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Bovine blood derived
macrophages are unable to
control Coxiella burnetii
replication under
hypoxic conditions
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Background: Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock,

pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the

main reservoir and major cause of human infection. Infected ruminants are usually

asymptomatic, while in humans infection can cause significant disease. Human

and bovine macrophages differ in their permissiveness for C. burnetii strains from

different host species and of various genotypes and their subsequent host cell

response, but the underlying mechanism(s) at the cellular level are unknown.

Methods: C.burnetii infectedprimaryhumanandbovinemacrophagesundernormoxic

and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and

immunofluorescence; (ii) immuneregulatorsbywesternblotandqRT-PCR;cytokinesby

ELISA; andmetabolites by gas chromatography-mass spectrometry (GC-MS).

Results: Here, we confirmed that peripheral blood-derived human macrophages

prevent C. burnetii replication under oxygen-limiting conditions. In contrast,

oxygen content had no influence on C. burnetii replication in bovine peripheral

blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is

activated, even though HIF1a is stabilized, which otherwise prevents STAT3

activation in human macrophages. In addition, the TNFa mRNA level is higher in

hypoxic than normoxic human macrophages, which correlates with increased

secretion of TNFa and control of C. burnetii replication. In contrast, oxygen

limitation does not impact TNFa mRNA levels in C. burnetii-infected bovine

macrophages and secretion of TNFa is blocked. As TNFa is also involved in the

control of C. burnetii replication in bovine macrophages, this cytokine is important

for cell autonomous control and its absence is partially responsible for the ability of

C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the

molecular basis of macrophage-mediated control of C. burnetii replication might

be the first step towards the development of host directed intervention measures

to mitigate the health burden of this zoonotic agent.
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Introduction

Coxiella burnetii is an obligate intracellular pathogen, which

causes the zoonotic disease Q fever. In humans, Q fever might be

asymptomatic or presents as a mild self-limiting flu-like disease.

However, the infection can also progress to an interstitial

pneumonia or hepatitis (1). The severity of the primary infection

does not predict long-term health consequences, such as post-Q fever

fatigue syndrome (QFS) or chronic Q fever (2, 3). QFS occurs in ~20%

of patients with symptomatic acute Q fever (4). QFS is defined as

fatigue lasting longer than six months in combination with pain,

sleeping problems, headache, and concentration issues. Importantly,

there is no evidence-based treatment available (5). Approximately 2%

of Q fever patients might develop chronic Q fever (6). Endocarditis is

the most common manifestation of chronic Q fever, and patients with

an underlying valvulopathy are at a higher risk (7). Treatment of

chronic Q fever involves administration of doxycycline and

hydroxychloroquine for 18-24 months (6).

The primary reservoir of C. burnetii and the major source of

human infections are infected livestock (8). Infection in cattle, goats,

and sheep is often asymptomatic, but it may also lead to metritis,

infertility, abortion, stillbirth or the delivery of weak offspring (9).

Infected females shed the pathogen in huge quantities through

birthing products and in smaller numbers in urine, feces and milk.

However, the route of C. burnetii shedding seems to differ between

cattle, sheep, and goats. Thus, shedding in milk is common in cattle,

but less widespread in ewes (8). Infection of humans occurs mainly

via the respiratory tract, while ingestion of contaminated milk plays a

lesser role in transmission of C. burnetii (1, 8). Most human Q fever

outbreaks are linked to infected sheep and goats (10), though cattle

may also serve as a source for human infections (11). Given a

prevalence of ~30% of C. burnetii infection in cattle (12–16), we

have to increase our understanding of how C. burnetii adapts to the

bovine host in vivo and in vitro.

In vitro studies using bovine cells are rare, but demonstrate that C.

burnetii infects and replicates inside bovine epithelial cell lines as well

as in primary bovine monocyte-derived macrophages. However, C.

burnetii only induces a transient pro-inflammatory cytokine response

in macrophages. Reduced levels of pro-inflammatory cytokines

correlate with bacterial replication, suggesting that intracellular C.

burnetii replication depends on a suitable microenvironment (17–19).

This is in agreement with previous findings, showing that TNF

inhibits C. burnetii replication (20). Not only the cytokine profile at

the site of infection is determinative for bacterial replication, but also

the metabolism of the host (21). The availability of the TCA cycle

metabolite citrate is essential for C. burnetii replication in human and

murine macrophages (22). Under oxygen limiting conditions, the

transcription factor hypoxia-inducible factor (HIF) 1a is stabilized

(23). HIF1a limits the activation of STAT3, which in turn reduces the

intracellular level of citrate and, as a consequence, C. burnetii

replication (22). HIF1a does not only influence host cell

metabolism, but also inflammation as it controls the expression and

secretion of the pro-inflammatory cytokine TNF (24).

In this study, we aimed to investigate the intracellular

C. burnetii-containing vacuole (CCV) in bovine cells in more
Frontiers in Immunology 02
detail, and whether oxygen availability influences host cell

metabolism and immune response during C. burnetii infection in

bovine macrophages.
Material and methods

Reagents and bacterial strain

Chemicals were purchased from Sigma Aldrich unless indicated

otherwise. C. burnetii Nine Mile phase II clone 4 (RSA439), kindly

provided by Matteo Bonazzi (CNRS, Montpellier, France), was grown

in ACCM-D medium (Sunrise Science Products) at 37°C, 5% CO2

and 2.5% O2 for 7 days.
Bovine peripheral blood
derived macrophages

Bovine peripheral blood samples were obtained from healthy

heifers of the Holstein-Friesian breed, kept at the Friedrich-Loeffler-

Institut, Jena. The animal experiment was reviewed by the Committee

on the Ethics of Animal Experiments and the Protection of Animals

of the State of Thuringia, Germany, and approved by the competent

authority (Permit numbers 22-2684-04-04-102/15, date of permission

17.06.2015, and 22-2684-04-BFI-20-102, date of permission

20.04.2020). Bovine macrophages from peripheral blood were

isolated as described (19). Briefly, leukocytes were isolated from

citrate whole-blood (5:1 dilution with a 3.8% sodium citrate

solution) via centrifugation (2,380 x g, 20 min, room temperature),

washed 3 times with PBS/EDTA (0.8% NaCl, 0.02% KH2PO4, 0.02%

KCl, 0.142% Na2HPO4 x 2H2O, 0.2% Na-EDTA x 2H2O in ddH2O,

pH 7.4) by centrifugation (800 x g, 10 min, room temperature). This

was followed by an erythrocyte lysis step in lysis buffer (0.826%

NH4Cl, 0.109% NaHCO3, 0.0037% Na2-EDTA x 2H2O in ddH2O) for

5 min. After three more washing steps with PBS/EDTA (300 x g, 10

min), the cells were layered onto Pancoll (Pan Biotech) for density

centrifugation (800 x g, 45 min). The mononuclear cell layer was

extracted and washed several times with 0.9% NaCl before incubation

in Saint-Gobain VueLife® “C” Series Bags (32-C) in Iscove´s modified

Dulbecco´s medium (IMDM without phenol red, supplemented with

0.05 µM 2-mercaptoethanol, 20% FCS and antibiotics (1% Penicillin/

Streptomycin, 1% Amphotericin B).

After 7 to 9 days of incubation at 37°C and 5% CO2, the cells were

re-isolated from VueLife bags, washed several times with cold 0.9%

NaCl solution (300 x g, 10 min, room temperature) and resuspended

in IMDM medium without phenol red, supplemented with 0.05 µM

2-mercaptoethanol, 2% FCS and antibiotics (1% Penicillin/

Streptomycin, 1% Amphotericin B). The cells were seeded into

suspension culture plates. After 20-24 h incubation, non-adherent

cells were washed away via gentle flushing with medium or sterile

0.9% NaCl solution. Cells were replenished with IMDM medium

without phenol red, supplemented with 2-mercaptoethanol, 4% FCS

(w/o antibiotics) and incubated at 37°C and 5% CO2 before

further processing.
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Human peripheral blood
derived macrophages

Human peripheral blood samples were obtained from healthy

donors at the University Clinic of Erlangen (Ethical Committee

Erlangen approval number 111_12B). Peripheral blood

mononuclear cells (PBMCs) were harvested from Leukoreduction

system chambers using a Pancoll-gradient centrifugation protocol as

described earlier (22). In brief, Leukoreduction system chamber

content was diluted with PBS (Merck) and layered onto Pancoll

(Pan Biotech) for density centrifugation (1,328 x g, 25 min, room

temperature). The leukocytes were collected and the remaining

erythrocytes lysed via a brief incubation in cold ddH2O. After

washing in PBS, PBMCs were positively selected using anti-CD14

beads (Miltenyi Biotec) according to the manufacturer’s protocol. The

selected cells were cultivated for seven days in cRPMI (complete

RPMI, RPMI 1640 containing 10% FCS, 1% HEPES, 0.5% 2-

mercaptoethanol, 1% Penicillin/Streptomycin and 5µl/ml human

M-CSF [≙ 50 U/ml, Peprotech]) in cell culture flasks. After seven

days, cells were detached with Accutase/PBS (1:4) for 30 min at 37°C

and gentle rinsing with PBS, before they were harvested by

centrifugation (300 x g, 5 min, room temperature), resuspended in

cRPMI w/o antibiotics, and seeded into cell culture plates. The cells

were incubated at 37°C and 5% CO2 until further processing.
Infection of cell lines with C. burnetii

Bel-26 and A549 cells were seeded and cultured in DMEM, low

glucose and pyruvate (Thermo Fisher), containing 10% FCS and 5%

FCS, respectively. The cells were incubated at 37°C, 5% CO2, 21% O2.

For infection, C. burnetii was quantified via OD600 measurement

(OD600 1 ≙ 109 C. burnetii/ml). The cells were infected at MOI 200.

After 2h of infection, cells were washed 3 times with PBS to remove

residual bacteria in the medium followed by the addition of

fresh medium.

Bovine or human macrophages were infected at MOI 10 and

incubated either under normoxic (N – 37°C, 5% CO2, 21% O2) or

hypoxic (H – 37°C, 5% CO2, 0.5% O2) conditions.
Quantitation of human and bovine TNFa

Secretion of TNF into cell culture supernatants by human or

bovine macrophages either treated with 10µg/ml LPS from E. coli

O111:B4 (Sigma) for 4 and 24 h or infected with C. burnetii for 4, 24

and 96 h were measured by ELISA (BD Biosciences or R&D Systems

respectively). Additionally, TNFa secretion by bovine macrophages

was determined by a bioassay deploying PK-15 cells as previously

described (25, 26).
Volume measurement of the CCVs

Z-stack images were taken using the LSM700 (Zeiss) as described

before (27). The longest distance of the CCV and the corresponding

90 degree angle were measured with the Zen software (Zeiss). The
Frontiers in Immunology 03
XYZ dimensions of each CCV were multiplied and plotted as volume

with GraphPad Prism 9 (GraphPad software, San Diego, USA).
NAD+/NADH assay

Bovine and humanmacrophages were seeded at a density of 2x106

cells per well on a 6-well plate. One day after seeding the cells were

either left uninfected or were infected with C. burnetii at MOI 10 and

incubated under normoxia or hypoxia. At 24 h post-infection, the

levels of NAD+ and NADH were measured using the colorimetric

NAD/NADH Assay Kit (Abcam) as described in the manufacturer´

s protocol.
Phagocytosis assay

Bovine and humanmacrophages were seeded at a density of 5x105

cells per well on a 24-well plate. One day after seeding, cells were

incubated with pHrodo Red E. coli bioparticles in accordance with the

instruction (Thermo Fisher Scientific) for 30 min. The cells were

washed with PBS, fixed for 20 min with 4% paraformaldehyde (Alfa

Aesar) in PBS (Merck) and permeabilized for 2 min with ice-cold

methanol. The samples were mounted onto glass slides using

ProLong™ Diamond Antifade Mountant with DAPI (Thermo

Fisher Scientific) to stain DNA. Sample analysis was performed

using a Zeiss LSM 700 confocal microscope.
Measurement of cellular metabolites by
GC-MS

Bovine and human macrophages were seeded at a density of 107 cells

per 10-cmplate and infectedwithC. burnetii atMOI 10. Infected cells were

pelleted at the time points indicated. Cells were then lysed and extracted for

carboxylic acid analysis byGC-MSaspreviouslydescribed indetail (22, 28).
Colony forming units

The supernatant of infected cells was removed. The adherent cells

were incubated with ice-cold ddH2O for 10 min at room temperature

and 30 min at 4°C. Next, the cells were ruptured via repeated

pipetting (~50 x), the lysate was transferred to 1.5 ml Eppendorf

tubes and pelleted at 21,000 x g for 1 min. The pellets were

resuspended in ACCM-D medium and frozen at -20°C until

further processing.

The thawed samples were briefly mixed and each sample was

plated as triplicates onto ACCM-D agar plates in 10-fold dilution

series. Inoculated plates were incubated for 14 days before counting

the colony forming units.
RNA

After removal of the cell culture supernatant, 500 µl of TriFast

(Peqlab) or RNA-solv (VWR) were added to the dish. Cells were
frontiersin.org
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detached via gentle pipetting and transferred to RNAse-free

microcentrifuge tubes. The tubes were vortexed for 15 s at

maximum speed and stored at -80°C until RNA extraction. RNA

extraction was performed according to the manufacturer’s protocol

(Peqgold TriFast™ or VWR RNA-Solv®). To maximize RNA yield, 2

µl of Pelletpaint (Merck Millipore) or 1.5 µl Glycoblue coprecipitant

(Thermo Fisher) were added to the samples in the isopropanol

precipitation step. A switch to RNA-solv and Glycoblue

coprecipitant was necessary due to a shortage of supply and

discontinuation of TriFast.
qRT-PCR

Reverse transcription of RNA to cDNA was performed using

SuperScript™ II Reverse Transcriptase kit with oligo(dT)12-18 primers

(ThermoFisher) according to themanufacturer´s protocol. qRT-PCRwas

performed using QuantiFast SYBR Green PCR Kit (QIAGEN, 10.3 ng of

cDNA template, 500 nM primer, final volume 10 µl) for bovine samples

and SYBR-Select Mastermix (Thermo Fisher, 10.3 ng template, 200 nM

primer,final volume 10 µl) for human samples. The primer pair sequences

of studied genes are listed in Table 1. Analysis was performed using the

DDct method. Bovine or human hypoxanthine guanine phosphoribosyl

transferase (Hprt1) were used as the respective housekeeping genes.
Immunoblotting

Proteins were separated by SDS-PAGE Bis-Tris gradient gel

(Thermo Fisher) and transferred to a PVDF membrane (Millipore).

Proteins were detected with antibodies against HIF1a (Biomol), actin

(Merck), pSTAT3 and STAT3 (Cell Signaling), respectively. Detection

was performed using horseradish peroxidase conjugated secondary

antibodies (Dianova) and a chemiluminescence detection system.

Densitometry was performed with ImageJ (NIH).
Indirect immunofluorescence

Cells were seeded on coverslips in 24-well cell plates. One hour

prior to fixation, Lysotracker red (Thermo Fisher Scientific) was

added (1:1000 final conc.). The cells were fixed with 4%

paraformaldehyde (Alfa Aesar) in PBS (Merck) and permeabilized

with ice-cold methanol before quenching with PBS containing 5%

goat serum and 50mM NH4Cl. Next, the cells were incubated with an

anti-C. burnetii antibody (rabbit, in house) and an anti-rabbit

antibody labeled with AlexaFluor®488 Dye (Dianova). The samples

were mounted onto glass slides using ProLong™ Diamond Antifade

Mountant with DAPI (Thermo Fisher) to stain DNA. Sample analysis

was performed using a Zeiss Apotome or a Zeiss LSM 700

confocal microscope.
Statistical analysis

The statistical analysis was performed using GraphPad Prism 9.

As stated in the figure legends, a one-sample t-test (if datasets are
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compared to normalized values), a paired or unpaired t-test (for

normally distributed datasets), a Mann-Whitney test (for non-

normally distributed datasets) or a two-way ANOVA with Tukey’s

multiple comparison test were used. A value of p < 0.05 was

considered significant.
Results

C. burnetii establishes a replicative
phagolysosomal-like compartment in bovine
lung epithelial cells

Macrophages are the primary target cells of C. burnetii (1), but lung

epithelial cells are the first contact of C. burnetii upon entering the host

organism. There is evidence that bovine lung epithelial cells, being less

susceptible to C. burnetii infection, do not act as replication sites (17).

However, the infection characteristics have not been compared to a C.

burnetii-infection in human lung epithelial cells. Thus, we infected the

bovine and human lung epithelial cell lines Bel-26 and A549, respectively,

with C. burnetii and determined the efficiency of invasion, replication

ability, pH and characteristic properties of the C. burnetii-containing

vacuole (CCV).First,weanalyzed theMOIrequired toachievean infection

rate of ~70%.While in humanA549 cells anMOI of 100 was necessary to

reach an infection rate of ~70% at 48 h post-infection, anMOI of 200 was

required in bovine Bel-26 cells (data not shown). In both cell lines, C.

burnetiiwas able to establish LysoTracker-positiveCCVs (Figure 1A). The

pHof the CCVs in these two cell lines did not differ andwas slightly acidic

with pH values of 5.5 - 5.6 (Figure 1B). At 48 h post-infection, the average

number of CCVs per cell was similar with 1.3 in Bel-26 and 1.6 in A549

cells (Figures 1C, D). In contrast to Bel-26 cells, A549 cells harbored an

increased percentage of larger CCVs (Figure 1E) and higher bacterial

counts (Figure 1F). Thus, at 24 h post-infection A549 cells harboredmore

than twice as many C. burnetii than Bel-26 cells (Figure 1F). However, C.

burnetii replicated similarly well in both cell lines, andmultiplied 4 - 5 fold

from 24 to 72 h. This data indicated that, notwithstanding the differences

detected in invasion efficiency, C. burnetii had established a replicative,

LysoTracker-positive compartment in both human and bovine epithelial

lung cells and species differences were minor at this level. Whether these

pattern reflect the host species or just the respective properties of the cell

lines used is unknown. Therefore, we focused on the analysis of the

interaction of C. burnetii with primary cells and compared primary

peripheral blood derived macrophages from humans and cattle under

conditions present at the respiratory mucosal surface (normoxia) and in

infected and inflamed tissue (hypoxia).
C. burnetii replicated under hypoxia only in
bovine, but not in human macrophages

Established protocols for generating differentiated macrophages

from human and bovine blood (19, 22) differ in procedure and

cultivation media. To ensure comparability, we first analyzed basic

functions of the differentiated macrophages. Bovine and human

macrophages secreted TNFa after LPS stimulation, although with

different kinetics (Figures 2A, B), and phagocytosed pHrhodo Red

E.coli similarly well (Figures 2C, D). This data indicate that the bovine
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and human primary macrophage cultures used herein display a

similar level of differentiation.

Since we had discovered recently, that C. burnetii replicated only

in the presence of oxygen in human and murine primary

macrophages (22), we analyzed the influence of oxygen availability

on the ability of C. burnetii to replicate intracellularly in bovine

macrophages. In contrast to human macrophages, C. burnetii

replicated in bovine macrophages under both normoxic and

hypoxic conditions. This was demonstrated by immunofluorescence

imaging of infected cells (Figure 3A) and by colony forming unit
Frontiers in Immunology 05
(CFU) analysis (Figure 3B), implying that the host cell species might

be decisive for C. burnetii replication under hypoxic conditions.
C. burnetii-induced modulation of the
HIF1a-STAT3 axis differs between human
and bovine macrophages

HIF1a is the key transcription factor allowing the cell to adapt

and to react to shifts in oxygen content (29). Under ample oxygen
TABLE 1 Primers used.

Number Target fwd/rev Sequence 5’ -> 3’

a828 Bovine HPRT1 fwd CTTTGCCGACCTGTTGGATTAC

a829 Bovine HPRT1 rev CAATTACTTTTATGTCGCCTGTTGAC

a768 Bovine CD86 fwd CAGGCTCGTATCAATGTTTCATCC

a769 Bovine CD86 rev GCAATTAGTCTTATTTCTGGTTGACTG

a935 Bovine CD206 fwd GGTGCCTCCAGTAAAACAAGC

a936 Bovine CD206 rev TTGATACTAGCTAGATCTCCACCC

a975 Bovine IL10 fwd GTGATGCCACAGGCTGAGAA

a976 Bovine IL10 rev TGCTCTTGTTTTCGCAGGGCA

a977 Bovine TNFa fwd TCTTCTCAAGCCTCAAGTAACAAG

a978 Bovine TNFa rev CCATGAGGGCATTGGCATAC

a1378 Bovine IL6 fwd AAGTGCACACCCGTCGTATT

a1379 Bovine IL6 rev TCAGATTCAAGGCTGCTGGG

a1360 Bovine Socs3 fwd TGAACGCAGTGCGCAAGCT

a1361 Bovine Socs3 rev TGGGTCTTGACGCTGAGGGT

a1374 Bovine PIAS3 fwd CGCCTGCGATGTCTCAAGATGG

a1375 Bovine PIAS3 rev GCTTCCGTCCACTCTTGTTCCG

a927 Human HPRT1 fwd GACCTGCTGGATTACATCAAAGC

a928 Human HPRT1 rev GTCCCCTGTTGACTGGTCATT

a899 Human CD86 fwd CTGTATTCTGGAAACTGACAAGACG

a900 Human CD86 rev CTGTTGGAAGTACAGCTGTAATCC

a917 Human CD206 fwd CTGGGTGGAGACTTAGCTAGC

a918 Human CD206 rev GAAGGGCTTCCATATGTCAATCC

a923 Human IL10 fwd CCAGACATCAAGGCGCATG

a924 Human IL10 rev GTTTTCACAGGGAAGAAATCGATG

a921 Human TNFa fwd AACCCCGAGTGACAAGCC

a922 Human TNFa rev TGGTTATCTCTCAGCTCCACG

a1348 Human IL6 fwd CAGGAGCCCAGCTATGAACTCCT

a1349 Human IL6 rev GCGGCTACATCTTTGGAATCTTCTCC

a1354 Human Socs3 fwd CCCAAGGACGGAGACTTCGATTC

a1355 Human Socs3 rev GGGAAACTTGCTGTGGGTGACC

a1372 Human PIAS3 fwd TCATCAGATGAGGAGGATCTGCCC

a1373 Human PIAS3 rev CATAGCAGGGCTCCTTAGCACC
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availability, proline residues 402 and 564 of HIF1a are hydroxylated

by prolyl hydroxylases (PHD), which are cellular oxygen sensors.

Hydroxylated HIF1a is recognized by the ubiquitin ligase Von

Hippel-Lindau protein (pVHL), which marks HIF1a for
Frontiers in Immunology 06
proteasomal degradation (30, 31). When oxygen is missing, the

PHDs are disabled, which leads to stabilization of HIF1a and, as a

consequence, to the expression of genes involved in the adaption to

hypoxia, metabolic processes and immune system regulation (23, 32).
B

C D

E F

A

FIGURE 1

C. burnetii replicate in bovine and human lung epithelial cell lines in a lysosome-like compartment. The bovine lung epithelial cell line Bel-26 and the
human lung epithelial cell line A549 were infected with C. burnetii NMII. (A) At 47 h post-infection, 1µM LysoTracker Red DND-99 was added to the
culture medium for 1h. The cells were fixed, permeabilized and stained with an anti-C. burnetii antibody and DAPI. The percentage of LysoTracker
positive C. burnetii-containing vacuoles (CCVs) of 100 infected cells in each of three independent experiments was determined. Mean ± SD. (B) The pH
of the CCVs at 48 h post-infection was determined by calculation of the fluorescence intensity ratios of the dual-wavelength fluorophore LysoSensor
Yellow/Blue DND-160. Data represents average values ± SD of 50 infected cells per sample from three independent experiments. (C, D) Representative
immunofluorescence micrographs of (C) Bel-26 and (D) A549 cells infected with C. burnetii NMII for 48 h using a ApoTome (Zeiss). (E) The dimension of
CCVs at 72 h post-infection was determined from confocal Z-stack images using the the LSM700 microscope and Zen (Zeiss) software. The volume of at
least 100 CCVs from two independent experiments are shown. An unpaired t-test was performed. ***p < 0.001. (F) C. burnetii counts of either infected
Bel-26 or A549 cells were determined at the time points indicated via counting of colony forming units (CFU). Shown is a representative experiment out
of three experiments with similar results, performed with technical triplicates of biological duplicates. Mean ± SD, n = 6, Mann-Whitney test. **p<0.01.
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HIF1a also prevents STAT3 activation, thereby interfering with C.

burnetii replication inside hypoxic human macrophages (22).

Therefore, we analyzed the HIF1a protein levels in bovine

macrophages infected with C. burnetii under normoxic and hypoxic

conditions. Hypoxia induced stabilization of HIF1a, which was not

further enhanced by C. burnetii infection (Figures 4A, B). This is in

contrast to our observation in human and murine macrophages,
Frontiers in Immunology 07
where the infection resulted in augmented HIF1a levels, which

impaired the activation of STAT3, resulting in inhibition of C.

burnetii replication (22). Interestingly, C. burnetii infection of

bovine macrophages resulted in phosphorylation of STAT3

independent of the available oxygen concentration (Figures 4C, D).

This data suggests that the activation of STAT3 under hypoxia seems

to be distinct in different C. burnetii host-species. In human and
BA

FIGURE 3

C. burnetii replication is inhibited by human, but not by bovine macrophages. (A) Bovine macrophages were infected with C. burnetii NMII for the time
periods indicated under normoxic (N) or hypoxic (H) conditions. The cells were fixed and stained with DAPI and an anti-C. burnetii antibody.
Representative immunofluorescence micrographs from three independent experiments with similar results are shown. (B) Human macrophages from
three different donors and three independent bovine macrophage preparations from two bovine donor animals were infected with C. burnetii NMII for
24 and 96 hours under normoxic (N) or hypoxic (H) conditions. Bacterial counts were determined by counting colony forming units (CFU). Unpaired t-
test or Mann-Whitney test, n=3. *p<0.05, ns=p>0.05.
B

C D

A

FIGURE 2

Human and bovine macrophages react to LPS and have phagocytic capacity. Bovine (A) and human (B) macrophages were stimulated with 10 µg/ml LPS
for the time periods indicated. Cells were incubated for 4 and 24 h under normoxia. TNFa levels were analyzed by ELISA. Mean ± SD, n = 3, two-way
ANOVA with Tukey’s multiple comparisons test. ***p<0.001. (C, D) Bovine and human macrophages were incubated with pHrodo Red E. coli bioparticles
for 30 min. The cells were stained with DAPI. Representative immunofluorescence micrographs of (C) bovine and (D) human macrophages using a
confocal laser scanning microscope (LSM700) are shown.
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murine macrophages, hypoxia leads to stabilization of HIF1a, to
inhibition of STAT3 activation, and inability of C. burnetii to replicate

(22). In hypoxic bovine macrophages, in contrast, STAT3 was

activated and C. burnetii multiplied.
STAT3 regulators differ in their expression
level in C. burnetii-infected bovine and
human macrophages

To learn why STAT3 is activated in C. burnetii-infected bovine

macrophages, but not in C. burnetii-infected human macrophages

under hypoxia, we analyzed the mRNA levels of IL-6, a known STAT3

inducer, and SOCS3 and PIAS3, two known STAT3 inhibitors (33).

We detected differences in the expression levels of IL-6 and PIAS3

during C. burnetii-infection between bovine and human macrophages

(Figure 5). In bovine macrophages, oxygen availability neither

influenced the expression level of IL-6 nor that of the at 24 and 96 h

post-infection. In contrast, the IL-6 expression level was increased in

human macrophages under hypoxia at 24 and 96 h post-infection and

the PIAS3 expression level was increased at 24 h post-infection under

normoxia. However, these expression patterns only partially explain

the STAT3 activation levels described above (Figures 4C, D). The

observed pattern of STAT3 inducer and inhibitor expression

apparently is not compliant with mitigated STAT3 activation in

hypoxic human macrophages. Interestingly, we observed an oxygen-

independent expression of the STAT3 activator IL-6, while the STAT3

inhibitors PIAS3 and SOCS3 were strongly reduced in C. burnetii-

infected bovine macrophage (Figure 5), which might favor activation

of STAT3 under both, normoxic and hypoxic conditions in

bovine macrophages.
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C. burnetii-induced modulation of the level
of TCA metabolites differs between human
and bovine macrophages

In human and murine macrophages, hypoxia leads to a limitation

of citrate, which results in the inability of C. burnetii to replicate (22).

Thus, we assessed the carboxylic acid metabolism in C. burnetii-

infected hypoxic bovine macrophages to determine its potential role

in the ability of C. burnetii to replicate. The levels of pyruvate and

lactate were generally higher in infected hypoxic than normoxic

human and bovine macrophages, but only the level of lactate

showed a significant increase in hypoxic human and bovine

macrophages over the time course of infection (Figures 6A, B).

Under hypoxic conditions, we observed reduced citrate levels in C.

burnetii-infected human macrophages (Figure 6C), similar to

previous results in C. burnetii-infected murine macrophages (22).

Although we did not observe citrate level reduction in C. burnetii-

infected hypoxic bovine macrophages at 24 h post-infection, it was

similarly reduced under hypoxia as in human macrophages at 96 h

post-infection (Figure 6C). This indicates that the level of citrate

under hypoxia might not be responsible for the ability of C. burnetii to

replicate in hypoxic bovine macrophages. Furthermore, C. burnetii-

infected human macrophages hardly produced itaconate under all

conditions tested (Figure 6D), which is in line with previous

observations (34). In contrast, infected bovine macrophages

produced significant amounts of itaconate, with higher levels under

hypoxic conditions. These levels decreased during the infection under

both conditions (Figure 6D). Itaconate is derived from citrate, can

prevent growth of several bacteria and has immune-regulatory

function (34–36). As itaconate also inhibits growth of C. burnetii

(37), the increased level of itaconate in bovine macrophages contrasts
B

C

D

A

FIGURE 4

C. burnetii infection induces STAT3 activation in hypoxic bovine macrophages. Bovine monocyte derived macrophages were infected (C. b.) or not
infected (n.i.) with C. burnetii NMII for the time periods indicated and kept under normoxic (N) or hypoxic (H) conditions. (A, B) The samples were
subjected to immunoblot analysis using antibodies against HIF1a or actin. (A) One representative immunoblot of three independent experiments with
similar results is shown. (B) The ratio of HIF1a to actin expression was calculated using ImageJ. Mean ± SD, n = 3, student´s t-test. ***p<0.001, **p<0.01,
*p<0.05, ns>0.05. (C, D) The samples were subjected to immunoblot analysis using antibodies against phospho-STAT3 (pSTAT3) or STAT3. (C) One
representative immunoblot of three independent experiments is shown. (D) The ratio of pSTAT3 to STAT3 expression was calculated from the
immunoblots using ImageJ. Mean ± SD, n = 3, unpaired t-test. ***p<0.001, *p<0.05, ns>0.05.
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with the ability of C. burnetii to replicate intracellularly. Another

metabolite, whose intracellular concentration was significantly

increased under hypoxic conditions in bovine, but not human C.

burnetii-infected macrophages was 2-hydroxyglutarate (2HG)

(Figure 7A). An acidic intracellular environment resulting from

oxygen limitation is believed to favor the reduction of glutamine-

derived a-ketoglutarate to 2HG by lactate dehydrogenase A and

malate dehydrogenase, with the increase in 2HG varying

substantially among different cell types from about 2- to 25-fold

(38). Production of intracellular 2HG consumes NADH, thereby

alleviating hypoxia-induced reductive stress, which is defined as an

excess accumulation of reducing equivalents brought about mostly by

suppressed oxidation of NADH by respiratory complex I under

hypoxia. In line, we found the NADH-to-NAD+ ratio, to be lower

in hypoxic bovine macrophages, but not in hypoxic human

macrophages at 24 h post-infection (Figure 7B).

Neither a C. burnetii infection nor the level of available oxygen

affected the intracellular levels of the Krebs cycle intermediates

succinate, fumarate, and malate in both human and bovine

macrophages (Table 2).
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C. burnetii-induced upregulation of TNFa
expression was stabilized only under
hypoxia in human macrophages

To investigate why C. burnetii replication was supported in hypoxic

bovine macrophages, but not in hypoxic human macrophages, we

analyzed the respective macrophage polarization, as the infection

with C. burnetii stimulates an atypical M2 phenotype in human

macrophages (39). Indeed, a similar polarization of murine

macrophages towards an M2 phenotype is important for the

permissiveness of these host cells to C. burnetii replication (40).

Thus, we evaluated the expression of two M1 genes (TNFa and

CD86) and two M2 genes (IL-10 and CD206) at different time

points post-infection under normoxic and hypoxic conditions in

human and bovine macrophages. In human macrophages, we

observed that the infection induced a strong upregulation of

TNFa and a slight upregulation of IL-10 at 4 h post-infection

independent of the availability of oxygen (Figure 8). Over the

time-course of the infection, the induction of the genes analyzed

decreased gradually. Importantly, the levels of TNFa mRNA at 24
FIGURE 5

C. burnetii-infection influences gene expression of STAT3 regulators. Gene expression was determined for the genes encoding IL-6, SOCS3 and PIAS3 in
C. burnetii NMII infected normoxic and hypoxic bovine (left) and human (right) macrophages at the time points indicated. The data from three to four
independent experiments are shown as mean ± SD of 2^-DDCT values (using human or bovine HPRT as a calibrator). Fold changes are shown relative to
the 4 h time point under N. One-sample t-test, unpaired t-test or Mann-Whitney test, n=5-6 (bovine) and n=6-8 (human) ***p<0.001, **p<0.01,
*p<0.05, ns=p>0.05.
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and 96 h post-infection were significantly higher in infected human

macrophages kept under hypoxia. C. burnetii-infected bovine

macrophages were also characterized by an upregulation of TNFa
and IL-10 at early time-points post-infection. Like in infected

human macrophages, the upregulation of the genes analyzed

decreased over time. In contrast to the situation in human cells,
Frontiers in Immunology 10
we did not observe a difference in TNFa induction between infected

hypoxic and normoxic bovine macrophages (Figure 8). As TNFa is

a cytokine known to restrict C. burnetii replication (41), the

difference in TNFa expression might explain why C. burnetii is

capable of replicating in hypoxic bovine macrophages, but not in

hypoxic human macrophages.
B

C D

A

FIGURE 6

Hypoxia alters metabolite concentrations in C. burnetii-infected human and bovine macrophages similarly, with the exception of itaconate. (A-D) Human
and bovine macrophages were infected with C. burnetii NMII for the time periods indicated under normoxia (N) or hypoxia (H). Carboxylic acids were
analyzed by GC-MS. The amounts of (A) pyruvate, (B) lactate, (C) citrate, and (D) itaconate respectively, are shown in nmol/mg protein from three to four
independent experiments. Mean ± SD, n = 3-4, two-way ANOVA with Tukey’s multiple comparison test. ***p<0.001, **p<0.01, *p<0.05.
BA

FIGURE 7

C. burnetii infection induces an increase of 2HG and a reduction of the NADH/NAD+ ratio only in hypoxic macrophages. Human and bovine
macrophages were infected with C. burnetii NMII for the time periods indicated under normoxia (N) or hypoxia (H). (A) The amounts of 2HG (2-
hydroxyglutarate) were analyzed by GC-MS and are shown in nmol/mg protein for three to four independent experiments. Unpaired t-test, n=3-4.
**p<0.01, *p<0.05, ns=p>0.05. (B) NADH and NAD+ were analyzed in pmol using a colorimetric NAD+/NADH assay. The NADH/NAD+ ratio was
calculated from 2-3 independent experiments performed in duplicate or triplicate. Mean ± SD, unpaired t-test. ***p<0.001, **p<0.01, *p<0.05.
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Neither normoxic nor hypoxic C. burnetii-
infected bovine macrophages secrete TNF

Levels of transcription of cytokine genes and of secretion of the

encoded proteins do not necessarily correlate (42). In addition, not

only the expression, but also the release of TNFa is controlled by

HIF1a (24). In the supernatant of C. burnetii infected human

macrophages, we observed the highest amount of TNFa at 24 h

post-infection. The level of TNFa decreased over time. At later time

points post-infection, the amount of TNFa in the supernatant was

higher for infected hypoxic than normoxic human macrophages

(Figure 9A), confirming that the cytokine levels correlated with the

mRNA levels (Figure 8). Although bovine macrophages proved

capable of secreting bTNFa after LPS stimulation (Figure 2A),

we could not detect bTNFa in the supernatant of C. burnetii-

infected bovine macrophages under all conditions tested

using either a bTNFa-specific ELISA (Figure 9A) or a TNFa
bioassay (not shown).
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TNF is involved in the control of C. burnetii
replication in bovine macrophages

As the lack of TNFa secretion might contribute to the lack of

control of C. burnetii replication in hypoxic bovine macrophages (41),

we treated C. burnetii-infected bovine macrophages with bTNFa and

analyzed CFU counts at different time points post-infection under

normoxic conditions. Addition of bTNFa to C. burnetii-infected

bovine macrophages resulted in lower bacterial counts (Figure 9B),

suggesting that the lack of TNFa in C. burnetii infected bovine

macrophages is important for the inability to prevent bacterial

replication under hypoxic conditions.
Discussion

Once C. burnetii is internalized, the C. burnetii-containing

vacuole (CCV) matures to an acidic, phagolysosomal-like
TABLE 2 Krebs cycle intermediates under normoxia and hypoxia.

Normoxia Hypoxia

Metabolite Time Species Average StDev Average StDev p value

Succinate 24h Bovine 0.47 0.17 0.74 0.14 0.095

Human 0.53 0.21 0.26 0.11 0.059

96h Bovine 0.20 0.05 0.25 0.12 0.474

Human 0.34 0.07 0.22 0.17 0.241

Fumarate 24h Bovine 0.54 0.28 0.59 0.22 0.835

Human 0.33 0.10 0.33 0.05 0.957

96h Bovine 0.68 0.22 0.41 0.27 0.171

Human 0.29 0.07 0.34 0.34 0.756

Malate 24h Bovine 0.93 0.18 0.89 0.37 0.872

Human 0.72 0.08 0.72 0.26 0.997

96h Bovine 0.67 0.09 0.64 0.38 0.883

Human 0.65 0.23 0.74 0.34 0.689

a-KG 24h Bovine 0.66 0.76 1.02 0.96 0.640

Human 0.22 0.12 0.11 0.05 0.130

96h Bovine 0.74 0.17 0.24 0.16 0.004

Human 0.71 0.60 0.35 0.30 0.320

2HG 24h Bovine 0.08 0.02 0.31 0.06 0.004

Human 0.11 0.03 0.08 0.07 0.574

96h Bovine 0.07 0.03 0.32 0.25 0.093

Human 0.10 0.04 0.14 0.11 0.507

Glucose 24h Bovine 14.54 9.14 11.17 8.41 0.662

Human 1.84 0.90 2.87 1.01 0.180

96h Bovine 11.51 1.31 2.78 1.77 0.000

Human 0.71 0.34 1.43 0.44 0.042
fron
Human and bovine macrophages were infected with C. burnetiiNMII for the time periods indicated, under normoxia or hypoxia. Metabolites were analyzed by GC-MS. The amount of each metabolite
is shown in nmol/mg protein from three to four independent experiments. a-KG (alpha ketoglutarate). Mean ± SD, n = 3-4, unpaired t-test.
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parasitophorous vacuole (27, 43). During the course of the cellular

infection, early phagolysosomes harbor a single bacterial cell.

Sequentially, they fuse to a single large parasitophorous vacuole

containing multiple C. burnetii cells (44). Mature CCVs have a pH

of 4.7 to 5.2, which stimulates the activation of bacterial metabolism

and the assimilation of essential nutrients (45–47). C. burnetii

requires a functional Dot/Icm type IV secretion system (T4SS) for

establishing the replicative CCV (48, 49). In addition to pH tolerance,

a dismutase-catalase system promotes intracellular survival of C.

burnetii. It eliminates reactive oxygen species generated by the

bacteria themselves but also, most importantly, those generated by

the host cell (50). Consequently, the infectious process might differ at
Frontiers in Immunology 12
multiple points/steps that are decisive for host differences in C.

burnetii pathogenesis.

Previous studies have shown that species differences do exist

down to the cellular level, however, genetic background and/or

molecular basis have not been uncovered (19). Hypoxia plays a

major role in the host - C. burnetii interaction. Therefore, we

analyzed the interaction of human and bovine monocyte-derived

macrophages with C. burnetii under normoxic and hypoxic

conditions. The following reasons prompted us to analyze the

influence of hypoxia during the course of a C. burnetii infection: i)

the oxygen level is low at the site of infection in an acute colitis model

(51); ii) murine macrophages prevent C. burnetii replication under
FIGURE 8

During the course of a C. burnetii infection, TNFa expression is only maintained in hypoxic human macrophages. Gene expression was determined for
M1/M2 polarization marker genes in C. burnetii NMII infected human or bovine macrophages at the time points indicated. Data are shown as mean ± SD
of DDCT values (using uninfected samples as a calibrator), Mann-Whitney test, n=5-8 (bovine) and n=6-10 (human) ***p<0.001, **p<0.01, *p<0.05,
ns=p>0.05.
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hypoxia; iii) C. burnetii might enter a state of persistence under

hypoxia (22); and iv) the course of a C. burnetii infection differs in

humans and cattle (1). Our results indicate that the host-pathogen

interaction differs also at the cellular level. Thus, C. burnetii

replication is controlled in hypoxic human monocyte-derived

macrophages, but not in bovine monocyte-derived macrophages

(Figure 3). This difference might be of biological importance. In

hypoxic human macrophages, C. burnetii might enter a stage of

persistence, similar to the situation in hypoxic murine macrophages

(22). Thus, hypoxia and/or HIF1a prevent bacterial replication

without elimination of the pathogen (52), which might allow

reoccurring or chronic infections. In the case of C. burnetii, it

might support and/or allow Q fever to reach a chronic state in

humans. Interestingly, infection with C. burnetii is common in

cattle, but clinical disease is rare (53). Infertility, abortion and

mastitis have been reported (54). However, there are conflicting

reports whether seropositive cows have better or worse

reproduction (54, 55). Whether the difference in controlling C.

burnetii infection under hypoxia might result in different clinical

outcomes can only be speculated about. Importantly, the lack of

control of C. burnetii replication by hypoxic bovine macrophages

might be mediated by STAT3 activation (Figure 4), as C. burnetii

replication in murine macrophages under normoxia depends on the

presence of STAT3. In addition, expression of a constitutively active

STAT3 in murine macrophages also allows replication under hypoxia

(22). The observed constant expression of the STAT3 activator IL-6

along with strongly limited expression of the STAT3 inhibitors PIAS3

and SOCS3 in C. burnetii-infected bovine macrophage (Figure 5)

could favor activation of STAT3 and might explain the deficit of

bovine macrophages to control C. burnetii replication under oxygen-

limited conditions. However, the pathway(s) leading to STAT3

activation in C. burnetii-infected hypoxic bovine macrophages and

how this impacts C. burnetii replication has to be analyzed in

more detail.

The transcription factor STAT3 has key roles in inflammation

and immunity (33). It suppresses signal transduction mediated by

TLRs (56) and has anti-inflammatory function in mice and in humans
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(33). In addition, STAT3 also affects cellular metabolism. Thus,

STAT3 increases the expression of Indy, a citrate transporter, and

of citrate synthase, thereby elevating the intracellular level of the TCA

metabolite citrate (57, 58). Indeed, higher citrate levels were only

observed in C. burnetii-infected normoxic, but not hypoxic human

macrophages (Figure 6C), suggesting that the increased level of

STAT3 correlates with increased citrate levels (Figures 4, 6C).

However, we were unable to observe this correlation in bovine

macrophages at 96 h post-infection (Figures 4, 6C). Whether this

might point to a difference in regulation of host cell metabolites

between bovine and human macrophages has to be clarified. The

significant difference between the cellular levels of itaconate supports

such an assumption. Itaconate is produced by IRG1 from cis-

aconitate, which is produced by ACO2 from citrate (59). We did

not detect itaconate in C. burnetii-infected human macrophages

(Figure 6D), in agreement with previous observations (34). In

contrast, normoxic murine macrophages infected with C. burnetii

and Legionella pneumophila produced high amounts of itaconate,

which was reduced under hypoxic conditions (22). C. burnetii

infected bovine macrophages also produced itaconate, but, in

contrast to murine macrophages, it was elevated under hypoxic

conditions (Figure 6D). As itaconate impedes bacterial replication

(36), it is unlikely that the increased itaconate level in infected hypoxic

bovine macrophages accounts for C. burnetii replication. However,

itaconate also has an immune-regulatory function. Thus, treatment of

LPS-stimulated murine macrophages with itaconate or its derivatives

reduced the production of the pro-inflammatory cytokines IL-1b and

IL-6, but not of TNF (35, 60). As TNFa is essential in restricting C.

burnetii in murine macrophages, increased itaconate levels might not

permit C. burnetii replication. However, we observed a host species-

specific difference in TNFamRNA levels during infection. In infected

human macrophages, TNFa expression was always higher under

hypoxic conditions at all time-points tested, while in infected bovine

macrophages we did not observe an influence of the oxygen level on

the TNFa mRNA level (Figure 8). Importantly, bovine macrophages

were herein found not to secrete TNFa in the context of C. burnetii

infection, despite of infection-induced mRNA synthesis (Figure 8 and
BA

FIGURE 9

C. burnetii replication in infected bovine macrophages correlates with the lack of TNFa secretion. (A) Human macrophages from four different donors
(circle) and three independent bovine macrophage preparations from two bovine donor animals (square) were infected with C. burnetii NMII for 4, 24
and 96 h under normoxia (N) or hypoxia (H). TNFa levels were analyzed by ELISA. Mean ± SD, paired t-test. *p<0.05. (B) Three independent bovine
macrophage preparations from two bovine donor animals were infected with C. burnetii NMII and either left untreated or treated with 10ng/ml bTNFa.
Cells were incubated for 4 and 24 h under normoxia. Bacterial counts were determined by counting colony forming units (CFU). Shown is a
representative experiment performed with technical triplicates out of two experiments with similar results. Mean ± SD, unpaired t-test. ***p<0.01,
*p<0.05.
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Figure 9) and the ability to secrete TNFa after LPS stimulation

(Figure 2). Thus, the ability of C. burnetii to replicate in hypoxic

bovine macrophages might be mediated by a block of TNFa secretion.

TNF trafficking and release to the extracellular milieu is well studied

(61). After translation in the ER as type II membrane precursor pro-

TNF, it is rapidly delivered to the Golgi, from where it traffics to the

cell surface. The transport of TNF from the trans-Golgi network

(TGN) depends on golgin and golgin-245 (62). TNF-loaded vesicles

from the TGN fuse with recycling endosomes (RE), which depends on

the SNARE proteins Stx6, Stx7 and Vti1b (63, 64). Transport of TNF

from the RE to the cell surface is facilitated by Stx4 and VAMP-3 (63,

65). To be released as a soluble cytokine at the cell surface, pro-TNF

has to be cleaved by the TNF-converting enzyme (TACE, ADAM17)

(66). The block of TNFa secretion by C. burnetii-infected bovine

macrophages may occur at any of these different steps. However, it

might also be possible that C. burnetii activates or stabilizes

synaptotagmin 11, which inhibits cytokine secretion (67). Further

research will be required to elucidate at which point TNFa secretion

is blocked and, more importantly, how.

Taken together, our results indicate that C. burnetii activates

distinct signaling cascades in human and bovine macrophages,

leading to different levels of control of bacterial replication. The

lack of control of C. burnetii by hypoxic bovine macrophages is

associated with STAT3 activation and a block of TNFa secretion

(Figure 10). Addition of TNFa enables the bovine macrophages to at

least partially restrict bacterial replication (Figure 9B), supporting the

importance of this cytokine for cell autonomous control of C. burnetii

replication. It can only be speculated how this difference in
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controlling C. burnetii replication might contribute to disease

severity. At first glance, it is counterintuitive that the lack of control

might result in the development of less severe disease. However, if C.

burnetii is controlled, but not eliminated, this might lead to

persistence. Chronic Q fever develops months to years after

primary infection (68), indicating that bacterial persistence is an

important step in disease development. In contrast, constant low-level

bacterial replication might activate the innate and adaptive immune

systems, allowing better control of the pathogen in vivo and

consequently prevention of disease.
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FIGURE 10

Schematic model of the consequences of hypoxia on bovine and human macrophages infected with C. burnetii. When oxygen (O2) levels drop, the
transcription factor hypoxia-inducible factor 1-alpha (HIF1a) is stabilized. While in human macrophages (hMF), a C. burnetii infection leads to an
elevation of HIF1a stabilization, HIF1a levels in bovine macrophages (bMF) are not altered upon infection. In infected hMF, HIF1a prevents activation of
signal transducer and activator of transcription 3 (STAT3) by phosphorylation, which in turn causes a decrease in intracellular citrate levels, leading to the
impediment of C. burnetii replication. However, this impairment of STAT3 activation by HIF1a is not observed in bMF causing phosphorylation of STAT3.
Furthermore, the tumor necrosis factor alpha (TNFa) secretion is increased in hypoxic hMF correlating with the control of C. burnetii replication. In
contrast, TNFa secretion is blocked in bMF, eliminating the factor of control over C. burnetii. Thus, C. burnetii is able to replicate. Finally, itaconate levels
are increased in bMF, which have been shown to inhibit C. burnetii replication.
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