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Fast scrambling, quantified by the exponential initial growth of out-of-time-ordered correlators (OTOCs),
is the ability to efficiently spread quantum correlations among the degrees of freedom of interacting systems
and constitutes a characteristic signature of local unstable dynamics. As such, it may equally manifest both in
systems displaying chaos or in integrable systems around criticality. Here we go beyond these extreme regimes
with an exhaustive study of the interplay between local criticality and chaos right at the intricate phase-space
region where the integrability-chaos transition first appears. We address systems with a well-defined classical
(mean-field) limit, as coupled large spins and Bose-Hubbard chains, thus allowing for semiclassical analysis.
Our aim is to investigate the dependence of the exponential growth of the OTOCs, defining the quantum
Lyapunov exponent λq on quantities derived from the classical system with mixed phase space, specifically
the local stability exponent of a fixed point λloc as well as the maximal Lyapunov exponent λL of the chaotic
region around it. By extensive numerical simulations covering a wide range of parameters we give support to
a conjectured linear dependence 2λq = aλL + bλloc, providing a simple route to characterize scrambling at the
border between chaos and integrability.
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I. INTRODUCTION

The temporal growth properties of out-of-time-ordered
correlators (OTOCs), first introduced in Ref. [1], provide a
useful tool in the understanding of scrambling of quantum
correlations, the ubiquitous mechanism behind many impor-
tant many-body emergent phenomena, from equilibration or
thermalization [2–6] to the information loss paradox and black
hole physics [7,8] and ultimately to the quantum signatures of
chaos [9].

In the context of the quantum-classical correspondence and
the signatures of quantum chaos, by means of the methodol-
ogy of canonical quantization, OTOCs can be shown to have
a classical limit related to the Poisson brackets of the classical
system. In the semiclassical limit, this in turn relates their
growth behavior to quantifiers of dynamical instability and
chaoticity [1,8].

One reason OTOCs have gained considerable attention for
studies of this type is that they offer a way to make statements
on the thermodynamical high-particle limit of a system [8]
while still maintaining their semiclassical interpretation. On
the other hand quantum chaos traditionally has been an area
focused on systems with few degrees of freedom as long as
there ought to be performed a semiclassical limit explicitly
(see, however, Ref. [10]).

In this work we are only considering systems with low-
dimensional classical analogs and investigate in detail how
the quantity λq characterizing the OTOCs for a time regime
shorter than the Eherenfest time, in which the OTOC grows
exponentially as C(t ) ∼ exp(2λqt ), is related to classical
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quantities characterizing the classical dynamics for a system
with mixed phase space.

In previous works [11,12] it was shown that the entangle-
ment entropy, another quantity related to investigations of the
quantum-classical correspondence with dynamically chaotic
classical limit, in some cases grows exponentially with an ex-
ponent depending on the sum of classical Lyapunov exponents
of subsystems. Furthermore in Refs. [13,14] it was shown that
exponential growth of an OTOC can be attributed to a local
instability—a hyperbolic fixed point—even in an otherwise
regular system, which in a many-body context is a standard
indicator of critical behavior [15,16].

For a system and regimes with classical mixed phase space,
hence, where both quantities λloc and λL can be present at the
same time, we propose the hypothesis that in its exponential
regime, an OTOC grows with an exponent depending both
on the local as well as global stability classifiers, namely the
stability exponent of a fixed point as well as the Lyapunov
exponent of the phase-space region in which the fixed point
is located. For systems with at least locally unstable classical
limit, it is assumed that an OTOC grows polynomially until
a time t0, referred to as the dissipation or ergodic time, then
enters the exponential regime that we are interested in until
a time tE given by the Ehrenfest time [17–20], and, finally,
saturates to a constant value depending on the dimension of
the quantum mechanical state space [8,21–23]. In works like
Refs. [8,22] this time tE is also referred to as the scrambling
time t∗, which is a synonymous choice of terminology. Writ-
ing from the perspective of semiclassics we refer to it as the
Ehrenfest time, which marks the breakdown of the quantum to
classical correspondence, rather than as the scrambling time,
which is the name used when analyzing the time it takes for
the scrambling of information about initial states setting in
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as an effect of the temporal dynamics. Further notable recent
works on the topics related to the growth behavior of OTOCs
include Refs. [24–37]. Related experimental results can be
found, e.g., in Refs. [38–40].

In Sec. II A we present the basic theoretical notions starting
from the type of OTOC used, its relation to classical quantities
and the formulation of the main hypothesis that we test in this
work. Afterwards in Sec. III we apply the theory on a spin
system similar to the one defined in Ref. [41] as well as com-
pare the results with a similar investigation of a Bose-Hubbard
system in Sec. IV. Finally, Sec. V contains the conclusions we
can draw from the obtained results.

II. EXPONENTIAL GROWTH OF OTOCS

A. Definitions and concepts

For our purposes we use as the OTOC of choice the com-
mutator squared, defined as

CÂB̂
ρ (t ) := 〈||[Â(t ), B̂(0)]||2〉ρ,

ρ := |z〉〈z|, z ∈ P, ||Ô||2 := ÔÔ†, (1)

where |z〉 is a coherent state situated at a point z of a sym-
plectic manifold P that is serving as the classical phase
space of the Hamiltonian system associated to the quantum
Hamiltonian generating the time evolution U (t ) and with the
Heisenberg time evolution

Â(t ) := U †(t )ÂU (t ). (2)

Here the particular form of the OTOC follows the standard
literature [8]. To gain intuition about its key characteristic
features, we can compare Eq. (1) against the susceptibilities in
the framework of linear response theory [42] that are defined
in exactly the same way but without the square operation
and are deeply connected with the notion of causality. The
presence of the square in the definition of the OTOC has
then two effects. First, it makes it impossible to time order
it in a causal form, making it very different from a suscep-
tibility. Second, OTOCs are then defined as expectations of
positive-definite objects and therefore produce a large signal
even under averaging, making them quite robust objects.

By means of the quantum-classical correspondence princi-
ple, up to the Ehrenfest time tE we can associate the squared
commutator with a squared Poisson bracket and the quantum
time evolution Â(t ) = αt (Â) := U †(t )ÂU (t ) with the classical
flow given by a symplectomorphism φt as φt (z0) := z(t ) and
finally obtain

CÂB̂
ρ (t ) → ({A ◦ φt , B}(z) )

2, A, B ∈ C∞(P,R),

φt ∈ Symp(P, ω) ⊂ C∞(P,P ). (3)

Here Symp(P, ω) are the symplectomorphisms [43,44] of
P relative to the symplectic form ω and C∞(P,P ) are the
smooth functions from P to itself. While we always have to
work in a chart representation when performing the numerics
showcased in the later chapters, we remark that neither of
the spaces containing the dynamics occurring in this work is
identical to a Euclidean space, so that it cannot be identified
globally with a chart domain [45]. Instead of writing down all
chart maps explicitly, we employ slight abuse of notation by

denoting a point x ∈ P implicitly as its chart representative as
x = z(x) = (z1, . . . , z2 f ) = (q1, . . . , q f , p1, . . . , p f ) so that z
is to be seen as either an abstract point in P , a tuple of
chart maps or a tuple of coordinates depending on where
it appears in an equation. The quantities A, B without hats
are the classical observables corresponding to the operators
Â, B̂ and {, }(z) is the Poisson bracket evaluated at a point
z ∈ P , defined by means of the symplectic form ω in terms
of Hamiltonian vector fields X f , X g [43,44],

{ f , g}(z) := ω(z)
(
X f

(z), X g
(z)

)
X f := (df )#ω , f , g ∈ C∞(P,R).

(4)

Here #ω is the musical isomorphism [43] induced by the
skew-bilinear form ω that translates a covector df into a
vector X f . We denote the differential of a function f : P →
P as df which is a linear map df : TzP → Tf (z)P general-
izing the concept of a derivative to the setting of smooth
manifolds. With respect to coordinates z = (zμ) the dif-
ferential corresponds to the Jacobian [∂ f̃ μ(z)/∂zν] of the
chart-representative f̃ = z ◦ f ◦ z−1. If we choose the ob-
servables A, B as coordinate functions zμA, zμB corresponding
to the µAth and µBth coordinates from the chart functions
z = (q1, . . . , q f , p1, . . . , p f ) that form a system of canonical
coordinates, then we can identify the Poisson bracket with a
component of the linearized flow:

{zμA ◦ φt , zμB}(z) = ωμBν[dφt (z)]
μA
ν ∝ exp[λloc(z)]. (5)

Here ωμν are the matrix components of the inverse of the
matrix representation of the symplectic form ω, dφt (z) is the
linearized flow at z and in the whole expression the Einstein
summation of equal upper and lower indices is implied. A
derivation of this expression can be found in Appendix A 1.
For each region U ⊆ P that is an invariant region with respect
to the flow, φt (U ) ⊆ U , a concept of dynamical stability can
be established. The most basic invariant subsets of phase
space are period t periodic orbits PO(φt , t ) with respect to
the map that is given by the flow φt among which the simplest
case is that of a fixed point. If we assume z to be a fixed
point, meaning a periodic orbit with no minimal period, then
the domain and target of the linearized flow are the same,
dφt (z) : TzP → Tφt (z)=zP and we can meaningfully speak of
its eigenvalues [46], which are then given by local stability
exponents λloc(z) as in the previous Eq. (5). We call a direction
defined by a tangent vector from the coordinate basis ∂/∂zμ

(z)
at z stable if its corresponding exponent [dφt (z)]

μ
μ ∝ λloc(z)

is purely imaginary, while we call it unstable if the expo-
nent has a positive real part. In the general case where z is
not on a periodic orbit, the concept of eigenvalues for the
linearized flow breaks down and the corresponding quantifier
of stability becomes the maximal Lyapunov exponent which
takes account of the whole region the point is situated in.
The maximal Lyapunov exponent is the maximal element
of the Lyapunov spectrum and will from hereon always just
be referred to as just the Lyapunov exponent. This language
is chosen since we do not require the other elements from
the Lyapunov spectrum. The Lyapunov exponent of a regular
region in phase space, meaning a region that, up to subsets
of measure zero, only contains stable states, evaluates to zero
since in nonchaotic systems, nearby trajectories only deviate
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linearly while the Lyapunov exponent measures the rate of
exponential divergence [46,47]. On the other hand, a chaotic
region, meaning one only composed of unstable points, is
characterized by a positive Lyapunov exponent. The Lya-
punov exponent usually can only be computed numerically,
e.g., by the approximation [46,47]

λL(z0,V0) ≈ 1

t
ln

[ ||Ṽ (t )||
||V0||

]
,

Ṽ (t ) := dφt (z0 )(V0) ∈ C∞(R, Tφt (z0 )P ), (6)

where ||.|| is a suitable norm, Ṽ (t ) is a parametrized curve
in the tangent bundle TP to phase space, obtained by the
application of the linearized flow to the starting vector V0, and
t is a time that has to be taken as large as possible to improve
the approximation. Since Hamiltonian mechanics does not
prescribe such a norm on phase space on physical grounds,
it has to be seen rather as a mathematical ambiguity at this
point. However, the physics should not depend on which
norm is chosen in particular, such that we can simply pick
the Euclidean one. For compact phase spaces the Lyapunov
exponent is independent of the choice of metric inducing this
norm [48]. In the cases we study in this work this criterion
is satisfied having P = S2 × S2 for the spin system, while for
the Bose-Hubbard system the phase space is P = R2L, but the
dynamics are restricted to the submanifold S2L−1 ⊂ R2L. Here
V0 ∈ Tz0P is a tangent vector, also referred to as a deviation
vector, that can be chosen arbitrarily as long as it does not
point along a stable manifold of the dynamics. The region for
which the Lyapunov exponent is computed can be chosen by
picking an initial state z0 from the same region, but in principle
λL(z0,V0) does not depend on which state from said region is
chosen specifically [46,47]. This underlines the global charac-
ter of this quantity as opposed to local quantities that depend
on explicit points z ∈ P ,

λL(z0,V0) = λL(φT (z0 ), dφT (z0 )(V0)) . (7)

Therefore we can see that the Lyapunov exponent only de-
pends on the trajectory of the inserted point z0 and not on the
specific point along it. If the system is ergodic and the point
z0 is not a periodic orbit or fixed point, then the flow fills up
the whole region, on which the Lyapunov exponent is hence
constant [46]. For an in general mixed phase space one there-
fore obtains one maximal Lyapunov exponent per invariant
subset of phase space, where it is zero if the considered subset
is a regular island and positive otherwise. In this sense, a
more logical notation for the Lyapunov exponent of an ergodic
region U ⊆ P would be λL(U ), but since the practical com-
putation necessitates the choice of a pair (z0 ∈ U,V0 ∈ Tz0U ),
we will stick to the previously used notation.

B. Quantum Lyapunov exponents

For an OTOC we assume three phases of its temporal
evolution:

CÂB̂
ρ (t ) ∝

⎧⎪⎪⎨
⎪⎪⎩

P(t ) ∈ Poly(R), t � t0

exp
(
2λqt

)
, t0 � t � tE

const[dim(H)], tE � t

. (8)

First, it grows polynomially—here Poly(R) denotes the
real valued polynomials—reflecting system components be-
coming entangled by means of quantum mechanics; second,
it grows exponentially with an exponent 2λq as a quantum
analog of classical chaos; and, finally, after the quantum-
classical correspondence breaks down at the Ehrenfest time
tE it saturates to a value depending on the dimension of
the Hilbert space. At the borders between two regions there
might appear smooth interpolations that can deviate slightly
from the behaviors stated [49]. We refer to the quantity
λq as a quantum Lyapunov exponent, which is a quantum
mechanical object since it is computed purely from quan-
tum mechanical ingredients. Its prefactor two appears for the
commutator squared as a manifestation of taking a square.
In Ref. [8] it has been argued that for certain regularized
OTOCs,

F ÂB̂,reg
ρ (t ) := Tr(y(̂A)yB̂(t )yÂyB̂(t )), y := 4

√
ρ, (9)

their large particle limit, which in this sense corresponds to a
semiclassical limit when the inverse particle number is taken
as h̄eff, should show exponential growth depending on a classi-
cal Lyapunov exponent of a classically corresponding system,

F ÂB̂,reg
ρ (0) − F ÂB̂,reg

ρ (t ) ∝ exp(2λLt ), (10)

for some suitable thermal state ρ and times t ∈ [1/λL, tE =
log(1/h̄eff )/λL]. Here the term regularization means the
splitting up of the quantum state into four parts y as in
Eq. (9) and is only of concern for systems in the context
of quantum field theory or in systems in low-temperature
regimes. Since the OTOC considered by us can be written
in terms of similar but unregularized four-point correla-
tors GÂB̂

ρ (t ), F ÂB̂
ρ (t ) with various types of operator orderings

as [14]

CÂB̂
ρ (t ) = GÂB̂

ρ (t ) + F ÂB̂
ρ (t ),

F ÂB̂
ρ (t ) := −〈Â(t )B̂Â†(t )B̂† + (Â(t )B̂Â†(t )B̂†)†)〉,

GÂB̂
ρ (t ) := 〈Â(t )B̂B̂†Â†(t ) + B̂Â(t )Â†(t )B̂†〉, (11)

we can translate the Maldacena hypothesis [8] to the realm of
the commutator-squared OTOC as has been done in Ref. [49],
for example. In order to reference a particular classical state
in the quantum computation, we make use of coherent states
instead of a canonical ensemble state. Furthermore, instead
of a classical average over Poisson brackets as in Ref. [49]
that yields a quantity similar to the Lyapunov exponent, we
compute the Lyapunov exponent directly, since this afore-
mentioned averaging is related to computing the OTOC with
respect to a thermal state. In Refs. [13,14] it was shown
that even a regular system can have exponentially growing
OTOCs where the growth is caused only by a local instability,
namely a hyperbolic fixed point on a separatrix. Furthermore,
in Ref. [12] it was shown that in certain systems the entan-
glement entropy semiclassically grows exponentially with the
exponent given by a sum of classical stability quantifiers of
the classical limits of the subsystems. Entanglement entropy
and Renyi entropy are closely related and the latter has been
shown to grow exponentially with a Lyapunov exponent just
like the OTOC [50–53]. Based on this fact together with the
aforementioned special cases for exponential OTOC growth
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we hence state the following hypothesis the testing of which
is the subject of this work.

Hypothesis
For some initial time t0, a coherent state ρ = |z0〉〈z0|, cen-

tered on a fixed point defined as φt (z0) = z0 for all t ∈ R we
expect the quantum Lyapunov exponent λq to be given by

λq := 1

2t
ln

[
CÂB̂

ρ (t )
] ≈ fq(λL(z0 + ε,V0), λloc(z0)),

t ∈ [t0, tE ], fq ∈ C0(R+
0 × R,R+

0 ), (12)

where C0(R+
0 × R,R+

0 ) are the positive valued continuous
functions on the space in which (λL, λloc) is situated. In
Ref. [8] for a purely chaotic classical limit t0 = 1/λL is as-
sumed and in Ref. [16] t0 = 1/λloc for a single hyperbolic
fixed point within a regular region. Positivity of the exponent
is assumed since λq should describe a growth behavior, not
a decrease. Here we include a small increment ε so that the
Lyapunov exponent is computed for the region in which the
fixed point z0 lies, instead of using the state z0 itself, which
would only result in the local stability exponent again. The
function fq is so far undetermined apart from being continu-
ous because we want λq to depend smoothly on the classical
quantities. This is because these are themselves continuous
functions of the system parameters to be introduced in the
application Sec. III.

III. TESTING THE HYPOTHESIS FOR INTERACTING
LARGE SPINS

We consider a spin system with two coupled spins and
Hamiltonian

Ĥ = 4JŜ(1)
z Ŝ(2)

z

(s + 1/2)2
+

2∑
i=1

[
2
(
bxŜ(i)

x + byŜ(i)
y + bzŜ(i)

z

)
s + 1/2

]
,

h̄eff := 1

s + 1/2
. (13)

Here J is the interaction strength between spins and
(bx, by, bz ) are magnetic field components. The spin operators
in the spin s representation for the ith spin are written as
Ŝ(i)

α ∈ End(C2s+1), α ∈ {x, y, z,+,−}. The concrete choices
of prefactors and definition of h̄eff have been influenced by
previous works and are motivated in Ref. [41] where a similar
system is considered though with a discretized time evolution.
We remark that we set h̄ = 1 and that for all considered
quantities arbitrary units can be assumed since our results
are concerning only the qualitative behavior of the systems
studied by us. In order to make the numerics feasible we
have to restrict to two spins, while increasing the spin repre-
sentation s of the su(2) observables Ŝ(i)

α . The connection to
the classical system is obtained by means of spin coherent
states:

|q, p〉 = exp

[
arccos(p)

2
(Ŝ+eiq + Ŝ−e−iq )

]
|s, s〉,

|q1, q2, p1, p2〉 = |q1, p1〉 ⊗ |q2, p2〉, (14)

which are always already connected to a choice of chart. In
this case we use the chart

z : S2 × S2 → R4(n(1), n(2) ) �→ (q1, q2, p1, p2),

qi := arctan

[
n(i)

y

n(i)
x

]
, pi = n(i)

z , (15)

on the manifold S2 × S2. Spin coherent states can be under-
stood in terms of the theory of Perelomov coherent states
[54–56], from which it follows that the symplectic manifold
serving as the right classical phase space for an individual spin
is given by (P0, ω0) = (S2, volS2 ∼= sin(ϑ )dϑ ∧ dϕ). For the
system of two spins we can combine two such state spaces
simply as

(P, ω) = (P0 × P0, ω0 ⊕ ω0) (16)

to obtain the full phase space (P, ω). Here we write the sym-
plectic form that is given by the volume form on the sphere in
terms of spherical coordinates, which are related to symplectic
coordinates as (ϕ, cos(ϑ )) = (q, p). Employing these states
to translate spin operators to Bloch vectors, 〈Ŝ(i)

α 〉ρ = sn(i)
α , we

arrive at the classical Hamiltonian in the h̄eff → 0 ⇔ s → ∞
limit:

Hi = 2
[
bx cos(qi )

√
1 − p2

i + by sin(qi )
√

1 − p2
i + bz pi

]
H (q1, q2, p1, p2) = H1 + H2 + 4J p1 p2. (17)

As a facilitation, in the following we always set the magnetic
field by = 0 since the spin system only requires two nonzero
magnetic field components to allow for a nonintegrable clas-
sical limit [57]. Choosing the operators Â = Ŝ(1)

z = B̂ relates
the OTOC CÂB̂

ρ (t ) to the following Poisson bracket:

CÂB̂
ρ (t ) = C

Ŝ(1)
z Ŝ(1)

z

|z0〉〈z0| (t ) → {p1 ◦ φt , p1}2
(z0 )

=
[
∂ (p1 ◦ φt )(z)

∂q1
|z0

]2

=
[
∂ p1(t )

∂q1
|z0

]2

,

z0 = (q01, q02, p01, p02). (18)

We are numerically looking for hyperbolic fixed points inside
of a regular region of the classical system by solving the
equation

X H
(z) = (dH )#ω

(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4J p2 − 2bx p1 cos(q1 )√
1−p2

1

+ 2bz

4J p1 − 2bx p2 cos(q2 )√
1−p2

2

+ 2bz

2bx

√
1 − p2

1 sin(q1)

2bx

√
1 − p2

2 sin(q2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

!= 0 (19)

for the coordinates z ∈ R4 while fixing the magnetic field
parameters (bx, 0, bz ) and varying the interaction J . For the
thus obtained fixed points we compute the Lyapunov expo-
nents of their phase-space region by adding a small increment
ε to yield a starting point z + ε for employing the previ-
ously mentioned method. For the parameters (bx, by, bz ) =
(0.05, 0, 0.05) we find the coordinates of a hyperbolic fixed
point z0 ∈ U ⊂ z(P ) within a region with vanishing Lyapunov
exponent, λL(U ) = 0. As we increase the interaction J we can
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FIG. 1. Three-dimensional section of energy shells (red) together with Poincaré surfaces of section containing the fixed point in their center.
The interaction parameter is monotonically increased from the first to the last plot. The corresponding energies and interactions for each row
of plots are given by (a) E = −0.221, J = 0.095; (b) E = −0.214, J = 0.156; (c) E = −0.21, J = 0.217; and (d): E = −0.208, J = 0.278.

recalculate the coordinates of this fixed point to obtain a curve
J �→ z0(J ) that smoothly depends on J . Since the dynamics
of the system depend on the interaction parameter, the region
U does not stay a regular region for all values of the curve
parameter and we can likewise construct a curve of Lyapunov
exponents J �→ λL(U, J ) that will reach positive values for the
in general mixed phase space.

In Fig. 1 we depict a three-dimensional section of the
energy shell together with a two-dimensional Poincaré sur-
face of section for varying interactions. The computed fixed

point is situated in the center of each Poincaré section. We
can clearly see how a chaotic sea appears around the fixed
point and for increasing interaction J further regular islands
form at the edges. We see the formation of said islands also
in the calculation of the Lyapunov exponents [46,47], since
they do not monotonically increase with J but reach a lower
positive value once the chaotic part of the region shrinks.
For each interaction parameter we use the method from the
previous chapter to compute the Lyapunov exponent of the
same deviation z0(J ) + ε from the fixed point for one of 10

054202-5



FELIX MEIER et al. PHYSICAL REVIEW E 107, 054202 (2023)

FIG. 2. Lyapunov exponent calculation (a) for each of the previously shown phase-space regions as well as for intermediate interaction
parameters not plotted beforehand. Thin lines of the same color only differ in the used initial deviation vector, thick lines are averages over all
thin lines of the same color. For better readability the second plot (b) again shows only the averages used for OTOC comparisons. In both plots
T is a large numerical time value up to which the calculation was attempted.

different deviation vectors V0 ∈ Tz0(J )+εP and finally average
over all those V0 to obtain the final result. For each interaction
the calculations for different deviation vectors are shown in
the same color, while the thick lines in the following plot
Fig. 2 are the averages over all curves of the same color.
This methodology is applied to give an estimate for the de-
pendence on initial deviation vectors as well as to eliminate
errors that might be introduced if we accidentally were to
choose a deviation vector for which the convergence of the
Lyapunov exponent calculation progresses to the correct value
more slowly or for which it might even fail. From the fact that
the individual thin curves in Fig. 2 end at different time values,

we see that the divergence of the norm of the curve Ṽ (T ) can
lead to values too large to be represented in the numerics at
different times depending on the choice of the initial deviation
vector, which further affirms to not rely on a single choice of
the former. The possible numerical error of the calculation is
estimated from the energy conservation of the calculation of
classical trajectories, which is found to be only of order 10−6

and is found in Appendix A 2. Other methods for computing
Lyapunov exponents such as the “two-particle-method” [48]
that does not suffer from the problem of diverging norms was
not employed for a number of reasons. First, it is not straight-
forward to generalize to a non-Cartesian phase space S2 × S2
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since it makes use of both a metric on the space as well as
a norm for tangent vectors, which can be naturally obtained
from just the Euclidean metric in the case of P = R2 f but
have to be chosen carefully in a more general setting. Second,
it has been shown [58,59] that this method can yield wrong
results in certain scenarios including our type of phase space.

With the local and Lyapunov stabilities at hand we are
ready to compare with the growth rates of corresponding
OTOCs which we compute for the same system parameters
and at spin s = 60 for a two particle system. Higher spin
representations are desirable to represent an as accurate as
possible version of a semiclassical limit, but for the two
spin system with Hilbert space dimension dim(H) = (2s +
1)2|s=60 = 14 641 we already approach the upper limit of nu-
merical feasibility within an acceptable amount of computing
time.

For a system with mixed phase space as well as multi-
ple instability classifiers λloc and λL we cannot make use
of the usual time domain definitions t0 = 1/λL. We instead
take a classical state within the chaotic sea and away from the
fixed point, compute the coherent state OTOC for it, and then
look for the temporal region [t0, t1] that fulfills the aforemen-
tioned theoretical expectation for purely chaotic systems. For
a high-enough spin representation the influence of the local
instability should not contribute to the OTOC growth here
and said expectation is expressed by an exponent fulfilling
λq = λL [8], which we find for a fixed interaction. The used
fitting function is given by

gq(t ) := a + b exp(ct ) , (20)

where c ≈ 2λq. Afterwards we use this time interval that ful-
filled the λq = λL assumption to fit the OTOCs for all further
interaction values as seen in Fig. 3 for s = 60 together with
exponential fits with the aforementioned function gq(t ), which
is represented as black dots. Now the coherent state is centered
on the fixed point. The numerics is performed via Python,
using the QuTip package [60,61]. In the overview below the
OTOC plots we depict the exponent obtained from the fits,
the classical parameters as well as the best linear combination
of the latter that approximates the OTOC growth rate. Hence
when the black curve overlaps with the red dots represent-
ing 2λq, the assumption 2λq ≈ fq(λL, λloc) := aλL + bλloc for
fixed a, b ∈ R is fulfilled, where fq is a specific manifestation
of the function in the hypothesis Eq. (12). We fit the data
sets {λL(J )}, {λloc(J )} with J-dependent entries as a whole to
the complete data set {2λq(J )} to obtain the values for a, b
instead of fitting individually for each J , which would result
in a J-dependent a(J ), b(J ). We also tested various nonlinear
combinations of λL and λloc but found the simple linear com-
bination depicted in the plots to give the best agreement with
the actual OTOC data. Here and from now on the parameters
a, b will always refer to the ones used for obtaining the linear
combination of classical quantities and should not be confused
with the never explicitly used parameters a, b from Eq. (20).

Furthermore, any nonlinear combination of classical quan-
tities has the problem that it requires dimensionful fit
parameters to result in a dimensionless object as the complete
exponent. However, ignoring this problem of dimensions, we
also tested functions like fq(t ) = aλn

L + bλm
loc for various inte-

gers n, m ∈ N which all turned out to yield worse results than

n = 1, m = 1. Additionally, only a linear combination directly
reduces to known extreme cases for either a = 0 or b = 0.
We see that the Lyapunov exponent alone cannot explain the
OTOC growth as in the case that was used to fix the time
interval. By fixing the interaction again and recalculating the
OTOC for this single interaction value now in dependence of
the spin representation we can assess whether the exponential
growth rate is already described by semiclassics, which is the
case once its variance becomes small. The corresponding spin
dependence of the OTOCs as well as their exponential fits
are shown in Fig. 4. Unlike in Ref. [49] our definition of the
OTOC theoretically results in a spin-independent exponen-
tial growth rate instead of only reaching one asymptotically.
Deviations from this expectation are not caused by a spin de-
pendence λq(s), but by the fact that reaching the semiclassical
domain itself depends on the spin representation. From this
spin-dependent determination of the OTOC growth we see
that from around s = 50 fluctuations become relatively small,
allowing us to reduce the numerical effort to this smaller
value for the following calculations. In order to test the
dependence of the OTOCs on the classical quantities in more
depth, we pick further classical states along a line in phase
space which originates at the fixed point and reaches into
the purely chaotic region above it as depicted in Fig. 5. For
each of the points on the line above procedure is repeated
for spin s = 50 rendering possibly a comparison of the fit
parameters a and b in dependence of the classical state used
for the computation. For the fit of a and b we still use the same
local and global stability quantifiers λloc, λL as before. One
might expect that the coherent state, due to being only slightly
spread out already at time t = 0 with a radius 1/s|s=50 = 0.02
in phase space does no longer include the fixed point already
for the first deviation of �p2 = 0.05. Then it would only
include the fixed point again as the chaotic dynamics makes it
spread out over the chaotic sea. The temporal region is now no
longer determined statically by comparing with the λq ≈ λL

condition, but instead we optimize it for the best possible
exponential fit by splitting the time axis into small intervals,
fitting for each of them and filtering out the optimal fit from
the results. This procedure also explains the disagreement of
the fit parameters a, b for the consecutive evaluations from
the ones found in Fig. 3 for the coherent state centered on the
fixed point. As a consequence, the OTOC should depend less
on λloc and for a point in the chaotic sea and away from the
fixed point it should show the growth behavior with just 2λL.
Hence if we choose the line in phase space as

γ : [t0, t1] → P γ (t0) := z0, γ (t1) := z1, (21)

we expect

a[γ (t )] =: a(t ), b[γ (t )] =: b(t ) a(t1) = 2, b(t1) = 0.
(22)

Choosing the point z1 to be just a change along the p2 direc-
tion, we can also express this curve in coordinates as

z(γ (t )) = (q1(t ), q2(t ), p1(t ), p2(t ))

=
[

q1(t0), q2(t0), p1(t0), p2(t0) + 0.3(t − t0)

t1 − t0

]
,

(23)
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FIG. 3. OTOCs for increasing interaction J and coherent state centered at classical fixed point (a) and comparison with classical quantities
(b). The OTOC curve for the lowest interaction in (a) corresponds to the integrable region and due to both classical stability quantifiers being
very small, this configuration does not display strong-enough exponential behavior for performing a fit. The corresponding OTOC exponent is
set to zero and not included in the calculation of the parameters a and b.

where z0
∼= (q1(t0), q2(t0), p1(t0), p2(t0)) = (q01, q02, p01,

p02) are the coordinates of the fixed point z0. In the plot in
Fig. 6 we present the results in the same manner as before.

By looking at the results in Table I we can see that our
assumption is fulfilled qualitatively in that the dependence of
the OTOC on the Lyapunov exponent grows away from the
fixed point while the dependence on the fixed-point stability
shrinks. However, the best parameters a, b are differing from
the expected limit cases a = 2, b = 0 farthest away from the
fixed point as well as a = 0, b = 2 right on top of the fixed
point by a large margin, which means in particular that the
combination of the two classical quantities is better suited to

TABLE I. Results from fits. The contributions a, b are used to
approximate the OTOC fits as aλL + bλloc.

Deviation �p2 of
fixed-point
coordinate λL contribution a λloc contribution b a + b

0.00 0.48 1.55 2.03
0.05 0.50 1.52 2.02
0.10 0.52 1.49 2.01
0.15 0.67 1.39 2.06
0.30 0.77 1.35 2.12
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FIG. 4. OTOCs (a) and their growth rates (b) depending on spin s, fixed interaction J = 0.217 and coherent state centered at classical
fixed point. Each value of (b) corresponds to one exponential to a curve in (a), performed in the same way as previously described for the
J-dependent fits.

describe the exponential growth of the OTOC than either of
them alone. One curious observation we can make is that the
sum a + b of the parameters stays close to 2 for all considered
points in phase space. This might hint toward a conservation
or limitation of the total instability experienced by the OTOC.
This numerical observation also points to the idea that in the
present scenario (where the finite extension of the phase-space
representation for any localized state leads to a nonuniform
scrambling rate) the natural interpretation of the pre-Ehrenfest
quantum Lypaunov exponent is simply a weighted average of
the different contributions. Indeed, by writing

a = a + b

2
+ a − b

2
, and b = a + b

2
− a − b

2
(24)

and using a + b ≈ 2 we get

2λq = 2

(
λloc + λL

2

)
+ O(λloc − λL ), (25)

while factor the 2 in front simply reflects the second power of
the commutator in the definition of CÂB̂

ρ (t ). From these con-
siderations, we expect for this sum a + b ≈ n if more general
correlations functions involving an nth power of operators are
used, which might be an interesting investigation for future
works. The parameters a and b themselves are then in general
interpreted as classifiers of the interplay between local and
delocalized effects on the scrambling.

054202-9



FELIX MEIER et al. PHYSICAL REVIEW E 107, 054202 (2023)

FIG. 5. The red points lie on the previously defined line and are used as centers of the coherent states for OTOC calculations.

IV. TESTING THE HYPOTHESIS FOR
BOSE-HUBBARD RINGS

The system of two interacting large spins from the previ-
ous chapter has the clear advantage of having a few-enough
degrees of freedom so that a very detailed study of the edge
of chaos can be carried out, with the corresponding detailed
analysis of the OTOC and the hypothesis 2λq = aλL + bλloc.
The expected universality of this conjecture, that arises from
generic mechanisms responsible for the emergence of chaotic
layers around hyperbolic fixed points should then be checked
in other Hamiltonian systems displaying an edge of chaos. We
therefore turn now to a system of N spinless Bosons localized

in L wells in a ring topology (L + 1 ≡ 1), which we describe
by a (dimensionless) Bose-Hubbard Hamiltonian

Ĥ = −J
L∑

j=1

(
â†

j+1â j + â†
j â j+1

) + g

2

L∑
j=1

â†
j â

†
j â j â j . (26)

It physically describes ultracold atom gases in an optical lat-
tices. With the experimental progress in ultracold atom gases
and optical lattices [62,63], this and similar systems allow
us to find many experimental phenomena in the many-body
world like tunneling [64,65], many-body localization [66],
etc. The role of the effective Planck constant is played by

FIG. 6. Results for the OTOC fits at various points zi along the line in phase space Fig. 5. The large dots represent 2λq.
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(a)

(b)

FIG. 7. Examination of hypothesis Eq. (12) for OTOC calculated
at the fixed point zH : (a) three-site ring and (b) four-site ring; in both
rings we obtain an excellent agreement for the hypothesis Eq. (12).

the inverse of the total particle number h̄eff = 1/N [67]. The
first term with coefficient J is the next-neighbor hopping
from adjacent wells and the second term with g is the on-
site interaction between bosons. We introduce a convenient
system parameter � such that we express J = cos(�) and
g = L

N sin(�). We calculate the OTOC for number-projected
coherent states defined by

| �φ〉 = 1√
N!

( �φ · �̂a†)N |0〉, (27)

where �φ is a complex vector φ j = (q j + ip j )/
√

2 which is
associated to a point of the classical mean-field phase space
with || �φ||2 = 1. The classical mean-field system (h̄eff → 0) is
given by replacing the operators to complex numbers in the
normal ordered Hamiltonian,

H (�q, �p) = − cos(�)
L∑

j=1

(q jq j+1 + p j p j+1)

+ sin(�)L

8

L∑
j=1

(
q2

j + p2
j

)2
. (28)

In contrast to the large spin system described in Sec. III, the
domain in phase space, here given just by P = R2L, in which

(a)

(b)

FIG. 8. Moving away from the homogeneous fixed point for L =
4, N = 40, and � = −1.1; (a) we fix the energy and decrease the q1

coordinate from
√

2/L; the coordinates p1, p2, p3, and p4 lay on top
of each other; (b) the Lyapunov exponent remains constant indicating
we remain inside the chaotic region around the homogeneous fixed
point zH .

the dynamics takes place is a 2L − 1-dimensional sphere
S2L−1 (as the particle number is a conserved quantity, i.e., the
mean-field norm || �φ||2 = 1 is a constant of motion). There is
a trivial U (1) symmetry left which must be considered when
searching for fixed points. We compensate the global phase
by adding a frequency μ

2

∑L
j=1(q2

j + p2
j ) to the Hamiltonian

H , i.e., we search for fixed points of the flow equations as
zeros of the Hamiltonian vector field,

X H
(z;μ) = (dH )#ω

(z;μ)

=

⎡
⎢⎢⎢⎢⎢⎣

{− cos(�)(p j+1 + p j−1)

+ sin(�)L
2

(
q2

j + p2
j

)
p j + μp j

}
j=1,...,L{

cos(�)(q j+1 + q j−1)

+ − sin(�)L
2

(
q2

j + p2
j

)
q j − μq j

}
j=1,...,L

⎤
⎥⎥⎥⎥⎥⎦

!= 0

(29)

for a phase-space point z = (q1, . . . , qL, p1, . . . , pL ) and a
frequency μ. Thus we extend the notion for fixed point for
classical mean-field solution having a trivial time evolution
[68]. We focus on the homogeneous fixed point zH given by

qH
j =

√
2

L
, pH

j = 0, φH
j = 1√

L

μH = sin(�) − 2 cos(�).

A straightforward stability analysis shows that the fixed
point zH is unstable in the parameter region −π

2 < � <

arctan[−1 + cos( 2π
L )]. We want to study the hypothesis

Eq. (12) for the Bose Hubbard rings L = 3, N = 100 and
L = 4, N = 40. The homogeneous fixed point is unstable in

054202-11



FELIX MEIER et al. PHYSICAL REVIEW E 107, 054202 (2023)

(a) (b)

(c) (d)

FIG. 9. OTOC plots for L = 3, N = 100 with � = −1.1 (a) for � = −1.4 (b) and for L = 4, N = 40 with � = −1.1 (c) for � = −1.4
(d); color encodes the distance to the fixed point zH , dotted points mark the fitted exponential function gq(t ) [Eq. (20)]. OTOCs tend to decrease
with the distance to the fixed point or to be highly stagnant [e.g., panel (b)].

the parameter region � ∈ [−1.4,−1.1] for both systems, as
well as embedded inside a chaotic layer of the phase space
(λL > 0) (see red data points in Fig. 7). We skip the Poincaré
surface of section analysis, as this does not yield a convenient
visualization in the high-dimensional phase space compared
to Fig. 1. The OTOC we calculate for the Bose-Hubbard
system

Cn1n1 (t ) = 〈 �φ H |||[n̂1(t ), n̂1]||2| �φ H 〉
is the squared commutator of the occupations at the first site
of the ring n̂1 = â†

1â1 at times t and 0. This kind of OTOC
is studied in a related integrable Bose-Hubbard system [16]
and the quantum Lyapunov exponent is given by the local
instability exponent of the fixed point considered there. We
extract from Fig. 7 that the magnitude of the local instability
λloc is three to four times bigger than the Lyapunov exponent
λL for the fixed point. Thus, we find an optimal exponential
fit using Eq. (20) within the time window [t0, tE ] defined
by the local instability of the homogeneous fixed point, i.e.,
t0 = 1/λloc and tE = ln(N )/λloc. Our key observation in Fig. 7
is that the quantum Lyapunov exponent 2λq is roughly the
sum of the local instability and the Lyapunov exponent (plots
of the OTOC are included in Fig. 9). The exact values of

the coefficients indicate, however, that they depend on the
localization of the initial wave packet and therefore on h̄eff

(width of the Wigner-function scales with
√

h̄eff [69]). For
L = 3 the coefficient of λloc is greater than for L = 4, as the
corresponding h̄eff is 1/100 and 1/40, respectively. We check
how this dependency of λq on the Lyapunov exponent λL and
the instability exponent λloc, when we move away from the
fixed point. To this end, we fix the classical energy of the ho-
mogeneous fixed point, the q1 coordinate in the range [0, qH

1 ]
and numerically find the other coordinates. The procedure for
the Bose-Hubbard system differs from the large spin system
in Sec. III, because we cannot rely on a line (chosen from
the Poincaré plots in Fig. 1) due to the higher-dimensional
phase space. The numerical result of the coordinate search is
shown for exemplary values L = 4, N = 40, and � = −1.1
in Fig. 8, where we target distances (measured from zH )
between 0 and 0.04. We repeat this step for each � value
and for each ring (L = 3, 4). With these sets of phase-
space points, we calculate the OTOCs, carry out the fitting
procedure and plot the exponents in Fig. 10, where the dis-
tance to the fixed point is encoded in the color gradient. The
plots of the OTOCs are displayed in Fig. 9 with the same
color code.
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(a)

(b)

FIG. 10. Quantum Lyapunov exponent for states on the energy shell of the fixed point; (a) L = 3, N = 100; (b) L = 4, N = 40; color
code represents the distance to the fixed point zH ; dashed lines represent the fit via the hypothesis Eq. (12).

The exponential growth rate has the tendency to decrease
with the distance to the fixed point, but for several system
parameters � we observe a stagnant exponent. This two-part
behavior (a decreasing or stagnant OTOC) is directly visible
in the OTOC plots in Fig. 9 for L = 3 in (a) versus (b). We
interpret the different behavior of exponential growth as a
complex dependency on the phase-space structure. For the
stagnant exponents, our explanation is that the actual point

is not only close to the fixed point but additionally lying
on the unstable or stable manifold emerging from the fixed
point. Lying on this manifold and being close enough leads
the OTOC to be dominated by the fixed point zH and results
in stagnant exponents we observe in Fig. 10. In contrast, if the
phase-space point is not directly related to the fixed point via
an unstable or stable manifold, then there is only the overlap
of the wave packet with the fixed point, which is crucial for
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(a)

(b)

FIG. 11. Fitted coefficients a and b from hypothesis Eq. (12);
(a) L = 3, N = 100; (b) L = 4, N = 40.

the exponential growth rate with the local stability exponent
λloc. Hence, we see a decrease of the exponent because of
the hierarchy λL < λloc, when we increase the distance to the
fixed point and therefore diminish the overlap. Our argument
is supported by the previous Sec. III, as we choose the phase-
space points from the Poincaré surface of section in such a
way that we are clearly not on the unstable or stable manifold.
Contrary to the clean situation displayed in Fig. 7. The two
different behaviors, shown in Fig. 10 when moving away from
the fixed point zH , are clearly not captured completely by our
hypothesis Eq. (12). We still can find �-independent variables
a and b such that aλL + bλloc fits the quantum Lyapunov
exponent 2λq (dashed lines in Fig. 10 display the fit via the
coefficients a and b), but with decreasing validity of the fitting.
Further, we observe a general decrease of both coefficients of
a and b displayed in Fig. 11 versus the distance to the fixed
point. Nevertheless, we still are close to 2 for the sum a + b
supporting the findings in the spin systems in Table I and trace
the decreasing sum a + b back to the issue with stagnating
exponents for several system parameters.

We believe that our results for Bose-Hubbard system, how-
ever, does not imply that hypothesis Eq. (12) is falsified. On
the contrary, our conclusion is that that we need to ensure
not to remain on fixed point’s manifolds. Otherwise we are

still directly connected to the fixed point via the classical time
evolution.

V. CONCLUSION

We have addressed the behavior of quantum scrambling
right at the edge of chaos. To begin with, the link between
these two concepts is possible for systems admitting a semi-
classical regime, and thus we focused on coupled spins, with
classical limit and semiclassical regime given by the limit
s � 1 of large total spin, and Bose-Hubbard chains with clas-
sical (mean-field) limit given by large occupations N � 1.
The classical input in our study requires careful control of the
transition to chaos near fixed points of the dynamics, and we
use on both cases the interaction strength as control parameter.
We have computed Poincaré surfaces of section and used these
as a guide to identify ergodic regions of phase space that can
be classified by their maximum Lyapunov exponent.

Once the possibility of applying semiclassical methods is
guaranteed, fast quantum scrambling is characterized by the
semiclassical approximation to out-of-time-ordered correla-
tors, thus predicting an exponential growth. While previous
works focus on the extreme scenarios of scrambling due to
local critical dynamics and fully chaotic motion, we attempt
here for a simple characterization of their interplay. Following
the KAM theorem of classical mechanics, the seeds of chaotic
motion emerge precisely from the phase-space regions near
hyperbolic fixed points, and therefore these regions, with in-
tricate dynamics, display such interplay. We have carried out
large-scale numerical simulations that show how the expo-
nential growth of the OTOC can be best described in terms
of classical quantities by using a linear combination of the
Lyapunov exponent and the local stability exponent of the
fixed point instead of by just either of the two.

For classical states further away from the fixed point the
dependence on the Lyapunov exponent λL becomes more pro-
nounced compared to the fixed-point stability λloc, though for
the numerically determined parameters a, b in the combina-
tion aλL + bλloc their sum stays approximately constant: a +
b ≈ 2 for all classical states. Comparing this with the two ex-
treme cases where a system either only possesses a hyperbolic
fixed-point that can give rise to the instability identified with
the OTOC growth or only has a single fully chaotic region in
phase space so that only the Lyapunov exponent is the rele-
vant classical quantity we see the curious similarity between
the prefactors 2 of these classical quantities and the sum of
the individual prefactors in our case for a mixed phase space.
One possible interpretation would be that the classical insta-
bility reflected in the OTOC is constant and only distributed
differently between the two classical quantities depending on
the classical state. Our work seeks to generalize investigations
of the quantum to classical correspondence as captured by
OTOCs to the situation with mixed phase space, whereas pre-
vious investigations highlighted either purely chaotic [8,49] or
regular classical systems with hyperbolic fixed point [13,14].

The systems studied by us exemplify a general phe-
nomenon of the dependence of the quantum Lyapunov
exponent on the classical quantities λloc, λL and one could
extend our methodology to any further system in which both a
hyperbolic fixed point as well as chaotic dynamics are present.
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FIG. 12. Energy drifts of numerically computed trajectories on same energy shell for various initial conditions on the same energy shell
distinguished by color shading. In plot (d) a global factor 10−5 has to be kept in mind as written in the top left corner of the respective plot.
The labeling (a) to (d) corresponds to the plots in Fig. 1. At t = 0 all plots start at the desired energies listed in Sec. III.

Such a system can always be constructed by starting from
any integrable system with a hyperbolic fixed point, e.g., by
adding a time-dependent perturbation to the Hamiltonian.
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APPENDIX

1. Derivation of Poisson bracket relation with stability matrix

For a Hamiltonian system ((P, ω), H ) we express the sta-
bility matrix in terms of a Poisson bracket by considering the
two functions f = zμ ◦ φH , g = zν . Here zμ, zν are arbitrary
components of the symplectic chart z : P → R2 f and in order
to keep the language precise for the following explicit cal-
culation we denote by x the point x ∈ P which is implicitly
identified with its chart representation x = z(x) in the main
text. We use square brackets around an entity to denote its ma-
trix representation with respect to a basis, e.g., [ω] is the usual
symplectic matrix when the basis is the coordinate basis of a
symplectic chart, while ω alone is just the abstract symplectic
form on P before a basis is chosen. Since we only make use of
this usual basis induced by canonical coordinates, we do not
explicitly denote it next to the square brackets. Furthermore,
indexed expressions inside square brackets denote the matrix
obtained by interpreting the first index as a row and the second

one as a column index, while indices outside of the brackets
are just the indices of an object already viewed as a matrix.
Now we make use of the definition Eq. (4) and compute

{zμ ◦ φt , zν}(x) = ω(x)
(
X zμ◦φt

(x) , X zν

(x)

)
= ((d (zμ ◦ φt )(x) )

#ω )bω
((

dzν
(x)

)#ω
)

= dzμ
(φt (x)) ◦ dφt (x)

(
ω

αβ

(x)

(
dzν

(x)

)
α

∂

∂zβ
(x)

)

= ω
αβ

(x)δ
ν
αdzμ

(φt (x))

(
dφt (x)

(
∂

∂zβ
(x)

))
. (A1)

Here the inverse operation to #ω is denoted with bω. We
continue writing the linear map dφt (x) : TxP → Tφt (x)P with
respect to a basis of coordinate one-forms dzγ

(x) in the domain
and a vector basis ∂/∂zη

(φt (x)) in the target space and insert it
into the previous expression:

ω
αβ

(x)δ
ν
αdzμ

[φt (x)]

{
dφt (x)

[
∂

∂zβ
(x)

]}

= ω
αβ

(x)δ
ν
αdzμ

[φt (x)]

·
(

[dφt (x)]
η
γ dzγ

(x)

(
∂

∂zβ
(x)

)
⊗ ∂

∂zη
[φt (x)]

)

= ω
νβ

(x)[dφt (x)]
η
γ δ

γ

β dzμ

(φt (x))

(
∂

∂zη
[φt (x)]

)

= ω
νγ

(x)[dφt (x)]
η
γ δμ

η = ω
νγ

(x)[dφt (x)]
μ
γ . (A2)

If we write the whole expression as a matrix with entries
[{zμ ◦ φt , zν}(x)] in the μth row and νth column, then we
finally obtain

[{zμ ◦ φt , zν}(x)] = [ω(x)]
−1T

[dφt (x)] = [ω][dφt (x)]. (A3)
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Hence we can now express the matrix representation of the
linearized flow with respect to the coordinate basis corre-
sponding to a chart z by above Poisson bracket.

2. Energy drift of numerics for phase-space plots

Here we present the energy drifts of the individual tra-
jectories comprising the energy sections depicted in Sec. III
(see Fig. 1). While the Hamiltonian of the spin sys-
tem is time independent and hence a constant of motion,
unavoidable numerical errors result in a slight deviation

from this theoretical fact so that a numerically computed
solution of the equations of motion does not consist only
of points of the exact same energy. In the plots in Fig. 12,
we show the energy of each point on each trajectory that
is plotted as part of an energy section in Fig. 1. Each color
shade represents points on the same trajectory. One sees that
energy conservation is obeyed sufficiently well by the nu-
merics with only individual points from some of the time
intervals of 6000 time steps having instantaneous large de-
viations from the average. Even those anomalous deviations
stay within the same order of magnitude as the average
though.
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