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   I 

Abstract 
 
Understanding how superorganisms achieve a highly productive and long life compared to 

solitary species adds a new facet to gerontology. But it is not only the pace of aging, the 

absolute time of an organism’s lifespan, but also the shape of aging that is interesting in social 

insects. The shape of aging, i.e., life mortality and fertility trajectories, is determined by how 

much and how often an organism invests in reproduction. In iteroparous organisms, maturity 

characterizes the peak of fitness, after which selection against senescence becomes weaker, 

marking the onset of senescence. In contrast, the strength of selection is maintained in 

semelparous organisms until the only reproduction bout occurs.  

 

In Chapter 3, I show that queens increase the production of sexuals in late life regardless of 

their absolute lifespan or worker investment. This means that selection strength against 

senescence needs to be maintained after the peak of sexual production. Young and middle-

aged queens, before experiencing their maximum investment into sexuals, experience no 

classic signs of senescence (Chapter 2). However, old queens that pass the fitness peak 

exhibited a dramatic breakdown of their entire physiology, even though queens were still 

fertile. We propose that the evolution of superorganismality is accompanied by 

“continuusparity”, a life history strategy that is distinct from other iteroparous and 

semelparous strategies across the tree of life. It combines continuous reproduction and 

maintenance of selection strength, a fitness peak late in life, and reproductive death.  

 

Quite unexpectedly, I found that workers exhibit a shape and pace of aging that mirrors that 

of the queens (Chapter 4) while completely lacking reproductive potential. This indicates that 

programmed aging occurs similarly in both castes. Lastly, how ant queens show high 

variability in life-history traits is still unclear. Therefore, I investigated the genetic 

contribution of fertility and longevity traits in the offspring’s quality and could not find 

evidence of trait heritability (Chapter 5). Taken together, this thesis provides a framework 

for the study of aging in social insects.  
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„Ein Zaun (könig) währt 3 Jahr, ein Hund 3 Zaunalter, ein Ross 3 Hundsalter, ein Mann 3 

Rossalter, macht 81 Jahre. Der Esel erreicht 3 Menschenalter, die Schneegans 3 Eselalter, 

die Krähe 3 Gänsealter, der Hirsch 3 Krähenalter, die Eiche 3 Hirschesalter“ 

- Mittelhochdeutscher Spruch 

 

Chapter 1  
 

1 Introduction 
 
 
Social insects are extraordinary in terms of aging (Keller and Genoud, 1997). Reproductives 

of social insects seem to defy senescence by exhibiting extremely long lifespans compared 

to other insects. Known it is the case of a Lasius niger queen living in the laboratory for ~30 

years and laying eggs until her last year of life (Kutter, 1969). Social insects not only have 

extreme longevity but are also very fertile. Queens of the termite Macrotermes can live up to 

15-20 years and lay up to 20,000 eggs per day (Traniello and Leuthold, 2000). Workers of 

the same species, on the contrary just live around 2-3 months. This thesis aims to understand 

how and why aging occurs in social insects, and if ant queens do show signs of senescence. 

 
1.1 Definition of senescence 
 

Senescence is defined in its broadest terms, as a loss in vitality and fertility functions with 

advancing age (Hughes and Reynolds, 2005). Specifically, it can be translated as an increase 

in the mortality rate (i.e. ‘demographic aging’, or ‘actuarial senescence’ (Gaillard and 

Lemaître, 2017)), a decrease in the fertility rate (i.e. reproductive senescence), or how abrupt 

and sharp the changes in these rates are (Jones et al., 2014). This contrasts with the definition 

of ‘aging’ as the neutral process of time passing by (Medawar, 1952). 

 

It is generally believed that although senescence has a detrimental effect on fitness, it is a 

nearly universal feature of multicellular organisms (Hughes and Reynolds, 2005), and single-

cell organisms too (Herker et al., 2004; Proenca et al., 2018).  Yet, demographic age 
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trajectories of a broad range of metazoan species (11 mammals, 12 other vertebrates, 10 

invertebrates, 12 vascular plants, and a green alga, Jones et al., 2014) have shown that aging 

patterns are highly diverse, and that senescence is not a widespread phenomenon. While 

deterioration with age is common in mammals, negligible deterioration or negative 

senescence is mostly observed in amphibians, reptiles, and some plants (Jones et al., 2014). 

Invertebrates show a diverse range of aging patterns, from bdelloid rotifers and water fleas 

exhibiting a high actuarial and reproductive senescence similar to mammals, and the red 

gorgonian Paramuricea clavata, exhibiting an increase of reproduction and a slight decrease 

in mortality with age (Jones et al., 2014). These data suggest aging is to some degree 

phylogenetically constrained, but further specific aspects of the life history will determine 

the aging of each species. For example, species known for eluding senescence generally 

exhibit a high modularity (Franco and Silvertown, 1996), regenerative cell capacity 

(Martínez, 1998), and/or lack of germ-line sequestration from the soma (Martínez and 

Levinton, 1992). 

 

1.2 Ultimate causes of senescence 
 
Several theories have tried to explain the ultimate evolutionary reasons for the occurrence of 

senescence. The notion of ‘wear and tear’ of the body, proceeding the time of the industrial 

revolution, was formally introduced by August Weissman. He stated that, compared to 

inanimate objects, organisms’ cells also wear out through use and function causing the 

shortening of lifespan (Weismann, 1882). Later aging was explained as a deteriorative 

process in which the mechanical wear of the body, like any other object (e.g. car or tool), 

accumulated chemicals or oxidated (Weismann, 1882). 

 

However, it was not until 1952, that a more formal explanation of senescence was developed. 

In a lecture, Medawar explained the hypothesis that the force of natural selection declines 

with time (Medawar, 1952). He made an analogy with test tubes in the laboratory. In the 

absence of senescence (intrinsic mortality), the tubes do not deteriorate, but after a certain 

amount of time they break, and broken tubes are replaced by new ones of age 0. This leads 

to an exponential decline in time in the number of older test tubes. Similarly, a constant 

percent of individuals in a population die in any given period by extrinsic mortality (due to 
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e.g. predation, disease, starvation). Excluding senescence, an individual will produce the 

same amount of progeny from maturity until death, increasing its total progeny linearly with 

time. Medawar called the ‘reproductive effect’ the amount of progeny produced per 

individual by age. The contribution of offspring declines per age group, and so does the 

evolutionary impact and the force of natural selection (Hamilton, 1966). Late-expressed 

deleterious genes and mutations have a negligible effect on the reproductive potential of an 

individual if it has already produced most of its offspring. These genes are then beyond the 

reach of effective negative selection, leading the organism to accumulate them (i.e. ‘mutation 

accumulation theory’, Medawar, 1952).  

 

Postzygotic (or de novo) mutations could lead to genome mosaicism, i.e. soma heterogeneity 

within tissues. Even when studied in depth mostly in humans, de novo mutations appear to 

be more frequent with increasing age (reviewed in Vijg and Dong 2020). One of the main 

problems with this theory is that such mutations are predicted to appear and accumulate 

randomly. However, changes in lifespan have been linked to specific molecular signaling 

pathways (e.g. insulin/insulin-like growth factor and target of rapamycin signaling pathway) 

across a broad range of taxa (Alic and Partridge, 2011; Fontana et al., 2010), and senescence 

to the development of similar pathophysiologies (López-Otín et al., 2013), suggesting that a 

systematic process is taking place.  

 

Williams stated how the decrease in the force of natural selection (also known as ‘selection 

shadow’) created an opportunity for genes with deleterious effects late in life to fixate in the 

population if they had a beneficial effect early in life (i.e. ‘antagonistic pleiotropy theory’ 

APT, (Williams, 1957). He also predicted that senescence should start at the time of adult 

maturation and that after that point, the extrinsic mortality rate and senescence rate should 

exhibit a positive correlation. Mathematical models have shown that age-independent 

extrinsic mortality does not affect the senescence rate (Hamilton, 1966; Moorad et al., 2020a, 

2020b; Wensink et al., 2017). Similarly, Williams stated that young mortality rates do not 

affect senescence, but Hamilton’s formulae show that age-specific mortality (including 

juvenile mortality) does affect selection and senescence (Hamilton, 1966; Moorad et al., 

2020b).  
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The proximate causes of aging, under APT, could occur due to energy and/or functional 

trade-offs. The former depicts a limitation of resource allocation between reproduction and 

somatic maintenance (disposable soma theory, DST) (Kirkwood, 1977; Kirkwood and 

Austad, 2000), the latter a suboptimal gene regulation after maturation (developmental theory 

of aging, DTA) (Maklakov and Chapman, 2019). While the DST predicts that changes in 

investment in lifespan affect reproduction outcome, the DTA states that age-specific 

optimization of gene expression could increase lifespan without fitness costs (Lind et al., 

2021). Support has been found for a negative correlation between early-life reproduction, 

and both late-life reproduction and survival (for Drosophila melanogaster reviewed in 

Maklakov and Chapman, 2019). Nevertheless, several studies on different organisms have 

uncoupled the trade-off between reproduction and longevity, challenging the main 

predictions of the energy trade-offs (Lind et al., 2021).  

 

In hand with the AP theory, the Hyperfunction theory states that aging is caused by biological 

processes that are optimized for early-life function but become harmful when they continue 

to perform in late-life (Gems and Partridge, 2013). As selection late in life is too weak, 

suboptimal regulation could cause some of the following hallmarks of aging: genomic 

instability, telomeres attrition, epigenetic alterations, loss of proteostasis, deregulated 

nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and 

altered intercellular communication (López-Otín et al., 2013).  

 

1.3 Aging in social insects – ultimate explanations 
 

Two phenomena have drawn scientists’ attention to aging in social insects: their extended 

lifespan, and their lack of senescence. These two traits make up two different dimensions of 

aging. The first one is related to the extension of the life of an organism (either mean or 

maximum lifespan) and is also described as the pace of aging. The second is the shape of 

aging, i.e. the mortality and fertility of an organism for each time point, standardized by age 

(Baudisch, 2011). Social insects seem to be remarkable in both pace and shape. 

Reproductives of social species exhibit a long lifespan compared to other similar-sized 
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solitary insects and their non-reproductive counterparts social insects (Carey, 2001; Keller 

and Genoud, 1997), and senescence appears to be absent [e.g. having a high reproductive 

outcome at old ages (Kramer et al., 2015)].  

 

The peculiarities of social insect aging can only be understood under the concept of 

superoganismality. It refers to species of social insects that have irreversibly transitioned into 

morphologically differentiated reproductive and nursing castes (Boomsma and Gawne, 2018; 

Wheeler, 1911). Here, natural selection acts on different hierarchical levels; from the 

individual level to the superorganism level, i.e. the colony. This is of great relevance as any 

selection for individual lifespan is ultimately selected in terms of benefit for the entire colony. 

Reproductives of social insects exhibit a positive correlation between fertility and longevity 

(Blacher et al., 2017; Kramer et al., 2015). It has been argued that such simultaneous 

optimization of two-life history traits could be only possible if some of the costs are 

transferred to the workers (Kramer et al., 2015). This argument has been used as an 

explanation for the common belief that “all ants”, and other eusocial insects, show divergence 

in lifespan among castes, with long-lived queens (or kings) and shorter-lived workers 

(Hölldobler and Wilson, 1990; Kramer et al., 2022). Such divergence intensifies as the colony 

increases in size (Kramer and Schaible, 2013a).  

 

The most common explanation found in the literature for the low rate of aging and long 

lifespan of reproductives is the evasion of extrinsic mortality, due to their sheltered life in 

well-protected nests (Heinze and Schrempf, 2008; Keller and Genoud, 1997; Rueppell et al., 

2004). However, differences in caste-specific extrinsic mortality are not sufficient nor 

necessary to explain the longevity of reproductives and the divergence among castes (Kramer 

et al., 2022). Instead, the delay of sexual offspring production and the monopolization of 

reproduction (monogynous vs polygynous colonies, colonies with sterile workers vs workers 

capable of some degree of reproduction) could explain the long lifespans in the reproductive 

caste (Kramer et al., 2022). Mathematical models based on superorganismality show that 

extrinsic mortality can positively affect lifespan divergence only in colonies with multiple 

queens and fertile workers, yet this effect tends to be small (Kramer et al., 2022). 
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Ant queens in monogynous colonies live much longer than in polygynous colonies (Keller 

and Genoud, 1997). It was argued that ant queens in polygynous colonies evolved shorter 

lifespans due to their higher risk of extrinsic mortality (Keller and Genoud, 1997). Queen 

founding in monogynous colonies is typically independent and perilous, but once the colony 

has been established in a complex sheltered nest, the queen experiences low levels of 

extrinsic mortality. In contrast, queens of polygynous ant colonies frequently change nest 

locations and live in less protected nests (Hölldobler and Wilson, 1990). However, as pointed 

out before, models show that the lifespans of polygynous queens are shorter independently 

of the extrinsic mortality (Kramer et al., 2022).  Another explanation could be that the new 

cohorts of workers produced by the newly arrived queens (in polygynous colonies) can 

outnumber the older workers and decrease the relatedness to the previous generation of 

queens. Under this scenario, the risk of queens being “dismissed” earlier by younger worker 

cohorts increases, and selection for shorter lifespans could occur (Boomsma et al., 2014). 

Additionally, the reproductive task in a polygynous colony is shared among several queens 

and not by a single individual, possibly relaxing selection on the queen’s lifespan (Kramer et 

al., 2022). 

 

Considering aging in the worker caste, it has been shown that lifespan can be extended by 

reproduction in species in which the workers retain the ability to reproduce (Hartmann and 

Heinze, 2003; Tsuji et al., 1996), contrary to the common phenomenon in which reproduction 

imposes a cost over survival in other organisms (Harshman and Zera, 2007). Senescence has 

been studied in a few cases in social insect queens and workers, in most cases in the 

honeybee. Studies have shown that the worker lifespan is task dependent in Apis mellifera. 

In-hive workers (nurses and winter bees) live longer compared to foragers (Rueppell et al., 

2004), and the age of onset of foraging is key in determining the workers’ lifespan (Rueppell 

et al., 2007a). Moreover, honey bee workers show a decline in immune response with age, 

i.e. functioning hemocyte/immunocyte reduction, associated with the switch to the foraging 

task (Amdam et al., 2004). As workers revert to nurses, they also recover their past immune 

response with high levels of functional hemocytes (Amdam et al., 2006). Workers show no 

signs of functional senescence matching the chronological age (Rueppell et al., 2007b).  
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In the case of ants, few studies have captured the shape of aging (age-specific reproduction 

and mortality, reviewed in Cole, 2009) and are based on punctual periods of growth and death 

of colonies. On ant queens of a few species (mostly monogynous species) data has been 

recorded for less than 20% of their estimated lifespan (Keeler, 1993; Perfecto and 

Vandermeer, 1993; Porter and Jorgensen, 1988; Tschinkel, 2017), failing to capture the end 

of the queen’s lifespan. Worker lifespan data is also incomplete because some studies lack 

age-controlled cohorts (Chapuisat and Keller, 2002; Gordon and Hölldobler, 1987; 

Modlmeier et al., 2013; Negroni et al., 2021; Schmid-Hempel and Schmid-Hempel, 1984), 

surveyed marked individuals in the field without distinguishing between extrinsic and 

intrinsic mortality (Calabi and Porter, 1989; Gordon and Hölldobler, 1987; Schmid-Hempel 

and Schmid-Hempel, 1984), or monitored the lifespan of temperate species with artificial 

hibernation (Kramer et al., 2016), and lacking comparable queen data for the species. Still, a 

study on minor workers of the ant Pheidole dentata showed no signs of senescence in the 

sensorimotor functions after 86% of their laboratory lifespan (i.e. 120-days, Giraldo et al. 

2016), pointing to a non-linear occurrence of senescence following chronological age.  

 

1.4 Cardiocondyla obscurior as a social insect model for aging research 
 

Known populations of Cardiocondyla obscurior derive from two phenotypically and 

genetically differentiated lineages: a New World and an Old World lineage (Errbii et al., 

2021; Schrader et al., 2014). C. obscurior ant colonies are typically small (around 20-30 

workers to a few hundred) and polygynous, with several queens present. Workers possess no 

ovaries and are completely sterile (Heinze et al., 2006), making them one of the few ant 

genera (111 out of 283 genera, Bourke and Franks, 1996) with a complete major evolutionary 

transition and highest reduction of conflict across castes (Bernadou et al., 2021; De Menten 

et al., 2005). 

 

Recent research in this species has shown that the queen has control over caste determination 

and is determined in the early embryo (Schultner et al., 2021). Queen mating occurs only 

 
1 Eciton, Anochetus, Leptogenys, Solenopsis, Monomorium, Tetramorium, Pheidole, Pheidologeton, 
Cardiocondyla, Hypoponera, and Wasmannia (but also Carebara, Brachyponera, Vollenhovia, Strumigenys in 
Bernadou et al., 2021). 
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once, usually inside the nest with a non-dispersing wingless male, i.e. ‘ergatoid’ or work-like 

male (Figure 1-1, (Heinze, 2017; Schmidt et al., 2016). Ergatoids are longer lived compared 

to winged males and have a constant spermatogenesis (Heinze and Hölldobler, 1993). They 

possess long toothless and sickle-shaped mandibles (Oettler et al., 2010) and engage in lethal 

fighting with other wingless males as soon as they eclose from their pupal stage (Cremer et 

al., 2012; Seifert, 2003). Winged males, on the contrary, are rarely seen in the field.  Their 

appearance has been correlated to stressful environmental conditions such as temperature 

drops, starvation, and/or the reduction in worker numbers (Cremer and Heinze, 2003; 

Schrempf and Heinze, 2008).  

 

 

Figure 1-1. Ergatoid male (left) and C. obscurior queen (right). The long mandibles of the ergatoids are 
used for a male to male competition, even against ergatoid male pupae (Cremer et al., 2012).ã LMJN.  

This myrmicine ant is arguably the best-known social insect aging model (Oettler and 

Schrempf, 2016). Queens collected in Una, Brazil (from the New World lineage population) 

showed an increase in egg laying rate during the queen’s life. Additionally, and contrary to 

what is expected for senescent organisms, queens show no signs of decreasing fecundity until 

1-2 weeks prior to death (Heinze and Schrempf, 2012). This reflects terminal investment in 

this species, i.e. an increase of egg investment with age and lack/minimal reproductive 

senescence. In this species, the positive correlation between longevity and reproduction in 

the queens (Heinze and Schrempf, 2012; Kramer et al., 2015; Schrempf et al., 2017) is 
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apparently not causal. Manipulations to induce an increase in investment into egg production 

in single queen colonies did not show any negative effect on lifespan.  

 

Other social conditions determine the queen’s longevity, showing that lifespan is plastic in 

this species. Among them, the mating status has the largest positive effect on the queen 

lifespan (2-fold increase), even when mated to sterilized males (n=18,  Schrempf et al., 

2005a). Such an increase in lifespan does not relate to differential treatment by workers in 

the colony, while it is also exhibited by mated queens in the absence of workers (n=6, 

Rueppell et al. 2015). Furthermore, the cuticular hydrocarbon profile, which is thought to 

signal the nestmates for the queen`s fertility, is undistinguishable from the mating status (Will 

et al., 2012).  

 

The transcriptomic expression profile change with age and after mating (Wyschetzki et al., 

2015). Whole body transcriptomes of young and old queens (4 and 18 weeks old 

respectively), showed significant overlap in expression to age-related genes in Drosophila 

melanogaster, e.g. genes related to the generation of neurons (Wyschetzki et al., 2015). More 

interestingly, most of such overlapped genes were expressed in the opposite direction 

compared to old fruit flies. From these genes, GO-term enrichment analysis suggested that 

processes involved with cell division and reproduction were upregulated, while the 

development and contraction of muscles were downregulated in old queens in contrast to D. 

melanogaster (Wyschetzki et al., 2015). Based on earlier studies, 18-week-old C.obscurior 

queens have approximately 50% survival chance and are therefore middle-aged (Schrempf 

et al., 2005). This dataset implies that while signals of senescence in the gene expression are 

evident at the time point of 65% survival for the fruit fly, such signals are not evident, or are 

differently regulated in C. obscurior queens (Wyschetzki et al., 2015).  

 

Lastly, mating can also have a negative effect on longevity. Queens lived shorter and 

produced fewer sexuals when mated to ergatoid males than to winged males, while the onset 

of egg laying and the egg laying rate are unaffected (n=22, Schrempf and Heinze, 2008). 

Mating with an allopatric male also decreases the lifespan and reproduction capability due to 
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embryonic death by cytoplasmic incompatibility in the presence of the symbiont Wolbachia 

(Schrempf et al., 2015; Ün et al., 2021).  

 

Different aspects of the life history of C. obscurior make it an ideal model for aging research. 

A new generation of offspring can be obtained in the short time of 3 months (Schrempf and 

Heinze, 2006), and queens have a maximum lifespan of about a year (Jaimes-Nino et al., 

2022). Queen aging seems plastic and responds to different social and physiological cues. 

Easily mated and reared in the laboratory, this small-sized ant (2.5-3mm) offers the 

possibility to test for ultimate and proximate explanations for the evolution of aging. In terms 

of a mechanistic approach, C. obscurior offers the possibility to explore pathways related to 

aging, e.g. insulin/insulin-like growth factor (IGF) signaling (IIS)/TOR pathway. Recently, 

a recent version of the genome of C. obscurior has been released (Errbii et al., 2021), 

describing a special genome architecture with an unusual distribution of transposable 

elements in this ant (Errbii et al., 2021; Schrader et al., 2014). Future research on aging will 

benefit from the use of this species as an insect model.  

 

1.5 Outstanding questions 
 
This thesis aims to understand why and how ants age and senesce, using the model 

Cardiocondyla obscurior. To this end, I aimed to answer the following questions: 

1) How are the pace and the shape of aging in ant queens and workers? 

2) Which trade-offs at the colony and individual level are evident in terms of fertility 

and longevity? 

3) How can one ultimately explain the extraordinary long lifespan and the lack of (or 

minimal) reproductive senescence in ant queens? 

4) Is there a heritable component in the longevity and fertility trait of queens? 

 

1.6 Outline of this thesis 
 
This thesis contains four results chapters.  
 

The first results chapter (Chapter 2) arises from a collaboration with Dr. Mark Harrison at 

the WWU Münster and is the reanalysis of transcriptomic data of 14 C. obscurior mated ant 
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queens (4- and 18-week-old). We found that not only 18-week-old queens do not exhibit 

signs of senescence, but that several antiaging mechanisms are taking place, e.g. old-biased 

genes are under stronger purifying selection compared to young-biased genes and older 

queens exhibit higher connectivity in their gene-coexpression network.  

 

Subsequently, I studied the effect of investment into the maintenance of the colony (by 

manipulating the colony size) on the queens’ longevity and total productivity (Chapter 3). 

This study tried to assess if trade-offs between fertility and longevity at the level of the colony 

and the individual occur. I then analyzed the pace and the shape of aging in queens and 

workers. Additionally, I analyzed the transcriptomes of middle-aged queens and prope 

mortem queens (queens close to death), to evidence signs of senescence after the onset of 

reproductive senescence. This chapter resulted in the development of a life history framework 

"continuusparity" for social insect aging. 

 

In Chapter 4 I used the first generation of queens (F0) obtained in the study described in the 

third chapter and established mating pairs to rear a new generation of mated queens (F1) and 

to test the heritability of the traits: lifespan and fertility. Additionally, as the F0 generation 

lived under controlled colony size conditions, I tested for environmental maternal effects in 

the F1 life-history traits.  

 

Finally, in Chapter 5 I explored the pace and shape of aging in workers in a standardized 

set-up without marked workers, to complement our understanding of aging in the species 

Cardiocondyla obscurior. We found that aging in workers mirrors the pace and shape of the 

queen, calling for a programmed mechanism, or Zeitgeber, acting in workers and queens 

alike and dictating the onset of senescence.  
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Chapter 2 
 

2 Gene Coexpression Network Reveals Highly Conserved, Well- 
Regulated Anti-Ageing Mechanisms in Old Ant Queens 

 

Mark C. Harrison1, Luisa M. Jaimes Niño2, Marisa Almeida Rodrigues3, Judith Ryll1, 

Thomas Flatt3, Jan Oettler2*, Erich Bornberg-Bauer3,4*. 
1 Institute for Evolution and Biodiversity, University of Münster, Münster, Germany; 2 University of 

Regensburg, Regensburg, Germany; 3 Department of Biology, University of Fribourg, Fribourg, 

Switzerland; 4 Department of Protein Evolution, Max Planck Institute for Developmental Biology, 

Tübingen. ∗Corresponding authors: jan.oettler@ur.de, ebb.admin@wwu.de 

Published in Genome Biology and Evolution the 4 May 2021. DOI: https://doi.org/10.1093/gbe/evab093  

 

2.1 Abstract 
 

Evolutionary theories of ageing predict a reduction in selection efficiency with age, a so-

called ‘selection shadow’, due to extrinsic mortality decreasing effective population size with 

age. Classic symptoms of ageing include a deterioration in transcriptional regulation and 

protein homeostasis. Understanding how ant queens defy the trade-off between fecundity and 

lifespan remains a major challenge for the evolutionary theory of ageing. It has often been 

discussed that the low extrinsic mortality of ant queens, that are generally well protected 

within the nest by workers and soldiers, should reduce the selection shadow acting on old 

queens. We tested this by comparing strength of selection acting on genes upregulated in 

young and old queens of the ant, Cardiocondyla obscurior. In support of a reduced selection 

shadow, we find old-biased genes to be under strong purifying selection. We also analysed a 

gene co-expression network (GCN) with the aim to detect signs of ageing in the form of 

deteriorating regulation and proteostasis. We find no evidence for ageing. In fact, we detect 

higher connectivity in old queens indicating increased transcriptional regulation with age. 

Within the GCN, we discover five highly correlated modules that are upregulated with age. 

These old-biased modules regulate several anti-ageing mechanisms such as maintenance of 

proteostasis, transcriptional regulation and stress response. We observe stronger purifying 

selection on central hub genes of these old-biased modules compared to young-biased 
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modules. These results indicate a lack of transcriptional ageing in old C. obscurior queens 

possibly facilitated by strong selection at old age and well-regulated anti-ageing mechanisms. 

Key words: ageing, selection shadow, social insects, longevity/fecundity trade-off. 

 

2.2 Significance 
 

Understanding the exceptional longevity of ant queens and how they defy the trade-off 

between fecundity and lifespan remains a major challenge for the evolutionary theory and 

molecular biology of ageing. In this study, we offer several clues as to how this occurs on a 

molecular level in Cardiocondyla obscurior queens. Specifically, we believe a reduction in 

the selection shadow due to low extrinsic mortality, has allowed the evolution of well-

regulated antiageing mechanisms. Consequently, we suggest several promising starting 

points for future research into the poorly understood phenomenon of extreme longevity in 

ant queens. Making progress in this field will not only allow us to better understand longevity 

and fertility in social insects but may also offer interesting research strategies for human 

ageing. 

 

2.3 Introduction 
 

Ageing, the progressive decline of physiological function with age, and thus of survival and 

fertility, is common to most multicellular species (Jones et al., 2014). Extensive genetic and 

molecular studies have illuminated several proximate mechanisms involved in the ageing 

process, allowing us to better understand how we age. The majority of these “hallmarks of 

ageing” can be attributed to the accumulation of cellular damage (Gems and Partridge, 2013; 

López-Otín et al., 2013) and an overall deterioration of regulation (Frenk and Houseley, 

2018). One important hallmark of ageing, the loss of protein homeostasis, is caused by a 

reduction in quality control mechanisms such as chaperones that support correct folding and 

structure of proteins, as well as proteolytic pathways that ensure the removal of misfolded 

peptides (Calderwood et al., 2009; Koga et al., 2011; López-Otín et al., 2013; Rubinsztein et 

al., 2011; Tomaru et al., 2012). The result is an accumulation of toxic, misfolded proteins 

and an inefficient replenishment of correctly functioning proteins. Further hallmarks of 

ageing include deleterious changes in terms of cell cycle (a cessation of cellular replication), 
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intercellular communication, nutrient sensing, and epigenetic regulation (López-Otín et al., 

2013), as well as a downregulation of mitochondrial and protein synthesis genes (Frenk and 

Houseley, 2018). Importantly, the ageing process is often accompanied by a dysregulation of 

transcription (Frenk and Houseley, 2018). 

 

Several classic evolutionary theories of ageing aim to explain why organisms age (Flatt and 

Partridge, 2018; Kirkwood and Austad, 2000). These theories generally describe a reduction 

in selection efficiency with increasing age because the number of surviving individuals 

decreases due to extrinsic mortality. In the mutation accumulation theory, this “selection 

shadow” leads to an accumulation of mutations which have a deleterious effect later in life 

(Flatt and Partridge, 2018; Kirkwood and Austad, 2000). In support, empirical studies have 

found that genes with expression biased toward late life are less conserved than those highly 

expressed at young age across several tissues and mammalian species (Jia et al., 2018; Turan 

et al., 2019). Building on this, the antagonistic pleiotropy theory describes how genes with 

beneficial effects early in life can be maintained by selection even if they have pleiotropic 

negative effects later in life (Williams, 1957). In the disposable soma theory, the pleiotropic 

effect of more specific genes is described, that cause a trade-off between somatic 

maintenance and reproduction (Kirkwood, 1977), so that an increased, or early, investment 

in offspring is expected to come at the price of a shorter lifespan and vice versa (Kirkwood 

and Austad, 2000). 

 

There are, however, exceptions to these expectations; possibly most notably within social 

insects, where reproductive castes exhibit relatively long lifespans compared with their sterile 

siblings (Keller and Genoud, 1997). This apparent lack of a trade-off between longevity and 

fecundity in social insects is at odds with expectations for the disposable soma theory. The 

longer life of queens compared with sterile castes might be explained by low extrinsic 

mortality due to the protection of a well-defended nest (Keller and Genoud, 1997; Negroni 

et al., 2016). The low extrinsic mortality of queens can in turn be expected to lead to a 

reduction of the selection shadow as more queens reach old age, allowing efficient selection 

on genes that are important for somatic maintenance late in life. 
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In an attempt to understand the relationship between fecundity and longevity in social insects, 

several studies have investigated caste and age-specific expression of putative ageing genes 

in honeybees (Aamodt, 2009; Aurori et al., 2014; Corona et al., 2007; Seehuus et al., 2013), 

ants (Lucas et al., 2016; Lucas and Keller, 2018; Negroni et al., 2019; Wyschetzki et al., 

2015) and termites (Elsner et al., 2018; Kuhn et al., 2019). One of these studies, which 

compared gene expression between young and old queens of the ant Cardiocondyla 

obscurior, identified several overlaps with ageing pathways known from Drosophila 

melanogaster (Wyschetzki et al., 2015). However, surprisingly, for many genes, the ratio of 

expression level between old and young ant queens was reversed compared with D. 

melanogaster. Further studies comparing expression between castes and age groups highlight 

the importance of several gene pathways for longevity in social insects that have previously 

been implicated in ageing, such as antioxidants (Aurori et al., 2014; Corona et al., 2005; 

Kuhn et al., 2019; Negroni et al., 2019), immunity (Aurori et al., 2014; Kuhn et al., 2019; 

Lucas and Keller, 2018; Negroni et al., 2016, 2019), DNA and somatic repair (Aamodt, 2009; 

Kuhn et al., 2019; Lucas et al., 2016; Seehuus et al., 2013), respiration (Corona et al., 2005; 

Lockett et al., 2016), as well as the insulin/insulin-like growth factor (IGF) signaling (IIS) 

(Aurori et al., 2014; Kuhn et al., 2019), and the target of rapamycin (TOR) signaling 

pathways (Kuhn et al., 2019; Negroni et al., 2019). The IIS and TOR nutrient sensing 

pathways are of particular interest in this context, since their role in longevity and fecundity 

has been extensively studied in model organisms (Flatt and Partridge, 2018; Kenyon, 2010; 

Partridge et al., 2011; Tatar et al., 2003). These transcriptional studies offer insights into 

individual genes and their pathways that might be involved in ageing in social insects. 

However, a more holistic view of gene networks is likely to uncover further important genes 

as well as insights into transcriptional regulation. For example, a study of gene coexpression 

networks (GCNs) on mouse brains revealed that with age a decrease in the correlation of 

expression between genes occurred, showing that transcriptional dysregulation can lead to a 

significant reduction in gene connectivity (Southworth et al., 2009). These findings 

demonstrate the application of transcriptional studies for investigating whole pathways and 

gene networks and their wide-reaching implications for ageing. Furthermore, the extent at 

which a selection shadow may be reduced for old queens due to a reduction in extrinsic 

mortality has so far not been formally tested. 
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To address these questions, we investigated transcriptomic data available for young and old 

queens of the polygynous ant C. obscurior (Wyschetzki et al., 2015). These ant queens are 

relatively short lived compared with most ant species (median lifespan: 16–26 weeks; 

Kramer et al., 2015; Schrempf et al., 2005a), which is in accordance with expectations for 

polygynous species, where extrinsic mortality is higher than in monogynous colonies (Keller 

and Genoud, 1997). Nevertheless, as for most ant species, C. obscurior queens (up to 48 

weeks) outlive sterile workers that are expected to live around 12–16 weeks (Oettler and 

Schrempf, 2016). Importantly, consistently high reproductive output throughout their lives 

until immediately before death indicates no apparent reproductive senescence in these ant 

queens (Kramer et al., 2015). To test for signs of ageing in transcriptional regulation, we 

carried out a GCN analysis, in which we identified gene modules related to young mated (4 

weeks) and old mated (18 weeks) queens and compared overall network connectivity. We 

also tested the hypothesis that, due to low extrinsic mortality, selection efficiency should not 

decline with age in queens. We found evidence for an array of antiageing mechanisms that 

are more tightly regulated in old queens. We could find no evidence for a selection shadow, 

indicating stable selection efficiency throughout an ant queen life. 

 

2.4 Results and Discussion 
 
2.4.1 Old-Biased Genes Are Not under Weaker Selection 
 
Evolutionary theories of ageing predict weaker selection on genes which are expressed in old 

individuals due to low effective population size and reduced fecundity (Flatt and Partridge, 

2018; Kirkwood and Austad, 2000). In ant queens, we may expect a reduction of this 

“selection shadow” as low extrinsic mortality and lifelong, high fertility should lead to a 

stable effective population size up to old age. We tested this by estimating and comparing 

selection strength between three groups of genes. These were 1) old-biased genes n=46: 

significantly over-expressed in seven old (18weeks) compared with seven young (4 weeks) 

C. obscurior queens; 2) young-biased genes (n=96): significantly over-expressed in young 

compared with old queens; 3) unbiased genes (n=2616): no significant difference in 

expression between young and old queens. To estimate direction and strength of selection, 
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we measured dN/dS (ratio of nonsynonymous to synonymous substitution rates) for one-to-

one orthologs with a set of 10 ant species (see Materials and Methods). A dN/dS ratio » 1 

indicates neutral evolution, whereas values <<1 signify purifying selection. We find no 

evidence for weaker purifying selection in old-aged queens, since dN/dS in old-biased genes 

(median: 0.084) is in fact significantly lower than in young-biased genes (median: 0.127; P 

value = 0.016; Mann–Whitney U test; Fig. 2-1), indicating increased purifying selection with 

age. This is in contrast to published results for age-biased genes in humans, in which old-

biased genes had a significantly higher dN/dS (median: 0.22) than young-biased genes 

(median: 0.09, P-value = 1.4 x 10–50), as would be expected for a reduction in purifying 

selection with age (Jia et al., 2018). This was confirmed by a further study on several 

mammalian tissues, in which an adjusted dN/dS metric correlated more strongly with 

expression in young compared with old individuals (Turan et al., 2019). Interestingly, dN/dS 

in young-biased genes is also significantly higher than in unbiased genes (median: 0.100; P-

value = 2.2 x 10-4; Mann–Whitney U test), as has previously been reported for the ant, Lasius 

niger (Lucas et al., 2017). To further test the ability of this method to detect a selection 

shadow in insects, we repeated the analysis for D. melanogaster. Age-biased gene expression 

was measured for a novel data set containing expression data for young (10 days) and old 

(38 days) female flies across two tissues (head and fat body) and different feeding regimes. 

Evolutionary rates were obtained for these genes from published analyses based on 

alignments of 12 Drosophila species (Clark et al., 2007). In contrast to our results for ant 

queens but in agreement with expectations for a selection shadow, we find significantly 

higher dN/dS levels in old-biased fly genes (median: 0.060) compared with young-biased 

genes (median: 0.047; P-value= 5.1 x 10-8; Mann–Whitney U test). 

 

We also investigated the numbers of ant genes that are under significant positive selection 

within old-biased compared with young-biased and unbiased genes, using a site test of the 

codeml suite (Yang, 1997). Contrary to expectations for weaker selection strength on old 

queens, we found no difference in the proportion of genes under positive selection between 

the three groups of genes (old biased: 21.7%; young-biased: 21.9%; unbiased: 16.0%; chi2 = 

3.3; P-value = 0.19). The effect size of the observed difference in proportions of genes under 

positive selection between youngand old-biased genes is so low (Cohen’s h: 0.003), that we 
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assume the lack of significance is not due to a lack of power. The genes under significant 

positive selection in old-biased genes contain two regulatory genes (transcription factor and 

methyltransferase), an electron transport protein, a member of the COPI coatomer complex 

(important for protein transport), and Notch (Table 2.1). The latter is the central signaling 

protein within the Notch signaling pathway which is involved in tissue homeostasis and age-

related diseases (Balistreri et al., 2016).  

 

 

Figure 2-1. Evolutionary rates (dN/dS) in genes with unbiased expression, young-biased and old-biased 
expression in C. obscurior queens and D. melanogaster adult females. Significance was tested with Mann-
Whitney U test. 

Contrary to expectations based on evolutionary theories of ageing, these results suggest 

selection is not weaker on genes expressed mainly in old queens. We speculate that high 

fertility in old queens, coupled with an overall low extrinsic mortality, which is typical for 

social insects (Keller and Genoud, 1997; Negroni et al., 2016), may reduce the selection 

shadow in C. obscurior queens, leading to stable selection strength throughout their fertile 

life.  
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Table 2-2-1. Old-biased genes under significant positive selection. 

Gene Ortholog Putative Function 

Cobs_01221 uncharacterised  unknown 

Cobs_04278 FBgn0002121 (l(2)gl) polarity of neuroblasts and oocytes 

Cobs_06663  FBgn0085424 (nub)  transcription factor 

Cobs_08231 FBgn0004647 (Notch) tissue homeostasis 

Cobs_08620 FBgn0027607 (Dymeclin)   organisation of Golgi apparatus 

Cobs_09212 FBgn0033686 (Hen1) methyltransferase, methylates 

siRNA & piRNA 

Cobs_11651 FBgn0036714 (CG7692)  unknown function 

Cobs_12452 FBgn0008635 (bCOP) subunit of the COPI coatomer 

complex, transport from Golgi to ER 

Cobs_16420 FBgn0034745 (CG4329) unknown 

Cobs_16765 Cytochrome b561 domain-

containing protein 1 

(Q8N8Q1) 

electron transport protein 

 

2.4.2 Increased Connectivity in Old Ant Queens 
 

In old queens, we expected to find little evidence for age-related transcriptional dysregulation 

in the form of reduced correlation of gene expression, as previously reported for ageing 

mouse brains (Southworth et al., 2009). We investigated this by measuring gene connectivity 

separately within old queens and within young queens, using the softConnectivity function 

of the WGCNA package (Langfelder and Horvath, 2008). This connectivity describes the 

total strength of correlations that a gene possesses with all other genes in a GCN (Langfelder 

and Horvath, 2008) and is thought to correlate positively with gene essentiality (Carlson et 

al., 2006). In fact, we find gene expression connectivity to be significantly higher in older 

queens (median: 145.3) than within young queens (median: 142.5; effect size: 0.255; P-

value=4.3 x 10–29; Wilcoxon signed-rank test), suggesting an increased regulation of gene 

networks in older queens. 
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Those genes which are more highly connected in older queens (1,471 genes with connectivity 

fold change > 2) are enriched for GO term functions (FDR < 0.1) related to protein synthesis, 

transcription, purine synthesis, cellular respiration, and ATP metabolism (supplementary 

table S1, Supplementary Material online). Most of the 20 genes with the strongest increase 

in connectivity in old queens (4.8–7.1-fold increase) compared with young queens are 

involved in transcriptional regulation (7 genes) or protein homeostasis (6 genes; 

supplementary table S2, Supplementary Material online). For example, a member of the 26S 

proteasome complex, important for the degradation of misfolded proteins, is the gene with 

the highest increase in connectivity in old queens. As has been shown for several organisms, 

including humans (Lee et al., 2010), yeast (Kruegel et al., 2011), and C. elegans (Vilchez et 

al., 2012), increased proteosome activity can extend lifespan by reducing proteotoxic stress 

(López-Otín et al., 2013). An increase in connectivity of fatty-acid synthase 3 may have 

implications for colony communication (Yan and Liebig, 2021). Further highly connected 

genes include ribosomal proteins or genes involved in the correct folding, post-translational 

modification, or transport of proteins. The genes with highly increased connectivity in old 

ant queens, which are involved in transcriptional regulation, include two transcription factors, 

a transcritional coregulator (taranis), and four mRNA regulators. These results suggest that, 

contrary to expectations for ageing individuals, increased transcriptional regulation and 

protein homeostasis takes place in old queens. 

 

2.4.3 Coexpression Modules Related to Age 
 

We constructed a signed, weighted GCN (Langfelder and Horvath, 2008) based on the 

correlation of normalized gene expression across all 14 samples (7 young queens and 7 old 

queens). Within the GCN, genes could be grouped into 27 modules, within which gene 

expression was especially strongly correlated (Fig. 2-2). To determine the importance of 

these modules for old and young queens, we first calculated eigengene expression based on 

the first principal component of each module. We then correlated eigengene expression of 

each module with the binary trait “age” (young and old). Five of the modules were 

significantly, positively correlated with age (P < 0.05; FDR < 0.1), indicating an overall 

higher expression of these modules in old compared with young queens.  
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Three modules were significantly, negatively correlated with young queens, indicating a 

downregulation in old queens. To validate these correlations, we analyzed difference in 

expression of genes between old and young queens (log2[expressionold/expressionyoung]) 

within each of these modules. Accordingly, the median log2-fold-change in expression was 

greater than zero in each of the old-biased modules (0.148–0.340) and less than zero within 

the young-biased modules (-0.376 to -0.249; supplementary fig. S1, Supplementary Material 

online). Four of the five old-biased modules (1, 2, 3, and 5) belonged to a larger cluster within 

the GCN, which is quite distant from the cluster containing the young-biased modules (6, 7, 

8; Fig. 2-2). Module_4 (old biased), on the other hand, forms a more distinct cluster, adjacent 

to the young-biased cluster. The old-biased modules contained several genes that had 

previously been identified as upregulated in old queens via standard differential expression 

analysis (Wyschetzki et al., 2015) but contained no genes that were upregulated in young 

queens. The opposite was true for young-biased modules, thus confirming the validity and 

compatibility of both methods (Fig. 2-2b). 

 

However, importantly, the GCN analysis also allowed the identification of many additional 

age-related genes that cannot be identified by standard differential expression analyses. For 

example, module_1, which has the strongest association with old queens (r=0.96; P-

value=5.3x10– 8; FDR1=1.4x10–6; Pearson correlation), contains 109 genes, of which only 

41 are individually significantly differentially expressed between old and young queens. 

Similarly, module_6, which is strongly negatively associated with old queens (r=-0.90; P-

value= 9.4 x 10–6; FDR = 1.3 x 10–4; Pearson correlation), contains 970 genes, of which 240 

were identified as individually significantly upregulated in young queens (Wyschetzki et al., 

2015). In the following section, we describe these eight age-biased modules in terms of their 

functional enrichment and detail the top hub genes (genes with the highest intramodular 

connectivity) within these modules. 
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(a) GCN module 

 
(b) Differentially expressed genes 

 
(c) Clustering of modules 

 
Figure 2-2. Caption on next page.  
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Figure 2-2 (Previous page). Gene co-expression network (GCN). (a & b) Graphical representation of the 
gene co-expression network, containing only the most strongly connected genes (n = 5442). In (a) genes 
are coloured according to the modules to which they belong. The main enriched functions (based on hubs 
and GO terms) of the 9 discussed modules are labelled (see text for more details). In (b) genes are coloured 
according to their differential expression; red: over-expressed in old queens; blue: over-expressed in 
young queens; white: not differentially expressed. In both representations, genes in modules significantly 
related to old queen expression are depicted as squares, and those significantly related to young queens 
are triangles; all other genes are represented by circles. (c) Clustering dendogram of modules; height 
represents dissimilarity based on topological overlap. Modules significantly related to age are highlighted 
in red (positive correlation) and blue (negative correlation). Higher resolution image available in the 
online version.  

2.4.4 Old-Biased Modules 
 

The most highly connected hub genes in module_1, the module most strongly upregulated 

with age (r= 0.96; P = 5.3 x 10-8; FDR = 1.4 x 10–6; 109 genes; Fig. 2-3), include three genes 

with functions related to maintaining and restoring proteostasis in old queens (supplementary 

table S3, Supplementary Material online), the loss of which has been described as one of the 

hallmarks of ageing (López-Otín et al., 2013). These are: a member of the TRAPP complex, 

important for protein transport, Socs44A, a gene involved in ubiquitination and GRXCR1, 

responsible for the post-transcriptional S-glutathionylation of proteins, a modification which 

is often triggered as a defence against oxidative stress (Dalle-Donne et al., 2009). The top 

hubs of this module also include two genes which encode integral members of the G-protein 

signaling pathway, namely, a Rho guanine nucleotide exchange factor and a G-protein a-

subunit. The most connected gene within this hub is a fatty-acid synthase which may play an 

important role in colony communication. This module is enriched for a GO term related to 

the regulation of transcription (supplementary table S4, Supplementary Material online). 

 

Module_2 (596 genes; upregulated with age: r= 0.65; P = 0.012; FDR = 0.080) contains hub 

genes coding for proteins with diverse functions, including an RNA helicase, a maternal 

protein, a protein with oxidoreductase activity and a pseudouridine synthase (supplementary 

table S3, Supplementary Material online). 

 

Module_3 (433 genes; upregulated with age; r = 0.63; P = 0.017; FDR = 0.080) is particularly 

interesting since it is not only upregulated with age but, on average, gene members of the 

module are more strongly connected within old than in young queens (Fig. 2-3). Hub genes 
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indicate this module is important for responses to age-related stress, especially processes 

related to a maintenance of proteostasis (supplementary table S3, Supplementary Material 

online). For instance, the top 10 hubs contain the endoplasmic reticulum (ER) stress protein, 

disulfide-isomerase, which reacts to protein misfolding and oxidative stress (Laurindo et al., 

2012), as well as fringe, which modulates Notch signaling, a pathway important for 

regulating tissue homeostasis and implicated in ageing related diseases (Balistreri et al., 

2016). A further hub is a trehalose transporter, orthologous to tret1-2, indicating that the 

transport of trehalose (the main haemolymph sugar in insects) from fat body to other tissues 

is well regulated in old queens (Kanamori et al., 2010). This may have a positive effect on 

survival, since trehalose treatment increases longevity in C. elegans (Honda et al., 2010). 

 

Figure 2-3. Correlation of GCN modules with age and their change in connectivity between old and young 
queens. A positive correlation with age (y-axis) signifies an upregulation of a module in old queens. A 
positive log2foldchange in connectivity (x-axis) represents a higher connectivity in old queens. Modules 
are labelled with their assigned module numbers. Sizes of dots represent relative number of genes within 
modules. Modules with red outlines are significantly upregulated and modules with blue outlines are 
significantly downregulated in old queens compared to young queens. 

The top 10 hub genes in module_4 (186 genes; r =0.61; P = 0.021; FDR = 0.080) fulfil 

various functions, such as the digestive enzymes alpha glucosidase and chymotrypsin-1, 

indicating a possible modification in diet with age (supplementary table S3, Supplementary 

Material online). The third most connected gene within this module is orthologous to pirk in 

D. melanogaster (involved in the negative regulation of the immune response; Kleino et al., 
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2008), indicating the immune system may be downregulated with age in C. obscurior. 

Interestingly, long-lived flies also tend to downregulate the induction of immune effector 

genes (Fabian et al., 2018; Loch et al., 2017). This module is enriched for the GO term 

“transmembrane transport” (supplementary table S4, Supplementary Material online). 

 

Module_5 (169 genes; r = 0.58; P = 0.028; FDR = 0.095) may be important for controlling 

the immune system since two hub genes (supplementary table S3, Supplementary Material 

online), coding for the COMM domain containing protein 8 (COMMD8) and the WD40 

domain containing angio-associated migratory cell protein, are both known to inhibit the 

transcription factor NF-k-B (Bielig et al., 2009; Burstein et al., 2005). An upregulation of 

NF-k-B occurs with ageing and its inhibition, as apparently occurs within this module, can 

reduce the effects of senescence (Tilstra et al., 2012). Interestingly, COMMD8 is also 

characterized by a strong increase in connectivity (1.68-fold change), indicating its 

heightened importance in old queens. Further functions of this module may be related to 

RNA regulation, as evidenced by the hub gene eyes_absent, a transcription factor with im- 

portance in embryonal eye development in D. melanogaster (Bonini et al., 1998). Based on 

the 10 nearest neighbours in the C. obscurior GCN, eyes_absent may regulate several 

enzymes involved in post-transcriptional processes, such as mRNA export from the nucleus 

(sbr, Cobs_03187), and tRNA modification (Tgt: Cobs_16650; HisRS: Cobs_01013; 

CG3808: Cobs_18201). 

 

2.4.5 Modules Downregulated with Age 
 

Module_6 (970 genes) is the module most strongly downregulated with age (r =-0.9; P= 9.4 

x 10–6; FDR = 1.3 x10–4) and is enriched for the GO terms “transmembrane transport” and 

“potassium ion transport” (supplementary table S4, Supplementary Material online). 

Interestingly, the top 10 hubs contain three genes with no detectable homology to any protein 

in the uniprot arthropod database (supplementary table S3, Supplementary Material online). 

Otherwise, the functions of hub genes in this module span various functions, such as cell–

cell interactions, cytochrome oxidase, an odorant receptor and a negative regulator of the cell 

cycle. 
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Module_7 (1385 genes; r =-0.7; P=0.006; FDR = 0.050) has several enriched functions in 

the nucleotide synthetic process, oxidoreductase activity, carbohydrate and lipid metabolism, 

ATP metabolic processes, cofactor, and coenzyme binding (supplementary table S4, 

Supplementary Material online). Accordingly the top hubs in this module contain a 

thioredoxin, a proteasome subunit (a6) and two genes involved in ubiquitination (STUB1 

and Ubc6; supplementary table S3, Supplementary Material online). 

 

Module_8 (103 genes; r =-0.62; P=0.018; FDR = 0.080) is enriched for the function “G-

protein coupled receptor activity” (supplementary table S4, Supplementary Material online). 

The top hub gene in this module (intraconectivity 0.90), Cobs_08138, is orthologous to the 

methuselah-like receptors in D. melanogaster (Friedrich and Jones 2016). Interestingly, 

mutant flies, carrying P-element insertions in one of these methuselah genes, live 35% longer 

and are significantly more resistant to stresses than wild-types (Lin et al., 1998). There are 

indications that these effects on lifespan and stress response may represent the ancestral 

function of methuselah receptors in Drosophila (Araújo et al., 2013). A similar function of 

the methuselah ortholog in C. obscurior would explain how a reduction in expression within 

older queens may facilitate life extension and greater stress resistance. 

 

We also examined module_27 (808 genes) in more detail since it shows the strongest increase 

in connectivity in old compared with young queens (1.47 fold) of all modules (Fig. 2-3), 

suggesting an increased regulation of this module with age. The functions connected to this 

module, based on hubs (supplementary table S3, Supplementary Material online), increases 

in connectivity (supplementary table S5, Supplementary Material online) and GO terms 

(supplementary table S4, Supplementary Material online), indicate that in old queens an 

increased regulation of cell cycle, mitochondrial genes, immunity genes, transcriptional 

genes, and members of the protein synthesis machinery takes place, which is in stark contrast 

to the expected gene expression hallmarks of ageing in multicellular eukaryotes (Frenk and 

Houseley, 2018). 
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2.4.6 Robustness of GCN 
 

Since our sample size of 14 is one lower than the recommended minimum of 15, we 

confirmed the robustness of our results by adding further samples from the same study 

(Wyschetzki et al., 2015). For this, we incorporated expression data from seven old queen 

samples that had mated with sterile males (“sham-mated”) and then created eight further 

GCNs, seven of which contained one sham-mated queen (total n = 15) and one GCN 

containing all seven sham-mated queens (n = 21). We used preservation statistics (Langfelder 

and Horvath, 2008) to compare the modules of our GCN with these larger GCNs. Within 

each module, correlation, adjacency, connectivity, and variance explained by the eigen-node 

are compared between all nodes, and for each statistic a z-score is calculated based on 200 

permutations. A composite z-summary of these statistics is calculated, whereby a threshold 

of 2 is deemed as necessary for classing a module as preserved, whereas a score greater than 

10 offers strong evidence for module preservation. In each comparison against the 8 

additional, larger GCNs, our age-biased modules scored at least 10, offering strong support 

that our GCN is not affected by a limited sample size. 

 

2.4.7 Old-Biased Module Hubs Are Highly Conserved 
 

We investigated evolutionary rates of the most connected genes within the old- and young-

biased modules. Hub genes (intraconnectivity > 50%) of the five old-biased modules have 

significantly lower rates of protein evolution (dN/dS median: 0.081) than hubs in young-

biased modules (median: 0.118; P = 6.0 x 10–4) or compared with all lowly connected genes 

(intraconnectivity < 50%; median: 0.101; P = 0.017; Fig. 2-4). We investigated the influence 

of expression levels on these results, since highly expressed genes are often found to be under 

stronger purifying selection (Drummond et al., 2005). However, expression levels, based on 

mean normalized read counts among all 14 samples, do not differ between hub genes of old-

biased (mean: 291.5) and young-biased genes (mean: 326.8; W = 3160, P value = 0.18). 

These results suggest the hub genes of old-biased modules are highly constrained by strong 

purifying selection. 
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Figure 2-4. dN/dS rates in hub genes within young- and old-biased modules compared to lowly connected 
genes. Each dot represents a gene, which are coloured by the module membership. Whiskers of the 
boxplots represent up to 1.5 times the interquartile range. Black diamonds are means, and horizontal bars 
within the boxes are medians. Hub genes have an intraconnectivity > 50%; lowly connected: < 50%. 

2.5 Conclusions 
 

Evolutionary theory of ageing predicts a selection shadow on genes expressed late in life due 

to a reduction in effective population size with increasing age caused by extrinsic mortality 

(Kirkwood and Austad, 2000). We expected to find a reduced selection shadow in C. 

obscurior queens, as ant queens generally experience low extrinsic mortality. In support, we 

find compelling evidence for strong purifying selection on old-biased genes (significantly 

upregulated in seven old compared with seven young queens), for which evolutionary rates 
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module_1
module_2
module_3
module_4
module_5

module_6
module_7
module_8 

low connectivity young−biased hubs old−biased hubs

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(92) (78)(1899)

p = 0.017
p = 6.0x10-4p = 0.006

dN
/d

S



 30 

selection shadow in D. melanogaster where dN/dS is significantly higher for old-biased 

genes. Our results suggest, therefore, that C. obscurior queens are not affected by a selection 

shadow, so that genes important at old age cannot be expected to accumulate deleterious 

mutations at an increased rate compared with early-acting genes. This offers an explanation 

for the apparent lack of ageing and the high reproductive output of old ant queens. 

 

Furthermore, we were interested in understanding whether C. obscurior queens show signs 

of ageing, especially within transcriptional regulation. This is a particularly intriguing 

question since the reproductive fitness of these ant queens remains high until old age, 

although they outlive their sterile siblings (Oettler and Schrempf, 2016). In fact, our analysis 

of coexpression networks in C. obscurior queens uncovers a significant increase in gene 

connectivity in old queens. This result offers evidence for an increased transcriptional 

regulation, especially in genes that are themselves involved in transcriptional regulation, as 

well as several genes involved in protein synthesis and degradation, which are important 

mechanisms for counteracting symptoms of ageing (Frenk and Houseley, 2018). Also, the 

analysis of old-biased modules (clusters of highly correlated genes, upregulated with age) 

within the GCN revealed an increase in expression and connectivity of genes involved in 

proteostasis, stress response, and transcriptional regulation (Fig. 2-2a), offering further 

support for well-regulated antiageing mechanisms. The hub genes within these old-biased 

modules are more highly conserved than hubs of young-biased modules, indicating strong 

purifying selection acting on these important central regulators. 

 

In summary, we find no evidence of ageing in transcriptional regulation in C. obscurior 

queens. Low extrinsic mortality may allow selection to shape genes important at old age, 

which is evident in low divergence rates (dN/dS) of the hubs of old-biased modules. Well 

regulated molecular mechanisms likely allow the ant queens to counteract any symptoms of 

ageing, thus maintaining high reproductive fitness through-out life. We suggest further 

transcriptional studies into the short period directly before death when the reproductive out- 

put of C. obscurior queens decreases (Heinze and Schrempf, 2012; Kramer et al., 2015), 

which we expect to illuminate processes of transcriptional ageing. Transcriptional studies of 

other ant species are necessary to investigate the generality of our findings. In monogynous 
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ants, for example, in which individual queens are less dispensable, we would expect to 

observe an even weaker selection shadow. Also, C. obscurior queens are relatively short 

lived compared with other ant species. Selection strength on age-biased genes of extremely 

long-lived queens may be less affected by reductions in effective population sizes due to 

longer generation times. Further detailed research on individual pathways is important to 

understand how an upregulation of antiageing mechanisms occurs; especially proteomic 

analyses may reveal the true relationships between pathway members. 

 

2.6 Materials and Methods 
 

2.6.1 Data Set 
 

Genome and proteome sequences of the C. obscurior genome, version 1.4, were obtained 

from the hymenopteragenome.org website (Elsik et al., 2016; accessed July 2018). We 

estimated gene functions based on orthology, primarily to D. melanogaster, as well as PFAM 

domains and GO terms. Putative protein functions were based on descriptions in the flybase 

(Thurmond et al. 2019) and UniProt (The UnitProt Consortium 2018) databases, unless 

otherwise stated. We calculated orthology to D. melanogaster with the method of reciprocal 

best BLAST hit (Rivera et al., 1998). For this, the proteomes of C. obscurior and D. 

melanogaster (v. 6.21; obtained from ftp://ftp.flybase.net/releases/current/dmel_r6. 

21/fasta/, accessed June 2018) were blasted against each other using BLASTp (BLAST 

2.7.1+; (Camacho et al., 2009) and an e-value threshold of 1e–5. Reciprocal best BLAST hits 

were extracted from the output files using a custom perl script. Where no orthology could be 

detected using this method, protein sequences were blasted against the swissprot database 

with BLASTp (version 2.7.1+; Altschul et al., 1990) and the best hit was retained with an e-

value < 0.05. Protein sequences were annotated with PFAM domains using pfamscan (Mistry 

and Finn, 2007), to which GO terms were mapped with pfam2GO (Mitchell et al., 2015). 

 

Published RNAseq data were obtained for seven old (18weeks) and seven young (4weeks) 

ant queens from NCBI (Wyschetzki et al., 2015). These queens had each been individually 

reared from pupal stage in separate experimental colonies, each containing 20 workers and 

10 larvae, originating from the genome reference population in Bahia, Brazil (Schrader et al., 



 32 

2014; Wyschetzki et al., 2015). Fastq files were mapped to the C. obscurior genome (version 

1.4) with hisat2 (Kim et al., 2019) using default parameters. We then indexed and sorted sam 

files using samtools (version 1.7; Li et al., 2009) and generated counts per gene using htseq-

count (Anders et al., 2015). All statistical analyses on these counts were carried out in R 

(version 3.5.1; R Core Team 2018). Where necessary, we corrected for multiple testing with 

the p.adjust function, using the fdr method (Benjamini and Hochberg, 1995). A total of 

10,339 genes were expressed in at least two individuals with a read count of at least 10. This 

subset of genes was used for all analyses. 

 

2.6.2 Determining Age-Biased Expression 
 

Within this subset of 10,339 genes, we identified genes with age-biased expression by 

comparing expression in the seven old to the seven young samples. This was carried out with 

the R package DESeq2 at default settings (Love et al., 2014). Genes with an adjusted P value 

< 0.05 were deemed either old or young biased. All other genes were classified as unbiased. 

 

2.6.3 Molecular Evolution and Selection Analyses 
 

In order to carry out evolutionary analyses, we first determined orthology between the 

proteomes of C. obscurior and nine further ant species, which we either downloaded from 

the hymenopteragenome.org website (Elsik et al., 2016; accessed August 2020): Atta 

cephalotes, Pogonomyrmex barbatus, Solenopsis invicta and Wasmannia auropunctata; or 

NCBI (accessed August 2020): Monomorium pharaonis, Temnothorax curvispinosus, 

Temnothorax longispinosus, Vollenhovia emery. Data for Crematogaster levior were 

obtained from the authors of the genome publication upon request (Hartke et al., 2019). 

Orthology was determined with OrthoFinder (Emms and Kelly, 2015) at default settings. We 

chose orthologous groups that contained single gene copies within each of the 10 species. 

Protein sequences of each ortholog set were aligned with prank (version 170427; Löytynoja, 

2014) at default settings. The corresponding CDS sequences were aligned using pal2nal 

(Suyama et al., 2006). CDS alignments were trimmed for poorly aligned codon positions 

with Gblocks (version 0.91b) with the following parameters: -t=c -b2=6 -b3=100000 -b4=1 
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-b5=h. We calculated dN/dS ratios using the null model of codeml in the PAML suite (Yang, 

1997), using the following tree based on a published ant phylogeny (Ward et al., 2015): 

(((((((Tlon,Tcur),Clev),Veme),Cobs), (Waur,Acep)),(Mpha,Sinv)),Pbar) 

dN/dS ratios were used for analyses only if dS < 3. dN/dS ratios were compared between old-

biased, young-biased, and unbiased genes using the Mann–Whitney test with the R function 

wilcox.test. In order to detect genes that contain codon sites under positive selection, we 

performed a likelihood-ratio test between models 7 (null hypothesis; dN/dS limited between 

0 and 1) and 8 (alternative hypothesis; additional parameter allows dN/dS > 1) of the codeml 

program within the PAML suite (Yang, 1997). For this we used runmode 0, model 0, and set 

“NSsites” to 7 and 8. 

 

2.6.4 Gene Coexpression Analysis 
 

The expression counts data were normalized using the built-in median of ratios method 

implemented by default in DESeq2 (version 1.22.2; Love et al., 2014) and then transposed 

to a matrix containing genes in columns and samples in rows. With the reduced set of 10,339 

genes, we created a signed weighted GCN using the WGCNA package (version 1.68; 

Langfelder and Horvath, 2008) that incorporated expression values from all 14 queen 

samples (7 young and 7 old). We followed the standard stepwise protocol 

(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorial

s/; last accessed March 2021), using a soft power of 14 and the biweight midcorrelation 

function for calculating coexpression similarity. Minimum module size was set at 30 and 

resulting modules with a correlation of at least 0.75 were merged. Hub genes within modules 

were determined based on the intramodular connectivity, which we calculated with the 

intramodularConnectivity function on the adjacency matrix, that was produced during the 

WGCNA pipeline. Age-biased modules were identified by correlating (Pearson) the 

eigengene of each module with the binary trait young/old. FDRs were calculated with the 

p.adjust function, and modules with an FDR < 0.1 were considered significantly related to 

age. To compare connectivity between young and old queens, we calculated connectivity 

with the softConnectivity function separately within the young and the old queen expression 

data. We used the same soft power value of 14 and the biweight midcorrelation function. 
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To create a visualization of the GCN, the topological overlap matrix was reduced to only 

contain genes with a topological overlap of at least 0.1 to at least one other gene. Edge and 

node files were created with the WGCNA function exportNetworkToCytoscape, using a 

threshold of 0.1. All further visualizations of the network were conducted in Cytoscape (v. 

3.7.2, Shannon et al., 2003). To test the robustness of our GCN, we created seven additional 

GCNs each with one extra sample taken from the sham-mated queens previously published 

within the same data set as our main data used here (Wyschetzki et al., 2015). We also created 

one larger GCN containing all 7 sham- mated queens, therefore containing 21 samples. Each 

additional GCN was created with the same parameters as our original GCN and then 

compared with our original GCN with the built-in WGCNA function, modulePreservation 

and the Zsummary statistic was calculated. This composite z-score combines several 

comparative statistics, such as adjacency, connectivity, and proportion of variance explained, 

with a score of 10 suggested as a threshold for strong evidence of module preservation 

(Langfelder and Horvath, 2008). 

 

2.6.5 GO Enrichment 
 

GO term enrichment analyses were carried out with topGO (version 2.34.0; Alexa and 

Rahnenfuhrer, 2018) on the “biological process” category, using the classic algorithm. Node 

size was set to 5, Fisher statistic was implemented and we only kept GO terms that matched 

at least three genes and with a P value < 0.05. An FDR was added using the R function 

p.adjust and the method “fdr” (Benjamini and Hochberg, 1995); GO terms with an FDR < 

0.1 were described in the text. 

 

2.6.6 Drosophila melanogaster Data Set 
 

To estimate evidence of a selection shadow in D. melanogaster, we accessed a recently 

compiled, but so far unpublished, RNAseq data set (SRA accession: PRJNA615318). This 

data set comprised RNAseq of 34 samples of five pooled flies. We used y1, w1118 mutant 

flies (full genotype: yw; +/+; +/+). These flies were maintained in laboratory conditions at 

25°C, 12h:12h light:dark and 60% relative humidity. 
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2.6.7 Experimental Setup 
 

Adult virgin females and males were collected separately, and 3 days later they were pooled 

together to freely mate. Eggs were laid in a controlled density (50–100 eggs per bottle) and 

developed until the adult stage in the same conditions as mentioned above. After eclosion, 

the offspring adult flies matured for one day. On the second day after eclosion, female and 

male flies were collected and transferred to a demographic cage. Each cage contained 130 

females and 70 males. Once cages were set up, they were divided into four groups, which 

consisted of four different diet treatments. The diet treatments differed only in the content of 

yeast (20, 40, 80 or 120g) present in the fly food; the other ingredients were added in the 

same quantities in all diets (1 l water, 7 g agar, 50 g sugar, 10 ml 20% nipagin, and 6 ml 

propionic acid). All cages were maintained in the same conditions as described above. 

 

2.6.8 Sampling and RNA Extractions 
 

Female flies were sampled at two time points: 10 days (young) and 38 days (old). For each 

time point, sampling and dissections were done between 1 and 6 PM. Two groups of five 

females each (two replicates) were anesthetized in the fridge (approximately 4°C), and 

afterwards fat bodies were dissected in ice-cold 1xPBS. To guarantee that we sampled the 

entire fat body, we decided to use in this experiment fat bodies still attached to the cuticle—

usually referred to as fat body enriched samples—because the cuticle is transcriptionally 

inactive. In ice-cold PBS, the female fly abdomens were opened, and the organs were 

carefully removed. Once the fat body tissue was clean, the abdomen cuticle was separated 

from the thorax. The fat body-enriched tissues were transferred into Eppendorf with 200 µl 

of homogenization buffer from the RNA isolation kit (MagMAXTM-96 Total RNA Isolation 

Kit from Thermo Fisher). The tissues were homogenized and stored at -80°C until RNA 

extraction. To sample head transcriptomes, flies were transferred to Eppendorfs and snap 

frozen with liquid nitrogen. Then the Eppendorfs were vigorously shaken to separate the 

heads from the bodies. The heads were then transferred into an Eppendorf containing 200 µl 

of homogenization buffer, from the RNA isolation kit. As described above, tissues were 

homogenized in the solution and kept at -80°C until RNA extraction. All extractions were 
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done using the MagMax robot from Thermo Fisher and the MagMAXTM-96 Total RNA 

Isolation Kit. In this experiment there is a total of 34 samples: 2 time points x 4 diet treatments 

x 2 tissues = 16 groups, for each group we have 2–3 replicates (all groups have 2 replicates 

except for the second time point for 2% yeast diet, where we have 3 replicates). The 

sequencing of the RNA samples was done in BGI, Hong Kong, China. The samples were 

sequenced (paired end, 100 bp) on an Illumina HiSeq 4000 platform. Gene counts were 

generated in the same manner as for C. obscurior using genome version 6.21 (obtained from 

ftp://ftp.flybase.net/releases/current/dmel_r6.21/fasta/, accessed June 2018). 

 
Supplementary Material 
 
Supplementary data are available at Genome Biology and Evolution online.  
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3.1 Abstract 
 

A key hypothesis for the occurrence of senescence is the decrease in selection strength due 

to the decrease in the proportion of newborns from parents attaining an advanced age – the 

so-called selection shadow. Strikingly, queens of social insects have long lifespans and 

reproductive senescence seems to be negligible. By life-long tracking of 99 Cardiocondyla 

obscurior (Formicidae: Myrmicinae) ant colonies, we find that queens shift to the production 

of sexuals in late life regardless of their absolute lifespan or the number of workers present. 

Furthermore, RNAseq analyses of old queens past their peak of reproductive performance 

showed the development of massive pathology while queens were still fertile, leading to rapid 

death. We conclude that the evolution of superorganismality is accompanied by 

“continuusparity”, a life history strategy that is distinct from other iteroparous and 

semelparous strategies across the tree of life, in that it combines continuous reproduction 

with a fitness peak late in life. 

Keywords: aging, selection shadow, senescence, social insects. 

 

3.2 Introduction 
 
The phenomenon that social insect queens live exceptionally long compared to solitary 

insects is widely recognized (Carey, 2001; Keller and Genoud, 1997). Given how prominent 

this is, however, only patchy information exists about the proximate mechanisms that are 

involved with the regulation of senescence, i.e., a phase marked by an increase in relative 
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mortality and a decrease in relative fecundity with age. Even less is known about the ultimate 

causes of social insect aging.  

 

The classic trade-off between reproduction and maintenance shapes the life history strategy 

of species along a continuum between iteroparity (repeated events of reproduction) and 

semelparity (single event of reproduction) (Hughes, 2017). These strategies shape the way 

species age, i.e., how resources are allocated to maximize fitness. In iteroparous species, 

fitness decreases after the first reproductive peak(s). Thus, the strength of selection against 

age-specific mortality decreases with age, as the proportion of offspring that come from 

parents surviving to a specific age becomes smaller with time (Hamilton, 1966; Moorad et 

al., 2020a). This is known as the selection shadow, which begins with maturity (Williams, 

1957) and may negatively affect reproductive performance and survival (i.e. senescence). 

Classic model systems in aging research, such as Drosophila, Caenorhabditis (but see the 

discussion of quasi-semelparous hermaphrodites, (Gems et al., 2021), mice, and humans, are 

of the iteroparous type, and a plethora of studies have revealed common mechanisms 

associated with senescence rate (Gems and Partridge, 2013). One prominent evolutionary 

theory of aging explains senescence by genes with antagonistic pleiotropic effects early and 

late in life (Williams, 1957). Semelparity instead predicts that organisms optimize their 

resources to one fitness peak, after which reproductive death occurs, i.e., allocation of 

remaining resources into fecundity and not into maintenance. Thus, selection acts strongly 

against senescence before the single reproductive event. To understand how investment in 

reproduction of ant queens changes with chronological age and how they age, it is vital to 

understand where they sit in this parity continuum.  

 

Two dimensions are necessary to understand aging from an evolutionary perspective: the 

pace and the shape of demographic trajectories (Baudisch, 2011; Baudisch and Stott, 2019). 

The pace refers to factors that describe the time-scale (e.g., life expectancy), and the shape 

refers to time-standardized measures of the distribution of mortality and fertility across a life 

history. Studies that capture the shape of aging (age-specific reproduction and mortality) of 

ants are scarce (Cole, 2009), and based on punctual periods of growth and death of colonies, 

mostly of long-lived species in which colonies have a single queen (monogyny). Often such 
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field data correspond to less than 20% of the estimated lifespan of the species (Atta 

cephalotes (Perfecto and Vandermeer, 1993); Atta colombica (Wirth et al., 2003); 

Pogonomyrmex owyheei (Porter and Jorgensen, 1988); Pogonomyrmex occidentalis (Keeler, 

1993); Pogonomyrmex badius (Tschinkel, 2017). These studies have generally failed to 

capture the end of the queen's lifespan and thus did not document senescence and lifetime 

reproductive investment. More complete yearly census data from Pogonomyrmex barbatus 

showed no relation between reproductive success (number of successfully established 

offspring colonies) and age (Ingram et al., 2013), but an increase in the production of male 

and female sexuals with age (Wagner and Gordon, 1999). In contrast, a study on a related 

species, Pogonomyrmex occidentalis, showed no correlation between sexual production and 

colony size (as a proxy for age) once colonies had initiated sexual reproduction (Cole and 

Wiernasz, 2000), suggesting that it is difficult to infer the dynamics of age, colony growth, 

and reproduction from field data. To better understand how aging, senescence, and 

reproductive investment are related in ants, complete lifetime production data of individual 

queens are needed. 

 

To study aging patterns and senescence of social insect queens it is helpful to consider the 

colony as a superorganism (Boomsma and Gawne, 2018; Wheeler, 1911), analogous to a 

soma- (i.e., workers) and a germline (i.e., queens), where the investment into both castes is 

related and affects overall fitness (Bourke, 2007; Kramer and Schaible, 2013a). Ant species 

such as Cardiocondyla obscurior, where workers are completely sterile and seemingly 

without any direct reproductive power, exhibit an extreme case of superorganismality. By 

manipulating the colony size, we expected to find trade-offs (i.e., lifespan and investment in 

queen/worker/male offspring). We monitored the lifetime production of individual queens in 

99 single-queen colonies maintained with 10, 20, or 30 workers each (Figure supplement 1A-

B). Worker number corresponds to the colony size variation observed in the field (Schrader 

et al., 2014) Figure supplement 2) and was standardized weekly. Furthermore, queens whose 

egg production declined below a rate of ~10 eggs/week exhibited lethargic behavior, were 

less mobile, left the nest and/or were harassed by workers, and died within a few days to 

weeks. To assess if senescence was restricted particularly to the end of life, we compared 

RNAseq data of 18 of such prope mortem (Lat. near death) queens (between 28-29 weeks 
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old) and 18 middle-aged queens (between 19-21 weeks), which were in their peak of fertility 

(Figure supplement 3A-B). To compare queen and worker mortality, we tracked the survival 

of 40 workers kept in 40 colonies with either 10 or 20 nestmate workers. 

 

3.3 Results 
 
3.3.1 Reproductive strategy 
 

The treatment (varying worker number) did not affect total production of eggs (Package 

“generalized linear mixed models using template finder” v. 1.1.2.3 in R) (Figure 3-1A, 10 

vs. 20 workers: glmmTMB z-value = -0.38, p = 0.70 and 10 vs. 30: z-value = -0.96, p = 0.34) 

or worker pupae (Figure 3-1B, 10 vs. 20 workers: glmmTMB z-value = 0.09, p = 0.93 and 

10 vs. 30: z-value = -0.39, p = 0.70). The treatment did also not affect the lifespan of queens 

(Figure supplement 6A, Cox proportional hazard regression model, Likelihood ratio test, 

X2=1.57, p = 0.46), which was highly variable across treatments (Variation coefficient: 

32.2%, Figure supplement 6B).  

 

 

Figure 3-1. Productivity of C. obscurior colonies across treatments. A) Total number eggs, B) worker 
pupae, and C) of queen pupae (N = 31, 34 and 34 for 10, 20 and 30 worker colonies, respectively). 
Significant differences are given with ** for p<0.01 and *** for p<0.001. Boxplots depict upper and lower 
quartile plus 1.5 IQR. 
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We hypothesized that colonies that experienced a worker shortage would compensate by 

investing less into the production of new queens as these are larger and therefore more costly 

to produce. Indeed, queens with 10 workers (n = 31) produced significantly fewer queen 

pupae than queens with 20 (n = 34) (glmmTMB z-value = 2.81, effect size=1.97, p=0.005) 

and 30 workers (n = 34) (glmmTMB z-value = 2.58, effect size=1.78, p=0.009, Figure 3-1C) 

with no significant differences between 20 and 30 workers (glmmTMB z-value = –0.49, 

p=0.877). Similar results were obtained when accounting for the differences in biomass 

between workers and queens (Figure supplement 7, Supplementary file 1A). Probably due to 

difficulties assessing precise egg numbers which are reared in piles, and extremely worker-

biased caste ratios (average pupae developed into workers = 0.86), egg counts do not reflect 

these subtle but significant differences. The median sex ratio (Queen/Queen + Male pupae) 

across treatments was 0.85 (25% and 75% quantiles = 0.79 and 0.90), and total production 

of male pupae (two types of males occur in C. obscurior: winged and wingless) was 

unaffected by the treatment (10 vs. 20: glmmTMB z-value =1.94, p =0.05 and 10 vs. 30: 

glmmTMB z-value =1.52, p = 0.13, figure supplement 8). Queens produced very low 

numbers of winged males during their lifetime (mean = 0.36, median = 0, N = 99). 

 

A first peak in the investment in queen pupae occurred around 15 weeks after the colonies 

were established (Figure 3-2A), followed by an increasing queen-bias with age (Figure 3-

2B). In general, new queens, which start a new colony, invest first in growing numbers of 

workers (ergonomic phase) and subsequently in the production of new sexuals, when the 

colony has reached the threshold required to enter the reproductive phase (Beekman et al., 

1998; Macevicz and Oster, 1976; Oster and Wilson, 1978). This shift in caste ratio does not 

result from a drop of the production of pupae at the end of life. In contrast, pupa production 

is at its highest just before death (Figure supplement 9). Importantly, in C. obscurior this 

caste ratio shift appeared to be a fixed trait, independent of colony size and queen lifespan. 

Both, queens with short and long lifespans (below and above the mean lifespan of 25 weeks, 

Figure 3-2C and D respectively), equivalent to queens with low and high productivity, 

exhibited late life investment into queens.  
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Figure 3-2. Life-time caste ratio. A) Numbers of worker and queen pupae produced over time, B) 
Queen/(Queen + Worker) pupae caste ratio produced by queens (n = 31, 34 and 34 for 10, 20 and 30 
worker colonies respectively), C) Pupae caste ratio for queens with lifespan below (n = 44),  and D) above 
the mean lifespan of 25 weeks, indicated by the dashed line (n = 55). After queen death, eggs and larvae 
were allowed to develop into pupae for a final count. Therefore, smooth splines extend ca. 4 weeks after 
queen death. 

In addition to the effect on the caste ratio, the treatment had an effect at the colony level. We 

explored whether the quality of workers was affected by measuring the head width of workers 

produced over months 3 to 6 of the queen’s lifetime (~5 workers per month). Head width of 

workers was 2% and 3% significantly smaller in small colonies with 10 workers than in 

A) B)

C) D)

No. of workers 10 20 30

Pupae
Worker
Queen

0

10

20

0 10 20 30 40

N
o.

 o
f p

up
ae

0.0

0.4

0.8

0 10 20 30 40

Q
/(Q

+W
) r

at
io

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40
Weeks

Q
/(Q

+W
) r

at
io

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40
Weeks

Q
/(Q

+W
) r

at
io



Chapter 3 Results 

 43 

colonies with 20 (glmmTMB z-value = 2.22, p = 0.026) and 30 workers, respectively 

(glmmTMB z-value = 2.68, p = 0.007, Figure 3-3), but not different between colonies with 

20 and 30 workers (glmmTMB z-value=0.22, p=0.97). This suggests that small colonies lack 

sufficient numbers of nurse or forage workers, and indeed colonies collected in the field have 

worker numbers closer to 20 or 30 (Schrader et al., 2014), Figure supplement 10). 

 

 

Figure 3-3. Worker quality across treatments.  Head width measurements of workers produced by queens 
of colonies with 10, 20 and 30 workers (n = 160, 112 and 68 respectively). Significant differences are 
given with * for p < 0.05 and ** for p < 0.01. Boxplots depict upper and lower quartile plus 1.5 IQR. 

After mean-standardizing queen age-specific mortality and fecundity (following Jones et al., 

2014), we found that relative fecundity reached its maximum after ~16 weeks, before 

completion of the median lifespan (~25 weeks), and then decreased (Figure 3-4). Production 

of workers tightly followed the curve of egg production. Importantly, relative investment in 

queen and male pupae reached its maximum late in life (~28 weeks). This pattern is not due 

to the delay in development from egg to pupa, because queen and male development only 

lasts ~5 and ~3 weeks, respectively (Schrempf and Heinze, 2006). Furthermore, C. obscurior 

ant queens exhibited a below average level of adult mortality until week 30, after which 

**
**

320

360

400

440

10 20 30

W
or

ke
rs

' h
ea

d 
wi

dt
h 

(u
m

)

No. of workers 10 20 30



 44 

mortality increased above the average level (Figure supplement 11). This indicates 

maintenance of selection until after the peak of relative investment in sexual offspring. 

Therefore, queens continue to experience strong selection even at high ages, i.e., weeks after 

they reached the mean lifespan. Monitored workers in colonies with 10 or 20 nestmates did 

not differ in survival (Cox proportional hazard regression model, Likelihood ratio test, 

X2=0.06, p = 0.8). Therefore, the mean-standardized age-specific mortality was calculated 

for the 40 workers. Note that regardless of the differences in time scale, the shape of mean-

standardized mortality of workers was similar to that of queens (Figure supplement 12). This 

suggests that aging is a genetically fixed trait expressed by queens and workers alike. 

 

 

Figure 3-4. Relative mortality and fecundity as a function of age. Mean-standardization of age by dividing 
age-specific mortality and fecundity of queens (n = 99) by their mean after maturation (Jones et al. 2014). 
Survivorship (black dashed line) is depicted on a log scale. The graph uses a Loess smoothing method 
(span = 0.75) and a confidence interval of 95%. The dashed grey line at y = 1, indicates when relative 
mortality and fertility are equivalent to mean mortality and fertility. 
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3.3.2 RNAseq of prope mortem queens 
 

To determine if queens show signs of reproductive senescence and loss of physiological 

function, we analyzed gene expression data of prope mortem queens exhibiting decreasing 

egg laying rates, and middle-aged queens that were at their peak reproductive performance. 

To account for possible effects of fertility we sampled queens with low, medium, and high 

egg productivity at 18 weeks of age (Figure supplement 13A-B). We subjected the head plus 

thorax and the gaster (see methods for terminology, Figure supplement 5) to RNAseq 

separately to assess if reproductive tissue shows a different physiological wear and tear than 

head-thorax tissue. The analyses revealed that head-thorax and gaster tissues showed similar 

mapping rates to the genome (Figure 14A-B), but that gaster samples had a lower GC content 

on average and more duplicated reads (Figure 14C-F) in prope mortem queens compared to 

middle-aged queens.  

 

Of the 20,006 expressed genes in head-thorax tissue, 3,565 (17.8%) genes were differentially 

expressed between middle-aged and prope mortem queens (after FDR adjustment p < 0.001, 

DESeq2, Source data 9). Of these, 1,725 genes (48%) were upregulated, and 1,840 genes 

(52%) were downregulated in prope mortem queens compared to middle-aged ones. GO-

term enrichment revealed signs of rapid physiological decay of prope mortem queens, such 

as reduced translation, proteasomal, ribosomal, and mitochondrial function (Fisher test using 

the weight01 algorithm, p<0.05, Supplementary File 1B, Figure 3-5), increased splicing and 

transcript processing (Supplementary File 1C, Figure supplement 15). Such processes have 

previously been related to aging in several model organisms (López-Otín et al., 2013); e.g., 

the loss of protein homeostasis (Hipp et al., 2019), the decrease in ribosomal proteins 

(Walther et al., 2015), alterations in the mitochondrial function (Green et al., 2011), 

disruption of splicing (Bhadra et al., 2020), and others (Harries et al., 2011). Another 

characteristic of aging, changes in gene connectivity among gene expression networks found 

in mice (Southworth et al., 2009), was not affected by age in C. obscurior (calculated using 

the softConnectivity and the biweight midcorrelation functions on gene networks for middle 

and prope mortem queens using WGCNA, and modeled using glmmTMB, Z-value =-1.7, p 

= 0.09). PCA ordination of the head-thorax tissue separated middle-aged and prope mortem 

queens by age (PERMANOVA test, F-value= 7.59, p < 0.001), but not by fertility (F-value 
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= 1.09, P = 0.26) or duplication percentage (Figure supplement 16A-B). 

 

In the gaster tissue, 4,832 (24.3%) of 19,925 expressed genes were differentially expressed 

between age groups (after FDR adjustment p < 0.001, DESeq2, Source data 10). Of these, 

2,306 genes were upregulated (48%) and 2,526 downregulated (52%) in prope mortem 

queens compared to middle-aged queens. GO-term enrichment likewise showed that many 

fundamental processes were affected in prope mortem queens, such as DNA damage, 

telomere maintenance, and enrichment of transcription processes (Supplementary File 1D, 

Figure supplement 16), and among others processes related to protein processing, glycolytic 

processes, and the Notch signaling pathway were downregulated (Supplementary File 1E, 

Figure supplement 17). In contrast to head-thorax tissue, gene connectivity among gene co-

expression networks in the gaster was significantly different (prope mortem queens: median 

= 69.45, and middle-aged queens: median = 52.56) (glmmTMB, Z-value =-19.5, p < 2e-16), 

but contrary to what was found for aged mice (Southworth et al., 2009).  

 

The PCA of the 500 most variable expressed genes in gaster tissue shows that the samples 

group according to age (PERMANOVA test, F-value= 13.91, P < 0.001), fertility level (F-

value= 1.95, p = 0.04), and also the percentage of duplicated reads in the libraries (F-value= 

4.83, P = 0.002, Figure supplement 18A-B). This is not a typical technical artefact (no 

correlation to sequencing lane, RNA concentration or quality). Spike-in reads were used as 

a control for library preparation and showed a positive linear relationship between expected 

and observed reads independent of age group, tissues, and lanes (Figure supplement 19A-C). 

However, this linear relationship has different slopes among age groups in the gaster samples 

(Figure supplement 19B), indicating biological changes with age pertaining specifically to 

the gaster. 

 

Given these discrepancies between tissue types, 104 GO terms were significantly enriched in 

both tissues, of these 44 in prope mortem queens (Supplementary File 1F) and 60 in middle-

aged queens (Supplementary File 1G). Thus, signs of similar physiological pathologies occur 

in reproductive and non-reproductive tissue. 

 



Chapter 3 Results 

 47 

 

Figure 3-5. Caption on next page. 
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Figure 3-5.(Previous page) Enriched GO-terms downregulated in prope mortem queens compared to 
middle-aged queens the head-thorax tissue. Functional annotation and enrichment analysis using topGO 
(version 2.46.0) and the weight01 algorithm to calculate significance for A) biological processes, B) 
cellular components, and C) molecular functions. 

 
3.4  Discussion 
 

The near-ubiquitous occurrence of senescence has been explained by two classic prevailing 

evolutionary theories, mutation accumulation and antagonistic pleiotropy (Williams, 1957). 

These theories have in common the basic assumption of the existence of a “selection 

shadow:” a decrease in the force of natural selection with age. The selection shadow leads to 

loss-of-function and senescence, i.e., an increase in relative mortality and a decrease in 

relative fecundity with age (Maklakov and Chapman, 2019). Originally explained as a 

consequence of extrinsic mortality, models have shown that the strength of selection is in 

fact influenced by the proportion of offspring coming from parents that survived to a certain 

age (Hamilton, 1966; Moorad et al., 2020a). Extensive demographic data show a huge 

diversity of aging patterns across metazoan species, ranging from 20 times the average 

mortality at terminal age to less than a half in other species (Cohen, 2018; Jones et al., 2014). 

In some cases a short phase of senescence is self-evident, for example in semelparous species 

such as salmon, where death follows reproduction to provision the next generation with 

resources.   

 

Here we show for the first time the shape of aging in a social insect. While fecundity 

decreases in the ant Cardiocondyla obscurior, reflecting reproductive senescence, 

investment into sexuals reaches a maximum late in life, regardless of individual fitness 

(queen lifespan or total egg productivity) and colony size. Males in this species usually 

transfer an excess amount of sperm (Schrempf and Heinze, 2008), and only one queen 

showed signs of sperm depletion and produced only males at the end of her life. Therefore, 

reproductive senescence cannot be explained by sperm depletion. The magnitude of the 

investment (i.e., number of queen pupae produced) is affected by the number of workers 

available. In C. obscurior, most new queens were produced by queens older than the mean 

queen lifespan, indicating that queens continue to experience strong selection at high ages. 



Chapter 3 Conclusion 

 49 

This is in line with the hypothesis that the strength of selection against age-specific mortality 

is proportional to the probability for any offspring in the population to be produced by parents 

of that age and older.  

 

Strikingly, relative mortality did not increase directly after maturity or after total egg 

production started decreasing, but after the production of sexual pupae had reached its 

maximum. Indeed, transcriptome profiles of prope mortem queens shortly after this 

investment peak, which produced decreasing numbers of eggs, revealed signs of a broad 

range of physiological pathologies. The changes seemed stronger in the gaster (e.g., 

percentage of duplicated reads), which contains the reproductive organs and most of the 

digestive system, but to a similar extent occurred in head and thorax, containing most 

neuronal and muscle tissue.  Such a systemic breakdown is expected assuming that the entire 

physiology is optimized towards a fitness peak. Strikingly, a comparative transcriptomic 

study of 8 week young queens with fully mature C. obscurior queens at or close to their peak 

fecundity (18 weeks old) did not find signs indicative of aging, but in comparison to aged 

Drosophila flies an opposite regulation (e.g. cellular ketone, carbohydrate, and organic acid 

metabolic processes) and genes (e.g. ref(2)P, emp, P5cr-2, CCHa2, NLaz, Sirt6) involved in 

aging (Wyschetzki et al., 2015). Furthermore, a gene co-expression network study using the 

same data showed higher connectivity in old queens indicating increased transcriptional 

regulation with age (Harrison et al., 2021). Together, this suggests that the physiology of 

queens is maintained until the fitness peak is reached, at which time they undergo 

physiological deterioration, while still being reproductively active. This pattern is 

reminiscent of semelparous species with reproductive death rather than that typical of 

iteroparous species in which selection against age-specific mortality decreases after a first 

reproduction event and actuarial senescence unfolds under the selection shadow. 

 

3.5 Conclusion 
 

Superorganismality is a major evolutionary transition, and this transition is accompanied by 

a change in the mode of reproduction. We propose that the evolution of “continuusparity” 

(Lat.: “continuus” meaning incessant/successive; and “parere” meaning giving birth), i.e., the 
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combination of life-long continuous reproduction and increasing fitness returns late in life, 

underlies the delay of the selection shadow, the maintenance of selection strength against 

age-specific mortality, a brief phase of senescence late in life, and finally reproductive death. 

This is not to be confused with the meaning of the term negligible senescence, as actuarial 

and reproductive senescence clearly occur at the end of life. 

 

“Continuusparity” emerges as a combination of iteroparous and semelparous characteristics: 

reproduction resembling continuous iteroparous species but without the inter-parous non-

reproductive breaks, during which nests are built, mating occurs, resources are acquired, etc. 

The iteroparous solitary ancestor of ants is thought to be related to mud dauber wasps 

(Sphecidae) and cockroach wasps (Ampulicidae) (Ward, 2014), parasitoid wasps with mass 

provisioning. This combines with aging/resource allocation patterns of semelparous species 

(which are in contrast mostly short-lived), optimized towards one reproductive episode at the 

end of life, followed by reproductive death. Continuous reproduction is possible because no 

extra time or energy is necessary for further acquisition of resources, brood care, territoriality, 

etc., because of the extended phenotype, the colony. With time the colony increases in size, 

and resources increase accordingly, analogous to solitary organisms with life-long growth 

(Keller, 1998). Continuous reproduction is further facilitated by the presence of a 

spermatheca in female insects, which allows for a single mating event and lifelong sperm 

storage. Thus, the costs of additional matings are zero.  

 

We propose that continuusparity and its effect on the shape of queen aging is a property of 

superorganismality, and that this life history strategy ultimately underlies the evolution of 

long lifespans of social insects. For the pace of aging, it is important whether queen and 

worker interests are aligned, and whether direct and indirect reproductive investments of 

queens and workers are optimized. With respect to which proximate mechanisms regulate 

aging in social insects, this framework predicts that there are no genes/pathways with 

antagonistic pleiotropic effects, because there is no “later in life” past the fitness peak. Under 

this perspective, many questions remain open. Queens appear to have different properties 

that underlie both lifespan and fertility (Kramer et al 2015), probably determined during 

larval development (Schultner et al., 2017), and which are key to understand why some 
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individuals live longer than others. What is this, and how is it determined, maintained, and 

terminated? Queens do not senesce until shortly before death, then how is the trade-off 

between somatic maintenance and reproduction resolved? Using this framework, we can now 

start to study the proximate regulators that maintain the homeostasis in C. obscurior ant 

queens, which remain hidden in the excess number of associated processes. 

 

3.6 Materials and Methods   
 
3.6.1 The species 
 

Cardiocondyla obscurior is probably the best studied ant species with respect to aging due 

to the relatively short lifespan of queens (~6 months). Colonies comprise a few queens (body 

length ~3mm), a few dozen workers (~2mm), and nest in small cavities in dead twigs, aborted 

fruits, rolled leaves, under bark etc. in trees and shrubs (Schrader et al., 2014). Virgin queens 

usually mate once with related wingless males inside the natal colony (Heinze and 

Hölldobler, 2019; Schmidt et al., 2016), generally stay in the nest, and new colonies are 

formed by budding of colony fragments. This mode of reproduction from small propagules 

allows for successful colonization of disturbed habitat in warm climates around the world 

(Heinze, 2017; Heinze and Delabie, 2005). Various social, environmental, and biotic factors 

affect the lifespan of queens (Oettler and Schrempf, 2016). Queens that lay more eggs (total 

output and weekly rate) live longer than less fecund queens, irrespective of body size (Kramer 

et al., 2015), and thus seem to evade the common trade-off between reproduction and 

maintenance.  

 

3.6.2 Reproductive strategy 
 

We set up 138 freshly eclosed queens from stock colonies of a Japanese population (OypB, 

from the Oonoyama Park in Naha, Okinawa) established in the laboratory since 2011. The 

experiment took place between January 2019 and January 2020. Queens were allowed to 

mate with a single wingless male and were placed in nest boxes with either 10, 20 or 30 

workers from the maternal colony to establish monogynous colonies (n = 46 each). These 

numbers of workers represent the naturally occurring number in the field and correspond to 
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the first, median and third quantile of number of workers of this population (n = 62, median 

= 28.5, Figure 1 – figure supplement 2). The colony was set up with half of the workers 

selected from inside of the nest near the brood (younger nurses) of the stock colonies, and 

the other half from outside the nest (older foragers) in order to minimize a putative effect of 

worker age on the queen (Giehr et al., 2017). Colonies were kept under a 12 h dark 22°C/12 

h light 26°C cycle and fed ad libitum three times per week with diluted honey (0.6:1 honey: 

distillated water), cockroaches and flies. Once per week workers, eggs, and all pupae 

(worker, queen, winged and wingless male) were counted and queen survival was monitored. 

Additionally, the number of workers was standardized to the assigned treatment, and newly 

produced sexual pupae produced were removed. C. obscurior workers are sterile, and all 

produced offspring originated from the focal queen. Queen control over caste fate was 

assumed, as caste fate can be determined as early as the last embryonic stage, 7 days after 

egg laying (Schultner et al., 2021). The number of counted eggs correlates with the 

production of workers, queens, and the workers and queens together (Figure 2 – figure 

supplement 2A-C, Kendall’s rank correlation test, p < 0.001: eggs-worker pupae, τ = 0.70; 

eggs-queen pupae, τ = 0.59; eggs-worker and queen pupae, τ =0.73). Pupae might have been 

counted more precisely than eggs, especially when larger number of eggs were produced. 

Pupae are hardly missed, compared to eggs which tend to cluster together. Eggs and worker 

pupae might have been counted more than once, as development lasts a median of 8 and 18 

days for eggs and worker pupae, respectively. Colonies were counted after ca. 4 weeks after 

the queen’s deaths, until the last eggs had developed into pupae. Finally, three colonies (10 

worker treatment) were not considered in the analysis as they were accidentally killed, 

leaving a total of 99 colonies for life-long tracking and 36 colonies for RNA-seq analysis.  

 

3.6.3 Worker aging  
 

To examine worker aging, 40 focal unmarked worker pupae were set up in individual 

colonies with 10 or 20 marked workers (n=20 each). These two treatments were selected, 

because colonies with 20 and 30 workers did not differ in queen productivity. Marking of 

non-focal workers was done by clipping the tarsus of the middle right leg. Colonies were set 

up with brood (5 larvae in the 10 workers colonies, and 10 in the 20 workers colonies), and 
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two wingless queens to avoid a queenless period in case one died. The survival of the focal 

worker was monitored, and the number of marked workers, queens and larvae was 

standardized weekly to the assigned treatment. Newly produced pupae were removed. Dead 

marked workers were replaced with fresh worker pupae, which were marked one or two days 

after eclosion to avoid confusion with the non-clipped focal worker. Dead queens were 

replaced with adult ones. 

 

3.6.4 Offspring investment  
 

360 freshly eclosed adult workers from the queen’s colonies were sampled monthly for head 

width measurements (from the 3rd to 6th month of the queen’s life, and up to five workers 

depending on availability). Workers were dried, pinned, and blindly measured using a 

Keyence Microscope 200X. A single worker was chosen randomly and measured 10 times 

to obtain a proxy for measurement error (Mean = 383.61 μm, standard deviation=5.05 μm).  

 

3.6.5 Statistical tests 
 

To test for significant differences between treatments, we used generalized linear mixed 

effects models within the R package glmmTMB (R version 3.5.2, (Pinheiro et al., 2011)) and 

a negative binomial distribution for count data. If the count data and caste investment ratios 

were log transformed, a Gaussian family distribution was used. The dependent variable was 

analyzed as a function of the fixed effects: treatment (Number of workers as a factor), and 

random effects: stock nest and box of origin, box of set up, set up date. All models were also 

graphically checked for consistency and model diagnostics were performed using the 

DHARMA package (R version 0.3.3.0, (Hartig, 2020)). Caste ratio was calculated as queen 

over the total caste investment (as Queen*c / [Queen*c + Worker]). The coefficient or 

correction factor c is used, as the dry average weight measurements of queen over workers 

to the power conversion factor of 0.7 assuming differences in metabolic rates between queens 

and workers adopting the logic for sex ratio investment (Boomsma, 1989). As this is an 

assumption, we used different values of c. The results are robust power conversion values of 

0.6-1 (Supplementary File 1A).  To test for differences in head width, we used the average 

of the head width measurements of the workers per time point (each month). Predictions of 
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the data were visualized using the loess method with the geom_smooth function and default 

span (ggplot2 v.3.3.2). Relative mortality and fecundity as a function of age were mean-

standardized by dividing age-specific mortality and fecundity by their mean after maturation, 

following (Jones et al., 2014). In contrast to Jones et al 2014, the whole life range was 

considered until death, since removing the last gap of age (where the 5% of survivorship 

occurs) showed similar results. Age-specific mortality without the mean-standardization was 

also estimated for the 135 queens (99 and 36 ant queens for RNAseq) using a survival 

Bayesian trajectory analysis (Figure 4 – figure supplement 1).  Data is available as Source 

data files 1 - 7, and the R-script used as file Source Code File 1.   

 

3.6.6 Prope mortem queens selection 
 

To obtain samples of low, medium, and highly productive queens, 18 queens at age 19-21 

weeks were sacrificed for RNAseq based on egg productivity until week 18. Values of 

weekly egg productivity below the first quantile for the treatment group (colony size) were 

considered as low, values between the first and the third quantile as medium, and values 

greater than the third quantile as high. Other 18 queens were monitored until they showed 

decreasing fertility (Figure supplement 3) and one or more of the following signs of 

senescence: lethargy, loss of mobility, presence outside the nest and/or harassment by 

workers. These senescent queens were also selected based on low, medium, and high fertility, 

and then sacrificed (28-49 weeks old). Queens were snap-frozen in liquid nitrogen, after the 

head and thorax was separated from the gaster with a blade between the petiolus and post-

petiolus in a drop of PBT 0.3% (Phosphate Buffered Saline and Tween 20). During this 

procedure, queens were manipulated for less than 1 minute.  

 

3.6.7 Terminology 
 

What we refer to as “thorax” actually refers to the thorax plus the fused first abdominal 

segment, together making up the “mesosoma” in the Hymenoptera. The “metasoma” in 

Hymenoptera comprises the segments making up the constriction plus the hind end. In the 

ant subfamily Myrmicinae, this constriction is made of two segments: the petiole corresponds 

to the second, constricted, abdominal segment, while the post-petiole refers to the third, 
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constricted, abdominal segment. The “gaster” refers to the bulbous posterior part (Figure 

supplement 5).  

 

3.6.8 RNA-seq 
 

Total RNA was extracted using the ReliaPrep kit (Promega) from the 72 samples (36 queens, 

two samples per queen: head-thorax and gaster). Spike-In RNA Variant Controls (SIRV-Set 

3 Lexogen #05101‚ Lot 5746/001492) were spiked to a 2% fraction of the total RNA 

(measured using Bioanalyzer – Agilent Technologies). Eight of the 72 samples showed RIN 

values below 7 (gaster samples from older queens which seemed more degraded). For those 

samples, the concentration of RNA was estimated based on the mean value of the non-

degraded gaster samples. Total RNA was amplified using SPIA (single primer isothermal 

amplification, Ovation RNA-seq System V2, Tecan) prior to cDNA generation. The library 

preparation and sequencing (100bp PE) was performed at the Cologne Center for Genomics, 

using Nextera XT sequencing on a NovaSeq6000 platform. Reads were trimmed with fastp 

v.0.20.1 to a minimum length 70 and from Nextera adapters. Then SortMeRNA version 4.2.0. 

was used to discard undesired rRNA reads using the default data base (smr_v4.3_default_db. 

fasta). Remaining reads were aligned using hisat2 (version 2.1.0) to the newest version of the 

genome (Cobs.2.1., Errbii et al. 2021). Putative splice sites were obtained using gffread 

(version 0.12.1) and the extensive transposable elements annotation v.2.1 (Errbii et al., 2021) 

was considered for the mapping procedure. Samtools (version 1.9) was used to sort and 

convert .sam into .bam files. Raw sequencing data will be deposited in NCBI.  

 

3.6.9 Gene expression analysis 
 

After filtering genes with 0 values, we used a gene set of 20.006 genes for the head-thorax 

analysis and 19.925 genes for the gaster, respectively. PCA plots were produced to visualize 

the samples after variance stabilizing transformation. An analysis of the homogeneity of 

group dispersions (variances) was performed (multivariate analogue of Levene's test for 

homogeneity of variances, with the function permutest and 999 permutations (vegan Package 

v. 2.5-7) to test for differences in the variance among the age groups (middle aged and prope 

mortem queens) (betadisper, vegan package). 
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Subsequently, a nonparametric multivariate ANOVA (PERMANOVA) test was performed 

(999 permutations) with the design model Head-Thorax_expression ~ AgeGroup + Fertility, 

with two (middle-aged, old) and three levels (low, medium and high fertility) to test for 

statistical differences in the transcriptomic profiles due to age group (senescent or not) and 

level of fertility (low, medium and high) using the adonis function (vegan Package), with the 

default bray distance method. Age and fertility (average number of laid eggs per week) were 

scaled and centered. Then, differential expression was analyzed using the design = ~ Eggs 

per week + Age group, with the R package DESeq2 (v. 1.28.1). Age group was used as 

categorical variable with two levels (middle-aged and prope mortem), and log2FC were 

calculated as log2 [prope mortem / middle-aged]. The cut-off threshold of statistical 

significance (alpha parameter) was set as 0.001 after p-value adjustment with FDR. 

Functional annotation and enrichment analysis was done using topGO (version 2.46.0) and 

the weight01 algorithm implemented in the package. 

 

A signed weighted co-expression network was constructed using the WGCNA package (v. 

1.70-3), and the count data transformed using variance-stabilizing transformation from the 

DESeq2 package after excluding genes with 0 read values. For the head-thorax tissue 

network, the total set of 20.006 genes was used, and the WGCNA was performed with default 

parameters and a soft threshold power 14. We compared the connectivity of the two separate 

networks, one for middle aged and one for older queens, with the softConnectivity and the 

biweight midcorrelation functions. The soft threshold power selected was 14 based on the 

scale-free fit index as recommended by the manual. 
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Chapter 4 
 
4 Fitness variation in queens of the ant Cardiocondyla obscurior 
 
Jaimes-Nino, LM1; Oettler, J1 
1Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Germany 

In preparation. 

 

4.1 Abstract 
 

Fitness variation between individuals of a population is common and is caused by genetic 

and non-genetic (epigenetic and environmental) differences. Queens of the ant 

Cardiocondyla obscurior show high variability in lifespan and fertility. From life-long 

monitored queens exhibiting either high or low productivity, we set up inbred lines and tested 

whether fecundity and lifespan are correlated with those of F1 daughter queens. We found no 

correlation between maternal and offspring traits, indicating low heritability of life-history 

traits. In contrast, some lines had lower fitness, suggesting background variation, signs of 

inbreeding depression, or variation in male quality.  

Keywords: ants, productivity, reproductive success, trait heritability 

 

4.2 Introduction 
 

Evolution by natural selection is possible if traits have a variable and a heritable component 

(Stearns, 1992). In 1930 Fisher (edited in Fisher, 1999) predicted low heritability of fitness 

traits (or life-history traits) in equilibrium. Fitness traits or life-history traits, i.e., traits that 

affect fitness closely such as fertility, show high variability in natural populations. They are 

presumed to have low additive genetic variance due to rapid fixation in a population. 

Additionally, life-history traits might depend on several genetic loci hindering their 

heritability. This is in contrast to traits more distantly associated with fitness, such as 

morphological ones, that have a higher heritable component (Merilä and Sheldon, 2000).  
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This idea has been challenged as traits closely related to fitness show in some species a 

disproportionate large unexplained variance due to environmental and nonadditive genetic 

sources (Merilä and Sheldon, 2000). For instance, two studies in Drosophila melanogaster 

(a within-generation paternal half-sib and a cross-generation parent-offspring assay) showed 

that much of the phenotypic variation in adult female fitness was attributable to genotype 

(Long et al., 2009; Pischedda and Chippindale, 2006). Interestingly, such a relationship does 

not occur in sons (Pischedda and Chippindale, 2006). Other effects (not ascribed to 

inheritance) of the parental phenotype into the offspring phenotype occur, such as 

developmental plasticity. In that case, they are referred to as parental effects (Uller, 2008). 

Parental-induced plasticity might occur if there is a strong correlation between the parent and 

the offspring environment or if the offspring environment is a direct consequence of the 

parental phenotype (Uller, 2008).   

 

Heritability and parental effects could explain some of the variability observed in life-history 

traits. In social insects, longevity and fecundity are positively correlated, in the way that 

reproductives exhibit a long and very fertile life compared to other organisms (Lucas and 

Keller, 2017). Data are lacking to understand why and how queens show high variability in 

these both traits. A possible explanation is that the offspring inherit genetic components in 

fertility and longevity. Here we use the ant species Cardiocondyla obscurior to investigate 

the heritability of life-history traits, as ant colonies show high variability in egg productivity 

and lifespan within the same population (Jaimes-Nino et al., 2022). We test if maternal (F0) 

traits such as egg/queen pupae lifetime productivity and lifespan are good predictors of the 

offspring (F1) traits productivity and longevity. Additionally, we study if environmental 

maternal effects are present after one generation, testing for F1 productivity patterns 

depending on colony size experienced by the F0.  

 

We selected maternal single-queen colonies based on their egg productivity as high or low 

productive. Daughter queen pupae of such colonies were mated with brothers, as typical for 

the species (Heinze, 2017) and their productivity was monitored throughout life. We tested 

for effects on the offspring quality in terms of F1 queen lifespan, and productivity. The colony 

size of maternal queens was standardized to 10, 20, and 30 workers throughout the whole 
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experiment. As queens in colonies with 10 workers produce significantly fewer queen pupae 

than in 20- or 30-workers colonies (Jaimes-Nino et al., 2022), we tested if the colony 

conditions (environment) that affected the productivity of the maternal queen could have an 

effect on the offspring quality (i.e. maternal effect). Additionally, we controlled for maternal 

age as maternal age is known to affect the offspring's pre-adult and adult performance in 

other organisms (Ivimey-Cook and Moorad, 2020; Priest et al., 2002). Specifically, we tested 

if maternal age explained the F1 queen productivity/lifespan. 

 

4.3 Material and methods 
 

Complete reproduction data of 99 queens in individual colonies were recorded for their whole 

lifespan, and 36 other queens were sacrificed shortly before death after egg laying had ceased 

for RNA sequencing (Jaimes-Nino et al., 2022). From this batch, 16 queens showing high 

and low productivity were selected as F0 queens, based on their total productivity at 15 weeks 

of age (Figure 4-1A). 15 weeks is a good predictor for lifetime productivity (Pearson’s r 

=0.74, df= 96, P-value <0.001, Figure 4-S1).  

 

To minimize confounding putative effects of the age of F0 queens on the fitness of the 

offspring, F1 queens were selected when F0 queens were between 25-43 weeks old (median 

= 31) at the moment of F1 eclosure.  

 

The offspring of the maternal colonies (F1) was allowed to mate between siblings and then 

transferred to a new nest, together with 10 workers. The colony size was kept constant 

throughout the experiment, and monthly standardized. Between 1 to 6 new queens (F1) per 

maternal queen were successfully raised and monitored for their whole lifespan (except for 

two F1 queens out of 56). The productivity of the F1 queens (egg, workers, and pupae 

production) was recorded starting from the 10th week after eclosion. Newly produced queen 

pupae (F2) were counted and removed weekly. The age at death of the F0 queen was recorded 

for 10 of the F0 queens. The remaining F0 queens (n=6) were sacrificed for RNAseq after egg 

laying ceased (in Jaimes-Nino et al., 2022) between 36 to 49 weeks after eclosure.  This 

means that most of the F0 egg production was censored. 
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To test for an environmental effect of colony size on fitness, the 16 queens were chosen from 

three different colony sizes which have been shown to affect F1 worker head-width (used as 

a proxy of body size). Their colony size was weekly standardized to 10, 20, or 30 workers. 

Colonies were kept under a 12 h dark 22°C/12 h light 26°C cycle, 75-80% humidity, and fed 

ad libitum three times per week with diluted honey (0.6:1 honey: distilled water), 

cockroaches and flies. 

 

4.4 Statistical tests 
 

For comparing the productivity of the F0 queens a linear model with normal distribution was 

used, with productivity categorized at week 15 as a predictor (either Low or High). To assess 

differences in lifespan between F0 queens, a Kaplan-Meier log-rank test was used with the 

survdiff function (survival R package, v. 3.4-0). 

To test for a lineage effect on the productivity (eggs, worker, queen pupae, and caste ratio) 

of the F0 queens a generalized linear mixed model (R package ‘generalized linear mixed 

models using template model builder v. 1.1.2.3; R version 3.5.2, Pinheiro et al., 2011) was 

used, under a negative binomial distribution (nbinom2). We used the glht function (multcomp 

R package, v.1.4-20) as a post hoc test for comparing multiple means. Differences in survival 

depending on maternal lineage were tested fitting a proportional hazards regression model 

(function coxph, survival package).   

We tested if maternal productivity influenced the daughter’s productivity (eggs, worker, and 

queen pupae production), and also for a correlation between F0 and F1 lifespans. We used the 

maternal colony ID as a random effect in the model. The explanatory variable F0 productivity 

(High or Low) was used as a factor and F0 colony size as a continuous variable. As aging is 

a non-linear process in C. obscurior (Jaimes-Nino et al., 2022) we included a binary 

categorical variable in the model for the mother’s age as senescent or not. This meant that in 

case the maternal queen exhibited reproductive senescence at the moment of producing the 

daughter queen, and scored her as senescent or not senescent. Reproductive senescence refers 

to a decrease in egg laying with age. All models were graphically checked using the 
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DHARMA package (R version 0.3.3.0, Hartig, 2020). We modeled the survival probabilities 

of the F1 queens using the coxme function (coxme R package v. 2.2-16) and used the random 

variable as described before.  

4.5 Results 
 

The selected maternal queens (F0) differed in productivity (eggs, lm T-value=-8.58, p < 

0.001, Figure 4-1A). While lifespan and productivity are positively correlated in the maternal 

99 queens (Figure 4-1B), the 16 selected F0 queens did not differ in their longevity (Kaplan-

Meier log-rank test, X21=0.3, p = 0.6).  

 

 

Figure 4-1. F0 Maternal colonies (n = 16) productivity and lifespan. A) Egg productivity of maternal 
colonies at week 15 after eclosure. The median egg production of all maternal colonies is 155.5, and B) 
relation between recorded lifespan and total egg produced by the maternal queens (F0). The 99 queens 
that were monitored for their whole lifespan are depicted in grey, the F0 queens in color. High productive 
F0 queens are indicated in magenta and low productive queens in yellow. 

 

The lineages differed in productivity (Table 4-1, Figure 4-2A, Figure 4-S2) but not in caste 

ratio produced and not in lifespans (caste ratio, Figure 2B; lifespan, coxph Likelihood ratio 

test=10.87, df = 15, p=0.76, Figure 4-S3). As we used queen pupae as the fitness currency 
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(workers are completely sterile in this species), all queen pupae were weekly removed and 

censored. Worker pupae and egg numbers were censored with less frequency (once per 

month) and are not precise estimates of fitness. 

 

 

Figure 4-2. Daughter colonies (F1) production per maternal lineage (F0). A) F1 total queen pupae 
produced in natural log scale, and B) F1 caste ratio (queen pupae / female pupae). Different letters 
indicate significantly different mean estimates at P-value<0.05. 

 

The F0 queen productivity had no effect on the productivity of the F1 queens (glmmTMB, 

eggs: z-value = -0.06, p=0.95, Figure 4-3A; worker pupae: z-value = -0.06, p = 0.95, Figure 

4-3B; and queen pupae: z-value =1.22, p=0.22, Figure 4-3C). Likewise, lifespans of F0 and 

F1 queens do not correlate (coxme, z-value=-0.88, p = 0.38). The size of the maternal colony 
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had no effect on the total F1 productivity (glmmTMB; eggs: z-value = 0.35, p=0.72; worker 

pupae: z-value=0.16, p=0.87; and queen pupae: z-value=0.41, p=0.68) or F1 lifespan (coxme 

model, z-value = -0.75, p = 0.45). Finally, the maternal age F0 did not affect the F1 

productivity (glmmTMB, eggs: z-value = -0.19, p = 0.85; worker pupae: z-value =0.13, 

p=0.90; and queen pupae: -0.48, p=0.63) or survival (coxme, z-value = 1.22, p = 0.22).  In 

this setup, maternal age was skewed to old ages (mean = 27 weeks, Figure 4-S4).  

 

Figure 4-3. Correlation between maternal (F0) and daughter productivity (F1, n=56). Effect of the 
maternal productivity in A) eggs B) worker pupae, and C) queen pupae F1 productivity. 

4.6 Discussion 
 

Overall, there was no correlation between maternal and daughter productivity. We cannot 

exclude that the methodological design has a certain bias on the results. As sexuals from very 

low productive maternal lines are difficult to obtain, these are underrepresented in the F1 

lines. The F1 productivity (eggs and worker pupae) was in general lower than the F0 

productivity. This could be explained by a lower monitoring frequency, meaning that they 

are not directly comparable (Figure 4-3A, B).  

 

We can also not rule out a genetic effect. Some maternal lines produced consistently more 

productive daughter queens than others. Studies in Linepithema humile have shown that the 
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maternal lineage influences the total offspring production, and the paternal lineage the total 

female caste ratio (Libbrecht et al., 2011). Is still unclear why while there is a genetic effect 

in the maternal lines we do not observe a correlation between maternal and daughter 

productivity. Fitness variation could be explained by differences in the quality of the paternal 

lines used in the F0 crossing. A study in D. melanogaster showed that high-fitness mothers 

produced low-fitness sons, and high-fitness males produced low-fitness daughters (Pischedda 

and Chippindale, 2006), which could be explained by intralocus or interlocus sexual conflict 

(Schenkel et al., 2018). If this is the case in C. obscurior, this could disrupt the correlation in 

productivity across female generations.  

 

Additionally, the wingless males used here may not represent the naturally occurring 

variation. Wingless males compete over access to females ferociously. While most of the 

queens produce less than ten males during their lifetime (70% of all queens, Figure 4-S5A), 

around 50% of all males are laid during the lapse of a week (Figure 4-S5B). They may live 

for several weeks (Heinze, 2016), and differ in size probably because their development is 

less canalized than that of the winged males (Oettler et al., 2019). In multiple-queen colonies, 

more than one queen may produce males simultaneously (Cremer and Heinze, 2002). This 

means that most males will encounter a rival, and the weakest will be outcompeted. It might 

be beneficial for a queen in a polygynous colony to synchronize the wingless male production 

with other queens to outcompete rivalling males. However, it is unclear why fighting between 

siblings in single-queen colonies is beneficial. A certain combination of chromosomes might 

be more favorable than others, and in lack of recombination in the production of the haploid 

male zygotes, sib fighting could act as genetic purging.  In this study, males used in the F0 

crossing were selected before they had a chance to meet any other males. Theoretically, this 

could explain why some maternal lines vary in F1 productivity. Further studies should focus 

on male morphological traits (size, weight, sperm count and length, etc.) and trait heritability. 

 

Maternal age can be detrimental to offspring quality in several species (Ivimey-Cook and 

Moorad, 2020; Priest et al., 2002). In contrast, we found no effects of maternal age on the 
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offspring fertility. Due to the low sample size, we do not have the power to test for an 

interaction effect between the maternal lineages and the maternal age at the moment of the 

egg laying. However, in this species, selection against senescence is maintained after the 

majority of the sexuals have been produced, meaning that age should not affect the quality 

of sexuals. The paternal age (F0) was unknown, but did not affect F1 life expectancy and 

productivity in a previous study in C. obscurior (Heinze et al., 2018). Further, it is unlikely 

that the age of the male at the moment of mating affects queens because wingless males have 

life-long spermatogenesis (Heinze and Hölldobler, 1993). 

 

Lastly, the F1 queens differed in productivity but not lifespan suggesting that these two 

paramount life-history traits are not strictly correlated in C. obscurior, as has been shown 

previously (Jaimes-Nino et al., 2022; Schrempf et al., 2017). Interestingly, the caste ratio did 

not differ between low and high-productive F1 queens. Could this be an indication that the 

costs to produce the two female castes are the same? A limitation in the workforce can lead 

queens to produce fewer sexuals implying a cost of producing gynes (Jaimes-Nino et al., 

2022). One possibility is that cost of producing both castes is similar, but rearing costs differ 

as queens have different nutritional requirements (Csata and Dussutour, 2019; Dussutour and 

Simpson, 2009) and developmental time than workers (Schrempf and Heinze, 2006).  
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4.7 Supplementary material 
 

Table 4-1. Tukey multiple comparisons of means of egg and queen pupae production in different 
maternal lineages. P-values<0.1 are shown from all 55 possible combinations. Bold letters indicate 
significant p-values. 

Comparison Estimate Std. Error Z-value P-value 

Total egg production     

C10_30-A30_17 -2,02E+00 5,25E-01 -3,85 0,011 

C10_30-C10_1 -1,97E+00 5,25E-01 -3,76 0,015 

F10_6-C10_30 2,03E+00 5,94E-01 3,42 0,048 

C10_30-A30_7 -1,75E+00 5,25E-01 -3,33 0,060 

C10_30-A30_10 -1,73E+00 5,26E-01 -3,29 0,070 

E20_17-C10_30 1,73E+00 5,26E-01 3,29 0,070 

Total queen pupae     

C10_30-A30_7 -2,77 0,72 -3,87 <0,01 

A30_7-A30_10 2,48 0,67 3,71 0,017 

A30_7-A30_29 2,58 0,71 3,62 0,024 

E20_16-C10_30 2,82 0,81 3,28 0,038 

E20_16-A30_10 2,53 0,77 3,30 0,068 

E20_16-A30_29 2,63 0,81 3,25 0,078 
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Figure S 4-1. Estimate of total queen productivity based on the eggs recorded from 4 to 17 weeks. 
Correlation between the total egg production of 99 single queen colonies (Jaimes-Nino et al., 2022) and 
the censored cumulative number of eggs after 4 weeks, and up to 17 weeks. In blue are the Pearson 
correlation and in orange the P-value of the correlation depicted. The graph uses a loess smoothing 
method and a confidence interval of 95% for the Pearson correlation. 
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Figure S 4-2. Daughter colonies (F1) total production per maternal colony (F0). F1 total egg production 
in log scale. Different letters indicate significantly different mean estimates at P-value<0.05. 

 

 

Figure S 4-3. Daughter colonies (F1) lifespan per maternal colony (F0). No statistically significant 
differences were detected between maternal lines. 
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Figure S 4-4. Maternal age at the moment of laying the daughter’s egg (n=56). The maternal age at the 
moment of the daughters’ mating was censored. As the development of a queen from egg to adult lasts ~4-
5 weeks (Schrempf and Heinze, 2006), we estimated maternal age as 5 weeks prior to the adult daughter’s 
appearance. 
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Figure S 4-5. Wingless male (ergatoid) production in 99 single-queen colonies (in Jaimes-Nino et al., 
2022). A) Quantity of single-queen colonies producing a certain number of total wingless male pupae. 70 
queen colonies produced less than 10 ergatoids in their lifetime. B) Time in weeks between each male 
pupa appearance. Records for 1075 male pupae in 99 independent colonies. Most of the male pupae are 
laid in the span of one week since laying the last male pupa. 
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Chapter 5 
 
5 The indispensable soma of Cardiocondyla obscurior ants 
 

Jaimes-Nino, Luisa María1,*; Süß, Anja1; Heinze, Jürgen1; Schultner, Eva1; Oettler, Jan1,*. 
1Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Germany. *Corresponding authors: 

jaimes.luisa@outlook.com, joettler@gmail.com 
 
Preprint version published in BioRxiv the 5 of October 2022.  

DOI: https://doi.org/10.1101/2022.10.02.510526 

 

5.1 Abstract 
 

The evolutionary mechanisms that shape aging in social insects are not well understood. It is 

commonly assumed that queens live long and prosperous, while workers are regarded as a 

short-lived disposable caste because of their low reproductive potential. Queens of the ant 

Cardiocondyla obscurior gain high fitness late in life by increasing investment into sexual 

offspring as they age. This results in strong selection against senescence until shortly before 

death. Here, we show that workers have the same lifespan and shape of aging as queens, even 

though workers lack reproductive organs and cannot gain direct fitness. Under consideration 

of the prevailing aging theories and the biology of the species, we hypothesize that 

programmed aging has possibly evolved under kin selection.  

Keywords: aging, Continuusparity, social insects, worker lifespan.  

 

5.2 Impact statement 
 

Morphologically distinct fertile queen and sterile worker castes in the model ant 

Cardiocondyla obscurior show the same pace and shape of aging, contradicting the paradigm 

of queen/worker lifespan divergence in social insects.  

 

5.3 Introduction 
 

Queens of some social Hymenoptera (ants and bees) live long while being highly fertile, 

seemingly avoiding a trade-off between lifespan and reproduction (Hartmann and Heinze, 
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2003; Korb, 2016; Korb et al., 2020; Parker, 2010). Using the tiny ant Cardiocondyla 

obscurior, a model for social insect aging (reviewed in Oettler and Schrempf, 2016), we 

recently identified molecular processes associated with queen aging (Wyschetzki et al., 

2015), and demonstrated that the strength of selection on age-biased genes differs between 

social and solitary insects (Harrison et al., 2021). Based on these insights and lifespan data 

from C. obscurior queens, including transcriptomic data from queens shortly before death, a 

life history framework was proposed (Jaimes-Nino et al., 2022).  

 

The concept of “continuusparity” is grounded in a pattern observed in many ants, namely 

that resources are first invested into workers, and only when colony size has reached a certain 

threshold, resource investment is diverted to the production of sexual offspring (males, 

queens) (Oster and Wilson, 1978). Thus the strength of selection against senescence does not 

decline with age despite the life-long reproduction (Jaimes-Nino et al., 2022). Irreversible 

reproductive division of labor between queens and workers is a pre-requisite for the evolution 

of continuusparity, however, not all social insects must exhibit continuusparity, for example, 

species with only one caste. In respect to senescence, continuusparous social insects should 

sit between iteroparous and semelparous species, the former experiencing decreasing 

selection strength after the first reproductive bout, while the latter undergo strong selection 

against senescence until a single, and final, reproductive bout, followed by reproductive 

death.  

 

As progress is made in understanding aging in ant queens, the aging patterns of workers 

remain largely unknown. Anecdotal references such as “mother queens live much longer than 

workers in all groups of ants” (Hölldobler and Wilson, 1990), and “all eusocial taxa show a 

divergence of long queen and shorter worker life spans, despite their shared genomes and 

even under risk-free laboratory environments” (Kramer et al., 2022) have been made. 

However, studies of worker lifespan lacked age-controlled cohorts (Chapuisat and Keller, 

2002; Gordon and Hölldobler, 1987; Modlmeier et al., 2013; Negroni et al., 2021; Schmid-

Hempel and Schmid-Hempel, 1984), surveyed marked individuals in the field without 

distinguishing between extrinsic and intrinsic mortality (Calabi and Porter, 1989; Gordon 

and Hölldobler, 1987; Schmid-Hempel and Schmid-Hempel, 1984), or monitored lifespan of 
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temperate species with artificial hibernation (Kramer et al., 2016). Furthermore, it is difficult 

to find reliable lifespan data of queens for comparison (Kramer and Schaible, 2013b). Here, 

we present the first empirical study of worker lifespan under controlled conditions in an ant 

with morphologically distinct castes and show that the paradigm of lifespan divergence 

between ant castes is not true. 

 

5.4 Methods 
 

Cardiocondyla obscurior (Formicidae: Myrmicinae), the two-colored heart node ant, is a 

small tramp species (queens: 3mm, workers: 2mm, (Seifert, 2003), which forms colonies 

comprising a few queens and several dozen workers in trees and shrubs around the tropics 

and subtropics (Heinze, 2017; Oettler, 2021). Queens and workers differ in discrete traits 

such as the presence of wings and ocelli, and, importantly, workers in this species lack 

reproductive organs and are thus fully sterile. Queens produce on average 300 (± 198 SD) 

offspring over 25 (± 8 SD) weeks (Jaimes-Nino et al., 2022) and have control over caste and 

sex allocation (De Menten et al., 2005; Schultner et al., 2021). 

 

We obtained lifespan data for worker ants by setting up colonies containing 10 dark-colored 

worker pupae (a few days before hatching into adults) from independent stock colonies of a 

laboratory population collected in 2011 in Japan (“OypB”, (Errbii et al., 2021; Schrader et 

al., 2014; Ün et al., 2021). Two virgin queens were added to the colonies to help the workers 

eclose and were removed after two weeks. Colonies were kept in climate-controlled 

conditions (26°C/22°C, 12h/12h light, 75-80% humidity) in nests made of acrylic glass with 

narrow slits, sandwiched between two microscope slides, and covered with a dark foil, placed 

in a square petri dish half-filled with plaster. The ants always had access to water and were 

fed with honey, Drosophila, and pieces of cockroaches twice per week. To test for the effect 

of workload on worker lifespan, colonies were subjected to one of three treatments: 1) no 

larvae (NL), 2) with two second instar larvae (low workload, LW), and 3) with ten second 

instar larvae (high workload, HW) (n=20 each). To keep workload constant, in the two 

treatments containing brood, colonies were checked every few days and larvae that had 

pupated were removed and replaced by new second instar larvae. 
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After 18 weeks there was no difference in survival between workers with or without larvae 

(see results). This led us to adjust treatments to provoke more variation in lifespan. Colonies 

were standardized to five workers, and those containing fewer than five workers were 

excluded (n after exclusion: NL=18, LW=20, HW=16). The remaining replicates from each 

treatment were split into two groups; in one group, workers were kept without larvae while 

in the other, two second instar larvae were added to simulate low workload (n after split: 

NL=9, NL-LW=9, LW-NL=10, LW=10, HW-NL=8, HW-LW=8). Larvae were replaced as 

described above. As after 36 weeks still no effect of workload treatment was apparent (see 

results), we removed all larvae and continued to monitor worker survival weekly until all 

workers had died.  

 

Differences in survival across worker treatments and between workers and queens (using 

queen data from Jaimes-Nino et al., 2022) were tested. A Cox proportional hazard mixed-

effect model was implemented (coxme package in R, v. 2.2.-16) using colony as a random 

factor; post-hoc tests using multiple comparisons of means were run where appropriate 

(Tukey contrasts, glht function in multcomp package in R, v. 1.4-19). Relative mortality as 

a function of age was mean-standardized by dividing age-specific mortality by its mean 

(following Jones et al., 2014). We considered mortality trajectories from the age at eclosion 

to the age at which 5% survivorship from eclosion occurs. Predictions of the data were 

visualized using the loess method with the geom_smooth function and default span (ggplot2 

v.3.3.2). The mean life expectancy of all workers was calculated with the survfit function 

(survival package in R, v.3.3-1) using Kaplan Meier survival analysis. 

 

5.5 Results 
 

After 18 weeks, there was no difference in worker survival between the treatments with and 

without larvae (Figure 4-1, coxme, NL vs. LW, z-value=-1.35, p=0.37, NL vs. HW, z-

value=1.35, p=0.37), but the survival of workers with low workload was higher than the 

survival of workers with high workload (coxme, LW vs. HW, z-value=2.7, p=0.02). Shortly 

after colonies were standardized to five workers and split into groups without larvae or with 
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low workload (week 18), survival differed between treatments (coxme ANOVA, X25=14.24, 

p<0.05), but this difference was not significant after correction for multiple testing. After 36 

weeks there was still no effect of the presence of larvae on worker survival (coxme, NL vs. 

NL-LW, z-value=-1.08, p=0.89, NL vs. LW, z-value=-0.79, p=0.97, NL vs. HW-LW, z-

value=1.58, p=0.61), so we stopped replacing larvae, removed any remaining brood items 

and continued to monitor survival weekly. As some larvae were potentially overlooked and 

may have developed into adult workers, 14 replicates (NL-LW=8, LW=3, HW-LW=3) were 

discarded at this point. The remaining replicates were monitored until the last worker was 

recorded alive after 50 weeks (Figure 4-2A).  

 

Figure 5-1. Survival probability curve of C. obscurior workers depending on treatment (NL: No larvae; 
LW: Low workload; HW: High workload) estimated using Kepler-Meier analysis. At week 18, indicated 
by the dotted line, colonies were standardized to 5 individuals, and half of the colonies from the NL and 
LW treatments, and all HW colonies, were subjected to a treatment change (from NL to LW: NL-LW, from 
LW to NL: LW-NL, from HW to NL and LW: HW-NL, HW-LW). After 36 weeks, indicated by the dot-
dashed line, no more larvae were added. The NL-LW and LW curves are truncated after 36 and 42 weeks 
due to the dismissal of replicates in which larvae may have eclosed. 
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Figure 5-2. Worker and queen survival and standardized mortality. A) Survival probability curve of 
queens (n = 99; from Jaimes-Nino et al. 2022) and workers (n=530). B) Relative mortality as a function 
of age. Mortality is standardized by dividing age-specific mortality of queens and workers by their means 
after eclosion (following Jones et al., 2014). The graph uses a Loess smoothing method (span = 0.7) and 
a confidence interval of 95%. The dashed gray line at y = 1 indicates when relative mortality is equivalent 
to mean mortality. 
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The median worker lifespan over all treatments was 29 weeks (209 days, CI 95%=198-223 

days). The lifespans of workers were similar to those of queens obtained in a recent study 

using similar laboratory conditions (Jaimes-Nino et al., 2022). Workers had a lower hazard 

rate compared to queens (Hazard ratio = 0.55, coxme ANOVA, X21=56.95, p<0.001). 

Strikingly, the shape of aging, i.e. how mortality increases with time, was similar in the two 

castes, with mortality below average before day 200, and thereafter continuously increasing 

(Figure 4-2B).  

 

5.6 Discussion 
 

5.6.1 No causal relationship between fertility and lifespan 
 

Aging is linked to metabolic rate, growth, and reproduction, and is determined by life-history 

optimization (White et al. 2022). The shape of C. obscurior queen aging is characterized by 

increasing investment into sexual reproduction with age, and thus a higher probability for 

(sexual) offspring to come into existence (Hamilton, 1966). After this bout of sexual 

production, mortality increases. Queens die soon after they cease egg-laying, suggesting that 

reproduction is optimized and intrinsic resources are depleted (Jaimes-Nino et al., 2022). 

Finding a similar pace and shape of aging in workers is surprising because queens and 

workers differ in morphology (Figure 4-3, (Oettler et al., 2019), holobiome (Klein et al., 

2016), presumably extrinsic mortality, and, perhaps most importantly, reproductive 

physiology, behavior and their associated energy expenditures.  

 

Fertility is the most common proximate explanation for long lifespans in social 

Hymenoptera. Several studies have suggested causality between lifespan variation and core 

gene pathways and proteins involved in reproduction such as TOR, insulin-like signaling, 

juvenile hormone, and vitellogenines (honeybees: (Corona et al., 2007; Münch and Amdam, 

2010; Rueppell et al., 2016; Seehuus et al., 2006); ants: (Korb et al., 2020; Negroni et al., 

2021; Yan et al., 2022). In C. obscurior, queen fertility is positively correlated with lifespan 

(Heinze and Schrempf, 2012; Jaimes-Nino et al., 2022; Kramer et al., 2015), but the two 

traits are not causally linked: mated queens and queens mated to sterilized males lived longer 
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than unmated queens, although the latter two both had low fertility and only produced 

unfertilized, haploid male eggs (Schrempf et al., 2005). Mated and sham-mated queens also 

differed from unmated queens in cuticular hydrocarbon composition and gene expression 

(Will et al., 2012; Wyschetzki et al., 2015). Together, this points toward a causal relationship 

between the aging rate and mating status, rather than fertility. Fertility and fecundity are 

certainly not linked to the lifespan of workers because Cardiocondyla workers have no 

ovaries. This demonstrates that reproduction and lifespan are regulated independently in this 

ant, and supports a growing number of proximate and pathway-oriented studies in solitary 

animals showing that these two fundamental life history traits can be uncoupled (Dillin et al., 

2002; Lind et al., 2021; Mason et al., 2018).  

 

 

Figure 5-3. A virgin C. obscurior queen (left) and a worker (right) tending to some brood. Ó Lukas 
Schrader. 

5.6.2 Queen and worker lifespans are similarly long and variable 
 

Worker lifespan is probably as variable as the queen lifespan, which in addition to mating 

status responds to the social environment (Schrempf et al., 2011a, 2005), mating partner 

(Schrempf and Heinze, 2008), and immunity (Schrempf et al., 2015; Ün et al., 2021). The 

lifespans of queens reported by Jaimes-Nino et al. (2022) exceeded those in previous studies 

likely because laboratory conditions changed after 2015 (nest architecture, temperature, 
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humidity, feeding rate). In the present study, workers also lived considerably longer than in 

the previous experiment in which focal workers were kept with 10 or 20 workers (each 

marked by tarsal clipping), and a fertile queen, presumably making life more demanding 

(Jaimes-Nino et al., 2022). In this study, the removal of larvae after 18 weeks led to a 

temporary drop in the survival curves. This could point to a social or physiological factor that 

affects worker behavior, leading to more search activity (“where is the brood?”), and 

resulting in premature death (Koto et al., 2015). The slightly lower hazard rate in workers 

compared to queens may be explained by different energy requirements at the end of life. 

 

The presumed universality of queen/worker lifespan divergence in ants, if true (~130MYR 

evolution, ~14.000 species), provokes the question of why queens do not live longer (or 

workers shorter) in C. obscurior. While it seems futile to speculate without more data from 

more species for perspective, one explanation may be that this ant does not display traits 

thought to be associated with the evolution of lifespan divergence between castes, including 

extreme size polyphenism, colonies headed by single, highly fertile queens, and large colony 

sizes (Kramer et al., 2022; Kramer and Schaible, 2013a). It has also been argued that in 

species with multiple queen colonies such as C. obscurior, new cohorts of workers produced 

by young queens can outnumber older workers, decreasing the average relatedness of 

workers to the previous generations of queens. This increases the risk of queens being 

“dismissed” earlier by younger worker cohorts and may select for shorter lifespans in queens 

of polygynous species (Boomsma et al., 2014; Kramer et al., 2022). However, C. obscurior 

shows no signs of conflict between castes over sex or caste allocation (De Menten et al., 

2005; Schultner et al., 2021) in contrast to many other ants (Heinze, 2004), speaking against 

this adaptationist explanation.  

 

5.7 Conclusions 
 

Regarding the different approaches to gerontology, what can we learn from this ant? A first 

approach focuses on aging from a damage-based perspective and asks why evolution, which 

managed to make life in the first place, is not capable of maintaining life for eternity (minus 

some entropy). Research is usually directed at mechanisms underlying lifespan variation 
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within species, and indeed there is overlap across taxa (e.g. dietary restriction, Fontana et al., 

2010). C. obscurior, with its morphologically and physiologically distinct queen and worker 

castes, which nevertheless display a similar pace and shape of aging, is a unique model in 

this context (Jones et al., 2014), especially because proximate aging patterns contrast partly 

with those found in fruit flies (Harrison et al., 2021; Wyschetzki et al., 2015). While a 

senescent phase is only brief, this diphenic model will allow for disentangling how resources 

and energy are allocated into growth, aging, and reproduction.  

 

A second approach adds an evolutionary perspective and considers life history strategies and 

putative associated metabolic or functional trade-offs (i.e. between lifespan and 

reproduction) to underlie senescence. Empirical evidence for this is found with mixed success 

(Dillin et al., 2002; Lind et al., 2021; Maklakov and Chapman, 2019; Mason et al., 2018). 

The results presented here do not support the idea that fertility-related trade-offs affect 

worker lifespan, simply because workers do not reproduce. There is also no evidence of 

fertility/lifespan trade-offs in queens (Jaimes-Nino et al., 2022; Schrempf et al., 2017), thus 

theories implying trade-offs do not apply here, including e.g., antagonistic pleiotropy, which 

postulates that genes with positive effects on the germline in early life can be selected for 

even if they cause senescence in the soma later in life. As antagonistic pleiotropy requires a 

phase after the point of strongest selection, it is unlikely to be effective in C. obscurior 

because there is no such phase (Jaimes-Nino et al., 2022). Along the same lines, 

metaphorically speaking, the results suggest that C. obscurior workers are not disposable 

soma.  

 

In contrast to the first two approaches aimed at understanding senescence, a third 

controversial perspective considers whether death is not just a consequence of lifelong wear 

and tear, and lifespan is a trait under selection. The idea of programmed aging is strongly 

contested for insoluble problems with its logic (Kirkwood and Melov, 2011; Kowald and 

Kirkwood, 2016). First and foremost, how could selection ever favor death over 

reproduction, without invoking group selection? And why should aging be programmed in 

the first place, to shorten generation time for the betterment of the species? Programmed 

aging is also difficult to envision in iteroparous species exhibiting repeated reproduction and 
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increasing risks and costs of somatic maintenance, and a senescent phase that is rarely 

expressed in nature. This is partly a problem of semantics because “iteroparity” comprises a 

wide range of reproductive strategies, including humans with an exceptionally long post-

reproductive and senescent phase. The concept of programmed aging seems easier to imagine 

in semelparous species, where reproduction is a single event. However, in semelparous 

species it is not lifespan that is determined. Instead, reproduction is optimized towards one 

episode, which is often triggered by season, probability of encountering prey or hosts, or 

other extrinsic factors.  

 

Despite all valid counterarguments, including inconceivable proximate mechanisms, 

programmed aging can explain not only the shape of aging of C. obscurior queens but also 

the similarity of queen and worker aging patterns. All queens show increasing investment 

into sexuals with age, irrespective of overall fertility, lifespan or colony size, followed by 

increased mortality. This indicates some sort of Zeitgeber, informing the queen to increase 

investment into sexual production. As potential environmental signals are absent under 

controlled conditions in the lab, such a Zeitgeber must be linked to the organism’s 

physiological condition, and it must act as an honest signal, immune to mutations and 

cheating. This Zeitgeber is likely a finite or limited resource. A putative mechanism may be 

related to cellular aging, such as a Hayflick limit, which describes the observation that a 

human cell can only replicate and divide a finite number of times (Chan et al., 2022). 

However, a Hayflick limit has not been described for insect cell cultures, to the best of our 

knowledge. Whatever the mechanism, it cannot be causally related to reproduction and caste 

and is thus likely rooted in the shared physiology and metabolism. 

 

Kin selection is a powerful force and has overridden individual selection several times, 

resulting in major transitions in evolution (Bourke, 2011), including sterile organisms 

without direct fitness in the social insects (Hamilton, 1964). The discovery of 

continuusparous reproduction, coupled with the observation that queens and workers show 

overlapping patterns in the pace and shape of aging, lead us to hypothesize that kin selection 

underlies the evolution of programmed aging in C. obscurior. Our hypothesis is explicitly 

distinct from the idea of “phenoptosis” i.e. the removal of old individuals for the betterment 
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of the species. Instead, we propose that programmed aging has evolved to optimize 

investment into reproduction in a superorganism. 

 

Glossary 

Aging Time passing by. Neutral in terms of fitness – often 

confused with senescence. 

Life expectancy Species (mean) lifespan estimate based on mortality rates. 

Lifespan The maximum age an organism can reach – often 

confused with life expectancy. 

Mortality rate (age-specific) Expected probability to die at a given age in a particular 

population. 

Pace of aging Related to the extension of the life of an organism (either 

mean or maximum lifespan) See Baudisch, 2011b. 

Senescence When an organism shows signs of increasing mortality 

and decreasing fertility with age.  

Shape of aging Mortality and fertility of an organism for each time point, 

standardized by age. 
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Chapter 6 
 
6 Discussion 
 

It is thought that superorganismality has reshaped aging in social insects by evading the 

reproduction-maintenance trade-off. But how can we explain the existence of a highly fertile 

and long-lived reproductive caste? While some research has focused on the proximate 

pathways involved with the regulation of senescence, nothing is known about the ultimate 

aspects of social insects’ aging. This thesis aims to understand the ultimate causes of queen 

and worker aging in social insects using Cardiocondyla obscurior as a model. This thesis is 

the first comprehensive analysis of the life history of an ant species. 

 

6.1 Pace and the shape of aging in ant queens and workers 
 

In Chapters 2 and 5, I describe the pace and shape of aging of ant queens and workers. Queens 

exhibit an interesting aging shape, i.e. the reproductive investment into the next generation 

and mortality over time. The investment into egg production is bell-shaped, with a maximum 

around week 15. After 30 weeks, the maximum investment in sexuals is achieved. Those 15 

weeks correspond to ca. 30% of an ant queen’s lifespan (Fig 6-1).  

 

Mortality differs in the standard model organisms used to study aging (e.g. Caenorhabditis 

elegans and Drosophila melanogaster, Jones et al., 2014). Instead of a continuous increase 

after the first reproduction bout, the mortality in the ant queens of C. obscurior is maintained 

below average until late in life, at ca. week 30. This indicates a delay in actuarial senescence 

until the end of the life of ant queens, specifically after the peak of sexual investment is 

reached. Evidence of this is shown in the reanalysis of transcriptomic data of 4-week and 18-

week-old queens (Chapter 2). The 18-week-old queens (now referred to as middle-aged 

queens) do not exhibit signs of senescence. On the contrary, they show a stronger purifying 

selection on middle-aged-biased genes and higher conservation compared to younger-aged-

biased genes. Generally, the opposite is observed, a weaker purifying selection in older-bias 

expressed genes in model organisms (Jia et al., 2018; Turan et al., 2019; Yıldız et al., 2022). 

Selection against senescence is maintained as indicated by the expression of several anti-
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aging mechanisms, such as the maintenance of proteostasis, the regulation of the 

transcription, and the stress response.  

 

Figure 6-1. Relative mortality and fecundity as a function of age. Mean age standardization by dividing 
age-specific mortality and fecundity of queens (n = 99) by their means after maturation (Jones et al., 
2014). Survivorship (black dashed line) is depicted on a log scale. The graph uses a Loess smoothing 
method (span = 0.75) and a confidence interval of 95%. The dashed gray line at y = 1 indicates when 
relative mortality and fertility are equivalent to mean mortality and fertility. 

We demonstrated that the pace and shape of aging are similar in both castes. Workers do not 

live shorter than queens (Chapter 5); with a mean lifespan of 28 weeks, they live slightly 

longer than queens (26 weeks). Surprisingly, workers also show low intrinsic mortality until 

they have experienced ca. 75% of their lifespan. After this, mortality increases rapidly. It is 

intriguing to observe that workers exhibit the same mortality pattern as queens. In queens, it 

seems clear that a delay in the production of sexuals and senescence is beneficial. Colonies 

generally need to build a workforce before they can start producing sexuals (Hölldobler and 

Wilson, 1990). A parsimonious explanation is that selection is relaxed in workers because 

they are sterile and do not gain direct fitness; consequently, mortality mirrors the shape of 

the queens. This will also indicate that an intrinsic mechanism, independent of reproduction, 

determines when 75% of life has passed. In a sense, a type of programmed aging occurs in 
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queens and workers alike. It is adaptive because queens are optimized to produce the most 

sexuals at the end of their life. The onset of senescence in queens occurs after all the 

allocation into reproduction has been made, and plausibly the queens’ internal resources start 

to deplete, if that is causal for death. One or two weeks before dying, queens cease egg 

production, are lethargic, and are commonly found outside the nest (Chapter 3).  

 

Based on these results, we developed the term “continuusparity” to differentiate the 

reproductive strategy of C. obscurior from iteroparity and semelparity. Continuusparity is 

not an intermediate strategy along the continuum between iteroparity and semelparity. The 

end of life in a continuusparous organism is similar to the reproductive death experienced by 

semelparous organisms and the sudden detrimental change in physiology. However, 

reproduction has been continuous and multiple throughout the life of a mated ant. This newly 

developed framework might explain how superorganisms reproduce successfully at 

advanced ages. 

 

6.2 Trade-off between fertility and longevity  
 
Because of the positive relationship between longevity and fecundity in social insects, I 

wanted to test if trade-offs at the colony level or the individual exist in C. obscurior. In 

bumble bee workers, for instance, longevity and fecundity are considered to be positively 

related. However, a study showed that when all workers are forced to reproduce, reproduction 

has a negative effect on lifespan (Blacher et al., 2017). In this species, only the high-quality 

individuals choose to reproduce, those that can bear the costs of reproduction. It is necessary 

to point out that workers can still gain direct fitness benefits and that this species is annual. 

This could mean that while maximum lifespan is already determined by seasonality, workers’ 

longevity is causally affected by reproduction.  

 

In some ponerine species, where workers can completely replace the queens, reproduction is 

positively associated with longevity (Hartmann and Heinze, 2003; Tsuji et al., 1996). But in 

most ant species, workers commonly do not possess a spermatheca, and reproduction is 

limited to the asexual production of haploid males (Gotoh et al., 2016). Studies have shown 

that ant workers with the ability to produce haploid offspring display both a life extension 
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and activation of ovaries in the absence of the queen (Kohlmeier et al., 2017; Negroni et al., 

2021). C. obscurior represents an extreme case of superorganismality with completely sterile 

workers. In addition, an egg removal experiment showed that the ant queens' fertility could 

be experimentally increased without any effect on longevity (Schrempf et al., 2017), 

suggesting that reproduction does not affect lifespan. This seemingly contrasts with the 

observation that the longest-lived queens are the most reproductive ones. 

Table 6-1. The correlation between longevity and fecundity in superorganisms (i.e., lifetime physically 
differentiated caste fates) varies in terms of lifespan (annual vs. perennial) and the worker reproductive 
system (totipotency, male production, complete sterility). 

 Superorganism type 

Lifespan Annual Perennial Perennial Perennial 

Worker 

reproductive 

status 

male production totipotency 

(thelytokous 

parthenogenesis/ 

sexual reproduction) 

male production sterility 

Studied 

species  

Bombus 

terrestris 

Platythyrea 

punctata and 

Diacamma cf. 

rugosum 

Temnothorax 

rugatulus 

Cardiocondyla 

obscurior 

Studies Blacher et al., 

2017 

Hartmann and 

Heinze, 2003; Tsuji 

et al., 1996 

Kohlmeier et al., 

2017; Negroni et 

al., 2021 

Jaimes-Nino et al., 

2022; Schrempf et 

al., 2017b 

Correlation 

longevity / 

fecundity 

Negative in 

workers 

Positive in workers Positive in 

workers 

No causal 

correlation in 

queens  

 

In my experiments, I did not find a causal relationship between the sexual production of ant 

queens and longevity (Chapter 3). In ant queens, mating may have a positive effect on 

lifespan but not reproduction per se, as queens mated with sterilized males show the same 

life expectancy as when mated with control males (Schrempf et al., 2005). That workers have 

an irreversible state of sterility in this species could indicate that conflict has diminished to a 

minimum and that longevity has been optimized to a maximum. Even when worker and 

queen survival data is scarce in Hymenoptera, it seems that different types of social 
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reproductive systems in superorganisms (Boomsma and Gawne, 2018; Wheeler, 1911) 

exhibit different correlations between longevity and fecundity (Table 6-1). I here use 

Wheeler’s definition of superorganism (paraphrased in Boomsma and Gawne, 2018) as “all 

colony members having a single, morphologically differentiated caste phenotype for life”.  

 

C. obscurior queens are able to adjust egg laying rate when eggs are experimentally removed 

(Schrempf et al., 2017). It is unclear why the manipulation of colony size (Chapter 3) did not 

correspondingly lead to an increase in the number of eggs laid, nor in the number of worker 

pupae produced. Queens are clearly limited, as the manipulation affects the number of queen 

pupae produced.  

 
6.3 Do ant queens defy senescence? 
 

An organism that defies senescence would either experience negligible or negative 

senescence.  Negative senescence indicates that mortality declines and that fertility increases 

with age, a case in which an “improvement” with age will be evident (Jones and Vaupel, 

2017; Vaupel et al., 2004). Negligible senescence describes those organisms in which there 

is no improvement but also no notable deterioration with age. These terms do not lack 

ambiguity; it is more informative to refer precisely to the absolute mortality and fertility slope 

values.  

 

Notable examples of organisms experiencing negative senescence (in terms of mortality) are 

the desert tortoise (Gophezurs agassizii, Turner et al., 1987), the white mangrove (Avicennia 

marina) and the netleaf oak (Quercus rugosa) (Jones et al., 2014). It has been calculated that 

93% of all angiosperms show no senescence (Baudisch et al., 2013). Species in which relative 

mortality reaches an asymptote and remains constant at terminal age, e.g., collared flycatcher 

Ficedula albicollis, the great tit, Parus major, and Hydra magnipapillata (Jones et al., 2014), 

exhibit negligible senescence. 

 

In the case of the ant queens of Cardiocondyla obscurior, it has been suggested that they 

experience terminal investment. This meant an increase in egg-laying rate with age (n=25, 

Heinze and Schrempf, 2012) in queens of a Brazilian population (New World lineage, Errbii 
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et al., 2021; Schrader et al., 2014). In the present study (Chapter 3), I used a different 

population of C. obscurior, originating from Japan and corresponding to the Old World 

lineage (Errbii et al., 2021; Schrader et al., 2014). Ant queens of this population do not show 

terminal investment (n=99, Jaimes-Nino et al., 2022). In contrast, the production of eggs, 

workers, and sexual pupae follow a bell-shaped trajectory, indicating that the ant queens in 

this experiment experienced reproductive senescence.  

 

Regarding actuarial senescence, I report here for the first-time mortality trajectories for social 

insect ant queens (Chapter 3). Interestingly queens exhibit low relative mortality during 75% 

of their lifespan, and then mortality increases steadily, showing that queens experience 

actuarial senescence. Nevertheless, ant queens manage to delay the onset of actuarial 

senescence until very late in life. In support of these results, middle-aged queens show signs 

of an upregulation of anti-aging processes (Chapter 2).  

 

In summary, I conclude that for most of their life, ant queens defy senescence, but senescence 

in this species is unavoidable. Furthermore, the worker’s mortality trajectory resembles the 

one of the queens (Chapter 5). This suggests that workers also defy senescence for a relatively 

long period of their life.  

 

6.4 Causes of death and costs of living 
 

The causes of death of ant queens were investigated in Chapter 3. Middle-aged and near-to-

death queens (prope mortem) were selected for RNAseq to analyze processes that occur after 

queens decrease/cease egg laying. Some of the processes resembled those regarded as 

hallmarks of aging for multiple taxa (López-Otín et al., 2013). The lower expression in 

translation, protein homeostasis, ribosomal machinery, and mitochondrial function are 

among the affected processes. All organisms need to preserve stability and functionality in 

their proteomes to keep healthy, for example by mantaining the correct folding of proteins. 

Aging is related to an altered proteostasis (Koga et al., 2011) and to the lack of degradation 

of damaged proteins which could lead to proteotoxicity (Balch et al., 2008; Murshid et al., 

2013).  
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In the head-thorax of prope mortem queens, the processes of translation, single peptide 

processing, protein polyubiquitination, protein deneddylation, and proteolysis, among others, 

are less expressed. Most of these processes occur in the ribosome and the proteasome core 

complex. In the gaster, similar processes are downregulated with age, such as the protein 

dephosphorylation, proteolysis, protein glycosylation, and protein processing. This indicates 

that the protein machinery and degradation are downregulated in senescent queens, similar 

to what has been observed in model organisms (Francisco et al., 2020; Gao et al., 2020). In 

contrast, in the termite Cryptotermes secundus, the processes related to translation, protein 

folding, protein degradation, and protein synthesis are upregulated with age. The authors 

concluded that the upheaval of the proteasome machinery could respond to the old termite 

queens being under a state of stress, possibly causing their death (Monroy Kuhn et al., 2021), 

but this remains untested.  

 

Another important hallmark of aging is the mitochondrial dysfunction, as the efficiency of 

the respiratory chain decreases with time (Green et al., 2011). The mitochondria’s 

dysfunction could lead to increased ROS production (reactive oxygen species), causing 

cellular damage (i.e., free radical theory). This theory has been re-evaluated in the past years 

due to inconclusive data. For example, it has been shown that ROS prolong the lifespan of 

C. elegans (Raamsdonk and Hekimi, 2009), that manipulations in mice to increase ROS do 

not accelerate aging (Zhang et al., 2009), and an increase of antioxidants in mice do not 

extend lifespan (Pérez et al., 2009; reviewed in López-Otín et al., 2013). Nevertheless, there 

is consensus on the activation of compensatory homeostatic responses to stress by ROS and 

that these responses are consequences of aging, but probably not a cause of it (Hekimi et al., 

2011). However, in other social insects, the association between oxidative stress and 

longevity remains inconclusive (Kramer et al., 2021). I found that prope mortem ant queens 

have a downregulation of the cell redox homeostasis and ATP synthesis.  

 

The mitochondrial dysfunction could also alter intercellular communication, another known 

hallmark of aging (López-Otín et al., 2013; Raffaello and Rizzuto, 2011).  I found that the 

potassium ion transport, the regulation of synaptic transmission, the integrin-mediated 
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pathway, and the cell communication are less expressed processes in prope mortem queens. 

Additionally, the genomic stability is altered with age as the DNA replication and the DNA 

damage checkpoint signaling are upregulated enriched GO-terms. I found lower expression 

of histone modification and upregulation in the histone lysine methylation. In conclusion, in 

the processes mentioned here, senescence in ant queens is not so dissimilar to senescence in 

other organisms, such as humans, mice, and flies.  

 

Activating the insulin/insulin-like growth factor 1 signaling (IIS) pathway required for 

reproduction leads to a shorter lifespan in most animals (Partridge et al., 2011; Tatar et al., 

2003).  It is proposed that the nutrient-sensing regulatory network (comprising IIS / target of 

rapamycin (TOR) / Juvenile hormone (JH)) is differently wired in social insects compared to 

solitary organisms (Korb et al., 2020; Yan et al., 2022). What such rewiring implies is still 

unknown. Yan and co-authors proposed that while the mitogen-activated protein kinase 

(MAPK) branch of the IIS pathway is activated (leading to oogenesis) in gamergates of 

Harpegnathos saltator, the AKT/forkhead box O (FOXO) branch in the fat body is 

inactivated due to an ovarian anti-insulin (Imp-L2) (Yan et al., 2022). In most organisms, 

such deactivation leads to the dephosphorylation of the transcription factor gene FOXO. 

FOXO enters the nucleus, activating genes related to increased longevity (Gems and 

Partridge, 2013). In gamergates of H. saltator, the life-extension properties of the activation 

of Imp-L2 in the ovaries have not been corroborated. However, this is an outstanding 

candidate to test in other species for its function and relation to aging.  

 

The costs of living for ant queens remain unknown. I expected to find trade-offs between the 

investment into workforce (by manipulating the colony size) and the longevity of the ant 

queens. I expected queens to produce more workers to compensate for the lack of workforce 

and observe an effect on the queen’s lifespan. In Chapter 3, ant queens did not experience 

any differences in lifespan, even when they were constrained to produce smaller head-sized 

workers and fewer queen pupae in small-sized colonies. This shows that productivity has a 

cost and that queens in larger colonies, with a larger workforce, can be more productive and 

generate larger workers. Importantly, I could not find an effect on longevity.  
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6.5 Are longevity and fertility heritable? 
 

In Chapter 4, I tested whether genetic and maternal effects contribute to longevity and fertility 

traits in the second generation of queens. The genetic component of such traits seems to be 

low. The maternal line determines productivity, but I could not directly link any life-history 

trait to the variability observed. What explains such large variability remains an open 

question. One possibility is that paternal contribution is essential. Ant queens of C. obscurior 

mate only once (Schmidt et al., 2016) and generally mate with an ergatoid male (i.e., wingless 

male) inside the nest. Ergatoid males engage in fierce combat with other wingless males until 

only one or few are found in the nest chambers of the colony. The variability observed across 

maternal lineages in Chapter 4 was likely due to a few F0 male crossings, which were not 

highly productive. Under normal conditions, only a few ergatoid males will mate with most 

of the queens. In this manipulation, none of the males used for the F1 crossing engaged in 

sibling fighting before mating. Therefore, males do not experience intrasexual selection. 

Additionally, around 70% of queens lay less than ten ergatoids during their lifetime, and they 

lay them mostly during a short time (one week) (Chapter 4). This could be a strategy to 

promote fighting among siblings. Otherwise, the older male in the colony likely has a survival 

advantage. How this occurs in multi-queen colonies still needs to be explored.  

 

Likewise, some crossings between males and ant queens might be more productive than 

others. For example, after ten generations of sib-mating in C. obscurior, inbreeding 

depression signs appear as a shorter queen lifespan and higher brood mortality (Schrempf et 

al., 2006). Additionally, some lines exhibited strong male-biased sex ratios and 50% egg 

mortality. In the same study, sexual production was positively associated with maternal 

lifespan (Schrempf et al., 2006), but I could not find such an association (Chapter 4). 

 

6.6 Outlook 
 

One of the remaining open questions is whether other organisms/superorganisms exhibit 

continuusparity. There is evidence that primary reproductives of the lower termites 

Cryptotermes secundus have a non-gradual aging (Monroy Kuhn et al., 2021). Young and 

middle-aged reproductives have very low mortality rates. In the queens, a senescent signal in 
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gene expression appears after ten years of life (maximum lifespan 13 years), indicating the 

existence of a final period with massive pathologies similar to the one observed for C. 

obscurior queens. It is unknown if sexual productivity increases with age in this species, 

which should lead to the maintenance of selection against senescence strong in primary 

reproductives. Workers are totipotent and can develop into sexuals when the primary 

reproductive dies.  This could be a case of an organism without completely committed castes 

for life, therefore non-superorganismal (sensu Wheeler, 1911), with a continuusparity 

reproductive strategy.  

 

The non-gradual aging in social insects complicates comparative studies trying to understand 

the proximate mechanisms of social insect aging. Studies focused on comparing 

transcriptome profiles of young and old social insects, for example, generally lack an 

understanding of the reproductive strategy and the onset of senescence for each species. First, 

exploratory analyses should focus on obtaining better demographic data to determine 

senescent phases in queens and workers.   

  

Early and middle-aged stages in reproductives of social insects could bring us valuable 

information about the molecular and physiological mechanisms that allow such organisms to 

defy aging. While we explore some of those mechanisms in Chapter 2, the open questions 

are numerous. Do queens have an age-specific expression that optimizes processes and 

maintains protein and metabolic homeostasis? The ‘hyperfunction theory of aging’ states that 

aging results from suboptimal gene function in later life, leading to excessive biosynthesis  

(Blagosklonny, 2008; Gems and de la Guardia, 2013; Gems and Partridge, 2013). As gene 

functioning is optimized for earlier growth, development, and reproduction, the decrease in 

selection strength later in life leads to a non-optimal biosynthesis. This could mean that 

hypertrophic and hyperplastic pathologies appear due to hyperfunction or hypofunction  

(Blagosklonny, 2008; Gems and de la Guardia, 2013; Gems and Partridge, 2013). Therefore, 

a future direction would be to test whether social insect reproductives optimize specific 

physiological processes.  
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Until now, our studies mainly focused on single-queen colonies, while the species is 

polygynous, and colonies usually contain half a dozen queens. We do not know whether 

competition in multi-queen colonies shapes investment in sexual reproduction. A study 

showed that C. obscurior queens had a shorter survival when co-occurring in 8-queen colony 

nests compared to single-queen colonies (mean lifespan 20 vs. 25 weeks, Schrempf et al., 

2011). But it is unknown if all queens contribute equally to the brood and how strong the 

queen-queen conflict is. Some queens in other Cardiocondyla species actively bite and 

violently antennate other female sexuals (Yamauchi et al., 2007), leading to unequal 

contribution to reproduction. C. obscurior queens also engage in aggressive behavior 

(personal observation), but reproductive skew has not been tested due to the lack of genetic 

markers.  

 

Furthermore, unmated queens constitute a considerable amount of all queens in a colony, 

e.g., 18% of all queens in the Brazilian field colonies collected in 2018 were presumably 

unmated winged gynes (unpublished data, Kramer B.). While virgin queens live shorter than 

mated queens (Schrempf et al., 2005), we have not modeled standardized mortality curves of 

virgins to test if they are similar to those of mated queens. They would likely show 

differences, as mating strongly affects the physiology and cuticular hydrocarbons of the 

queens (Will et al., 2012; Wyschetzki et al., 2015).  

 

Lastly, a big open question is, how mated ant queens sense that 75% of their life has passed 

and that it is time to increase investment into female sexuals? Is there a way to assess the 

own physiological state? The onset of senescence could respond to sensing available 

resources, e.g., fat content. Future proteomic and metabolomic work at different time points 

of the queen’s aging will elucidate any changes in the physiological profile related to the 

onset of senescence. This work lays the basis for future studies concerning the ultimate and 

proximate causes of aging in social insects. 
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