
TYPE Opinion

PUBLISHED 01 June 2023

DOI 10.3389/fmed.2023.1155057

OPEN ACCESS

EDITED BY

Quan Nguyen,

The University of Queensland, Australia

REVIEWED BY

Camelia Quek,

Melanoma Institute Australia, Australia

*CORRESPONDENCE

Uwe Ritter

uwe.ritter@ukr.de

RECEIVED 31 January 2023

ACCEPTED 25 April 2023

PUBLISHED 01 June 2023

CITATION

Ritter U (2023) In situ veritas: combining omics

and multiplex imaging can facilitate the

detection and characterization of cell-cell

interactions in tissues. Front. Med. 10:1155057.

doi: 10.3389/fmed.2023.1155057

COPYRIGHT

© 2023 Ritter. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

In situ veritas: combining omics
and multiplex imaging can
facilitate the detection and
characterization of cell-cell
interactions in tissues

Uwe Ritter1,2*

1Chair for Immunology, University of Regensburg, Regensburg, Germany, 2Department for Immunology,

Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany

KEYWORDS

proteomics, RNA-seq, spatial transcriptomics, multiplex imaging, physically interacting

cells, dendritic cells, T cells

Immunity—The consequence of coordinated cellular
interactions

In 1898, microscopic examinations were used to study changes in lymphoid tissues and

cell distribution in pathological settings (1). More than 100 years after these first discoveries,

the complexity of lymphoid organ composition and the existence of distinct immune-cell

subpopulations with a diverse set of functions has been described.

For the adaptive immune system to function efficiently, complex series of spatial and

temporal interactions between specialized immune cells must take place. This has been a field

of vigorous interest, exemplified by the fact that nearly 100.000 papers have been published

dealing with the keywords “interaction” and “immune cells” (PubMed search March 2023).

Understanding cell-cell communication—resulting in immunological pathways—is being

supported by a range of sophisticated analysis pipelines, ranging from in vitro and ex vivo

single-cell sequencing analysis to genic analysis of immunological alterations. In this context,

it is commonly accepted that cells can communicate through juxtacrine and paracrine

processes (2). Signal transmission and reception between neighboring cells is fundamentally

involved in the regulation of immunological processes, ranging from tissue homeostasis to

defense mechanisms against tumour cells or pathogens. However, the final decryption of

immunological programs responsible for coordinated and dynamic immunological adaption

is multi-factorial and remains challenging.

Exploring the unknown below the surface of
tissues—From single cell omics to spatial
transcriptomics

Flow-cytometric analysis represents a central pilar of immunophenotyping (3). Based

on this technique, it could be shown that immune cells sense and release many molecular

mediators capable of modifying immune cell development, phenotype, and function.

However, the limited availability of fluorescently labeled antibodies imposes limitations
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on the detection of different epitopes. Consequently, other

approaches such as single-cell RNA sequencing (scRNA-seq)

have been established, allowing an upscaling of the analytic

dimensions (4). What was previously impossible becomes routine.

Transcriptomic datasets in combination with computational

analytic pipelines can match raw data with cell clusters of interest

and identify biomarkers involved in the developmental trajectory

of immune cells (5–7). While these sequencing approaches

improve our ability to analyse different cell populations in a

variety of contexts, some limitations remain (5). Especially the

enzymatic digestion of tissues is critical, as mediators released

during tissue processing for single-cell analysis can result in cell

activation or death (6). Consequently, rare cell populations can

be lost and valuable information about cell-cell interactions and

the transcriptome are overlooked. Most importantly, single-cell

preparations abolish the spatial context of the cell populations and

information about cell-cell interactions become inaccessible (2).

Spatial transcriptomics (ST) (7, 8) address these shortcomings by

detecting and localizing mRNA transcripts within tissues (2) and

became “Method of the Year” in 2021 (9).

In contrast to early in situ hybridization techniques which

only detect a single transcript (10), ST can detect a broad range

of genes expressed within defined detection spots, containing

barcoded poly-T oligonucleotides capable of trapping their

complementary tissue mRNA. However, the resolution of detection

spots can range from two to 55 microns [2 µm: High-definition

spatial transcriptomics (11), 10µm Slide-seq, Slide-seq v2 (12,

13); 55 µm: Visium spatial gene Expression (7)], leading to

considerable uncertainty regarding the precise cell assignment

of any identified mRNA. These relatively large spot areas

represent therefore a major limitation (14) to this technique,

since it is challenging to assign the generated RNAseq data

to a distinct “cell type” within a sampled portion of tissue.

Furthermore, even with a tissue thickness of less than seven

microns, the processed tissue-sample still represents a three-

dimensional cell layer (15, 16) containing cells stacked on top

of each other, which causes a further inaccuracy of cellular

specificity. Consequently, the genetic information of adjacent

contaminating cells is easily trapped within the measured spot

(14). These issues can be limited by integrating additional

gene expression profiles from scRNA-seq or other single-cell

genomic approaches and subsequent predictions of location

specific cell-type proportions. This complex procedure also called

“deconvolution” (2) requires the application of certain algorithms

[e.g. SPOTlight (17), SpatialDWLS (18), stereoscope (19), robust

cell-type decomposition (14)]. After cell-type scoring, a scRNA-

seq-based assignment can be calculated to predict the RNA

localization. This process is called “mapping” and can be achieved

by the integration of suitable algorithms, such as Harmony (20),

LIGER (21), or Seurat Integration (22).

Due to the occurrence of mismatched data sets, the current

integrating computational models used for deconvolution and

subsequent mapping are reaching their limits. Therefore, it remains

difficult to precisely determine the spatial context of cell subsets (2).

The essential aspects are summarized below: First, pre-sequencing

issues are caused by the fact that classical sc-RNAseq data show

a tendency towards a higher sequencing depth compared to most

ST-methods (2, 16). Second, a preparation of single cells from

tissues can also induce artificial stress responses, that do not

take place in intact tissues (23). Third, a loss of cell subsets

during the enzymatic preparation of tissues can further induce

mismatches and problems during deconvolution steps (24, 25).

Fourth, it is possible that “clustering capture spots” may uncover

cell subsets only captured by spatial barcoding (2). Thus, a

precise decryption of cell-cell interactions by ST still remains an

ambitious goal.

Decrypting cellular communications
in situ—Pushing the limits of in situ

resolution by combining multimodal
workflows

It is widely accepted that tissue-resident cells are continuously

involved in short-range (<200µm) communication (2). This is of

crucial importance for the maintenance of organ architecture and

coordination of immune responses. Some monospecific receptor-

ligand-interactions have already been decoded, highlighting

distinct immunological programs (26–28). However, the mode

of action by which cellular phenotype adoption takes place,

especially within a given temporal microenvironment, is still

not fully understood. In line with this challenging question,

different in situ approaches have been established to uncover

cell-cell communication. A combination of multiplexed ion beam

imaging (MIBI) and ST has been used to evaluate receptor-

ligand proximity or ligand-receptor-target co-expression. Based

on these computed data and appropriate algorithms, it is feasible

to determine distinct multi-cellular areas of communicating and

non-communicating cell subsets within tissues (8). The achieved

resolution of the techniques used in “marker-mapping” and

creating immunological landscapes is promising [Slide-seq 10µm;

ST 50–100µm; MIBI 800×800µm (12, 29)]. Most recently, a

bead-based method produced high-definition ST with resolutions

nearly comparable to the size of individual cells (11). Therefore,

an integration of different ex vivo and in situ techniques might be

suitable to push the limits in contextualized modeling of spatial

cellular communication (30) in the near future. However, in silico

generated landscapes still remain constructed based on computed

models of cell type specifications (29). This reconstruction of

“highly probable signaling networks” is often based on scRNA-

seq data, without exact pairing transcriptomic quantification with

probability-based protein identification (30). Models capable of

indexing both transcriptomes and epitopes by sequencing, such

as CITE-seq, already exist (31) and will help to combine RNA-

data and protein abundance in a contextual manner. However,

as Alexander F. Schier has already asked: . . . “Is “landscapes” even

the proper analogy for multidimensional phenotypic complexity?

Addressing these questions requires the multiplex in vivo measuring

of dozens of transcripts over time and at single-cell resolution — a

Holy Grail technology that is not yet available”. . . (29).
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FIGURE 1

PIC characterization and implementation for contextual multiplex imaging. (A) Ex vivo and in vitro cultures, exposed to antigens, can be used for

sorting single cells (sc; T cells or DCs) and physical interacting cells (PIC) [For further reading, see Giladi et al. (32)]. (B) Implementation of scRNA-seq

and PIC-seq algorithms for subsequent characterization of gene modules (exemplary for T cells and DCs). (C) Grouped by their contributing myeloid

or T-cell subset identities, it is possible to assign distinct gene modules to PICs: e.g., genes u, v, w to DC subsets and genes x, y, z to T-cell subsets

[For further reading, see Giladi et al. (32)]. The putative gene expression profiles of PIC-contributing cell subsets are depicted. Specific “APC gene

modules” of migratory DCs (red star) and “T-cell gene modules” of activated T cells (green star) can be generated [For further reading, see Giladi et al.

(32)]. (D) Gene modules assigning specific cellular phenotypes can be used for panel designs and multiplex imaging. PICs consisting of migratory

(Continued)
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FIGURE 1 (Continued)

DCs and activated T cells can be computed (orange insert). A contextualized detection of “migratory DCs” physically interacting with “activated T

cells” becomes possible (highlighted by distinct DC and T cell shapes and colors). (E) Based on the phenotype of cells that contribute to PICs, a

virtual channel (orange contour) can be generated by imaging software tools, capable of contextualized image analysis in situ. PICs (orange contour)

consisting of “migratory DCs (red shape)” and “activated T cells (green shape)” can be computed. (F) Visualization and further characterization of PICs

of interest (orange contour). It is feasible to dissect “cold” cell interactions (blue insert; non-reactive cells) from “hot” cell interactions (red insert;

reactive cells) resulting in T-cell activation. (G) Di�erent pathogens (viruses, protozoan, bacteria etc.) and models must be considered for the

generation of context-adapted gene modules. This would allow a detailed characterization of gene modules of PICs in a pathogen-specific manner.

A contextualized generation of PIC-associated gene modules will permit the decryption of two central immunological categories: beneficial adaptive

immune responses, resulting in protective host defense mechanisms against pathogens and immunopathological process, associated with chronic

diseases. (H) Multicentre data acquisition and storage (PIC atlas) for the long-term generation of contextualized gene models and subsequent marker

design. This concept will allow an allocation of certain immunological attributes to PICs, in a contextualized manner. A spatial detection of PICs

contributing to disease chronification or successful immunity would become possible. (I) Conceivable applications of the PIC-seq concept in

translational medicine are depicted. Left side: vaccination development. Based on experimental models and definition of gene modules (green box),

it is possible to define PICs that are contributing to protective immunity against pathogens. This protective gene signatures can be compared with

gene modules of PICs that occur after immunization with di�erent vaccine protocols. Such an approach might be useful for the selection of most

promising (green check) and ine�cient (red cross) vaccine formulation. Right side: biomarker identification in tumour immunology. Physical

interactions among tumour and immune cells are supposed to play crucial roles in immune modulation, progression and response to treatments

(46). Thus, contextualized analysis of tumour-immune communications would improve the understanding of the tumour-immune interface.

Comparable to the described immune cell interactions [compare (A–H)] a biocomputational analysis of gene modules, associated with physically

interacting immune and tumour cells, might help to identify biomarkers, involved in protective tumour-immune interactions. The integration of those

biomarker in high precision imaging, would lead to massive improvements of contextual resolutions regarding tumour cell/e�ector cell interactions.

This feature will help to correlate microenvironmental neoplasia with molecular modifications—aspects that are crucial for the evaluation of tumour

progression and therapy controls.

Computed cell-cell communication
networks—First steps in decrypting
physically interacting cells in situ

Unbiased mapping of omics to a spatial context opens

a new dimension in the field of immunology (29). Given

the ST-limitations described above and the multidimensionality

of cell-interactions, a precise characterization of single cells

in situ still seems to be a distant goal. To understand

the immunological relevance of physically interacting cells

[PICs, (32)] in situ, a combination of existing sequencing

methods and data sets might be promising. Given the broad

spectrum of cell-cell communication during homeostasis and

pathological conditions, it is impossible to present one conceptual

workflow of data processing, covering all cell subsets and

immunological responses. Thus, I would like to address this

aspect of “PIC-decryption” based on dendritic cell (DC)/T-

cell interactions.

Initiation of adaptive immunity by DCs involves a cascade of

fine-tuned bidirectional processes (33). We and others have been

able to identify that certain subsets of DCs are mandatory for

adaptive T-cell responses against pathogens (34, 35). In this context,

the formation of immunological synapses between DCs and T

cells is crucial for T-cell polarization (36–38). Although DC/T-cell

interactions are of high clinical relevance, current genomics and

imaging tools for their detection and precise in situ characterization

are still limited, possibly due to the fact that PICs must be analyzed

in situ on a cell-by-cell basis. There is one general problem: Within

lymphoid organs, all cells are close neighbors due to the density of

the tissues.

One must realize that proximity alone is not sufficient to

induce cell activation or differentiation. Thus, a robust detection-

signature, capable of highlighting PICs like DC/T-cell interactions

by multiplex imaging systems, would be of tremendous importance

for the field to understand early events in adaptive immunity (32).

PICs isolated from tissues, are already under investigation (32,

39, 40). The pipeline of PIC-transcriptome analysis [abbreviated

as PIC-seq (32)] is encouraging (41). One strength of this PIC-

seq-concept lies in the combination of transcriptome data from

ex vivo isolated PIC-complexes and respective single-cell data

(32). If transcriptional profiles of PICs are sufficiently different, a

good deconvolution is possible and PIC-seq data can be generated

(42). To further calculate the transcriptional profiles of PICs,

other pipelines and algorithms, such as the Giotto workflow

(43), SpaOTsc algorithm (44), or CSOmap (45) might be also

be implemented.

Using PIC-seq and a dermal infection model with

Nippostrongylus brasiliensis (Nb), it could be shown that PICs

consisting of dermal-derived DCs that present Nb-antigens

to T cells, upregulate distinct transcriptional profiles—also

called gene modules (32). In case of Nb-infection, this DC-

specific gene module is composed of chemokines (Ccl22 and

Ccl17) and co-stimulatory genes CD40, Ebi3, and Dll4 (32).

The T cell-specific gene modules of PICs seem to be more

complex, due to the heterogeneity of T cells that interact

with DCs (32). However, co-culture experiments revealed

that T cells that interact with antigen-presenting DCs show

a reduced Th-precursor program (Klf2, Sell) associated with

an induction of interferon type-I response (Stat1, Irf7), and

metabolic programs (Myc and Npm1), as well as an upregulation

of cytokines, chemokine receptors and effector genes (Tigit, Il22,

Cxcr6, Pdcd1, and Tnfrsf9) (32). Based on these data, it can

be concluded that DCs, which physically interact with T cells

(Figures 1A–C), express distinct PIC-associated gene modules

(32). Consequently, it is possible to design gene module-derived

staining panels, allowing a refined identification of DC/T-cell

interactions by multiplex imaging and tissue image cytometry (47)

(Figures 1D–F).
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From PIC-associated gene modules to
functionality: antibody-based
multiplex imaging might represent a
powerful tool for the characterization
of PICs in translational clinical
research

Focusing on physically interacting DC/T cells, Gialdi

and colleagues could demonstrate that PICs are associated

with a distinct expression of gene modules, under defined

experimental conditions (32) (Figures 1A–E). This aspect

represents a major limitation of the PIC-approach. Based

on the huge antigen repertoire of pathogens and the

corresponding heterogeneity of adaptive immunity, a context-

adapted generation of gene modules is of crucial importance

to avoid restrictive and oversimplified conditions. This

approach is also necessary to ensure the determination

of pathogen-adapted gene modules, expressed by PICs of

interest (Figure 1G). Referring to the complexity of possible

DC/T-cell interactions, a multicentre global database might

represent a mandatory prerequisite for the identification of

contextualized gene modules (Figure 1H). In line with the

integration of high-dimensional data sets, an acceptable point

of data reduction can be achieved, allowing the compilation

of gene module-based antibody panels, useful for the spatial

characterization of PICs, in a context-dependent manner

(Figure 1H). This strategy might be further integrated into

the new discipline of spatiotemporal molecular medicine,

which aims to decrypt pathological processes within a spatial

context (48, 49). A variety of applications in the field of

basic research and translational medicine are conceivable.

Two aspects are of particular importance in translational

medicine: identification of potent vaccination strategies and

biomarker identification in the field of tumour immunology

(Figure 1I).

Conclusion

It is quite clear that antigen-specific immunity represents

more than the sum of its parts. Based on the multimodal

incorporation of single-cell omics, ST, PIC-seq, and other

cutting-edge technologies, deep-learning reconstruction of gene-

regulatory and cellular networks in situ will become possible

soon. This will be of central importance to understand the

cellular crosstalk in tissues and for the decryption of complex

immune responses within pathological tissues at a so far

unknown level.
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