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Abstract
Based on the discovery of the duality between Jackiw–Teitelboim quantum
gravity and a double-scaled matrix ensemble by Saad, Shenker and Stanford
in 2019, we show how consistency between the two theories in the universal
random matrix theory (RMT) limit imposes a set of constraints on the volumes
of moduli spaces of Riemannian manifolds. These volumes are given in terms
of polynomial functions, the Weil–Petersson (WP) volumes, solving a celeb-
rated nonlinear recursion formula that is notoriously difficult to analyse. Since
our results imply linear relations between the coefficients of the WP volumes,
they therefore provide both a stringent test for their symbolic calculation and a
possible way of simplifying their construction. In this way, we propose a long-
term program to improve the understanding of mathematically hard aspects
concerning moduli spaces of hyperbolic manifolds by using universal RMT
results as input.
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1. Introduction

While initially, the methods and concepts of quantum chaos attempted to explain how chaos
in a classical system finds its way into the observed universality of short-range spectral fluctu-
ations in the corresponding quantised version [1–3], since its precise formulation in the 1980’s
[4] the connection between dynamical chaos and randommatrix theory (RMT) has also offered
some deep insights into mathematical questions. A paradigmatic example of how such an
approach works is number theory. Here, one starts from the conjectured RMT-like statistical
distribution of the non-trivial zeroes of the Riemann zeta function [5], supported by a huge
amount of numerical evidence [6], and uses it to obtain number-theoretical results [7], even
defining a whole research program.

The rationale of this approach can be exported to any field and regime of parameters where
fidelity to RMT is expected to hold. Then, the universal—and usually tractable—RMT results
can be considered as constraints, imposing relations between physical objects of the theory,
similar to how the statistical correlations of prime numbers are constrained by RMT. This is
particularly the case for theories where the microscopic mechanism responsible for classical
chaotic dynamics is not well understood, and therefore the well-developed machinery of peri-
odic orbit theory [1, 2, 8–11] cannot be invoked to explain RMT-like features.

Remarkably, certain aspects of quantum gravity fall into this category. This is because,
although the precise connection between periodic orbit theory and the conjectured chaotic
character of important quantum gravitational models [12–17] is still an open problem, an exact
mapping between 2D dilaton gravity (so-called Jackiw–Teitelboim gravity [18, 19]) and a
matrix model [20] has recently been discovered, creating an explosion of interest [21–25].

The present paper (and its companion [26]) follows the route depicted above. We invoke the
well justified assumption that in a certain precise limit, spectral correlations computed from the
exact solution of Jackiw–Teitelboim (JT) gravity are identically given by the universal RMT
results. Imposing such an equivalence then constrains the objects appearing on the JT side,
which in this case turn out to be related to the moduli space of two-dimensional manifolds.
Our objective is to make these constraints explicit, and to initiate the study of their structure
and consequences. Doing so, we provide further evidence for the equivalence of JT gravity and
universal RMT, and in particular the operational meaning of the ‘universal limit’ as proposed
in [22] and further developed in [27].

To begin with, we now briefly present the main features of Jackiw–Teitelboim gravity,
which is a two-dimensional theory of gravity coupled to a dilaton ϕ, described by the action

SJT =− S0
2π

χ(M)− 1
2

ˆ
M

√
detgµνϕ(R+ 2)−

ˆ
∂M

√
hϕ(K− 1), (1.1)

on amanifoldMwith boundary ∂M, where gµν is ametric onM,R the Ricci scalar computed
from gµν , h the inducedmetric on ∂M, andK the extrinsic curvature. The first term is the Euler
characteristic of the manifold M, multiplied by a large constant S0, chosen such that eS0 is a
characteristic scale of the density of states. This term causes the path integral over (1.1) to
decompose into a genus expansion of the form2

2 The notation ⟨Z(β1) . . .Z(βn)⟩ for these partition functions is chosen to emphasize the duality with correlation
functions of the heat kernel in the matrix model introduced later, but it can be made more rigorous by defining a
boundary creation operator in the spirit of [28] and inserting it in the path integral.
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Figure 1. Example of the genus expansion in equation (1.2) for the case n= 1. The
asymptotic AdS boundary of length β is depicted in red, while the geodesic boundary
of length b along which the manifold is cut is depicted in blue.

⟨Z(β1) . . .Z(βn)⟩=
∞∑
g=0

e(2−2g−n)S0

ˆ ∞

0
b1db1 . . .bndbnZtr(β1,b1) . . .Ztr(βn,bn)Vg,n(b1, . . . ,bn)

(1.2)

for n asymptotically AdS boundaries of length βj. Here, Ztr(β,b)=
√

γ
2πβ e

− γb2

2β is the par-

tition function of a hyperbolic ‘trumpet’ (cf figure 1) with one asymptotically AdS bound-
ary of length β and one geodesic boundary of length b (the precise form of which is not
important here), and Vg,n(b1, . . . ,bn) are the Weil–Petersson (WP) volumes, that will be con-
sidered in more detail later on. They arise from the bulk part of the path integral and describe
the volume of the moduli space of each topological sector labelled by g,n, that depends on
the boundary lengths (b1, . . .bn). A good way to visualize the individual terms appearing in
equation (1.2), for the simplest example of only one asymptotic AdS boundary of length β, is
shown in figure 1, where the contributions to the partition function to the genera 0, 1 and 2 are
depicted. The splitting of both non-zero genus contributions into the boundary part (‘trumpet’)
and the bulk part, carrying the genus illustrates the way they are computed in equation (1.2)
and actually corresponds to the way one proves this formula via the computation of the path
integral [20, 21]. equation (1.2) holds except for special cases3, the genus 0 contributions for
n= 1,2.

This theory has received a lot of attention in recent years after a duality between JT gravity
and a certain double-scaled Hermitian matrix model was established in [20]. To be more pre-
cise, the authors of [20] found a (formal) matrix model4 defined by some potential V(H), and
performed the limit dimH= N→∞ in such a way that the leading spectral density remained
normalised5, yielding

3 The n= 1 result is the disk Zdisk(β) = eS0 γ
3
2 e

2π2γ
β

(2π)
1
2 β

3
2

, while for n= 2, one has the ‘double-trumpet’, which can be

written as part of (1.2) by formally defining V0,2(b1,b2) = δ(b21 − b22).
4 In the following we will refer to this as a ‘matrix model’ for brevity and refer to appendix C to an explanation of
why it is more precisely denoted as ‘formal’.
5 In the sense of double-scaled matrix models. Briefly put this means that prior to taking the limit dimH= N→
∞ the leading order spectral density has compact support on [0,a] for a ∈ R and is bounded on this interval, thus
C(a) :=

´
R ρ0 is finite. This is done such that the sinh behaviour is obtained in the limit of large a. Taking the double-

scaling limit means taking the limit a→∞, thus C(a)→∞, simultaneously with N→∞ while keeping eS0 :=
N

C(a)
constant. Thus, the spectral density is, strictly speaking, not normalisable but is finite and controlled by eS0 for

not infinite positive real numbers which, as it will turn out later, is the only region relevant for the computation of
correlation functions. A more detailed explanation can be found in [20, 29]. For an explanation using the connection
with the SYK model see e.g. [15].
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ρT0(E) = eS0
γ

2π2
sinh(2π

√
2γE), (1.3)

where γ is the characteristic energy scale of the system, usually set to 1/2. The subscript 0
refers to the genus 0 part of the eigenvalue density, while the superscript T (for ‘total’) indicates
that the density (before taking the limit N→∞) is normalised to N, rather than to 1. ρT = eS0ρ
for the eigenvalue density ρ used below. In the course of taking this limit, the usual perturbative
1/N expansion of the matrix model is replaced by an expansion in e−S0 , e.g. for correlators of
the partition function6 Z(β) = tr e−βH,

⟨Z(β1) . . .Z(βn)⟩=
∞∑
g=0

e(2−2g−n)S0Zg,n(β1, . . . ,β2). (1.4)

It is this genus expansion that has been shown to exactly compute (1.2). However, estab-
lishing the translation of nonperturbative aspects of the matrix model to JT gravity has proven
more challenging (see however [30–33]). A key reason for this is that the matrix model of [20]
suffers from a nonperturbative instability, meaning that the integration contour of the matrix
integral must be deformed. This process is not unique, however, and thus leads to an ambiguity
in the nonperturbative completion. Much work has been done on trying to give JT gravity a
rigorous nonperturbative definition and to study its features, particularly by Johnson [34–43],
and more recently, a nonperturbative completion in terms of Kodaira–Spencer theory has been
given [44, 45].

In light of the amount of interest particularly the nonperturbative sector of the JT matrix
model has received, it seems useful to look at concrete nonperturbative features of the matrix
model and study how they are realised in JT gravity. Particularly, we want to focus on what
we call the universal limit of the matrix model7 (see e.g. [2]). This is the limit of the matrix
model in which correlation functions are given by the ones obtained in the appropriate Altland–
Zirnbauer ensemble (in the present case, the Gaussian unitary ensemble). We will describe
how to access this limit in JT gravity below, but for now it is sufficient to recall that in this
limit, correlation functions of e.g. the level density are described by universal, finite functions.
From this latter property alone, we will be able to derive very nontrivial identities between
coefficients of the WP volumes, i.e. the polynomials Vg,n appearing in (1.2).

The WP volumes [46] describe the volume of the moduli space of hyperbolic surfaces with
genus g and n geodesic boundaries with lengths b1, . . . ,bn. In principle, they are computable
individually from scratch by performing all possible decompositions of the manifold in terms
of three-holed spheres, parametrising these decompositions by Fenchel–Nielsen coordinates
(li, τi) and integrating theWP form in these coordinates ωWP = dli ∧ dτi over the moduli space,
while modding out the mapping class group of the surface to account for overcounting the
decompositions.

In practice, however, this is not feasible and one uses Mirzakhani’s recursion relation [46]
satisfied by the Vg,n instead. While this is doable, the effort required to determine the volumes
particularly for high g or n is still substantial, and a method of relating the different terms in
the WP volumes might be useful to simplify their calculation.

In this paper then, we will show that the existence of a finite universal limit of the JT mat-
rix model implies constraints on the coefficients appearing in the WP volumes Vg,2(b1,b2)

6 One can compute the correlation functions of ρT(E) as inverse Laplace transforms of the correlators of Z(β). Hence,
the spectral density correlators exhibit a genus expansion of the same form as (1.4).
7 We sometimes refer to this limit as the RMT limit, or particularly when talking about JT, the τ -scaling limit.
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determining the JT gravity 2-point function. To this end, we will begin in section 2 by com-
puting the spectral form factor (SFF) in the universal limit, using the full, non-perturbative
result for the spectral two-point function. Then, we will redo the calculation in section 3
using the genus expansion, and compare the two results. Demanding that they are at least
compatible (i.e. that the perturbative result does not diverge more strongly than the nonper-
turbative one) will yield constraints relating certain coefficients appearing in a given Vg,2.
Finally, in section 4, we discuss the possible relation of our results to other areas of research.
In appendix A we provide a proof for the simplification of the constraints mentioned above. In
appendix B we check the constraints for the case of g= 5. In appendix C we give a review of
the application of the topological recursion to the setting of JT gravity with the aim of showing
how we obtained the WP volumes used for checking the cancellations we predict. A collec-
tion of these can be found in appendix D. As a last note, the same cancellations as the ones we
report have been found independently using intersection theory computations in [26].

2. The late time SFF from random matrix universality

In this section, we will compute the late time SFF of the matrix model of [20],
⟨Z(β+ it)Z(β− it)⟩. In order to do so, we will first recall some necessary information on this
matrix model. As already mentioned in the introduction, the matrix model of [20] is defined by
specifying the symmetry class (unitary, i.e. Hermitian matrices) and giving the leading order
density of states as

ρ0(E) =
γ

2π2
sinh(2π

√
2γE). (2.1)

Note, that this density exhibits a different behaviour than a conventional one-cut model,
e.g. the semicircle law obtained for the Gaussian model as it does not have two spectral edges
but only the one at E= 0. This is due to the double-scaling procedure needed to obtain this
model from a ‘standard’ (i.e. compact support of ρ0) matrix model, outlined in the introduc-
tion. Furthermore, it suffices to give the leading order density of states as all orders of the
perturbative expansions of e.g. partition function correlators in the small parameter of the
double-scaled theory eS0 are determined by the Eynard–Orantin topological recursion [47]. For
the sake of completeness, we include the relevant definitions and formulae in appendix C.
As already mentioned in the introduction, the aforementioned perturbative expansions can be
evaluated and found to be in agreement with the JT gravity result (1.2). This is the main result
of [20] and, as a (pleasant) side effect, enables a simplified computation of the WP volumes,
since the topological recursion is easier to solve than Mirzakhani’s recursion. As the SFF is
defined as a correlator of partition functions, one can now compute it to all orders in perturb-
ation theory using the topological recursion. This, however, is not special and can be done for
all correlators. What is special about the SFF is that it has a universal form for chaotic systems.
It is given by a linear ramp region up to a large scale called the Heisenberg time, followed by
a plateau. This universal form is identical to the result computed from RMT, though it cannot
be directly observed in a single chaotic system, as it would display large-scale erratic oscil-
lations. Rather, one has to perform some kind of average (e.g. the disorder average typically
used in the SYK model [16]). Of particular interest for us is the plateau region, since it is a
nonperturbative effect in RMT, and thus should naively not be captured by the JT gravity genus
expansion. Finding a plateau is crucial for a theory of a quantum black hole however, since it
allows the conclusion that the spectrum of the black hole is discrete [8]. Interestingly, as we
will see below, a careful computation of the late time SFF of the matrix model of [20] reveals

5
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a function of the time that exhibits the plateau, but also allows us to predict relations between
coefficients in the WP volumes. To do so, recall that the two-point function of Z(β) = tr e−βH

can be expressed as a Laplace transform,

⟨Z(β1)Z(β2)⟩=
ˆ ∞

−∞

ˆ ∞

−∞
⟨ρT(E1)ρ

T(E2)⟩e−β1E1−β2E2dE1dE2, (2.2)

where ρT(E) is the total spectral density in the convention of [20], i.e. it is of order eS0(cf
equation (1.3)).8 This yields a useful form for the SFF,

⟨Z(β+ it)Z(β− it)⟩=: κβ(t) =
ˆ ∞

−∞
dEe−2βE

ˆ ∞

−∞
d∆e−it∆

⟨
ρT

(
E+

∆

2

)
ρT

(
E− ∆

2

)⟩
,

(2.3)

where we substituted E1/2 = E±∆/2. Next, we study the universal behaviour of κβ(t) by
evaluating it at times scaling with the Heisenberg time eS0 . We define a rescaled time

τ := e−S0 t, (2.4)

and obtain

κβ(τ) =

ˆ ∞

−∞
dEe−2βE

ˆ ∞

−∞
d∆e−ieS0τ∆

⟨
ρT

(
E+

∆

2

)
ρT

(
E− ∆

2

)⟩
= e2S0

ˆ ∞

−∞
dEe−2βE

ˆ ∞

−∞
d∆e−ieS0τ∆

⟨
ρ

(
E+

∆

2

)
ρ

(
E− ∆

2

)⟩
, (2.5)

making the dependence on eS0 explicit in the second line. The rapidly oscillating factor e−ieS0τ∆

localises the integral near small∆ (more precisely, of order eS0), making it sufficient to evaluate
⟨ρ(E+ ∆

2 )ρ(E−
∆
2 )⟩ for small differences in the arguments.

To find an expression for this, we utilise the universal RMT limit of the matrix model. Note
that it is not possible to take the ‘usual’ universal limit N→∞, since this has already been
performed in the course of implementing the double scaling limit, where N is replaced by eS0 .
Hence, we identify the appropriate universal limit for the double scaled theory as eS0 →∞,
and adapt the expressions in [2] accordingly. Note that we leave the firm ground established
in [20] here, since the universal limit of RMT correlation functions is a nonperturbative result,
while the duality uncovered in [20] is only at the perturbative level9. To finally express the
universal limit, we introduce a different, useful notation [2],

R1(E) = eS0⟨ρ(E)⟩ (2.6)

R2(E1,E2) = e2S0⟨ρ(E1)ρ(E2)⟩− eS0δ(E1 −E2)⟨ρ(E1)⟩. (2.7)

Accordingly, the connected two-point correlation function is given by

C2(E1,E2) = R1(E1)R1(E2)−R2(E1,E2) (2.8)

= e2S0⟨ρ(E1)⟩⟨ρ(E2)⟩+ eS0δ(E1 −E2)⟨ρ(E1)⟩− e2S0⟨ρ(E1)ρ(E2)⟩. (2.9)

8 This is taken to mean that the leading term in the perturbative expansion of the one-point function of ρT is of order
eS0 .
9 A nonperturbative completion of this kind can however be interpreted in the context of minimal string theory in
terms of D-brane insertions [20, 48]. In particular, this is consistent with the nonperturbative completion in terms of
Kodaira–Spencer Universe field theory [44, 45]. However, our computation does not rely on a particular (stringy) UV
completion of JT gravity or a specific nonperturbative matrix model, but only on the existence of a perturbatively dual
matrix model of GUE symmetry class.
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The universal limit, which is valid for all matrix models of unitary symmetry class, now
takes the form [2]10

lim
eS0→∞

C2(E1,E2)

R1(E1)R1(E2)
=

sin2(π⟨ρ(E)⟩eS0∆)

π2⟨ρ(E)⟩2e2S0∆2
, (2.10)

where eS0∆ := ∆̃ is kept finite in accordance with the above requirement of evaluating the
correlation function for energy difference of the order of the inverse Heisenberg time11. This
also justifies the replacement ⟨ρ(E1)⟩ ≈ ⟨ρ(E2)⟩ ≈ ⟨ρ(E)⟩. Using the explicit expressions and
taking the universal limit, we can solve for the desired correlation function,⟨
ρ

(
E+

∆

2

)
ρ

(
E− ∆

2

)⟩
= ⟨ρ(E1)⟩⟨ρ(E2)⟩+ δ(∆̃)⟨ρ(E)⟩− sin2(π⟨ρ(E)⟩∆̃)

π2∆̃2
. (2.11)

We can now plug this back into the SFF equation (2.3) to find

κβ(τ) = ⟨Z(β+ ieS0τ)⟩⟨Z(β− ieS0τ)⟩

+ eS0
ˆ ∞

−∞
dEe−2βE

ˆ ∞

−∞
d∆̃e−iτ∆̃

[
δ(∆̃)⟨ρ(E)⟩− sin2(π⟨ρ(E)⟩∆̃)

π2∆̃2

]

= ⟨Z(β+ ieS0τ)⟩⟨Z(β− ieS0τ)⟩+ eS0
ˆ ∞

E0

dEe−2βEmin(
τ

2π
,⟨ρ(E)⟩), (2.12)

with E0 the left edge of the spectrum of ρ(E). At this point, a comment on our notion of
taking the limit is in order. Although taken to infinity in the strict universal limit, eS0 is still
around. This can be understood in the sense of isolating the most strongly divergent term in
the limit eS0 →∞. Considering in the same spirit the first term of equation (2.12) for the g= 0
contribution to this product of correlators, one finds

Z0(β+ ieS0τ)Z0(β− ieS0τ) =
1√
2π

(
γ

β+ ieS0τ

) 3
2

e
2γπ2

β+ieS0τ
1√
2π

(
γ

β− iτ

) 3
2

e
2γπ2

β−iτ

=
γ3

2π

(
1

β2 + e2S0τ 2

) 3
2

e
2γπ2 2β

β2+e2S0τ2 ,

(2.13)

which is subleading in eS0 , even after including the additional factor of eS0 one has to multiply
to compute ⟨Z(β+ it)⟩. Due to the suppression in powers of eS0 apparent from equation (1.2),
all higher genus terms are subleading as well. Likewise, it is enough to consider the genus 0

10 Note that this result does not hold at the edge of the spectrum, i.e. E= 0. However, consider the main result of the
current section, equation (2.14) for the Airy model defined by ρ0(E) = 1

2π

√
E, as elaborated in [27], which reflects

only the behaviour near the spectral edge of the JT gravity matrix model. An exact result for the SFF is available in
this case, and by comparison, one finds that the ‘sine kernel result’ (2.14) reproduces only the leading term of the
exact result, failing to capture corrections that are (crucially) subleading in eS0 . For the present argument, we only
require the SFF to scale no more strongly than eS0 , whence it is sufficient to consider the contributions coming from
the sine kernel. We refrain from performing a more in-depth discussion in this work, and refer the interested reader to
the recent examination of the corrections to the sine kernel arising from the more general Christoffel–Darboux kernel
in [49], who show that corrections to the sine kernel in the general setting of topological gravity are indeed subleading,
providing further evidence for the point we wanted to make plausible here.
11 Note that the same limit is considered, and the same universal result used in [50]. However, the cancellation they
observe for the 2-point function between perturbative and nonperturbative divergent pieces is not the same as the
cancellation we will observe. In particular, the disconnected term in (2.7) vanishes on its own in the SFF when taking
the limit.

7
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part of ⟨ρ(E)⟩, given by e−S0ρT0(E). With these simplifications, it is possible to give an explicit
result for the JT gravity SFF:

κβ(τ) = eS0
ˆ ∞

0
dEe−2βEmin(

τ

2π
,ρ0(E)). (2.14)

This result has been first reported in [22] and evaluated in [27]. Important for us is that
κβ(τ) is finite at finite τ .

3. Scaling: power counting considerations

In the previous section, we derived an expression for the late time SFF of JT gravity from
nonperturbative information about the dual matrix model. Another way to compute this quant-
ity would be to use the JT genus expansion (which is equivalent to the perturbative expan-
sion of the matrix model) and then perform the universal and late time (‘τ -scaling’) limit
eS0 →∞, t→∞, τ = e−S0 t= const.

In this limit, the SFF (as calculated from the genus expansion) takes the form

eS0
(
a1τ + a3τ

3 + a5(β)τ
5 + . . .

)
, (3.1)

with coefficients independent of eS0 . The ai(β) specify a convergent series12 which, import-
antly, agrees with the Taylor expansion of the result (2.14) around τ = 0 and moreover gives
the exact SFF for JT gravity in the τ -scaling limit, including the plateau [27].

In order to systematically compute the contributions to (3.1), we employ the polynomial
structure of the WP volumes [46]:

Vg,2(b1,b2) =
n+m⩽3g−1∑

n,m

C(g)
n,mb

2n
1 b

2m
2 (3.2)

with non-negative constants C(g)
n,m ∈ π6g−2−2(n+m) ·Q. Using this, one can write the genus g

contribution to ⟨Z(β1)Z(β2)⟩ for arbitrary complex temperatures β1,β2

⟨Z(β1)Z(β2)⟩=
∞∑
g=0

e−2gS0

ˆ
[0,∞]2

b1db1b2db2Ztr(β1,b1)Ztr(β2,b2)
n+m⩽3g−1∑

n,m

C(g)
n,mb

2n
1 b

2m
2

=
∞∑
g=0

e−2gS0

n+m⩽3g−1∑
n,m

C(g)
n,m

√
β1β2

π

n!m!2n+m−1

γn+m+1
βn1β

m
2 . (3.3)

Thus, for the SFF (i.e. putting β1 = β+ it, β2 = β∗
1 ), one finds

κβ(t) =
∞∑
g=0

e−2gS0
n+m⩽3g−1∑

n,m

C(g)
n,m

√
β2 + t2

π

n!m!2n+m−1

γn+m+1 (β+ it)n((β+ it)∗)m

=

∞∑
g=0

e−2gS0
n+m⩽3g−1∑

n,m

C(g)
n,m

√
β2 + t2

π

n!m!2n+m−1

γn+m+1

n∑
k=0

m∑
j=0

(
m
j

)(
n
k

)
i j+k(−1) jβm+n−k−jt j+k

=:

∞∑
g=0

e−2gS0
n+m⩽3g−1∑

n,m

C(g)
n,m(κ

g
β(t))

n,m, (3.4)

12 Technically, a series with finite radius of convergence, which can be smoothly continued to τ →∞.
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where in the second to last line the binomial theorem has been used to expand the powers
of complex temperatures. We now consider the contribution to (3.4) for some fixed g in the
τ -scaling limit. For given (n,m), take for example the leading term in t of (κgβ(t))

n,m, scaling
like

tn+m+1 = e(n+m+1)S0τ n+m+1. (3.5)

Meanwhile, the contribution to the SFF of each (κgβ(t))
n,m is suppressed by a factor e−2gS0

due to the genus expansion. As an example, the highest order term coming from n+m=
3g− 1 contributes to the SFF to the order

e−2gS0e3gS0τ 3g = egS0τ 3g. (3.6)

The universal part of the SFF emerges by performing the τ -scaling limit and extracting the
leading term, which should be of order eS0 . Clearly however, there are contributions to the g> 1
SFF (or rather, to e−S0SFF, for given n,m) that diverge in this limit. From this observation, we
pose the central claim of this work:
Assuming that the JT gravity SFF in the τ -scaling limit is given by the universal RMT result,

the finiteness of this result requires that all terms scaling as e(1+n)S0 mutually cancel13.
Let us elaborate on this claim: In order for different terms of (3.4) to be able to cancel, they

must have the same order in eS0 ,β and τ respectively. As an example, take again the highest
order contribution from above, diverging as egS0 . The terms contributing at this order will all
have n+m= 3g− 1, as well as j+ k= n+m in the double sum, so as to get the correct power
of t= eS0τ . Indeed, the only nonzero term in the double sum that satisfies this will have j=m
and k= n. Summing all the terms in the corresponding contribution in equation (3.4), i.e. sum-
ming over partitions of 3g− 1 into two integers n,m, we find that the following combination
must cancel: ∑

n,m=0
n+m=3g−1

C(g)
n,m

√
β2 + t2

π

n!m!2n+m−1

γn+m+1

(
m
m

)(
n
n

)
in+m(−1)mβ0tm+n = 0. (3.7)

More generally, it is easy to see that this can only happen for terms with common n+m,
and that contributions cannot cancel between different g, as this would give extra powers of
eS0 for the same power of τ . Hence, we need to sum up the contributions from all partitions
(n,m) of n+m for fixed relevant g, separately for each relevant14 power of β and τ . Doing so
will provide constraint equations that some set of coefficients C(g)

n,m of the WP volumes need
to satisfy.

Consider for example any relevant fixed g> 1 and n+m. The first equation we obtain from
the above procedure (upon cancelling global factors and for j+ k= m+ n) is∑

n,m=0
n+m fixed

C(g)
n,mn!m!(−1)m =

∑
n⩾m

n+m fixed

1
1+ δn,m

C(g)
n,mn!m! [(−1)n+(−1)m] = 0, (3.8)

13 It is conceivable that nonperturbative effects cancel perturbative divergences instead. However, none of the non-
perturbative corrections known to the authors are simple powers of the expansion parameter, but rather terms of order
e.g. e−eS0 . Corrections of this type could not cancel perturbative divergences (which areO(e−nS0 )). This suggests that
our prediction still holds, and indeed that the perturbative and nonperturbative parts of the SFF are individually finite.
All results we have obtained until now are consistent with this claim.
14 Relevant in this context means g> 1 and j+ k> 2g in the sum (3.4). Note also that terms with j+ k< 2g are
suppressed in the τ -scaling limit, while j+ k= 2g provides precisely the universal part.
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where δn,m is the Kronecker delta. A well-known property of the WP volumes is that the coef-

ficients are symmetric, C(g)
n,m = C(g)

m,n. We can thus immediately conclude that (3.8) is always
satisfied for odd n+m, as then the (n,m) term automatically cancels with (m, n).

However, for even n+m, this trivial cancellation will not occur, and (3.8) is a nontrivial
constraint on the WP coefficients. To check this claim for plausibility, let us construct the first
example of such a nontrivial cancellation. For g= 2, the leading equation for maximal n+m=
3g− 1= 5 is trivial, while the next-to-leading equations will contribute at order e(5−2g)S0 =
eS0 , and hence provide the universal part.

The first nontrivial example thus requires g= 3, and again maximal n+m= 3g− 1= 8.
Taking the contributions from j+ k= 8 also maximal, we find the following constraint
equation:

280C(3)
8,0 − 35C(3)

7,1 + 10C(3)
6,2 − 5C(3)

5,3 + 2C(3)
4,4 = 0. (3.9)

We can check this by plugging in the coefficients given by [51]

C(3)
8,0 =

1
856141332480

, C(3)
7,1 =

1
21403533312

, C(3)
6,2 =

77
152882380800

C(3)
5,3 =

503
267544166400

, C(3)
4,4 =

607
214035333120

, (3.10)

which indeed solve (3.9). One can now leave g fixed and vary n+m, obtaining a similar
equation for a different set of coefficients. In the example at hand however, we would only
find the trivial cancellation for n+m= 7, as well as the result n+m= 6, which provides the
β-independent part of the universal result.

However, we could also leave e.g. n+m= 8 fixed, and simply take terms with j+ k< 8,
i.e. contributing at a lower—but still divergent—order in eS0 . In this way, we can find additional
equations for the same set of coefficients as before, taking the form∑

n,m=0
n+m fixed

C(g)
n,mn!m!(− 1)m(n−m) = 0 (3.11)

∑
n,m=0

n+m fixed

C(g)
n,mn!m!(− 1)m(n−m)2 = 0 (3.12)

...∑
n,m=0

n+m fixed

C(g)
n,mn!m!(− 1)m(n−m)l = 0 (3.13)

...

If the leading order equation is nontrivial, it follows that (3.11) is trivially satisfied by can-
cellation of the (n,m) contribution with the (m, n) one, reminiscent of what happens for odd
n+m at leading order. However, we can also see that (3.12) is a nontrivial constraint equation
which is linearly independent from (3.8).15

15 In particular, Cn,n is not involved in (3.12).
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For g= 3, the combination in (3.12) provides the β2 part of the universal result. Likewise,
the analogue of (3.11) for n+m= 7 gives the β-linear part. Generally however, we will obtain
a hierarchy of constraints for the coefficients belonging to a given n+m, requiring alternately
trivial and nontrivial cancellations, until we arrive at a combination that contributes in the
universal limit. The general form (3.13) of these constraints is readily determined by summing
up the contributions to a given n+m, yielding∑

n,m=0
n+m fixed

C(g)
n,mn!m!

∑
j,k=0

j+k=n+m−l

(
m
j

)(
n
k

)
(−1) j = 0, (3.14)

and then cleverly subtracting combinations of the constraints appearing before, i.e. for smaller
l. For a more rigorous proof, see appendix A.

The first example of another constraint than (3.8) appearing is for g= 4, where the leading
order term vanishes by symmetry. The first (and only) nontrivial constraint for the coefficients
with n+m= 3g− 1= 11 is given by (3.11), which can be simplified to

3630C(4)
11,0 − 270C(4)

10,1 + 42C(4)
9,2 − 10C(4)

8,3 + 3C(4)
7,4 −

5
7
C(4)
6,5 = 0. (3.15)

This equation, as expected, is satisfied by the coefficients obtained by solving the topolo-
gical recursion,

C(4)
11,0 =

1
650941377911193600

, C(4)
10,1 =

1
8453784128716800

, C(4)
9,2 =

149
59176488901017600

C(4)
8,3 =

947
46026158034124800

, C(4)
6,5 =

487
3287582716723200

. (3.16)

Furthermore, for g= 4, we find the first constraint on coefficients associated to a non-
maximal value of n+m= 3g− 2= 10. The constraint is of the type (3.8) and reads

− 5
56
C(4)
5,5 +

3
14
C(4)
6,4 −

3
8
C(4)
7,3 +C(4)

8,2 −
9
2
C(4)
9,1 + 45C(4)

10,0 = 0, (3.17)

which is indeed satisfied by the relevant coefficients,

C(4)
5,5 =

533π2

7134511104000
, C(4)

4,6 =
1081π2

20547391979520
, C(4)

3,7 =
16243π2

898948399104000

C(4)
2,8 =

53π2

19025362944000
, C(4)

1,9 =
149π2

924632639078400
, C(4)

0,10 =
23π2

9246326390784000
.

(3.18)

As a further check, we evaluated the constraints up to g= 5 and verified that they are satis-
fied (cf appendix B). We refrain from going to even higher orders in checking the constraints
and proceed to make some general claims about the constraint hierarchies.

First, in order for n+m to admit a nontrivial constraint, we must have

2g+ 1< n+m⩽ 3g− 1. (3.19)

Hence, there are in total 3g− 1− 2g= g− 1 different sets of constrained coefficients, i.e.
g− 1 different constraint hierarchies. In these hierarchies, we will find in principle n+m− 2g
linearly independent constraints, but every other one of those will be trivially satisfied. This
leaves the number of nontrivial constraints for given n+m as

11
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n+m
2

− g : n+m even

n+m− 1
2

− g : n+m odd. (3.20)

An interesting question might be how strongly these equations constrain the WP coeffi-
cients. The answer, unfortunately, is ‘not very’. To this end, note that the number of constrained
coefficients in a given hierarchy is equivalent to the number of (unordered) pairwise partitions
of an integer n+m. This number is clearly n+m

2 + 1 for even n+m and n+m+1
2 for odd n+m.

Hence, we observe that there are

#variables−#constraints= 1+ g (3.21)

coefficientsmore per hierarchy than can be determined by the constraints. Notably, this number
is independent of n+m, but it still tells us that there will never be enough equations to actually
determine any of the WP coefficients unambiguously, and indeed the problem gets worse as
you increase g.

4. Discussion

To summarise, we have shown that the WP volumes, which arise as natural objects in the
JT gravity path integral, obey some rather nontrivial constraints on their coefficients. These
constraints were predicted using nonperturbative, universal information from the dual matrix
model. It is this universality that is one of the strengths of our result: we did not need to rely on
a particular nonperturbative completion either on the matrix model or on the gravity side. All
that was required is the universal limit of the matrix model correlation function we studied,
the SFF.

The striking success of applying RMT universality in the JT/RMT context suggests several
further research directions. An obvious and interesting generalisation of our results would be to
compute higher n-point functions and see if there are similar constraints on the WP volumes
appearing therein. However, identifying the correct analogue of the τ -scaling limit that we
used for the SFF has proven somewhat difficult so far. A possible resolution would be that the
genus expansion for n> 2 simply cannot capture the universal limit, as it does in the n= 2
case; a result that would be curious since there does not seem to be anything special about the
2-point function that makes our prediction hold there and not elsewhere.

Assuming that it is possible to generalise our results to higher n, another obvious target
would be to try and prove the cancellations directly from the Mirzakhani recursion or (perhaps
more simply, and certainly more generally) the topological recursion. As evident from the
coefficients cited above, the WP volumes encode information about hyperbolic surfaces in a
highly nontrivial manner, and the resulting coefficients need to conspire very precisely to be
able to produce a finite result in the τ -scaling limit. It is not far-fetched then to suspect there
to be a mechanism at the level of the recursion to ensure that the coefficients take values that
are compatible with a finite universal limit.

Possibly useful tools to investigate such a mechanism could be provided by intersection
theory, which has been used in [26] to identify the same cancellations as we have reported in
this work. Some attention has also been directed towards resonance and resurgence of the JT
gravity genus expansion [52, 53], though mainly at the level of the free energy, and it is not
immediately clear whether such considerations could be profitably used for the questions at
hand.

Finally, since the physical argument that led us to identifying the constraint relations—the
existence of a finite universal limit of the matrix model dual—is not particularly fine-tuned to

12
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JT gravity (see e.g. [54]), it seems expedient to try to apply our reasoning to other gravitational
models that are often studied in conjunction with JT, for example Liouville quantum gravity
or minimal string models. Doing so might help better elucidate the relation of universality and
(quantum) gravity if indeed there is any. Another option would be to simply work directly with
matrix models defined by the topological recursion, e.g. the one constructed from the spectral
density tanh

√
E. This one is particularly interesting because it seems like the more natural

choice for JT gravity when using its description as an SL(2,R)BF-theory16. Here, the metric
information is encoded in a flat SL(2,R) connection, for which the natural Plancherel dens-
ity is the hyperbolic tangent, rather than the hyperbolic sine. However, restricting to smooth
geometries (see [55]), one selects only one component of the connection, exchanging the tanh
for a sinh in the process (i.e. going over to a description as a SL+(2,R)BF-theory) [56]. A
similar issue appears in the ‘quantum particle in AdS2’ description of [57], where summing
over different SL(2,R) representations, the spectral density tracks a kind of winding number
that would correspond to singular geometries in JT gravity, hence requiring regularisation in
the form of an infinite imaginary magnetic field in the quantum mechanical system to arrive
at the JT result.

5. Conclusion

We have here proposed the systematic use of universal RMT results to uncover new relations
among functions defined over the moduli space of 2-dimensional manifolds. The essence of
this program is the conjectured existence—well motivated on physical grounds—of a regime
where a strict equivalence between low-dimensional quantum gravity models and the universal
correlations given by RMT holds.

As a first key step in this direction, a particular form of this equivalence has been made
explicit in [27] by identifying the regime of parameters where the 2-point functions of Jackiw–
Teitelboim gravity are conjectured to be given by the corresponding RMT correlators for the
GUE ensemble. Assuming the validity of this conjecture, that includes both perturbative and
non-perturbative contributions, we found hitherto unknown identities among the numerical
factors of the polynomial WP volumes on the JT side.

Since the non-trivial correctness of the identities for n= 2 is now firmly established and
checked against exact results, the possible extension of this program for higher order functions
(and the corresponding WP volumes) as well as to other types of models as discussed here is
a promising route to merge RMT with the theory of hyperbolic manifolds.
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Appendix A. Proof of the form of the constraint hierarchies

As stated above, for a chosen value of genus g and n+m one finds a hierarchy of constraints.
The lth constraint is given by

Kl(n+m) :=
∑
n,m=0

n+m fixed

C(g)
n,mn!m!

∑
j,k=0

j+k=n+m−l

(
m
j

)(
n
k

)
(−1) j (A.1)

=:
∑
n,m=0

n+m fixed

C(g)
n,mn!m!Pl(n,m), (A.2)

for values of l such that j+ k> 2g. We proceed to prove that a linearly independent combina-
tion of these constraints takes the form

Ksimplified
l (n+m) :=

∑
n,m=0

n+m fixed

C(g)
n,mn!m!(−1)m(n−m)l. (A.3)

As a first step by using the property
(n
m

)
=
( n
n−m

)
of the binomial coefficient it is useful to

rewrite the Pl(n,m) into the more convenient form

Pl(n,m) =
∑
j,k=0

j+k=n+m−l

(
m

m− j

)(
n

n− k

)
(−1) j (A.4)

= (−1)m
∑
δ,γ=0
δ+γ=l

(−1)γ
(
m
γ

)(
n
δ

)
, (A.5)

where γ = m− j and δ = n− k.
Next, we show that Pl(n,m) is a polynomial of degree l in m, as well as in n. To do so, it

suffices to show that each individual term in Pl(n,m) is a polynomial. For a< b, it holds that(
b
a

)
=

b!
a!(b− a)!

=
1
n!

a−1∏
j=0

(b− j), (A.6)

which is a polynomial of degree a in b. Hence, both binomial coefficients appearing in Pl(n,m)
are polynomials in n or m, and so is their product. Evidently, the degree of these polynomials
is l, whence

Pl(n,m) = (−1)m
[(

m
0

)(
n
l

)
+(−1)l

(
m
l

)(
n
0

)
+(lower order in n,m)

]
= (−1)m

[
1
l!
nl+

1
l!
(−m)l+(lower order in n,m)

]
= (−1)m

[
1
l!
(n−m)l+(lower order in n,m)

]
. (A.7)

From here, (A.3) follows immediately upon realising that the lower order terms, plugged
into (A.2), all reduce to linear combinations of constraints for smaller l (notice that n+m is a
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global constant for each term and can be pulled out of the sum). If the previous constraints are
satisfied, they can be safely subtracted, leaving the desired expression (A.3).

Appendix B. Constraints for g= 5

g= 5marks the first instance of multiple constraints on one particular set of coefficients. Using
the formulae stated above one finds for n+m= 14

l= 0 : 48048C(5)
14,0 − 3432C(5)

13,1 + 528C(5)
12,2 − 132C(5)

11,3 + 48C(5)
10,4 − 24C(5)

9,5 + 16C(5)
8,6 − 7C(5)

7,7 = 0,

(B.1)

l= 1 : 147147C(5)
14,0 − 7722C(5)

13,1 + 825C(5)
12,2 − 132C(5)

11,3 + 27C(5)
10,4 − 6C(5)

9,5 +C(5)
8,6 = 0.

(B.2)

For n+m= 13:

l= 0 : 22308C(5)
13,0 − 1452C(5)

12,1 + 198C(5)
11,2 − 42C(5)

10,3 + 12C(5)
9,4 − 4C(5)

8,5 +C(5)
7,6 = 0. (B.3)

Evaluating the coefficients of theWP volume V5,2 by the procedure outlined in appendix C,
one finds

C(5)
14,0 =

1
1364789730583724949504000

, C(5)
13,1 =

1
10831664528442261504000

C(5)
12,2 =

7
2142527049581985792000

, C(5)
11,3 =

307
6561489089344831488000

C(5)
10,4 =

29
88370223425519616000

, C(5)
9,5 =

2351
18747111683842

C(5)
8,6 =

2291
833204963726327808000

, C(5)
7,7 =

173
48603622884035788800

, (B.4)

for the leading order coefficients and

C(5)
13,0 =

29π2

12185622594497544192000
, C(5)

12,1 =
7π2

26781588119774822400

C(5)
11,2 =

257π2

32547068895559680000
, C(5)

10,3 =
35521π2

372811880076410880000

C(5)
9,4 =

11827π2

21303536004366336000
, C(5)

8,5 =
12491π2

7232681976791040000

C(5)
7,6 =

195983π2

65094137791119360000
, (B.5)
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for the next-to-leading order ones. As one can check by plugging those coefficients in the
constraints given above, they are indeed satisfied.

Appendix C. The topological recursion for the JT matrix model

To give a complete picture of thematrix model of [20], the objective of this appendix is to intro-
duce the topological recursion that is used to compute the perturbative expansion of observ-
ables in this matrix model, using only the leading genus density of states and the symmetry
class of the model as input. As this method here is primarily used as a tool to compute the WP
volumes, we aim at giving a brief minimal-technical presentation, referring for the details to
the literature.

Restricting again to the unitary symmetry class, we specialise to the leading order density
of states given by equation (1.3)

ρJT0 (E) =
γ

2π2
sinh(2π

√
2γE), (C.1)

where we introduce the superscript to distinguish this specific ρ0 from the general expressions
appearing in the following discussion.

To formulate the topological recursion, it is best to define the spectral curve y(E)17 via

y(E) =−iπρ0(E). (C.2)

Thus, for the case of the JT density of states one finds

yJT(E) =−iπρJT0 (E) =
−iγ
2π

sinh(2π
√
2γE)

=
γ

2π
sin

(
2π

√
2γ

(
−i

√
E
))

. (C.3)

This object naturally appears in the context of the loop equations for matrix models defined
via a potential V(H) (often assumed to be a polynomial), i.e. via the partition function

Z =

ˆ
E
e−tr(V(H))dH, (C.4)

where E denotes the space of matrices of the symmetry class one wishes to study [21, 58].
As mentioned in the introduction, this integral is taken to be a ‘formal’ integral, meaning that,
as one is accustomed to in QFT, the quadratic term in the potential yields a propagator and
higher terms of the potential are treated by a formal Taylor expansion of the potential, which
can be evaluated by computing Gaussian integrals, i.e. diagrammatically [58]. More precisely,
the formal matrix model leading to yJT is the Kontsevich matrix model [59] for a particular
choice of Kontsevich times found by the Taylor expansion of yJT [60]. The applicability of the
topological recursion to this particular case was shown in [29], thus justifying its use for the
spectral curve considered here.

It turns out that for the topological recursion the most important property of the spectral
curve is its behaviour at its branch points. Thus it is useful to study this in more detail for the
case of yJT. From the first line of equation (C.3), one can see quite clearly that the spectral

17 Following the notational convention of [20] which we adopt in the following. The ‘spectral curve’ in the sense of
e.g. [58], being the mathematically precise definition of this object, following the notation there is given by Σ= P1,
with P1 denoting the Riemann sphere, due to the matrix model being a one-cut matrix model, x(z) = z2(=−E),
y(z) = yJT(z), B= ω0,2 with the not yet defined objects defined below.
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curve’s sole branch point is at the origin coming from
√
E. At this point, it is useful to intro-

duce a new coordinate that takes care of the branch-cut structure intrinsically. This coordinate,
following the convention of [20], is defined via

z2 =−E. (C.5)

The branch cut structure is implemented by solving for z=±i
√
E and choosing the negative

sign on the physical sheet (where equation (C.2) holds) and the positive sign on the other sheet.
Thus, by choosing z as coordinate the branch cut structure is implemented automatically and
all functions become single valued. As a first example, consider the second line of (C.3) to
obtain

yJT(z) =
γ

2π
sin

(
2π

√
2γz

)
, (C.6)

which is indeed single-valued.
It is furthermore important to define the resolvent via18

R(E) :=

⟨
tr

(
1

E−H

)⟩
. (C.7)

Analogously to ρ and Z(β), one can of course also consider (connected) correlation func-
tions of resolvents. Correlators of partition functions can furthermore be computed from the
resolvents by utilizing the generalisation of

R(E) =−
ˆ ∞

0
dβeβEZ(β), (C.8)

to products of resolvents inside the matrix-model expectation value. Hence after double-
scaling, by linearity of the integral, there is an expansion in e−S0 of the correlation functions
of resolvents as

⟨R(E1, . . . ,En)⟩=
∞∑
g=0

Rg,n(E1, . . . ,En)
(eS0)2g+n−2

. (C.9)

Having defined this object, we cite the topological recursion from [58] and apply it to the
present case. The recursion is most naturally formulated using differential forms and thus one
defines19

ωg,n(z1, . . . ,zn) = Rg,n(E1, . . . ,En)dE1 . . .dEn+ δg,0δn,2
dE1dE2

(E1 −E2)2
, (C.10)

where the coordinates Ei are the coordinates on the branched surface interpreted as functions
of the ‘double-cover’ coordinates zi defined in equation (C.5). Using this definition, one has
dE=−2zdz and thus one can write for (g,n) ̸= (0,2)

ωg,n = (−2)nz1 . . .znRg,n(−z21, . . . ,−z2n)dz1 . . .dzn
:=Wg,n(z1, . . . ,zn)dz1 . . .dzn. (C.11)

18 They are not to be mistaken for the Rn(E1, . . . ,En) considered in the main text.
19 It is not notational sloppiness leading to the missing of wedge-product signs but ωg,n is to be understood as an
element of the tensor product of n one-forms.
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For the excluded case, (g,n) = (0,2), one definesW0,2 analogously including the additional
summand in equation (C.10).20 We proceed to stating the topological recursion determining
the ωg,n for a spectral curve y:

First, by definition21

ω0,1 =−ydE= 2zy(z)dz, (C.12)

ω0,2 =
dz1dz2

(z1 − z2)2
, (C.13)

which serves as the input to the recursion. Now, for each branch point a of the spectral curve
one defines

Ka(z1,z) :=
1
2

´ z
σa(z)

ω0,2(z1, ·)
ω0,1(z)−ω0,1(σa(z))

, (C.14)

where σa(z) is a so-called local Galois involution which denotes a function locally exchanging
the two sheets meeting at the branch point22. Furthermore, the notation

´
ω(z1, ·) with ω ∝

dz1dz2 denotes the integration of the one-form whose position is replaced by the ·. Having
defined this, one canwrite the topological recursion for the unitary symmetry class determining
the other ωg,n, using the abbreviating notation of J for the (ordered) set z2, . . . ,zn, as

ωg,n(z1,J) =
∑
a

Res
z=a

Ka(z1,z)

[
ωg−1,n+1(z,σa(z),J)

+
′∑

h+h ′=g
I∪I ′=J

ωh,1+|I|(z, I)ωh ′,1+|I ′|(σa(z), I
′)

]
, (C.15)

with
∑ ′

denoting the sum excluding the cases (h, I) = (0,∅) and (h, I) = (g,J).
To apply this result, taken from [58], it remains to compute Ka for the branch points of

the spectral curve one wishes to study. For the spectral curve of present interest, yJT, there is
only one branch point a= 0 and thus only K0 has to be computed. As noted in footnote 21,
σ0(z) =−z and thus

20 Adding the additional term to ω0,2 seems unreasonable at first sight but as one can see e.g. from the well known
relation of ⟨ρ(E1) . . .ρ(En)⟩ to ⟨R(E1), . . . ,R(En)⟩, only the discontinuity of R through the cut matters and the addi-
tional term does not contribute to this. Thus, it is valid to use W0,2 to compute e.g. the corresponding contribution to
⟨Z(β1)Z(β2)⟩. However, one should keep in mind that the added term actually introduces a singularity as E1 → E2

which was not present in the original R0,2.
21 The definition of ω0,1 is modified by a sign compared to [58] to follow the sign convention of [20]. Using the
general result for R0,2 for one-cut matrix models, found e.g. in [21] one can verify directly that ω0,2 is indeed of this
form.
22 Put plainly, it is a function mapping the coordinate z to the other coordinate corresponding to the same E. For the
coordinate defined in equation (C.5), σ0(z) =−z.
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K0(z1,z) =
1
2

´ z
−zω0,2(z1, ·)

ω0,1(z)−ω0,1(−z)
=

1
2dz1
´ z
−z

dz2
(z1−z2)2

2z(y(z)− y(−z))dz

=
1
2dz1[

1
z1−z −

1
z1+z

]

2z(y(z)− y(−z))dz

=
dz1

z21 − z2
1

2(y(z)− y(−z))dz
. (C.16)

Using the antisymmetry of yJT one has

K0(z1,z) =
1

z21 − z2
1

4y(z)
dz1
dz

. (C.17)

Putting this into equation (C.15) one can, after noting that on the RHS one of the dz is
cancelled by the denominator of K0, drop the differentials and write the equation in terms of
the Wg,n, yielding

Wg,n(z1,J) = Res
z=0

{
dz

z21 − z2
1

4y(z)

[
Wg−1,n+1(z,−z,J)

+
′∑

h+h ′=g
I∪I ′=J

Wh,1+|I|(z, I)Wh ′,1+|I ′|(−z, I ′)

]}
, (C.18)

in accordance with the relation given in [20]. Note, that this formula only holds for the unitary
symmetry class, and that were one to consider a different symmetry class, but the same spectral
curve, additional difficulties appear.

After arriving at the topological recursion, a useful final step is to relate them to the WP
volumes, as those are the objects of interest for the main text. The definition of the Wg,n in
equation (C.11) and the relation of the correlators of resolvents to those of partition functions
(cf equation (C.8)) imply

Wg,n(z1, . . . ,zn) =
n∏
i=1

[
2z
ˆ ∞

0
dβie

−βi z
2
i

]
Zg,n(β1, . . . ,βn). (C.19)

Thus, one can computeWJT
g,n, the object derived from the correlators of partition functions in

JT gravity, by plugging the general expression for Zg,n, given in equation (1.2), into (C.19).23

This yields

WJT
g,n(z1, . . . ,zn) =

n∏
i=1

[ˆ ∞

0
bi dbi 2zi

ˆ ∞

0
dβie

−βi z
2
i Zt(βi,bi)

]
Vg,n(b1, . . . ,bn). (C.20)

23 The cases of (g,n) = (0,1), (g,n) = (0,2) where this expression does not hold are exactly the cases where the
Wg,n are given as input to the topological recursion, hence already known.
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Now one can perform the Laplace transform of the trumpet using [61, formula 17.13.30]
and use this result to find

WJT
g,n(z1, . . . ,zn) =

n∏
i=1

[√
2γ
ˆ ∞

0
bi dbi e

−
√
2γbi zi

]
Vg,n(b1, . . . ,bn). (C.21)

Thus, for JT gravity,Wg,n is the (modified) Laplace transform of the WP volume of genus g
and n geodesic boundaries multiplied with by boundary lengths. To facilitate an easier compar-
ison, it is useful to observe that ifWg,n(z1, . . . ,zn) are the outputs of the topological recursion in
equation (C.18) for the spectral curve y(z), thenW ′(z1, . . . ,zn) :=

√
2γ

n
W(

√
2γz1, . . . ,

√
2γzn)

are the outputs of the topological recursion for the spectral curve y ′(z) := 2γy(
√
2γz) as one

can check simply by putting the primed objects into the topological recursion (equation (C.18))
[20]. Thus, one can set w.l.o.g γ = 1

2 , in which case the relation between theW
JT
g,n and the WP

volumes becomes the usual Laplace transform.
As the general form of the WP volumes is known from [46], it is convenient to compute the

general version of the RHS of equation (C.21) to obtain a simple relation between coefficients
appearing in the WJT

g,n and those in the WP volumes. The general form of the WP volumes
(from which equation (3.2) is derived) is given by

Vg,n(L⃗) =
||a||1⩽3g−3+n∑

a⃗

Ca⃗g,n

n∏
i=1

L2aii , (C.22)

with L⃗ ∈ Rn
+, a⃗ ∈ Nn

0, ||a||1 =
∑n

i=1 ai and positive constants Ca⃗g,n ∈ π6g−g+2n−2||a||1 ·Q 24.
The WP volumes are symmetric polynomials in the boundary lengths and so the coefficients
Ca⃗g,n are symmetric under all permutations of entries in a⃗. Thus, one can compute the WJT

g,n by
performing the Laplace transform in equation (C.21), using [61, formula 17.13.2] as

WJT
g,n(z1, . . . ,zn) =

∑
a⃗

Ca⃗g,n

n∏
i=1

(2ai+ 1)!
(z2i )

ai+1
. (C.23)

This enables one to read off the coefficients of the WP volumes directly from the result of
the topological recursion, since by invoking the duality of JT gravity and the matrix model
[20] it holds that the Wg,n found by performing the topological recursion using yJT equal the
WJT
g,n.

25

This way of computing the WP volumes is the way that was used in this work and in [62]
to obtain the WP volumes that could not be found in the literature.

Appendix D. Collection of relevant WP volumes

For the convenience of the reader, we include here a collection of the relevant WP volumes
for n= 2, obtained by the method stated in appendix C. To abbreviate the presentation of the
volumes, we introduce the notation of [51]

24 The general version of the WP coefficients needed here is related to the ones for n= 2 considered in the main text

via C(n,m)
g,2 = C(g)

n,m.
25 Actually, at this stage one can see this explicitly as by a result of Eynard and Orantin [60], the RHS of
equation (C.21) (for γ = 1

2
) holds for the Wg,n obtained by using yJT.
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ma1,...,an(L1, . . . ,Ln) :=
∑

π∈S(n)

n∏
i=1

L
2aπ(i)

i , (D.1)

where S(n) denotes the permutation group for a set of order n. This notation is introduced to
put the symmetry of the WP volumes into the polynomial part so that each of the coefficients
only appears once. The volumes we give here up to g= 3 coincide with the ones published in
[51], the higher ones were computed in [62]

V1,2(L1,L2) =
1

192
m2 +

1
96
m1,1 +

π2

12
m1 +

π4

4
(D.2)

V2,2(L1,L2) =
1

4423680
m5 +

1
294912

m4,1 +
29

2211840
m3,2

+
11π2

276480
m4 +

29π2

69120
m3,1 +

7π2

7680
m2,2

+
19π4

7680
m3 +

181π4

11520
m2,1 +

551π2

8640
m2

+
7π6

36
m1,1 +

1085π8

1728
m1 +

787π10

480
(D.3)

V3,2(L1,L2) =
1

856141332480
m8 +

1
21403533312

m7,1 +
77

152882380800
m6,2

+
503

267544166400
m5,3 +

607
214035333120

m4,4

+
17π2

22295347200
m7 +

77π2

3185049600
m6,1 +

17π2

88473600
m5,2 +

1121π2

2229534720
m4,3

+
1499π4

7431782400
m6 +

899π4

185794560
m5,1 +

10009π4

371589120
m4,2 +

191π4

4128768
m3,3

+
3859π6

139345920
m5 +

33053π6

69672960
m4,1 +

120191π6

69672960
m3,2

+
195697π8

92897280
m4 +

110903π8

4644864
m3,1 +

6977π8

138240
m2,2

+
37817π10

430080
m3 +

2428117π10

4147200
m2,1

+
5803333π12

3110400
m2 +

18444319π12

3110400
m1,1

+
20444023π14

1209600
m1 +

2800144027π16

65318400
(D.4)
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V4,2(L1,L2) =
1

650941377911193600
m11 +

1
8453784128716800

m10,1 +
149

59176488901017600
m9,2

+
947

46026158034124800
m8,3 +

1781
23013079017062400

m7,4 +
487

3287582716723200
m6,5

+
23π2

9246326390784000
m10 +

149π2

924632639078400
m9,1 +

53π2

19025362944000
m8,2

+
16243π2

898948399104000
m7,3 +

1081π2

20547391979520
m6,4 +

533π2

7134511104000
m5,5

+
18691π4

10787380789248000
m9 +

55367π4

599298932736000
m8,1 +

189851π4

149824733184000
m7,2

+
38789π4

6115295232000
m6,3 +

41987π4

3057647616000
m5,4

+
43591π6

64210599936000
m8 +

407821π6

14046068736000
m7,1 +

4927249π6

16052649984000
m6,2

+
654223π6

573308928000
m5,3 +

39947π6

22932357120
m4,4

+
105541π8

642105999360
m7 +

17546603π8

3210529996800
m6,1 +

212383π8

4954521600
m5,2 +

25760323π8

229323571200
m4,3

+
13624007π10

535088332800
m6 +

42308743π10

66886041600
m5,1 +

467464817π10

133772083200
m4,2 +

19096223π10

3185049600
m3,3

+
634238489π12

250822656000
m5 +

4465379809π12

100329062400
m4,1 +

5043377833π12

31352832000
m3,2

+
275930395973π14

1755758592000
m4 +

798137682887π14

438939648000
m3,1 +

2223110269π14

580608000
m2,2

+
15253048628171π16

2633637888000
m3 +

2743831363π16

69984000
m2,1

+
5652202930679π18

49380710400
m2 +

18239563926361π18

49380710400
m1,1

+
70726245137π20

70543872
m1 +

909612310986473π22

362125209600
(D.5)

V5,2 =
1

1364789730583724949504000
m14 +

1
10831664528442261504000

m13,1

+
7

2142527049581985792000
m12,2 +

307
6561489089344831488000

m11,3

+
29

88370223425519616000
m10,4 +

2351
1874711168384237568000

m9,5

+
2291

833204963726327808000
m8,6 +

173
48603622884035788800

m7,7

+
29π2

12185622594497544192000
m13 +

7π2

26781588119774822400
m12,1

+
257π2

32547068895559680000
m11,2 +

35521π2

372811880076410880000
m10,3
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+
11827π2

21303536004366336000
m9,4 +

12491π2

7232681976791040000
m8,5 +

195983π2

65094137791119360000
m7,6

+
12533π4

3645271716302684160000
m12 +

111059π4

341744223403376640000
m11,1

+
513881π4

62135313346068480000
m10,2 +

342973π4

4142354223071232000
m9,3 +

155051π4

394509926006784000
m8,4

+
3691217π4

3797158037815296000
m7,5 +

28393333π4

21698045930373120000
m6,6

+
746359π6

256308167552532480000
m11 +

906701π6

3883457084129280000
m10,1 +

3280321π6

665735500136448000
m9,2

+
20793847π6

517794277883904000
m8,3 +

934747π6

6164217593856000
m7,4 +

23560181π6

81367672238899200
m6,5

+
822676861π8

512616335105064960000
m10 +

5502349099π8

51261633510506496000
m9,1 +

291625027π8

158214918242304000
m8,2

+
680389207π8

56957370567229440
m7,3 +

28341076777π8

813676722388992000
m6,4 +

6646517π8

134536495104000
m5,5

+
1720681199π10

2847868528361472000
m9 +

5228546699π10

158214918242304000
m8,1 +

29734883489π10

65922882600960000
m7,2

+
2833604759π10

1255673954304000
m6,3 +

27621933149π10

5650532794368000
m5,4

+
2093413439π12

13184576520192000
m8 +

1028275626517π12

148326485852160000
m7,1 +

1547183158841π12

21189497978880000
m6,2

+
71870494697π12

264868724736000
m5,3 +

21290470169π12

51368479948800
m4,4

+
723245314721π14

24721080975360000
m7 +

10482426936559π14

10594748989440000
m6,1 +

3415903160291π14

441447874560000
m5,2

+
278960556041π14

13759414272000
m4,3

+
714235157688961π16

190705481809920000
m6 +

374872663008227π16

3973030871040000
m5,1

+
15029334826883π16

28894769971200
m4,2 +

2706543742892333π16

3033950846976000
m3,3

+
1273141965049441π18

3910952263680000
m5 +

91605521229823π18

15801827328000
m4,1 +

424892819083031π18

20316635136000
m3,2

+
21003173757852809π20

1137731567616000
m4 +

3833971660458281π20

17777055744000
m3,1 +

639949676749247π20

1410877440000
m2,2

+
1335614874712607261π22

2085841207296000
m3 +

22792697163251567591π22

5214603018240000
m2,1

+
27265508288173067377π24

2234829864960000
m2 +

103459516577811119839π24

2607301509120000
m1,1

+
1333969300247433001961π26

12710594856960000
m1 +

158075460169843246549π28

605266421760000
. (D.6)
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