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Vascularized composite allotransplantation (VCA) is an evolving field of

reconstructive surgery that has revolutionized the treatment of patients with

devastating injuries, including those with limb losses or facial disfigurement. The

transplanted units are typically comprised of different tissue types, including skin,

mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely

accepted that the antigenicity of some VCA components, such as skin, is

particularly potent in eliciting a strong recipient rejection response following

transplantation. The fine line between tolerance and rejection of the graft is

orchestrated by different cell types, including both donor and recipient-derived

lymphocytes, macrophages, and other immune and donor-derived tissue cells

(e.g., endothelium). Here, we delineate the role of different cell and tissue types

during VCA rejection. Rejection of VCA grafts and the necessity of life-long

multidrug immunosuppression remains one of the major challenges in this field.

This review sheds light on recent developments in decoding the cellular

signature of graft rejection in VCA and how these may, ultimately, influence

the clinical management of VCA patients by way of novel therapies that target

specific cellular processes.

KEYWORDS

transplant, reconstructive surgery, vascularized composite allotransplantation, VCA,
alloimmune response, acute rejection, chronic rejection
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1 Introduction

Devastating injuries such as severe facial disfigurement (e.g., loss

of nose and lips) that cannot be adequately addressed by conventional

reconstructive surgical techniques, including local tissue

rearrangement and free tissue transfer. Although flaps, grafts, or

local tissue rearrangement are the gold standard for reconstruction,

they merely achieve wound coverage but result in substantial amount

of donor-site morbidity. Vascularized composite allotransplants (e.g.,

face or limb transplants) have revolutionized functional and aesthetic

restoration with promising short and long-term outcomes (1–3). Yet,

this groundbreaking reconstructive biotechnology is also associated

with challenges, mainly owing to the strong rejection response that

invariably occurs following transplantation. VCAs are composed of a

variety of tissue types, including, but not limited to, skin, mucosa,

blood vessels, lymphatics, nerves, muscle, and bone, with suspected

varying degrees of antigenicity between the tissues (4). To ensure

graft survival, patients are usually maintained on high doses of

systemic immunosuppression with potentially severe long-term side

effects (5).

Different cell types such as endothelial cells (EC), B cells, T cell

variants, natural killer (NK) cells, and antigen-presenting cells (APC)

have been implicated in the pathogenesis of rejection. Based on the

current evidence, there is a clear hierarchy of effector-target cell

interactions. For acute cellular rejection, CD8+ T cells of both donor

and recipient origin are the primary effector cells targeting epithelial

and follicular stem cells and microvascular endothelium. During

chronic rejection, the most relevant effector-target cell combinations

are donor and recipient CD8+ effector T cells that target endothelium

(partially chimeric), leading to arteritis with chronic remodeling. Of

note, CD4+ T cells and antibodies seem to play an additional pivotal

role in this process (6, 7). Secondary effector and modulator cells of the

immune response (NK-cells, endothelial cells, granulocytes, Tregs,

macrophages and APC, immunosuppressive dermal mesenchymal

cells, keratinocytes, mast cells) have also been recognized to play a

role in modulating the primary effector-target cell interactions (8–11).

Additionally, it has been demonstrated that both donor and recipient-

derived immune cells may contribute to the development of allograft

rejection (12). Given the recognition of CD8+ effector T cells as the

main (but not only) protagonists of VCA allograft rejection, this cell

type is predominantly targeted by current clinical immunosuppression

regimens (Tacrolimus, Steroids, mycophenolate mofetil (MMF)) (13).

To further improve our understanding of VCA pathoimmunology,

there is a critical need to review the current understanding of how

different cell types contribute to VCA rejection (Supplementary

Figure 1).
2 Rejection in VCA – what tissue is
the primary target?

VCA grafts are comprised of different tissue types (e.g., muscle,

skin, mucosa, lymphatics, vasculature, adipose tissue), each of

which may feature specific immunological properties and thus be

differentially targeted by rejection (5, 14). Skin is largely viewed as
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the most immunogenic tissue and most studies focus on the

rejection mechanisms in skin itself. The phenomenon of split

tolerance (rejection of one tissue with tolerance towards another)

has been observed in several studies, characterized by the rejection

of skin components without evidence of rejection in the remaining

tissue types (13, 15–17). The preferential targeting of the donor skin

by the recipient immune system might be due to the transfer of a

rich skin-resident donor-derived immune system, including T cells

and APC (such as dendritic cells). It has been shown that the skin is

home to more resident T cells when compared to the peripheral

circulation, and given the constant exposure of skin to foreign

antigens, a large number of T effector cells are present in the skin

(particularly CD8+ memory T cells) (17). These cells potentially fuel

detrimental interactions between the two immune (i.e., innate and

adaptive) systems (12). Recent work by our group identified the

mucosal tissue of the oral and nasal cavities as another main target

of rejection in facial VCAs (14, 15, 18, 19). Interestingly, the mucosa

consistently shows more distinct microscopic changes indicative of

acute rejection events when compared to skin biopsies (14, 15, 20).

Since most studies on comparative antigenicity were performed in

limb allografts, the dogma that skin is the most immunogenic may

need to be re-evaluated.
3 The hierarchy of effector-target cell
interactions: cells and their relevance
in VCA rejection

Few studies have detailed the precise role of different cell types

involved in allograft rejection. However, since most therapeutics

target a specific cell type (predominantly T and/or B cells), it is

important to examine the relevance of specific cell types for allograft

rejection and how these cell types interact. To decipher the hierarchy

of effector-target cell interactions in allograft rejection, we will first

delineate the functions of the different cell types in acute rejection. Of

note, the transition from acute rejection episodes into chronic stages

represents most likely a gradual process rather than two clearly

differentiable phases (21, 22). Thus, the cell types discussed in this

review are likely to be involved in both acute and chronic rejection.

Yet, further research, especially on chronic VCA rejection, is needed

to match cell type and fate with either acute and/or chronic rejection.

Mounting body of evidence points toward CD8+ effector T cells

as the hallmark effectors of VCA rejection targeting epidermal and

follicular stem cells (and to a lesser extent the microvascular

endothelium), thus driving acute cellular rejection reactions (16,

23, 24). Besides these key effector-target cell interactions, multiple

secondary effectors, in addition to other cellular targets, are

involved in VCA rejection (17).

In acute VCA rejection, the primary effector-target cell pair are

CD8+-T-cells and epithelial/follicular stem cells (25–28). This

interaction will be discussed first followed by an outline of the role

of endothelial cells which represent both targets and effectors in VCA.

Lastly, secondary effectors (e.g., NK cells, APC, granulocytes with

APC-like cellular characteristics) will be discussed (11, 29–31).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1179355
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Knoedler et al. 10.3389/fimmu.2023.1179355
4 Acute allograft rejection

Acute rejection (AR) is usually defined as a typically reversible

immune-mediated attack on the allograft, orchestrated at the cellular

level by cytotoxic cells (predominantly T cells) or through donor-

specific antibodies (DSA) produced by plasma cells (antibody

mediated rejection, AMR). The primary effector/target cell

combination are T cells that target epidermal and follicular stem

cells. Nearly 85% of VCA patients experience at least one episode of

AR within the first postoperative year; in fact, more than 50% of cases

report multiple AR episodes (32). The reported incidence of AR is,

thus, significantly higher than in the field of solid organ

transplantation (SOT) (33). It is hypothesized that this is, at least

partly, due to easy visual monitoring of the graft (8). Indeed, any

suspicious skin changes or cutaneous abnormality should trigger a

prompt biopsy and histologic examination. In cases of histologically

confirmed AR, immediate therapy is often initiated, usually in the

form of steroid bolus administration and immunotherapeutic

regimen optimization (34). Of note, Win et al. found distinctive

genetic features in AMR (on postoperative day 5) compared with T

cell mediated rejection episodes (by 12, 21, and 24 months

postoperative) in one VCA facial allograft. Genes that were

particularly upregulated during the suspected AMR episode

included ICAM1, VCAM1, and SELE, which are all linked with

endothelial activation and leukocyte-endothelial cell interactions. In

contrast, granzyme B was specifically upregulated during the T cell

mediated rejection episodes. Granzyme B is commonly expressed by

CD8+ cytotoxic T cells and natural killer cells upon activation (35).

Histologically, AR of the skin in VCA shows different levels of

perivascular and/or interstitial mononuclear cell infiltration with

epidermal and/or adnexal involvement (36) (Figure 1). Bhan et al.

provided initial evidence in 1980 that both CD4+ and CD8+ T-cells

infiltrate human skin allografts (37). In a study of 113 biopsies from

full-facial transplants, Lian et al. showed that T cells also play a

crucial role during acute rejection of facial VCAs (12). Notably, Lian

et al. found that some of the involved immune cells were of donor

origin, with an immunophenotype typical of the resident memory T

cell subset. While cell-mediated rejection primarily affects the skin

in the sense of epidermal targeting, the endothelium of graft vessels

is the main site of damage in antibody-mediated rejection (AMR)

(36). During AMR, DSA trigger rejection by complement

activation. In the classical pathway, along with C4a and C4b, C4d

is subsequently cleaved and can covalently bind to the endothelium,

serving as a diagnostic tool of AMR in solid organ transplantation

(38, 39). Yet, AMR remains rarely reported in VCA recipients (40).

In the few cases of AMR in VCA, no clear correlation between C4d

deposition and DSA formation was found (41, 42).
5 T cells as the primary effector cells

5.1 Basic cellular characteristics of T-cells

T cells are the protagonists of adaptive cell-mediated immunity

and the major cell type involved in VCA rejection (43). Two main

populations of T-effector cells exist, which are divided based on
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their CD4 or CD8 glycoprotein that is associated with a respective

TCR on the cell surface: CD4+ T-helper cells (TH-Cells) and CD8+

cytotoxic (cytolytic) T lymphocytes (CTL). T-helper cells produce

cytokines and modulate immunological processes such as CTL,

macrophage, and B-cell activation, whereas CTL bind to target cells

and induce apoptosis in target cells via secretion of perforins and

granzyme. These cell populations were noted to be involved in skin

allograft rejection as early as in 1982 by Bhan et al. At the time, two

pathways of T cell-mediated rejection mediated by T cells of

recipient origin were proposed: a direct pathway of epithelial

injury mediated by CD8+ CTLs, and an indirect pathway via T

cell-mediated endothelial microvascular injury (37). With the

clinical advent of VCA, we were able to better characterize

functions and cell populations involved in skin rejection.
5.2 T cells as cornerstones of
transplant immunity

T cells are specifically trained to recognize donor-derived

antigens. The indirect pathway of antigen presentation is the

conventional mechanism of antigen presentation of bacterial/viral

antigens, whereas dendritic cells acquire an antigen via endocytosis,

process it into peptide fragments, and present it on their surface via

MHC molecules (= antigen presentation) (8, 16, 43). A processed

antigen fragment (peptide) is presented on the surface of APC via

self MHC I (for CD8+) or II (for CD4+ T cells), and the T cell binds

via TCR. During transplant rejection, processed antigen is mostly a

donor-derived MHC molecule. In the direct pathway of antigen

recognition, T cells recognize intact (unprocessed) foreign MHC

molecules on the surface of donor-derived cells (44). Naïve T cell

activation requires professional APC (dendritic cell) activation to

become an effector T cell. In addition to the antigen-specific signal,

a costimulatory signal is required for T cell activation (43, 44). The

B7:CD28 and CD80/CD86:CD40 pathways are the most widely

known costimulatory pathways, and the costimulatory molecules

are expressed in high density on APC.
5.3 T cells in VCA grafts and rejection

Cellular infiltrates of human skin rejection samples in hand

transplantation consist predominantly of CD4+ and CD8+

lymphocytes, with some B-cells and CD68+ cells (histiocytes,

macrophages) (45). In a detailed analysis of facial VCA skin

samples, Lian et al. demonstrated that stem cell-rich epidermal

rete ridges, follicles, and dermal microvessels were primarily

targeted during the acute rejection process (12). Initially, it was

assumed that most of the target cell damage is caused by recipient-

derived lymphocytes that infiltrate the graft and react towards

alloantigens. However, Lian et al. identified that both donor- and

recipient-derived T-lymphocytes are involved in the rejection

process. In the epidermis and hair follicles, most infiltrating

lymphocytes were of donor origin (>90%) and stained positive

mainly for CD8 (8). The authors demonstrated that lymphocytes

surround epithelial target cells (“satellitosis”). Near vasculature,
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both donor and recipient lymphocytes of comparable quantity were

identified, with donor-derived T cells often located intraluminally

next to the injured endothelium (lymphocytic vasculitis). Multiplex

gene expression profiling of both facial and limb VCA samples has

recently been performed (13, 46). In face transplant samples,

findings demonstrated that in higher grade rejection, mostly T
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cell activation pathways are activated with upregulation of genes

associated with T cell infiltration (CD3D, CD3G, CD4, CD8A), T

cell co-stimulation (TNFRSF4, CD28, ICOS, TNFRSF9), Th1

chemokines (e.g. CXCL9,10,11) and effector molecules such as

granzyme A, granzyme B, granzyme K that are responsible for

cytotoxicity (13). In biopsy samples from three limb transplant
A

B

FIGURE 1

Target cells in acute rejection of facial VCA skin. (A) Spatial associations of lymphoid cells with target cell injury in facial allografts. Lymphocytes at
tips of epidermal rete ridges surrounded target cells (arrows, top row H&E staining) to form ‘satellitosis’. Donor (Bw4) and CD8+ T cells precisely
corresponded to these patterns of satellitosis (bottom row). Sites of follicular targeting in the bulge region, as well as microvascular targeting, also
correlated with the presence of donor T cells that often were located within vessel lumens (intraluminal donor T cell in apposition to degenerating
endothelial cells within square; intrafollicular apoptotic target cell encircled). Dotted line=dermal–epidermal and dermal–follicular junctions).
(B) Dual labeling for donor/recipient histocompatibility antigens and T-cell phenotype (color of font=fluorochrome used; patient 5). The majority of
cells in epidermal infiltrates (top and middle rows, far left) and follicular infiltrates (top and middle rows, middle) were CD3-positive (green) T cells of
donor origin (Bw4, red; co-expression=yellow–orange). Cells expressing resident memory T-cell markers (CD69, green) co-expressed donor (Bw4,
red) but not recipient (B7) antigen markers (top and middle rows, far right) consistent with their origin in the facial allograft. Donor resident memory
T cells (CD69- or CD103-positive cells, red) were predominantly CD8 positive (green) in the epidermis and CD4 positive (green) in hair follicles
(bottom row). Color mixing of red and green epitopes=yellow or yellow–orange; blue=DAPI nuclear stain. Please note: Figure 1 and the respective
caption are adapted and modified from Lian et al. (12). Permission to reuse was granted by Springer Nature.
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recipients, chemokines including CCL18 were shown to be

significantly upregulated during allograft rejection. CCL18, which

commonly binds to the CCR8 receptor, has been linked to an

increased recruitment of allo-T cells (CD4+ and CD8+ T cells) to

skin xenografts, leading to signs of accelerated graft rejection. Using

a humanized skin transplantation model, the authors could show

that blockade of CCR8 remarkedly decreased CCL18-induced allo-

T cell infiltration (46).
6 Epithelial and follicular stem cells as
primary target cells

Stem cells represent unspecialized cells of the human body (47).

Following several steps of specialization, developmental potency is

reduced with each step (48). Of note, both epithelial and follicular

stem cells are characterized by high developmental capacity, which

classifies them as multipotent stem cells. Epithelial stem cells, for

example, can differentiate into keratinocytes (49). Follicular stem

cells, in turn, have shown even stronger multipotency and can

differentiate into various cell types such as keratinocytes,

melanocytes, mesenchymal cells, neurons, and glial cells. In

addition, they have also been shown to contribute to angiogenesis

(50, 51). Stem cells are also involved in various immune-related

diseases, such as cancer, cardiovascular, and autoimmune diseases,

where they can both promote disease and contribute to healing (52–

54). Cancer stem cells, for example, have been implicated with

tumorigenesis and therapy resistance while other stem cell types can

promote tissue regeneration and healing in cardiovascular and

autoimmune diseases (55, 56). In acute VCA rejection, epithelial

and follicular stem cells have been proposed as the primary target

cells (12).

Cutaneous stem cells, such as epithelial and follicular stem cells,

play an important role in skin regeneration, and complex

interactions with skin resident and infiltrating immune cells have

been observed. These interactions not only make the skin

particularly susceptible for immune-related diseases like

autoimmune disorders (e.g., systemic lupus erythematosus) but

also may play a pivotal role in allograft rejection. Epithelial stem

cells, for example, can be affected by various immune cell types

including Tregs and macrophages. Tregs in close spatial proximity to

hair follicles have been demonstrated to regulate the activity of

follicular stem cells, thus impacting hair growth (57). Macrophages,

in turn, have been shown to exert suppressive effects on follicular

stem cells (58). Since hair follicles have the capacity to recruit a

variety of immune cells in response to damage, follicular stem cells

may be at particular risk of immune cell targeting and subsequent

inflammation (59). The above-mentioned interactions may be

based on various specific properties of cutaneous stem cells. For

instance, several signaling pathways including JAK-STAT, b-
catenin/Wnt, and Jag1-Notch exist, mediating the interaction of

cutaneous stem cells with immune cells (60). Of additional interest,

transcriptional profiling of human epithelial stem cells has shown

increased expression of encoding surface receptors and cell

adhesion molecules such as leukocyte differentiation antigens and
Frontiers in Immunology 05
activated leukocyte cell adhesion molecule (ALCAM), potentially

further enhancing interactions with immune cells (61). Most

interestingly, it has been shown that MHC class I and II

expression can be increased in follicular stem cells under

pathological conditions such as autoimmune disease, thus

enhancing the potential for immune cell interactions. Intriguingly,

this mechanism may also play a role in alloimmunity and explain

why the skin is seen as a predominant target of the immune

response in VCA (62, 63). In line with this observation, biopsies

from facial transplant recipients, for example, have shown

lymphocyte accumulation in epithelial stem cell-rich regions. Of

note, intra-epidermal and intra-follicular cells were mainly targeted

by cells exhibiting a donor-derived T cell phenotype (12). This was

observed in a manner that mirrors other cytotoxic immune

reactions in the skin such as acute graft-versus-host disease.

Additional studies in face transplant recipients have reported that

hair follicles are also involved in chronic rejection with hair loss as

an early feature presenting prior to sclerosis or vasculopathy (64).

More importantly, our own group has described epidermal thinning

with a loss of rete ridges in chronic face transplant rejection (65). As

epidermal stem cells are located within rete ridges, this indicates

that skin stem cells do not only represent a target of alloimmunity in

acute, but also in chronic rejection (66). In addition, studies of

cutaneous graft versus host disease after bone marrow transplant

have shown that epithelial stem cells are particularly targeted by

effector T cells. Mechanistically, they have been shown to be

especially prone to the pro-apoptotic effects of cytotoxic cytokines

produced by allostimulated T cells (67). Of note, this susceptibility

may be due to increased expression of cytokine-inducible adhesion

molecules such as CD106 (68). Moreover, it has been shown that

proinflammatory cytokines such as TNF-a may prime epithelial

stem cells towards apoptosis by interacting with apoptosis-

regulators such as p73, a member of the p53 family. This may

ultimately result in increased vulnerability to the effects of

allostimulated T cells (69). Taken together, these mechanisms

may also play an important role in VCA rejection, thus

potentially explaining the predominant targeting of skin stem cells.
7 Primary target and effector cells -
endothelial cells

7.1 General cellular characteristics of
endothelial cells

EC are the first line of defense against blood-borne pathogens

and represent the interface between graft tissue and recipient-

derived immune cells following VCA (70). In general, EC can act

as “semiprofessional APC”, meaning that they can express the genes

involved in antigen processing and presentation while lacking the

surface receptors CD80 and CD86 (71). Furthermore, EC drive

regeneration of the vasculature (72) and they can promote a local

antithrombotic environment by activation of antithrombin-3 (73).

Platt et al. have demonstrated that the activated complement system

(i.e., the membrane attack complex (MAC)) and preformed DSAs
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trigger intravascular coagulation and EC vulnerability to oxygen

radicals (74). In response to these processes, EC acquire pro-

coagulant functions followed by activation of the tissue factor

(TF) and thrombus formation (75–77).
7.2 Endothelial cells in VCA rejection

EC hold a key position in acute VCA rejection as they activate

and recruit lymphocytes through the upregulated expression of

HLA-II and adhesion molecules (e.g., E-selectin) on their cell

surface (12). Ligation to the HLA-II molecule drives

phosphorylation of protein kinase B (PKB), which increases IL-6

secretion of EC (78). Rising IL-6 levels contribute to the expansion

of the Th17 subset of T helper cells while reducing the

immunosuppressive regulatory T cells (Tregs). The Th17 subset

has been shown to navigate neutrophil granulocytes to the

inflammation site via IL-8 and produce proinflammatory IL-17A

and IL-22 (79). Furthermore, E-selectin orchestrates overall

leukocyte trafficking and allows transendothelial migration of

lymphocytes to the skin. This migration process is due to T cells

harboring the cutaneous lymphocyte antigen (CLA; a ligand for E-

selectin) which is commonly expressed on <5% of T cells. However,

in skin lesion biopsies, >80% of T cells were found to be CLA+ (80).

Further, EC can lead to increased levels of vasoactive messenger

substances such as bradykinin, prostacyclin, and nitric oxide (NO)

during acute VCA rejection (12, 81). This can be due to increased

levels of IL-6 resulting in elevated NO levels (82). Mechanistically,

high-level NO leads to phosphorylation of vascular endothelial

(VE)-cadherin Y685 which promotes the dismantling of adherens

junctions between the EC (83). This cascade entails the disruption

of the endothelial barrier that is crucial for the fluid, gas, and

metabolic homeostasis of the VCA transplant (84). Because of the

limited vessel diameters, especially at the capillary level (≤5 mm
versus activated T cells measuring 8- 12 mm), the EC inevitably

interact with T cells (85). This phenomenon may explain how EC

can activate resting memory T cells in acute VCA rejection, unlike

for example fibroblasts, despite both cell types expressing HLA-II

molecules (85).

During acute VCA rejection, EC can be involved in cellular-

(CMR) or antibody-mediated rejection (AMR) processes. In terms

of CMR, EC of the allograft act via the presentation of donor HLA

molecules which are recognized by T cells and trigger inflammatory

pathways. Further, VCA grafts host an array of expanded

populations of donor T cells expressing CD69, CD103, and CLA

(i.e., markers of resident memory T cells (Trm)). The increased

prevalence of this cell subset can be due to the majority of VCA

patients having undergone previous blood transfusions and/or

surgical procedures, thereby inducing donor antigen sensitization

and generating long-lived (i.e., occurring up to 23 months following

facial transplants), donor-specific memory T cells (12, 86). This

subset has been implicated with early-onset VCA rejection on

postoperative day five. Vice versa, it remains to be determined

whether donor-derived T cells target recipient EC that are derived

from blood vessels that grow into the VCA graft (12). Remarkably,

AMR has thus far occurred less frequently in VCA than in SOT.
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This might be due to the ingrowth of recipient blood vessels and/or

migration of EC into the VCA graft, which prevents binding of DSA

to the EC (25). Further, tissue damage in the aftermath of VCA

surgery may trigger the release of donor antigens which can lead to

clonal suppression (i.e., they interact with the respective B cell

antigen receptors and suppress the production of DSA) as well as

directly bind to DSA, hindering their interaction with donor EC

(87). The deposition of C4d on EC – a hallmark of AMR in SOT –

has also been demonstrated in bilateral hand transplant recipients,

as well as forearm and full-face transplants, but its diagnostic value

in VCA rejection remains controversial (10, 41).

EC lining the endothelial wall in deep donor arteries, as well as

synovial and sentinel skin graft vessels, have been associated with

chronic VCA graft rejection (88). The first face transplant patient

re-presented with fibrosing EC, which impaired the functionality of

the endothelial barrier and (presumably) caused EC-driven

thrombosis of VCA vessels (88). The Lyon group outlined the key

role of capillary thrombosis in chronic VCA rejection after studying

10 VCA recipients (21). Interestingly, the involvement of fibrosing

EC in chronic VCA rejection has also been proposed by Mundinger

et al. utilizing a nonhuman primate model of face transplantation

(89). Lymphoid follicle formation, which has been reported in

chronic VCA rejection by Mundinger et al. but also separately in

hand transplants, seems to be intertwined with EC: follicles were

found to be surrounded by endothelial venule-like vessels (89, 90).

In addition, accelerated arteriosclerosis has been found in SOT,

which may be mediated by various processes including ischemic

injury of vessels during transplant, viral infections of the graft, and

side effects of immunosuppressive drugs such as corticosteroid-

induced hyperlipoproteinemia (91). Of note, arteriosclerosis-like

changes such as intimal thickening have also been observed in acute

VCA rejection. Moreover, rejecting VCA patients are often treated

with high-dose corticosteroids. Thus, accelerated arteriosclerosis

may play a key role in chronic VCA rejection and contribute to graft

damage (92).
7.3 Targeted therapeutic strategies

In terms of medication regimens targeting EC in VCA rejection,

ustekinumab and secukinumab have demonstrated beneficial effects

by inhibiting Th17 cell proliferation and blocking IL-17A in SOT

and were therefore tested in an osteomyocutaneous radial forearm

flap model of non-human primates by Atia et al. (93, 94). Of note,

the authors combined ustekinumab and secukinumab with

belatacept, which blocks CD86-CD28 interactions, but they did

not find improved outcomes when compared to the standard triple

immunosuppressive regimen (i.e., tacrolimus, mycophenolate

mofetil (MMF), and methylprednisolone). They hypothesized that

those results were based on CD28-independent co-signaling

pathways in Th17 cells and high-level CTLA-4 expression

inducing resistance to belatacept (95). Complement system

activation leading to C4d disposition on endothelia as the

hallmark of AMR represents another drug target in VCA

medication therapy. To this end, eculizumab that blocks the

cleavage of C5 into C5a and C5b fragments has been applied in a
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highly presensitized full-face transplant patient in combination with

total plasma exchange therapy and intravenous immunoglobulin

administration. This drug protocol antagonized symptoms of VCA

rejection in a full-face allotransplant recipient within 1-month post-

transplantation and allowed reduced medication therapy compared

to the standard triple immunosuppression regiment (41).

Furthermore, when investigating the molecular biology of skin

rejection in VCA, Hautz et al. observed a close correlation

between the severity of rejection with ICAM-1 and E-selectin

(45). Both E- and P-selection mediate the binding and rolling of

immune cells in the vasculature (96, 97). The therapeutic potential

of these adhesion molecules was then investigated in a rat hind limb

allotransplant model by locally administering efomycine E (a

specific E- and P-selectin inhibitor) (45). When combined with

antithymocyte globulin and low-dose tacrolimus, a weekly

subcutaneous injection of efomycine E led to a significantly

prolonged skin and allograft survival. Thus, targeting adhesion

molecules may be a promising adjunctive treatment to reduce the

burdensome immunosuppressive regimen. Nevertheless, the

administration of efomycine E alone remained ineffective,

indicating the need for combined therapies.
8 Secondary effector cells – from
natural killer cells to mast cells

8.1 Natural killer cells – uncharted
secondary effectors?

8.1.1 The interplay of natural killer cells and the
immune system

NK cells are effector lymphocytes of the innate immune system.

While NK cells lack the clonotypic TCR and CD3ϵ (i.e., the

associated signal-transducing adaptor), they express the low-

affinity Fc receptor CD16 and are therefore capable of detecting

antibody-coated target cells, exerting antibody-dependent cell

cytotoxicity. NK cell activation is initiated by the interplay of

different activating and inhibitory signals involving ITAM

(immunoreceptor tyrosine-based activation motif)-bearing

molecules (98). NK cells can secrete the cytotoxic reagents

perforin and granzyme B (99). Further, NK cells interact with EC

for example via binding of a4b1 integrin to vascular cell adhesion

protein-1 (VCAM-1) (100). NK cells can also mediate DC

homeostasis via IFN-g and TNF-a. NK cells can prime Th1 cells

through IFN-g secretion (101). Regarding B cells, NK cells have

been demonstrated to increase IgG and IgM antibody production

and facilitate immunoglobulin class switching (102, 103).

8.1.2 Natural killer cells in VCA rejection reaction
Friedman et al. identified multiple cytokines (e.g., IL-10 and IL-

18) and chemokines (e.g., CXCL-9 and CX3CL-1) that were

upregulated in VCA rejection (104). CX3CL-1 is expressed by EC

and directs C-X3-C motif receptor-1 (CX3CR-1) expressing cells

like macrophages and NK cells into inflammatory sites. In response

to this ligation, NK cells produce IFN-g which drives CX3CL-1
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expression on EC, pointing towards a paracrine feedback loop

between CX3CL-1 and CX3CR-1 (105). IFN-g induces Th1

responses and increases ROS levels, leading to endothelial damage

in VCA grafts (104). Moris et al. further proposed an activating

effect of Trm on NK cells in VCA rejection (24). In NK cells, this

interaction coordinates increased granzyme B secretion (106).

Granzyme B, a serine protease found in the lytic granules of NK

cells, orchestrates cell apoptosis, especially through Bid (i.e., a Bcl-2

family member) (107). Interestingly, elevated levels of granzyme B

have been shown to increase mesenchymal stem cell (MSC)

populations (108). Conversely, MSCs suppress the activity of NK

and other immune cells for example by increasing tryptophan

metabolites (109, 110). Kuo et al. translated the basic biological

links between NK cells and MSCs into the field of VCA and

corroborated the modulatory effects of MSCs on NK cells (109).

Of note, Win et al. directly compared the potency of NK cells versus

CD3+ T cells during rejection by collecting skin biopsies from 7 face

transplant patients. The authors revealed that T cells accounted for

the majority of secreted granzyme B and outnumbered NK cells 4-

fold. Yet, their work demonstrated that 56% of NK cells were

activated (i.e., CD56+CD107+) in comparison to 21% of CD3+ T

cells expressing the activation marker CD40L. To evaluate the

relative contributions of T cells and NK cells to cytotoxic injury,

the authors immunostained for caspase-8 (a marker of cytotoxic cell

death) and found that T cells mediated significantly more

cytotoxicity than NK cells and were responsible for a mean 71%

of cytotoxic events in VCA grafts (versus 29% attributed to NK cell

cytotoxicity) (13). While the relative NK cell count following VCA

surgery remains to be ascertained, preliminary data from Belike

et al. demonstrated that anti-NK treatment (HB-191) administered

one day prior to transplantation of islet allografts did not delay

acute rejection in a diabetic murine model (111). Their findings

may point towards a subordinate role of NK cells in the acute

rejection phase which remains to be investigated in further studies.

8.1.3 Pharmacological modulation of natural
killer cells

NK cells in VCA rejection can be targeted by repetitive

injections of MSCs. Their potent effects have been demonstrated

in a rodent hindlimb model by Kuo et al. They found that the

combination of adipose-derived MSCs (administered on day 7, 14,

and 21 post-transplantation), anti-lymphocyte serum, and

cyclosporin A yielded prolonged allograft survival when

compared to the untreated control and the subgroup receiving

only anti-lymphocyte serum and cyclosporin A (112). The same

group confirmed the beneficial use of MSC injections for VCA graft

survival in both a swine hindlimb model as well as a swine

hemifacial model (113, 114). Expanding on the modulatory effects

of MSCs on NK cells, there is a complex interplay between these cell

types. MSCs can shield against NK cell-mediated lysis by expressing

serine protease inhibitor 9 or TLR-3 (115). Vice versa, IDO and

prostaglandin E2 (PGE2) are pivotal mediators in MSC-induced

suppression of NK cells as they interfere with IL-2 which is crucial

for NK cell proliferation (116). Friedman et al. introduced CX3CR-

1 on the NK cell surface as a potential point of leverage in VCA
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rejection therapy (104). In murine models, CX3CR-1-/- mice have

shown prolonged cardiac allograft survival, though this remains to

be translated to VCA settings (117).
9 Beyond antibody production - B
cells as secondary effectors

9.1 Cellular characteristics of B cells

The bone marrow hosts the initial phases of B cell development

and facilitates the deletion of B cells which bind self-antigens (i.e.,

negative selection) and the assembly of the B cell receptor. In

response to antigen contact, naïve B cells differentiate into plasma

or memory B cells (29, 118, 119). Memory B cell populations can

shift into long-lived plasma cells or GC B cells following antigen

rechallenge (29). The interplay with T follicular helper (Tfh) cells

further impacts B cell fate as Tfh cells act on GC B cells for example

by IL-4 and IL-21 secretion and CD40L-CD40-interaction (120). B

cell memory shields human health via long-lived plasma cells in the

bone marrow that secrete highly specific antibodies recognizing

recurrent homologous pathogens (121). Variant pathogens that

may have evaded this first line of defense are targeted by memory

B cells accumulating a broader set of antigen affinities and

specificities (122). Mucosal B cells populate the gut, respiratory,

and urogenital mucosae as well as the skin, salivary, mammary, and

lacrimal glands. Their main purpose is to engage with secretory

epithelia to provide a first-line defense through the secretion of

immunoglobulin A (IgA) (123). B cells are also classified as APC as

they form immunological synapses in an actin-dependent manner

to capture, process, and present antigens on HLA-II molecules to

CD4+ T cells upon B cell receptor signaling (124).
9.2 The crosstalk of B cells and VCA
rejection process

The B cell-based production of DSAs holds a pivotal role in the

overlap of B cell biology and VCA and can be subdivided into

preexisting versus de-novo DSAs, with the latter typically occurring

within 3 months post-transplantation (25, 40, 125, 126). In theory,

the immunogenic components of VCA grafts (especially skin and

mucosal tissue) and the frequently encountered presensitization

(i.e., the formation of preformed potentially donor-specific

antibodies) of VCA recipients through previous blood

transfusions and/or surgical procedures may predispose this

patient population to AMR. However, AMR is inconsistently

observed in VCA patients. This might be due to (i) blood vessels

in VCA grafts partially sprouting from the recipient’s vasculature

and thus not expressing antigens recognized by DSA (this effect is

potentiated by the fact that >80% of immunoglobulins circulate

with the bloodstream, exposing the intravascular surface as the

main location of arising alloreactivity), (ii) antigen shed from the

graft resulting in clonal suppression (i.e., suppression of the DSA

production) and enhancement (i.e., blockade of antigen recognition

by DSAs), (iii) the interplay of DSAs with the graft tissue inducing
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resistance to AMR, and (iv) the prolonged normothermic ischemia

time and higher frequency of reperfusions potentially reducing

ischemic reperfusion injury (IRI) and development of DSAs (25,

42, 127). Further, the incidence of de-novo DSAs does not seem to

be higher in VCA than SOT, as recent work by the Oxford VCA

program found that 6/16 (37%) abdominal wall transplant patients

developed de-novo DSAs versus eight of 13 (61%) intestinal or

multi-visceral transplant recipients. Interestingly, they reported no

case of AMR in their patient cohort, no difference in 1- and 3-year

graft survival when stratified for the formation of de-novo DSAs,

and they did not find any correlation between the incidence of de-

novo DSAs and previous blood transfusions. The authors proposed

that rejection in VCA patients was treated before triggering

significant tissue damage and formation of de-novo DSAs (128).

Following-up on six face transplant recipients, Borges et al. reported

on one patient with AMR who – in contrast to the other recipients –

displayed a persistent dominance of Th17 (129). This T cell subset

has been implicated in the induction of B cell proliferation,

increased antibody production cells, and elevated levels of the

inducible T cell costimulator (ICOS) molecule further promoting

B cell differentiation (130). Biopsies taken from the first face-

allograft recipient nine years post-transplantation due to skin

rejection symptoms showed dermal infiltration of CD20+ B cells

in the facial allograft, as well as the sentinel skin graft. Here, CD20+

B cells formed tertiary lymphoid organs (TLOs), which are

considered pathological hallmarks of chronic VCA rejection (88).

Interestingly, TLOs TLS can mimic functions of GCs and drive the

proliferation and/or differentiation of autoreactive B cells for

example via the activation-induced cytidine deaminase

(AID) (131).
9.3 B cell-focused pharmacological
treatment protocols

Current immunosuppressive protocols are often focused on

antagonizing alloreactive T cell responses with, for example,

tacrolimus and cyclosporin A showing limited effects on B cells

(40, 125). Sutter et al. utilized the Brown Norway-to-Lewis hind

limb model to evaluate the effects of in situ forming rapamycin

implants on VCA acceptance. While the authors observed increased

levels of multilineage mixed chimerism and frequency of Tregs, they

found no significantly different B cell frequencies in peripheral

blood and bone marrow when compared to the untreated control

group (132). Belatacept is a fusion protein (CTLA4-IgG1) that

targets the CD28/B7 co-stimulation between T and B cells resulting

in inhibition of DSA formation, as shown by Grahammer et al. in

four hand-transplanted patients (133). De-novo belatacept-based

treatment has led to sufficient rejection prophylaxis and reduced

side effects in a hand transplant recipient when compared to

calcineurin inhibitor-based protocols (134). The Innsbruck group

reported the first case of a primarily B cell-driven rejection episode

in a forearm recipient at nine years post-transplant. While the

patient did not respond to steroid treatment, administration of

rituximab (i.e., an anti-CD20 monoclonal antibody) resulted in

complete remission of clinical symptoms (10). While the
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therapeutic benefits of Bregs in controlling VCA rejection remain to

be ascertained, the NK cell-mediated effects of Bregs in inducing

allograft tolerance have been demonstrated by Schuetz et al. in a

murine islet model. Of note, the authors did not find quantitative

changes in Bregs population when NK cells had previously been

depleted and therefore hypothesized that NK cells mainly influence

the donor-specific regulatory function of Bregs (135).
10 APC and their role as secondary
effector cells

10.1 Phenotypic and functional definition
of antigen presenting cells

APC are involved in the rejection process via the direct and

indirect pathways of allorecognition. In the direct pathway, donor-

derived APC are recognized by recipient T-cells due to their foreign

MHC molecules, whereas in the indirect pathway, recipient-derived

APC have processed donor-derived antigens and present them via

self-MHC to recipient T-cells (136). Dendritic cells (DCs),

macrophages, and B cells represent professional APC and express

pattern recognition receptors (PRRs) such as Toll-like receptors to

recognize pathogen-associated molecular patterns (PAMPs), as well

as damage-associated molecular patterns (DAMPs) (137). APC

internalize the target molecule via endocytosis, pinocytosis, or

phagocytosis (138). The internalized molecules are processed and

presented by MHC-I to CD8+ T cells and MHC-II to CD4+ T helper

cells, respectively. In a reciprocal manner, APC and T cells promote

their interactions for example via co-stimulatory signal involving B7

molecules (i.e., CD80 and CD86) and CD28 or CD40 and CD40L

(139–141).
10.2 Antigen presenting cells during
VCA rejection

In facial VCAs, dendritic-appearing CD8+ T cells have been

identified, representing a subclass of dendritic Trm (12). DCs and

CD8+ Trm both express for example CD103L to bind E-cadherin,

which is a hallmark in mucosal and epithelial barrier function (142).

While they constitute a dendritic-like, not dendritic-identical

phenotype, a potential cross-talk between DCs and Trm in VCA

seems plausible and has already been demonstrated in cancer

research (143). Biopsy staining from four face transplants further

revealed a novel role of tissue-resident macrophages in the

surveillance of VCA graft integrity (144). Given their dependence

on colony-stimulating factor 1 receptor (CSF1R), tissue-resident

macrophages are defined as “M2-like”macrophages with a CD169+

subset displaying distinctive immunoregulatory properties (145). In

keeping with results from rodent studies, Ualiyeva proposed the loss

of this subset to be indicative of VCA rejection and identified T cell

immunoglobin mucin-4 (TIM-4) as a potential driver of CD169+

tissue-resident macrophages migration to inflammatory/rejection

sites via its phosphatidylserine binding pocket (144). Further, VCA

graft-infiltrating macrophages produce IL-18 and reactive oxygen
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species (ROS) (104). IL-18 has been shown to trigger the secretion

of proinflammatory interferon-g (IFN-g), and ROS can trigger pro-

apoptotic B cell lymphoma-2 (Bcl-2) family proteins as well as

impair mitochondrial function (146, 147) (for in-depth analysis of B

cells in VCA please refer to “B cells”).
10.3 Pharmacological targets of antigen
presenting cells

In VCA rejection, DCs can be therapeutically targeted by

administration of the mammalian target of rapamycin (mTOR)

inhibitor sirolimus (rapamycin) which conditions DC to stimulate

immunosuppressive Tregs while reducing alloreactive T cell

populations (148, 149). Interestingly, donor alloantigen-pulsed

immature recipient DCs in combination with low-dose

cyclosporine plus antilymphocyte serum regimen prolonged graft

survival (32 versus 18 days in the cyclosporine-only control group)

in a rat hindlimb model (150). This effect might be due to the

induction of T cell hyporesponsiveness and reduced IFN-g
secretion. APC produce IL-12 leading to increased IL-4 levels,

which have been demonstrated to promote M2 macrophage

differentiation and function, as well as represent a marker for

acute VCA rejection (151). This macrophage subset has been

implicated with graft rejection (152, 153). Thus, targeting IL-4 via

IL-4Ra blocker dupilumab seems an intriguing strategy for VCA

rejection therapy and has already been successfully applied in the

treatment of atopic dermatitis (154). Ustekinumab, an anti-IL-12/

23 antibody, has shown potent effects in VCA rejection (please see

“Endothelial Cells”) (93). Yet, its interplay with APC in the context

of VCA remains to be determined.
11 APC-like cells – secondary effector
cells in acute VCA rejection

11.1 Cellular cornerstones of granulocytes

Granulocytes are the most abundant subpopulation of

leukocytes and can be subdivided into neutrophils, eosinophils,

and basophils (155). Neutrophils express HLA-II and costimulatory

molecules (e.g., CD80 and CD86) needed for antigen presentation

and acquire DC-like functionality after exposure to cytokines (156,

157). Eosinophils have been involved shuttling of antigens to

lymphoid tissues, while MHC-II molecules can be expressed in

response to cytokine contact (158). Murine data points towards

basophils acting as APC, while Eckl-Dorna et al. showed that

basophils from allergic patients did not exert antigen-presenting

functions (155, 159, 160).
11.2 The role of granulocytes in
VCA rejection

Utilizing a groin free-flap rat model, Friedman et al. provided

evidence of high overall granulocyte contents amongst infiltrating
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leukocytes within inflamed graft regions (104). The Innsbruck

group reported that granulocytes were located interstitially and

toward the epidermis in biopsies from a VCA patient eleven years

after hand transplantation (161). Etra et al. found neutrophilic

inflammation to be significantly correlated with severe VCA

rejection in swine hindlimb transplants but not specific to the

pathogenesis of rejection. They further identified granulocytes

(neutrophils and eosinophils) in rejecting animal skin samples,

whilst the vast majority of infiltrating inflammatory cells were

lymphocytes (162). Overall, further studies are needed to

determine the specific role of the different granulocytic subsets in

VCA rejection and translate previous findings on the

pharmacological targeting of granulocytes into the field of VCA.
11.3 Pharmacological modulation
of granulocytes

Neutrophils express HLA-II and costimulatory molecules (e.g.,

CD80 and CD86) needed for antigen presentation with both

immature and mature neutrophils being able to acquire DC-like

functionality after exposure to cytokines such as IFN-g, TNF-a, or
IL-4. Alternatively, depletion of anti-granulocyte receptor-1 (Gr-1)

or combined CXCR2–formyl peptide receptor 1 antagonism have

been demonstrated to reduce neutrophil infiltration in a murine

hepatocyte injury model (163). In allergy therapy, blocking

antibodies (Benralizumab) targeting the IL-5 receptor, as well as

anti-IL-5 neutralizing antibodies (Reslizumab) have been

demonstrated to reduce eosinophils count (164, 165). Blocking

key eosinophil molecules such as IL-33 and CD48 represents

another therapeutic option. Addressing inhibitory receptors (e.g.,

Siglec-8 and CD300a) may allow eosinophils to be directly targeted,

regardless of the underlying activating stimulus (166). CD48 and

CD300a have also been researched in the context of basophil-

centered allergy therapies (167). Mylotarg, a CD33-targeted drug,

has been implicated with a reduced frequency of basophils without

driving basophil-derived histamine secretion (168).
12 Additional cell types involved in
acute VCA rejection

12.1 Secondary T-cell subset: regulatory T
cells and their immunosuppressive effects

Regulatory T cells (i.e., CD4+CD25+CD127- T cells; Tregs) exert

their immunosuppressive effects through direct cell-cell interaction

with target immune cells or through the expression of

immunosuppressive cytokines and anti-inflammatory molecules

(169–171). Sagoo et al. demonstrated the beneficial effect of Tregs

cells in preventing skin allograft rejection utilizing humanized

mouse models (172). Tregs can be equipped with a chimeric

antigen receptor (CAR) representing another, yet bioengineered

cell type in VCA grafts (173). Such CAR-Tregs are not MHC-

dependent in their activation process and instead specifically
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migrate to the rejection site, where they unleash more potent

immunosuppression than conventional polyclonal Tregs (3).
12.2 Beyond epithelial and follicular
stem cells

Different types of stem cells have been shown to play important

immunoregulatory roles in allograft rejection, including MSC and

adipose-derived stem cells (ASC). Experimental administration of

MSC, for example, has been shown to mitigate acute allograft

rejection in a hindlimb VCA model, thereby significantly

prolonging graft survival. Mechanistically, these findings were

associated with elevated levels of regulatory T cells (Tregs) in the

peripheral blood and skin of recipients. These observations are

supported by in vitro evidence showing increased Treg proliferation

in co-cultures with MSC and T cells when compared to T cells

alone. Of histological interest, MSC accumulated in the

subcutaneous layer of both donor and recipient skin, whereas no

significant accumulation in muscle or bone marrow tissue was

detected (109, 174). Of note, another study investigating the effects

of MSC in a tracheal transplant model also observed beneficial

effects on allograft survival with augmented microvascular blood

flow and oxygenation of the graft. Mechanistically, these results

have been associated with upregulation of Tregs and increased levels

of cytokines IL-5, IL-10, and IL-15 (175). ASC have also been

reported to prolong allograft survival in experimental VCA models.

Consistently, these observations have been associated with elevated

Treg levels in the peripheral blood and skin compartment of the

allograft, along with increased TGF-b1 and IL-10 expression.

Moreover, in vitro experiments demonstrated attenuating effects

of ASC on T cell proliferation (112). Further studies have confirmed

the regulatory effects of ASC on T cells with decreased T cell

proliferation and increased numbers of Tregs (176). Of additional

interest, ASC also appear to play an important role in regulating B

cell responses in the setting of transplantation. More specifically,

ASC administration was associated with increased amounts of

CD45Ra+/Foxp3+ regulatory B cell subsets. Investigating

complement activation in the same study, C4d, a marker of

cellular- and antibody-mediated rejection, has been found to be

decreased in transplanted alloskin tissue when administering ASC

(177). Moreover, studies investigating the effects of ASC on graft

vasculopathy have observed reduced intima/media ratios in

arterioles of allograft skin and muscle, indicating beneficial effects

of ASC treatment (178).
12.3 Langerhans cells – a special subtype
of APC

Langerhans cells (LC) are a subset of immature dendritic cells

and as such are a type of APC that can be found in the epidermis

(179). Upon phagocytosis of antigens, they migrate to regional

lymph nodes where they initiate T cell responses by antigen

presentation (180). Most interestingly, LC have also been shown

to exert immunosuppressive effects by selectively promoting the
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expansion and activation of skin-resident Tregs (181, 182). Hence, it

can be assumed that LC not only possess stimulatory, but also

regulatory capabilities, emphasizing the complexity of the skin

immune microenvironment (181). In tolerated VCA, recipient-

derived LC have been shown to rapidly infiltrate allografts after

transplantation, thereby establishing LC chimerism. However, in

rejecting VCA, initial dilution of graft-resident LC has been

observed, followed by extensive infiltration by recipient-derived

LC, ultimately leading to a near-complete loss of donor cell

contribution. This infiltration of rejecting VCA most likely occurs

via transvascular migration, as previous studies have observed

perivascular infiltrates in early VCA rejection phases (16, 183,

184). In summary, these findings suggest that durable chimerism

of LC is an important contributor to immune homeostasis and

long-term graft tolerance in VCA (185). Moreover, previous studies

have shown that large amounts of donor lymphocytes are released

into the recipient circulation upon graft reperfusion, which may

further stimulate recipient dendritic cells and thereby drive

infiltration (186).
12.4 Mast cells – the key players in TNF-a-
mediated VCA rejection?

Mast cells (tissue-resident, innate immune cells orchestrating

inflammatory response and tissue homeostasis; MC) have also

been shown to be implicated in allograft rejection. In

experimental skin graft models, MC have been observed to

promote allograft rejection by inducing proinflammatory

responses through degranulation, with elevated levels of

cytokines such as keratinocyte chemoattractant (KC), macrophage

inflammatory protein 2 (MIP-2), and TNF-a. Consequently,

increased infiltration of neutrophils has been described, further

accelerating graft rejection. Accordingly, administration of MC-

stabilizing drugs such as cromolyn significantly delayed allograft

rejection (187). Of additional interest, studies investigating the role

of mast cells in skeletal muscle ischemia reperfusion injury (IRI)

observed increased muscle viability in mast cell-deficient mice

following ischemic injury when compared to wild-type mice.

Histologically, this was accompanied by increased muscle necrosis

in wild-type animals, suggesting that MC are a major source of

necrosis mediators in muscle IRI (188). Additional studies on VCA

have shown that several inflammatory mediators, including IL-4,

IL-12p70 and TNF-a, can serve as predictors for alloskin rejection.

For muscle rejection, in turn, IL-12p70 and TNF-a have been

identified as particularly accurate classifiers. Of note, MC appear to

be the main source of TNF-a in the skin, entailing the initiation of T

cell responses with subsequent tissue injury and allograft

dysfunction. Thus, MC may be a key initiator of TNF-a-mediated

rejection processes in VCA (189–191).
13 Chronic allograft rejection

Recently, several chronic rejection (CR) cases have been

reported in VCA (17, 22, 92, 192, 193). Chronic rejection is
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typically defined as an irreversible later-onset change of the

allograft that leads to loss of function and accelerated aging. The

mechanisms leading to CR in fVCA are poorly understood but both

cellular responses (against MHC bearing endothelium as proposed

by Libby and Tanaka) and antibody mediated injury to graft

vasculature may play a role (91). As sparse as the understanding

is, the consequences of CR in VCA are drastic: CR in VCA

irreversibly leads to gradual destruction, with graft dysfunction

and loss of architecture as ultimate endpoints (88). In human VCA

recipients, the skin and vasculature were identified as the main

targets of CR (21, 22, 65, 192–196): Clinically documented

manifestations of CR ranged from cutaneous lesions to changes

in skin adnexa (loss of hair and nails). Krezdorn et al. collected

biopsies of seven fVCA patients for up to an 8-year interval

postoperative. The authors found that sclerotic zones in the

allografts demonstrated upregulation of AP-1 pathway

components such as JunB and c-Fos. These genes have been

implicated with overproduction of type I dermal collagen in the

setting of autoimmune cutaneous disorders (e.g., systemic sclerosis)

(65). Further, Lee et al. used digital spatial proteomic profiling to

show the expression of pathway components involved in

atherogenic responses, including IDO1 and STING, as well as

proteins expressed by activated cytotoxic T cells and

macrophages (197).

The main pathological correlates of CR were chronic

endothelial changes leading to graft vasculopathy with capillary

thrombosis and accelerated arteriosclerosis (3, 7, 198) (Figure 2). In

addition to the changes in the vessels, fibrosis, thinning, and

atrophy of the skin layers were described as pathological findings.

Another frequently documented characteristic of CR in VCA is the

increased appearance of tertiary lymphoid organs (TLOs) (i.e.,

highly ordered structures resembling the cellular composition of

lymphoid follicles) (22). These TLOs are believed to be local sites of

alloantibody production and T cell activation (90). Further, cases of

simultaneous targeting of skin plus vessels, and isolated damage to

cutaneous or vascular structures, respectively, have been reported

(198). Accordingly, skin and vasculature appear to be independent

CR targets. It is hypothesized that the skin may be more prone to

cellular rejection mechanisms, while vascular structures may be

more likely to be the target of humoral immune responses.

Although it is widely agreed upon that vasculature and skin are

main targets of chronic rejection in VCA, there is little evidence that

vascular changes are necessary for chronic changes of the skin

component. In a case published by our workgroup, we thoroughly

studied the explant of a facial VCA that was removed after ten years

following the patient’s death due to unrelated reasons (194). There

was no graft vasculopathy despite obvious chronic skin changes

(pale appearance of the graft, telangiectasis, epidermal thinning, loss

of rete ridges, papillary dermal sclerosis) and numerous acute

rejection episodes over the course of follow-up. Repeated (sub-)

clinical acute T-cell mediated rejection of the skin part was

hypothesized to have induced a profibrotic change over time.

Given steady motor function scoring, it seems like underlying

musculature was spared of such chronic changes. Thus, we

assumed that two phenotypes of chronic rejection may exist, one

that involved chronic immune-mediated arteriosclerotic change of
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the vasculature and one that spares the vasculature and

predominantly affects the skin component. While acute VCA

rejection is mainly based on the interaction of CD8+ effector T

cells targeting follicular and epithelial stem cells, T and B cells are

likely to represent the primary effectors in chronic rejection (40). In

contrast, EC may be considered a primary target during chronic

rejection with changes of vasculature. However, there are also

chronic pathologic changes (e.g., loss of rete ridges) independent

of the vasculature (194). Thus, the cellular landscape of chronic

VCA rejection represents an ongoing area of research and remains

to be further elucidated.
14 The need for cell-specific
VCA therapies

Detailed knowledge of cellular crosstalk after VCA surgery is

critical to further improve allograft survival, functional long-term

results, and patient-reported outcomes (199–201). The current

standard immunosuppressive drug regimen based on SOT

protocols consists of anti-thymoglobulin/alemtuzumab/rituximab

combinations as induction therapy, followed by a high-dose

maintenance protocol, most commonly including tacrolimus,

MMF, and prednisone (5, 15). Commonly, is recommended to

maintain high tacrolimus levels (10–15 ng/ml) during the first three

months posttransplant and then tapering it down to 5–10 ng/ml.

Prednisone doses are also tapered to be maintained at lower doses

(5–15 mg/day) for six to twelve months in the majority of VCA

recipients. Based on these general considerations, individual

therapy protocols are administered to minimize renal side effects,

stabilize glycemic control, and prevent neurotoxicity as well as

myointimal hyperproliferation of the vasculature (202–204).

Despite extensive immunosuppression, about 85% of VCA

recipients experience at least one episode of acute allograft

rejection in the first year. This might be due to certain cell types

being less sensitive to, or even triggered by, current

immunosuppressive protocols. For example, tacrolimus mainly

targets T cell subsets by inhibiting the IL-2 activation pathway,

whereas Wai et al. found tacrolimus has no effect on NK cell

cytotoxicity (205, 206). While corticosteroids have been shown to

efficiently hinder Th cell immunity at various stages of the activation

cascade and impair cytokine production, as well as effector function,

their effects on B cells seem to be more complex (207). Cupps et al.

found corticosteroids to have only minor effects on B cell

proliferation and even drive immunoglobulin secretion when

stimulated with B cell growth factor in vitro (208). Interestingly,

Cooper et al. have demonstrated that prednisone can indeed

decrease NK cell concentration but does so only in a minority of

patients (209). In contrast, MMF has been shown to enhance

cytotoxicity and chemotaxis in NK cells (210). Thus, more

profound knowledge of cell types involved in VCA tolerance and

rejection may help to target the respective cellular subsets and

reduce medication side effects more specifically. Of note, there has
A

B

C

FIGURE 2

Chronic allograft changes in Fvca. Chronic rejection is
associated with different histopathological changes such as
allograft vasculopathy with capillary thrombosis, accelerated
arteriosclerosis, as well as the destruction of the epidermal
architecture. (A) Histopathological findings of T-cell mediated
rejection involving lip mucosa of face transplant show interface
change with scattered apoptotic target epithelial cells with
associated dense subepithelial inflammatory infiltrate. (B)
Chronic face transplant rejection of skin as shown in this biopsy
specimen demonstrates epidermal thinning with intraepidermal
colloid body formation and occasional lymphocyte-associated
apoptotic keratinocytes. Evidence of chronicity in allograft
transplant rejection also includes fibrous thickening of
subepidermal basement membrane zone and deformation of
hair follicles. (C) Representative image of lymphocytic vasculitis
seen in acute and chronic rejections of VCA. Histopathology
of deep dermal vascular injury shows lymphocytes surrounding
and infiltrating vessel walls associated with endothelial
cell damage.
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TABLE 1 Summary of cell types involved in acute and chronic rejection of vascularized composite allotransplantation (VCA).

Type of Cell Function

Stem Cells i. Primary target cells [58].
ii. Important role in skin regeneration, and immunology with MHC class I and II expression increased under pathological

conditions [51].
iii. Cross-talks with various immune cell types including a and macrophages are mediated via different pathways (e.g., JAK-

STAT, b-catenin/Wnt, and Jag1-Notch) and mechanisms (e.g., expression of leukocyte differentiation antigens and ALCAM)
[61].

iv. Apoptosis of stem cells can be induced by different cell types such as T cells (e.g., via CD106) with proinflammatory
cytokines (e.g., TNF-a) priming stem cells towards apoptosis [69].

T Cells i. Primary effector cells (especially CD8+ T cells) [43].
ii. Recognition of donor-derived processed antigen fragments and/or intact antigens [44].
iii. Involvement of donor- and recipient-derived T cells in the rejection process surrounding

epithelial target cells (i.e., satellitosis) and graft vasculature [8].
iv. In higher-grade rejection, T cell activation is based on the upregulation of genes associated with T cell infiltration, co-

stimulation, and cytotoxicity [13].

Endothelial Cells (EC) i. Activation and recruitment of lymphocytes via upregulation of HLA-II and
adhesion molecules [12].

ii. Increase of nitric oxide levels driving the dismantling of intraendothelial adherens
junctions and resulting in disruption of the endothelial barrier [82].

iii. Reactivation of resting memory T cells [86].
iv. Drivers of fibrosis and thrombosis damaging the VCA vessels [91].
v. Interaction with lymphoid follicle formation during chronic rejection phase [92].

Antigen Presenting Cells (APC) i. Activation of alloreactive recipient-derived T cells [141].
ii. Dendritic-appearing CD8+ T cells as subclass of dendritic resident memory

T cells implicated with early-onset VCA rejection [12].
iii. Loss of CD169+ tissue-resident macrophages as indicator of VCA rejection [146].
iv. Production of IL-18 and reactive oxygen species driving pro- apoptotic and pro-inflammatory pathways [148].

Natural killer (NK)
Cells

i. Navigation to the site of inflammation via the interaction of C-X3-C motif receptor-1 and CX3CL-1 expressed by EC [221].
ii. Production of IFN-g promoting CX3CL-1 expression on EC [221].
iii. Secretion of granzyme B regulating cell apoptosis and increasing pro-apoptotic Bid [109].

Granulocytes as APC- like Cells i. High overall percentage of granulocyte amongst infiltrating leukocytes in inflamed VCA graft regions [106].
ii. Located in the interstitium and toward the epidermis [163].
iii. Correlation of neutrophilic inflammation and severe VCA rejection in animal models [164].

(Continued)
F
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been little change regarding the immunosuppressive drug regimen

administered following VCA surgery for the past two decades. For

more detailed information, please refer to some elegant work by

Kauke-Navarro et al. (5).

The role of each cell types within the context of the respective

tissue is important. For example, Lian et al. identified that Trm in

skin tissue is a pivotal cell subset in facial VCA rejection (12). Yet,

the same cell subset might have different or even opposite functional

and phenotypic properties in the mucosa, which has been recently

identified as another promising target to modulate the VCA

rejection reaction (14, 15, 18, 19). Further, our knowledge on the

relevance of passenger immune cells (PICs) in acute and chronic

rejection remains limited. PICs refer broadly to all the graft-derived

immune cells that are transferred to the host secondary lymphoid

tissue and trigger allograft rejection by direct recognition of the

alloantigen (211, 212). However, PICs seem to contribute to

allograft rejection and tolerance induction at the same time. In rat

liver allograft models, irradiation of the allograft prior to

transplantation triggered transplant rejection in otherwise tolerant

recipients, underscoring the potential tolerance induction role of

donor-derived graft-resident PICs (213, 214). Yet, direct

recognition of the alloantigen by CD4+ T cells was considered to

persist at early time points after SOT and was highly correlated with

the lifespan of graft DCs (215). As an alternative pathway to the

insult of donor endothelium by recipient immune cells, PICs were

hypothesized to attack the recipient endothelium that has

chimerically populated donor-derived vasculature during chronic
Frontiers in Immunology 14
transplant rejection (12). In facial allograft rejection, Lian et al.

discovered that immune cells spatially associated with vascular,

pilosebaceous, and epidermal sites of injury were mainly Trm (please

see “Endothelial Cells” for further details) of donor origin (12). This

finding represents a novel research perspective as the current

dogma assumes that skin allograft rejection is mediated by

recipient T cells. The local association of donor T cells with sites

of direct cell injury reinforces the hypothesis of more complex

cross-talks between immune cell during the rejection process.

Overall, a more advanced and biomarker-based approach to the

assessment of VCA rejection is still needed.
15 Discussion

The cell types relevant to VCA are multifunctional and interact

through complex pathways (Table 1 and Figure 3). It is important to

note that each cell line represents a mere piece of the puzzle, however a

clear hierarchy of effector-target cell interactions can be formulated

based on current understanding of the pathomechanisms of acute and

chronic cellular rejection in VCA. Some cells are more important than

others with CD8+-T-cells posing as the protagonists, mainly targeting

epithelial and follicular stem cells. Researchers and clinicians should be

aware of this complex, closely interlinked network. Despite the

predominance of T-cells and effective suppression by current

immunosuppressive regiments, it is important to note that other cell

types fuel the rejection process and further studies are needed to define
TABLE 1 Continued

B Cells i. Production of donor-specific antibodies [123].
ii. Th17 subset as drivers of B cell proliferation, antibody production, inducible T cell costimulator (ICOS) molecule reinforcing

B cell differentiation [131].
iii. Formation of tertiary lymphoid organs (pathological hallmarks of chronic VCA rejection) through CD20+ B cells [90].
iv. Acting as professional APC which are recognized by recipient T cells through HLA molecules and simultaneously present

donor-derived antigens to recipient T-cells [126].

Passenger Immune
Cells

i. Presumed to have double-edged role as contributor to both allograft rejection and tolerance induction [218].
ii. Tolerance-inducing function in murine SOT model [219].
iii. Hypothesized attack on the recipient endothelium chimerically populated with donor-derived vasculature during chronic

rejection [12].

Additional Cell Types:
Regulatory T cells (Tregs)
Mesenchymal Stem Cells (MSC)
Adipose-derived stem Cells (ASC)
Langerhans Cells (LC) Mast Cells
(MC)

i. Tregs (CD4+CD25+CD127- T cells) have been shown to prevent skin allograft rejection in murine models and can be
equipped with a chimeric antigen receptor (CAR) [171].

ii. MSC have been demonstrated to mitigate acute allograft rejection with augmented microvascular blood flow and
oxygenation of the graft ultimately significantly prolonging graft survival [178].

iii. ASC seem to prolong VCA graft survival and exert attenuating effects on T cell proliferation while increasing Tregs and Bregs
counts [180].

iv. LC can mediate immunosuppressive effects by promoting the expansion and activation of skin-resident Tregs [189].
v. MC represent a major source of TNF-a in the skin and thus may promote allograft rejection by inducing proinflammatory
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the exact impact of such secondary effector (and target cells). Rejection

ofVCAs frequently occurs and several longer-term studies demonstrate

chronic allograft changes. This demonstrates that current treatment

regimens are not perfect at mitigating the immune response, indicating

that other cell types not currently (sufficiently) targeted by the standard

triple maintenance regimen, may be more relevant than previously

thought. Future studies are needed to better define the cellular network

leading to acute and chronic VCA rejections.
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Flow chart. The key points of this work include the definition of types of

rejection in VCA surgery followed by an in-depth description of target and
effector cells for acute and chronic rejection reactions.
FIGURE 3

Cellular cross-talks in the field of VCA. The various cell types in VCA interact via multiple pathways and their balance determines surgical VCA
outcomes. Therefore, an isolated approach impacting single cell types is a challenging, yet potentially high-yield leverage point. Different cell types
are involved both in acute and chronic rejection and can trigger various pathological processes, e.g., epidermal thinning and loss of rate ridges,
follicular plugging, hyperkeratosis, vascular ectasia subepidermal sclerosis with collagen type I deposition and collagen type I shift into the papillary
dermis as published by Krezdorn et al., 2019 (65).
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