐺(𝓁0) = 𝑛𝑅

satisfies the a priori bound ‖𝑛𝐺‖𝐻2(0,𝓁0) ≤ 𝑀𝑛,𝐻2 .

Moreover, if 𝑛𝐿, 𝑛𝑅 ≥ 0, then 𝑛𝐺 ≥ 0 on [0, 𝓁0].
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20 of 29 BANGERT and DOLZMANN

Proof. Define

𝑛(𝑥) =
𝑛𝑅 − 𝑛𝐿

𝓁0
𝑥 + 𝑛𝐿 , 𝑛(𝑥) = 𝑛𝐺(𝑥) − 𝑛(𝑥) .

Then 𝑛(0) = 𝑛(𝓁0) = 0 and 𝑛 ∈ 𝐻1
0(0, 𝓁0) is a weak solution of the equation

−(𝐷𝐺𝑛
′)′ + 𝛽𝐺𝑛 = (𝐷𝐺𝑛

′)′ − 𝛽𝐺𝑛 = 𝑓′
𝐺
+ ℎ𝐺

with

𝑓𝐺 = 𝐷𝐺𝑛
′ = −𝐷𝐺

𝑛𝑅 − 𝑛𝐿
𝓁0

, ℎ𝐺 = −𝛽𝐺𝑛 .

Thus, it suffices to prove that for any weak solution 𝑛 ∈ 𝐻1
0(0, 𝓁0) of the equation−(𝐷𝐺𝑛

′)′ + 𝛽𝐺𝑛 = 𝑓′
𝐺
+ ℎ𝐺 , the a priori

estimate ‖𝑛‖𝐻2(0,𝓁0) ≤ 𝑀𝑛,𝐻2 holds, where𝑀𝑛,𝐻2 depends only on the global constants. Lemma 5 implies the existence of
constants 𝑃0, 𝑃1 ∈ (0,∞), which depend only on the global constants such that 𝜙′

𝐺
∈ [𝑃0, 𝑃1] on [𝑔(0), 𝑔(𝐿0)]. Therefore,

the coefficient 𝐷𝐺 is uniformly bounded and elliptic with 𝐷𝐺 ∈ [𝐷𝑚𝑖𝑛𝑃0, 𝐷𝑚𝑎𝑥𝑃1] on [0, 𝓁0] and the coefficient 𝛽𝐺 is
uniformly bounded with 𝛽𝐺 ∈ [𝛽𝑚𝑖𝑛∕𝑃1, 𝛽𝑚𝑎𝑥∕𝑃0] on [0, 𝓁0]. The existence of a unique solution in𝐻1(0, 𝓁0) follows with
Lax-Milgram. If one uses 𝑛 as test function, then one finds

𝑃0𝐷𝑚𝑖𝑛 ∫
𝓁0

0

(𝑛′)2d𝑥 +
𝛽𝑚𝑖𝑛

𝑃1 ∫
𝓁0

0

𝑛2d𝑥 ≤ −∫
𝓁0

0

𝑓𝐺𝑛
′d𝑥 + ∫

𝓁0

0

ℎ𝐺𝑛d𝑥

and Young’s inequality leads to the a priori estimate ‖𝑛‖1,2 ≤ 𝐶 where 𝐶 depends only on the global constants. The 𝐻2

regularity follows by elliptic regularity. By Lemma 9, the diffusion coefficient 𝐷𝐺 is uniformly Lipschitz continuous and
the Lipschitz constant depends only on the data. For 𝜁 ∈ 𝐶∞

𝑐 (0, 𝓁0) and ℎ ∈ ℝ, |ℎ| > 0 small enough, one defines the
difference quotient 𝐷ℎ and the test function 𝜓 = 𝐷−ℎ(−𝜁

2𝐷ℎ𝑛) ∈ 𝐻1
0(0, 𝓁0). The leading order term on the left-hand side

is given by

∫
𝓁0

0

𝐷𝐺(𝑥)𝑛
′(𝑥)(𝐷−ℎ(−𝜁

2𝐷ℎ𝑛(𝑥)))
′d𝑥 = ∫

𝓁0

0

𝐷ℎ(𝐷𝐺(𝑥)𝑛
′(𝑥))(𝜁2𝐷ℎ𝑛(𝑥))

′d𝑥

and the leading order term on the right-hand side is given by

∫
𝓁0

0

𝑓𝐺(𝐷−ℎ(−𝜁
2𝐷ℎ𝑛))

′d𝑥 = ∫
𝓁0

0

𝐷ℎ𝑓𝐺(𝜁
2𝐷ℎ𝑛)

′d𝑥 .

The first term provides the term ‖𝜁𝐷ℎ𝑛
′‖2
𝐿2(0,𝓁0)

. If one rearranges all terms, then one finds an estimate for this term from
above by ‖𝑛‖2

𝐻1(0,𝓁0)
and constants that depend only on the global constants, see Lemma 9 for the properties of𝐷𝐺 and 𝛽𝐺 ,

which also provide estimates for the Lipschitz constant of 𝑓𝐺 . Consequently, 𝑛 ∈ 𝐻2
𝑙𝑜𝑐
(0, 𝓁0), the equation holds pointwise

almost everywhere and one can solve for 𝐷𝐺𝑛
′′ to obtain a global estimate in 𝐻2(0, 𝓁0).

Suppose now that 𝑛𝐿, 𝑛𝑅 ≥ 0. To prove the lower bound 𝑛𝐺 ≥ 0, we use the test function 𝜁𝐺 = min{𝑛𝐺, 0} ∈ 𝐻1
0(0, 𝓁0).

Since 𝜁′
𝐺
= 𝜒{𝑛𝐺<0}𝑛

′
𝐺
, we find

0 = ∫
𝓁0

0

𝐷𝐺(𝑥)𝑛
′
𝐺
(𝑥)𝜁′

𝐺
(𝑥)d𝑥 + ∫

𝓁0

0

𝛽𝐺(𝑥)𝑛𝐺(𝑥)𝜁𝐺(𝑥)d𝑥 = ∫
𝓁0

0

𝐷𝐺(𝑥)|𝜁′𝐺(𝑥)|2d𝑥 + ∫
𝓁0

0

𝛽𝐺(𝑥)𝜁
2
𝐺
(𝑥)d𝑥 ≥ 0 .

Thus 𝜁′
𝐺
= 0 and in view of Poincaré’s inequality, 𝜁𝐺 = 0, that is, 𝑛𝐺 ≥ 0. □

Since the growth dynamics is considered on the reference configuration, the nutrient concentration 𝑛 on the current
configuration needs to be transformed to the reference configuration. The existence proof requires, therefore, Lipschitz
continuity of the map 𝐺 ↦ 𝑁𝐺 , which is shown in the next lemma.
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BANGERT and DOLZMANN 21 of 29

Lemma 11. Suppose that 𝑊 satisfies (W1)–(W4) and that 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7). The map 𝑁 ∶ 𝐵1 =

𝐵(𝐺0, 𝑅1) → 𝐶0([0, 𝐿0]), 𝐺 ↦ 𝑁(𝐺) = 𝑛𝐺◦𝑦𝐺 , is Lipschitz continuous and there exist constants𝑀𝑁,𝐺 and 𝐿𝑁,𝐺 , which only
depend on 𝐺0 and 𝑅1 such that for all 𝐺, 𝐺1, 𝐺2 ∈ 𝐵1

‖𝑁(𝐺)‖𝐶0([0,𝐿0]) ≤ 𝑀𝑁,𝐺 , ‖𝑁(𝐺1) − 𝑁(𝐺2)‖𝐶0([0,𝐿0]) ≤ 𝐿𝑁,𝐺‖𝐺1 − 𝐺2‖∞([0,𝐿0] .

Proof. Suppose that 𝐺1, 𝐺2 ∈ 𝐵1 and that 𝑛1, 𝑛2 ∈ 𝑊1,2([0, 𝓁0]) are the weak solutions of the reaction–diffusion equa-
tions with diffusion constants 𝐷1, 𝐷2 and absorption rates 𝛽1, 𝛽2, respectively. By Lemma 10, 𝑛1, 𝑛2 ∈ 𝐻2(0, 𝓁0) with
uniform bound on the𝐻2-norm, independent of 𝐺 ∈ 𝐵1.
We first verify the Lipschitz continuity of the map 𝑛 ∶ ∞([0, 𝐿0]) → 𝐻1(0, 𝓁0), 𝐺 ↦ 𝑛(𝐺). Since 𝑛1 − 𝑛2 ∈ 𝐻1

0(0, 𝓁0),
we may use 𝑛1 − 𝑛2 as a test function in the weak formulations for 𝑛1 and 𝑛2, that is,

∫
𝓁0

0

𝐷𝑖(𝑥)𝑛
′
𝑖
(𝑥)(𝑛1 − 𝑛2)

′(𝑥) + 𝛽𝑖(𝑥)𝑛𝑖(𝑥)(𝑛1 − 𝑛2)(𝑥)d𝑥 = 0 , 𝑖 = 1, 2 .

The difference of these two equations is given by

∫
𝓁0

0

(𝐷1𝑛
′
1 − 𝐷2𝑛

′
2)(𝑛

′
1 − 𝑛′2) + (𝛽1𝑛1 − 𝛽2𝑛2)(𝑛1 − 𝑛2)d𝑥 = 0

and can be rewritten as

∫
𝓁0

0

𝐷1(𝑛
′
1 − 𝑛′2)

2 + (𝐷1 − 𝐷2)𝑛
′
2(𝑛

′
1 − 𝑛′2)d𝑥 + ∫

𝓁0

0

𝛽1(𝑛1 − 𝑛2)
2 + (𝛽1 − 𝛽2)𝑛2(𝑛1 − 𝑛2)d𝑥 = 0 .

Consequently, there exists a constant 𝐶, which depends only on the global constants with

‖𝑛1 − 𝑛2‖𝐻1(0,𝓁0) ≤ 𝐶‖𝐷1 − 𝐷2‖𝐿∞(0,𝓁0)‖𝑛′2‖𝐿2(0,𝓁0) + 𝐶‖𝛽1 − 𝛽2‖𝐿∞(0,𝓁0)‖𝑛2‖𝐿2(0,𝓁0) .
The Lipschitz continuity of 𝑛𝐺 in 𝐺 with values in 𝐻1(0, 𝓁0) follows by Lemma 9 and we use the Sobolev embedding
𝐻1(0, 𝓁0) ↪ 𝐶0([0, 𝓁0]) to conclude the Lipschitz continuity in 𝐶0([0, 𝓁0]).
To prove the Lipschitz continuity of 𝑁𝐺 in 𝐺 in 𝐶0([0, 𝐿0]), we write for 𝑋 ∈ [0, 𝐿0]

|𝑁1(𝑋) − 𝑁2(𝑋)| = |(𝑛1◦𝑦1)(𝑋) − (𝑛2◦𝑦2)(𝑋)|
≤ |(𝑛1◦𝑦1)(𝑋) − (𝑛1◦𝑦2)(𝑋)| + |(𝑛1◦𝑦2)(𝑋) − (𝑛2◦𝑦2)(𝑋)|
≤ ‖𝑛′1‖𝐶0([0,𝓁0])|𝑦1(𝑋) − 𝑦2(𝑋)| + sup

𝑥∈[0,𝓁0]
|𝑛1(𝑥) − 𝑛2(𝑥)|

≤ ‖𝑛′1‖𝐶0([0,𝓁0])‖𝑦1 − 𝑦2‖𝐶0([0,𝐿0]) + ‖𝑛1 − 𝑛2‖𝐶0([0,𝓁0])
≤ 𝐶‖𝐺1 − 𝐺2‖∞([0,𝐿0]) .

We take the supremum in 𝑋 and obtain the assertion where we used, in the last estimate, the embedding 𝐻2(0, 𝓁0) ↪

𝐶1([0, 𝓁0]) and the uniform bounds in Lemma 10. □

6 GLOBAL EXISTENCEWITH BANACH SPACEMETHODS

In this section, we prove the existence of a solution of the parameter dependent system of ordinary differential equa-
tions for 𝐺(𝑋, 𝑡) based on a formulation of the problem as an ordinary differential equation in the Banach space
∞([0, 𝐿0]). The advantage of this approach is that, for a solution 𝐺 ∈ 𝐶1([0, 𝑇];∞([0, 𝐿0]), the paths 𝑡 ↦ 𝐺(𝑋, 𝑡) are
𝐶1 for all 𝑋 ∈ [0, 𝐿0] and this fact allows us to identify these paths as solutions of the system of ordinary differential equa-
tions depending on the parameter 𝑋. Our global existence result is based on the following assumptions concerning the
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22 of 29 BANGERT and DOLZMANN

existence of comparison functions, where we denote by ∞
+ ([0, 𝐿0]) ⊂ ∞([0, 𝐿0]) the set of all measurable and positive

functions,

∞
+ ([0, 𝐿0]) = {𝐺 ∈ ∞([0, 𝐿0]); for all 𝑋 ∈ [0, 𝐿0] ∶ 𝐺(𝑋) > 0} .

The first assumption (G1) stated below is crucial in order to ensure global existence of solutions since it will allow us to
construct global sub- and supersolutions with𝐺0(𝑋, 𝑡) ≤ 𝐺(𝑋, 𝑡) ≤ 𝐺1(𝑋, 𝑡) for all𝑋 ∈ [0, 𝐿0] and 𝑡 ∈ [0, 𝑇]. This assump-
tion can be interpreted as saying that stress and nutrient concentration have an effect on the growth rate but that the effect
is limited in the sense that there is a maximal growth rate for 𝐺 > 1 and a maximal absorption rate for 𝐺 < 1, which lead
to exponential but finite growth on finite time intervals.
We define the autonomous ordinary differential equation

𝐺̇(𝑡) = ̂(𝐺(𝑡)) , 𝐺(0) = 1

in ∞([0, 𝐿0]) where 𝐵1 = 𝐵(𝐺0, 𝑅1) with Equation (1.7),

̂ ∶ 𝐵1 → ∞([0, 𝐿0]) , ̂(𝐺)(𝑋) = (𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋)
and where the constitutive function  on the right-hand side satisfies the following conditions:
(G1) There exist locally Lipschitz continuous functions ̂0, ̂1 ∶ ∞

+ ([0, 𝐿0]) → ∞([0, 𝐿0]) such that ̂𝑖(𝐺)(𝑋) =𝑖(𝐺(𝑋), 𝑋) for locally Lipschitz continuous functions 𝑖 ∶ (0,∞) × [0, 𝐿0] → ℝ such that the ordinary differential
equations

𝐺̇𝑖 = ̂𝑖(𝐺𝑖) , 𝑖 = 1, 2 , 𝐺𝑖(0) = 1

have global solutions 𝐺𝑖 ∈ 𝐶1([0, 𝑇];∞
+ ([0, 𝐿0])) with

𝐺0(𝑋, 𝑡) < 𝐺1(𝑋, 𝑡) for all 𝑡 ∈ (0, 𝑇], 𝑋 ∈ [0, 𝐿0]

and

𝐺𝑚𝑖𝑛 = inf
[0,𝐿0]

inf
[0,𝑇]

𝐺0(𝑋, 𝑡) > 0 , 𝐺𝑚𝑎𝑥 = sup
[0,𝐿0]

sup
[0,𝑇]

𝐺1(𝑋, 𝑡) < ∞ .

(G2)  ∶ ℝ>0 × ℝ × ℝ≥0 × [0, 𝐿0] → ℝ and for all 𝑋 ∈ [0, 𝐿0]

(⋅, ⋅, ⋅, 𝑋) ∶ ℝ>0 × ℝ × ℝ≥0 → ℝ

is continuous and for all (𝐺, 𝑆,𝑁) ∈ ℝ>0 × ℝ × ℝ≥0, (𝐺, 𝑆,𝑁, ⋅) is measurable.
(G3) For all Γ𝑖 , Σ𝑖 ,𝐻𝑖 ∈ ℝ, 𝑖 = 1, 2, with 0 < Γ0 < Γ1, Σ0 < Σ1, 0 ≤ 𝐻0 < 𝐻1 and for all 𝑋 ∈ [0, 𝐿0], the function

(⋅, ⋅, ⋅, 𝑋) ∶ [Γ0, Γ1] × [Σ0, Σ1] × [𝐻0,𝐻1] → ℝ , (𝐺, 𝑆,𝑁) ↦ (𝐺, 𝑆,𝑁, 𝑋)
is uniformly Lipschitz continuous and bounded with constants 𝐿 and𝑀 and the constants are independent of 𝑋.

(G4) For all 𝐺 > 0, 𝑆 ∈ ℝ, 𝑁 ≥ 0, 𝑋 ∈ [0, 𝐿0]

0(𝐺, 𝑋) < (𝐺, 𝑆,𝑁, 𝑋) < 1(𝐺, 𝑋) .
Note, that by Lemma 10, the nutrients concentration 𝑛𝐺 is continuous and nonnegative and the pointwise evaluation

of 𝑁𝐺 = 𝑛𝐺◦𝑦𝐺 in the growth dynamics is justified by the Sobolev embedding theorem.

Theorem 3. Suppose that 𝑇 > 0, that the free energy density 𝑊 satisfies (W1)–(W4) and that the growth rate ̂ satisfies
(G1)–(G4). Then, there exists a unique solution 𝐺 in the sense of Definition 1 on [0, 𝑇].
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BANGERT and DOLZMANN 23 of 29

Proof. Global existence will be shown based on Picard–Lindelöf’s theorem on the local existence together with the exis-
tence of sub- and supersolutions, which follows from (G1). In fact, the sub- and supersolutions guarantee that the solution
is contained in a closed ball 𝐵0 for 𝑡 ∈ [0, 𝑇]. In view of the lower bound in (G1), there exists a closed ball 𝐵1 with the same
center and a larger radius, which is contained in ∞

+ ([0, 𝐿0]). Therefore, there exists a positive radius 𝑟 such that for every
𝐺 ∈ 𝐵0, the closed ball 𝐵(𝐺, 𝑟) is contained in 𝐵1. Since all Lipschitz constants are uniformly bounded on 𝐵1, one obtains
a uniform bound on the local time of existence 𝑇1 in Picard–Lindelöf’s theorem using 𝐺0 ∈ 𝐵0 as an initial condition.
Step 1: Existence of global sub- and supersolutions.By (G1), the solutions of the ordinary differential equations 𝐺̇𝑖 = ̂𝑖(𝐺𝑖),

𝐺𝑖(0) = 1, 𝑖 = 1, 2, exist in the Banach space 𝐶1([0, 𝑇];∞([0, 𝐿0])) and satisfy

𝐺𝑚𝑖𝑛 = inf
[0,𝐿0]

inf
[0,𝑇]

𝐺0(𝑋, 𝑡) ∈ (0,∞) , 𝐺𝑚𝑎𝑥 = sup
[0,𝐿0]

sup
[0,𝑇]

𝐺1(𝑋, 𝑡) ∈ (0,∞) .

Define the closed balls

𝐵0 = 𝐵∞

(
𝐺𝑚𝑖𝑛 + 𝐺𝑚𝑎𝑥

2
,
𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

2

)
, 𝐵1 = 𝐵∞

(
𝐺𝑚𝑖𝑛 + 𝐺𝑚𝑎𝑥

2
,
𝐺𝑚𝑎𝑥

2

)
and note that 𝐵1 ⊂ ∞

+ ([0, 𝐿0]). For each 𝐺 ∈ 𝐵0, the closed ball 𝐵∞(𝐺, 𝐺𝑚𝑖𝑛∕2) is contained in 𝐵1. Assumption (G2)
ensures that  is a Carathéodory function. For 𝐺 ∈ 𝐵1 the function𝑁(𝐺) ∈ 𝐶0([0, 𝐿0]) is continuous and measurable and
therefore, the function 𝑋 ↦ (𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋) is measurable.
Step 2: Verification of the assumptions in Picard–Lindelöf’s theorem. Set 𝑡0 = 0, 𝐺0 = 1. By Lemma 5 applied to 𝐵1,

there exist 𝑃0, 𝑃1, Σ0, Σ1 with 𝑃0 > 0, 𝑃0 < 𝑃1, Σ0 < Σ1 such that for all 𝐺 ∈ 𝐵1, the associated stress 𝑆(𝐺) and defor-
mation gradient 𝜙′(𝐺) are uniformly bounded with 𝑆(𝐺) ∈ [Σ0, Σ1] and 𝜙′(𝐺) ∈ [𝑃0, 𝑃1] on [𝑔(0), 𝑔(𝐿0)]. Lemma 6 asserts
that the map 𝑆 ∶ 𝐵1 → ℝ, 𝐺 ↦ 𝑆(𝐺) is Lipschitz continuous and bounded with constants 𝐿𝑆,𝐺 and 𝑀𝑆,𝐺 , respectively.
Lemma 11 implies that 𝑁 ∶ 𝐵1 → 𝐶0([0, 𝐿0]) is Lipschitz continuous and bounded with constants 𝐿𝑁,𝐺 and𝑀𝑁,𝐺 . More-
over, Lemma 10 guarantees that wemay choose𝐻0 = 0 and a constant𝐻1, which only depends on the data of the problem
with𝑁𝐺 ∈ [𝐻0,𝐻1] on [0, 𝐿0]. Finally, wemay defineΓ0 = 𝐺𝑚𝑖𝑛∕2 > 0 and Γ1 = 𝐺𝑚𝑎𝑥 + 𝐺𝑚𝑖𝑛∕2 andwith these constants,
𝐵1 satisfies Equation (1.7).
With this choice of Γ𝑖 , Σ𝑖 , and 𝐻𝑖 , 𝑖 = 1, 2, assumption (G3) guarantees that  is uniformly Lipschitz continuous in the

first three arguments and bounded on [Γ0, Γ1] × [Σ0, Σ1] × [𝐻0,𝐻1] and the corresponding constants are independent of
𝑋. The right-hand side of the ordinary differential equation is given by

̂(𝐺)(𝑋) = (𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋)
and satisfies for all 𝐺1, 𝐺2 ∈ 𝐵1,

‖̂(𝐺1) − ̂(𝐺2)‖∞([0,𝐿0]) ≤ sup
𝑋∈[0,𝐿0]

|(𝐺1(𝑋), 𝑆(𝐺1), 𝑁(𝐺1)(𝑋), 𝑋) − (𝐺2(𝑋), 𝑆(𝐺2), 𝑁(𝐺2)(𝑋), 𝑋)|
≤ sup

𝑋∈[0,𝐿0]
𝐿[|𝐺1(𝑋) − 𝐺2(𝑋)| + |𝑆(𝐺1) − 𝑆(𝐺2)| + |𝑁(𝐺1)(𝑋) − 𝑁(𝐺2)(𝑋)|]

≤ 𝐿(1 + 𝐿𝑆,𝐺 + 𝐿𝑁,𝐺)‖𝐺1 − 𝐺2‖∞([0,𝐿0]).

Furthermore, for all 𝐺 ∈ 𝐵1,

‖̂(𝐺)‖∞([0,𝐿0]) = sup
𝑋∈[0,𝐿0]

|(𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋)| ≤ 𝑀 .

Define 𝐾0 = 𝐿(1 + 𝐿𝑆,𝐺 + 𝐿𝑁,𝐺),𝑀0 = 𝑀. Suppose that 𝑇1 > 0 is small enough such that the inequalities

𝐾0𝑇1 < 1 , 𝑇1 ≤ min{𝑇,
1

2
𝐺𝑚𝑖𝑛∕𝑀0}

hold. By Picard–Lindelöf’s theorem in Theorem 1, there exists a unique solution 𝐺 ∈ 𝐶1([0, 𝑇1];∞([0, 𝐿0])) of the
ordinary differential equation 𝐺̇ = ̂(𝐺).
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24 of 29 BANGERT and DOLZMANN

Step 3: Uniform a priori bounds. For all 𝑋 ∈ [0, 𝐿0], the function 𝐺;𝑋 ∶ [0, 𝑇1] → ℝ, 𝑡 ↦ 𝐺;𝑋(𝑡) = 𝐺(𝑋, 𝑡) satisfies

𝐺̇;𝑋(𝑡) = (𝐺;𝑋(𝑡), 𝑆(𝐺(𝑡)), 𝑁(𝐺(𝑡))(𝑋), 𝑋) and 𝐺;𝑋(0) = 1 .

By Lemmas 6 and 11, the functions 𝑡 ↦ 𝑆(𝐺(𝑡)) and 𝑡 ↦ 𝑁(𝐺(𝑡)) are continuous since for 𝑡1, 𝑡2 ∈ [0, 𝑇1]

|𝑆(𝐺(𝑡1)) − 𝑆(𝐺(𝑡2))| ≤ 𝐿𝑆,𝐺‖𝐺(𝑡1) − 𝐺(𝑡2)‖∞([0,𝐿0]) ,‖𝑁(𝐺(𝑡1)) − 𝑁(𝐺(𝑡2))‖𝐶0(0,𝐿0]) ≤ 𝐿𝑁,𝐺‖𝐺(𝑡1) − 𝐺(𝑡2)‖∞([0,𝐿0])

and the right-hand side converges to zero as 𝑡1 → 𝑡2 since 𝐺 ∈ 𝐶1([0, 𝑇1],∞([0, 𝐿0])). Since  is uniformly Lipschitz
continuous, 𝐺;𝑋 is in fact the unique solution of the scalar ordinary differential equation

𝐻̇(𝑡) = ̃𝑋(𝐻, 𝑡) with ̃𝑋(𝐻, 𝑡) = (𝐻, 𝑆(𝐺(𝑡)), 𝑁(𝐺(𝑡))(𝑋), 𝑋) , 𝐻(0) = 1 ,

where 𝐺𝑋 is Lipschitz continuous in the first argument and continuous as a function on its domain. By (G4), 0(𝐺, 𝑋) <(𝐺, 𝑆(𝐺(𝑡)), 𝑁(𝐺(𝑡))(𝑋), 𝑋) < 1(𝐺, 𝑋) and by definition, the subsolution 𝐺0(𝑋, 𝑡) and the supersolution 𝐺1(𝑋, 𝑡) sat-
isfy 𝐺0;𝑋(0) = 𝐺1;𝑋(0) = 𝐺;𝑋(0) = 1. The following argument shows that 𝐺0;𝑋(⋅) < 𝐺;𝑋(⋅) < 𝐺1;𝑋(⋅) for all 𝑋 ∈ [0, 𝐿0] on
(0, 𝑇1].
Indeed, since 𝐺̇0;𝑋(0) < 𝐺̇;𝑋(0), there exists an 𝜖 > 0 such that 𝐺0;𝑋(𝑡) < 𝐺;𝑋(𝑡) on (0, 𝜖). We show that this is true on

[0, 𝑇1].
If this is not the case, there exists a 𝑡1 ∈ [𝜖, 𝑇1] such that 𝐺0;𝑋(𝑡1) = 𝐺;𝑋(𝑡1) and 𝐺0;𝑋(𝑡) < 𝐺;𝑋(𝑡) on (0, 𝑡1). Thus,

𝐺̇0;𝑋(𝑡1) = lim
𝑠↗𝑡1

𝐺0;𝑋(𝑡1) − 𝐺0;𝑋(𝑠)

𝑡1 − 𝑠
= lim

𝑠↗𝑡1

𝐺;𝑋(𝑡1) − 𝐺0;𝑋(𝑠)

𝑡1 − 𝑠
≥ lim

𝑠↗𝑡1

𝐺;𝑋(𝑡1) − 𝐺;𝑋(𝑠)

𝑡1 − 𝑠
= 𝐺̇;𝑋(𝑡1) .

However, in view of (G4) and the assumption 𝐺0;𝑋(𝑡1) = 𝐺;𝑋(𝑡1),

𝐺̇0;𝑋(𝑡1) = 0(𝐺0;𝑋(𝑡1), 𝑋) < (𝐺0;𝑋(𝑡1), 𝑆(𝐺(𝑡1)), 𝑁(𝐺(𝑡1))(𝑋), 𝑋) = (𝐺;𝑋(𝑡1), 𝑆(𝐺(𝑡1)), 𝑁(𝐺(𝑡1))(𝑋), 𝑋) = 𝐺̇;𝑋(𝑡1) ,

a contradiction. With the analogous argument for the supersolution 𝐺1;𝑋 , we conclude that for all 𝑡 ∈ [0, 𝑇1] and 𝑋 ∈

[0, 𝐿0]

𝐺0;𝑋(𝑡) < 𝐺;𝑋(𝑡) < 𝐺1;𝑋(𝑡)

and hence 𝐺(𝑡) ∈ 𝐵0 for all 𝑡 ∈ [0, 𝑇1].
Step 4: Global existence. By Step 3, 𝐺(𝑇1) ∈ 𝐵0 and we may set 𝑡0 = 𝑇1, 𝑇2 = min{𝑇, 2𝑇1} and 𝐺0 = 𝐺(𝑇1) and argue as

in Step 2 to continue the solution and to obtain the existence of a solution in 𝐶1([0, 𝑇2],∞([0, 𝐿0])). In view of Step 3,
this solution satisfies 𝐺(𝑡) ∈ 𝐵0 for all 𝑡 and after finitely, many steps we have 𝑇𝑘 = 𝑇, that is, the global solution has been
constructed. Uniqueness of the solution follows from uniqueness of solutions in Picard–Lindelöf’s theorem. □

Example 5. In Example 3, the dynamics of the growth process is determined from

̂ ∶ ∞
+ ([0, 𝐿0]) → ∞([0, 𝐿0]) , ̂(𝐺)(𝑋) = 𝛾(𝑋)𝜇(𝑆(𝐺))𝜂(𝑁(𝐺)(𝑋))𝐺(𝑋)

where 𝑆(𝐺) ∈ ℝ and𝑁(𝐺) ∈ 𝐻2(0, 𝐿0) denote the stress and the nutrient concentration induced by the growth via𝐺. Here,
we generalize the assumptions in Example 3 and assume that 𝛾 ∈ ∞([0, 𝐿0]; [𝛾0, 𝛾1]), and that 𝜇 ∈ 𝑊1,∞(ℝ; [𝜇0, 𝜇1]) and
𝜂 ∈ 𝑊1,∞(0,∞; [𝜂0, 𝜂1]) are increasing, where 0 < 𝛾0 < 𝛾1, 𝜇0 < 𝜇1, and 0 ≤ 𝜂0 ≤ 𝜂1.
In order to obtain the existence of a unique global solution on [0, 𝑇] with 𝑇 > 0, it remains to verify the assumptions

(G1)–(G4). To verify (G1) define for 𝐺 ∈ ∞
+ ([0, 𝐿0])

̂0(𝐺)(𝑋) = 0(𝐺(𝑋), 𝑋) = (𝛾0𝜇0𝜂0 − 1)𝐺(𝑋) , ̂1(𝐺)(𝑋) = 1(𝐺(𝑋), 𝑋) = (𝛾1𝜇1𝜂1 + 1)𝐺(𝑋) .
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BANGERT and DOLZMANN 25 of 29

The functions 𝑖 ∶ (0,∞) × [0, 𝐿0] → ℝ, 𝑖 = 1, 2, are in fact independent of the second variable 𝑋 and globally Lipschitz
continuous in the first variable 𝐺 and the Lipschitz constant is independent of 𝑋 ∈ [0, 𝐿0]. The associated equations 𝐺̇𝑖 =𝑖(𝐺), 𝐺𝑖(0) = 1, 𝑖 = 1, 2, are systems with pure growth that have global solutions as in Example 1. Since 𝐺𝑖(0) = 1, the
solutions are positive and the assumptions on the global lower and upper bounds in (G1) are satisfied. Moreover, the
explicit formulas for the solutions verify the strict inequality 𝐺0 < 𝐺1 on (0, 𝑇] × [0, 𝐿0].
Concerning (G2), for all 𝑋 fixed the function (𝐺, 𝑆,𝑁) ↦ (𝐺, 𝑆,𝑁, 𝑋) = 𝛾(𝑋)𝜇(𝑆)𝜂(𝑁)𝐺 is continuous in view of the

assumptions concerning 𝜇 and 𝜂 and for all (𝐺, 𝑆,𝑁) the function 𝑋 ↦ (𝐺, 𝑆,𝑁, 𝑋) = 𝛾(𝑋)𝜇(𝑆)𝜂(𝑁)𝐺 is measurable
since 𝛾 is measurable.
To verify (G3), we fix Γ𝑖 , Σ𝑖 , 𝐻𝑖 with the properties in (G3) and 𝑋 ∈ [0, 𝐿0]. Then, as a function on [Γ0, Γ1] × [Σ0, Σ1] ×

[𝐻0,𝐻1],

(𝐺, 𝑆,𝑁) ↦ (𝐺, 𝑆,𝑁, 𝑋) = 𝛾(𝑋)𝜇(𝑆)𝜂(𝑁)𝐺

is Lipschitz continuous since 𝜇 and 𝜂 are Lipschitz continuous and bounded and the function is bounded since 𝛾, 𝜇, and
𝜂 are bounded. Moreover, the corresponding constants 𝐿 and𝑀 are independent of 𝑋.
Finally, (G4) is satisfied since for 𝐺 > 0

0(𝐺) = (𝛾0𝜇0𝜂0 − 1)𝐺 < 𝛾0𝜇0𝜂0𝐺 ≤ 𝛾(𝑋)𝜇(𝑆)𝜂(𝑁)𝐺 = (𝐺, 𝑆,𝑁, 𝑋)
and the calculation for the upper bound is analogous. Consequently, the system in Example 3 has a unique global solution
for any stored energy density𝑊, which satisfies (W1)–(W4).

7 CONCLUSIONS

In this article, the focus of the analysis is a general framework that identifies abstract conditions on the free energy density
𝑊 and the growth dynamics  that lead to a well-posed model with global solutions. In Bangert [37], initially motivated
by a view towards numerical schemes, very specific assumptions were made concerning𝑊 and . In particular, the cases
of materials with two parts as in Example 1 or, more generally, with finitely many parts were discussed in great detail. It is
noteworthy that these cases are not included in the general theory presented in this article since the assumptions𝑊,𝑊𝑝 ∈

𝐶0([0, 𝐿0] × (0,∞)) in (W1) are not satisfied. Here it is important to note that these assumptions are not needed in order to
obtain the Euler–Lagrange equation. In fact, the existence of a minimizer in𝑊1,1 and the validity of the Euler–Lagrange
equation for almost all𝑋 ∈ [0, 𝐿0] follow if 𝜕𝑝𝑊 is merely a Carathéodory function. In the special case of coefficients that
are piecewise constant, the solution 𝜙 is continuous on [𝑔(0), 𝑔(𝐿0)] and piecewise affine and continuous dependence of
the stress and the nutrients can be verified by explicit calculations since Equation (1.4) is a boundary value problem for
an ordinary differential equation with constant coefficients, which can be solved explicitly. We sketch the arguments in
the Appendix.
If the growth dynamics depend only on the stress but not on a concentration of nutrients, the assumptions in Theorem 3

can be weakened as well. In fact, the property that 𝜙′
𝐺
◦𝑔 is continuous in the proof of Lemma 6 can be replaced by mea-

surability, which can be obtained appealing to measurability of implicitly defined functions, see, for example, Aliprantis
and Border [38, Corollary 18.8].
Further generalizations concern the dependence of the growth dynamics on𝑁. For example, the function 𝜂 in Example 3

is assumed to be non-negative and therefore, the choice of 𝜂(𝑁) = 0 if 𝑁 < 𝑁𝑐 for some critical value 𝑁𝑐 > 0 is included
leading to a necrotic core in which no further growth or absorption happens. In particular, in view of numerical schemes
or in the spirit of the situation with two materials in Example 1, the pointwise evaluation of 𝜂 can be replaced by local
averages leading to piecewise constant approximations of the concentration of the nutrients.
Concerning the general assumptions on the growth dynamics, the assumptions (G1) and (G4) are necessary in order

to obtain global existence on [0, 𝑇]. In a certain sense, as illustrated in Example 5, the assumptions imply linear growth
of  in 𝐺, a fact that is expected for global existence. To illustrate that global existence may fail without the presence
of linear bounds consider the situation in Example 2 in which coupling is given only through the stress in the system
and (𝐺) = 𝜇(𝑆(𝐺))𝐺2. Suppose that the material is homogeneous, 𝑊(𝑋, 𝑝) = 𝑊(𝑝), and that 𝐺(𝑡) exists for 𝑡 ∈ (0, 𝑇)

for some 𝑇 > 0. Since 𝐺(𝑡) is independent of 𝑋, 𝑔(𝑋, 𝑡) = 𝐺(𝑡)𝑋 and since 𝑊 is homogeneous and strictly convex, the
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26 of 29 BANGERT and DOLZMANN

minimizer 𝜙𝐺 is affine, 𝜙𝐺(𝑧, 𝑡) = 𝓁0𝑧∕(𝐺(𝑡)𝐿0). The stress is constant and given by 𝜕𝑝𝑊(𝜙′(𝑧)) = 𝜕𝑝𝑊(𝓁0∕𝐺(𝑡)∕𝐿0). The
growth dynamics are, therefore, given by

𝐺̇(𝑡) = 𝜇(𝜕𝑝𝑊(𝓁0∕𝐺(𝑡)∕𝐿0)𝐺(𝑡) .

By assumption,𝑊𝑝 is strictly increasing and invertible and we may choose for some exponent 𝛿 > 0 the increasing func-
tion 𝜇(𝑆) = (𝜕𝑝𝑊

−1(𝑆))𝛿, which leads to the equation 𝐺̇(𝑡) = (𝓁∕𝐿0)
𝛿𝐺(𝑡)2−𝛿. Depending on the value of 𝛿, one obtains

sublinear or superlinear growth and, in the latter case, only local existence of solutions.
The true challenge remains to address the higher dimensional case. Our one-dimensional analysis uses the fact that

every 𝐿∞ function has an antiderivative and that the natural configuration can be represented by an interval in a critical
way. So far, explicit examples in two dimensions have been given in special geometries, for example, in polar coordinates.
This approach is very promising. However, one of the major open problems is related to the question of whether a min-
imizer of a nonlinear variational problem is radial. The answer to this question will depend on the boundary conditions
and on the state of the stress since compression may lead to buckling effects. A first approach could be to follow the lines
of Kružík et al. [39] and consider compatible growth.
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APPENDIX: THE CASE OF PIECEWISE HOMOGENEOUSMATERIALS

As in Example 1, we suppose that Ω = [0, 𝐿0], 𝑋𝐼 ∈ (0, 𝐿0) and that the material is homogeneous on [0, 𝑋𝐼] and (𝑋𝐼, 𝐿0],
respectively. The following arguments can be extended to the case that the material is homogeneous on 𝑘 distinct
subintervals that constitute the material body in its reference configuration. In this situation, the growth equation

𝐺̇(𝑡) = ̂(𝐺(𝑡)), 𝐺(0) = 1 with ̂(𝐺)(𝑋) = (𝐺(𝑋), 𝑆(𝐺),𝑁(𝐺)(𝑋), 𝑋)
reduces to two ordinary differential equations with (𝐺, 𝑆,𝑁, ⋅) = (𝐺, 𝑆,𝑁, 0) on [0, 𝑋𝐼] and (𝐺, 𝑆,𝑁, ⋅) = (𝐺, 𝑆,𝑁, 𝐿0)
on (𝑋𝐼, 𝐿0]. In particular, 𝐺(𝑋, 𝑡) = 𝜒[0,𝑋𝐼](𝑋)𝐺(0, 𝑡) + 𝜒(𝑋𝐼,𝐿0](𝑋)𝐺(𝐿0, 𝑡) and we may identify the growth tensor 𝐺(⋅, 𝑡)
with the two values 𝐺(0, 𝑡) and 𝐺(𝐿0, 𝑡). In order to draw parallels to the general case treated before, we define

0 = {𝐺 = 𝐺0𝜒[0,𝑋𝑖] + 𝐺1𝜒(𝑋𝐼,𝐿0], 𝐺0, 𝐺1 ∈ ℝ}

1 = {𝑔 ∈ 𝑊1,∞(0, 𝐿0), 𝑔
′ = 𝐺0𝜒[0,𝑋𝑖] + 𝐺1𝜒(𝑋𝐼,𝐿0], 𝐺0, 𝐺1 ∈ ℝ}

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200558 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [21/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.jmps.2019.103702
https://doi.org/10.1007/s00285-015-0934-8
https://doi.org/10.1142/S0218202522500634
https://doi.org/10.1088/1361-6544/ab95ab
https://doi.org/10.1177/1081286514550570
https://doi.org/10.1007/s00205-013-0704-y
https://doi.org/10.1016/j.matpur.2021.01.007
https://doi.org/10.1016/j.matpur.2021.01.007
https://doi.org/10.1051/cocv/2020031
https://doi.org/10.1002/zamm.202200558


28 of 29 BANGERT and DOLZMANN

and identify all elements in 1 with the continuous representative. Consequently, the ordinary differential equation can
be formulated in the Banach space (0, ‖ ⋅ ‖∞)with ̂ ∶ 0 → 0 andwe require for all𝐺 ∈ 0 that ̂(𝐺) ∈ 0. Moreover,
for 𝐺0, 𝐺1 > 0, the potential 𝑔(⋅, 𝑡) with 𝜕𝑋𝑔(𝑋, 𝑡) = 𝐺(𝑋, 𝑡) is invertible and bi-Lipschitz.
Example A1. In analogy to Example 3, we define

̂(𝐺)(𝑋) = 𝛾(𝑋)𝜇(𝑆(𝐺))𝜂(𝑁(𝐺)(𝑋))𝐺(𝑋)

and note that this expression defines an element in 0 if we choose 𝛾 = 𝛾0𝜒[0,𝑋𝐼) + 𝛾1𝜒(𝑋𝐼,𝐿0] with 𝛾0, 𝛾1 ∈ ℝ and if we use
a suitable definition for 𝜂(𝑁(𝐺)(𝑋)). As an example, we consider the choice of 𝑁 as a pull-back of a local average of the
density of the nutrients 𝑛 ∈ 𝐻1(0, 𝓁0) in the current configuration (0, 𝓁0) given by Equation (1.4) in the discussion below.

In view of Picard–Lindelöf’s theorem stated in Theorem 1, it is crucial to prove that the right-hand side of the ordinary
differential equation depends on the function 𝐺 ∈ 0 in a Lipschitz continuous way and that all estimates depend only
on global constants. We identify 𝐺 ≃ (𝐺0, 𝐺1) ∈ [Γ0, Γ1]

2. Suppose that 𝐺 ∈ 0 is given and that 𝑔 ∈ 1 with

𝑔(𝑋) =

{
𝑋𝐺0 if 𝑋 ∈ [0, 𝑋𝑖] ,

𝑋𝐼𝐺0 + (𝑋 − 𝑋𝐼)𝐺1 if 𝑋 ∈ (𝑋𝐼, 𝐿0] .

Define 𝑧𝐼 = 𝑔(𝑋𝐼) and note that the induced stored energy density𝑊𝐺 is homogeneous on [𝑔(0), 𝑧𝐼] and (𝑧𝐼, 𝑔(𝐿0)]with

𝑊𝐺(𝑧, 𝑝) = 𝜅0𝑊0(𝑝)𝜒[𝑔(0),𝑧𝐼](𝑧) + 𝜅1𝑊0(𝑝)𝜒(𝑧𝐼 ,𝑔(𝐿0)](𝑧) .

Since𝑊0 is strictly convex, 𝜙𝐺 is piecewise affine and the four constants 𝐴0, 𝐴1, 𝐵0, 𝐵1 ∈ ℝ in the expression

𝜙𝐺(𝑧) = (𝐴0 + 𝐵0𝑧)𝜒[𝑔(0),𝑧𝐼](𝑧) + (𝐴1 + 𝐵1𝑧)𝜒(𝑧𝐼 ,𝑔(𝐿0)](𝑧)

are determined from the boundary condition, the continuity of𝜙𝐺 in 𝑧𝐼 and the fact that the stress in the system is constant.
More explicitly, these four conditions lead to the nonlinear system with four unknowns and the four equations

Φ1 = 𝐴0 + 𝐵0𝑔(0) = 0 , Φ3 = 𝐴0 + 𝐵0𝑧𝐼 − (𝐴1 + 𝐵1𝑧𝐼) = 0 ,

Φ2 = 𝐴1 + 𝐵1𝑔(𝐿0) − 𝓁0 = 0 , Φ4 = 𝜅0𝜕𝑝𝑊0(𝐵0) − 𝜅1𝜕𝑝𝑊0(𝐵1) = 0 .

Corollary 1 guarantees the existence of a unique solution 𝐴0, 𝐴1, 𝐵0, 𝐵1 for each choice of 𝐺 ≃ (𝐺0, 𝐺1) ∈ [Γ0, Γ1]
2. In

order to prove that these coefficients are continuously differentiable in 𝐺 we interpret a solution of the system as a zero
of the map Φ ∶ (Γ0∕2, 2Γ1)

2 × ℝ4 → ℝ4, where 𝑔(0) = 0, 𝑔(𝐿0) and 𝑧𝐼 are smooth functions in 𝐺0 and 𝐺1. Thus, the map
(𝐺0, 𝐺1, 𝐴0, 𝐴1, 𝐵0, 𝐵1) ↦ (Φ𝑖(𝐺0, 𝐺1, 𝐴0, 𝐴1, 𝐵0, 𝐵1))𝑖=1,…,4 is continuously differentiablewith 𝜕Φ∕𝜕(𝐴0, 𝐴1, 𝐵0, 𝐵1) invert-
ible, a fact that can be verified by expanding the determinant along the second column in thematrix in view of 𝑔(0) = 0 and
𝜕𝑝𝑝𝑊0 > 0. The theorem on implicit functions shows that the maps𝐴𝑖 , 𝐵𝑖 ∶ (Γ0∕2, 2Γ1)2 → ℝ2, 𝑖 = 1, 2, are continuously
differentiable and the explicit formula shows that the derivatives are uniformly bounded.
The foregoing calculations prove that themap 𝑆 ∶ [Γ0, Γ1]

2 → ℝ,𝐺 ↦ 𝑆(𝐺) is𝐶1 and thus globally Lipschitz continuous
since 𝑆 = 𝜅0𝜕𝑝𝑊0(𝜙

′
𝐺
(⋅))|[0,𝑧𝐼] and all functions of 𝐺0 and 𝐺1 appearing in this expression are 𝐶1 with uniform bounds.

The equation for the nutrients has to be solved on the current configuration [0, 𝓁0] and the coefficients are given by

𝐷𝐺(𝑥) = 𝐷0|[0,𝑋𝐼]𝜙′𝐺|[0,𝑧𝐼]𝜒[0,𝑥𝐼](𝑥) + 𝐷0|[𝑋𝐼 ,𝐿0]𝜙′𝐺|(𝑧𝐼 ,𝑔(𝐿0)]𝜒(𝑥𝐼 ,𝓁0](𝑥) ,
𝛽𝐺(𝑥) =

𝛽0|[0,𝑋𝐼]
𝜙′
𝐺
|[0,𝑧𝐼] 𝜒[0,𝑥𝐼](𝑥) +

𝛽0|[𝑋𝐼 ,𝐿0]
𝜙′
𝐺
|(𝑧𝐼 ,𝑔(𝐿0)] 𝜒(𝑥𝐼 ,𝓁0](𝑥)

where 𝑥𝐼 = 𝜙(𝑧𝐼) is a 𝐶1 function of 𝐺. The coefficients in the equation −(𝐷𝐺𝑛
′
𝐺
)′ + 𝛽𝐺𝑛𝐺 = 0 are constant on [0, 𝑥𝐼]

and (𝑥𝐼, 𝓁0] and the solution 𝑛𝐺 can be interpreted on each subinterval as a solution of a linear ordinary differential
equation of second order of the form −𝐷𝑛′′ + 𝛽𝑛 = 0 with the fundamental solution 𝑛(𝑥) = 𝑐+ exp(𝜆𝑥) + 𝑐− exp(−𝜆𝑥)
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and 𝜆 =
√
𝛽∕𝐷. The coefficients of 𝑛𝐺 in the representation

𝑛𝐺(𝑥) = (𝑐+0 exp(𝜆0𝑥) + 𝑐−0 exp(−𝜆0𝑥))𝜒[0,𝑥𝐼] + (𝑐+1 exp(𝜆1𝑥) + 𝑐−1 exp(−𝜆1𝑥))𝜒(𝑥𝐼 ,𝓁0]

are determined from the boundary conditions, the continuity of the nutrients and their flux by

Ψ1 = 𝑐+0 + 𝑐−0 − 𝑛𝐿 = 0 ,

Ψ2 = 𝑐+1 exp(𝜆1𝓁0) + 𝑐−1 exp(−𝜆1𝓁0) − 𝑛𝑅 = 0 ,

Ψ3 = 𝑐+0 exp(𝜆0𝑥𝐼) + 𝑐−0 exp(−𝜆0𝑥𝐼) − (𝑐+1 exp(𝜆1𝑥𝐼) + 𝑐−1 exp(−𝜆1𝑥𝐼)) = 0 ,

Ψ4 = 𝐷0|[0,𝑋𝐼]𝜙′𝐺|[0,𝑧𝐼](𝜆0𝑐+0 exp(𝜆0𝑥𝐼) − 𝜆0𝑐
−
0 exp(−𝜆0𝑥𝐼))

− 𝐷0|(𝑋𝐼 ,𝐿0]𝜙′𝐺|(𝑧𝐼 ,𝑔(𝐿0)](𝜆1𝑐+1 exp(𝜆1𝑥𝐼) − 𝜆1𝑐
−
1 exp(−𝜆1𝑥𝐼)) = 0 .

Once 𝜙𝐺 has been obtained, the equation for 𝑛𝐺 is determined and the coefficients 𝐷𝐺 and 𝛽𝐺 are piecewise constant,
uniformly elliptic, and bounded for 𝐺 ∈ [Γ0, Γ1]

2. Existence of a weak solution and regularity on the subintervals (0, 𝑧𝐼)
and (𝑧𝐼, 𝓁0) follows with Lax–Milgram’s theorem and elliptic regularity. Consequently, for each 𝐺, there exists a solution
𝑛𝐺 , which is of the foregoing form that satisfies the nonlinear equation Ψ(𝐺0, 𝐺1, 𝑐

+
0 , 𝑐

−
0 , 𝑐

+
1 , 𝑐

−
1 ) = 0. Since 𝑥𝐼 , 𝐷𝑖 , 𝛽𝑖 , 𝑖 =

1, 2, and the coefficients in the representation of 𝜙𝐺 are 𝐶1 functions of 𝐺, Ψ ∶ (Γ0∕2, 2Γ1)
2 × ℝ4 → ℝ4 is of class 𝐶1 and

the theorem on implicit functions implies that the coefficients 𝑐±
𝑖
, 𝑖 = 1, 2, are 𝐶1 functions of 𝐺. In fact, the derivative of

Ψ with respect to 𝑐±
𝑖
, 𝑖 = 1, 2, is given with

𝐷0𝐿 = 𝐷0|[0,𝑋𝐼], 𝐷0𝑅 = 𝐷0|(𝑋𝐼 ,𝐿0], 𝐴 =
𝐷0𝑅𝜙

′
𝐺𝑅

𝐷0𝐿𝜙
′
𝐺𝐿

⋅
𝜆1
𝜆0

after a scaling in the last row by multiplication by diag(1, 1, 1, (𝐷0𝐿𝜙
′
𝐺𝐿
𝜆0)

−1) from the left

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0

0 0 exp(𝜆1𝓁0) exp(−𝜆1𝓁0)

exp(𝜆0𝑥𝐼) exp(−𝜆0𝑥𝐼) − exp(𝜆1𝑥𝐼) − exp(−𝜆1𝑥𝐼)

exp(𝜆0𝑥𝐼) − exp(−𝜆0𝑥𝐼) −𝐴 exp(𝜆1𝑥𝐼) 𝐴 exp(−𝜆1𝑥𝐼)

⎞⎟⎟⎟⎟⎟⎠
.

Since we only need to verify that the matrix is invertible, we may subtract the third row from the fourth row and expand
the determinant along the first column. The determinant is given by

exp(−𝓁0𝜆1 − 𝑥𝐼(𝜆0 + 𝜆1))

⋅ [(1 + 𝐴)(exp(2𝑥𝐼𝜆0 + 2𝓁0𝜆1) − exp(2𝑥𝐼𝜆1)) + (−1 + 𝐴)(exp(2𝑥𝐼(𝜆0 + 𝜆1) − exp(2𝓁0𝜆1))]

Since 0 < 𝑥𝐼 < 𝓁0, this expression is positive and the theorem on implicit functions applicable.
It remains to define 𝑁(𝐺) ∈ 0 in the ordinary differential equation for the growth dynamics. One possible choice is

𝑁(𝐺)(𝑋) =
1

𝑥𝐼 ∫
𝑥𝐼

0

𝑛(𝑥)d𝑥 ⋅ 𝜒[0,𝑋𝐼](𝑋) +
1

𝓁0 − 𝑥𝐼 ∫
𝓁0

𝑥𝐼

𝑛(𝑥)d𝑥 ⋅ 𝜒(𝑋𝐼,𝐿0](𝑋) .

Both coefficients in the definition of 𝑁(𝐺) ∈ 0 are continuously differentiable functions of 𝐺 and thus the map 𝑁 ∶

(Γ0∕2, 2Γ1)
2 → 0 is Lipschitz continuous.
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