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Genetic studies of paired metabolomes 
reveal enzymatic and transport processes  
at the interface of plasma and urine
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The kidneys operate at the interface of plasma and urine by clearing 
molecular waste products while retaining valuable solutes. Genetic 
studies of paired plasma and urine metabolomes may identify underlying 
processes. We conducted genome-wide studies of 1,916 plasma and urine 
metabolites and detected 1,299 significant associations. Associations 
with 40% of implicated metabolites would have been missed by studying 
plasma alone. We detected urine-specific findings that provide information 
about metabolite reabsorption in the kidney, such as aquaporin (AQP)-
7-mediated glycerol transport, and different metabolomic footprints of 
kidney-expressed proteins in plasma and urine that are consistent with 
their localization and function, including the transporters NaDC3 (SLC13A3) 
and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite–
disease combinations represent a resource to better understand metabolic 
diseases and revealed connections of dipeptidase 1 with circulating 
digestive enzymes and with hypertension. Extending genetic studies of the 
metabolome beyond plasma yields unique insights into processes at the 
interface of body compartments.

The human kidney clears small molecular waste products from plasma 
while retaining valuable solutes such as amino acids to maintain meta-
bolic homeostasis. After glomerular filtration of plasma to primary 
urine ultrafiltrate, its composition is modified in a highly coordinated 
process along the nephron. Hundreds of highly specialized transport 
proteins move solutes across the membranes of the cells lining the 

nephron to reabsorb important molecules while actively excreting 
toxic or unnecessary ones1. Many of these transport proteins as well 
as the enzymes responsible for generating or breaking down the trans-
ported metabolites have been identified through the study of human 
monogenic diseases. They represent attractive drug targets not only 
to treat kidney diseases but also metabolic diseases, as exemplified 
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studying plasma alone would have missed associations with almost 40% 
of metabolites. We highlight examples of urine-specific associations, 
of footprints that kidney-expressed transporters leave in plasma and 
urine metabolomes and of previously undescribed systemic roles of 
a kidney-enriched enzyme. This study generates a rich resource for 
future experimental validation of yet uncharacterized enzymatic and 
transport processes that may represent a molecular link between 
genetic variants and human traits and diseases.

Results
We performed genome-wide screens for genetic variants significantly 
associated with levels of 1,296 plasma and 1,399 urine metabolites 
(779 overlapping metabolites; Fig. 1). Metabolites were quantified by 
non-targeted mass spectrometry4 in plasma and urine specimens from 
5,023 participants in the GCKD study (Methods and Supplementary 
Tables 1 and 2).

mGWAS identify 1,299 signals for 760 metabolites
Genome-wide association studies (GWAS) of plasma metabolite levels 
(mGWAS) yielded 677 regions that contained at least one significantly 
associated SNP (P value < 3.9 × 10−11; Fig. 1 and Supplementary Table 3). 
For each metabolite and region, the SNP with the lowest association 

by inhibitors of the transporters SGLT2 and URAT1 (refs. 2,3). How-
ever, many transporters and enzymes, as well as their substrates and 
products in vivo remain to be characterized. We hypothesized that 
linking information from human genetic studies to plasma and urine 
metabolomes would provide new insights into the roles of these pro-
teins in health and disease.

Genetic effects on metabolite levels in urine can reflect systemic 
processes such as genotype-dependent intestinal metabolite uptake 
or hepatic transformation reactions that are detected in urine because 
of the respective metabolites’ filtration from plasma. They can also 
reflect kidney-specific processes, for example, the active production, 
reuptake or secretion of small molecules by the cells lining the nephron. 
Studies with paired plasma and urine metabolite measurements have 
the potential to distinguish between these processes.

Here, we study differences and similarities regarding genetic influ-
ences on metabolomes derived from two ‘matrices’, plasma and urine, 
to test the hypothesis that both provide complementary information. 
Through systematic integration of genome-wide genetic information 
with paired plasma and urine metabolite measurements from 5,023 
participants in the German Chronic Kidney Disease (GCKD) study, we 
highlight underlying systemic as well as kidney-specific processes. 
We detect 1,299 genome-wide significant associations and show that 
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Fig. 1 | Overview of the study design. Schematic representation of the genome-
wide screens for plasma and urine metabolite levels and their follow-up analyses. 
Analyses based on data from plasma are presented in red, analyses based on data 
from urine in blue, comparative analyses of results based on plasma and urine 

are shown in a red–blue gradient, and matrix-independent analyses are in white. 
Icon credit, Servier Medical Art by Servier (licensed under a Creative Commons 
Attribution 3.0 Unported License). HMGD, Human Gene Mutation Database; 
HPA, Human Protein Atlas; HRC, Haplotype Reference Consortium; v8, version 8.
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P value was chosen as the index SNP, termed metabolite quantitative 
trait locus (mQTL; regional association plots in Supplementary Data 1).  
While we have previously shown that genetic effects on the urine 
metabolome are of comparable magnitude in persons with and with-
out reduced kidney function5, we now used data from the independent, 
population-based Atherosclerosis Risk in Communities (ARIC) study 
(Supplementary Table 1 and Supplementary Methods) to show that this 
also holds true for plasma mQTLs, as detailed in the Supplementary 
Results, Supplementary Table 4 and Extended Data Fig. 1.

We next compared our findings with those from seven large genetic 
studies of the plasma or serum metabolome6–12 (Methods). We observed 
excellent correlations of genetic effects and high validation rates of 
published mQTLs with results from our study (Supplementary Table 5) 
and conversely of our plasma mQTLs with the results of the published 
studies (Supplementary Table 6 and Supplementary Fig. 1; details in 
the Supplementary Results). Not surprisingly, the majority (92.6%) of 
plasma mQTLs from our study were already reported in at least one 
of these up-to-17-fold-larger studies. There were, however, 50 mQTLs 
not reported as significant in any of these published studies, with 20 
of them arising from previously unreported metabolites. Together, 
these comparisons underscored the validity and generalizability of 
our findings in plasma.

Across results from 1,399 GWAS of urine metabolite levels, we 
identified 622 mQTLs (P value < 3.6 × 10−11; Fig. 1, Supplementary Table 3  
and Supplementary Data 2). In comparison to our previous study of the 
urine metabolome5, 64% of the now detected mQTLs (399 of 622) were 
not reported before, and the number of unique metabolites with at 
least one urine mQTL more than doubled. Investigation of the detected 
urine mQTL in the seven mGWAS of the circulating metabolome6–12 
underscored the additional discovery potential of urine: 56.6% (352 of 
622) of urine mQTL were not significant in any of these studies, with 
212 of these mQTL arising from urine metabolites not reported in the 
plasma or serum metabolomes (Supplementary Table 6). Comparisons 
of the urine mQTLs to their associations with levels of the respec-
tive circulating metabolites from both the GCKD as well as the seven 
published mGWAS and vice versa are detailed in the Supplementary 
Results, Supplementary Fig. 2 and Supplementary Table 5 and contain 
interesting examples of inversely correlated genetic effects that are 
consistent with the localization of the encoded proteins and enzymes 
at the apical membrane of kidney tubular epithelial cells.

Across both matrices, we identified 1,299 mQTLs from the results 
from 2,697 GWAS (Supplementary Table 3 and Fig. 2), 37 of which showed 
interaction with sex (Pinteraction < 3.8 × 10−5; Supplementary Table 7)  
and are summarized in the Supplementary Results. Statistical fine 
mapping enabled prioritization of the most likely causal variants at 
each mQTL (Methods). Of 1,509 independent signals (Supplementary 
Table 8), 396 (26%) were fine mapped to credible sets of two to five 
SNPs, and 192 (13%) were mapped even to a single SNP, including 53 
missense, one splice and one stop-lost variant (Supplementary Table 9). 
Smaller credible set size was significantly associated with lower minor 
allele frequency (MAF) of the independent index SNPs (P = 2.3 × 10−13) 
but not with the number of associated metabolites (P > 0.8). In sum-
mary, discovery GWAS of the plasma and urine metabolomes identi-
fied a wealth of significantly associated loci, the basis for subsequent 
characterizations.

Differences in plasma and urine mQTL
The 1,299 mQTLs arose from 760 unique metabolites, of which 301 
(40%) only showed genetic associations with their levels in plasma, 275 
(36%) only showed associations with their levels in urine and 184 (24%) 
showed associations with their levels in both matrices (Supplemen-
tary Table 3). Estimated genome-wide heritability was similar for most 
matched urine and plasma metabolites (Extended Data Fig. 2). There 
were 41% (213 of 517) plasma-specific, 30% (183 of 620) urine-specific 
and 47% (364 of 779) shared metabolites with an mQTL (Fig. 3a). Among 

the 364 shared metabolites with an mQTL, 49% (180) exclusively showed 
a significant genetic association in plasma (88 metabolites) or in urine 
(92 metabolites; Fig. 3a).

Whereas plasma mQTLs more likely arose from lipid superpathway 
metabolites than urine mQTLs (301 versus 97 metabolites), consistent 
with the lack of glomerular filtration of many lipids, urine mQTLs were 
more likely connected to nucleotide, peptide or unnamed metabolites 
(Fig. 3b). The power to detect significant associations for almost all 
metabolite superpathways was similar for plasma and urine (Extended 
Data Fig. 3). The variance in metabolite levels explained by plasma 
mQTLs ranged from 0.18% to 50.9% (median 1.3%) and by urine mQTLs 
ranged from 0.55% to 61.4% (median 2.0%; Supplementary Table 3).

Plasma and urine mQTLs highlight distinct major genes
Pairwise colocalization testing between metabolite association sig-
nals at the same locus to detect shared genetic associations likely to 
arise from the same underlying causal variant identified 10,596 posi-
tive colocalizations (posterior probability for a shared causal variant  
(PP H4) > 0.8; Methods) involving 1,162 mQTLs. Colocalizing associa-
tions were divided into four groups (Supplementary Table 10): those 
where the same genetic signal affected different metabolites in the 
same matrix ((1) ‘intraplasma’, n = 3,189; (2) ‘intraurine’, n = 3,155), 
the same metabolite in both plasma and urine ((3) ‘intermatrix, same 
metabolite’, n = 204) and different metabolites in plasma and urine ((4) 
‘intermatrix, different metabolite’, n = 4,048).

We next asked whether there were central genes shaping the 
matrix-specific metabolome by assessing major differences between 
the genes underlying positive intramatrix colocalizations in plasma and 
urine. Combination of multiple complementary sources of evidence 
at each mQTL enabled prioritization of 282 most likely underlying 
genes5,13,14 (Methods and Supplementary Table 11), of which the majority 
encode enzymes (n = 211, 75%), followed by transport proteins15,16 (Fig. 2 
and Supplementary Table 12). Whereas FADS1 and SLCO1B1 accounted 
for nearly half of the 3,189 intraplasma colocalizations, NAT8 and the 
solute carrier (SLC)17A genes (mostly SLC17A1) made up >50% of the 
3,155 intraurine colocalizations (Fig. 3c). This is consistent with FADS1 
encoding a central enzyme in polyunsaturated fatty acid metabolism17 
and the predominance of these lipid metabolites in plasma and with 
NAT8 encoding an N-acetyltransferase highly expressed in the kidney 
that generates water-soluble molecules for excretion18 and the abun-
dance of N-acetylated metabolites in urine. Similarly, the organic anion 
transporter encoded by SLCO1B1 and the solute transporters encoded 
by the SLC17A family show high and specific expression in liver and 
kidney, respectively, where they transport dozens of physiological 
and pharmacological substrates19,20.

The direction and strength of association of almost all 204 
‘intermatrix, same metabolite’ mQTLs was nearly identical in plasma 
and urine (Extended Data Fig. 4), consistent with these metabolites’ 
filtration from plasma to urine. Observed differences in explained 
metabolite variance as well as effect direction are detailed in the Sup-
plementary Results.

mQTL share genetic associations with biomarkers and 
diseases
Pairwise colocalization analysis of mQTL summary statistics with 
those of 2,942 unique clinical biomarkers and diseases from the UK 
Biobank (Methods) identified 7,073 positive colocalizations (Sup-
plementary Table 13). The corresponding metabolites may represent 
a molecular link between genetic variants and clinical endpoints, as 
detailed for genetic variants at the CYP3A7 locus that colocalized 
with plasma androsterone sulfate levels and hypertension in the Sup-
plementary Results.

With respect to kidney diseases, evidence for a shared genetic 
signal was detected between metabolite associations at GSTM1 and 
kidney cancer21; FMO4 and hypertensive chronic kidney disease (CKD); 
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ALPL, CYP2D6 and SLC34A1 as well as ABCG2 and kidney stones; and 
ABCC4 and urine retention.

Many colocalizations were detected with continuous markers of 
kidney (14.8%) and liver function (7.7%). Creatinine-based estimated 
glomerular filtration rate (eGFR) (eGFRcrea, 127 colocalizations) and 

alanine aminotransferase (ALT, 86 colocalizations) as exemplary kidney 
and liver function markers often colocalized with metabolite levels in 
the expected matrix (Fig. 4a and Extended Data Fig. 5): for example, 
loci containing lipid metabolism-related genes such as FADS1 or LIPC 
showed evidence of shared genetic architecture between plasma lipid 
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Fig. 2 | Circular presentation of the 1,299 identified genetic associations 
with metabolite levels in plasma and urine. The light red band shows the 
−log10 (P values) for genetic associations with metabolite levels in plasma 
by chromosomal position, and the light blue band shows the associations 
with metabolite levels in urine. Results from all 1,296 plasma and 1,401 urine 
GWAS traits are based on linear regressions and are overlaid in the respective 
bands, with P values truncated at 1 × 10−60. The horizontal lines (blue and red) 
indicate genome-wide significance (Pplasma = 3.9 × 10−11 and Purine = 3.6 × 10−11). 
Supplementary Table 3 contains details about index SNP associations (mQTLs). 
Gene labels for significant loci were assigned based on mQTL annotations, 

colocalization analysis with gene expression and protein levels, and literature 
research (Methods). Black gene labels indicate genetic regions identified in 
both plasma and urine with intermatrix colocalization (PP H4 > 0.8), gray labels 
indicate genetic regions identified in both plasma and urine without intermatrix 
colocalization, and red or blue labels indicate genetic regions exclusively 
identified in plasma or urine, respectively. The number of plasma and urine 
mQTLs annotated to a gene is given in parentheses (plasma, urine). The pie chart 
reflects the proportions of the 282 unique genes that were annotated as enzymes 
and transporters. Official gene symbols for PYCRL and ERO1L are PYCR3 and 
ERO1A, respectively.
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metabolite levels and liver but not kidney function. Likewise, several 
loci encoding transporters with important roles in the kidney such as 
SLC34A1 or SLC7A9 exhibited shared genetic architecture between 
urine levels of associated metabolites and kidney function. At the 
majority of loci, however, several mQTLs colocalized with kidney or 
liver function markers, some of which were detected from urine and 
some from plasma. These observations further emphasize the value 
of studying paired matrices. Metabolites most strongly connected to 
kidney function by correlation analyses and genetic evidence as well 
as Mendelian randomization studies are summarized in the Supple-
mentary Results, Supplementary Table 14 and Extended Data Fig. 6.

We also searched for gene-level associations of the 282 prioritized 
genes (Supplementary Table 15) and for variant-level associations of 
the identified mQTL (Supplementary Table 16) with several thousands 
of phenotypes based on whole-exome-sequencing data from ~450,000 
UK Biobank participants22 (Methods). At the gene level, putative dam-
aging rare variants in 28 genes were associated with at least one of 437 
phenotypes at P < 2 × 10−9 (Supplementary Table 15 and the Methods). 
We observed both trait- or risk-increasing and -decreasing associa-
tions upon the genes’ assumed loss of function (Fig. 4b), highlighting 
opportunities in which therapeutic target inhibition confers protection 
as exemplified by ANGPTL3 and dyslipidemia, for which new drugs 
have recently gained approval23. While in this example plasma lipid 

levels can serve as the required intermediate biomarker for the clini-
cal development pipeline, such biomarkers may be elusive for other 
potential targets and contained among results of this study. At the 
variant level, 14 coding variants were associated with genitourinary 
traits at P < 1 × 10−5 (Supplementary Table 16), including experimentally 
confirmed positive controls such as p.Gln141Lys in the transporter 
ABCG2 and serum urate24.

Tissue, pathway and murine phenotype enrichment
Over-representation analyses of the 282 prioritized genes revealed 
a large number of significant gene ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways (Supple-
mentary Table 17), human tissues and cell types (Supplementary 
Tables 18 and 19), especially in kidney and liver, as well as metabolic 
homeostasis-related phenotypes in genetically manipulated mice 
(Supplementary Table 20 and Fig. 4c). The Supplementary Results 
contain details, including a focus on matrix-specific mQTLs (Extended 
Data Fig. 7).

mQTLs from urine-specific metabolites: the FUT2 locus
mQTLs arising from the 187 urine-specific metabolites may highlight 
kidney-specific processes or systemic processes only detected in urine 
(Fig. 5a). Regarding kidney-specific processes, there were multiple 
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examples of associations between variants in genes encoding transport-
ers at the apical membrane of tubular cells with the levels of metabo-
lites that they reabsorb from the urine ultrafiltrate (Supplementary 
Results). An example in which urine-specific metabolites serve as a 
readout of systemic processes were two mQTLs for galactosylglycerol 
and 1,6-anhydroglucose at FUT2. Both index SNPs are in high linkage 
disequilibrium (LD; r2 > 0.8) with rs601338, at which the minor A allele 
encodes the stop-gain variant p.Trp154Ter (NP_000502.4) that was 
associated with higher levels of only these two urine metabolites. The 
encoded fucosyltransferase 2 is a ubiquitously expressed enzyme that 
mediates the inclusion of fucose into glycans on a variety of glycolipids 
and glycoproteins. Individuals homozygous for p.Trp154Ter have lower 
risk of several infectious diseases during childhood25,26, a selective 
advantage. Indeed, we detected positive selection at this and other 
loci, including positive controls such as the LCT locus (Methods and 
Supplementary Table 21). The extended homozygosity of the haplo-
type carrying the minor, derived allele at the galactosylglycerol mQTL 
further supported positive selection (Fig. 5b).

Exploration of phenome-wide associations for fucosyltransferase 
2 (FUT2) p.Trp154Ter in the UK Biobank (Methods) showed signifi-
cant associations with dyslipidemia, hypertension and cholelithi-
asis (Fig. 5c). Colocalization confirmed a shared genetic basis of the 
two mQTL with these diseases, as well as of several plasma proteins 

(Supplementary Tables 13 and 22). These observations suggest that 
higher urine levels of galactosylglycerol and 1,6-anhydroglucose could 
reflect increased risk for FUT2 genotype-related cardiometabolic 
diseases of adult onset, motivating future studies.

Urine-specific mQTLs from shared metabolites: the AQP7 locus
An interesting example of a urine-specific mQTLs arising from a 
matrix-shared metabolite (Fig. 5d) was detected at AQP7 with urine glyc-
erol levels. The signal (Fig. 5e, Purine = 9.93 × 10−58; Pplasma = 0.53) was fine 
mapped to rs62542743, encoding the missense variant AQP-7 p.Gly264Val 
(NP_001161.1). The channel AQP-7 mainly transports water and glycerol 
and, in the rat and mouse kidney, localizes to proximal straight tubules27. 
Aqp7-knockout mice show glycerol loss in urine, supporting a role in 
glycerol reabsorption28. The minor A allele (p.264Val) was associated 
with higher urine glycerol levels, which is in agreement with the knock-
out mouse findings when assuming loss of function (Fig. 5f). The mutant 
valine carries two more methyl residues than wild-type glycine, which 
may decrease the channels’ passing ability for glycerol. Moreover, a pre-
vious case report exists of three children homozygous for p.264Val who 
presented with normoglycerolemic hyperglyceroluria29. Indeed, we con-
firmed a recessive effect, with persons homozygous for the A allele show-
ing >64-fold higher urine but not plasma glycerol levels (Fig. 5g), thereby 
confirming a single case report through evidence from population studies.
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Different matrices implicate distinct variants at SLC10A2
At SLC10A2, fine mapping revealed a single, yet different, underlying var-
iant for the plasma mQTL of the secondary bile acid glycodeoxycholate 

3-sulfate and the urine mQTL of the primary bile acid glycocholate 
(Supplementary Table 8). SLC10A2 encodes the primary transporter 
for bile acid uptake in the distal ileum30, ASBT, which is also responsible 
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for bile acid reabsorption in the proximal kidney tubules31,32. The fin-
gerprints of the plasma index SNP rs55971546 and the urine index SNP 
rs16961281 on all quantified bile acid metabolites differed markedly 
(Fig. 6a,b): the minor T allele at rs55971546, encoding p.Val98Ile, was 
associated with higher plasma levels of several sulfated bile acids, which 
was propagated to urine (inner two bands). The ASBT 98Ile protein has 
experimentally been shown to result in a partial loss of function in one 
but not another in vitro system33,34, and the corresponding T allele was 
associated with higher risk of gallstone disease35.

On the other hand, the minor A allele at the urine index SNP 
rs16961281 showed a urine-specific fingerprint mainly as lower levels 
of glycocholate but also of cholate, glycoursodeoxycholate and gly-
codeoxycholate. These metabolites are known substrates of ASBT36, 
whereas sulfated bile acids are not37. Thus, the urine bile acid profile 
may reveal genetic variants more directly related to ASBT function, 
whereas plasma levels may reflect secondary changes. The minor A 
allele at rs16961281 was significantly associated with higher SLC10A2 
gene expression in publicly available kidney expression quantitative 
trait locus (eQTL) data (P = 8.7 × 10−34)38. Colocalization supported a 
shared variant underlying lower urine glycocholate levels and higher 
renal SLC10A2 expression (PP H4 = 1; Fig. 6d).

We generated assay for transposase-accessible chromatin with 
sequencing (ATAC-seq) and RNA-seq data from manually dissected pri-
mary human kidney tissues to annotate prioritized variants (Methods) 
and found that rs16961281 mapped into highly accessible chromatin 
in the kidney cortex (Fig. 6c) and specifically in proximal tubular cells 
(Extended Data Fig. 8), supporting its regulatory function. Higher ASBT 
abundance should increase substrate reabsorption and result in lower 
urine levels, as observed (Fig. 6d). Colocalization of genetic associa-
tions with gallstone disease and urine glycocholate levels (concordant 
direction, PP H4 = 1) as well as SLC10A2 expression (inverse direction, 
PP H4 = 1) supported the idea that higher ASBT abundance results in 
lower risk of gallstone disease (Fig. 6d). The occurrence of gallstones as 
a potential adverse effect of the new class of SLC10A2 inhibitors, such as 
odevixibat to treat cholestasis or elobixibat to treat constipation (Sup-
plementary Table 12), therefore deserves attention. In fact, data from 
emerging clinical trials describe increased rates of cholelithiasis in the 
treatment group (https://clinicaltrials.gov identifier NCT03566238).

Metabolome footprints of kidney-enriched proteins: SLC13A3
NaDC3, a kidney-enriched transport protein encoded by SLC13A3, 
also exemplifies a different metabolic ‘footprint’ in plasma and urine  
(Fig. 7a,b). We observed significant genetic associations with levels of 
plasma (P = 1.2 × 10−23) and urine (P = 3.7 × 10−25) methylsuccinoylcarni-
tine as well as plasma malate (P = 4.7 × 10−14) and fumarate (P = 1.1 × 10−11; 
Supplementary Tables 3). Functional annotation using our ATAC-seq 
and RNA-seq data and publicly available single-nucleus ATAC-seq data 
from the human kidney (Methods) showed that only rs6124828 of eight 
fine-mapped SNPs (Supplementary Tables 8 and 9) mapped into highly 
accessible chromatin, specifically in the kidney cortex (Fig. 7c) and in 
proximal tubule cells39 (Extended Data Fig. 9). A potential regulatory 
function of rs6124828 was supported by histone chromatin immuno-
precipitation followed by sequencing (ChIP–seq)-based chromatin 
state prediction from primary human kidney tissue (Methods) that 
showed active enhancer function at the variant’s position. Screening 
of the presence of binding motifs of 517 kidney-expressed transcription 
factors at this position showed an intersection only with hepatocyte 
nuclear factor (HNF)1A and HNF1B. These master regulators of renal 
gene expression programs have been shown to bind at this position 
based on publicly available ChIP–seq data (Fig. 7c and the Methods). 
The minor A allele at rs6124828 was predicted to significantly reduce 
the binding probability of HNF1A and HNF1B (Fig. 7c), motivating an 
investigation of allele-specific binding in future ChIP datasets from 
primary human tissue.

NaDC3 is an Na+–dicarboxylate transporter in the basolateral mem-
brane of proximal tubule cells40,41. It transports a variety of substrates 
when overexpressed in cellular assays, including tricarboxylic acid cycle 
intermediates such as α-ketoglutarate, (methyl)succinate, malate and 
fumarate, that are used for mitochondrial energy generation42,43. Thus, 
genetic variants leading to lower expression of NaDC3 and hence lower 
intracellular substrate uptake, for example, via the presumed mecha-
nism involving the regulatory A allele at rs6124828, are consistent with 
our observation of higher plasma levels of malate and fumarate and of 
lower levels of the resulting intracellular downstream metabolites such 
as methylsuccinoylcarnitine (Fig. 7d). The metabolomic signatures of 
SLC13A3 shed light on physiological functions of NaDC3 in humans and 
permit identification of a likely causal regulatory allele.

Fig. 6 | Plasma and urine implicate distinct causal variants and bile acid 
metabolites in the SLC10A2 locus. a, The SLC10A2 locus contains two 
metabolite- and matrix-specific mQTLs. b, Systematic exploration of the effect of 
the urine mQTL rs16961281 (outer two bands) and the plasma mQTL rs55971546 
(inner two bands) on levels of 39 bile acids quantified in plasma (red frames) 
and urine (blue frames) from their respective GWAS showed a urine-specific 
inverse association of the urine mQTL with glycocholate as well as other known 
substrates of the bile acid transporter encoded by SLC10A2 in urine but not in 
plasma. The plasma mQTL was positively associated with specific, sulfated bile 
acids in plasma, and this metabolomic footprint was propagated to urine likely 
via glomerular filtration. The direction and magnitude of the modeled minor 
alleles on bile acid levels is color coded; dot size corresponds to significance 
levels. c, RNA-seq shows that SLC10A2 expression is specific to the kidney cortex 

(plotted using pyGenomeTracks version 3.7). ATAC-seq highlights cortex-
pronounced active chromatin that directly intersects with the fine-mapped 
urine mQTL rs16961281 (credible set size = 1), located in the 5′ untranslated 
region, flanking the active transcription start site (TSSFInk, chromatin state 
band). RNA-seq and ATAC-seq tracks are an overlay of signal from three different 
tissue donors; chromatin states were derived from histone ChIP–seq data (see 
Extended Data Fig. 9 for the chromatin state legend; Methods). d, The findings 
for the urine-specific mQTL suggest that urine is the appropriate matrix to detect 
the effect of a minor allele at a regulatory variant that increases expression of 
SLC10A2 in the kidney cortex, leading to lower urine levels of the ASBT substrate 
glycocholate through reabsorption, which translates into lower risk of gallstone 
disease. GoF, gain of function with respect to ASBT-mediated transport.

Fig. 5 | Urine-specific mQTLs deliver insights into systemic and kidney-
specific processes. a, The mQTLs highlighted in b,c belongs to the group 
arising from metabolites only measured in urine. b, The haplotype carrying the 
derived allele at the galactosylglycerol-associated mQTL at the FUT2 locus shows 
extended homozygosity as compared to the haplotype carrying the ancestral 
allele; the x axis represents the genomic coordinates (bp in build 37) around 
the tested SNP rs516246, the proxy for the index SNP rs679574 (r2 = 1); the y axis 
displays the extended haplotype homozygosity (EHH) statistic (Methods). 
The EHH around the derived allele is shown by the solid black line, whereas the 
one of the ancestral allele is shown by the gray dashed line. The dotted light 
gray line indicates the position of the tested SNP. Black dashes on the x axis 

represent the positions of SNPs that were used to compute the EHH statistic. 
c, Phenome-wide association study for rs516246 based on UK Biobank data 
(https://pheweb.org/UKB-TOPMed/variant/19:48702915-C-T)51. Excl., excluding. 
d, The mQTLs highlighted in e–g belongs to the group of urine-specific mQTLs 
arising from metabolites measured in plasma and urine. e, Regional association 
plot of the GWAS of urine glycerol levels (linear regression) around the most 
likely gene, AQP7. The index variant rs62542743 is shown in purple. f, Schematic 
representation of a presumed loss-of-function effect of AQP-7 p.Gly264Val on 
tubular reuptake of glycerol. g, Distribution of the log2-transformed glycerol 
levels in plasma (red) and urine (blue) by genotype at rs62542743. The black line 
in the center of each violin represents the median of the data.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs55971546
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://www.ncbi.nlm.nih.gov/snp/?term=rs55971546
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT03566238
https://www.ncbi.nlm.nih.gov/snp/?term=rs6124828
https://www.ncbi.nlm.nih.gov/snp/?term=rs6124828
https://www.ncbi.nlm.nih.gov/snp/?term=rs6124828
https://www.ncbi.nlm.nih.gov/snp/?term=rs6124828
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://www.ncbi.nlm.nih.gov/snp/?term=rs55971546
https://www.ncbi.nlm.nih.gov/snp/?term=rs16961281
https://www.ncbi.nlm.nih.gov/snp/?term=rs516246
https://www.ncbi.nlm.nih.gov/snp/?term=rs679574
https://www.ncbi.nlm.nih.gov/snp/?term=rs516246
https://pheweb.org/UKB-TOPMed/variant/19:48702915-C-T
https://www.ncbi.nlm.nih.gov/snp/?term=rs62542743
https://www.ncbi.nlm.nih.gov/snp/?term=rs62542743


Nature Genetics | Volume 55 | June 2023 | 995–1008 1003

Article https://doi.org/10.1038/s41588-023-01409-8

a

d

b

779 metabolites measured
in both plasma and urine

n = 88
n = 24

n = 160

n = 92

G
ly

co
lit

ho
ch

ol
at

e 
su

lfa
te

*

G
ly

co
ur

so
de

ox
yc

ho
la

te

G
ly

co
ur

so
de

ox
yc

ho
lic

 a
ci

d 
su

lfa
te

 (1
)

Hy
oc

ho
la

te

Iso
ur

so
de

ox
yc

ho
lat

e

Iso
urso

deoxy
cholate su

lfa
te (1)

Lithocholate sulfate (1)

Tauro-β-muricholate
TaurochenodeoxycholateTaurochenodeoxycholic acid 3-sulfate

Taurocholate

Taurocholenate sulfate*

Taurodeoxycholate

Taurodeoxycholic acid 3-sulfate

Taurolithocholate-3-sulfate

Tauroursodeoxycholate

Ursocholate

Ursodeoxycholate

12
-d

eh
yd

ro
ch

ol
at

e
7-

ke
to

de
ox

yc
ho

la
te

Ch
en

od
eo

xy
ch

ol
at

e
Ch

en
od

eo
xy

ch
ol

ic
 a

ci
d 

su
lfa

te
 (1

)

Cho
lat

e

Cholic
 ac

id glucuronide

Deoxycholate

Deoxycholic acid 12-sulfate*

Deoxycholic acid 3-sulfate

Deoxycholic acid glucuronide

Glyco-β-muricholate**

GlycochenodeoxycholateGlycochenodeoxycholate-3-sulfate

Glycochenodeoxycholate glucuronide (1)

Glycocholate
Glycocholate glucuronide (1)

Glycocholenate sulfate*

Glycodeoxycholate

G
lycodeoxycholate-3-sulfate

G
lycohyocholate

G
lycolithocholate

rs16961281
Urine

mQTL

rs55971546
Plasma
mQTL

−0.25

300

300
0

0

80

0

80

0

103,020103,000 103,040 103,060

Position on chromosome 13 (kb)
103,080

SLC10A2

103,100

RNA-seq, cortex

RNA-seq, medulla

ATAC-seq, cortex

ATAC-seq, medulla

Chromatin state, kidney

0

0.25

0.50

E�ect size

P value
<5 × 10−8/no. mQTL
<5 × 10−8

<0.05

c

Expression in
kidney↑
SLC10A2 GoF

Consequence

Reabsorption ↑
Urine glycocholate ↓

Metabolic
footprint

rs16961281

Gallstone
risk ↓

Disease
relation

PP H4 = 1.00

PP H4 = 1.00

PP H4 = 1.00Urine mQTL
rs16961281

Variant

18_Quies 18_Quies
12_

ZNF/R
pts

12_
ZNF/R

pts

10
_EnhA2

10
_EnhA2

13
_H

et

13
_H

et

13
_H

et

13
_H

et

6_Tx
Wk

1_T
ssA

1_T
ssA

6_Tx
Wk

12_
ZNF/R

pts

13
_H

et

2_T
ssF

lnk

2_T
ssF

lnk

18_Quies 18_Quies

http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | June 2023 | 995–1008 1004

Article https://doi.org/10.1038/s41588-023-01409-8

a d

b

0

7,000

0
7,000

0
155

0
155

0

Kidney c
orte

x

Kidney m
edulla

Other G
TE

x v
8 tis

su
es

100

46,595 46,600

6_TxWk 6_TxWk 6_TxWk9_EnhA1 9_EnhA1

10_EnhA2 10_EnhA2 8_EnhG2 7_EnhG1 12_ZNF/Rpts

5_Tx

46,605 46,610

Position on chromosome 20 (kb)
46,615 46,620

RNA-seq, cortex

RNA-seq, medulla

ATAC-seq, cortex

ATAC-seq, medulla

rs6124828

Chromatin state, kidney

HNF1A TF ChIP–seq, HepG2
HNF1B TF ChIP–seq, HepG2

Malate, plasma
Fumarate, plasma
Methylsuccinoylcarnitine, plasma
Methylsuccinoylcarnitine, urine

200

300

400

TP
M

Bulk tissue gene expression
for SLC13A3

ENSG00000158296.13

779 metabolites measured
in both plasma and urine

n = 88
n = 24

n = 160

n = 92

c

rs6124828
A  Pbinding = 2.1 × 10−1

T  Pbinding = 4.4 × 10−2

A  Pbinding = 5.7 × 10−4

T  Pbinding =  7.8 × 10−8

NaDC3
3 Na+

3 Na+

Methylsuccinoylcarnitine

NaDC3

Methylsuccinoylcarnitine

Apical (urine)
Basolateral

(plasma)

Methylsuccinoylcarnitine

Methyl-
succinoyl-
carnitine

Methyl-
succinoyl-
carnitine

SLC13A3 (NaDC3) rs6124828 A

Methyl-
succinoyl-
carnitine

Malate
fumarate

Malate
fumarate

SLC13A3 (NaDC3) rs6124824 T

Malate
fumarate

Malate
fumarate

HNF1BHNF1A

Fig. 7 | Primary human kidney tissue permits prioritization of causal variants 
in kidney-enriched genes implicated by mQTLs. a, The locus highlighted in this 
figure contains an mQTL identified with both plasma and urine measurements 
of a metabolite. b, SLC13A3 transcript levels are particularly high in the kidney 
cortex and medulla among Genotype–Tissue Expression (GTEx) version 8 
samples (nkidney cortex = 85, nkidney medulla = 4, nothers = 9–803; Methods). The dark bars in 
the violin plots mark the 25th and 75th percentiles. TPM, transcripts per million. 
c, RNA-seq shows that SLC13A3 is predominantly expressed in the kidney cortex. 
ATAC-seq highlights cortex-specific active chromatin around the rs6124828 
index SNP, which was associated with malate, fumarate (both in plasma) and 
methylsuccinoylcarnitine (in plasma and urine). RNA-seq and ATAC-seq tracks 
are an overlay of signal from three different tissue samples (donors). Chromatin 

states derived from histone ChIP–seq data show an active enhancer state at the 
rs6124828 position (see Extended Data Fig. 9 for the chromatin state legend).  
The transcription factor (TF) motifs for HNF1A and HNF1B overlap rs6124828, and 
transcription factor ChIP–seq from HepG2 cells shows that the motifs are bound 
by both transcription factors. The minor A allele results in a higher predicted 
binding P value for HNF1A and HNF1B. d, Schematic representation of the effect 
of genotype at the mQTL rs6124828 on NaDC3-mediated metabolite transport 
and subsequent intracellular metabolism. Intermatrix colocalization of genetic 
associations with methylsuccinoylcarnitine suggests that its levels in urine  
may reflect filtration from plasma, but an exit at the apical membrane cannot  
be excluded.
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Systemic roles of dipeptidase 1: digestive enzymes and diseases
DPEP1 encodes dipeptidase 1 (DPEP1), an ectoenzyme localized on 
the apical membrane of tubular kidney cells. It has a role in dipeptide 
hydrolysis, including glutathione metabolism breakdown products 
such as cysteinyl-bis-glycine44. DPEP1 has been well studied in the kid-
ney because it metabolizes several β-lactam antibiotics45. We detected 
several DPEP1 mQTLs for glutathione pathway metabolites as well as for 
dipeptides in urine. For example, the index SNP for urine prolylglycine 
(P = 9.0 × 10−369) explained 25% of its variance. Although the high renal 
expression of DPEP1 and its apical localization may be expected to pri-
marily affect the urine metabolome, we also observed six plasma mQTLs 
for glutathione-related (cysteinylglycine, oxidized cysteinylglycine, 
cysteinylglycine disulfide*) and other (picolinate, picolinoylglycine, 
X-25244) metabolites, suggesting extra-renal roles (Fig. 8a and Sup-
plementary Table 3).

DPEP1 is also highly expressed but less well studied in the small 
intestine, pancreas and testis (Fig. 8b). We therefore explored addi-
tional, systemic roles of DPEP1 through colocalization analysis using 
data from a recently published GWAS of the circulating plasma pro-
teome (Methods)46. Eight of 4,907 protein readouts contained signifi-
cant associations with SNPs in the DPEP1 locus, including the DPEP1 
protein itself. Strikingly, all of the seven other proteins are digestive 
enzymes or zymogens produced primarily in the exocrine pancreas 
and secreted into the small intestine (Supplementary Table 23).  
Positive colocalizations supported a shared genetic basis of 
DPEP1-related metabolites and of circulating readouts of DPEP1 
and the digestive enzymes (Fig. 8c and Supplementary Fig. 3). Higher 
urine prolylglycine, that is, lower inferred DPEP1 function, was asso-
ciated with lower plasma levels of DPEP1 and all seven digestive 
enzymes. These observations point toward an underappreciated 
role of DPEP1 and motivate experimental studies to identify the 
underlying mechanisms.

We also detected multiple, pleiotropic colocalizations of 
DPEP1-related mQTL, especially with osteoarthrosis, hypertension 
and intake of blood pressure medication (Supplementary Table 13 and  
Fig. 8d). Colocalization supported inverse associations between 
genetically higher levels of glutathione-related metabolites, that 
is, lower DPEP1 activity, and lower risk of arthropathies, consistent 
with a reported beneficial effect of glutathione on osteoarthritis47. 
Conversely, genetically predicted higher levels of urine and plasma 
picolinate and picolinoylglycine showed a positive relationship with 
osteoarthrosis. An opposite pattern was observed with respect to 
hypertension (Fig. 8d). Modification of DPEP1 function, for exam-
ple, with its specific inhibitor cilastatin, is therefore expected to have 
opposing effects on osteoarthritis and hypertension risk.

Discussion
This large-scale comparative study of the genetic footprint on the 
plasma and urine metabolomes uncovered numerous associations 
not reported previously and yielded several principal findings: 
first, the number of detected mQTLs is similarly large in plasma 
and urine, while the underlying metabolites show differences. Sec-
ond, multi-matrix studies deliver many more associations than the 
individual analysis of similarly sized plasma or urine studies. Third, 
differences in metabolomic footprints between plasma and urine 
can deliver insights into the physiological function and localiza-
tion of proteins operating at compartment interfaces and implicate 
different disease-related mechanisms. Fourth, the detected mQTLs 
and their colocalizing traits and diseases constitute a rich resource 
for the formulation of biologically plausible hypotheses regarding 
the in vivo physiological function of transporters and enzymes for 
future experimental studies.

Genetic studies of the metabolome using multiple matrices can 
provide information that cannot be obtained from studies using a 
single matrix such as plasma. Not only were ~60% of the metabolites 

quantified in just one matrix, but the combined study of paired 
metabolomes also allowed for the distinction of kidney-specific and 
systemic processes. In fact, 49% of mQTLs arising from a metabolite 
quantified in both matrices were detected exclusively in plasma or 
in urine, underscoring the fact that plasma and urine contain com-
plementary information on the handling of metabolites by different 
organs. This is exemplified by the effect of AQP-7 p.Gly264Val on 
glycerol levels: urine is in direct contact with the apical membrane of 
tubular epithelial cells, where this glycerol transporter is expressed. 
Urine therefore is the appropriate matrix to capture the function of 
this transporter in the kidney in vivo, as was true for a urine-specific 
association between bile acids and a regulatory variant affecting renal 
SLC10A2 expression. Conversely, the detection of plasma-specific 
effects of SLC13A3 variants on malate and fumarate levels can be 
explained by the basolateral localization of the encoded NaDC3 trans-
porter in kidney epithelial cells. More generally, the study of similari-
ties and differences of the paired plasma and urine metabolome is 
especially informative for functions of the kidney. Paired studies of 
the plasma metabolome and other matrices such as intestinal fluids 
or breath air could provide new insights about specific functions of 
the digestive organs and lungs, respectively.

Our study confirms that common genetic variants, mQTLs, 
sometimes explain >50% of the observed metabolite variance. 
Although this translates into much smaller effects on complex dis-
eases such as hypertension, arthropathies or gallstone disease, 
colocalization can nominate shared pathophysiological mecha-
nisms and inform about potential therapeutic targets, repurposing 
opportunities and potential side effects of approved drugs. Our 
study includes numerous such examples, supported by the recent 
launch of new drugs such as evinacumab, a monoclonal antibody 
targeting angiopoietin-like 3 (ANGPTL3) to treat dyslipidemia, or 
the SLC10A2 inhibitor odevixibat to treat cholestasis. Even if a target 
implicated by metabolites in our study is not desirable or amenable 
for therapeutic modulation, disease-associated metabolites may 
represent valuable intermediate biomarkers for risk prediction or 
response to treatment.

Some limitations warrant mention: while we show here and in 
prior work5 that genetic effects on metabolites are of comparable 
direction and magnitude in persons with and without reduced eGFR, 
future studies are required to examine whether our findings are gen-
eralizable to persons of non-European ancestry. Our study did not 
test the effects of rare and ultra-rare coding variants that may have 
particularly large effects, which could address remaining uncertain-
ties in the assignment of the underlying causal gene(s) inherent to 
GWAS. Our gene-prioritization workflow incorporated information 
on gene expression from dozens of tissues. In addition to differences 
in tissue sample size, such prioritization can implicate several genes 
and tissues in a given locus, including scenarios in which different 
genes in one locus receive support from different tissues48. Moreover, 
our workflow prioritized coding genes over noncoding ones such as 
long noncoding RNA. Although many GWAS loci in which a causal 
gene has been experimentally validated implicate coding genes, 
noncoding genes are also recognized mediators of association sig-
nals with complex human traits such as cardiovascular diseases49,50. 
Lastly, our study employed semi-quantitative metabolite quantifi-
cation, while additional targeted studies with absolute quantifica-
tion are required to study fractional metabolite excretion and for  
clinical translation.

In conclusion, this genetic study of the paired plasma and urine 
metabolome emphasizes the role of multi-matrix studies to gain new 
insights into in vivo metabolic processes in general and the function 
of the kidney in particular. The results provide a rich resource for the 
experimental validation of yet unknown enzymatic and transport pro-
cesses that may represent a molecular link between genetic variants 
and human traits and diseases.
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Fig. 8 | DPEP1 influences plasma levels of major digestive enzymes. 
 a, Schematic representation of the role of DPEP1, encoded by DPEP1, and 
several other genes in glutathione (GSH) metabolism, highlighting identified 
metabolites and genes. ABCC1, ATP-binding cassette subfamily C member 1; 
GGT1, γ-glutamyltransferase 1. b, DPEP1 transcript levels are particularly high 
in the small intestine (terminal ileum), pancreas, kidney and testis among GTEx 
version 8 samples (nsmall intestine, terminal ileum = 187, npancreas = 328, nkidney cortex = 85, 
ntestis = 361, nkidney medulla = 4, nothers = 9–803; Methods). The dark bars in the violin 
plots mark the 25th and 75th percentiles. c, Regional association plots of 
association patterns at the DPEP1 locus (linear regression). SNPs are plotted by 
position (build 38) versus −log10 (association P values) of plasma DPEP1 levels 
(top; conditional independent protein quantitative trait locus (pQTL) statistics 
with the index SNP rs258341), urine cysteinylglycine (middle; mQTL) and plasma 
levels of the digestive enzyme pancreatic triacylglycerol lipase (PNLIP) (bottom; 

conditional independent pQTL statistics with the index SNP rs1126464). The 
purple diamond highlights the index SNP for each association. SNPs are color 
coded to reflect their LD with this SNP (pairwise European-ancestry r2 values 
from the 1000 Genomes Project phase 3). Genes, exons and the direction of 
transcription from the University of California at Santa Cruz Genome Browser are 
depicted. Plots were generated using LocusZoom52. d, Network representation 
of metabolites with a DPEP1 mQTL as well as of all traits in the phenome-wide 
scan that are linked through positive colocalization for one of these. mQTLs are 
represented by the edge connecting the respective gene and metabolite, and 
all other edges are established through positive colocalization (PP H4 > 0.8), 
with color coding representing the phenotype category. Effect directions 
are indicated by the line type (solid, positive association; dashed, inverse 
association). CNS, central nervous system; NOS, not otherwise specified.
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Methods
Study design and participants
The GCKD study is an ongoing prospective observational study that 
enrolled 5,217 adult persons with CKD between 2010 and 2012. Patients 
regularly seen by nephrologists with eGFR between 30 and 60 ml min−1 
per 1.73 m2 or eGFR >60 ml min−1 per 1.73 m2 with UACR > 300 mg per g  
(or urinary protein/creatinine ratio > 500 mg per g) were included53. 
This study used biomaterials collected at the baseline visit, shipped 
frozen to a central biobank and stored at −80 °C54. A more detailed 
description of the study design, standard operating procedures and 
the recruited study population has been published53,55. The GCKD 
study was registered in the national registry for clinical studies (DRKS 
00003971) and approved by local ethic committees of the participating 
institutions (universities or medical faculties of Aachen, Berlin, Erlan-
gen, Freiburg, Hannover, Heidelberg, Jena, München and Würzburg)53. 
All participants provided written informed consent. For this project, 
metabolites were quantified from stored EDTA plasma and spot urine. 
Information on genome-wide genotypes, covariates and metabolites 
was available for 4,960 (plasma) and 4,912 (urine) persons.

Genotyping and imputation
Genotyping and data cleaning in the GCKD study were conducted 
as follows5,56. Genomic DNA from GCKD participants was genotyped 
at 2,612,357 variants using Illumina Omni2.5Exome BeadChip arrays 
and imputed using minimac3 version 2.0.1 at the Michigan Imputa-
tion Server57 and the Haplotype Reference Consortium haplotype 
version r1.1 and Eagle 2.3 for phasing. On the variant level, SNPs with 
<96% call rate, imputation quality of r2 ≤ 0.3, MAF < 1% or deviating 
from Hardy–Weinberg equilibrium (P < 1 × 10−10) and all multi-allelic 
SNPs were removed. The cleaned genotype dataset contained 5,034 
individuals and 7,724,508 high-quality autosomal variants for GWAS. 
Genotyping of ARIC samples was performed on the Affymetrix 6.0 
DNA microarray and filtered for call rates <90% and Hardy–Weinberg 
equilibrium P values < 10−6. SNPs were then imputed to the TOPMed 
Freeze 5b reference panel and filtered for r2 ≤ 0.1 (imputation quality).

Metabolite identification and quantification
Non-targeted mass spectrometry analysis was performed at Metabo-
lon, and sample preparation was carried out as published by Schlosser 
et al.5. Automated comparison of the ion features in the experimental 
samples to a reference library of chemical standard entries (>4,500 
purified standards) was used for metabolite identification. Known 
metabolites reported in this study conformed to confidence level 1 (the 
highest confidence level of identification) of the Metabolomics Stand-
ards Initiative58,59, unless otherwise denoted with an asterisk. Additional 
mass spectral entries have been created for compounds of unknown 
structural identity (unnamed biochemicals; >2,750 in the Metabolon 
library), which have been identified by virtue of their recurrent nature 
(both chromatographic and mass spectral). Peaks were quantified 
using the area under the curve and normalized to correct for variation 
resulting from instrument interday tuning differences by the median 
value for each run day. Likewise, metabolites in the ARIC replication 
sample were also quantified with the Metabolon HD4 platform.

Data cleaning of quantified metabolites
An in-house pipeline was set up for data quality control, filtering and 
normalization of metabolite concentrations. No plasma specimens and 
four pairs of urine specimens with a Pearson correlation coefficient 
greater than 0.9 and differing sample IDs were removed. Four plasma 
specimens and no urine specimens were removed for >50% missing 
data. A total of 130 plasma and 131 urine metabolites were removed, 
as less than 300 genotyped samples were available.

To account for urine dilution, concentrations of each metabolite 
were pq normalized based on endogenous metabolites with <1% miss-
ing values (nmetabolites = 309)60. Of the log2-transformed metabolites,  

15 plasma metabolites were excluded for low variance (<0.01), and none 
were excluded for too many outliers (>5% of samples outlying >5 s.d.). 
Three plasma samples and one urine sample represented an outlier 
>5 s.d. along one of the first 15 principal components based on metabo-
lites with complete information. The final dataset consisted of 1,296 
plasma and 1,401 urine log2-transformed traits for subsequent GWAS. 
Supplementary Table 2 provides detailed annotation of the metabo-
lites, including heritability estimates for metabolites with at least one 
genetic association. Over the course of this project, two formerly dif-
ferent urine metabolites were merged because they represented the 
same molecule: X-12739 and X-24527 to the glutamine conjugate of 
C6H10O2 (1)* and X-23667 and X-24759 to (2-butoxyethoxy)acetic acid.

Definition of additional variables
In the GCKD study, an IDMS-traceable enzymatic assay (Creatinine Plus, 
Roche) was used to measure serum creatinine levels, for estimating GFR 
by means of the CKD-EPI formula61, and to measure urine creatinine 
levels. The Tina-quant Albumin assay (Roche) was used to measure 
serum and urine albumin, for adjustment and calculation of the UACR, 
respectively. The GFR was estimated in the ARIC study from serum 
creatinine and cystatin C using the CKD-EPI formula62.

Genome-wide association study of metabolite levels
Based on log2-transformed metabolite levels, residuals adjusted for 
age, sex and the first three genetic principal components were gener-
ated (similar to previous mGWAS5,6,56,63,64), with plasma levels addition-
ally adjusted for ln(eGFR) and serum albumin. GWAS analyses of these 
residuals were performed with SNPTEST version 2.5.2 (https://www.
well.ox.ac.uk/~gav/snptest/), using imputed genotype dosages and 
linear regression under additive modeling. Statistical significance 
was defined as genome-wide significance after correcting for multiple 
testing by a Bonferroni procedure (3.9 × 10−11 = 5 × 10−8 ÷ 1,296 plasma 
traits; 3.6 × 10−11 = 5 × 10−8 ÷ 1,401 urine traits).

Significantly associated SNPs were assigned to mQTL by selecting, 
for each trait, the SNP with the lowest P value as the index SNP, defin-
ing the corresponding locus as a 1-Mb interval centered on the index 
SNP and repeating the procedure for unassigned SNPs until no further 
genome-wide significant SNP remained. For each trait, overlapping 
intervals were combined into mQTL. The extended MHC region (chro-
mosome 6, 25.5–34 Mb) was treated as one region. For associations with 
MAF < 3%, mQTLs were only kept if the index SNP remained significant 
with inverse-normal-transformed metabolite data. A regional asso-
ciation plot centered on the index SNP for each mQTL was generated 
using LocusZoom (version 1.3) and LD information from GCKD study 
genotypes52. Circular plots were created using Circos version 0.69-6 
(ref. 65). The variance in metabolite levels explained by the index SNP 
of an mQTL was computed independently of other covariates.

We compared our findings to those from seven large studies of 
the plasma–serum metabolome that were published in peer-reviewed 
journals and shared their summary statistics6–12. These studies were 
selected to maximize overlap with our findings as studies of EA par-
ticipants with large sample size that examined the effects of com-
mon SNPs on plasma–serum metabolite levels quantified with the 
Metabolon assay, rather than on rare variant association studies, or 
GWAS of metabolites quantified by different methods and/or in other 
populations, for example, refs. 66–70. Metabolites were matched by 
compound or chemical ID, if available, and biochemical name (ones 
not identical were checked manually). First, for each mQTL identi-
fied in one of the published plasma–serum studies mentioned above, 
available index SNPs were extracted from GWAS of the corresponding 
metabolite in plasma and urine, and effect direction and statistical 
significance were assessed at different levels of statistical significance 
(P value < 0.05, <0.05 ÷ no. mQTLs in the previous study, <5 × 10−8 and 
<5 × 10−8 ÷ no. mQTLs in the previous study). Validation required 
effect-direction consistency for comparisons involving results from 
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the GCKD plasma mGWAS. Second, for each mQTL identified in this 
study in plasma or urine, availability of the corresponding index SNP 
and metabolite in the summary statistics of the previously published 
plasma–serum studies was assessed. If the index SNP was missing, 
we searched for proxy SNPs in high LD (r2 > 0.8) within a window of 
±500 kb around the index SNP based on genetic data from the 1000 
Genome Project phase 3 version 5 of European ancestry using https://
snipa.helmholtz-muenchen.de/snipa/?task=proxy_search. For each 
study, the best available proxy SNP in terms of maximal LD and min-
imal distance was selected. Summary statistics were downloaded 
from https://metabolomics.helmholtz-muenchen.de/gwas/index.
php?task=download (Shin et al.6), http://www.hli-opendata.com/
Metabolome (Long et al.7, only summary statistics with P value < 10−5), 
https://omicscience.org/apps/crossplatform/ (Lotta et al.8), https://
pheweb.org/metsim-metab/ (Yin et al.10), https://omicscience.org/
apps/mgwas/mgwas.table.php (Surendran et al.11) and http://ftp.ebi.
ac.uk/pub/databases/gwas/summary_statistics/; accession numbers 
for European GWAS are GCST90199621–GCST90201020 (Chen et al.12). 
Hysi et al.9 shared their summary statistics upon request.

To determine the number of urine mQTLs not reported in our 
earlier study5, we examined for each mQTL from this study whether 
an associated SNP within a window of ±500 kb for the corresponding 
metabolite was identified in the earlier study.

Replication analyses in the ARIC study were performed using 
log2-transformed metabolite levels and the same covariables. 
Statistical significance was defined by a Bonferroni procedure  
(P value < 0.05 ÷ 459 and 0.05 ÷ 430 association tests with matching 
data for EA and AA, respectively) and consistent effect directions as 
in the GCKD study.

We included an interaction term between the mQTL and sex in a 
linear regression model with the same adjustments as before to test for 
potential differences of the 1,299 mQTLs in men and women. For signifi-
cant interactions (P value < 0.05 ÷ 1,299), we performed sex-stratified 
analyses (Supplementary Table 7).

Heritability estimation
A genetic relationship matrix was calculated from all autosomal 
SNPs with an imputation quality of r2 > 0.6 using GCTA-GRM71. 
GCTA-GREML72 was then used to estimate the proportion of variation 
in log2-transformed and, in the case of urine, pq-normalized metabolite 
levels that can be explained by the SNPs for all metabolites that gave 
rise to an mQTL.

Independent SNP selection and statistical fine mapping
We identified independent signals within mQTL using approximate 
conditional analyses, with LD information estimated from our study 
sample. The fine-mapping regions of mQTL were aligned within 
matrices across metabolites, if index SNPs were in LD (r2 > 0.8). For 
each mQTL, the GCTA-COJO Slct algorithm version 1.91.6 (ref. 73) 
was used to identify independent genome-wide significant SNPs  
(Pconditional < 3.9 × 10−11), using a collinearity cutoff of 0.1. For mQTL with 
multiple independent SNPs, approximate conditional analyses were 
carried out conditioning on the other independent SNPs in the region 
using the GCTA-COJO Cond algorithm to estimate conditional effect 
sizes. Statistical fine mapping was performed for all independent SNPs 
per mQTL. In loci with a single independent SNP, approximate Bayes 
factors (ABFs) were calculated from the original GWAS effect estimates 
using Wakefield’s formula74 with a standard deviation prior of 1.33. 
For mQTL with multiple independent SNPs, ABFs were derived from 
the conditional effect estimates. The SNP’s ABF was used to calculate 
the posterior probability for the variant driving the association signal 
(PPA, ‘causal variant’). Credible sets were calculated by summing the 
PPA across PPA-ranked variants until the cumulative PPA was >99%. 
log2-transformed credible set sizes were regressed on the MAFs of 
independent index SNPs.

Pairwise colocalization tests of plasma and urine mQTL
To examine whether association patterns with metabolites measured in 
plasma and/or urine are shared across or within matrices, we conducted 
pairwise colocalization analyses between mQTL. When the windows of 
±500 kb around the index SNPs for two mQTLs overlapped, colocaliza-
tion was performed within the region of the merged windows using a 
version of Giambartolomei’s colocalization method75 as implemented 
with the ‘coloc.fast’ function from the R package ‘gtx’ (https://github.
com/tobyjohnson/gtx) with default parameters and prior definitions. 
To visualize the effect sizes and explained variance for colocalizing 
signals for mQTLs detected for the same metabolite across matrices 
(Extended Data Fig. 4), we used the R package ‘circlize’ (ref. 76).

Annotation
SNP annotation was performed by querying the SNiPA database version 
3.4 (released 13 November 2020)13, based on the 1000 Genomes phase 3  
version 5 and Ensembl version 87 datasets. The retrieved combined 
annotation-dependent depletion (CADD) score was based on CADD 
version 1.3. The Ensembl VEP tool was used for the effect prediction 
of SNPs. SNiPA was used to collect the following annotations for each 
index SNP: gene hit or close by, regulated genes, CADD score, SnpEff 
effect impact (exonic and noncoding), mQTL, pQTL, GWAS Catalog, cis 
eQTL, disease genes (based on ClinVar, OMIM, HGMD and Drugbank) 
and UK Biobank associations.

To select the most likely causal gene for each mQTL, the following 
steps were carried out: first, we compiled the ‘genes’ and ‘evidence’ 
information based on SNiPA13. Index SNPs were queried for association 
with differential expression of a nearby gene in tubulointerstitial kidney 
portions (cis eQTL) from 187 patients with CKD using the NephQTL 
browser77 and GTEx version 8 eQTL data78. Similarly, SNPs were queried 
for associations with differential levels of nearby proteins in plasma 
(2,751 unique proteins represented by 3,022 SOMAmers) in data from 
Sun et al.79 downloaded from http://www.phpc.cam.ac.uk/ceu/pro-
teins/. Second, when one or more cis eQTL or cis pQTL associations with 
P < 0.05 ÷ 409 (plasma, 409 unique index SNPs) or P < 0.05 ÷ 410 (urine, 
410 unique index SNPs), respectively, was identified within ±100 kb of 
an index SNP, colocalization analyses of the respective metabolite(s)’ 
mQTL and each of the eQTL and/or pQTL association(s) were performed 
within the eQTL–pQTL cis window in the underlying study (gene region 
±500 kb) using the method outlined above. Positive colocalizations 
with gene expression received equal weight for all investigated tissues 
to maximize the opportunity to detect processes in tissues interacting 
with blood and being filtered to urine. Sensitivity analyses assigning 
1.5-fold and twofold greater weight to colocalizations arising from 
kidney or liver tissue or from kidney tissue only yielded almost identi-
cal results. The evidence codes h, r, e, p, m and c based on SNiPA13 cor-
respond to gene hit or close by, regulated genes, cis eQTL, cis pQTL, 
missense variants and disease genes based on pathogenic variants 
known to cause monogenic diseases, respectively. The evidence code E 
designated genes with evidence for colocalization with gene expression 
genome-wide association, and P designated those with protein-level 
genome-wide association. Evidence codes were collected and summed 
for each gene, where Ee and Pp only counted as one. The gene with the 
highest sum of scores within each locus was assigned as the most likely 
causal gene. In the case of ties, genes with evidence for gene expression 
colocalization were prioritized, followed by protein-level colocaliza-
tion, followed by genes for which an inborn error of metabolism with 
the corresponding metabolite is known. When ties still remained, Ee 
scores were prioritized over E scores and Pp scores were prioritized 
over P scores. In all other cases, ties were resolved by prioritizing the 
closest gene; prioritization by distance determined the assigned most 
likely causal gene at 17% (221 of 1,299) of mQTLs. Lastly, the prioritized 
gene list was manually reviewed for biological plausibility based on 
published evidence and at colocalizing mQTLs as outlined in the Sup-
plementary Methods. In case of a clear biological fit to another scored 
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gene (that is, corresponding monogenic disease or animal model), 
the prioritized gene was reassigned. This final gene list (n = 282) was 
used as input for downstream gene-based analyses. Known drugs were 
annotated for each gene and the corresponding indication and status 
of approval based on https://platform.opentargets.org/.

Relation of mQTLs to plasma proteins in trans and phenotypes
We also performed colocalization analyses of mQTLs with disease 
outcomes and biomarker measurements in the UK Biobank, with 
two representative kidney function traits and with trans pQTLs using 
the precomputed pQTL data from Sun et al.79 to gain insights into 
clinical consequences and potential molecular mediators of mQTLs. 
Association summary statistics between SNPs and 30 biomarkers 
from the UK Biobank baseline examination, including the liver func-
tion markers AST, ALT, GGT, bilirubin and albumin, were computed 
using BOLT-LMM80 (application no. 20272) in the same subset of 
European-ancestry participants as previous studies81. Precomputed 
GWAS summary statistics of diseases as ascertained in the UK Biobank 
and analyzed using phecodes were obtained from https://www.
leelabsg.org/resources (1,403 binary traits) and from https://yanglab.
westlake.edu.cn/data/ukb_fastgwa/imp_binary/ (2,325 of 2,989 binary 
traits82; traits containing job-coding terms were excluded from the 
analysis). There were 816 phecodes analyzed in both, but only unique 
phecodes were counted for positive colocalizations. We used GWAS 
summary statistics of creatinine-based and cystatin C-based eGFR 
(eGFRcrea and eGFRcys) from Stanzick et al.83, who meta-analyzed kid-
ney function GWAS from the CKDGen Consortium and the UK Biobank. 
The GWAS summaries were downloaded from the CKDGen data website 
at https://ckdgen.imbi.uni-freiburg.de. Colocalization testing between 
mQTL and trans pQTL was performed within a window of ±500 kb 
around the mQTL’s index SNP when at least one trans pQTL association 
with P < 0.05 ÷ 409 ÷ 3,000 for plasma and P < 0.05 ÷ 410 ÷ 3,000 for 
urine was present within a window of ±100 kb around the index SNP. 
Similarly, colocalization analysis between mQTL and biomarkers, 
diseases and kidney function traits was performed within ±500 kb of 
the index SNP when there were one or more associated variants with 
MAF > 0.01 and P < 0.05 ÷ 409 or P < 0.05 ÷ 410, respectively, within 
±100 kb of the index SNP, using the method outlined above.

Moreover, we investigated whether the most likely mQTL-related 
genes contained rare, putatively damaging variants that in aggre-
gate are associated with clinical traits and diseases. Gene–phenotype 
associations based on whole-exome-sequencing data from ~450,000 
UK Biobank participants were obtained on 4 February 2022 from the 
AstraZeneca PheWAS Portal (https://azphewas.com/) for the 274 
available genes of the 282 mQTL-related genes22. We identified 2,745 
distinct suggestive (P < 1 × 10−5) gene–phenotype associations for 115 
of those genes. The significance threshold as derived for the PheWAS 
was 2 × 10−9 (ref. 22). Only the most significant collapsing model per 
trait was retained for Fig. 4b. In addition, the exome-wide variant-level 
results were downloaded on 26 August 2022. The 17,493 analyzed phe-
notypes were queried for significant (P value < 0.05 ÷ 17,493) associa-
tions with mQTL index SNPs (Supplementary Table 16).

We further performed colocalization testing of independent sig-
nals for all the 12 identified mQTLs within the DPEP1 genomic region 
and plasma proteins with a reported pQTL in the DPEP1 locus46. 
Metabolite and plasma protein summary statistics were extracted 
with a 500-kb flanking region around DPEP1 and the DPEP1 mQTL index 
SNP for the proteins CPB1, AMY2B, PNLIP, AMY2A, REG3G, CTRB2 
and PNLIPRP1. First, independent association signals were identi-
fied based on approximate conditional analyses via the GCTA-COJO 
Slct algorithm (P value < 5 × 10−8; collinearity threshold = 0.1)73. For 
each conditionally independent SNP, conditional summary statistics 
were computed by conditioning on all other independent SNPs in the 
region using the GCTA-COJO Cond algorithm (collinearity thresh-
old = 0.1)73. Subsequently, colocalization analyses were conducted 

for all pairwise combinations of the conditionally independent mQTL 
and pQTL associations as outlined above. For the gallstone disease 
GWAS84 and urine glycocholate, we performed colocalization analysis 
of signals conditioning on the plasma index SNP (rs55971546) within 
±500 kb of the SLC10A2 urine mQTL index SNP (rs16961281). The same 
conditional mQTL summary statistics were colocalized with kidney 
eQTL38. Marginal statistics were used for these, as rs55971546 was not 
available (FDR > 0.01).

Processing of gene expression data from tissue and cell types
To test for over-representation of plasma or urine mQTL-related genes 
among those highly expressed in specific tissues and cell types, we 
compiled bulk and single-cell gene expression (RNA-seq) datasets. 
These included GTEx version 8 (ref. 78), the Human Liver Cell Atlas85, 
a single-cell dataset and a single-nucleus dataset from the human 
kidney86,87, a single-cell dataset from the mouse kidney88, a single-cell 
dataset from the human intestine89 and a single-nucleus dataset from 
the kidneys of patients with CKD from the Kidney Precision Medicine 
Project (KPMP)90. Except for the KPMP, data sources and processing fol-
lowed the workflow published by Cheng et al.91. KPMP data were down-
loaded from the KPMP Kidney Tissue Atlas repository at https://atlas.
kpmp.org/repository as Seurat-format files and were subsequently 
processed in Seurat92 similar to the other datasets. For generation 
of the top 10% highly expressed genes for each tissue and cell type in 
each dataset, we followed the workflow published by Schlosser et al.5.

GO, KEGG, tissue and cell type enrichment analyses
Enrichment testing of the 282 identified genes was performed as fol-
lows. The number of independent SNPs per gene was computed using 
GCKD genotypes (PLINK version 1.90 (ref. 93)), and a database of Entrez 
gene identifiers based on org.Hs.eg.db version 3.8.2 was generated. 
Gene annotation included the number of independent SNPs per gene, 
gene length, GO terms94 and KEGG pathways95, as well as being Human 
Protein Atlas tissue or group enriched96; Human Protein Atlas cell 
type enhanced, enriched or group enriched97; being a VIP gene from 
PharmGKB (accessed 5 December 2020)98; being a gene with an action-
able drug interaction from the Clinical Pharmacogenetics Implementa-
tion Consortium (levels A, A/B and B; accessed 13 January 2021)99; and 
being among the top 10% highly expressed genes in each GTEx version 8  
tissue78 and human85–87,89,90 and murine cell types88. We performed 100 
million random draws of an equal number of genes as contained in the 
respective source list (combined mQTLs, 282; plasma mQTLs, 214; urine 
mQTLs, 195; plasma-only mQTLs, 87; urine-only mQTLs, 68), matched 
for deciles of the number of independent SNPs and deciles of gene 
length and compared any overlap with cell types, tissues and terms 
with the ones identified for the original source list. Multiple-testing cor-
rection was performed using the Benjamini–Hochberg procedure100.

Lastly, we tested for over-representation of certain phenotypes 
among mice in which the implicated genes had been genetically manip-
ulated. The phenotype terms ‘abnormal homeostasis’ (MP:0001764) 
and ‘abnormal metabolism’ (MP:0005266), all of their child terms 
and all genes associated with these terms were downloaded from 
MouseMine101 on 9 December 2021. Mouse genes were mapped to 
their human homologs using the getLDS function from the biomaRt 
package102. Human and mouse genes that did not map to a homolog 
in the respective other species were excluded from the analysis. This 
excluded 861 of 6,051 abnormal homeostasis genes, 61 of 952 abnormal 
metabolism genes and ten of 282 mGWAS genes (PYCRL, GBA3, PPDPFL, 
CETP, NAT16, ZNF680, ENOSF1, ACSM6, FUT3, ZNF675). The genes iden-
tified from urine, plasma or both were tested for over-representation 
among the genes belonging to each of the phenotype terms using 
Fisher’s exact test (with the universe set to 13,151 genes, the number of 
mouse genes that mapped to human homologs in the Mouse Genome 
Informatics database), followed by Benjamini–Hochberg correction 
for multiple testing.
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics are available through the NHGRI-EBI 
GWAS Catalog (GCST90264176–GCST90266872, https://www.ebi.
ac.uk/gwas/).

Code availability
We have clearly indicated each software whenever applicable and 
provided information on options (Methods and Reporting Summary).
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Extended Data Fig. 1 | Evaluation of genetic associations of plasma mQTLs 
from CKD patients in a multi-ethnic, population-based sample. Each point 
represents the index SNP of one of 459 (EA) and 430 (AA) associations that could 
be matched between the Metabolon platforms of the GCKD and ARIC studies 

(see Supplementary Table 6). Data are presented as effect size estimate +/- 1.96x 
standard errors in each study and the dot size is proportional to the two-sided 
-log10(P-value) in GCKD (NGCKD = 4960, NARIC EA = 3603, NARIC AA = 818).
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Extended Data Fig. 2 | Comparison of the heritability for 184 matched plasma 
and urine metabolites with at least one mQTL. The positive correlation 
between the estimated heritabilities for a given metabolite’s plasma and 
urine levels is consistent with the metabolites’ filtration from plasma to urine, 
without substantial additional genetic influences on their tubular handling. The 
blue line is the linear regression line and the gray shaded area represents the 
95%-confidence interval. Differences in estimated heritability for plasma and 

urine (instances with >25% are labeled with the associated metabolite and most 
likely gene; error bars represent h2 variance) can contain interesting biological 
information: for example, three metabolites with larger estimated heritabilities 
in urine than in plasma are N-acetylated amino acids, all of which have an mQTL at 
NAT8. NAT8 is highly and selectively expressed in the kidney, where the encoded 
enzyme N-acetylates molecules to make them water soluble for subsequent 
excretion.
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Extended Data Fig. 3 | Post-hoc power analyses for plasma and urine mQTLs 
by metabolite super-pathway. Power analyses are based on a sample size of 
5,000, the genome-wide statistical significance thresholds used in our study, and 
are conducted across a range of minor allele frequencies. For each matrix-super-

pathway subgroup, the median observed effect size across mQTLs as well as the 
median standard deviation of the metabolites with an mQTL within the group 
were used.
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Extended Data Fig. 4 | Comparison of direction of genetic associations and 
explained variance at inter-matrix mQTLs. Comparison of effect sizes and 
explained variance for colocalization signals for mQTLs detected for the same 
metabolite in both plasma and urine (N = 204; only the 99 mQTLs for which the 
explained variance in metabolite levels in at least one of both matrices is >3% 
are shown). The two inner bands represent the effect size of the mQTL in plasma 

(framed in red) and urine (framed in blue). Shades of orange indicate positive 
effect sizes, shades of aquamarine negative ones. The two outer bands represent 
the variance in metabolite levels in plasma and urine explained by the index SNP 
of the corresponding mQTL, where a darker shade of green corresponds to a 
greater explained variance.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Colocalization of mQTLs with selected clinical 
markers of kidney and liver function. The mQTLs are represented by the 
implicated genes on the rows and the colocalized clinical markers are on the 
columns. Liver function markers include alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), gamma glutamyltransferase (GGT), albumin 

and bilirubin. Kidney function markers include eGFRcrea, eGFRcys and urea. 
The size of pie represents the total number of colocalizations grouped into 
four categories. The slices in each pie colored in red and blue represent the 
proportion of colocalizations of plasma and urine mQTLs with the respective 
clinical markers.
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Extended Data Fig. 6 | Proportion of metabolite variance explained by eGFR. 
The proportion of a metabolite’s variance explained by eGFR is represented on 
the x-axis. All metabolites quantified from plasma and urine are shown along 

the y-axis, ordered by the maximum variance explained across plasma (red 
color) and urine (blue color). The metabolite with the largest amount of variance 
explained by eGFR was plasma creatinine.
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Extended Data Fig. 7 | Enrichment of mQTL-related genes among GO terms, 
KEGG pathways, tissues, and cell types. (a) Similarities and differences 
between terms and pathways enriched for genes identified by all plasma vs. all 
urine mQTLs; (b) mQTLs exclusively identified in plasma and urine; (c) between 
tissues enriched for genes identified by all plasma vs. all urine mQTLs, and (d) 

between cell types enriched for genes identified by all plasma vs. all urine mQTLs. 
Terms significantly (adjusted P-value < 0.05) enriched for genes identified by 
mQTLs from only one matrix are colored in red and blue respectively and terms 
significantly enriched for genes from both matrices are colored in purple. OR: 
odds ratio.
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Extended Data Fig. 8 | Extended view of the SLC10A2 region. The upper part 
of the figure shows the same RNA-seq, ATAC-seq, chromatin state and histone 
ChIP-seq tracks as Fig. 6. The RNA-seq and ATAC-seq tracks show the overlayed 
signal from tissue of three different donors. The index SNP rs16961281, that is 
associated with urine glycocholate, is located at the vertical dashed line. The 
bottom part shows publicly available single nucleus (sn)ATAC-seq data for 
different kidney cell types, which was derived from primary human kidney 

samples38. The position of rs16961281 is nearly exclusively accessible in cells of 
all proximal tubule segments (PT-S1, PT-S2, PT-S3). PTs are the predominant cell 
type in kidney cortex, underscoring the consistency of the snATAC-seq data and 
the bulk ATAC-seq data. Other cell types shown include: Endothelial cells (Endo), 
podocytes (Podo), loop of Henle cells (LOH), distal convoluted tubule cells 
(DCT), collecting duct principal cells (PC), collecting duct intercalated cells (IC), 
stroma cells (Stroma), immune cells (Immune), lymph cells (Lymph).
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Extended Data Fig. 9 | Extended view of the SLC13A3 region. The upper 
part of the figure shows the same RNA-seq, ATAC-seq, chromatin state and 
histone ChIP-seq tracks as Fig. 7. The index SNP rs6124828, that is associated 
with malate, fumarate, and methylsuccinoylcarnitine in plasma as well as with 
methylsuccinoylcarnitine in urine is located at the second vertical dashed 
line from the left. The bottom part shows single nucleus (sn)ATAC-seq data 
for different kidney cell types, which was derived from primary human kidney 

samples39. The position of rs6124828 is nearly exclusively accessible in proximal 
tubule cells (PT). PTs are the predominant cell type in the kidney cortex, 
underscoring the consistency of the snATAC-seq data and the bulk ATAC-seq 
data. Other cell types shown include: Endothelial cells (Endo), podocytes (Podo), 
loop of Henle cells (LOH), distal convoluted tubule cells (DCT), collecting duct 
principal cells (CDPC), collecting duct intercalated cells (CDIC), immune cells 
(Immune).
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