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We study the dynamical properties of pointlike defects, represented by monoatomic chalcogen vacancies,
in WS2–graphene and MoS2–graphene heterobilayers. Employing a multidisciplinary approach based on the
combination of ab initio, model Hamiltonian and density matrix techniques, we propose a minimal interacting
model that allows for the calculation of electronic transition times associated to population and depopulation
of the vacancy by an additional electron. We obtain the “coarse-grained” semiclassical dynamics by means of
a quantum master equation approach and discuss the potential role of virtual charge fluctuations in the internal
dynamics of impurity quasidegenerate states. The interplay between the symmetry of the lattice and the spin
degree of freedom through the spin-orbit interaction and its impact on charge quenching is studied in detail.
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I. INTRODUCTION

In recent years, the study of van der Waals heterostructures
[1,2], created upon stacking atomically-thin two-dimensional
layers, has unveiled a rich variety of physical phenomena
in these systems [3], ranging from sequential electron trans-
fer through defects, studied using tunneling spectroscopy
[4,5], to ultrafast interlayer charge transfer after photoexci-
tation with visible (yellow) light studied with time-resolved
ARPES [6–8] or transient absorption spectroscopy [9,10].
Such layered two-dimensional heterostructures can be grown
epitaxially in a controlled manner, revealing new families of
materials that cannot be naturally found and whose prop-
erties extend far beyond the simple combination of the
separated layers [3]. Consequently, these systems offer a vast
playground where the electronic and optical properties can
be modified at the atomic scale due to combinations and
variations in screening, electronic confinement or spin-orbit
interaction.

Of particular interest are heterostructures of monolayer
transition metal dichalcogenides (TMDCs) of the type XS2

adsorbed on monolayer graphene. These systems can be con-
sidered as special type I heterostructures where one of the
two layers is a semimetal, and therefore, both the conduction
band minimum and the valence band maximum are located in
the same layer and touch at individual high symmetry points
in the Brillouin zone. Moreover, these heterostructures have
the peculiarity of stacking graphene, a material characterized
by an extremely high carrier mobility [11,12] and highly
symmetric density of states (DoS) close to its charge neutral-
ity point, with a strongly confined monolayer semiconductor
with direct band gap and which can have a sizable spin-orbit
splitting [13].

*daniel.hernangomez@weizmann.ac.il

Strong confinement in two-dimensional heterostructures
makes them particularly sensitive to the potential created by
impurities or vacancies (defects). These vacancies are known
to produce in-gap states with clear fingerprints that can be
measured by local probes [14] as well as affect the het-
erostructure optical properties. These optical properties are
also well known to be related to the large pristine [15,16] and
defect-induced [14] exciton binding energies and show valley
circular dichroism due to valley-spin coupling by means of
spin-orbit interaction [17–20].

From the electronic point of view, defects created by sub-
stitutions or vacancies can be considered as “electron traps.”
They have been anticipated to decrease the electronic con-
ductivity and electronic mobility when the Fermi energy is
close to the localized defect levels, hybridized, for exam-
ple, with the continuum from the band extrema [21,22].
For similar reasons, defect scattering channels have also
been hypothesized to be the source of longer lifetimes of
electronic states compared to hole ones in WS2–graphene
(Gr) interfaces after ultrafast charge separation induced by
photoexcitation [7–9] as they are expected to efficiently pin
down the photogenerated charge carriers. However, as was
recently shown by some of us for the case of oxide sur-
faces [23], the role of defects may be subtle and cannot be
always considered as trivial charge traps simply increasing
localization or decreasing photoconductivity.

Defects created by vacancies in the regular lattice of
TMDCs can be seen also as quantum dots [24] with the
symmetry provided by the host lattice determining their shell
structure. In these “artificial atoms,” the discrete electronic
charge as well as the interplay between Coulomb interac-
tion, spin-orbit coupling and quantum statistics manifests
in several well-studied physical effects (statistical crossover
in the many-body interference blockade regime [25], chan-
nel blockade [26], spin blockade [27], geometrical charge
frustration [28], or triplet-singlet transitions induced by
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superexchange [29] among many others) and applications
(spin qubits [30] or current rectifiers [31]). In particular,
many-body quantum interference has been the subject of
recent research [32–34] as well as its connection with the
quantum dot symmetry and symmetry-induced degeneracies.
Such type of dots can be studied both experimentally and
theoretically for lateral heterostructures [26,28,35–37]. Va-
cancies in TMDCs and TMDC heterostructures thus open the
possibility of studying the electronic and spin properties of
these systems in the atomistic limit.

In this paper, we study the charge transfer processes oc-
curring in XS2–Gr heterobilayers (here X = Mo, W) with
chalcogen vacancies. These vacancies, understood in the di-
lute limit, act as isolated defects or “dots” with the symmetry
provided by the hosting lattice. The vacancy states are tunnel-
coupled to a graphene reservoir which provides a structured
DoS. We compute the electronic transition times for charging
and discharging of the empty levels of the vacancy, due to tun-
neling from and into the graphene layer, with a combination
of ab initio, model Hamiltonian and the quantum master equa-
tion. The transition rates for second-order processes in the
tunneling Hamiltonian are employed to understand the semi-
classical many-body open quantum system dynamics. We also
discuss the role of degeneracies in the potentially coherent dy-
namics at the dot. Finally, we examine the interplay between
orbital (lattice “symmetry”) and spin degrees of freedom that
can occur by means of spin-orbit interaction. The population
dynamics for the nontrivial charge transfer mechanism and
its consequences for the semiclassical quantum dot dynamics
are analyzed in detail. Overall, we show how the combination
of different theoretical techniques can be employed to study
quantum dot dynamics at complex interfaces, with realistic
physical parameters reflecting the specific system structure.
This work will also serve as a basis to understand more subtle
aspects of the quantum dot dynamics and as a guidance to the
interpretation of experimental observations.

The paper is organized as follows: In Sec. II we present
density functional theory (DFT) band structure calculations
for the MoS2–Gr and WS2–Gr heterostructures upon which
our model will be constructed. In Sec. III we discuss the
low-energy model Hamiltonian used to analyze our DFT re-
sults. A summary of the kinetic theory used in this paper
is briefly presented in Sec. IV. The results for the dynam-
ics and the electronic transition rates are shown in Sec. V,
considering separately the case of weak and strong spin-orbit
interaction. We conclude this paper in Sec. VI and devote the
Supplemental Material (SM) [38] to additional results (see
also references [39–48] therein).

II. DENSITY FUNCTIONAL THEORY BAND
STRUCTURE ANALYSIS

A. Geometry

To study the role of isolated defects in XS2–Gr heterobilay-
ers, we adopt the supercell approach. The supercell employed
in this work is shown in Fig. 1(a). This supercell is made
from a heterobilayer formed by a TMDC of the type XS2

(where X = W, Mo) and graphene. The commensuration of
the corresponding lattices in each layer requires us to have

FIG. 1. (a) Top view of the XS2–Gr supercell (here X = W). The
4 × 4/5 × 5 supercell is indicated by the red solid parallelogram,
the position of the single chalcogen vacancy (and its symmetry) is
marked by the red triangle located at the origin of the unit cell,
appearing four times due to the supercell periodicity in this panel.
The dotted lines represent the borders of adjacent supercells. The
dashed red line along the main diagonal indicates that graphene
adsorption on the TMDC reduces the global symmetry of the system
from C3v to Cs, i.e., the only symmetry element is the reflection
plane perpendicular to the heterostructure and bisecting the angle
between the supercell basis vectors. (b) Side view of the WS2–Gr
heterostructure cut along the dashed-dotted black box marked in
panel (a). The missing atom corresponds to the chalcogen vacancy
in the supercell, represented here by a red triangle.

4 × 4 elementary cells for XS2 and 5 × 5 for graphene in the
supercell. The supercell was previously optimized using DFT;
see details in Methods section. The in-plane lattice constant
for the XS2 monolayer is equal to 3.15 Å, while graphene has
an in-plane lattice constant of 2.52 Å (the distance between
nearest-neighbor carbon atoms of 1.455 Å). In other words,
the graphene lattice is strained by ∼2.4% with respect to an
isolated relaxed graphene monolayer while we keep TMDC
layer almost not strained with respect to the experimental
lattice constant [49]. In this sense, we note the difference
from other calculations performed in previous works with
the same type of commensurate supercell [6], in which the
strain is distributed between the two layers of the TMDC–Gr
heterostructure with similar lattice mismatch. The supercell
lattice vectors therefore have a length of |R1| = |R2| � 12.6
Å . The optimized interlayer distance between the XS2 and
the graphene layers in the supercell is 3.44 Å. In order to
prevent spurious interaction between the periodic replicas, an
out-of-plane vacuum layer of width of ∼17 Å is employed. We
consider a single chalcogen vacancy per unit cell (this would
correspond to a ∼3% vacancy concentration). The vacancy is
located on the opposite side, in correspondence to a hollow
position of the graphene layer and, for convenience, it is
chosen to be the origin of the supercell. In our calculations, the
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FIG. 2. (a) Band structure of the WS2–Gr heterostructure in the absence of spin-orbit interaction computed along the M̄-K̄-�̄ path in the
supercell. The chalcogen vacancy creates three defect bands, two of them appearing in the pristine WS2 gap and hybridizing with the graphene
Dirac cone centered at K̄ and setting the charge neutrality point. (b) Kohn-Sham pseudocharge density (|�|2) for the empty states in the red
box in panel (a), labeled by ©A , ©B , and ©C from highest to lowest energy. The left column shows the side view, while the right column displays
the top view of the corresponding Kohn-Sham density. (c) Same as in (a) but for the MoS2–Gr heterostructure. The inset shows the path in
the hexagonal and rhombohedrical mini-Brillouin zone. As in the WS2–Gr interface, the chalcogen vacancy creates three defect bands, two of
them appearing in the MoS2 pristine gap close to the Dirac point and opening a gap at the charge neutrality point of graphene located at K̄.
(d) Same as in (b) but for the states in the red box in panel (c), labeled from ©A to ©F from highest to lowest energy.

supercell with a single vacancy has been created by removing
a chalcogen atom from the previously optimized nondefected
periodic supercell. We have checked that structural relaxation
of the heterostructure lattice in the presence of the vacancy
does not change the symmetry properties, only shrinking the
defect size by roughly ∼5% due to a reduced metal-metal (X–
X ) distance close to the vacant sulfur atom while preserving
qualitatively the shape and nature of the DFT band structure.

B. Band structure without spin-orbit interaction

We start by considering the DFT band structure of the
periodic supercell in the absence of spin-orbit interaction.
The computational details of our ab initio calculations are
given in Sec. I of the SM. The band structure of the WS2–
Gr interface is shown in Fig. 2(a). We clearly observe the
superposition of the band structures of graphene (with its well-

known Dirac cone located at the K̄ point of the mini-Brillouin
zone) and WS2 monolayers, similarly to previously reported
calculations [6,50]. For our supercell, the Dirac cone that sets
the Fermi energy of the heterobilayer (and corresponds to
the graphene charge neutrality point) is located in the WS2

pristine bandgap. Note that since the crystal structure of each
individual layer has an hexagonal unit cell, the Brillouin zone
is also hexagonal and matching at the edge for this super-
cell configuration sets the point K of the unfolded Brillouin
zone to always map into K̄ of the mini-Brillouin zone by
construction [51] (other high symmetry points may also map
onto K̄). The nondefect conduction and valence bands of WS2

are located at ∼1 eV higher and lower in energy, respectively,
from the graphene K̄ point.

The sulfur vacancies generate three defect bands stem-
ming from the bond orbitals of the neighboring metal
atoms [52–54]. The creation of this type of monoatomic
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nondecorated vacancies are well known for being energeti-
cally favorable since they have the lowest formation energy
of all the intrinsic vacancies present in TMDCs [53–57]. In
addition, as a consequence of the C3v symmetry of the sulfur
vacancy, the defect bands comprise two empty and quaside-
generate bands in the pristine WS2 gap and one occupied band
located in the valence region (see Sec. II of the SM [38] for
a general discussion on elementary symmetry properties). At
the �̄ point, the two empty in-gap states are located at ∼0.3 eV
above the graphene charge neutrality point. Here the slightly
broken symmetry in the supercell (see Fig. 1) manifest itself in
a splitting of ∼1 meV between the energy levels. The vacancy
states are mostly composed of d orbitals of the W atoms closer
to the vacant S atom. This situation was previously shown in
other TMDCs such as MoS2 (see Refs. [52–54] and below).
While the in-gap defect bands are relatively flat due to the
spatial localization of the defect states in real space, they are
still weakly dispersive close to the Dirac cone. This results
from residual defect-defect interaction between neighboring
supercells when the TMDC layer has 4 × 4 XS2 unit cells; see
Supplemental Material in Ref. [14]. We note that the in-gap
defect bands hybridize with the graphene Dirac cone close
to the K̄ point, generating anticrossings with characteristic
level splittings. The different size of the two anticrossings is
attributed to the symmetry properties of each of the states,
being even and odd with respect to a reflection on a plane
perpendicular to the heterostructure and located along the
supercell main diagonal; see Fig. 1. We have checked that
the electronic band structure is robust to the position of the
vacancy, i.e., the band structure to be qualitatively invariant
and the anticrossing position and size are well preserved, as
globally breaking spatial symmetries in the supercell due to a
change of the position of the vacancy does not substantially
alter the local symmetry properties of the associated in-gap
localized states.

In Fig. 2(b) we show the (pseudo)-densities of the Kohn-
Sham states, |�|2, marked by the red box in Fig. 2(a) for the
corresponding k point (dashed vertical line). As anticipated
above, the hybridization between the two layers occurs at
specific k points in the supercell Brillouin zone (forming
an avoided ring around the graphene Dirac point due to the
almost perfect conical shape of the graphene bands). This
hybridization yields in-gap states with weight on both layers
of the heterostructure at these avoided crossings [see panels
©B , ©C of Fig. 2(b) in comparison to panel ©A ]. We note that
hybridization can also occur far from the Fermi level, for
example, in the valence band region close to the M̄ point,
where coupling occurs between extended states on the WS2

and graphene layers as can be anticipated from the local
energy level splitting.

The scenario described for the WS2–Gr interface is similar
to the one found in the MoS2–Gr heterostructure; see Fig. 2(c)
and 2(d). In Fig. 2(c) we display its DFT band structure. The
geometry employed was obtained from the WS2–Gr super-
cell by substitution of the W atoms by Mo and keeping the
same lattice parameters (the experimental lattice parameters
for MoS2 and WS2 are almost the same, being 3.15 Å for
the former [58] and 3.153 Å for the latter [49]). We observe
that, similar to the WS2–Gr interface, the local C3v symmetry
of the vacancy yields the anticipated three defect bands, two

of them being located in the pristine MoS2 bandgap (about
50 meV above the charge neutrality point for �̄) and one in the
valence band region [14,52–54]. Interestingly, the graphene
Dirac cone is now gapped (by about 50 meV) due to the
hybridization of graphene and MoS2 defect bands occurring
very close to the charge neutrality point. In Fig. 2(d) we
display the corresponding Kohn-Sham pseudodensities, |�|2,
for the states located in the red box in Fig. 2(c). As expected
from the presence of anticrossings in the energy spectrum, we
find again interfacial hybridized states with substantial wave
function weight on both layers of the heterostructure; see plots
©B and ©D .

C. Band structure with spin-orbit interaction

In the presence of spin-orbit interaction, the valence and
conduction bands split and the DFT band-gap from pris-
tine WS2 is slightly reduced to ∼1.75 eV from ∼1.95 eV;
see Fig. 3(a). For comparison, the calculated WS2 bandgap
(computed at the G0W0 level for a 5 × 5 supercell without
adsorbed graphene) is equal to 2.8 eV while the experimental
bandgap equals to 2.5 eV [14]. In general, not only screening
but adsorption by graphene is expected to renormalize the
G0W0 band gap as well [56]. Therefore, in our calculations we
underestimate the bandgap due to the well-known approxima-
tions in the exchange-correlation part of the DFT functional
by at most ∼0.75 eV. The spin-orbit interaction also splits
the pair of in-gap defect levels by 0.15 eV at the �̄ and M̄
points, suggesting that the spin-orbit coupling is strong. This
spin-orbit splitting is well understood from the combination of
the action of time-reversal and translational symmetry [59]. In
particular, note that at the time-reversal invariant points for the
honeycomb lattice �̄ and M̄, all bands need to be doubly de-
generated [59,60], while close to the spin-degenerated Dirac
cone, the vacancy in-gap states split due to their small but
finite dispersion yielding a spectral structure of four spin-orbit
split energy levels.

The scenario is analogous for the MoS2–Gr interface, as
displayed in Fig. 3(b). Here, however, the spin-orbit coupling
reduces the pristine band gap to ∼1.7 eV from ∼1.85 eV as
weaker spin-orbit interaction induces smaller splitting of the
conduction and valence bands of MoS2 compared to WS2. A
value of ∼2.8 eV has been reported for the isolated MoS2

monolayer at the G0W0 level [61]. In the case of a nonde-
fected interface with a similar supercell size than the one
employed here, previous calculations in the literature yield
a pristine band gap upon adsorption of 1.73 eV at the DFT
level and 2.43 eV at the G0W0 level [62]. Therefore, we
expect an underestimation of the band gap by ∼0.7 eV. The
quasidegenerated defect bands are split by ∼0.05 eV at the �̄

and M̄ points, roughly three times smaller than in WS2 due
to weaker spin-orbit interaction in MoS2 compared to WS2.
For the same reason, the occupied defect band barely lifts its
spin degeneracy, and the spin-orbit splitting is ∼10 meV at
the K̄ point. Moreover, due to spin-orbit coupling, the lower
empty defect band now appears below the graphene charge
neutrality point. In other words, the system acquires partially
a metallic character. However, note that this occurs only close
to the K̄ point, where the defect bands bend due to residual
defect-defect interaction between the periodic supercells, and
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FIG. 3. Band structures of the XS2–Gr heterostructures in the
presence of spin-orbit interaction computed along the M̄-K̄-�̄ path in
the supercell. Panel (a) corresponds to the case X = W, panel (b) to
the case X = Mo. The spin-orbit splitting of the defect energy levels
yields two degenerated levels at the �̄ point, which later splits into
four levels clearly visible closer to the graphene Dirac cone centered
at K̄. The color code represents the spin magnetization projected in
the direction perpendicular to the heterobilayer. The spin-orbit split
defect levels have a well-defined spin direction in the vicinity of the
K̄ point and become spin-degenerated both at high symmetry points
M̄ and �̄. The graphene Dirac cone remains spin-degenerated in the
whole Brillouin zone as expected due to the small spin-orbit coupling
present in the carbon atom as well as its regular structure.

far from the �̄ point, which is the point of interest for the
defect states in the isolated vacancy limit. Note that this is
a nonstandard usage of the supercell approach, as we are
employing the supercell (which contains vacancies in a ∼3%
concentration) in order to study the dynamics at the level
of the isolated vacancy. We also note that among the small
effects of the geometry optimization in the presence of the
vacancy is to revert the situation of partial occupancy of
the vacancy energy bands by shifting the defect states again
above the Dirac K̄ point. Because this effect is not relevant for
the physics discussed in the rest of the paper, in our model we
shall simply consider always two empty in-gap defect levels
(i.e., four states, once spin is taken into account).

To understand the impact of spin-orbit coupling beyond the
energy spectrum, we also computed the spin magnetization
of the defected XS2–Gr heterostructures. The results for the
spin expectation value in the direction perpendicular to the

heterobilayer are shown by the color code of the electronic
band structure in Fig. 3. An important observation that results
from this calculation and that will be employed later for the
modeling of the dynamics, is that hybridization of the vacancy
levels and graphene preserves the spin orientation. This can
be easily seen in Fig. 3 where the spin up defect level couples
only to the spin up component of the graphene Dirac cone
(here represented in red color); similarly, the spin down defect
level hybridizes only with the spin down component (here
shown in blue color). Therefore, we anticipate a competition
between the spin and “orbital” (the angular momentum given
by the lattice symmetry) degree of freedom to be manifested
in the dynamical features of the population and depopulation
of the vacancy once strong spin-orbit interaction is taken into
consideration.

III. MODEL

In order to microscopically describe the dynamics associ-
ated with the vacancy embedded in the TMDC–Gr interface,
we consider an ab initio inspired model for a quantum dot
coupled to a graphene “lead” (i.e., reservoir or bath) in a
system-bath setup. Our model Hamiltonian is derived using
electronic structure information, namely, the hybridization
matrix elements between the TMDC and graphene monolay-
ers are calculated by means of the combination of DFT and
symmetry analysis, with the position of the vacancy levels
being derived from DFT, which could potentially be corrected
by a GW calculation. We note that our approach aims to
describe a complimentary transport regime focused on vertical
tunneling as opposed to the in-plane graphene-proximitized
coherent transport that has been previously described using
model Hamiltonians [50].

We thus follow the standard partitioning of transport sys-
tems, in which the Hamiltonian is composed of three parts,

Ĥ = Ĥsys + Ĥlead + Ĥtun. (1)

Here the system Hamiltonian corresponds to our vacancy
(“dot”) described as

Ĥsys =
∑

iσ

εiσ d̂†
iσ d̂iσ + Ec

2
N̂ (N̂ − 1) + ĤSOC. (2)

The first term describes an effective single-particle vacancy
Hamiltonian without spin-orbit interaction. We represent by
d̂† (resp. d̂) the creation (resp. annihilation) operator of an
electron in the dot, labeled by the orbital index i and spin σ ;
εiσ are the corresponding single-particle effective energies of
the vacancy assumed to be independent of the quasimomenta
associated to the supercell [63]. The second term corresponds
to the Coulomb interaction at the dot within the constant
interaction picture. Here Ec is the so-called charging energy
and N̂ = d̂†

iσ d̂iσ the total number operator. By construction,
the charging energy participates in the physical processes only
if more than one electron populates the vacancy. Due to the
size of the defect impurity (see Fig. 2) we focus on the limit in
which Ec is the largest energy scale of the system. Finally, the
spin-orbit coupling term accounts for the splitting observed
in the ab initio calculations and its form and impact on the
dynamics will be discussed in Sec. V B.
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The “lead” Hamiltonian corresponds to the graphene layer
that acts as an fermionic reservoir/bath with

Ĥlead =
∑
kσ

εkσ ĉ†
kσ

ĉkσ . (3)

Here ĉ† (resp. ĉ) corresponds to the electronic creation (resp.
annihilation) operators in the graphene layer and εkσ is the
low-energy graphene energy dispersion relation. Close to the
K̄ point, the graphene dispersion relation is isotropic and
linear, i.e., εkσ = h̄vF|k|, and with slope proportional to the
Fermi velocity, vF.

Finally, the tunneling Hamiltonian, that combines the bath
and system operators, is given by

Ĥtun =
∑

p

∑
iσ

∑
k

pt p
ikσ d̂ p

iσ ĉ p̄
kσ , (4)

where p = ± is employed as a short-hand notation to label
the creation (+) and annihilation (−) operators, together with
the conventions ĉ+ = ĉ†, ĉ− = ĉ. We also adopt the notation
p̄ = −p. The tunneling Hamiltonian describes the coupling
between the vacancy at the TMDC layer and the graphene
reservoir through the set of hybridization (or tunneling) matrix
elements, t±

ikσ
. These matrix elements are interpreted as the

coupling between a state with momentum k and spin σ in the
graphene layer and a defect state in the XS2 layer with quan-
tum numbers i and σ . By definition, the tunneling amplitudes
satisfy t+ = (t−)∗. Note that tunneling by definition preserves
the spin orientation due to the small vacuum distance that
separates the two layers of the heterostructure as was seen in
Sec. II C and is further discussed in Sec. V.

So far we have considered only DFT information in our
model. However, a more realistic parametrization would in-
clude the correction to the position of the defect levels as
obtained from a G0W0 calculation. Under the assumption that
the hybridization matrix elements are not affected at this level,
as they essentially depend on the defect and graphene wave
functions, it is possible to estimate the impact of screening
in the many-body transition rates by shifting εiσ → εiσ + δE ,
where δE would approximately be half of the change from
the G0W0 to the DFT pristine bandgap. In in Sec. IV of the
SM [38] we discuss, by means of an illustrative case, how
the model depends on the position of the defect energy levels.
Reciprocally, we could also use the levels shift of a DFT band
structure as a free parameter, if fit to experimental data is
required, therefore, providing guidance in the interpretation
of experimental results.

IV. KINETIC EQUATION

A. Generalities

We investigate the charge quenching of the strongly in-
teracting impurity-bath system by means of the generalized
quantum master equation for the reduced density opera-
tor [34,64–68]. This approach allows for the description of
interference effects even for strongly interacting systems (see
Ref. [68] and references therein). Moreover, its recent appli-
cation to THz-STM [69] suggests a natural extension of the
present study of XS2 impurities to setups with time depen-
dent driving. Here we briefly summarize the main steps to

the derivation of a kinetic equation for the reduced density
operator.

We start from the Liouville–von Neumann equation [70]
for the density matrix, which can be written in a compact
form as ˙̂ρ = Lρ̂, with ρ̂ being the density operator and the dot
the time derivative. The object L is the so-called Liouvillian
superoperator defined as

L := − i

h̄
[Ĥ, •], (5)

with [•, •] the commutator and Ĥ the total Hamiltonian
combining the system, bath, and hybridization terms; see
Eq. (1). The equation of motion for the reduced density ma-
trix, which contains degrees of freedom of the system only,
can be obtained after tracing out the degrees of freedom of
the fermionic bath, ρ̂red = Trleadρ̂. The bath is assumed to
be at local thermodynamical equilibrium, characterized by a
temperature T and chemical potential μ, and, therefore, it is
described by the equilibrium density matrix

ρ̂lead = e−β(Ĥlead−μN̂ )

Zlead
. (6)

Here β = (kBT )−1 and Zlead is the grand-canonical partition
function which ensures the normalization of the lead density
matrix, Trleadρ̂lead = 1. Typically, it is assumed that the ini-
tial state for the integration of the Liouville–von Neumann
equation is separable, ρ̂(0) = ρ̂sys(0) ⊗ ρ̂lead. Consequently,
the entanglement between the system and the lead will appear
as a result of the hybridization between them and manifests
in the reduced density matrix dynamics at t > 0. Using the
Nakajima-Zwanzig projector operator technique [71–73], an
integro-differential equation for the reduced density matrix
of the system, ρ̂red = P ρ̂, where P := Tr{•} ⊗ ρ̂lead can be
found:

˙̂ρred(t ) = Lsysρ̂red(t ) +
∫ t

0
dsK(t − s)ρ̂red(s). (7)

The kernel superoperator, K(t ), is given by

K(t ) = PLtunḠ(t )LtunP, (8)

and it is a combination of the Liouvillean superoperators, the
projector and the propagator

Ḡ(t ) = exp[Lsys + Llead + (1 − P )Ltun(1 − P )](t ), (9)

where each Liouvillian superoperator in Eqs. (7)–(9) is given
by Eq. (5) after replacement of Ĥ by Ĥi.

Equation (7) is formally exact, it contains memory ef-
fects and describes the open quantum system dynamics at
all perturbative orders in the tunneling Hamiltonian. Due to
its convolution form, it is natural to work in Laplace space.
Employing the final value theorem, it is easy to show that the
steady-state reduced density matrix satisfies the equation

[Lsys + K̃(0)]ρ̂∞
red = 0, (10)

where ρ̂∞ ≡ ρ̂(t → ∞) and

K̃(0) = lim
λ→0+

∫ +∞

0
dt e−λtK(t ). (11)

To investigate the time evolution, the Markov approximation
is applied to Eq. (7), thus leading to an equation of motion
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where we have discarded memory effects

˙̂ρred(t ) = [Lsys + KMarkov]ρ̂red(t ), (12)

with KMarkov = K̃(0).

B. Sequential tunneling

From Eq. (8) we infer that the Markov approximation ap-
plies if the smallest timescale is the memory time. The latter
is obtained from the correlator of the thermalized bath and
reads τcorr = h̄β. Therefore the condition τcorr 
 τ , with τ

the characteristic evolution time of the system, translates into
having the tunneling rate � ∼ 1/τ smaller than the thermal
energy, h̄� 
 kBT . The latter is in turn smaller than the charg-
ing energy, Ec. As the tunneling rate is proportional to powers
of the modulus square of the tunneling matrix elements tikσ in
Eq. (4), under the condition of weak tunneling coupling, the
Markovian kernel can be expanded perturbatively in a con-
trolled way. Here we retain only the first nonvanishing term in
this perturbative expansion, K̃ � K̃(2) + O(K̃4). From Eq. (8),
this first contribution to the kernel therefore reads [73]

K̃(2)(0) = PLtunG̃0LtunP, (13)

with

G̃0 = lim
λ→0+

1

λ − Lsys − Llead
, (14)

being the Laplace transform of the free propagator in the
absence of tunneling from or to the bath. Note that the formal
limit λ → 0+ is to be taken only at the end of the calculation.
The kernel in Eq. (13) corresponds to the so-called coherent
sequential tunneling regime [74]. For coherent sequential tun-
neling, the time between each tunneling event corresponds
to the largest timescale in the system and there cannot be
coherence between individual tunneling events.

After integrating out the bath degrees of freedom in
Eq. (13) the second-order kernel reads

K̃(2)(0) = − lim
λ→0+

i

2π

∑
α,α′

∑
p,σ

∑
i, j

∫
dE αα′�p

i j (E , σ )

× D p̄
iσα′

f (pα)(E )

pE − ih̄Lsys + iλ
Dp

jσα, (15)

where we have used

Tr
(
cp,α

kσ
cp′,α′

k′σ ′ ρ̂lead
) = δkk′δσσ ′δpp̄′ f (pα′ )(E ). (16)

Here the Liouville indices α, α′ = ±1, Dα are superoperators
defined by their action from the left/right (resp. +/−) on the
density matrix

Dp
iσ+ρ̂ = d̂ p

iσ ρ̂, (17)

Dp
iσ−ρ̂ = ρ̂d̂ p

iσ , (18)

and f +(E ) = {exp[β(E − μ)] + 1}−1, f −(E ) = 1 − f +(E )
are Fermi distribution functions.

The geometry and the hybridization of the single-particle
defect states with the fermionic reservoir are contained in the
single-particle (tunneling) rate matrix (also known as tunnel-
ing self energy) [34,68]

�
p
i j (E , σ ) = 2π

h̄

∑
k

t p̄
ikσ t p

jkσ δ(εkσ − E ), (19)

where �+
i j (E , σ ) = �−

ji (E , σ ). This matrix extends the con-
cept of tunneling rate and its form determines the strength of
the interference effects between quasidegenerated many-body
states [32,67]. The matrix �(E ) is defined in the relevant
sector of the single-particle Hilbert space, spanned in this
study by the two spinfull empty levels of the XS2 vacancy.
The calculation of the rate matrix, combining ab initio results
and the symmetry analysis from from Sec. III in the SM, is
performed in Sec. V.

V. RELAXATION RATES AND DYNAMICS

We now discuss the relaxation rates and Markovian kinetic
equations for our minimal model. As Ec is the larger energy
scale, we consider only the addition of a single electron to
the vacancy. Therefore, the interaction term in Eq. (1) does
not contribute explicitly to the transition rates. We denote the
ground state of the system with an empty vacancy by |N〉;
this many-body state corresponds to a state in which two
levels of the impurity are empty and the one far below the
Fermi level is fully occupied, as in the equilibrium situation
described by DFT. Correspondingly, the charged system in
which an additional electron has tunneled into the vacancy
is represented by the many-body state |N + 1〉 = d̂†

iσ |N〉 with
one additional electron created at the impurity level described
by the quantum numbers (i, σ ).

We envisage two possible pathways leading to a singly
charged impurity, as shown schematically in Fig. 4(a). In the
first case, a photoexcited electron from the occupied dot levels
is promoted to one of the empty levels of the vacancy. Due to
hybridization of the defect states and the valence band at the
XS2 layer, a hole subsequently tunnels towards the graphene
layer. Since this process involves photoexcitation of the
electron (photoemission for the reverse process) it naturally
involves excitons. We shall not consider it here, for the sake of
simplicity. The empty dot levels can by populated in a second
way by increasing the chemical potential of the graphene layer
by means of an external back gate or by doping. In this case,
electron tunneling occurs directly from the reservoir to the
empty single-particle level at the vacancy. The reverse pro-
cess would occur by tunneling from the previously occupied
vacancy states into the graphene layer in a similar way.

A. Weak spin-orbit interaction

1. Single-particle rate matrix

If the spin-orbit interaction is weaker than the coupling
to the reservoir, as it is for MoS2, we can, at first, neglect
ĤSOC and concentrate on the single-particle Hamiltonian in-
cluding only the degenerate transport levels, the tunneling
term and the reservoir, e.g., the two empty defect “bands”
tunnel-coupled to the graphene Dirac cone. We will apply
the same analysis also to the WS2–Gr heterostructure, this
time to better highlight the effects of spin-orbit interaction,
presented later in Sec. V B. In both cases, the relevant Fock
space has dimF = 5, with the N-sector (vacuum) being
one-dimensional (as it corresponds to a closed-shell ground
state) and the N + 1-sector four-dimensional (due to spin
and orbital degrees of freedom). Since the N + 1-sector is
a simple single-particle sector, its dimension coincides with
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FIG. 4. (a) Sketch of the low-energy landscape of the XS2 dot
(here X = W) and the graphene reservoir, providing a structured
DoS. We also show the potential single-particle electronic transitions
occurring within or to the vacancy. The graphene reservoir is sepa-
rated by a distance dinter from the dot-containing “active” layer. The
position of the vacancy energy levels εi are determined with respect
to the graphene charge neutrality point (μ = EF, set as the zero of
energies). We represent two possible pathways for a N → N + 1
transition: (i) A photoexcited electron is promoted to one of the two
empty quasidegenerate levels leaving behind a hole in the originally
doubly occupied state of the dot, which can be refilled with the
hole tunneling towards graphene (blue dotted arrows) (ii) by means
of an electric field created by gate voltage or doping the chemical
potential of graphene can be changed and an electron tunnel from
the graphene layer into one of the empty vacancy levels (yellow
solid arrows). (b) Representation of the many-body Hilbert space and
the transition times, τα,β , between the many-body initial state α and
final state β (characterized by the total particle number N, N + 1)
in the absence or presence of very weak spin-orbit coupling. The
many-body energies are considered in the grand canonical ensemble,
E0 = ε0 − Nμ and E1 = ε1 − (N + 1)μ, with μ ≡ EF at zero gate
voltage and ε0,1 are the total energies.

the one of the (single-particle) Hilbert. Consequently, � is a
four-dimensional matrix which, in the absence of spin-orbit
interaction, simply factorizes into an orbital and a trivial spin
component: � = �orb ⊗ 12 Moreover, we show in Sec. III in
the SM [38] that the orbital component of the single-particle
rate matrix is also diagonal with the form

�orb
uu′ (E ) = π2

2h̄

Asc

Ac
|tu|2ρGr(E )δuu′ , (20)

where u and u′ are the quantum number characterizing the
symmetric/antisymmetric defect states, Asc is the area of the

supercell and the DoS of graphene is given by ρGr(E ) =
2Ac|E |/(π h̄2v2

F) [12]. Here we considered the unit cell area
of graphene given by Ac = 3

√
3a2/2 with a = 1.42 Å the

graphene Fermi velocity vF ∼ 106 m/s and the ratio Asc/Ac =
25. Thus, �orb can also be cast into the form

�orb = �uu + �ūū

2
12 + �uu − �ūū

2
τz. (21)

Note that this object has dimensions of [time]−1.
The modulus of the hybridization matrix elements can be

directly extracted from the DFT band structure by looking at
the anticrossing of the energy levels close to K̄, considering
this problem as a local two-level problem in k-space with
Hamiltonian

Ĥloc =
(

E1 t
t∗ E2

)
. (22)

The straightforward diagonalization of Eq. (22) gives the
eigenenergies

E± = E1 + E2

2
± 1

2

√
(E1 − E2)2 + 4|t |2. (23)

In the literature [75,76], this expression is sometimes known
as “avoided crossing formula.” We then estimate |t | by choos-
ing the zero of energy at the point where the unperturbed
energies are degenerated, |t | = (E+ − E−)/2. From the DFT
band structures [Figs. 2(a) and 2(c)] we find |tMo

u | = 12 meV,
|tMo

ū | = 8 meV, together with Eu = 57 meV for MoS2–Gr
and |tW

u | = 15 meV, |tW
ū | = 5 meV with Eu = 298 meV for

WS2–Gr.

2. Transition rates

Using Eq. (15), we can obtain the transition rates for
the charging process between an initial uncharged and final
charged vacancy, N → N + 1, as well as the reverse—
discharging—process N + 1 → N , in the lowest nonvanish-
ing perturbative order and as shown in Fig. 4(b). As �i j (E , σ ),
as well as the Fermi function f (pα)(E ) are smooth functions,
we can evaluate the integral by using the Sokhotski-Plemejl
theorem over the real line [77]

lim
λ→0+

∫ +∞

−∞
dω

h(ω)

ω + iλ
= p.v.

∫ +∞

−∞
dω

h(ω)

ω
− iπh(0),

(24)

where p.v. stands for principal value and h(ω) is a complex-
valued function [78] From the real part of K̃(2)(0) acting on
the reduced density matrix ρ̂red we extract the transition rate
Wα,β between an initial α and final β many-body state. The
projection on the many-body Hilbert space of the vacancy
yields

WN,N+1 =
∑

u

W0→u,

=
∑
uσ

∫
dE〈N |d̂uσ |N + 1〉〈N + 1|d̂†

uσ |N〉

× �u(E ) f +(E )δ(E − �E0,u), (25)
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where �u := �uu and by definition �E0,u = Eu − E0 > 0.
This expression simplifies to

WN,N+1 = 2
∑

u

�u(�E0,u) f +(�E0,u), (26)

where the factor of two stems from the spin degeneracy. From
this rate, we define the transition time for the population of
the vacancy by an additional electron as τN,N+1 := 1/WN,N+1.
The discharging process in which the additional electron ini-
tially present at the vacancy leaves the dot by tunneling back
towards the graphene layer is given by

WN+1,N = 2
∑

u

�u(�E0,u) f −(�E0,u). (27)

The corresponding transition time can be defined analogously
as for the charging process, τN+1,N := 1/WN+1,N .

Evaluation of Eqs. (26) and (27) at room temperature (T =
300 K) and chemical potential μ = EF (μ ≡ 0 at the charge
neutrality point) yields τMo

N,N+1 = 29.2 ps and τMo
N+1,N = 3.1

ps for the MoS2–Gr heterobilayer and τW
N,N+1 = 47.1 ns and

τW
N+1,N = 0.5 ps for the WS2–Gr heterobilayer. The charging

and discharging tunneling times are crucially influenced by
the number of states in the graphene reservoir available to
tunnel at the resonant energy. Ultimately, the Dirac dispersion
of graphene (linear DoS) and the Pauli exclusion principle
(Fermi function) set their values.

Thus, the substantially longer charging time for the case of
WS2 compared to MoS2 can be understood from the higher
energy difference between the empty vacancy states and the
chemical potential of graphene in the case of WS2 as com-
pared to the ones of MoS2 [see Figs. 2(a) and 2(c)]. Even
at room temperature and despite the larger DoS in graphene,
only a few thermally excited electrons can populate the impu-
rity. On the contrary, the discharging time is shorter for WS2

compared to MoS2. This is a consequence of the larger amount
of available states to tunnel to in graphene for the WS2–Gr
interface, which manifests itself in the density of states, as the
Pauli exclusion priciple cannot hinder the population of empty
states. We note that graphene being a semimetal leads to a
counterintuitive behavior of the transition times compared to
a metallic reservoir because the closer the state is to the Dirac
point, the less available states exists to tunnel from and to.

The calculated relaxation time at zero chemical potential
roughly agree to the one experimentally found in tr-ARPES
experiments, in which the electron is photoexcited to a state
in the conduction band of the TMDC layer [7,8]. In the exper-
iment, electronic lifetimes of the order of ∼1 ps are measured
from the pump-probe signal for the WS2–Gr heterostructure.
However, a direct comparison between our calculations and
these experimental lifetimes is strictu senso not easy, because
in this experiment, first excitons are resonantly excited as
initial state for the dynamics of hot carriers. Although ther-
malization and exciton dissociation are expected to occur at
shorter timescales � 100 fs, compatible with a binding energy
of ∼200 meV found in recent calculations for the “A-like”
exciton [79], the exciton dissociation and recombination to
the defect states can strongly influence the dynamics. Sec-
ond, the measured dynamics would involve also the pristine
conduction (or valence, in the case of hole transfer) bands, a

scenario different from what we are considering here, where
those bands are assumed to be far in energy from the relevant
defect transport channels and therefore do not participate in
the dynamics. Finally, our theory considers the extremely
dilute limit in which the vacancies are relatively isolated,
this scenario may change in the experiment and the charge
transfer rates differ if the vacancy concentration is higher. In
any circumstance, the defect associated transport channel acts
as a mechanism that slows down the charge transfer.

Bath temperature, electric fields, hydrostatic pressure [80],
which changes the position of the chemical potential of the
graphene layer, or shifts of the position of the single-particle
defect energies due to screening can have a dramatic effect
in the transition rates. We analyze here the behavior of the
transition rates with the electric field created by a voltage drop
in the direction perpendicular to the heterostructure (the anal-
ysis of the effect of temperature and defect level energy shifts
due to screening is given in Sec. IV of the SM). In Fig. 5(a)
we display the transition rates as a function of the gate volt-
age, eVgate, which may be tuned by an external gate located
under the graphene layer and which creates a voltage drop
between graphene and TMDC layers. The window of voltage
drop between the two layers considered here corresponds to
a range of electric fields between the layers of the order of
E � 3 V/nm. This is consistent with electric fields consid-
ered in previous theoretical works [81], and it is substantially
smaller than the experimental dielectric breakdown points of
these materials [82]. We first observe that for each material
whether a charging (N → N + 1) occurs faster compared to
a discharging (N + 1 → N) process depends on the value of
the chemical potential (� gate voltage) with respect to the
position of the defect levels. This can be easily understood
from the functional form of f +(x) and f −(x) in Eqs. (26)
and (27): for μ < �E0,u, charging is slower because the tail
of the Fermi function (that has a typical width of a few kBT ) is
small and there are no occupied states that can tunnel towards
the vacancy, while for μ > �E0,u the reverse situation occurs
and discharging becomes slower because there are very few
(depending on temperature) empty states in graphene capable
to receive electrons tunneling from the vacancy. The charging
and the discharging have the same transition times and rates
only if the chemical potential aligns precisely with the defect
energies, μ = �E0,u (thus τN,N+1 = τN+1,N ). This is a trivial
consequence of f +(�E0,u) = f −(�E0,u), together with the
fact that � is a diagonal matrix (therefore �+ = �−).

We now discuss the differences between the two TMDCs
in the XS2–Gr interface. We analyze the case μ � �E0,u,
the scenario for μ 
 �E0,u can be deduced with the map-
ping τN,N+1 ↔ τN+1,N upon reversing the inequality. If the
chemical potential is substantially larger than the defect en-
ergy, μ � �E0,u, we observe that τN,N+1 saturates and the
charging is faster for X = W compared to X = Mo. This is
a consequence of the WS2–Gr heterostructure having larger
single-particle tunneling rate compared to MoS2–Gr, mainly
due to the larger number of states in graphene to tunnel from in
the former compared to the latter [ρGr(�EW

0,u) > ρGr(�EMo
0,u )].

The differences in the charging and discharging rates between
the two heterobilayers can be tuned with the gate voltage.
For example, for μ > 0, there is a voltage threshold for
which the relative ordering between the charging times of
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FIG. 5. (a) Electronic transition times, τ , for MoS2 and WS2

vacancy states as a function of the gate voltage, Vgate measured in eV.
The solid and dashed lines correspond to the transitions α → β with
α, β ∈ {N, N + 1}, α �= β as defined in Eqs. (26) and (27). The dot-
ted line corresponds to the effective transition time associated to the
semiclassical dynamics defined from Eq. (30) and controlling the dy-
namics from a local to global equilibrium. For simplicity, we set the
chemical potential at zero gate voltage to be zero. (b) Corresponding
stationary semiclassical probability of occupation of the many-body
levels, p∞, as a function of the gate voltage. As anticipated, the
stationary populations follow the Fermi distribution function.

the two materials changes [in other words, the continuous
lines in Fig. 5(a) cross]. This point, μcr, marks the change
from τN,N+1(W) > τN,N+1(Mo) if μ < μcr to τN,N+1(W) <

τN,N+1(Mo) if μ > μcr. Though their difference can be modu-
lated, in the discharging, WS2 shows a smaller transition time
τN+1,N (faster discharging) compared to MoS2, independently
of the chemical potential. This result is attributed to the higher
energy of the defect state and to its lower tunneling barrier to
the graphene layer for X = W as compared to X = Mo.

3. Semiclassical dynamics

The kinetic equation Eq. (12) describes a time-local dy-
namics for the vacancy in presence of the graphene bath
still involving quantum coherences between quasidegenerate
vacancy states. The latter are captured by the coherences (i.e.,
the off-diagonal elements of the density matrix ρ̂red, written

in the energy eigenbasis). Starting from Eq. (12) it is easy to
derive the semiclassical Pauli master equation involving only
the probability of occupation of a given many-body state [83],
written in terms of the charging and discharging rates, already
discussed in the previous section. Thus, the probability, pα :=
pα (t ), of finding the heterostructure in the state α with given
particle number at any time t , is obtained from the solution of

ṗα =
∑

β

[pβWβ,α − pαWα,β], (28)

together with the conservation of probability,
∑

α pα = 1
[which results from Tr(ρ̂) = 1] and a given initial condition.
We further assume a fast local thermalization between the
tunneling events or local thermal equilibrium, so that the
population of the degenerate energy levels has to be the same,
pu = pū. As a consequence, we reformulate Eq. (28) as a
two-level problem characterized by the populations pN and
pN+1 = pu + pū in order to investigate the dynamics towards
a final state of global equilibrium of the vacancy in contact
with the thermal bath. The analytical solution of the associated
system of equations gives the vector of probabilities

p(t ) = p∞ + p0

(
1

−1

)
e−Weff t . (29)

We therefore find that the vacancy relaxes from an initial state
following an expected exponential decay law typical for a
tunneling process with and effective rate

Weff := WN,N+1 + W̃N+1,N , (30)

where W̃N+1,N := WN+1,N/2. This effective rate defines an
effective relaxation time τeff := 1/Weff for the popula-
tion dynamics of the isolated vacancy. Substitution using
Eqs. (20), (26), and (27) gives τW

eff = 0.9 ps and τMo
eff = 5.2

ps, as the timescale at which the system reaches equilibrium.
This value is of the same order of magnitude of the electronic
relaxation times obtained from tr-ARPES measurements. We
show τeff in Fig. 5(a) for X = W, Mo as a function of Vgate. In
comparison to τN,N+1 and τN+1,N , we find that this relaxation
rate is a smoother function of the voltage, roughly one order
of magnitude larger in MoS2 compared to WS2.

The vector p∞ corresponds to the stationary populations of
the states |N〉 and |N + 1〉:

p∞ =
(

p∞
N

p∞
N+1

)
= 1

Weff

(
W̃N+1,N

WN,N+1

)
. (31)

This object depends only on the ratio of many-body transitions
rates. Note that, as expected for second-order processes, the
ratio of the equilibrium populations is proportional to the
Boltzmann factor [73]. Indeed, it is easy to check that this ra-
tio is p∞

N+1/p∞
N = gN+1 exp(−β�E0,u) where gN+1 = 2 is the

(Boltzmann) degeneracy of the state |N + 1〉 (by construction,
gN = 1). The prefactor p0 in Eq. (29) depends on the initial
condition for the time evolution. If the system initially had N
electrons, then p0 = WN,N+1/Weff, while if the system initially
was in the many-body state with particle number equal to
N + 1, it reads p0 = −WN+1,N/Weff.

The stationary many-body populations for each of the two
heterostructures as a function of the gate voltage, Vgate, and
computed with realistic ab initio parametrization are shown
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FIG. 6. Population, p(t ), of the many-body levels as a function
of time, t (measured in s). The dynamics is computed for the repre-
sentative gate voltage, Vgate = 0.2 eV. We show only the population
for the state |N + 1〉, the population of the state |N〉 obtained as
pN (t ) = 1 − pN+1(t ).

in Fig. 5(b). As expected, the stationary population follows a
Fermi distribution function since at t → +∞ the system has
relaxed to the equilibrium distribution provided by the thermal
bath. The values of the populations are controlled by the
transition rates only and shifted by the difference between the
defect energies for each material. In the large positive eVgate

limit, we have p∞
N → 0 and p∞

N+1 → 1 as the transition time
associated to the charging of the vacancy becomes smaller
and saturates, as seen in Fig. 5(a). Due to the symmetry
relation τN,N+1 → τN+1,N with respect to the defect energy,
the situation is reversed for large negative Vgate.

In Fig. 6 we show an example of the population dynamics
for a given voltage gate, Vgate = 0.2 V, following Eq. (29). We
display only the population of the state |N + 1〉, for two initial
conditions, pN+1(0) = 0 and pN+1(0) = 1. The population
shows the expected exponential decay law, controlled by Weff,
as well as the asymptotic limit given in Fig. 5(b) which corre-
sponds to the situation of global thermodynamic equilibrium.
Note that properly chosen combinations of material and Vgate

can strongly reduce the charge relaxation, also depending on
the initial conditions, effectively inhibiting charge quenching
at the impurity, as it occurs here for the initially charged va-
cancy at the MoS2–Gr interface (see light blue dashed curve).

4. Lamb shift and quantum internal dynamics

The imaginary part of K̃(2) in Eq. (15) acting on the
reduced density matrix ρ̂red, gives the so-called Lamb-shift
correction [32,64]. This term induces an effective internal
dynamics due to a renormalization of the system Hamiltonian
generated by virtual fluctuations of the particle number (which
is conserved in average [77]). The Lamb-shift correction is
relevant only for quasidegenerate states and, in presence of
a single bath, it cannot influence the stationary state, thus
influencing, in general, only the short-time dynamics of the
system. For its derivation, one proceeds as in Ref. [68] to com-
pute the principal value of the integral from Eq. (24), where a

particular attention should be given to the energy dependence
of the density of states in graphene. The second-order ker-
nel (15) is therefore split into the tunneling and Lamb-shift
terms K̃(2) = K̃(2)

T + K̃(2)
LS and the equation of motion (12) can

be rewritten in the form

˙̂ρred = − i

h̄
[Ĥsys + ĤLS, ρ̂red] + K̃(2)

T ρ̂red, (32)

where the commutator contains the Lamb-shift Hamiltonian,
which, in the one particle sector, reads

ĤLS = h̄

2π

∑
uσ

[d̂uσϒu(Ĥsys)d̂†
uσ + d̂†

uσ ϒu(Ĥsys)d̂uσ ]. (33)

In the previous equation we have introduced the function

ϒu(Ĥsys) = p.v.

∫
dE

�u(E ) f +(E )

E − Ĥsys + Eav
, (34)

where Eav = (Eu + Eū)/2.
As anticipated above, the dynamics induced by the Lamb-

shift Hamiltonian influences only, in the presence of a single
bath, the short timescales. It produces pseudoexchange fields
leading to a “precession-like” dynamics in the quasidegen-
erate subspace [68,69]. The latter is particularly relevant in
ultrafast pump-probe experiments. Here we concentrate, in-
stead, on a semiclassical dynamics, as we always assume
local thermal equilibrium, thus leaving the full analysis of the
coherent dynamics of the impurity quasidegenerate states for
future work.

B. Strong spin-orbit interaction

1. Single-particle rate matrix

In order to include spin-orbit interaction in our model, we
could start from the superposition of the atomic contribu-
tions [69]

ĤSOC =
∑

α

ξαL̂α · Ŝα, (35)

where the summation runs over all atoms and orbitals, with
L̂α being the angular momentum operator and Ŝα the spin
operator. Instead, we take advantage of the fact that the atomic
spin-orbit interaction is already incorporated by construction
into the Kohn-Sham Hamiltonian and project its spin-orbit
contribution onto the vacancy Kohn-Sham empty orbitals that
form the relevant Hilbert space discussed in Sec. V A. The
local C3v symmetry of the vacancy implies that the degenerate
orbitals are associated to the quasiangular momenta Lz = ±1.
From the decomposition

L · S = 1
2 [L+S− + L−S+] + LzSz, (36)

with L± = Lx ± iLy (similarly S± = Sx ± iSy), we thus obtain
that only the diagonal term containing Lz can contribute to
the projection. The resulting effective Hamiltonian is then
characterized by a single spin-orbit parameter, ξeff, and reads

ĤSOC = ξeff

2

∑
�,σ=±

�σ d̂†
�σ d̂�σ . (37)

Here � indicates the quasiangular momentum of the vacancy
state, while the second index corresponds to the spin σ = ±.
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The value for the effective spin-orbit parameter can be
estimated from the band structure looking at the spin-orbit
splitting at the �̄ point. From Fig. 3 we find ξMo

eff = 0.05 eV
and ξW

eff = 0.168 eV. Evidently, due to the heavier nature of the
W atoms compared to Mo, the effective spin-orbit parameter
in WS2–Gr is ∼3.5 times larger compared to the MoS2–Gr
heterostructure. At the �̄ point, where the impact of the im-
purity band dispersion is strongly reduced and the system
displays the behavior of the isolated defect, we find that the
distribution of the vacancy levels with spin-orbit interaction
reads E�,+ = E�̄,− and E�,− = E�̄,+. The Kramers’ degeneracy
is preserved and the spin-orbit coupling has opposite effect for
each of the �, �̄ projections: E�σ = Eav + �σξeff/2 with Eav

the reference midgap energy. For simplicity, we will use the
short-hand notation g := {�−, �̄+} and e := {�+, �̄−}, with
Ee > Eg in what follows. The ground and excited energy
levels measured from the graphene charge neutrality point
read EMo

g = 27 meV, EMo
e = 77 meV, EW

g = 230 meV, and
EW

e = 398 meV.
The SOC has no influence on the tunneling Hamiltonian.

Thus, starting from the model introduced in Sec. III and
parametrized in Sec. V A, we construct the single-particle rate
matrix from the functional form employed there and rotate it
into the eigenstate basis with SOC. The single-particle tun-
neling rate is still diagonal in spin, but it mixes states with
different angular momentum.

A further simplification applies, though, if we additionally
consider the secular or rotating wave approximation [84],
which applies since h̄� 
 � := Ee − Eg. This approxima-
tion amounts to neglect the rapidly oscillating coherences,
between states with different energies, as they average to zero
on the typical timescales of the population dynamics. Even-
tually, the single-particle tunneling rate matrix can be taken
completely diagonal. In the basis of the vacancy eigenstates,
it reads �SOC(E ) = �SOC(E ) ⊗ 14 where

�SOC(E ) = �u(E ) + �ū(E )

2
(38)

is the effective, still energy-dependent, tunneling rate. A direct
extraction of the tunneling amplitudes from the DFT band
structures is, in this case, not possible, due to the interplay
between the tunneling coupling and the spin-orbit interaction,
in determining the energy eigenstates.

2. Transition rates

Employing Eqs. (25) (and an analogous equation for the
discharging rate) as well as �SOC, we can compute the rates
for the many-body transitions shown in Fig. 7. Charging the
vacancy occurs by tunneling of the electron from the graphene
layer to one of the two quasidegenerated levels of the vacancy,
with transition time τN,N+1. The transition rate reads

W =
∑
�σ

�SOC(�E0,�σ ) f +(�E0,�σ ), (39)

which can be understood as W = W0g + W0e, as the final
single-particle state in the many-body transition N → N + 1
is unknown. Each transition rate composing the total charging

FIG. 7. Representation of the many-body Hilbert space and elec-
tron transition times, τα,β , between many-body states (labeled by
particle number N, N + 1) in the presence of spin-orbit coupling. The
energies are given in the grand canonical ensemble, E0 = ε0 − Nμ

and Ee,g
1 = ε

e,g
1 − (N + 1)μ, with μ ≡ EF at zero gate voltage and

ε0,1 are the total energies of the system with N and N + 1 electrons.
Transitions that do not change the particle number are forbidden.

rate is given by

W0g = 2 �SOC(�E0,g) f +(�E0,g), (40a)

W0e = 2 �SOC(�E0,e) f +(�E0,e). (40b)

Discharging occurs by tunneling of an electron originally in
one of the two spin-orbit split Kramers’ pairs towards the
graphene bath. The corresponding transition rates are

Wg0 = 2 �SOC(�E0,g) f −(�E0,g), (41a)

We0 = 2 �SOC(�E0,e) f −(�E0,e), (41b)

with transition times τ
g
N+1,N :=1/Wg0, τ e

N+1,N :=1/We0.
We represent in Fig. 8(a) these electron transition times

as a function of the gate voltage, Vgate. Compared to the case
where the spin-orbit coupling is negligible, we find a similar
qualitative behavior of the transition times as a function of
Vgate. The charging rate is an effective rate were both transi-
tions to the g and e states are allowed, thus the corresponding
transition time shows a small jump when the chemical po-
tential coincides with the higher energy level. This jump is
better observed for WS2 because the spin-orbit splitting is
substantially larger than the characteristic thermal energy.
In addition, at Vgate = 0, where we measure the impact of
spin-orbit interaction only, we find that comparing with the
case where spin-orbit coupling is absent the charging process
occurs faster for the WS2 by almost one order of magnitude
while being almost unchanged for MoS2, thus pointing to the
spin-orbit interaction as a source of change of in the many-
body transition rates.

3. Semiclassical dynamics

Using the transition rates, we derive a set of semiclassi-
cal dynamical equations for the populations using Eq. (28).
Differently from the case without spin-orbit interaction, the
�̄ point degeneracy splitting of the defect states, hinders the
Lamb shift induced dynamics. Technically, this happens since
the Lamb shift Hamiltonian commutes with the reduced den-
sity matrix, [ĤLS, ρ̂red] = 0.

For the calculation of the semiclassical dynamics, we as-
sume, similarly to Sec. V A, local thermal equilibrium and,
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FIG. 8. (a) Electronic transition times, τ , for MoS2 and WS2

vacancy states as a function of the gate voltage, Vgate measured in
eV. The solid, dashed, and dashed-dotted lines correspond to the
transitions α → β shown in Fig. 7. The dotted line corresponds to
the effective transition time associated to the semiclassical dynamics
defined from Eq. (46) and controlling the dynamics from a local to
global equilibrium state. For simplicity, we set the chemical potential
at zero gate voltage to be zero. (b) Corresponding stationary semi-
classical probability of occupation of the many-body levels, p∞, as a
function of the gate voltage.

therefore, an equal population of any degenerate level: pg =
pḡ and pe = pē. The resulting dynamical equations can be
written in matrix form as

ṗ =

⎛
⎜⎝

−W W̃g0 W̃e0

W0g −W̃g0 0

W0e 0 −W̃e0

⎞
⎟⎠p, (42)

where p = (pN pN+1,g pN+1,e)T and we remind that W̃α :=
Wα/2. The local thermal equilibrium further imposes a re-
lation between the populations of the single-particle states
|g〉 and |e〉, namely, pe = pg exp(−β�), where � = Ee − Eg.
Consequently, we can reduce Eq. (42) to a two-dimensional

system of equations(
ṗN

ṗN+1

)
=

[
−W f −

0 (�)W̃g0 + f +
0 (�)W̃e0

W − f −
0 (�)W̃g0 − f +

0 (�)W̃e0

](
pN

pN+1

)
,

(43)
where

f ±
0 (�) := 1

1 + exp(±β�)
. (44)

These equations are solved under the constraint
∑

α pα =
pN + pN+1 = 1 with pN+1 = pg + pe. The analytical solution
of the system of equations yields

p(t ) = p∞ + p0

⎛
⎜⎝

1

− f −
0 (�)

− f +
0 (�)

⎞
⎟⎠e−Wefft ,

(45)

where we employed the inverse relations between pN+1 and
the populations of the g and e levels, pg = f −

0 (�)pN+1 and
pe = f +

0 (�)pN+1, as well as defined the effective decay rate

Weff = W + f −
0 (�)W̃g0 + f +

0 (�)W̃e0,

= �SOC(�E0,g)[2 f +(�E0,g) + f −
0 (�) f −(�E0,g)]

+�SOC(�E0,e)[2 f +(�E0,e) + f +
0 (�) f −(�E0,e)].

(46)

These expressions reduce to Eqs. (29) and (30) for the limit
� → 0 in which all four states of the one particle sector are
degenerated.

Equation (46) defines the effective relaxation time τeff :=
1/Weff for the population dynamics in the presence of
spin-orbit coupling. We show τeff for our heterobilayers in
comparison to τN,N+1 and τN+1,N in Fig. 8(a). As in the
case of Fig. 5(a), this effective time is less sensitive to the
gate voltage compared to τN,N+1 and τN+1,N . More impor-
tantly, when looking at τeff for WS2–Gr at Vgate = 0, we find
τW

eff � 2.3 ps at μ = 0 (for comparison, τMo
eff � 13.5 ps for

the MoS2–Gr interface). Shift of the vacancy levels following
the G0W0 for the pristine system can reduce the relaxation
time by at most ∼25%. In any case, this value is of the
order of magnitude of the typical electronic relaxation times
measured by tr-ARPES for the same type of heterostructure
and same process [7,8]. We also note that the longer relax-
ation times obtained for the MoS2–Gr interface are consistent
with the experimental transition times obtained using transient
terahertz spectroscopy [10] and which have been previously
attributed to the recombination of the interfacial exciton after
an above-band gap excitation. Note that within our model, we
can account for the effect on the relaxation times of changes
of the chemical potential due to doping at the graphene layer;
our calculated relaxation times can change up to one order
of magnitude within the range from −300 to 400 meV. Our
results therefore suggest that, if the vacancy concentration
is low, defect charge transfer can be a potential mechanism
that participates in the ultrafast relaxation times observed for
photoexcited electrons in these heterobilayers.

The vector p∞ yields the stationary population at a given
chemical potential and temperature of the bath for the states
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FIG. 9. Population, p(t ), of the energy levels as a function of
time, t (measured in s). The dynamics is computed for the repre-
sentative gate voltage, Vgate = −0.3 eV.

|N〉, |g〉 and |e〉,

p∞ = W

Weff

⎛
⎜⎝

Weff/W − 1

f −
0 (�)

f +
0 (�)

⎞
⎟⎠. (47)

In Fig. 8(b) we display the stationary population (47) for the
two studied interfaces and evaluated for the same range of gate
voltages and physical parameters as in Fig. 8(a). The values
of the stationary population are controlled by the many-body
transition rates, as well as temperature. In the large negative
Vgate limit, the chemical potential is far below the available de-
fect levels and therefore, the vacancy remains empty, pN → 1
and pg, pe → 0. After increasing Vgate and once the chemical
potential is larger than the single-particle energy of the empty
defect states, tunneling becomes possible and the vacancy
charges at equilibrium, with the relation between the g and
e levels dictated by the Boltzmann factor, exp(−β�). Since
the splitting of the defect levels due to spin-orbit interaction
is substantially smaller in MoS2 compared to WS2, the popu-
lation of |e〉Mo remains several orders of magnitude larger in
the large positive Vgate limit compared to |e〉W. Finally, as in
Sec. V A, the value for p0 depends on the initial conditions for
the time evolution. It can be easily calculated, for example,
p0 = 1 − W/Weff if the initial condition is fixed to pN = 0
(vacancy is occupied and therefore the system decharges over
time). As an example, we show in Fig. 9 charge quenching
as given by Eq. (47) for fixed gate energy eVgate = −0.3 eV.
The dynamics shows the expected exponential decay law,
controlled by Weff as well as the asymptotic behavior seen in
Fig. 8(b). Also, as anticipated, if the temperature energy scale
β is smaller than the splitting �, thermal population of the |e〉
state does not occur, as for WS2 compared to MoS2.

VI. CONCLUSION

In this work we have investigated, by a combination of den-
sity functional theory, model Hamiltonian and open quantum

system master equation techniques, how defect states created
by monoatomic chalcogen vacancies in representative MoS2–
Gr and WS2–Gr interfaces are an interesting playground for
electronic dynamical processes. From the ab initio calcula-
tions, we find that the empty vacancy levels are naturally
hybridized with the Dirac cone from the graphene layer. We
propose a low-energy model and derive the single-particle
tunneling rate matrices employing information from the DFT
band structure calculation as well as group theory arguments.
This allows us to gain physical insight into the impact of sym-
metries into the parameter-free many-body transition rates. At
the level of sequential tunneling, we perturbatively computed
the transition rates for the population and depopulation of the
vacancy by one electron tunneling to or from the graphene
reservoir. We find that transition rates (and corresponding
electronic transition times) are sensitive to external electric
fields perpendicular to the heterobilayer plane, and created by
a voltage gate on graphene, changing also by several orders
of magnitude. A shift of the chemical potential via this gate
voltage can also change the relative order of the rates for the
different TMDC (MoS2, WS2) considered in this work. This
is shown to influence the semiclassical population dynamics,
derived here within an effective two-level model assuming
local thermal equilibrium. For strong spin-orbit interaction,
we proposed a modified transport model for the charge trans-
fer using the DFT band structure information as well. We
obtain a single-particle rate matrix which is still proportional
to the identity, but with nontrivial energy dependence. We
computed the corresponding transition rates at the level of
sequential tunneling and employing the secular approxima-
tion. A three-level model for the dynamics of the population
and depopulation of the vacancy has been proposed and
solved assuming local thermal equilibrium. The effect of
spin-orbit interaction has been gauged in our charge transfer
rates.

Our results for the effective rate suggests that defects slow
down the charge transfer, effectively trapping electrons, and
can be a relevant transport channel in the ultrafast charge
transfer processes observed in recent experiments [7,8] as-
suming the vacancy concentration considered in this work.
Our research serves as a basis to study other more subtle
dynamical features associated to quantum internal dynamics
occurring at short timescales due to quantum degeneracy of
the vacancy energy levels or electron-phonon coupling [85],
and we demonstrated how simple dynamical models can
be used as guidance in the understanding of experimental
transport phenomena at these heterostructures and complex
interfaces.
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