
Universality and Examples in the
Context of Functorial Semi-Norms

Dissertation zur Erlangung des Doktorgrades
der Naturwissenschaften (Dr. rer. nat.)

der Fakultät für Mathematik

der Universität Regensburg

vorgelegt von

Johannes Witzig,
geboren Prem,

aus Regensburg

im Jahr 2022



Promotionsgesuch eingereicht am: 21.12.2022
Die Arbeit wurde angeleitet von: Prof. Dr. Clara Löh
Prüfungsausschuss: Vorsitzender: Prof. Dr. Moritz Kerz

1. Gutachter: Prof. Dr. Clara Löh
2. Gutachter: PD Dr. Georgios Raptis
weiterer Prüfer: Prof. Stefan Friedl, PhD



Introduction

Deeply rooted in virtually all aspects of geometry, is the desire to assign and measure
lengths. One mathematical incarnation in the context of linear structures are (semi-)
norms, whose direct or indirect use underlies nearly all mathematics.

A much more recent successful concept in mathematics is the language of categories,
functors and natural transformations, commonly subsumed under the term category the-
ory.

An interesting symbiosis happened, when Gromov introduced the notion of functorial
semi-norms on singular homology [Grv1][Grv2, paragraph 5.34]: For a fixed n ∈ N, one as-
signs to each topological space X a semi-norm on the R-vector space Hn(X;R), such that
for every continuous map X → Y , the induced homomorphism Hn(X;R) → Hn(Y ;R)
is norm non-increasing.

Originally, Gromov used the ℓ1-norm on the singular chain complex with real coeffi-
cients, associated to the canonical basis consisting of singular simplices, in order to define
the simplicial volume of closed manifolds. For an oriented, closed manifold M , the latter
is given by

inf
{∑

j
|aj |

∣∣∣ ∑
j
aj · σj represents the R-fundamental class of M

}
,

and thus measures the complexity of the fundamental class of M . Though this might be
surprising for such a topological invariant, Gromov’s paper “Volume and bounded coho-
mology” [Grv1] successfully demonstrates a variety of connections between the simplicial
volume and Riemannian geometry.

A useful tool to study simplicial volume is so-called ℓ1-homology of topological spaces:
it arises as the homology of the singular chain complex after completion with respect
to the ℓ1-norm in terms of functional analysis. Although there is no direct analogue to
the classical universal coefficient theorem, ℓ1-homology is in some sense dual to bounded
cohomology [Lö1, Ch. 3].

In the present thesis, we investigate the following aspects of functorial semi-norms in
the context of topology, for which we give more detailed summaries in the further sections
of this introduction:

Following Gromov’s idea, one can also try to refine other functors to vector spaces (or
Abelian groups) with semi-norms, leading to the abstract definition of functorial semi-
norms [Lö3]. For a fixed functor, we define a relation among all its functorial semi-norms,
whose minimal elements we call universal. We are then interested in the existence of such
universal functorial semi-norms.

Crowley and Löh established a bidirectional correspondence between functorial semi-
norms on singular homology and so-called inflexible manifolds [CL]. The construction
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Introduction

of such manifolds is based on the construction and study of certain differential graded
algebras, which are purely algebraic objects. As such they are very amenable to compu-
tations, not only by humans but also via computer programs. We present fragments of
a software that facilitates such computations, some new examples that we found in this
way, and two results about algorithmic decidability.

It is a well-known fact, that ℓ1-homology does not satisfy the excision axiom in the
sense of Eilenberg and Steenrod. On the other hand, the fact that singular homology
satisfies the excision axiom is already visible at the level of the singular chain complex
functor, namely the latter is excisive in the sense of Goodwillie calculus [Go1][Go2][Go3]
[Lu2, Ch. 6]. The latter, however, also provides the framework for constructing a universal
(or best) excisive approximation to a given functor. We apply this theory to the ℓ1-chain
complex functor and show that its excisive approximation vanishes.

(Universal) Functorial semi-norms

Fix a functor F : C → VectK to vector spaces over a normed field K, for example Q
or R with the absolute value, and denote by snVectK the category of semi-normed K-
vector spaces. A functorial semi-norm on F is a lift of F to a functor C → snVectK
(Definition 1.2, in slightly more generality). A variant of this, with targets in Abelian
groups, has been considered by Löh [Lö3].

The classic examples, studied by Gromov [Grv1], are the ℓ1-semi-norm on singular
homology and the ℓ∞-semi-norm on singular and bounded cohomology, both with real
coefficients. Later, he also gave other examples of functorial semi-norms on singular
homology [Grv2, Sec. 5.G+ and 5.H+]. An interesting application of functorial semi-
norms are degree theorems, i.e. results that constrain the value of the mapping degree of
continuous maps between manifolds [CL, Rem. 2.6].

While there always exists a functorial semi-norm on F , by virtue of the zero semi-
norm, it is a non-trivial task to construct interesting functorial semi-norms on a given
functor, even on singular homology. In case of the latter, Crowley and Löh [CL, Sec. 4]
used an approach of representing homology classes by linear combinations of images of
fundamental classes of manifolds, in order to obtain examples with specific properties (see
page vi). Briefly, their idea works as follows: To a given function ν : Mfdd → R≥0 ∪ {∞}
on the class of oriented closed connected manifolds of dimension d, they associate a
functorial semi-norm that is given on a homology class a ∈ Hd(X;R) by

inf
{ N∑
j=1

|aj | · ν(Mj)
∣∣∣ α =

N∑
j=1

aj ·Hd(fj ;R)[Mj ]R with

aj ∈ R, Mj ∈ Mfdd, fj : Mj → X
}
.

For functions ν that are compatible with mapping degrees, they can control the behavior
of the semi-norm on fundamental classes of manifolds [CL, Thm. 4.2].

In particular, this can be used to prove non-vanishing results. Changing the perspec-
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(Universal) Functorial semi-norms

tive a bit, one can systematically study how functorial semi-norms relate in terms of
vanishing. This leads to the following definition: a functorial semi-norm is universal if it
vanishes on as few classes as possible among all finite functorial semi-norms on a given
functor (Definition 2.5). It is known [FL, Thm. 1.2] that the ℓ1-semi-norm is not universal
on singular homology in most dimensions, thus raising the question whether universal
functorial semi-norms exist on singular homology [FL, Q. 4.2].

Towards an answer to this question, we prove the following result (Theorem 2.1) in
Chapter 2, in which VectfinK and VectωK denote the categories of K-vector spaces of finite
and countable dimension, respectively:

Theorem (existence of universal functorial semi-norms [LW]). Let C be a
category that admits a skeleton with at most countably many objects. Let K be a normed
field and let F : C → VectK be a functor.

(i) IfK is countable and if F maps to VectωK , then F admits a universal finite functorial
semi-norm.

(ii) If F maps to VectfinK , then F admits a universal finite functorial semi-norm.

Restricting attention to finite CW-complexes, this theorem allows us to derive the
following result (Corollary 2.2) regarding the singular homology functor:

Corollary. Let d ∈ N and let K be a normed field. Then the singular homology
functor Hd(•;K) : CWfin → VectK admits a universal functorial semi-norm, where CWfin

denotes the full subcategory of Top on those spaces that are homotopy equivalent to a
finite CW-complex.

As ingredients for the proof of the theorem in Section 2.5, we

– generalize the method of Crowley and Löh for constructing functorial semi-norms
to arbitrary functors F as above (Section 1.3);

– introduce, as a tool, the so-called vanishing locus of a functorial semi-norm (Sec-
tion 2.3); and

– use both of the above, together with a suitable diagonalization argument, in order
to construct a functorial semi-norm that is universal with respect to countably
many given ones (Section 2.4).

Additionally, we show that the existence of a universal functorial semi-norm on a functor
is compatible with equivalences of categories (Section 2.2), and we include an example
of a functor that does not admit a universal functorial semi-norm (Section 2.6).

This part is based on joint work with Clara Löh and follows very closely the respective
article by Löh and the author of this thesis [LW].
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Introduction

Inflexibility from a computational perspective

It follows from Gromov’s work [Grv1], that the ℓ1-semi-norm vanishes on all classes of
non-zero degree of simply-connected topological spaces. Later, he further suggested [Grv2,
Remark (b) in paragraph 5.35]: “It is probable that every natural norm vanishes onH∗(X)
for all simply connected X”. Restated as an open question [CL, Q. 1.1], Crowley and
Löh showed [CL, Thm. 1.2], that there indeed exist functorial semi-norms on singular
homology (of certain degrees) that are positive and finite on some homology classes of
simply-connected spaces. For their proof, they use

– their general method for the construction of functorial semi-norms that we already
sketched (page iv). We review their choice of the function ν in Section 3.1. Fur-
thermore, they need

– as additional input simply-connected, inflexible manifolds (Section 3.2), that is
manifolds with the property that any self-map has mapping degree 0, 1, or −1.

Inflexible simply-connected manifolds, however, are not easily found in nature. Arkowitz
and Lupton [AL] gave the first examples, which Crowley and Löh used as a starting point
to construct more. In Examples 3.9, we list what is known on the subject by now.

All of the known examples of inflexible, simply-connected manifolds are produced by
means of rational homotopy theory. Briefly, this works as follows:

– Find inflexible minimal Sullivan algebras, a certain class of differential graded al-
gebras (Section 3.3).

– Realize such an algebra as the minimal model of a certain type of CW-complex.

– Show that the latter admits rationally equivalent manifolds.

The key observation is, that once this machinery is set up, one can do all experiments
and calculations on the purely algebraic side.

As minimal Sullivan algebras are determined by their generators and the restriction
of the differential to the latter, it is easy to represent and analyse their properties in
computer programs. In the first two section of Chapter 4, we present such a software
and showcase some of its features. We include an example of a minimal Sullivan algebra
that induces a new simply-connected, inflexible manifold of dimension 38 (Example 4.6).
Among such manifolds, this is the least dimensional example known so far.

One important property of minimal Sullivan algebras is ellipticity, as it implies [FHT,
Prop. 38.3], that the cohomology algebra is a Poincaré algebra. In Section 4.3, we prove
the following result (Theorem 4.7):

Theorem (decidable ellipticity). Let (A, δ) be a connected cochain algebra with
the property that all generators of even degree are cocycles. Then (A, δ) is elliptic if and
only if all generators of even degree are cohomologically nilpotent. In particular, it is
algorithmically decidable whether (A, δ) is elliptic if (A, δ) is a minimal Sullivan algebra.
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Excisive approximation of ℓ1-homology

We note, that as per our conventions (Definition 4.2), the underlying graded algebra
of a cochain algebra is always a finitely generated, free graded-commutative algebra.

The other property of minimal Sullivan algebras that we are obviously interested in,
is inflexibility. In order to treat the latter in our software, we introduce the notion of a
generic morphism between cochain algebras in Section 4.4. With this tool, we then prove
(Theorem 4.9):

Theorem (decidable (in)flexibility). Let k be countable and let k be an algebraic
closure of k. Let (A, δ) be a connected, elliptic Sullivan algebra.

(i) Let x be a generator of A, such that some power of x represents a fundamental class
for (A, δ). Then it is algorithmically decidable, whether (A, δ) is inflexible over k.

(ii) Let d ∈ N be the formal dimension of (A, δ) and let m ∈M(A)d be a representative
of a fundamental class for (A, δ). Let a ∈ k. Then it is algorithmically decidable,
whether (A, δ) over k admits a cochain algebra endomorphism of mapping degree a.

Here, M(A)d denotes the set of all products of generators of A of total degree d (Defini-
tion 4.8).

Excisive approximation of ℓ1-homology

Taking the norm-completion of the singular chain complex C(•, •;R) with respect to the
ℓ1-norm yields the ℓ1-chain complex Cℓ1(X,A) (Sections 1.1 and 1.4) [Lö2, Sec. 3.1][Lö1,
Introduction and Ch. 2]. Its homology is the ℓ1-homology of (X,A), the topological dual
of (either C(X,A;R) or) Cℓ1(X,A) is the bounded cochain complex Cb(X,A) of (X,A),
and cohomology of the latter is the bounded cohomology of (X,A).

Bounded cohomology was used extensively in Gromov’s work [Grv1], and since then
various connections to other mathematical areas were established, some of which are
summarized in Monod’s nice “invitation to bounded cohomology” [Mo]. Though its link
to ℓ1-homology is not as tight as in the case of singular (co)homology, there is a helpful
duality between ℓ1-homology and bounded cohomology [Lö1, Ch. 3]. Both notions enable
the formulation and proof of structural statements about simplicial volume.

However, there is one “problem” with ℓ1-homology: it is notoriously difficult to compute.
This is mainly due to the fact, that the excision theorem fails for ℓ1-homology (as well
as for bounded cohomology), making the usual divide and conquer approach impossible.
This manifests itself even in the simplest examples, such as the following [Lö2, Ex. (2.8)]:
we have

Hℓ1

k (S1) ∼= 0 for k ∈ N≥1, but Hℓ1

2 (S1 ∨ S1) ̸∼= 0.

Thus, a natural question is, whether we can somehow force the theory to become excisive.
Looking at singular homology, one can observe that the excision property is already

present at the level of the singular chain complex functor (Theorem A.1). This fact was
noted before, e.g. by Lurie [Lu2, Sec. 1.4.2], but the author of this thesis was unable to
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Introduction

find a rigorous proof for it in the literature. Moreover, we explain in Appendix B, how
this theorem relates to the classical excision property.

Theorem. The singular chain complex functor Top → Ch is excisive in the sense of
Goodwillie calculus.

Better yet, under some mild assumptions on C and D, Goodwillie calculus provides
us with a tool that associates to a functor F : C → D its best excisive approximation
in the form of a universal arrow F ⇒ P1F , where P1F is excisive (Theorem 6.4 and
Remark 6.5). In Section 6.2, we apply this to the ℓ1-chain complex functor on Top∗ and
obtain (Theorem 6.7):

Theorem (excisive approximation). There exists a best excisive approximation
of Cℓ1 : Top∗ → ChR from the right, i.e. an excisive functor P : Top∗ → ChR and a natural
transformation η : Cℓ

1 → P , such that for every other excisive functor P ′ : Top∗ → ChR
and natural transformation η′ : Cℓ1 → P ′ there exists a natural transformation θ : P → P ′

(unique up to homotopy) that makes the triangle

Cℓ
1

P

P ′

η

η′
θ

commutative. This best approximation is trivial, i.e. P (X) ≃ 0 for all pointed spaces X.

At this point, we should emphasize, that the framework of Goodwillie calculus is in-
herently of a homotopical flavor. The natural language for this setting is provided by
∞-categories, and this is also how Lurie [Lu2, Sec. 6.1] phrased his abstraction of Good-
willie’s original article [Go3]. Since we use Lurie’s machinery, the reader should be aware,
that the content of the previous theorem is entirely ∞-categorical. As a consequence,
for example, a triangle being commutative only means: commutative up to homotopy.
As we are aware of the fact, that not every reader might be fluent in the language of
∞-categories, we include sort of an independent “on the fly introduction” in Chapter 5.
In lieu of proofs, we provide an ample amount of references, which should be able to
satisfy anyone’s thirst for knowledge.

As a further application of Goodwillie calculus, we consider the more general notion of
n-excisiveness (Definition 6.10) and prove a vanishing theorem for n-excisive approxima-
tions of functors with domain Top or Top∗ (Theorem 6.12). A consequence of the latter
is the following:

Corollary (n-excisive approximation). Let n ∈ N. A best n-excisive approxima-
tion of Cℓ1 : Top∗ → ChR from the right exists and is trivial.

Except for the last paragraph, all results in this section already appeared in a separate
article [Wi], which the respective parts of the present thesis follow very closely.

viii



Outline

Outline

This thesis is structured as follows:
Chapter 1 starts with an introduction to the main concepts used in the rest of the

present work: the ℓ1-norm on the singular chain complex; the ℓ1-semi-norm on singular
homology; the general notion of functorial semi-norms; a basic principle for the construc-
tion of functorial semi-norms, generalizing previous work by Crowley and Löh; and the
definition of ℓ1-homology.

In Chapter 2, we discuss universal functorial semi-norms and prove the existence the-
orem and its topological corollary. We first recall the “carrying” relation on functorial
semi-norms, which we then use to define universality. Then we investigate the interac-
tion of (universal) functorial semi-norms with natural isomorphisms and their behavior
under “weak retractions” and equivalences of categories. In the next two sections, we
define vanishing loci as a tool to reason about families of functorial semi-norms and use
their language to prove the main ingredient of the existence theorem. We then prove the
latter, and finally show by a (counter-)example that its countability assumptions cannot
be dropped in general.

Chapter 3 sets the stage for the subsequent chapter and surveys different aspects of
inflexible manifolds. More precisely, we recall the definitions of the domination semi-norm
and of inflexible manifolds by Crowley and Löh; we summarize their main results and we
assemble a list of known constructions of inflexible manifolds; then we recall the notion
of differential graded algebras; and finally, we link the latter to manifold topology by
means of rational homotopy theory.

Chapter 4 consists of two parts: In Sections 4.1 and 4.2, we present our software for
handling cochain algebras, computing ellipticity and inflexibility. In Sections 4.3 and 4.4,
we tend to purely mathematical questions and prove the decidable ellipticity and decid-
able (in)flexibility theorems, respectively.

In Chapter 5, we provide a self-contained, user-oriented primer on the theory of ∞-
categories. We first work towards a precise definition of ∞-category and then explain
how they generalize ordinary categories. Afterwards, we highlight some analogies and
differences between ordinary and ∞-categories, mainly centered around the notion of
diagrams in∞-categories. A series of remarks then sketches how interesting∞-categories
may be obtained from 1-categorical input data. In the final section, we note a few caveats
regarding the nomenclature around the term “∞-category”.

In Chapter 6, we define the excision property in the sense of Goodwillie calculus in
the setting of∞-categories, recall necessary results by Lurie, and then prove the excisive
approximation theorem about the ℓ1-chain complex functor. Following this, we summarize
prerequisites for and give the definition of n-excisiveness. Finally, we prove the n-excisive
approximation corollary.

Appendix A contains our proof of the fact that the singular chain complex functor is
excisive in the aforementioned sense. As we use the model category theoretic perspective
for the latter, we begin with a survey on homotopy pushouts and pullbacks in Top. We
then prove the claim in two steps: a model categorical analogue is shown first, which is
then translated into the ∞-categorical statement.
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Appendix B explains how the abstract excision property in ∞-categories relates to
classical excision in the form of Mayer-Vietoris sequences. In the final section, this is
applied to the singular chain complex functor, in order to recover the traditional sequence
for singular homology.

Appendix C contains the full API documentation for the software package that we
present in Chapter 4.

Notation and conventions

In the present thesis, we use the following notations and conventions:

– Foundations. We use set theory as a foundation. Most parts do not depend on
the exact theory chosen, as long as we can speak about classes as, for instance,
in NBG-style set theory. However, in the ∞-categorical chapters, we occasionally
need “more layers”, for which we use Grothendieck universes (see Remark 5.7).

– Setup: categories. The categories of (small) sets, topological spaces and categories
will be denoted by Set, Top and Cat, respectively.

Rings are always unital. For a commutative ring k, we denote the category of k-
modules by Mod(k) and the category of chain complexes over k by Chk. We use
the abbreviation Ch for ChZ. If k is a field, we also write Vectk for the category of
k-vector spaces.

For a category A and objects x, y of A, we let MorA(x, y) denote the set of mor-
phisms x→ y; more generally, MorA denotes the corresponding functor Aop×A→
Set, where Aop denotes the opposite category of A.

– Setup: ∞-categories. In Chapter 6 and Appendices A and B, we additionally use
Top, Ch and ChR as ∞-categories; more precisely, we localize (Remark 5.23) their
1-categorical counterpart with respect to weak homotopy equivalencs and quasi-
isomorphisms, respectively. Note, that we do not employ the common practice of
using the nerve functor implicitly.
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Chapter 1:

Functorial semi-norms

In this chapter, we introduce the main players of this thesis. We start by reviewing the
ℓ1-norm on the singular chain complex and its induced semi-norm on singular homology
(Section 1.1). This special example was not only Gromov’s prime object of study when
he introduced the notion of functorial semi-norms on singular homology [Grv1], but also
reappears multiple times in this thesis. We then recall a generalization of Gromov’s
idea to what we now simply call functorial semi-norms, and discuss a general way of
constructing such objects (Sections 1.2 and 1.3). In Section 1.4, we recall the definition
of the ℓ1-chain complex and ℓ1-homology.

1.1. The ℓ1-semi-norm on singular homology

One of the foundational objects in algebraic topology is the singular chain complex
C(X,A;R) of a pair of topological spaces (X,A) with R-coefficients for some ring with
unit R. Taking its homology, or dualizing and taking cohomology, leads to the classical
theory of singular (co)homology of (pairs of) spaces. One way of refining the latter (in
the case R = R) is by considering

– the ℓ1-norm on Cn(X;R), namely∣∣∣∑N

j=1
aj σj

∣∣∣
1
:=

∑N

j=1
|aj | ∈ R≥0

for a reduced chain in Cn(X) with N ∈ N, singular simplices σj : ∆n → X, and
coefficients aj ∈ R.

– the induced norms(!) |•|1 on the quotient C(X,A;R) = C(X;R)/C(A;R), and

– the induced semi-norm ∥•∥1 on homology, i.e.

∥α∥1 = inf
{
|c|1

∣∣ c ∈ Cn(X,A;R) is a cycle with [c] = α
}

for a homology class α ∈ Hn(X,A;R).

Roughly, the ℓ1-semi-norm measures how many singular simplices with real coefficients
are necessary to realize a particular (relative) homology class. Applying this idea to
fundamental classes of oriented manifolds yields the simplicial volume, a homotopy in-
variant introduced by Gromov with many connections to Riemannian geometry [Grv1]
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Chapter 1. Functorial semi-norms

[Lö5]. Other than vanishing results, the exact value of the ℓ1-semi-norm is typically very
hard to compute. One exception is the formula

simplicial volume of Sg = 4 · (g − 1)

for an oriented closed connected surface of genus g ∈ N≥2, which can be obtained as a
special case of one of Gromov’s results stating that the simplicial volume of an oriented
closed connected hyperbolic manifold is proportional to its Riemannian volume [Grv1,
Sec. 2.2][Thu, Thm. 6.2]. (However, the inequality “≤” in the above formula can also
be obtained by more elementary means, using finite coverings of Sg [Grv1, p. 9][BP,
Prop. C.4.7].)

The ℓ1-semi-norm satisfies a certain functoriality with respect to continuous maps of
spaces [Grv1][Rat, Lem. 1 of §11.6]: If f : X → Y is continuous and α ∈ Hn(X;R), then

∥Hn(f)(α)∥1 ≤ ∥α∥1.

Other semi-norms on singular homology that satisfy this property are introduced in
Gromov’s book [Grv2, Sec. 5.G+ and 5.H+]. We introduce a further abstraction of this
idea in the following section.

1.2. Semi-norms on functors

We use the following terminology:

Definition 1.1 (semi-norm). Let K be a normed field (e.g. Q or R with the standard
absolute value).

(i) A semi-norm on a K-vector space V is a function |•| : V → R≥0∪{∞} that satisfies

– |0| = 0, the

– triangle-inequality, i.e., for all x, y ∈ V we have |x+ y| ≤ |x|+ |y|, and

– homogeneity, i.e., for all a ∈ K \ {0} and all x ∈ V we have |a · x| = |a| · |x|

(with the usual conventions regarding∞). A semi-norm is finite if∞ is not attained.

(ii) For a subcategory L of VectK , we denote the corresponding category of semi-normed
K-vector spaces with norm non-increasing homomorphisms by snL; explicitly, the

– objects of snL are pairs (V, |•|) with V ∈ Ob(L) and |•| a semi-norm on V ,
and

– morphisms (V, |•|) → (W, |•|′) are those homomorphisms f ∈ MorL(V,W )
that satisfy |f(v)|′ ≤ |v| for all v ∈ V .

By restricting to finite semi-norms, we obtain a full subcategory fsnL of snL.

Now we can say what a functorial semi-norm on a given functor is:
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1.3. A general way to construct functorial semi-norms

Definition 1.2 ((finite) functorial semi-norm). Let C be a category, let L be a
subcategory of VectK for a normed field K, and let F : C → L be a functor. A functorial
semi-norm on F is a factorization of F over the forgetful functor snL→ L; it is finite if
it further factors over the inclusion fsnL ↪→ snL:

C

fsnL snL L.

F

forget

Remark 1.3 ((finite) functorial semi-norm, explicitly). In the situation of Defini-
tion 1.2, it is clear that a functorial semi-norm σ on F precisely consists of

– a choice of semi-norm |•|X for all objects X ∈ Ob(C), such that

– for all morphisms f : X → Y of C and all α ∈ F (X), we have |F (f)(α)|Y ≤ |α|X ,

and that the functorial semi-norm is finite if and only if |•|X is finite for all X ∈ Ob(C).
We usually leave X implicit and write |•|σ for all of the |•|X .

Example 1.4 (trivial functorial semi-norm). Every functor as above admits the trivial
functorial semi-norm, i.e., the semi-norm that vanishes on every input.

Example 1.5 (functoriality of the ℓ1-semi-norm). Let n ∈ N. Then the ℓ1-semi-
norm (Section 1.1) is a finite functorial semi-norm on Hn(•;R) : Top → VectR and
on Hn(•, •;R) : Top2 → VectR.

1.3. A general way to construct functorial semi-norms

In the following, we describe a very general way of generating functorial semi-norms on
a given functor, which generalizes a construction of Crowley and Löh [CL, Sec. 4]. We
consider:

Setup 1.6. Let C be a category, let L be a subcategory of VectK for a normed field K,
and let F : C → L be a functor.

Definition 1.7 (F -element). In the situation of Setup 1.6, an F -element is a pair
(X,α) where X ∈ Ob(C) and α ∈ F (X). We often suppress X in the notation and
simply say that α is an F -element.

Definition 1.8 (generated semi-norm). In the situation of Setup 1.6, let S be a class
of F -elements and let v : S → R≥0 ∪ {∞}.
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Chapter 1. Functorial semi-norms

– An S-representation of an F -element (X,α) is a representation of the form

α =
N∑
j=1

bj · F (fj)(αj)

with N ∈ N, coefficients b1, . . . , bN ∈ K, F -elements (X1, α1), . . . , (XN , αN ) ∈ S,
and morphisms f1 : X1 → X, . . . , fN : XN → X in C.

– The semi-norm |•|v on F generated by v is defined by: For all F -elements (X,α),
we set

|α|v := inf
{ N∑
j=1

|bj | · v(Xj , αj)
∣∣∣ N∑
j=1

bj · F (fj)(αj) is an S-representation of α
}
,

with inf ∅ :=∞.

Proposition 1.9 (generating functorial semi-norms via functions). In the situation
of Definition 1.8, we have:

(i) The semi-norm |•|v generated by v is a functorial semi-norm on F .

(ii) For all F -elements α in S, we have |α|v ≤ v(α).

(iii) If v′ : S → R≥0 ∪ {∞} is a function with v′ ≥ v (pointwise), then |α|v′ ≥ |α|v for
all F -elements α.

(iv) If S contains all F -elements given by a skeleton of C and v does not attain∞, then
|•|v is finite.

(v) Let σ be a functorial semi-norm on F and let v ≥ |•|σ on S. Then, for all F -
elements α, we have |α|v ≥ |α|σ.

Proof. Using functoriality of F , it is easy to see that |•|v is a functorial semi-norm.
Also (iii) follows immediately from the definition. For an F -class (X,α), the identity
morphism X → X shows (ii). Property (iv) is a direct consequence of (ii) and the fact
that a functorial semi-norm is uniquely determined by its restriction to a skeleton. We
now prove (v): Let

∑N
j=1 bj · F (fj)(αj) = α be an S-representation of α. Then

|α|σ ≤
N∑
j=1

|bj | · |F (fj)(αj)|σ ≤
N∑
j=1

|bj | · |αj |σ ≤
N∑
j=1

|bj | · v(αj)

by the triangle inequality, functoriality of σ, and assumption on v. Taking the infimum
over all S-representations of α, we obtain |α|v ≥ |α|σ.

■
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1.4. ℓ1-Homology

Remark 1.10 (finiteness of generated semi-norms). Proposition 1.9 (iv) only provides
a sufficient criterion for |•|v to be finite. For example, let d ∈ N and let us consider
the case F = Hd(• ;R) : Top → VectR. Then, |•|v is finite whenever S contains and v is
finite on enough fundamental classes of manifolds, because rational homology classes can
(up to multiplicity) be realized as the push-forward of fundamental classes by a classical
result by Thom [Tho] [CL, Corollary 3.2]. Notably, it is already enough to take one of
appropriate oriented closed connected (aspherical) d-manifolds, so-called URC-manifolds
[Ga, p. 1747], together with all its finite coverings [CL, Example 7.10].

1.4. ℓ1-Homology

Let (X,A) be a pair of topological spaces. Clearly, the boundary operators of the singu-
lar chain complex C(X,A;R) are bounded operators with respect to the ℓ1-norm (Sec-
tion 1.1) in the sense of functional analysis; and the same is true in each degree for the
induced chain map of a continuous map of pairs. This simple observation enables us to
make the following:

Definition 1.11 (ℓ1-chain complex). The ℓ1-chain complex of (X,A) is the degree-
wise completion of the singular chain complex C(X,A;R) with respect to the ℓ1-norm,
together with the induced boundary operators:

Cℓ
1
(X,A) := C(X,A;R) ℓ

1

.

For a continuous map of pairs of spaces f : (X,A)→ (Y,B), let

Cℓ
1
(f) : Cℓ

1
(X,A)→ Cℓ

1
(Y,B)

denote the degreewise extension of C(f ;R) : C(X,A;R)→ C(Y,B;R). ⌟

This functorial constructions turns the normed chain complex C(X,A;R) into the
Banach chain complex Cℓ

1
(X,A). More systematic definitions of these notions, along

with their counterparts for cochain complexes and the duality between those can be
found in Löh’s doctoral thesis [Lö1, Ch. 1]. This new chain complex gives rise to:

Definition 1.12 (ℓ1-homology). The homology of Cℓ1(X,A) is the ℓ1-homology
of (X,A):

Hℓ1(X,A) := H∗
(
Cℓ

1
(X,A)

)
.

Note, that we apply the usual algebraic homology functor here, i.e. “kernel/image”
(without taking the closure of the image).

In Chapter 6, we investigate the excisive approximation of the ℓ1-chain complex functor
on pointed spaces Top∗ → ChR, i.e. the composition of the functor Cℓ1 from above with
the inclusion of Top∗ into the category of pairs of topological spaces.
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Chapter 2:

Universal finite functorial semi-norms

Informally, a functorial semi-norm on a functor is called universal if it vanishes on as few
classes as possible among all functorial semi-norms on the same functor; see Definition 2.5
for the precise statement. In this chapter, we prove the following existence results for
universal functorial semi-norms (Section 2.5):

Theorem 2.1. Let C be a category that admits a skeleton with at most countably
many objects. Let K be a normed field and let F : C → VectK be a functor.

(i) IfK is countable and if F maps to VectωK , then F admits a universal finite functorial
semi-norm.

(ii) If F maps to VectfinK , then F admits a universal finite functorial semi-norm.

Here, VectfinK and VectωK denote the categories ofK-vector spaces of finite and countable
dimension, respectively.

From the second part of Theorem 2.1 the following consequence for singular homology
can be derived:

Corollary 2.2. Let d ∈ N and let K be a normed field. Then the singular homology
functor Hd(•;K) : CWfin → VectK admits a universal functorial semi-norm, where CWfin

denotes the full subcategory of Top on those spaces that are homotopy equivalent to a
finite CW-complex.

This chapter is based on joint work with Clara Löh [LW].

2.1. Carrying relation and universality

Setup 2.3. Let C be a category, let K be a normed field, and let F : C → VectK be
a functor.

Definition 2.4 (carries). In the situation of Setup 2.3, let σ and τ be functorial
semi-norms on F . Then σ carries τ if for all F -elements α, we have

|α|σ = 0 =⇒ |α|τ = 0.

7



Chapter 2. Universal finite functorial semi-norms

Definition 2.5 (universal finite functorial semi-norm). In the situation of Setup 2.3,
a universal finite functorial semi-norm on F is a finite functorial semi-norm on F that
carries all other finite functorial semi-norms on F .

Remark 2.6. Definition 2.5 is not interesting for the non-finite case, because the
functorial semi-norm that is ∞ everywhere, except at 0, is always universal.

Example 2.7 (non-universality of the ℓ1-semi-norm). For each d ∈ {3} ∪ N≥5 there
exists a finite functorial semi-norm on Hd(• ;R) that is not carried by the ℓ1-semi-norm
[FL, Theorem 1.2]. However, all finite functorial semi-norms that are multiplicative under
finite coverings are carried by the ℓ1-semi-norm [CL, Proposition 7.11].

Example 2.8 (representable and countably additive functors). In the situation of
Setup 2.3, if K ∈ {Q,R} and if the functor F is representable or countably additive,
then the trivial functorial semi-norm on F is universal [Lö3, Corollaries 4.1 and 4.5].

2.2. Universality under equivalence of categories

Universal finite functorial semi-norms are compatible with equivalences of categories
(Corollary 2.11). Indeed, a stronger result holds: In Proposition 2.10, we show that uni-
versal functorial semi-norms can be transferred along “weak retractions” of categories.

Setup 2.9. Let C and D be categories, let K be a normed field and let F : C → VectK
and G : D → VectK be functors. Let A : C → D be a functor such that G ◦A is naturally
isomorphic to F .

C D

VectK

A

F G

B

Proposition 2.10. In the situation of Setup 2.9, let B : D → C be a right-inverse
of A, i.e., we assume that A ◦B is naturally isomorphic to the identity on D. Then, if F
admits a universal functorial semi-norm, so does G.

As an immediate consequence, we obtain:

Corollary 2.11. In the situation of Setup 2.9, assume that A : C → D is an equiva-
lence of categories. Then F admits a universal finite functorial semi-norm if and only if
G does.

Before we give the proof of Proposition 2.10, we make a few remarks about the interplay
between functorial semi-norms and natural isomorphisms:
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2.2. Universality under equivalence of categories

Remark 2.12 (non-strict functorial semi-norms). In the situation of Setup 2.9 and
given a functorial semi-norm τ on G, one would like to precompose τ with A to get a
functorial semi-norm on F . However, as G ◦ A is not necessarily equal to F , also τ ◦ A
will not necessarily be a strict lift of F , but only up to natural isomorphism. In other
words: if U : snVectK → VectK denotes the forgetful functor, the right triangle in the
diagram

C D

VectK

snVectK

A

F

τ ◦A

G

τ

U

commutes on the nose while the other two only commute up to natural isomorphism.
One possible way to proceed would be to relax the definition of functorial semi-norm:

Instead of U ◦ τ = G we only require U ◦ τ ∼= G, and then the functorial semi-norm
consists of τ together with such a natural isomorphism.

This sounds like the correct setting to pursue the categorical view on functorial semi-
norms (or formalization in a proof assistant [Lö4, Ch. 4.1.2]). On the other hand, this
setting does not actually increase the pool of functorial semi-norms: Indeed, if η : G ⇒
U ◦ τ is a natural isomorphism, the technique from Remark 2.13 shows how to construct
a (strict) functorial semi-norm on G “with the same semi-norms”.

Remark 2.13 (pull-back along natural transformation). Let C be a category, let K
be a normed field, let η : F ⇒ F ′ be a natural transformation of functors C → VectK ,
and let σ be a functorial semi-norm on F ′. Then, by naturality of η,

C → snVectK ,

{
X 7→

(
F (X), (ηX)

∗|•|σ
)

on objects
f 7→ F (f) on morphisms

defines a functorial semi-norm η∗σ on F .

Proof of Proposition 2.10. First, we fix some notation: Let σ be a universal finite functo-
rial semi-norm on F . Let λ : IdD ⇒ A ◦ B and ψ : F ⇒ G ◦ A be natural isomorphisms.
Then ϕ := ψ−1 ◦ G(λ) is a natural isomorphism G ⇒ F ◦ B. We consider the induced
functorial semi-norm σ̃ := ϕ∗(σ ◦B) on G (Remark 2.13).

We show that σ̃ is universal for G: Let τ be a finite functorial semi-norm on G. The
idea is straightforward: We go to the side of F , compare the result with the universal σ
on F , and then derive universality of σ̃ on G. However, this involves a round-trip from D
over C back to D, and thus we have to take λ into account. More precisely, we proceed
as follows:

(i) Identifying the goal: Let (Y, β̃) be a G-element with |β̃|σ̃ = 0. We need to show
that we also have |β̃|τ = 0.
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Chapter 2. Universal finite functorial semi-norms

(ii) Twisting τ to prepare for the round-trip: We factor in λ by considering the finite
functorial semi-norm τλ := G(λ)∗(τ ◦A ◦B) on G.

(iii) Going to C: We then use the finite functorial semi-norm τ̃ := ψ∗(τλ ◦A) on F .
Let β := ϕY (β̃) ∈ F (B(Y )) be the element corresponding to β̃. By construction,
we have

|β|σ =
∣∣ϕY (β̃)∣∣σ =

∣∣ϕY (β̃)∣∣σ ◦B = |β̃|ϕ∗(σ ◦B) = |β̃|σ̃ = 0;

in the second step, we reinterpreted ϕY (β̃) as element of F ◦B(Y ), so that instead
of σ on B(Y ) we can equivalently apply σ ◦B on Y .
From universality of σ, we hence obtain |β|τ̃ = 0.

(iv) Translating the result back to D: To keep the notation light, we will not explicitly
annotate the objects to which the natural transformations are applied. We compute

0 = |β|τ̃ = |β|ψ∗(τλ ◦A) =
∣∣ψ(β)∣∣

τλ◦A
=

∣∣ψ(β)∣∣
τλ

=
∣∣ψ(β)∣∣

G(λ)∗(τ ◦A ◦B)

=
∣∣G(λ)(ψ(β))∣∣

τ ◦A ◦B =
∣∣G(λ)(ψ(β))∣∣

τ
.

For every object Z of D, the map G(λZ) is an isometry with respect to |•|τ because
λZ is an isomorphism in D and τ is a functorial semi-norm on G. Therefore, we
can continue with∣∣G(λ)(ψ(β))∣∣

τ
=

∣∣ψ(β)∣∣
τ
=

∣∣ψ(ϕ(β̃))∣∣
τ
=

∣∣ψ ◦ ψ−1 ◦G(λ)(β̃)
∣∣
τ
=

∣∣G(λ)(β̃)∣∣
τ

= |β̃|τ .

We conclude that |β̃|τ = 0, as claimed.
■

2.3. Vanishing loci

In this section, we reformulate the “carries” relation (Definition 2.4) in terms of vanishing
loci (Definition 2.15, Remark 2.16).

The vanishing loci provide a convenient language to reason about families of functorial
semi-norms and their relations: In Section 2.4, we use a diagonalization construction on
the associated functions to construct a functorial semi-norm that carries countably many
given functorial semi-norms (Proposition 2.17 and Corollary 2.18).

Setup 2.14. Let C be a category, let K be a normed field, let F : C → VectK be a
functor, and let S be a class of F -elements.

Definition 2.15 (vanishing locus). We assume Setup 2.14; let X ∈ Ob(C).

– For a functorial semi-norm σ on F , we define the vanishing locus of σ on X by

Nσ(X) :=
{
α ∈ F (X)

∣∣ |α|σ = 0
}
.
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2.4. Carrying a sequence of semi-norms

– If C is small, we write Fsn(F ) for the class of all finite functorial semi-norms on F
and set

N(X) :=
⋂

σ∈Fsn(F )

Nσ(X).

– For a function v : S → R≥0, we write Nv(X) for N|•|v(X), where |•|v is the func-
torial semi-norm generated by v (Proposition 1.9).

In the situation of the definition, Nσ(X) and N(X) are K-subspaces of F (X) and
N(X) ⊆ Nσ(X). Furthermore, if we regard Fsn(F ) as the preorder category with respect
to the “carries” relation, an initial object of this category is precisely a universal finite
functorial semi-norm on F , while the trivial functorial semi-norm is always a terminal
one.

Remark 2.16. Given Setup 2.14, let σ and τ be functorial semi-norms on F .

(i) Then σ carries τ if and only if

∀X ∈ Ob(C) : Nσ(X) ⊆ Nτ (X).

(ii) If C is small, σ is universal on F if and only if it is finite and fulfills

∀X ∈ Ob(C) : Nσ(X) ⊆ N(X).

(iii) By Proposition 1.9 (v), the functorial semi-norm generated by S → R≥0, α 7→ |α|σ
carries σ, i.e.,

∀X ∈ Ob(C) : Nα 7→|α|σ(X) ⊆ Nσ(X).

2.4. Carrying a sequence of semi-norms

The main ingredient for the proof of Theorem 2.1 is that we can carry sequences of finite
functorial semi-norms generated on a countable class of elements:

Proposition 2.17. In the situation of Setup 2.14, let S be countable and let (vn)n∈N
be a sequence of functions S → R≥0. Then there exists a function v : S → R≥0 such that
|•|v carries all (|•|vn)n∈N, i.e., with

∀X ∈ Ob(C) : Nv(X) ⊆
⋂
n∈N

Nvn(X).

In particular: If C is small, if every F -element admits an S-representation, and if

∀X ∈ Ob(C) :
⋂
n∈N

Nvn(X) ⊆ N(X),

then |•|v is universal for F .
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Chapter 2. Universal finite functorial semi-norms

Proof. The second part follows from the first part and the characterization of universality
from Remark 2.16 (ii).

We now prove the first part. As indicated by Proposition 1.9 (iii), we would like to set
“v := supn vn”, but of course this might not produce a finite valued function. So instead,
we choose

v : S → R≥0, αn 7→ max
{
vj(αn)

∣∣ j ∈ {−1, . . . , n}},
where we fix and implicitly use an enumeration (Xn, αn)n∈N of S and where v−1 := 1.

In order to show that v has the claimed property, we let m ∈ N and show that |•|v
carries |•|vm : We introduce the following constants: Let q−1 := 1, let

qk :=

{
v(αk) · |αk|−1

vm if |αk|vm > 0,

1 if |αk|vm = 0

for all k ∈ {0, . . . ,m}, and let

Q := min
{
qk

∣∣ k ∈ {−1, . . . ,m}}.
By construction, we have that Q ∈ (0, 1]. For every F -element α and every S-represen-
tation α =

∑N
j=1 bj · F (fj)(αkj ), we can estimate

N∑
j=1

|bj | · v(αkj ) ≥
∑

j∈{1,...,N}
kj<m

|bj | · qkj · |αkj |vm +
∑

j∈{1,...,N}
kj≥m

|bj | · vm(αkj ) (definition of qkj and v)

≥ Q ·
∑

j∈{1,...,N}
kj<m

|bj | · |αkj |vm +
∑

j∈{1,...,N}
kj≥m

|bj | · |αkj |vm (def. of Q and P. 1.9 (ii))

≥ Q ·
N∑
j=1

|bj | · |αkj |vm (because Q ≤ 1)

≥ Q · |α|vm ,

where the last step follows from applying |•|vm to the given S-representation of α. By
taking the infimum over all such S-representations, we obtain |α|v ≥ Q · |α|vm . As Q > 0,
we see that |•|v carries |•|vm as desired.

■

Corollary 2.18. In the situation of Setup 2.14, let C be small, let S be countable,
and let T ⊆ Fsn(F ) be countable. Then there exists a functorial semi-norm σ on F such
that σ carries all of T , i.e., with

∀X ∈ Ob(C) : Nσ(X) ⊆
⋂
τ∈T

Nτ (X).
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2.5. Existence proofs

In particular: If every F -element admits an S-representation and if

∀X ∈ Ob(C) :
⋂
τ∈T

Nτ (X) ⊆ N(X),

then σ is universal for F .

Proof. Again, the second part follows from the first one and Remark 2.16 (ii).
We prove the first part of the claim: By Remark 2.16 (iii), for each τ ∈ T , we find a

function vτ : S → R≥0 with

∀X ∈ Ob(C) : Nvτ (X) ⊆ Nτ (X).

We then choose an enumeration of {vτ | τ ∈ T} and apply Proposition 2.17.
■

2.5. Existence proofs

In this section, we prove Theorem 2.1. We first treat the case of countable fields where
a direct enumeration argument applies. Then we consider functors with range in finite
dimensional vector spaces over general normed fields.

In both cases, we use the following observation:

Remark 2.19. By definition, the inclusion functor of a skeleton into the ambient
category is an equivalence. Invoking Corollary 2.11, we may equivalently assume that the
category itself has only countably many objects.

Proof of Theorem 2.1 (i). We may assume that C itself has only countably many objects
(Remark 2.19). Furthermore, by assumption, K and dimK F (X) are countable for all
objects X of C. Together, we obtain that the class S of all F -elements is a countable
set. Trivially, all F -elements admit an S-representation.

Let S′ := {(X,α) ∈ S | α /∈ N(X)} and for each (X,α) ∈ S′ let σα be a finite functorial
semi-norm on F with α /∈ Nσα(X).

By construction, for every object Y of C, we have

F (Y ) \N(Y ) ⊆
⋃

(X,α)∈S′

F (Y ) \Nσα(Y ).

Hence, by De Morgan’s laws and Corollary 2.18, there exists a universal functorial semi-
norm on F .

■

Remark 2.20. In general, it would not be enough to have a countable set S with
the property that every F -element admits an S-representation. Without the countability
assumption on Ob(C), it might not be possible to control the vanishing locus on all
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Chapter 2. Universal finite functorial semi-norms

objects by only countably many functorial semi-norms, and thus, the second part of
Corollary 2.18 does not apply. A concrete example is given in Section 2.6.

As a preparation for the proof of Theorem 2.1 (ii), we show that we can achieve uni-
versality on a single object:

Lemma 2.21. Let C be a small category, let K be a normed field, and let F : C →
VectK be a functor. Let X ∈ Ob(C) with dimK F (X) < ∞. Then there exists a finite
functorial semi-norm σ on F with Nσ(X) = N(X).

Proof. We proceed inductively, using the following observation:

If σ ∈ Fsn(F ) with Nσ(X) ̸= N(X), then there
exists a σ′ ∈ Fsn(F ) with dimK Nσ′(X) < dimK Nσ(X).

Indeed, if Nσ(X) ̸= N(X), there exists an α ∈ Nσ(X) \ N(X). Hence, there is a finite
functorial semi-norm τ on F with |α|τ ̸= 0. Then also σ′ := σ + τ ∈ Fsn(F ) and α
witnesses that

Nσ′(X) ⊆ Nσ(X) ∩Nτ (X) ⊊ Nσ(X).

Because of dimK Nσ(X) ≤ dimK F (X) <∞, we obtain dimK Nσ′(X) < dimK Nσ(X).
For the actual induction, we start with the trivial functorial semi-norm σ := 0 on F ,

which satisfies Nσ(X) = F (X). We then iteratedly apply the observation above. Because
dimK F (X) is finite, this will terminate and lead to a finite functorial semi-norm σ on F
with Nσ(X) = N(X).

■

Proof of Theorem 2.1 (ii). By Remark 2.19, we may assume without loss of generality,
that Ob(C) is countable. For each X ∈ Ob(C), let (αi)i∈IX be a finite generating set of
the finite-dimensional K-vector space F (X). Then S := {(X,αi) | X ∈ Ob(C), i ∈ IX}
is countable and every F -element admits an S-representation.

By Lemma 2.21, for each X ∈ Ob(C), we find a functorial semi-norm σX on F with
NσX (X) = N(X). Therefore, for all Y ∈ Ob(C), we have⋂

X∈Ob(C)

NσX (Y ) ⊆ N(Y ).

Applying Corollary 2.18 to the countable set {σX | X ∈ Ob(C)} thus shows that there
exists a universal functorial semi-norm on F .

■

Proof of Corollary 2.2. The key observation is that functorial semi-norms are compatible
with homotopy equivalences and thus the existence of a universal functorial semi-norm
can be answered on the level of the homotopy category of CWfin. The latter, however, ad-
mits a skeleton with countably many objects, to which Theorem 2.1 applies [LW, Sec. 5.2].

■
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2.6. Artificial counter-example

If one drops the countability assumption on the skeleton that we imposed in Theorem 2.1,
universal functorial semi-norms may fail to exist. In this section, we include an example
of a functor that does not admit a universal functorial semi-norm.

Example 2.22 (a functor that does not admit a universal functorial semi-norm). We
define a category C by:

– We set M := (R≥1)
N and Ob(C) := N ⊔M .

– The only non-identity morphisms in C are the morphisms fm,v : m→ v with m ∈ N
and v ∈M .

0

1

2

...

v

v′

...

M

...

...

...

We define a functor F : C → VectfinQ as follows:

– For all objects X ∈ Ob(C), we set F (X) := Q.

– For m ∈ N and v ∈M , we set

F (fm,v) := ⌈v(m)⌉ · idQ . ⌟

Generating a functorial semi-norm via an appropriate function (Proposition 1.9), it is
then not difficult to derive a contradiction from the assumption that the functor F from
Example 2.22 admits a universal functorial semi-norm [LW, Prop. 6.5].

However, it seems unclear whether the phenomenon of this example also applies to the
homology functor on the category of all topological spaces.
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Chapter 3:

Inflexible manifolds and differential
graded algebras

There exists a tight interaction between so-called (strongly) inflexible manifolds and
(finite) functorial semi-norms on singular homology [CL]. Here, we recapitulate this cor-
respondence in Section 3.2 and introduce some preliminaries in Section 3.1.

In order to obtain exotic examples of functorial semi-norms on singular homology (The-
orem 3.6), one needs simply-connected inflexible manifolds. The only known method for
constructing such manifolds, passes through Sullivan’s approach of rational homotopy
theory [Su][FHT], whose algebraic side is based on the notion of differential graded alge-
bras. As these algebras are also at the core of Chapter 4, we introduce these objects in a
hands-on but self-contained manner in Section 3.3.

In the last section of this chapter, we point the reader to the literature for the passage
from (inflexible) differential graded algebras to (inflexible) manifolds.

3.1. Domination semi-norm

Given two oriented closed connected manifolds M,N of the same dimension, N is said to
dominate M if there is a continuous map N →M of non-zero mapping degree. Fixing M
and taking into account the largest such degree, one obtains a way to measure how often
a given manifold can be “wrapped around M ”. Making this idea rigorous results in the
following construction by Crowley and Löh [CL, Def. 7.1 and 7.3]:

Definition 3.1 (domination semi-norm). Let d ∈ N≥1 and let Mfdd denote the class
of all oriented closed connected manifolds of dimension d.

(i) For manifolds M,N ∈ Mfdd, let

deg(N,M) := {deg(f) | f : N →M continuous} ⊆ Z,

where deg(f) denotes the mapping degree of a continuous map f .

(ii) Let M ∈ Mfdd. The domination semi-norm |•|M on singular homology in degree d

17



Chapter 3. Inflexible manifolds and differential graded algebras

(with respect to M) is the semi-norm generated by the function{
(N, [N ]R)

∣∣ N ∈ Mfdd
}
→ R≥0 ∪ {∞}

(N, [N ]R) 7→ vM (N) := sup
{
|k|

∣∣ k ∈ deg(N,M)
}

in the sense of Definition 1.8; here sup ∅ = 0, and [N ]R denotes the real fundamental
class of the manifold N .

Proposition 3.2. Let M ∈ Mfdd. Then the domination semi-norm on Hd(•;R) with
respect to M has the following properties:

(i) The domination semi-norm |•|M is a functorial semi-norm in the sense of Defini-
tion 1.2.

(ii) For all N ∈ Mfdd, we have
∣∣[N ]R

∣∣
M

= vM (N).

Proof. The first part follows directly from Proposition 1.9 (i). The inequality |•|M ≤ vM
generally holds on Mfdd (Proposition 1.9 (ii)), and the other inequality is a consequence
of the multiplicativity of the mapping degree: the latter implies that for all continuous
maps f : N ′ → N with N ′, N ∈ Mfdd, we have

|deg(f)| · vM (N ′) ≤ vM (N).

From this, the desired inequality can easily be derived [CL, Thm. 4.2 (1)].
■

Now if we have information about the place of a d-manifold within the “dominated
by” relation, the previous proposition enables us to construct a functorial semi-norm
on singular homology in degree d with control over its values on fundamental classes
of oriented closed connected manifolds. Via this technique, Crowley and Löh [CL] and
also Fauser and Löh [FL] have constructed functorial semi-norms that exhibit different
exotic behaviors. A key to those constructions are so-called inflexible manifolds, which
we review in the following section.

3.2. Inflexible manifolds

In order to obtain interesting examples of functorial semi-norms by means of the dom-
ination semi-norm, we need manifolds that do not admit high-degree maps onto them.
This notion is captured by the following:

Definition 3.3 ((strongly) inflexible manifold). Let d ∈ N≥1 and let M ∈ Mfdd, i.e.
M is an oriented closed connected manifold of dimension d. Then M is

– inflexible if deg(M,M) is finite,

– strongly inflexible if deg(N,M) is finite for all N ∈ Mfdd,
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3.2. Inflexible manifolds

– flexible if it is not inflexible

– weakly flexible if it is not strongly inflexible.

Remark 3.4. The following observations are immediate from Definition 3.3 by mul-
tiplicativity of the mapping degree:

(i) We have deg(M,M) ⊆ {−1, 0, 1} if and only if M is inflexible.

(ii) If M is dominated by some weakly flexible manifold, it must be weakly flexible
itself.

Examples 3.5. In the following examples, all manifolds are assumed to be oriented,
closed, connected and of non-zero dimension.

(i) Spheres are flexible.

(ii) Any product manifold with a flexible factor is flexible.

(iii) In particular, tori are flexible.

(iv) By functoriality, any manifold of non-zero simplicial volume is strongly inflexible
[CL, cf. Ex. 6.15]. For example, this includes all hyperbolic manifolds, and more
generally, Riemannian manifolds with sectional curvature bounded from above by
a negative constant [IY][Grv1, (B) in Sec. 1.2].

(v) Generalizing the previous item: If there exists a [finite] functorial semi-norm such
that its value on the real fundamental class of M is finite and positive, the mani-
fold M must be [strongly] inflexible.

Conversely to (v), a [strongly] inflexible d-manifold M yields a [finite] functorial semi-
norm on Hd(•;R) by Proposition 3.2, such that |[M ]R|M = 1. The following results were
shown in this way:

Theorem 3.6 (exotic functorial semi-norms [FL][CL]).

(i) There exist finite functorial semi-norms on singular homology that are not carried
(Definition 2.4) by the ℓ1-semi-norm [FL, Thm. 1.2].

(ii) There exist functorial semi-norms on singular homology that are positive and finite
on certain homology classes of simply-connected spaces [CL, Thm. 1.2].

The first part clarifies the role of the ℓ1-semi-norm among all finite functorial semi-
norms on singular homology in the sense that not even non-vanishing of homology classes
is determined by the ℓ1-semi-norm. The second part is interesting because it answers
the question raised by Gromov whether functorial semi-norms always vanish on simply-
connected spaces [Grv2, Remark (b) in paragraph 5.35]. At the time, none of the functo-
rial semi-norms constructed by Crowley and Löh were known to be finite [CL, Rem. 7.5],
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Chapter 3. Inflexible manifolds and differential graded algebras

but by now Costoya, Muñoz and Viruel showed that they are not finite [CMuV]. Thus,
the following is still open:

Question 3.7 ([CL, Q. 1.1(2)]). Does every finite functorial semi-norm on singular
homology (in degree greater than zero) vanish on simply-connected spaces?

The existence of a strongly inflexible, simply-connected manifold would answer this
question in the negative, so it is certainly worthwhile to obtain a better understanding of
the class of (strongly) inflexible manifolds. If it exists, such a manifold must be at least
7-dimensional, because Crowley and Löh proved that all finite functorial semi-norms on
homology of degree 1 to 6 vanish on simply-connected spaces [CL, Thm. 1.3].

On the other hand, the existence of a finite functorial semi-norm on singular homology
of degree at least 7 that does not vanish on some simply connected space (not necessar-
ily manifold!) would also settle the existence of a strongly inflexible, simply-connected
manifold by the following result:

Proposition 3.8 ([CL, Prop. 7.6]). For d ∈ N≥4, the existence of a finite functorial
semi-norm on Hd(•;R) that does not vanish on all simply-connected spaces is equivalent
to the existence of a strongly inflexible, simply-connected d-dimensional manifold.

In order to get closer to strongly inflexible, simply-connected manifolds, one can try
to study and find more inflexible ones. We give an overview of known constructions:

Examples 3.9 (inflexible, simply-connected manifolds). Historically, the first exam-
ples of inflexible, simply-connected closed manifolds were given by Arkowitz and Lupton
[AL, Ex. 5.1 and 5.2], which were of dimensions 208 and 228. Since then,

– Crowley and Löh derived a “design pattern” and two new examples [CL, Sec. I.1]
in dimensions 64 and 108;

– they also proved that iterated self-products can be used to obtain examples in all
dimensions d · k with d ∈ {108, 208, 228} and k ∈ N≥1 [CL, Cor. II.7].

– Amann found a countably infinite family of examples in odd dimensions 231+4 · k
with k ∈ N [Am, Sec. 3];

– and proved, also via products, that those give rise to examples in all dimensions
at least 921 [Am, Cor. 3.5];

– he further twisted the above example of dimension 64 to obtain one in dimension 66
[Am, Ex. 3.8].

– Costoya and Viruel obtained an example manifold of dimension 415 + 160 · k for
each finite, connected graph on k vertices with k ∈ N≥2 [CV, Thm. 2.6, Lem. 3.2,
and proof of Thm. 1.5 (p. 60)].
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3.3. Differential graded algebras

– Together with Méndez, they later gave two refinements of their approach, resulting
in constructions of highly connected examples, which are, however, of even (much)
higher dimension [CMV1, Sec. 4.1][CMV2, Sec. 3].

– The author of this thesis found a new example in dimension 38 (cf. Example 4.6),
based on Crowley and Löh’s design pattern and verified by computer calculations
from the software that is presented in Chapter 4.

All of these known examples of inflexible, simple-connected manifolds have in common
that they are constructed through rational homotopy theory. More precisely, this means
that for all of the above examples, one actually constructs an inflexible differential graded
algebra (Section 3.3), and then uses methods from rational homotopy theory to realize
this algebra as the minimal Sullivan model of some manifold (Section 3.4), which, as a
consequence, will be inflexible as well. While this approach has proven to be fruitful, it
would certainly be interesting to have more different sources of examples:

Question 3.10. How can inflexible, simply-connected manifolds be constructed
– without passing through rational homotopy theory?
– in more geometric or direct ways?

3.3. Differential graded algebras

As an algebraic foundation, rational homotopy theory relies on a setting with gradings
and differentials, which we introduce in this section. Building upon the notion of graded
vector spaces, differential graded algebras of two different types are the main players in
Quillen’s [Qu] and Sullivan’s [Su] work: The former employs a Lie bracket as additional
structure, whereas an associative multiplication is utilized in the latter. As we will not
need Lie type objects in this thesis, we will not introduce any details about them and
focus on Sullivan algebras instead.

If one is familiar with the tensor product of chain complexes [Ei, Sec. 17.3] and monoid
objects in monoidal categories [Ml2, Sec. VII.3], there is a very succinct definition of
differential graded(-commutative) algebra, which we state in the following remark before
giving a more hands-on definition.

Remark 3.11 (abstract definition of differential graded algebra). Fix a commutative
ring k. The category of differential graded k-algebras is the category of monoid objects
in the (symmetric) monoidal category (Chk,⊗, k) of chain complexes over k with respect
to the tensor product. Analogously, the category of differential graded-commutative k-
algebras is given by the category of commutative monoid objects.

While this categorical description yields a nice conceptual approach to the subject, it
requires quite some familiarity with abstract category theory. Given the fact that we are
interested in the algebraic framework from a computational perspective (Chapter 4) we
will not have the opportunity to exploit such a high level point of view. A comprehensive
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Chapter 3. Inflexible manifolds and differential graded algebras

reference for the categorical features of the framework is an article by Anel and Joyal
[AJ, Sec. 1.1 and 1.2].

In the rest of this section, we will introduce differential graded algebras in more ele-
mentary terms and the reader who is happy with Remark 3.11 might want to skip it.
For a lot of the following material, generalizations in several directions exist, but we
deliberately restrict the exposition to the necessary pieces that are used in this thesis.
More comprehensive treatments can be found in the literature [Ml1, Ch. VI][GM, Ch. 10]
[FHT, Ch. 3].

For the rest of the section, fix a commutative ring k. In the applications of rational
homotopy theory, k will mostly be a field of characteristic 0, specifically k = Q.

Definition 3.12 (graded module). (i) A graded k-module M is a family (Mn)n∈Z
of k-modules.

(ii) For a graded k-module M , an element x of M is an element x ∈ Mn for some
n ∈ Z; in this case, deg x := n is the degree of x.

(iii) For graded k-modules M and N , a graded k-homomorphism f : M → N is a family
of k-homomorphisms (fn : Mn → Nn+d)n∈Z for some d ∈ Z; in this case, deg f := d
is the degree of f . A morphism M → N is a graded k-homomorphism of degree 0.
For an element x of M , we set f(x) := fdeg x(x).

(iv) Together with component-wise composition, graded k-modules and morphisms form
a category gMod(k).

Example 3.13 (trivial grading). Every k-module M0 can be promoted to a graded
k-module M by setting Mn := 0 for all n ∈ Z\{0}. In this case, we say that M is trivially
graded.

Applying the same idea also to morphisms, we obtain a full and faithful functor
Mod(k)→ gMod(k). ⌟

Example 3.14 (graded module of graded homomorphisms). Let M and N be graded
k-modules. Then the graded k-homomorphisms M → N can be organized into a graded
k-module itself: For n ∈ Z, we let Hom(M,N)n be given by the set of graded k-ho-
momorphisms M → N of degree n, equipped with pointwise scalar multiplication and
addition.

Remark 3.15 (degree-wise concepts). We extend the notions of direct sums, sub-
modules, and quotients in a degree-wise manner. For example, for graded k-modules A
and B, we have (A⊕B)n = An ⊕Bn.

Furthermore, by a free graded k-module, we mean that it is free in every degree, and
a basis consists of the (disjoint) union of respective bases. ⌟

In the sense of modules as trivially graded modules (Example 3.13), the tensor product
of k-modules extends to graded k-modules:
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3.3. Differential graded algebras

Definition 3.16 (tensor product). Let M and N be graded k-modules. Their tensor
product M ⊗N is defined by

(M ⊗N)n :=
⊕
p∈Z

Mp ⊗Nn−p

for all n ∈ Z. For graded k-homomorphisms f : M →M ′ and g : N → N ′, we define the
graded k-homomorphism f ⊗ g : M ⊗N →M ′ ⊗N ′ as follows: for n ∈ Z, we set

(f ⊗ g)n : (M ⊗N)n → (M ′ ⊗N ′)n+deg f+deg g

x⊗ y 7→ (−1)deg x·deg g · f(x)⊗ g(y) (3.1)

on elementary tensors of direct summands.

As per our convention in Definition 3.12 (iii), formula (3.1) is a concise equivalent of

Mp ⊗Nn−p ∋ x⊗ y 7→ (−1)p·deg g · fp(x)⊗ gn−p(y).

Remark 3.17 (signs). In the graded setting, signs as in (3.1) are unavoidable. Our
sign conventions follow the “Koszul sign rule”: whenever two “objects” a, b with degrees
need to pass each other, a sign

(−1)deg a·deg b

is introduced. For example, this explains the sign in (3.1): to evaluate (f ⊗ g)(x⊗ y), we
have to move x past g.

Definition 3.18 (differential graded algebra). A differential graded k-algebra consists of

– a graded k-module A,

– a morphism m : A⊗A→ A, called multiplication and written ab := a·b := m(a⊗b),

– an element 1 ∈ A0, called unit, and

– a graded k-homomorphism δ : A→ A of degree −1, called differential,

subject to the following conditions:

– associativity of multiplication: ∀ a, b, c ∈ A : a · (b · c) = (a · b) · c,

– unitality: ∀ a ∈ A : 1 · a = a = a · 1,

– complex: ∀n ∈ Z : δn ◦ δn+1 = 0,

– graded Leibniz rule: ∀ a, b ∈ A : δ(a · b) = δ(a) · b+ (−1)deg a · a · δ(b).

It is graded-commutative if it additionally satisfies

∀ a, b ∈ A : a · b = (−1)deg a·deg b · b · a.
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We denote a differential graded k-algebra by (A, δ), leaving multiplication and unit
implicit.

A morphism of differential graded k-algebras is a morphism of graded k-modules that
is compatible with multiplication, preserves the unit, and commutes with taking differ-
entials.

We denote the category of differential graded k-algebras by dgAlg(k) and its full sub-
category of graded-commutative objects by dgcAlg(k).

Dropping differential and graded Leibniz rule, we obtain the notion of a graded k-
algebra A. ⌟

Example 3.19 (tensor product of algebras). Let A and B be graded k-algebras with
units 1A and 1B, respectively. The tensor product of graded k-modules A ⊗ B becomes
a graded k-algebra via the multiplication (given on elementary tensors by)

(a⊗ b) · (a′ ⊗ b′) := (−1)deg a′·deg b · (aa′)⊗ (bb′)

and the unit 1A ⊗ 1B. If, additionally, (A, δA) and (B, δB) are differential graded k-
algebras, their tensor product (A, δA)⊗ (B, δB) carries the differential

δA ⊗ idB + idA⊗δB,

which, by Definition 3.16, is explicitly given on an elementary tensor a⊗b by the formula
δA(a)⊗ b+ (−1)deg a · a⊗ δB(b).

Forgetting multiplication and unit of a differential graded algebra, we evidently obtain
a (Z-indexed) chain complex. Thus, it makes sense to consider its homology:

Definition 3.20 (homology of a differential graded algebra). The homology functor
H : dgAlg(k) → gMod(k) is the composition of the forgetful functor dgAlg(k) → Chk
with the usual homology functor on chain complexes. Explicitly, for a differential graded
k-algebra (A, δ), we have

H(A, δ) =
(
ker(δn)/ im(δn+1)

)
n∈Z

and the k-module H(A, δ)n is also denoted by Hn(A, δ).

Most often, one is not primarily interested in a differential graded k-algebra itself, but
in its homology. In such a case, the following notion is of great interest:

Definition 3.21 (quasi-isomorphism). A morphism of chain complexes over k or of
differential graded k-algebras is a quasi-isomorphism if its image under the homology
functor is an isomorphism.

We now introduce some general examples of graded algebras, which play an essential
role in the theory of Sullivan algebras.
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3.3. Differential graded algebras

Definition 3.22 (tensor and symmetric algebra). Let M be a graded k-module.

(i) The tensor algebra of M is the graded k-algebra

T (M) :=
⊕
d∈N

M⊗d

with multiplication given by “concatenation”, i.e.

(x1 ⊗ · · · ⊗ xr) · (y1 ⊗ · · · ⊗ ys) := x1 ⊗ · · · ⊗ xr ⊗ y1 ⊗ · · · ⊗ ys,

and with unit 1 ∈ k = M⊗0. We view M as a graded submodule of T (M) via the
direct summand M⊗1.

(ii) The symmetric algebra of M is the quotient graded k-algebra

S(M) := T (M)/I,

where the two-sided ideal I ⊆ T (M) is generated by{
xy + (−1)deg x·deg yyx

∣∣ x, y ∈M}
.

As the ideal contains no elements of M ⊆ T (M), we can still view M as a graded
submodule of S(M).

The tensor and symmetric algebras satisfy universal mapping properties [Ml1, Prop.
VI.3.1 and Exerc. VI.4.2], which readily imply that for M free with basis X, the tensor
algebra of M is the free graded k-algebra on X and similarly, the symmetric algebra of M
is the free graded-commutative k-algebra on X. (Though it will not be important to us
in the following, it should be noted that caution is necessary in the case that 2 is not
a unit in k. For example, Mac Lane distinguishes between “commutative” and “strictly
commutative” [Ml1, Sec. VI.3, p. 178 f.].)

Despite the nomenclature, the symmetric algebra of a graded module provides a joint
generalization of the notions of symmetric and exterior algebra from the non-graded
setting. With this in mind, the following notation might seem a bit odd, but unfortunately
it is the standard one used in rational homotopy theory, which we therefore adopt:

Proposition 3.23 (free graded-commutative algebra). Assume that 2 is a unit in k
and let M be a free graded k-module with basis (x1, . . . , xr) for some r ∈ N. Then
∧(x1, . . . , xr) := ∧(M) := S(M) is called the free graded-commutative algebra on M and
has the following properties:

(i) A basis for the underlying graded k-module of ∧(M) is given by all products of the
form

xℓ11 · · ·x
ℓr
r with

{
ℓj ∈ N if deg xj is even and
ℓj ∈ {0, 1} otherwise,
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Chapter 3. Inflexible manifolds and differential graded algebras

and in particular, for all n ∈ Z, a basis of the k-module ∧(M)n is given by all such
products with n =

∑r
j=1 ℓj · deg xj .

(ii) Every differential δ, making (∧(M), δ) a differential graded algebra, is uniquely de-
termined by its restriction to the morphism δ|M : M → ∧(M) of graded k-modules.

Proof. The first part is Corollary A2.3 in Eisenbud’s book [Ei] and the second part follows
immediately from the graded Leibniz rule.

■

Definition 3.24 (semi-free). A differential graded-commutative k-algebra (A, δ) is
semi-free, if A is a free graded-commutative algebra as in Proposition 3.23.

The prefix “semi-” is needed, because it is only the underlying graded-commutative
algebra that is free, not the object (A, δ) in dgcAlg(k).

Example 3.25 (polynomial differential forms). Let d ∈ N. Let M0 :=M−1 := Qd and
let Mn := 0 for all n ∈ Z \ {0,−1}. Furthermore, let δ : ∧(M) → ∧(M) be the unique
differential with δ0 = idQd . The differential graded Q-algebra (∧(M), δ) is (isomorphic to)
the algebra of polynomial differential forms, which is the foundational object of Sullivan’s
theory [Su][FHT, §10 (c)].

3.4. Rational homotopy theory

A continuous map f : X → Y between topological spaces is a rational (homology) equiv-
alence if

H∗(f ;Q) : H∗(X;Q)→ H∗(Y ;Q)

is an isomorphism of graded Q-vector spaces. For simply-connected X and Y , this con-
dition is equivalent to f being a rational homotopy equivalence, i.e. to

π∗(f)⊗Z Q : π∗(X)⊗Z Q→ π∗(Y )⊗Z Q

being an isomorphism of graded Q-vector spaces [FHT, §9 (c)]. Rational homotopy theory
is the study of topological spaces up to rational equivalences.

Sullivan’s theory [Su] establishes a bijective correspondence between rational homotopy
types and (isomorphism classes of) minimal Sullivan algebras over Q, both under suitable
finiteness conditions. We refer the reader to the textbook by Félix, Halperin and Thomas
[FHT, Part II] for the general picture and to Section 6.1 of Crowley and Löh’s article
[CL] for a concise recap of the relevant notions in the context of inflexible manifolds.
Furthermore, in Section 6.2 they explain precisely under what conditions the algebras can
be realized by simply-connected manifolds, as to obtain the examples from Section 3.2.

Remark 3.26 (cohomological grading). A certain change in perspective is customary
in rational homotopy theory, mainly in order to avoid negative degrees: As the most
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frequent graded algebras are non-positively graded, one tends to use “upper grading” and
redefines the term “degree” accordingly.

More explicitly: Given a graded module M , one uses the notation Mn := M−n and
says that elements of Mn have (upper) degree n. As this convention is most often used,
when Mn = 0 for all n ∈ Z>0, there is only a small risk of confusion between the two
meanings of degree. ⌟
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Chapter 4:

Computational aspects of differential
graded algebras and inflexible manifolds

One big advantage of Sullivan algebras is their manifest simple algebraic nature, which
makes them very amenable to computations. Another one is, at least for finite type
algebras, that they are easily described by a finite amount of data. Taken together, this
makes it quite feasible to implement computer software handling such structures.

In order to understand inflexible manifolds better – and maybe at some point in the
future even strongly inflexible ones – the author worked on such a computer program. One
goal was to free the researcher from most of those tedious computations that have to be
done whenever one tries new differential graded algebras. Another idea was the possibility
of random search for inflexible differential graded algebras, which was unfortunately not
implemented so far.

Basic features of the software are introduced in Section 4.1, more advanced functions
are demonstrated by examples in Section 4.2, and Appendix C contains the full API
documentation. A new example (Example 4.6) of an inflexible, minimal Sullivan algebra
in dimension 38 is contained in Section 4.2.

In the course of implementing the software, we also obtained results about algorithmic
decidability of some properties of minimal Sullivan algebras. We state and prove these
in the second part of this chapter, which consists of Sections 4.3 and 4.4.

We make the following conventions for this chapter:

Setup 4.1. Where not otherwise noted, we work over a ground field k of characteris-
tic 0. To simplify notation, we will mostly leave k implicit.

Definition 4.2 (cochain algebra). A cochain algebra is a semi-free differential graded-
commutative algebra (A, δ) with An = 0 for all n ∈ Z>0. It is connected, if additionally
A0
∼= k holds. By generators of A we always refer to the elements x1, . . . , xr such that

A = ∧(x1, . . . , xr).

Note, that this terminology is non-standard insofar as semi-freeness is usually not
assumed, and some authors also drop “-commutative”.

Furthermore, we make use of cohomological grading (Remark 3.26), i.e. “degree” will
refer to upper degrees in this chapter. In particular, differentials raise the degree by 1.
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Alg Algebra basics
Alg.Classes Eq, Ord, Show instances for algebras
Alg.Cohomology Cohomological aspects
Alg.GenericMor Generic algebra morphisms

Cache Caching of recurring computations
Extern

Extern.Maple Rudimentary interface to Maple
Extern.Sage Interface to Sage functions

FracClear Abstract interface for clearing fractions
HFMext Extension of the HaskellForMaths package
Lens Lens for caches (and algebras)
Types Type definitions and synonyms
Util Generic utility functions

Figure 4.1.: Modules in the Haskell package inflexible, as displayed in the Haddock
generated package documentation

4.1. Introduction to the software

We chose to implement the software in Haskell [Ma]: “An advanced, purely functional
programming language”1. From the perspective of the mathematician, it has the huge
advantage over imperative languages, that its functions behave like mathematical defini-
tions: established objects are immutable; a function transforms input to output, which
can then be given a new name, if necessary. Furthermore, it has builtin support for exact
arithmetics. In particular, computations over Q in the following are not approximated
by fixed size decimal numbers.

We make no attempt of explaining more details about Haskell or the concept of purely
functional programming in this thesis. We refer the reader to the existing literature and
ask the uninitiated reader for forgiveness. The official Haskell web site contains lots of
resources2.

Our Haskell package is called inflexible and consists of several modules, see Fig-
ure 4.1. The main modules are Types, Alg, Alg.Cohomology, and Alg.GenericMor, each
of which contains documentation in form of source code annotations. Full, standalone
API documentation can be generated by Haddock3, and we include a compiled version of
its LATEX output in Appendix C. In this chapter, we will only present some distinguished
fragments of the whole package. The subdirectory interactive/ of the latter contains
examples and some useful utilities for playing around in GHCi.

1https://www.haskell.org/
2https://www.haskell.org/documentation/
3https://hackage.haskell.org/package/haddock
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4.1. Introduction to the software

How to obtain the package
The source code for inflexible can be obtained from the author’s github repository

https://github.com/J0J0/inflexible (the username is: J-zero-J-zero)

or, in the unlikely event that this is not available anymore, upon email request to
proof@fantasymail.de. The git commit hash of the package at time of publication of
the present thesis is 9d641736f82bccdddafebdfcc5b4dba63772b1cd .

Noteworthy third party libraries that we build on
The package HaskellForMaths-excerpt4 serves as a basis for the implementation of
cochain algebras, which is – as the name indicates – an excerpt from the package
HaskellForMaths5 by David Amos. The latter already comes with facilities for free mod-
ules over a ring, symmetric algebras, exterior algebras, and tensor product of algebras. It
also contains support for multivariate polynomial rings and Gröbner bases with respect
to the most commonly used monomial orderings.

However, as the implementation of Buchberger’s algorithm for computing Gröbner
bases in the HaskellForMaths package only performs well in simple examples, our mod-
ule Extern.Sage taps into SageMath [Sm], in order to use its module for “Ideals in multi-
variate polynomial rings”. The latter, in turn, largely delegates the work to the computer
algebra system Singular [DGPS]. As SageMath is based on the Python programming
language6, we utilize a patched version of the Haskell package cpython7 to bridge the
gap.

The full list of Haskell packages that inflexible depends on, can be found under the
“build-depends” field in the cabal file inflexible.cabal.

Representing cochain algebras
Usually, examples of cochain algebras are given as follows [FHT][AL][CL]:

– One specifies a family of “symbols” and respective degrees that are to be the gener-
ators of the algebra. In the context of Proposition 3.23, the symbols would denote a
basis of the free module M , but most often, the latter is never mentioned explicitly.

– The action of the differential on these generators is given (which determines it
uniquely, Proposition 3.23 (ii)), sometimes

– accompanied by a justification, why the differential has the complex property.

Remark 4.3. For instance, Example 3.25 would be specified as follows in this way: The
algebra of polynomial differential forms is the cochain algebra (∧(t1, . . . , td, y1, . . . , yd), δ)
where the tj and yj have degrees 0 and 1, respectively, and the differential δ is defined
by δ(tj) := yj and δ(yj) := 0.

4https://github.com/J0J0/HaskellForMaths-fork/tree/tensoralg-excerpt
5https://hackage.haskell.org/package/HaskellForMaths
6https://www.python.org
7https://hackage.haskell.org/package/cpython
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Chapter 4. Computational aspects of differential graded algebras and inflexible manifolds

−− | A ’DgaSpec’ k a contains the specification of a dga over k ,
−− with generators from type a .
data DgaSpec k a = DgaSpec { _gens :: Generators a

, _diff :: Differential k a }

−− | Type synonym for degree in the sense of gradings .
type Deg = Int
−− | A collection of algebra generators is represented as a ’Map’
−− whose keys are the generators with value the respective degree .
type Generators a = M.Map a Deg
−− | A differential is represented by an actual Haskell function .
type Differential k a = (Lam k a −> Lam k a)

−− | ’Lam’ k a types the elements of algebras
−− specified by instances of ’DgaSpec’ k a .
−− The type Vect k b from the HaskellForMaths package
−− types elements of the free vector space over k with
−− basis elements from b .
type Lam k a = Vect k (FGCA a)
−− | Following the HaskellForMaths convention ,
−− the type synonym ’FGCA’, which is short for FreeGradedCommutativeAlgebra ,
−− types the / basis elements/ of the free module structure of such an algebra .
type FGCA a = Tensor (SymmetricAlgebra a) (ExteriorAlgebra a)

Listing 1: Types for representing cochain algebras [Types.hs]

data G2 = T1 | T2 | Y1 | Y2 deriving (Eq, Ord, Show)

([t1,t2,y1,y2], apl2) =
mkDgaWithGenerators [ (T1,0, y1)

, (T2,0, y2)
, (Y1,1, 0)
, (Y2,1, 0) ]

data G = T Int | Y Int deriving (Eq, Ord, Show)

(t, y) = (injectFGCA_even . T, injectFGCA_odd . Y)

apl :: Int −> DgaSpec Q G
apl m = mkDga $ ts ++ ys

where
ts = map (\ j −> (T j, 0, y j)) [1..m]
ys = map (\ j −> (Y j, 1, 0)) [1..m]

Listing 2: Algebra of polynomial differential forms [polynomial-differential-forms.hs]
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In inflexible, we mimic this way of representing cochain algebras. See Listing 1 for
the relevant definitions from the Types module. Note, that here and henceforth, the
listings often deviate slightly from the actual code in the package. In particular, we
leave out fragments that are irrelevant to the general discussion in this thesis (such as
most deriving clauses) and strip or modify comments. The listings’ captions will point
to the original source code file, which can be found under the subdirectories src/ or
interactive/ of the package.

The module Alg provides facilities for the construction of DgaSpec objects. In Listing 2
we showcase how Example 3.25 can be defined in inflexible: the first part realizes the
cochain algebra of polynomial differential forms in a concrete dimension as apl2 (d = 2
in Example 3.25), followed by a parametric version apl. There are a few things to note
here:

– We define the custom data types G2 and G for the generators, whereas in principle,
one could also use String or any other predefined type with an Ord instance. Besides
that fact, that our approach seems cleaner, it also has the advantage, that we could
provide custom Show instances.

– The definition of apl2 uses the same ingredients as Remark 4.3: The argument to
mkDgaWithGenerators is a list of triples, each consisting of a generator, its degree,
and what its image under the differential should be. Laziness of Haskell breaks the
apparently circular use of y1 and y2 in the latter.

– The definition of apl demonstrates, that not all inhabitants of the type of generators
must be used. In this case, given m ∈ N, the cochain algebra apl m uses only
T 1,. . . ,T m and Y 1,. . . ,Y m.

– As its type signature is fixed, apl m represents a cochain algebra over Q (simply Q
in HaskellForMaths), with generators from the type G.

In contrast, Haskell’s polymorphism (with GHC’s NoMonomorphismRestriction) al-
lows apl2 to be used via apl2 :: DgaSpec k G2 as cochain algebra over any ring k.

– All cochain algebra construction functions from the Alg module check, that the
specified differential is valid. Changing the last line in the definition of apl2 to

, (Y2,1, y1∗y2) ]

would result in an error message (upon usage of apl2).

Gradings
There is one detail that we did not mention yet: In contrast to our treatment in Sec-
tion 3.3, using external grading, graded objects are not handled as families of modules
in inflexible. This is due to practical reasons and the fact that HaskellForMaths does
not provide the graded objects that we use. Instead, we use the (ungraded) algebras
from the latter and treat them as internally graded, i.e. as the direct sum over a family
of submodules. However, the two approaches are equivalent and we refer to Mac Lane’s
book [Ml1, Ch. VI] for further information about the distinction. It should also be noted,
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−− (setup for generators as before ...)

a1 = mkDga [ (X1, 2, 0)
, (X2, 4, 0)
, (Y1, 9, x1^3∗x2 )
, (Y2,11, x1^2∗x2^2)
, (Y3,13, x1∗x2^3 )
, ( Z,35, x2^4∗y1∗y2−x1∗x2^3∗y1∗y3+x1^2∗x2^2∗y2∗y3+x1^18+x2^9)
]

w = x2^2∗y1∗y2 − x1∗x2∗y1∗y3 + x1^2∗y2∗y3

Listing 3: Definition of the cochain algebra A1 [ex-A1-crowley-loeh.hs.hs]

that this is often not made explicitly in the literature: especially, when graded objects are
defined externally, they are frequently used as their internally graded equivalent without
further notice.

4.2. Examples

In this section, we show how inflexible aids the researcher with the treatment of cochain
algebras that are needed as as input for the machinery of Chapter 3, i.e. to produce inflex-
ible, simply-connected manifolds. We start by going through some of the computations
that Crowley and Löh needed to make in their article [CL], in order to show that their
cochain algebras have the desired properties. Afterwards, we show how inflexible can
be used to obtain new examples by varying their design pattern (Example 4.6).

First of all, we recall:

Example 4.4 (A1[CL, Ex. I.1]). The generators’ degrees and the differential of the
minimal Sullivan algebra

A1 :=
(
∧(x1, x2, y1, y2, y3, z), δ

)
shall be given according to the table

generator g x1 x2 y1 y2 y3 z

degree deg g 2 4 9 11 13 35
differential δ(g) 0 0 x31x2 x21x

2
2 x1x

3
2 x22w + x181 + x92,

where w := x22y1y2 − x1x2y1y3 + x21y2y3.

Once we made the according definition, see Listing 3, we can use inflexible’s func-
tions on it. In the following, we use references of the form “CL.Proposition x.y” to denote
Proposition x.y from Crowley and Löh’s article [CL].

34



4.2. Examples

hs> a1
The dga specified by generators (with degrees)
X1 X2 Y1 Y2 Y3 Z
2 4 9 11 13 35

and differential (given on generators):
X1 |−−> 0
X2 |−−> 0
Y1 |−−> X13X21

Y2 |−−> X12X22

Y3 |−−> X11X23

Z |−−> X12X22Y21Y31−X11X23Y11Y31+X24Y11Y21+X29+X118

hs>
hs> x2^4∗y1∗y2−x1∗x2^3∗y1∗y3+x1^2∗x2^2∗y2∗y3+x1^18+x2^9 == x2^2∗w+x1^18+x2^9
True
hs>
hs> d = _diff a1
hs> x1∗x2∗w == d (y1∗y2∗y3)
True

Listing 4: Basic computations with cochain algebras [GHCi session]

Basic computations with algebra elements
As simple as it may seem, already the computation of a differential or the verification
of equalities can be tremendously helpful. For instance, Listing 4 shows a GHCi session
where two “claims” from CL.Example I.1 are checked.

Cohomological computations
In CL.Proposition I.5, Crowley and Löh prove that A1 is elliptic. This is done by showing
that the generators x1 and x2 are cohomologically nilpotent. In CL.Proposition I.6, they
prove that [x162 ] is a fundamental class for A1. We show how to check these results in
Listing 5, which we now comment on:

– The introduction of a1Q might seem peculiar at first, but it is necessary to use
the functions from the Alg.Cohomology module, which require the base ring to be
known. Alternatively, we could have fixed a1’s type by adding a1 :: DgaSpec Q G
at the beginning of Listing 3.

– The function

isCoboundary’ a1Q :: Lam Q G −> Bool

returns True if and only if the (homogeneous) input element is a coboundary in a1Q.
With this, we not only obtain that [x1] and [x2] are nilpotent in H(A1), but also
that 19 and 17 are the least positive powers showing this. The function

fillCochain’ a1Q :: Lam Q G −> Lam Q G

provides us with a preimage of x172 under the differential δ.
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hs> a1Q = a1 :: DgaSpec Q G
hs>
hs> isCoboundary’ a1Q (x1^19)
True
hs> isCoboundary’ a1Q (x1^18)
False
hs>
hs> isCoboundary’ a1Q (x2^18)
True
hs> isCoboundary’ a1Q (x2^17)
True
hs> isCoboundary’ a1Q (x2^16)
False
hs>
hs> degree a1Q (x2^16)
Just 64
hs> formalDimension a1Q
64
hs>
hs> Just preim = fillCochain’ a1Q (x2^17)
hs> preim
−X12X21Y21Y31Z1+X11X22Y11Y31Z1−X23Y11Y21Z1+X28Z1+X117Y11Y21Y31−X117X25Y31

hs> _diff a1Q preim == x2^17
True
hs>
hs> isElliptic’ a1Q
Just True

Listing 5: Checking ellipticity and fundamental class of A1 [GHCi session]

f = genericAlgMor a1 a1 :: Lam (GrevlexPoly Q T) G −> Lam (GrevlexPoly Q T) G
cs = genericDgaEndoConstraints a1 :: [GrevlexPoly Q T]

vol = x2^16
[bx2] = basisElems x2
t_for_x2 = coeff bx2 (f x2)

elim_vars = delete t_for_x2 $ nub $ concat $ map Poly.vars cs

elim_ideal_gens = Poly.eliminate elim_vars cs

Listing 6: Computing inflexibility of A1 [ex-A1-crowley-loeh.hs.hs]
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hs> mapM_ (\x−>putStrLn $ show x <>" |−−> "<> show (f x)) (algGenerators’ a1)
X11 |−−> τ1X11

X21 |−−> τ2X21+τ3X12

Y11 |−−> τ4Y11

Y21 |−−> τ5Y21+τ6X11Y11

Y31 |−−> τ7Y31+τ9X11Y21+τ8X21Y11+τ10X12Y11

Z1 |−−> τ11Z1+τ13X11Y11Y21Y31+τ14X11X25Y31+τ12X26Y21+...[many summands]...
hs>
hs> cs
[−τ1^3τ2+τ4,−τ1^3τ3,−τ1^2τ2^2+τ5,−2τ1^2τ2τ3+τ6,−τ1^2τ3^2,...[many elements]...
hs>
hs> elim_ideal_gens
[τ2^24−τ2^15]

Listing 7: Showcase the objects from Listing 6 [GHCi session]

– Whereas the manual analysis of [x162 ] ∈ H(A1) in CL.Proposition I.6 is tedious and
lengthy, our function isCoboundary’ quickly tells us, that it is non-zero. Together
with the fact that it has the correct degree, this implies that H64(A1) is generated
by [x162 ].

– In fact, checking of ellipticity can be automated for cochain algebras whose differ-
ential vanishes on generators of even degree, see Theorem 4.7. Here, this is applied
via isElliptic’ a1Q.

Computing (in)flexibility
CL.Proposition I.10 contains the proof that A1 is inflexible. For this, the form of a
generic morphism of graded algebras A1 → A1 is analysed. In inflexible, a generic such
morphism can be built via the function genericAlgMor from the module Alg.GenericMor.
The function extends the base ring of the algebra to a polynomial ring and inserts a
variable of the latter in place of the coefficients that are named α1, α2, α2,1, β1, . . . in the
proof of CL.Proposition I.10. The requirement that this generic morphism is a morphism
of cochain algebras, translates into a system of polynomial constraints. Instead of treating
this system manually, one can hope that this can also be automated. In certain cases, this
is indeed possible and we refer the reader to section Section 4.4 for the exact statements.
Here, we only illustrate in Listings 6 and 7 how this can be implemented:

– We assign to f and cs the generic morphism and constraints, respectively.

– In the interactive session, we show f on the generators of A1. Here, τ1, τ2, . . .
denote the variables of the polynomial ring. The computation of cs yields the
generic constraints in the form of polynomials in the τ..., with the meaning that
substituting field values for the variables in f yields a morphism of cochain algebras
if and only if all the polynomials in cs evaluate to zero.

– The rather clumsy code following the definition of f and cs computes that A1 is
indeed inflexible: the fact that elim_ideal_gens contains a polynomial in τ2 implies

37



Chapter 4. Computational aspects of differential graded algebras and inflexible manifolds

that τ2 can only assume finitely many values, which means that cochain morphisms
A1 → A1 can only have finitely many mapping degrees.

Ideally, this functionality would be included in inflexible itself. Unfortunately,
it was not implemented yet and is repeated multiple times in the examples in
interactive/.

New examples of lower dimensions
Among all inflexible minimal Sullivan algebras previously known, yielding the manifolds
in Examples 3.9, the cochain algebra A1 by Crowley and Löh (Example 4.4) has the least
(formal) dimension dimA1 = 64. It is thus a natural question to ask:

Question 4.5. Do inflexible minimal Sullivan algebras exist in dimensions below 64?
What is the lowest dimension that admits such algebras?

In experimenting with the design pattern from Crowley and Löh [CL, Sec. I.1], we
found the following partial answer to this question: There exists an elliptic, inflexible,
minimal Sullivan algebra

– of dimension 60, interactive/ex-A1mod.hs,

– of dimension 38, interactive/ex-A0.hs, and

– of dimension 36, interactive/ex-A0mod.hs.

We only present the cochain algebra A0 of dimension 38 in detail here:

Example 4.6 (A0). The generators’ degrees and the differential of the minimal
Sullivan algebra

A0 :=
(
∧(x1, x2, y1, y2, y3, z), δ

)
shall be given according to the table

generator g x1 x2 y1 y2 y3 z

degree deg g 2 2 7 7 7 19
differential δ(g) 0 0 x31x2 x21x

2
2 x1x

3
2 x1w + x101 + x102 ,

where w := x22y1y2 − x1x2y1y3 + x21y2y3 (this is the same w as in Example 4.4).

While our example in interactive/ex-A0mod.hs is in some sense the “minimal” ex-
ample that fits the design pattern by Crowley and Löh, A0 has the advantage that its
formal dimension is not divisible by 4, hence we do not have to check its intersection
form in order to know that it is realizable by a manifold.

Listing 8 contains the full example file that does the calculations for A0 and in Listing 9
we display the results in a GHCi session. As this is fairly similar to the pieces that we
discussed in detail for A1, we only comment on the new parts:
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{−# LANGUAGE NoMonomorphismRestriction #−}
import Prelude hiding ( (∗>), (<∗) )
import ImportAll
import qualified ImportPoly as Poly
import qualified ImportPolySage as Poly
import Var (T(T))

data G = X1 | X2 | Y1 | Y2 | Y3 | Z deriving (Eq, Ord, Show, Enum, Bounded)
[x1,x2, y1,y2,y3, z] =

(injectFGCA_even <$> [X1,X2]) ++ (injectFGCA_odd <$> [Y1,Y2,Y3,Z])

−− A0. A variant of A1 to A4 from Crowley/Löh
a0 = mkDga [ (X1, 2, 0), (X2, 2, 0)

, (Y1, 7, x1^3∗x2), (Y2, 7, x1^2∗x2^2), (Y3, 7, x1∗x2^3)
, ( Z,19, x1∗w + x1^10+x2^10)]

where w = x2^2∗y1∗y2 − x1∗x2∗y1∗y3 + x1^2∗y2∗y3

(vol_gen, vol_gen_power) = (x1, 19)
vol = vol_gen^vol_gen_power

a0Q = a0 :: DgaSpec Q G
(my_dga, my_dgaQ) = (a0, a0Q)

is_elliptic = maybe False id $ isElliptic’ my_dgaQ
have_fundamental_class = dropCache $ do

let q0 = degree my_dgaQ vol == Just (formalDimension my_dgaQ)
q1 <− isCocycle my_dgaQ vol
q2 <− not <$> isCoboundary my_dgaQ vol
return $ q0 && q1 && q2

basic_info = print my_dga >> do
putStrLn $ "Of dimension: " <> show (formalDimension my_dga)
putStrLn $ "Elliptic: " <> show is_elliptic
putStrLn $ "Fundamental class: " <>

if have_fundamental_class then show vol else "None"

f = genericAlgMor @(GrevlexPoly Q T) my_dga my_dga
cs = genericDgaEndoConstraints @(GrevlexPoly Q T) my_dga

[bvol] = basisElems vol_gen
t_for_vol_gen = coeff bvol (f vol_gen)
elim_vars = delete t_for_vol_gen $ nub $ concat $ map Poly.vars cs

elim_ideal_gens = Poly.eliminate elim_vars cs
elim_ideal_gens_via_sage = Poly.sageEliminate elim_vars cs

elim_ideal_finite = Poly.sageHasFiniteProjection cs t_for_vol_gen

Listing 8: Complete example treating A0 [ex-A0.hs]
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hs> basic_info
The dga specified by generators (with degrees)
X1 X2 Y1 Y2 Y3 Z
2 2 7 7 7 19

and differential (given on generators):
X1 |−−> 0
X2 |−−> 0
Y1 |−−> X13X21

Y2 |−−> X12X22

Y3 |−−> X11X23

Z |−−> X13Y21Y31−X12X21Y11Y31+X11X22Y11Y21+X110+X210

Of dimension: 38
Elliptic: True
Fundamental class: X119

hs>
hs> −− elim_ideal_gens −− may take some time
hs> elim_ideal_gens_via_sage
[τ2^20−τ2^18]
hs> elim_ideal_finite
True

Listing 9: Results of the computations from Listing 8 [GHCi session]

– We do not evaluate elim_ideal_gens this time, because it is calculated by the
HaskellForMaths library. As previously mentioned (page 31), its pure Haskell im-
plementation for Gröbner basis calculation is easily overchallenged. In this case, it
still computes in a reasonable amount of time – about one minute at the author’s
machine – but it could not handle the polynomials that appear in ex-A0mod.hs –
at least not in a couple of hours on the author’s machine.

– Instead, we look at elim_ideal_gens_via_sage, which returns its result almost im-
mediately.

– Alternatively, elim_ideal_finite can be used to check directly, that the polynomial
constraints allow only for finitely many mapping degrees.

4.3. Decidable ellipticity

In this section, we prove that certain cochain algebras allow for an algorithmic detection
of ellipticity:

Theorem 4.7 (decidable ellipticity). Let (A, δ) be a connected cochain algebra with
the property that all generators of even degree are cocycles. Then (A, δ) is elliptic if and
only if all generators of even degree are cohomologically nilpotent. In particular, it is
algorithmically decidable whether (A, δ) is elliptic if (A, δ) is a minimal Sullivan algebra.
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The main ingredients for the proof are already contained in the first paragraph of the
proof of CL.Proposition I.5, which we generalize and expand on:

Proof. By definition, our cochain algebras are finitely generated. Hence, we only have to
treat H(A, δ).

On the one hand, if the latter is finite dimensional, then all classes of degree at least 1
are nilpotent for degree reasons. On the other hand, the converse also holds: it clearly
suffices to show, that H(A, δ) is finitely generated as an algebra. Indeed, this can be
shown by the following trick (cf. proof of Proposition 32.1 in the book by Félix/Halper-
in/Thomas [FHT]): Consider the subalgebra Aeven of A that is generated by the even
degree generators of A. Because the odd degree generators square to zero, there are only
finitely many products of such generators (as in Proposition 3.23 (i)). Thus, the algebra
multiplication turns A into a finitely generated Aeven-module, and the assumption on
the even degree generators implies that ker(δ) is an Aeven-submodule of A. It follows,
that ker(δ) is also a finitely generated Aeven-module, say by elements a1, . . . , aN , because
Aeven is Noetherian as a polynomial ring over a field. But then H(A, δ) is evidently gen-
erated as an algebra, by the classes of all even degree generators of A, together with the
classes [a1], . . . , [aN ].

To prove the first part of the claim, it now suffices to show: all cohomology classes of
degree at least 1 are nilpotent if and only if the classes of the even degree generators
are nilpotent. One implication is trivial. For the other one, assume the nilpotency of the
generator classes. Let a ∈ ker(δ) with deg a ≥ 1 and let ℓ ∈ N. By the argument in
the previous step, aℓ ∈ ker(δ) can be written as a finite linear combination of the aj
with coefficients in Aeven. But since the degrees of the aj are fixed, the degrees of the
coefficients must become large for increasing values of ℓ. As all elements of Aeven of
high degree are cohomologically trivial by assumption, we have [a]ℓ = [aℓ] = 0 for large
enough ℓ.

The second part now follows from the first one: Let X and Y be the set of odd and
even degree generators of A, respectively, and let

d :=
∑
x∈X

deg x−
∑
y∈Y

(deg y − 1) ∈ N.

Well known algorithms from linear algebra can then be used to compute, for all x ∈ X,
whether x1+⌊d/deg x⌋ is a coboundary, i.e. whether it vanishes in cohomology. If all such
generator powers are coboundaries, then (A, δ) must be elliptic by the first part. If at
least one of them is not a coboundary, (A, δ) cannot be elliptic: if it was, it would have
formal dimension d [FHT, Prop. 38.3], hence could not have non-trivial cohomology above
degree d.

■

The decision criterion from the last part of the proof is implemented in the function
isElliptic in the module Alg.Cohomology of inflexible.
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4.4. Decidable (in)flexibility

In this section, we introduce the notion of a generic morphism between free graded-
commutative algebras. We then use this tool to prove that special forms of fundamental
classes of elliptic Sullivan algebras imply algorithmic detectability of (in)flexibility and
existence of a prescribed mapping degree (Theorem 4.9).

Definition 4.8 (generic morphism). Let A = ∧(x1, . . . , xr) and B = ∧(y1, . . . , ys) be
free graded-commutative algebras with generators of degree at least 1.

– For k ∈ N≥1, let M(B)k be the basis of Bk from Proposition 3.23 (i), i.e. consisting
of all products in the yj of total degree k.

– Let
P (A,B) := k

[
Txj ,m

∣∣ j ∈ {1, . . . , r} ∧m ∈M(B)deg xj
]

be a polynomial ring over k in
∑r

j=1 dimk B
deg xj ∈ N variables.

– We let Ã := P (A,B)⊗A denote the extension of scalars of A along k ↪→ P (A,B)
(where P (A,B) is concentrated in degree 0), and similarly for B̃.

– The generic morphism from A to B is the morphism of graded P (A,B)-algebras
f : Ã→ B̃ that is given by

f(xj) :=
∑

m∈M(B)deg xj

Txj ,m ·m

for all j ∈ {1, . . . , r}.

The generic endomorphism of a cochain algebra now plays an important role in the
proof of the following result:

Theorem 4.9 (decidable (in)flexibility). Let k be countable and let k be an algebraic
closure of k. Let (A, δ) be a connected, elliptic Sullivan algebra.

(i) Let x be a generator of A, such that some power of x represents a fundamental class
for (A, δ). Then it is algorithmically decidable, whether (A, δ) is inflexible over k.

(ii) Let d ∈ N be the formal dimension of (A, δ) and let m ∈M(A)d be a representative
of a fundamental class for (A, δ). Let a ∈ k. Then it is algorithmically decidable,
whether (A, δ) over k admits a cochain algebra endomorphism of mapping degree a.

Proof. Let X be the set of generators of A. We consider f : Ã→ Ã, the generic morphism
from A to A, and extend δ to Ã. Comparing coefficients according to the bases M(A)
among all elements of the set{

(f ◦ δ)(x)− (δ ◦ f)(x)
∣∣ x ∈ X}
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yields a finite set C ⊆ P (A,A) of polynomials.
Substitution of values from k for the variables from P (A,A) in f clearly yields an

endomorphism of the cochain algebra (A, δ) if and only if all polynomials from C evaluate
to 0 on these values.

In the language of varieties, for which we refer to the book by Cox, Little and O’Shea
[CLO, Ch. 1], we are looking at the affine variety V(C) ⊆ kN , where N ∈ N is the number
of variables of P (A,A). Cochain algebra endomorphisms of (A, δ) are then parametrized
by V(C): for a point p ∈ V(C), let fp denote the corresponding morphism. We now
proceed separately for the two parts of the claim.

Ad (i): Let π : kN → k denote the projection onto the coordinate that corresponds to
the variable Tx,x. By assumption, a power of x represents a fundamental class of (A, δ),
hence the mapping degree of fp is given by the very same power of π(p), for all p ∈ V(C).
In other words, if deg((A, δ), (A, δ)) denotes the set mapping degrees of endomorphisms
of (A, δ), we have

#π
(
V(C)

)
<∞ ⇐⇒ #deg((A, δ), (A, δ)) <∞.

We now apply some basic (algorithmic) algebraic geometry: First, the Closure Theorem
[CLO, Ch. 4, §4, Thm. 4] implies, that the Zariski closure of π(V(C)) is equal to V(I),
both in kN , where I := ⟨C⟩ ∩ k[Tx,x] is a so-called elimination ideal. Note the move
to k here, which is necessary, because the Closure Theorem only applies to algebraically
closed fields. Observe, that I is an ideal of a polynomial ring in a single variable, hence
a principal ideal.

Second, the Elimination Theorem [CLO, Ch. 3, §1, Thm. 2] (and its proof and the
discussion of Gröbner bases in Chapter 2 of loc. cit.) imply that we can algorithmically
determine a generating set U of I. If I is the trivial ideal, we either get U = ∅ or U = {0},
depending on the exact algorithm. Otherwise, we have U = {g} for some non-constant
polynomial g.

We now use the fact that the Zariski closure operation is easy to describe in single
dimensional affine space: either a subset of the field is finite, then its Zariski closure is
the set itself [CLO, Ch. 1, §2, Exerc. 6], or it is infinite, in which case its Zariski closure
must be the whole field.

Combining all of the previous steps, we obtain: deg((A, δ), (A, δ)) ⊆ k is finite, if and
only if U = {g} for non-constant g, and the latter is algorithmically decidable. This
finishes the proof of claim (i).

Ad (ii): We look at f(m) ∈ Ã and its coefficient h ∈ P (A,A) of m. For p ∈ V(C), the
mapping degree of fp is then given by h(p).

In geometric terms, we are interested in the intersection

V(C) ∩V(h− a) = V
(
C ∪ {h− a}

)
inside kN , and this will be non-empty, if and only if (A, δ) admits an endomorphism
of mapping degree a. The proof is now completed by an application of the consistency
algorithm [CLO, Ch. 4, §1], which decides whether C ∪ {h− a} has a solution in kN .

■
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Chapter 4. Computational aspects of differential graded algebras and inflexible manifolds

The construction of generic morphisms and the computation of the polynomials C
from the proof of Theorem 4.9 are implemented in the functions genericAlgMor and
genericDgaEndoConstraints in the module Alg.GenericMor of inflexible.
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Chapter 5:

A brief glimpse of infinity

For many mathematicians, their first contact points with ∞-categories are rather vague
and handwavy. For example, the speaker in a talk might refer to work that happens in the
language of ∞-categories, but in order to make the talk accessible to a broad audience,
they will try to phrase the material without mentioning the word∞-category. While this
approach often suffices to keep the talk going, it does not bring the audience closer to
∞-category theory, but rather leaves the uninitiated in a state of uncertainty or even
indifference. The author was asked more than once by someone with only a nebulous
idea of ∞-categories: What is an ∞-category?, in the sense that they wanted to see a
rigorous definition and how it relates to the concept of higher morphisms. This chapter
is an attempt to give one possible answer to this question in a brief and self-contained
way, without any proofs but with lots of pointers to the literature for further reading.
The only prerequisite is some familiarity with basic category theory, e.g. as in the first
two chapters of Mac Lane’s book [Ml2, Sec. I.1–4, I.8, II.1–4].

In this chapter, “category” always means 1-category and we will explicitly use the term
“∞-category” as in Definition 5.4.

5.1. From 1 to ∞ in a nutshell

Our first goal is to give a precise definition of∞-categories in terms of Lurie and to observe
that there’s a formal way to turn 1-categories and functors into ∞-categorical ones.
We refer the reader to the literature [Ci][Ri2][Grth][K][Lu1] for a more comprehensive
treatment of the subject.

The underlying foundational objects for this theory are simplicial sets, a generalization
of (ordered) simplicial complexes, for which we give a rigorous definition in the following
but almost no illustration or background. We recommend the beautiful survey article by
Friedman [Fr] as an introduction to the subject and the textbook by Goerss and Jardine
[GJ] for further reading.

Definition 5.1 (simplicial set). (i) Let (X,≤) be a preorder, i.e. ≤ is a transitive
and reflexive relation on X. We define the preorder category Pre(X,≤) to have X
as objects and a unique morphism from x to x′ exactly if x ≤ x′ (and no further
morphisms).

(ii) For n ∈ N let [n] := Pre({0, . . . , n},≤). Let △ be the full subcategory of Cat on
the objects {[n] | n ∈ N}.
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(iii) A simplicial set is a functor △op → Set. The category sSet of simplicial sets is the
functor category Fun(△op,Set). Hence, a morphism of simplicial sets is a natural
transformation of functors. For a simplicial set X and n ∈ N one often uses the
notation Xn := X([n]).

(iv) Let X be a simplicial set. Then a simplicial subset of X is a simplicial set U such
that for all n ∈ N we have Un ⊆ Xn and for all morphisms f : [m] → [n] in △ we
have U(f) = X(f)|Un .

Remark 5.2 (operations with simplicial sets). Many operations one normally does
with plain sets can be lifted to simplicial sets by just applying them “dimensionwise”. For
instance, for two simplicial subsets U, V of the same simplicial set, one can define U ∩ V
by (U ∩ V )n := Un ∩ Vn for all n ∈ N and restriction on morphisms. In particular the
expression “smallest simplicial subset with some property” can be made precise by taking
intersections as usual.

The formal reason why this works, is the fact that limits and colimits in a functor
category (like sSet) are just computed “pointwise” if they exist in the target category.
Taking intersection is a pullback in Set, for example.

With this remark in mind, we can now introduce some of the most important simplicial
sets:

Examples 5.3 (standard simplex, horn).

(i) Let n ∈ N. The simplicial set ∆n := Mor△(•, [n]) is the standard n-simplex. For
n ≥ 1 and i ∈ {0, . . . , n} the unique functor dn−1

i ∈ Mor△([n − 1], [n]) = (∆n)n−1

with dn−1
i ({0, . . . , n− 1}) = {0, . . . , n} \ {i} is the i-th coface map.

(ii) For n ∈ N the smallest simplicial subset of ∆n+1 that contains {dn0 , . . . , dnn+1} ⊆
(∆n+1)n is the simplicial n-sphere.

(iii) Let n ∈ N≥1 and i ∈ {0, . . . , n}. The (n, i)-horn Λni is the smallest simplicial subset
of the standard n-simplex that contains {dn−1

0 , . . . , dn−1
n } \ {dn−1

i } ⊆ (∆n)n−1.

Informally speaking, the simplicial (n − 1)-sphere is obtained from ∆n by removing
the “interior” of the n-simplex; and by further removing the (n − 1)-dimensional face
opposite to the i-th vertex we get the horn Λni . The latter now plays the main role in the
definition of an ∞-category:

Definition 5.4 (∞-category). An ∞-category is a simplicial set C with the following
property: For all n ∈ N≥1 and all i ∈ {1, . . . , n−1} every morphism Λni → C factors over
the inclusion Λni ↪→ ∆n.

Λni C

∆n ⌟
∃
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A usual formulation of this property is the following: In an∞-category all so-called in-
ner horns (0 < i < n) have a not necessarily unique(!) “filler”. Those fillers are witnesses
of (higher dimensional) compositions in an∞-category and the existence statement then
ensures that a composition can always be found. See Remark 5.12 for the case of Λ2

1;
for examples using higher dimensional horns and the existence of their fillers, we refer
to the literature [Lu1, Sec. 1.2.3][Ci, proof of Lem. 1.6.2][K, 003U, 0041]. For nomen-
clature linking the different pieces of an ∞-category to classical categorical terms, see
Definition 5.11.

Example 5.5. For all n ∈ N, the standard n-simplex is an ∞-category. On the other
hand, for n ∈ N≥1, the simplicial n-sphere is not an ∞-category.

Remark 5.6 (functor ∞-categories). For ∞-categories C and D, a functor C → D is
simply taken to be a morphism of simplicial sets.

A certain construction [K, 0060][GJ, Sec. I.5] turns the category of simplicial sets into a
cartesian closed category [Ml2, Sec. IV.6]: it provides a simplicial set Y X that extends the
set of morphisms between two simplicial sets X and Y , i.e. with (Y X)0 = MorsSet(X,Y ).
This is often called an internal Hom, because it is again an object of the ambient category,
or in this specific case the function complex from X to Y . It can be shown [Ci, Cor. 3.2.10]
that Y X is again an ∞-category whenever Y is an ∞-category. In particular, this shows
how functors C → D for fixed ∞-categories C and D give rise to a functor ∞-category
Fun(C,D). ⌟

Remark 5.7 (size issues). As the reader has probably already noticed, the operation
of taking “all functors C → D” might or might not yield a well defined object, depending
on the set theory that one chooses as a mathematical foundation. To be more specific: If
one considers functors between categories “of the same size” (in terms of the “number” of
objects and morphisms) one often obtains something that is “bigger” than that. On the
other hand, if one imposes the correct size constraints on C and D, the result can also
be kept “small enough”.

For example, suppose that we work within NBG (von Neumann, Bernays, Gödel) set
theory. Then a category is usually defined to allow for a proper class of objects, but most
often only morphism sets between any two objects are permitted. If we consider such
categories, it is well known that one is usually not permitted to form the functor category
between two categories whose classes of objects are both proper classes. Though, if we
consider a small category C, i.e. its class of objects is a set, and another category D, the
functor category Fun(C,D) is again a well defined category in the sense of this paragraph.

Analogously, such considerations can be made for ∞-categories when appropriate size
restrictions are in place [Ci, Cor. 5.7.7]. Even then, however, the “two layers” of NBG
set theory are not enough for the arguments in Section 6.2: there we want to look at
the functor category Fun(Top∗,ChR) where the size conditions are not met. A usual way
to circumvent this problem is the usage of so-called Grothendieck universes. Roughly
speaking, this means the following:
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Chapter 5. A brief glimpse of infinity

A set U is called a universe if it satisfies certain closure properties like the power set
axiom:

∀x ∈ U, {y | y ⊆ x} ∈ U.

Then an additional axiom, the universe axiom, is imposed:

∀x ∃U universe, x ∈ U.

One can then just choose a universe that is big enough to support all the operations one
wants to make, i.e. such that “enough layers exist”. (For our purpose, as one may convince
oneself, it is actually enough to consider just “one more layer” on top of NBG, giving it a
name like “superclasses” or “conglomerates” if one wants to maintain the hierarchy that
is already in place.)

For further information, we refer the reader to the literature about size issues and
possible solutions: A concise introduction to Grothendieck universes can be found in a
paper by Low [Lo]; a gentle explanation of the “conglomerate solution” can be found in
the category theory book by Adámek, Herrlich and Strecker [AHS, 2 Foundations]; an
expository article by Shulman compares set theoretical foundations for category theory
from a modern perspective [Sh]. ⌟

Now that we have defined what an∞-category is, we would certainly want to “import”
all the 1-categories that we already know of into this setting. Put differently, we really
want that∞-categories provide a generalization of 1-categories. This can be done via the
nerve functor:

Definition 5.8 (nerve of a 1-category). Let ι : △ ↪→ Cat denote the inclusion functor.
Then the nerve functor N: Cat→ sSet arises from the functor

MorCat(ι
op• , •) : △op × Cat→ Set

by currying, i.e. N(X) = MorCat(ι
op• , X). ⌟

More formally, this currying construction can be seen as an application of the exponen-
tial law in the category of categories: Fun(C×C ′, D) ∼= Fun(C ′,Fun(C,D)), analogously
to the exponential law for functions [Ml2, Exerc. 2 of Sec. II.5].

Example 5.9 (standard simplex via nerve). For all n ∈ N we have ∆n = N([n]).

Proposition 5.10 (nerve is ∞-category [Ci, Prop. 1.4.11, Ex. 1.5.3][Lu1, Prop. 1.1.2.2]
[K, 002Z]). For every category C, the nerve N(C) is an ∞-category. Furthermore, the
nerve functor N is fully faithful, i.e. for all categories C and D the map MorCat(C,D) ∋
F 7→ N(F ) ∈ MorsSet(N(C),N(D)) is bijective.

This means that whenever one embeds two 1-categories into the∞-world via the nerve,
there will be exactly “the same” functors between them as there were before. So in this
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sense, ∞-categories generalize 1-categories.
However, while it is nice that we have 1-categories as ∞-categories now, it’s not an

enhancement of the original 1-categories. Often, one builds∞-categories by other means
and then they contain some homotopy theoretic information of the original 1-category.
In Section 5.3 we will go into a few more details.

5.2. Working in ∞-categories

Now that we know how to model ∞-categories by simplicial sets, we can set up some
nomenclature to make working in an∞-category more similar to working in a 1-category.

Definition 5.11 (nomenclature for ∞-categories). Let C be an ∞-category and let
us use the notations of Definition 5.1 (iii) and Example 5.3 (i). Then

– objects of C are the elements of C0,

– morphisms of C are the elements of C1,

– 2-morphisms of C are the elements of C2,

– and generally for n ∈ N the n-morphisms of C are the elements of Cn.

For two objects x and y in C, a morphism x → y is a morphism f of C such that
C(d01)(f) = x and C(d00)(f) = y. For an object x of C the morphism C([1] → [0])(x)
of C is the identity morphism of x, where we simply write [1]→ [0] for the unique such
functor. ⌟

Note that “morphism” and “1-morphism” mean exactly the same thing, as do “object”
and “0-morphism”, though the latter is not used by all authors. With this notation at
hand, one can, at least superficially, start to use an ∞-category just as a 1-category.
However, there is one big catch:

Remark 5.12 (lack of composition map). In an ∞-category C, there is usually no
“composition map Mor(y, z)×Mor(x, y)→ Mor(x, z)” like in 1-categories. Instead, given
morphisms f : x→ y and g : y → z there could be many possible compositions of f and g
– and this is indeed one of the key notions in the generalization from 1-categories to
∞-categories. More precisely, f and g give rise to a map Λ2

1 → C of simplicial sets, and
any extension σ : ∆2 → C to the standard simplex

y

x z

gf ⇝
y

x z

g
| | | |

f

h

determines a composition h of f and g, namely:

h = C(d11)
(
σ[2](Id[2])

)
∈ C1.
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The existence of such an extension is guaranteed by the fact that C is an∞-category, but
there can (and usually will) be many! In the situation above, we will say that σ witnesses
that h is a composition of f and g.

A useful analogy is the following: When defining the concatenation of two compat-
ible paths with common domain interval in a topological space, one has to subdivide
the interval, which is usually done by splitting it in the middle. This might look most
symmetric at first, but as soon as we consider three paths, in fact no such subdivision
will make the concatenation map associative. One way to enforce this, is passing to the
homotopy category, but as mentioned below (Remark 5.21), this might be a bad idea.
Instead, we could just declare that any concatenation (regardless of the chosen interval
subdivision) is a valid composition of the paths, i.e. we allow many different compositions
of two paths. ⌟

With this in mind, the next natural question is: How does the notion of (commutative)
diagrams [K, 005H] enter∞-category theory? Indeed, since we already know what a func-
tor of ∞-categories is, we could say, analogously to the usual definition for 1-categories,
that a diagram in an ∞-category C is a functor C ′ → C from some ∞-category C ′ (the
“shape of the diagram”) to C. Though this would suffice on a purely technical level [Ci,
Thm. 7.3.22][Lu1, Prop. 4.2.3.14] it is more convenient to allow “shapes” that are not
∞-categories themselves:

Definition 5.13 (diagram in an ∞-category). Let C be an ∞-category and let K be
a simplicial set. A diagram in C indexed by K is a morphism of simplicial sets K → C.

Example 5.14 (diagrams indexed by simplices). Let n ∈ N and let C be an ∞-
category. A diagram ∆n → C is equivalently an n-morphism of C; more precisely: the
map

MorsSet(∆
n, C)→ Cn, σ 7→ σ[n](Id[n])

is a bijection. (This is an instance of the Yoneda lemma [Ml2, Sec. III.2].) It is common
to identify n-morphisms of C with diagrams ∆n → C via this bijection whenever it is
convenient.

Example 5.15 (commutative squares). Let K := N([1] × [1]) be the nerve of the
product category [1]× [1] (taken in Cat). More explicitly, the latter can be depicted as

(0, 0) (1, 0)

(0, 1) (1, 1)

f

f ′
h g

g′

and its nerve has the obvious additional 2-simplices σ and τ “filling the two triangles”.
Then a diagram p : K → C amounts to the data of
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– four objects p((0, 0)), p((1, 0)), p((0, 1)) and p((1, 1)),

– five morphisms p(f), p(g), p(f ′), p(g′) and p(h), and

– two 2-morphisms p(σ) and p(τ)

of C, such that

– the morphisms have the correct source and target and

– the 2-morphisms p(σ) and p(τ) witness that p(h) is a composition of p(f) and p(g)
as well as of p(f ′) and p(g′). (Here we apply Example 5.14.)

For example, when C is an ∞-category of topological spaces, this would mean that p(σ)
and p(τ) are homotopies p(h) ≃ p(g) ◦ p(f) and p(h) ≃ p(g′) ◦ p(f ′). So in particular,
every such diagram in C gives a 1-categorical commutative diagram in the homotopy
category of C. But it is crucial to understand that the latter notion is just a property of
a 1-categorical diagram while an actual diagram K → C carries the 2-morphisms p(σ)
and p(τ) as additional data. ⌟

Remark 5.16 (homotopy coherence). The last example already shows that commuta-
tive diagrams in∞-categories are quite a bit more delicate to handle than in 1-categories.
Of course, more complex diagrams than commutative squares require even more data
to be specified by a diagram. In particular, diagrams indexed by “infinite shapes”, e.g.
N(Pre(N,≤)), may require chosen n-morphisms in the target ∞-category for all n ∈ N
in a compatible way – one also speaks of a coherent choice of higher morphisms. For
further reading about homotopy coherence, we recommend notes by Riehl [Ri1], which
also contain an example [Ri1, Ex. I.3.4] of a homotopy commutative diagram that cannot
be made homotopy coherent.

Remark 5.17 (sloppy notation). As we have seen in Example 5.15 (we will reuse
its notation here), a commutative square in an ∞-category needs to specify a “diagonal”
morphism. Indeed, if one defines a commutative square in a 1-category C ′ analogously
as a functor F : [1] × [1] → C ′, one a priori has to define F (h). But since compositions
in 1-categories are unique, one easily sees that keeping this piece of data is redundant,
i.e. inferable from (F (f), F (g)). So for such a 1-categorical commutative square, the
restriction of F to the “outer” four morphisms uniquely determines F and this is why we
usually don’t mention the “diagonal” at all.

However, this is not true anymore for diagrams in ∞-categories! So when speaking of
a commutative square

a b

c d

in an ∞-category C, one really means a diagram p : K → C where p((0, 0)) = a →
d = p((1, 1)) as well as p(σ) and p(τ) are not visible, although they are implicit data
associated to the square. ⌟
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Outlook 5.18 ((co)limits). Having said what a diagram is, one would like to speak
about limits and colimits of such. Unfortunately, we cannot fully define this notion here,
because it requires a more technical insight into the theory of∞-categories and simplicial
sets. To give an idea of why this is the case, we may try to transplant the usual picture
of how one thinks about limits in 1-categories to the ∞-categorical world: traditionally,
one starts with the notion of a cone on a diagram. While this is easy for 1-categorical,
i.e. “1-dimensional” diagrams, one already has to give the question some thought, how to
define a cone on an∞-categorical, i.e “higher dimensional” simplicial set shaped diagram.
However, it is indeed not difficult to write down some explicit formulae that define the
cone of a simplicial set [K, 0172, 0177], which in turn may be used to formulate what a
cone on an ∞-diagram is.

Next, we would like to single out universal cones. In 1-category theory, those are then
called limits or limit cones of the original diagram, and the universal property roughly
says that every cone factors through such a limit cone. The latter property, though,
cannot immediately be transferred to ∞-cones for several reasons: first, remember that
we do not have unique compositions of morphisms (Remark 5.12), and second, one would
have to take higher simplices into account.

To solve this problem, one arranges for the ∞-cones on a given diagram to be the
objects of a certain ∞-category. The latter then includes all the information about the
higher morphisms and certain objects of this ∞-category will then be called universal
∞-cones.

All of this applies to cones, yielding limits, as well as dually to cocones, yielding colimits.
In the first case, the cone point is the initial vertex of each simplex, in the second case
the final vertex. For an expository account of the matter, skipping most technicalities
yet providing all necessary intermediate steps, see Groth’s notes [Grth, Sec. 2]. All details
can be found in the literature [Ci, Sec. 6.2][Lu1, Sec. 1.2.13]. ⌟

Example 5.19 (pullbacks and pushouts). As an informal example of the previous
outlook, we say a bit more about pullback and pushout squares. For this, we consider
diagrams indexed by the horns Λ2

2 and Λ2
0. The cone on Λ2

2 and the cocone on Λ2
0 are

both isomorphic to N([1]× [1]); a fact that is intuitively clear by the following pictures:

∗ 1

0 2

cone
on Λ2

2

1 ∗

0 2

cocone
on Λ2

0 ,

i.e. both of them may index commutative squares (Example 5.15) in an ∞-category.
Given a commutative square p : N([1]× [1])→ C, we say that p is

– a pullback square if the cone on Λ2
2 that it determines is universal and it is

– a pushout square if the cocone on Λ2
0 that it determines is universal,

both in the sense of Outlook 5.18.
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5.3. How to produce ∞-categories

The following method is, historically and because of its role in Lurie’s book [Lu1], one of
the most important constructions that convert 1-categorical input into a corresponding
∞-category, taking the homotopical structure into account:

Remark 5.20 (homotopy coherent nerve). Let C be a simplicially enriched cate-
gory : instead of just morphism sets, each MorC(X,Y ) is a simplicial set and the usual
requirements regarding composition are applied mutatis mutandis [K, 00JQ]. For such
a category C, there is a construction analogous to the nerve of a 1-category (Defini-
tion 5.8), called the homotopy coherent nerve or simplicial nerve, that builds a simplicial
set Nhc(C) out of C [Lu1, Def. 1.1.5.5][DS2, Sec. 2.4]. Under suitable conditions, Nhc(C)
is an∞-category [Lu1, Prop. 1.1.5.10], which is in some sense a “homotopical thickening”
of the nerve N(C) of C.

To illustrate the last comment a bit more, we consider an example: Let C be a con-
venient category of topological spaces, e.g. compactly generated weak Hausdorff spaces.
Here, the simplicial set MorC(X,Y ) between two spaces X and Y is given by applying
the singular simplicial set functor to the mapping space between X and Y . By easy in-
spection, one sees that the 2-simplices N(C)2 of the usual nerve correspond to commuting
triangles in C, i.e. triples (f, g, h) of morphisms in C such that h = g ◦ f . By contrast,
Nhc(C)2 will correspond to triangles commuting up to homotopy together with such a
homotopy [K, 00KX], i.e. to quadruples (f, g, h,H) where f, g, h are morphisms in C and
H is a homotopy from g ◦ f to h. Of course, we still have the strictly commuting triangles,
but also a lot of other ones, which allows for more flexibility.

In certain situations, the homotopy coherent nerve can provide ∞-categorical versions
of homotopy categories:

Remark 5.21 (homotopy categories). Let C be a simplicial model category, i.e.
a simplicially enriched category that is also a model category in a compatible way. The
structure of a model category [Ci, Def. 2.2.1] that is subject to some conditions, of course,
is the following: There is a distinguished class of morphisms W of C, called weak equiva-
lences, that one is interested in from a homotopical point of view. Furthermore there are
two distinguished classes of auxiliary morphisms, called fibrations and cofibrations.

There is a well-known construction that assigns to a model category C with weak
equivalences W its homotopy category, which in turn presents itself as a model for the lo-
calization C[W−1], i.e. [Ci, Def. 2.2.8] the universal category obtained from C by making
all morphisms in W isomorphisms. For example, looking at the category Top of topo-
logical spaces with W the class of homotopy equivalences, the corresponding homotopy
category can be obtained from Top by modding out the “is homotopic to” equivalence
relation on all morphism sets.

While 1-categorical homotopy categories are certainly useful, working with them tends
to lose information in the sense that the homotopies that make diagrams commutative
are not part of the data. They are merely required to exist for any choice of two parallel
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morphisms, but not necessarily in a coherent way, see also Remark 5.16.
In the case of the simplicial model category C, this is remedied by an ∞-categorical

enhancement of C[W−1]: One takes a certain full subcategory C◦ of C (which inherits
a simplicial enrichment from C) and forms Nhc(C◦). This gives an ∞-category that is
tightly linked to the homotopy category of C. (More specifically: one can also define what
the homotopy category of an∞-category is and if one applies this notion to Nhc(C◦) the
result will be a 1-category that is equivalent to C[W−1]. This can be seen by combining
several facts about homotopy categories [K, 00M4][Hi, Prop. 9.5.24 (2)][Hi, Sec. 7.5.6].)

However, while these constructions are certainly useful and applicable in some impor-
tant cases, they require a lot of structure – which, in applications, is often not naturally
available. For example, one might want to consider (model) categories where no exten-
sion to a simplicial model category exists or is known. And even if there is, the functors
one would like to consider can most likely not easily be lifted to respect the simplicial
enrichment. Thus, it is useful to have alternative approaches, specifically ones that allow
to import a given 1-categorical situation, including functors, more directly. The follow-
ing notion captures the minimal setting that is necessary to talk about homotopical
situations:

Definition 5.22 (relative category). A relative category (C,W ) consists of
– a category C, together with

– a class of morphisms W of C, called weak equivalences.

A relative functor, also called a homotopical functor, from a relative category (C1,W1)
to a relative category (C2,W2) is a functor F : C1 → C2 that maps weak equivalences to
weak equivalences, i.e. with F (W1) ⊆W2. ⌟

Barwick and Kan have shown [BK] that relative categories can be used to model the
homotopy theory of ∞-categories (see also Remark 5.25). Also note, that every model
category yields an example of a relative category by simply forgetting the fibrations and
cofibrations.

Similarly to Remark 5.21, one is usually not only interested in a 1-categorical localiza-
tion C[W−1] of a relative category (C,W ), but rather in a better behaved ∞-categorical
version thereof. Classically, this was done by a process called simplicial localization, which
was introduced and studied in a series of papers by Dwyer and Kan [DK1; DK2; DK3].
From this, one gets a simplicially enriched category – but not of the form to which
Remark 5.20 applies directly. Instead of trying to rectify this, one can go straight to
localizations of ∞-categories [Ci, Sec. 7.1]:

Remark 5.23 (localization). Let (C,W ′) be a relative category. In terms of Defini-
tion 5.11, we can viewW ′ as a subset of the morphisms of either C itself or its nerve N(C).
Let W denote the smallest simplicial subset of N(C) that contains W ′. One can then form
the localization W−1N(C), which is an ∞-category right away [Ci, Prop. 7.1.3]. (It will
have [Ci, Rem. 7.1.6] the same link to C[W−1] as described at the end of Remark 5.21.)
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5.4. Other names and other models

As the final act of this chapter, we should emphasize, that we merely presented one
facet of the theory of ∞-categories. So as not to confuse the novice reader, we purposely
refrained from mentioning this before; but since its complete concealment might lead to
frustration when consulting the literature, we deem it necessary to inform the reader of
the seemingly bizarre terminology landscape:

Remark 5.24 (other words for ∞-category). In the literature, there are three terms
for the same object, listed in reversed chronological order of appearance:

– ∞-category (Definition 5.4), as used by Lurie [Lu1],

– quasi-category, Joyal’s terminology [Jo1][Jo2], and

– weak Kan complex, introduced by Boardman and Vogt [BV][Vo].

All of them are still commonly used, although it is customary to annotate the choice of
“∞-category” with the phrase “in terms of Lurie” or similar, in order to avoid misunder-
standings (see Remark 5.25). ⌟

Remark 5.25 (other things that are called ∞-category). On the other hand, there
are different objects that are also termed “∞-categories” in the literature:

– topologically enriched categories,

– simplicially enriched categories,

– Segal categories,

– complete Segal spaces,

– . . .

This stems mainly from the fact, that during the evolution of higher category theory,
the term “∞-category” was used to denote the somewhat vague concept of “category
with infinitely many levels of morphisms”. To make this notion precise, several people
developed different approaches, which resulted (among others) in the objects listed above.
Nowadays, it is common to denote the conceptual idea, which they are all a model of, by
the term “(∞, 1)-category”. While a little longer than “∞-category”, this helps in avoiding
the ambiguity of the latter term. ⌟

For a more comprehensive account of the history and comparison between the different
conceptual aspects and models, we refer to the literature [Be2][Be1][Jo2, Introduction and
Sec. 2–5][Lu1, Ch. 1] and the nLab [nL], starting at the articles “higher category theory”,
“(n,r)-category”, and “quasi-category”.
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Chapter 6:

Excisive approximation

In this chapter, we investigate the (n-)excisive approximation of ℓ1-homology – or more
precisely, of the ℓ1-chain complex functor. First, we introduce a concept of excision whose
formulation applies to any functor between ∞-categories (Definition 6.1), we quote a
theorem by Lurie ensuring the existence of such an approximation (Theorem 6.4), and
we explain in what sense such an approximation is universal (Remark 6.5). We then
use these notions to show that the excisive approximation of Cℓ1 : Top∗ → ChR, i.e. the
ℓ1-chain complex functor on pointed spaces, is trivial (Theorem 6.7). An explicit formula
by Lurie makes the argument short and accessible.

Afterwards, in Section 6.3, we consider n-excisive approximations of Cℓ1 . Looking into
the construction of the latter, we are able to prove that all of them vanish (Corollary 6.13).

As this chapter’s setup is entirely∞-categorical, the word “category” will always mean
∞-category in the sense of Lurie [Lu1] (Definition 5.4) and we will use 1-category to refer
to categories in the sense of traditional category theory. Likewise, we will deal with other
concepts such as functors, limits, etc., i.e. “functor” will mean a functor of ∞-categories,
“(co)limit”/“pushout”/“pullback” will mean the ∞-categorical notion, etc.

The following ensures, that the ℓ1-chain complex functor is well-defined in this setting:

Proposition 6.0. The 1-categorical ℓ1-chain complex functor induces a functor of
∞-categories via the universal property of the localization (Remark 5.23).

Proof. It suffices to recognize the 1-categorical functor Cℓ1 as a relative functor (Defi-
nition 5.22), i.e., mapping weak homotopy equivalences of topological spaces to quasi-
isomorphisms of chain complexes. This follows from the fact that the bounded cochain
complex functor Cb is a relative functor [Iv, 6.4 Cor.] and the translation principle by Löh
[Lö2, Cor. 5.1]. Note, that Ivanov’s result is only stated for maps between path-connected
spaces, but his proof of the theorem preceding the corollary can be taken over verbatim
if one drops the path-connectedness assumptions and replaces the “i.e.”-part by the more
general definition of “k-equivalence” involving all base points and π0; see the literature
[tD, Sec. 6.7][Ha, Ch. 4].

■

6.1. Abstract excision

First of all, we introduce the concept of an excisive functor of ∞-categories:
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Definition 6.1 (excisive functor). Let C be a category that admits pushouts and
let F : C → D be a functor. Then F is excisive if it sends pushout squares to pullback
squares, i.e., if the following holds: Given a pushout square

W U

V X

f

g g′

f ′

in C, the diagram

F (W ) F (U)

F (V ) F (X)

F (f)

F (g) F (g′)

F (f ′)

is a pullback square in D. ⌟

Note again, that this must be read in the∞-categorical setting. In particular, pushout/
pullback squares do not have to commute “on the nose” but only “up to homotopy” and
the latter is part of the data(!), see also Example 5.15 and Remark 5.17.

Example 6.2. The constant functor Top → Top that sends everything to a point
is excisive. On the other hand, the identity functor on Top is not excisive: for example,
there is a pushout square

S0 D1

∗ D1/S0

inclusion

quotient
map

that is not a pullback square. We will get back to this in Example A.7.

As it turns out, given a functor between categories with enough limits, it always has a
“best approximation” by an excisive functor in a precise sense. The following definition
captures the niceness assumptions that we have to impose on the codomain category:

Definition 6.3. Let C be a category. Then C is differentiable if it admits finite limits
and sequential colimits and if the formation of the latter commutes with the former.

More explicitly, this means: every finite [K, 0130] diagram K → C admits a limit, every
diagram N(N) → C admits a colimit in C, and the functor colim: Fun(N(N), C) → C
commutes with finite limits. Here, N is viewed as the preorder category (Definition 5.1 (i))
of the usual ordering on the natural numbers and N is the nerve functor (Definition 5.8)
from 1-categories to ∞-categories.
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Theorem 6.4 ([Lu2, Thm. 6.1.1.10 and Ex. 6.1.1.28]). Let C be a category with a
terminal object and finite colimits and letD be a differentiable category. Let Exc(C,D) be
the full subcategory of the functor category Fun(C,D), spanned by the excisive functors.
Then the inclusion functor Exc(C,D) ↪→ Fun(C,D) has a left adjoint

P1 : Fun(C,D)→ Exc(C,D).

Furthermore, if F : C → D is reduced, which means that F maps every terminal object
of C to a terminal object of D, and if D has a zero object, the following holds:

P1F ≃ colimn∈NΩn ◦ F ◦ Σn

where Ω and Σ are the loop and suspension functor on D and C, respectively. ⌟

See Lurie [Lu2, Rem. 1.1.2.6] for the construction of loop and suspension functors and
Section B.1 for a short discussion of the former. For any functor F : C → D, the functor
P1F : C → D can be seen as a best approximation of F by an excisive functor from the
right, as we shall now explain:

Remark 6.5 (best approximation through adjunction). One way of making the term
best approximation precise in a categorical setting is by so-called universal arrows [Ml2,
Sec. III.1], i.e. by a certain mapping property:

Let C ′ be a full subcategory of some category C and let X be an object of C that we
want to approximate by an object of C ′. For example, C could be a functor category and
C ′ could be its full subcategory of excisive functors. Then a best approximation of X by
an object of C ′ from the right consists of an object Y of C ′ and a morphism f : X → Y
in C with the following property: for every other morphism f ′ : X → Y ′ to an object
of C ′, there exists an (up to homotopy) unique morphism g : Y → Y ′ such that

X Y

Y ′

f

f ′
g

commutes. Intuitively, we search for the “biggest quotient” of X that has the desired
properties.

It is a classical 1-categorical fact [Ml2, Thm. IV.1.1] that an adjunction gives rise
to universal arrows. We will sketch the argument for our situation: Assume that we
have the inclusion functor i : Exc ↪→ Fun of a full subcategory and that it has a left
adjoint P : Fun→ Exc. Using a mapping space functor (see Section B.2), one can define
adjunctions in ∞-categories analogously to the 1-categorical case [Ci, Def. 6.1.3], i.e. we
have an invertible natural transformation

MapFun(• , i(•))
c−→ MapExc(P (•), •).
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Here, invertibility means, that each component of c is an invertible morphism [Ci, Def.
1.6.10 and 1.5.1], or equivalently, that c is an invertible morphism in the corresponding
functor category [Ci, Cor. 3.5.12].

Now let F be an object of Fun, choose an inverse of c and let η := c−1
F,PF (idPF ) ∈

MapFun(F, iPF ). In order to show that this morphism

F
η−→ PF

is universal in the above sense, let P ′ be another object of Exc, let (η′ : F → P ′) ∈
MapFun(F, iP

′) be a morphism and set θ := cF,P ′(η′). Then the triangle

F PF

P ′

η

η′
θ

commutes, which can be seen by chasing η through the following diagram:

MapFun(F, PF ) MapFun(F, PF )

MapExc(PF, PF ) MapExc(PF, P
′). ⌟

MapFun(idF ,θ)

cF,PF cF,P ′

MapExc(idPF ,θ)

Remark 6.6. As one might already have noticed, we only investigate approximations
from the right. But in the first part of Remark 6.5, nothing prevents us from looking
instead at morphisms into the object that we want to approximate. Intuitively, this
corresponds then to a “biggest subobject” with the desired properties.

It is shown by Raptis [Rap], that the best approximation of the bounded cochain
complex functor from the right is exactly the comparison map from the bounded to
the singular cochain complex [Rap, Sec. 2.5], and that the arguments dualize to the
comparison map in the case of ℓ1-homology [Rap, Sec. 3.3], thus identifying the best
approximation of the ℓ1-chain complex functor from the left. ⌟

6.2. Excisive approximation of the ℓ1-chain complex functor

We can now apply Theorem 6.4 to ℓ1-homology, but we have to be a little bit careful:
After a bit of thought, it is quite apparent that the classical excision axiom for a homology
theory in the sense of Eilenberg and Steenrod is not a property of a single functor Hn

for a fixed n, but of a whole sequence of functors: after all, we know [Sw, cf. Ch. 7, esp.
7.34 and 7.35] that excision can equivalently be recast in the form of a Mayer-Vietoris
sequence running through all “dimensions” of a homology theory. (In the usual form of the
Eilenberg-Steenrod axioms the excision axiom seems to depend only on a single functor
at a time, but this is deceptive because it uses relative homology which is tightly linked
to its absolute version in different(!) dimensions by the long exact sequence of a pair.)
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So the upshot of this discussion is that we should not try to approach each of the
functors Hℓ1

n individually, but instead we have to look at the corresponding functor
Top → ChR to chain complexes. We will see later (Appendix A) that indeed the usual
singular chain complex functor is excisive in our sense. In order to apply the formula of
Theorem 6.4, we need a reduced functor, but Cℓ1(∗) is not a contractible chain complex.
This is why we consider pointed spaces and the functor Cℓ1 : Top∗ → ChR. We then
obtain:

Theorem 6.7 (excisive approximation of ℓ1-homology). There exists a best excisive
approximation of Cℓ1 : Top∗ → ChR from the right, i.e. an excisive functor P : Top∗ →
ChR and a natural transformation η : Cℓ

1 → P , such that for every other excisive func-
tor P ′ : Top∗ → ChR and natural transformation η′ : Cℓ

1 → P ′ there exists a natural
transformation θ : P → P ′ (unique up to homotopy) that makes the triangle

Cℓ
1

P

P ′

η

η′
θ

commutative. This best approximation is trivial, i.e. P (X) ≃ 0 for all pointed spaces X.

Proof. As Top∗ is complete and cocomplete and ChR is a stable [Lu2, Prop. 1.3.5.9 (with
Prop. 1.3.5.15)] and cocomplete category, so in particular differentiable [Lu2, Ex. 6.1.1.7],
the prerequisites of Theorem 6.4 are fulfilled. So the functor P1 : Fun(Top∗,ChR) →
Exc(Top∗,ChR) and in particular P1(C

ℓ1) : Top∗ → ChR exist. Since P1 is left adjoint
to the inclusion functor i : Exc(Top∗,ChR) ↪→ Fun(Top∗,ChR), we also know (see Re-
mark 6.5) that the unit morphism F = Id(F ) → (i ◦ P1)(F ) of the adjunction provides
a universal arrow in the sense described in the claim.

Furthermore, since we consider Cℓ1 relative to the base point, the second part of
Theorem 6.4 is applicable. For a pointed space X this gives us

P1(C
ℓ1)(X) ≃ colimnΩ

n
(
Cℓ

1
(ΣnX)

)
,

where Σ: Top∗ → Top∗ is the (unreduced) suspension functor and Ω: ChR → ChR is the
loop functor on chain complexes. But since ΣnX is simply-connected for n ∈ N≥2 and we
know that Cℓ1 vanishes on path-connected spaces with amenable (so in particular trivial)
fundamental group [Iv, 8.4 Thm.][Lö2, Cor. 5.1], we get P1(C

ℓ1)(X) ≃ colimn∈N≥2
Ωn(0).

Consider the fact that the loop functor Ω on chain complexes can be realized by just
shifting a complex down by one (i.e. (ΩC)n = Cn+1). Using this, it follows that we have

P1(C
ℓ1)(X) ≃ colimn∈N≥2

0 ≃ 0.

■
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6.3. Generalization to n-excisive approximation

The property of being excisive (Definition 6.1) is in fact only the first one of a whole se-
quence, namely so-called n-excisive functors. Whereas (1-)excisive functors act in a nice
way on square shaped diagrams, an n-excisive functor satisfies a higher dimensional ana-
logue involving (n+1)-dimensional cubical diagrams. In order to give a precise definition,
we have to introduce some further notation:

Definition 6.8 (n-cube). Let C be a category, let n ∈ N, and for a set A let P(A)
denote the preorder category (Definition 5.1 (i)) of the powerset of A with respect to
inclusion, i.e.

P(A) := Pre
(
{Z

∣∣ Z ⊆ A}, ⊆),
and let P∗(A) be its full subcategory on all non-empty sets.

(i) An n-cube in C is a diagram

N
(
P({0, . . . , n− 1})

)
→ C.

(ii) Let X be an n-cube in C and let T, T ′ ⊆ {0, . . . , n− 1}. Then the restriction of X
to T ∩ T ′, T, T ′, T ∪ T ′ determines a square

X(T ∩ T ′) X(T )

X(T ′) X(T ∪ T ′)

in C. A square obtained in this way is a 2-dimensional face of X.

(iii) Let X be an n-cube. Then ∅ is an initial object in P({0, . . . , n − 1}), so we can
identify X with a cone on its restriction to N(P∗({0, . . . , n− 1})). If this cone is a
limit cone (Outlook 5.18), X is Cartesian.

(iv) An n-cube is strongly coCartesian if all of its 2-dimensional faces are pushout
squares. ⌟

More details about such cubical diagrams can be found in Lurie’s book [Lu2, Sec. 6.1.1].
(He also proves [Lu2, Prop. 6.1.1.15] that his definition of strongly coCartesian cubes is
equivalent to the one given above.)

Remark 6.9. Cartesian 2-cubes can precisely be identified with pullback squares and,
similarly, strongly coCartesian 2-cubes with pushout squares.

In view of this remark, excisive functors (Definition 6.1) are a special case, for n = 1,
of the following:
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Definition 6.10 (n-excisive functor). Let C be a category with all finite colimits,
let F : C → D be a functor and let n ∈ N. Then F is n-excisive if it sends strongly
coCartesian (n+ 1)-cubes in C to Cartesian (n+ 1)-cubes in D.

Analogous to the case of (1-)excisive functors, there will be a best n-excisive approx-
imation to a given functor if the categories are nice enough (compare Theorem 6.4 and
Remark 6.5):

Theorem 6.11 ([Lu2, Thm. 6.1.1.10]). Let C be a category with a terminal ob-
ject and finite colimits and let D be a differentiable category (Definition 6.3). Let
Excn(C,D) be the full subcategory of the functor category Fun(C,D), spanned by the n-
excisive functors. Then the inclusion functor Excn(C,D) ↪→ Fun(C,D) has a left adjoint
Pn : Fun(C,D)→ Excn(C,D).

It should be noted, that being (n+1)-excisive is a weaker condition on a functor than
being n-excisive. More precisely, in the situation of Theorem 6.11, we have Excn(C,D) ⊆
Excm(C,D) for all m ∈ N≥n [Lu2, Cor. 6.1.1.14]. Thus, universality of Pn (Remark 6.5)
leads to a diagram of the form

· · · → P2F → P1F → P0F,

called the Taylor tower of F [Lu2, Sec. 6.1.2]. In general, one might seek to obtain in-
formation about F from the more and more accurate approximations in this tower –
however, we now show that the Taylor tower does not help to study the ℓ1-chain com-
plex functor. In fact, the tower will always be trivial for a functor that vanishes on all
highly connected spaces:

Theorem 6.12 (Taylor tower invisibility). Let D be a differentiable category with
terminal object ∗ and let F be a functor Top∗ → D. Let k ∈ N and suppose that
F vanishes on all k-connected pointed spaces, i.e. for all k-connected pointed spaces X,
we have F (X) ≃ ∗. Then F is Taylor tower invisible, meaning that

(PnF )(X) ≃ ∗

holds for all n ∈ N and all pointed spaces X.
The same statement, removing all “pointed”, holds for functors F : Top→ D. ⌟

Proof. Since the argument is exactly the same, “space” will either mean pointed or un-
pointed space in this proof, depending on F .

Fix n ∈ N. To obtain the result, we will have to unwrap enough details of the construc-
tion of the n-excisive approximation functor Pn. The first step in Lurie’s construction
[Lu2, Constr. 6.1.1.18] is the S-pointed cone functor (X,S) 7→ CS(X), which takes a
space and a finite set and produces again a space. We observe that it is chosen as a sec-
tion to a particular trivial Kan fibration and that the property [K, 006Y] that provides

63

https://kerodon.net/tag/006Y
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such a section additionally allows us to prescribe the functor S 7→ CS(X) as S 7→ X ∗ S
for all X; here, X ∗S is the join of X and S, where the finite set S is viewed as a discrete
space, and where the join inherits the basepoint of X if necessary.

Next, the functor Tn : Fun(Top(∗), D)→ Fun(Top(∗), D) is defined, where

(TnF )(X) = limF ◦ C•(X)|P∗({0,...,n}) = lim
∅≠S⊆{0,...,n}

F (X ∗ S).

The functor Pn is then defined as a sequential colimit over subsequent applications of Tn.
As such, it is hardly surprising, that one finds Pn(F ) ≃ Pn(TnF ) [Lu2, Lem. 6.1.1.34].

Now let X be a space. In view of the last paragraph, it suffices to show our claim
for T k+2

n F instead of F . Applying the above formula multiple times, we see that the
value (T k+2

n F )(X) is given by some limits over objects of the form

F (X ∗ S0 ∗ · · · ∗ Sk+1)

for subsets S0, . . . , Sk+1 ⊆ {0, . . . , n}. But since S0, . . . , Sk+1 are all non-empty, the
argument of F will be k-connected, and thus F of it vanishes by assumption. Similarly,
we have

(T ℓnF )(X) ≃ ∗ for all ℓ ∈ N≥k+2.

Finally, by the above and the definition of Pn, we obtain

(PnF )(X) ≃ (PnT
k+2
n F )(X)

= colim
(
(T k+2
n F )(X)→ (T k+3

n F )(X)→ . . .
)

≃ colim(∗ → ∗ → . . . )

≃ ∗.
■

Since the ℓ1-chain complex functor satisfies the assumptions of the theorem, we obtain
the following consequence:

Corollary 6.13 (n-excisive approximation of ℓ1-homology). Let n ∈ N. A best n-
excisive approximation of Cℓ1 : Top∗ → ChR from the right exists and is trivial.
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Excision for singular homology

Let us consider singular homology on Top. It satisfies classical excision, e.g. in the sense
of having Mayer-Vietoris sequences. As discussed before (Section 6.2), this should rather
be seen as a property of the underlying chain complex functor C : Top→ Ch, and indeed
formal arguments then can be used to derive Mayer-Vietoris sequences from this fact,
see Appendix B. In this chapter we will show that C really is excisive in the sense
of Definition 6.1, i.e. that the latter notion is a generalization of the classical property.

Theorem A.1 (C is excisive). The ∞-categorical singular chain complex functor
C : Top→ Ch is excisive.

As this is often used as an example or motivation for the definition of an excisive
functor, it seems to be an easy fact for homotopy theorists, but an explicit proof seems
to be hard to find in the literature, so we will include one here.

A.1. Model category theoretical bits

To prove the main theorem of this chapter, we will use the formalism of model categories
and we will show the following more explicit version:

Proposition A.2. Homotopy pushout squares in Top are sent to homotopy pullback
squares in Ch by the singular chain complex functor.

Here, we consider the classical or Quillen model structure on Top [Ho, Sec. 2.4] and
the projective model structure on Ch [Ho, Sec. 2.3]. Familiarity with those is, however,
not required to follow the logic of this chapter.

We will now give an ad hoc definition of homotopy pushouts in Top, which can be
thought of as “thick pushouts”, as witnessed by the double mapping cylinder construction
in the below definition. As we shall see shortly, we will actually concern ourselves only
with homotopy pushouts of a certain form, but using that as our definition would hide
the essence of this homotopy theoretic notion entirely. Thus we have [Hi, Def. 15.5.8][MV,
Def. 3.7.1]:
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Definition A.3 (homotopy pushout (square) in Top). A commutative square

W U

V X

f
g p

q

in Top is a homotopy pushout (square) if the composition(
U ⊔ (W × [0, 1]) ⊔ V

)
/∼ “u 7→u, v 7→v−−−−−−−−→

(w,t)7→f(w)”
U ⊔f,g V −−−−→

p⊔f,gq
X

is a weak equivalence; here

– the first space is the double mapping cylinder of f and g, where ∼ is the equivalence
relation generated by f(w) ∼ (w, 0) and (w, 1) ∼ g(w) for w ∈W .

– U⊔f,gV is the pushout (U⊔V )/≈ where ≈ is generated by f(w) ≈ g(w) for w ∈W .

– p ⊔f,g q is the map induced by p and q by the universal property of the pushout.⌟

Similarly, homotopy pullback squares can be defined in Ch. For the following, however,
we will not need this explicitly.

Example A.4. There are homotopy pushouts

∅ U

V U ⊔ V
and

X X × [0, 1]

X X

and

X Cone(X)

Cone(X) ΣX

for all topological spaces U, V,X (where Cone(X) is the cone on X and ΣX is the
suspension of X).

Remark A.5 (philosophy behind homotopy (co)limits). Generally speaking, homo-
topy (co)limits make up for the fact that ordinary (co)limits do not preserve the notion of
weak equivalence. As a concrete example in Top, we consider the commutative diagram

∗ S0 D1

∗ S0 ∗

inclusion
id

and note, that even though all vertical maps are (weak) homotopy equivalences, the
map D1/S0 → ∗ that they induce on the ordinary pushouts of the rows is not a (weak)
homotopy equivalence.

Moreover, homotopy (co)limits in a model category are strongly connected to ∞-
categorical (co)limits in the associated∞-category, i.e. the localization (Remark 5.23) at
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weak equivalences. For example: the latter compute the former [Ci, Rem. 7.9.10], (certain)
homotopy pushout squares are sent to pushout squares in the∞-category by the localiza-
tion functor [Ci, dual of Cor. 7.5.20], and in the setting of simplicially enriched categories
(see Remark 5.20) a theorem by Lurie compares both notions [Lu1, Thm. 4.2.4.1]. ⌟

Remark A.6 (existence and uniqueness of homotopy pushouts). Given the solid part
of the diagram

W U

V ?,

f
g

one can always extend it to an ordinary pushout square, e.g. with ? = U ⊔f,g V (in the
notation of Definition A.3). However, it may happen, that there is no extension to a
commutative homotopy pushout square! For example, assume that there is a homotopy
pushout

S0 ∗

∗ X

and denote its double mapping cylinder by Z. Then the weak equivalence Z → X factors
through ∗ by definition, but this is impossible as Z is homeomorphic to S1.

On the other hand, if there are two homotopy pushouts

W U

V X

f
g p

q

and
W U

V X ′

f
g p′

q′

with the same W,U, V, f, g, the spaces X and X ′ must be in the same equivalence class
that is generated by weak equivalences, because the double mapping cylinder of f and g
is weakly equivalent to both of them. One may thus call (the weak equivalence class of)
the double mapping cylinder the homotopy pushout of the diagram

V W U ,g f

and this is well-defined, even if there is no extension to a homotopy pushout square. ⌟

Example A.7. In Example 6.2 we claimed that there is an ∞-categorical pushout

S0 D1

∗ D1/S0

i

q (□)

in Top, where i is the inclusion and q the quotient map, that is not a pullback. Using
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the language of homotopy pushouts/pullbacks and the references given in Remark A.5,
we can now give a proof of this:

The given square (□) is a homotopy pushout and thus sent to an ∞-pushout by the
localization functor. However, it cannot be an ∞-pullback: Dually to Remark A.6, there
is a well-defined weak equivalence class of spaces that one can call homotopy pullback of
the diagram

∗ D1/S0 D1 .q

Now if we assume, for a contradiction, that (□) is an ∞-pullback, the assertion that ∞-
pullbacks compute homotopy pullbacks just means, that S0 is in this weak equivalence
class. We will now show that also the loop space ΩS1, at an arbitrary base point e ∈ S1,
is in this equivalence class, which cannot both be true, as we would get

2 = #π0(S
0) = #π0(ΩS

1) = #π1(S
1) = #Z

as cardinal numbers. To that end, consider the following diagram:

∗ D1/S0 D1

∗ S1 ∗ .

q

e e

We can certainly find vertical maps such that they are all weak equivalences and such
that both squares commute. Now because the homotopy pullback of diagrams does re-
spect such a “weak equivalence of diagrams” [Hi, Prop. 13.3.4] (compare Remark A.5 for
ordinary limits), the homotopy pullbacks of the rows yield the same weak equivalence
class. Using an explicit definition of homotopy pullback [MV, Def. 3.2.4] it is then easy
to see, that the homotopy pullback of the diagram in the bottom row is given by ΩS1

[MV, Ex. 3.2.10]. ⌟

In the rest of this chapter, we will give a proof of Proposition A.2 and then show how
this implies Theorem A.1.

A.2. Proof of the model categorical statement

First of all, we may reduce our attention to homotopy pushouts of a specific type by
virtue of the following three facts:

Proposition A.8 ([MV, Prop. 3.7.4 and Ex. 3.7.5]). Let S′ be a homotopy pushout
square in Top. Then there exists a homotopy pushout square

S =
W U

V X

 

68



A.2. Proof of the model categorical statement

and a map of squares η : S → S′, such that

– U and V are open subsets of X and W = U ∩ V ,

– all maps in S are inclusions, and

– η is component-wise a weak equivalence.

Furthermore, any square S as above is a homotopy pushout square. ⌟

Proposition A.9 ([Ha, Prop. 4.21]). The singular chain complex functor is homo-
topical, i.e. it sends weak equivalences in Top to weak equivalences in Ch.

Proposition A.10. Being a homotopy pullback square in Ch is invariant under weak
equivalences of squares in the following sense: Given two squares S and S′ in Ch and
a map of diagrams S → S′ that is component-wise a weak equivalence, then S is a
homotopy pullback if and only if S′ is.

Proof. This is Proposition 13.3.13 in Hirschhorn’s book [Hi]. Its prerequisites are fulfilled
because every object in Ch is fibrant [Ho, Thm. 2.3.11 and subsequent paragraph] and
thus Ch is right proper [Hi, Cor. 13.1.3].

■

With this, we are left to show:

Proposition A.11. Let S be as in Proposition A.8. Then the induced square

C(W ) C(U)

C(V ) C(X)

is a homotopy pullback in Ch.

Proof. Let C(S) denote the square from the claim and let ι : CU,V (X) ↪→ C(X) be the
inclusion of the subcomplex generated by the singular simplices that are contained in U
or V . Then it is well known [Ha, Prop. 2.21] that ι is a weak equivalence (this is the core
of the proof of classical excision statements). Now we consider the square

C(W ) C(U)

C(V ) CU,V (X)


iWU

iWV iUX

iVX

=: SU,V

where all morphisms denote the canonical injections and the component-wise inclusion
SU,V → C(S), which is component-wise a weak equivalence. Hence, Proposition A.10
applies and we can reduce to the problem of showing that SU,V is a homotopy pullback.
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It is known, that Ch is a stable model category [Ho, Sec. 7.1], so we may equivalently
[Ho, Rem. 7.1.12] show that SU,V is a homotopy pushout. But in the model structure
on Ch, all objects in SU,V are cofibrant [Ho, Lem. 2.3.6] and the morphism iWU is a
cofibration by Lemma A.12 (see below), hence it suffices [RV, Ex. 8.8] to show that SU,V

is a pushout. It is easily seen that this is the case if (and only if)

C(W )
(iWU ,iWV )−−−−−−→ C(U)⊕ C(V )

iUX−iVX−−−−−−→ CU,V (X) −→ 0

is an exact sequence in Ch. But this is true, basically by construction of CU,V (X), so we
are done.

■

Lemma A.12 (C of injection). Let i : A → X be an injective map in Top. Then
C(i) : C(A)→ C(X) is a cofibration in Ch.

Proof. By definition of the singular chain complex functor, C(A) and C(X) are free
modules, the chain map C(i) is dimensionwise injective and maps a basis of C(A) to a
subset of a basis of C(X). Thus, C(i) is dimensionwise a split injection with free cokernel,
hence a cofibration in Ch [Ho, Prop. 2.3.9 and Lem. 2.3.6].

■

This finishes the proof of Proposition A.2. In the last section we promote this model
categorical result to the ∞-categorical setting.

A.3. Proof of the ∞-categorical statement

Proof that Proposition A.2 implies Theorem A.1. To make this proof more transparent,
let us fix the following notation: Top denotes the 1-category, Top∞ the corresponding
∞-category, i.e. the localization (Remark 5.23) at weak homotopy equivalences, sim-
ilarly, Ch denotes the 1-category, Ch∞ the ∞-category, i.e. the localization at quasi-
isomorphisms, and C : Top → Ch is the 1-categorical functor, while C∞ : Top∞ → Ch∞
is the induced functor on ∞-categories (which is well-defined since C is homotopical,
Proposition A.9).

Both, Ch and Ch∞ are stable, Ch as a model category [Ho, Sec. 7.1] and Ch∞ as ∞-
category [Lu2, Prop. 1.3.5.9 (with Prop. 1.3.5.15)]. In particular, a square in Ch is a
homotopy pullback if and only if it is a homotopy pushout [Ho, Rem. 7.1.12], and a
square in Ch∞ is a pullback if and only if it is a pushout [Lu2, Prop. 1.1.3.4].

With this, we see that C∞ being excisive is equivalent to C∞ commuting with pushouts.
Hence, it suffices to show that C∞ commutes with all finite colimits. This follows
from the dual of Proposition 7.5.28 in Cisinski’s book [Ci], applied to the composi-
tion C̄ : N(Top) → Ch∞ of N(C) and the localization functor N(Ch) → Ch∞; for this,
Ch∞ is made an∞-category with weak equivalences and cofibrations in a trivial way [Ci,
Ex. 7.5.4]. To apply the proposition, we just need to show that C̄ is a right exact [Ci,
Def. 7.5.2] functor:
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(i) As C(∅) ∼= 0, initial objects are preserved by C̄.

(ii) All morphisms in Ch∞ are cofibrations and C is homotopical (Proposition A.9).
Thus, C̄ preserves cofibrations and trivial cofibrations.

(iii) Lastly, we need to check that pushout squares (in Top) of the form

A X

A′ X ′

i

with i a cofibration and A and A′ (and thus also X) cofibrant are sent to pushout
squares by C̄. But these conditions ensure [RV, Ex. 8.8] that such a square is also a
homotopy pushout square, which is preserved by C by combining Proposition A.2
and the comment about stability of Ch above. Furthermore, by the first item and
Lemma A.12, C also preserves the additional properties of i, A and A′, so the
square induced by C is sent to a pushout square in Ch∞ [Ci, dual of Cor. 7.5.20].

■
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Relation between abstract and classical
excision

In this chapter, we relate abstract excision (Definition 6.1) to classical excision in the
form of Mayer-Vietoris sequences. To this end, we will explain why and to some extent
how an excisive functor always admits Mayer-Vietoris sequences, coinciding with the
usual one in the case of singular homology, for example.

If our excisive functor is defined on Top, the first thing to note is that by the last part
of Proposition A.8 we may indeed apply the abstract excision property in the setting
X = U ∪ V with U and V open in X.

This leaves us with the task of explaining how a pullback square in an ∞-category
leads to a long exact sequence. To this end, the first step is the following:

B.1. Obtaining a fiber sequence

Let C be an ∞-category with finite limits and a zero object, i.e. an object ∗ of C that is
both initial and terminal. Suppose we start with the following pullback in C:

W U

V X.

Then from this, one can derive a fiber sequence like this:

ΩX →W → U × V, (B.1)

where Ω denotes the loop functor. Here, being a fiber sequence means (by definition)
being a pullback square

ΩX W

∗ U × V

and the loop functor Ω: C → C assigns to an object X the pullback of ∗ → X ← ∗,
or in other words it completes ∗ → X to a fiber sequence ΩX → ∗ → X. Lurie de-
scribes in detail how to construct loop and suspension functors [Lu2, paragraph preceed-
ing Rem. 1.1.2.6].
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For a precise treatment of the passage from pullback to fiber sequence, we would need
more technicalities about limits in ∞-categories. Informally, though, the basic ideas are
as follows: We have two pullback squares and a morphism α : W → U × V induced by
the universal property of the product as in the right part of this diagram:

fib(α) W U × V

∗ U U

∗ V V

X X ∗ .

idV

α

idU

Taking fibers (also a limit!) in the horizontal direction and using the fact that limits
commute with limits [Lu1, dual of Lem. 5.5.2.3], as is the case in 1-categories, we obtain
that the left square is also a pullback. Hence, by definition of the loop functor, fib(α) is
(equivalent to) ΩX.

B.2. Applying the mapping space functor

Let C be a 1-category. A quite important notion in 1-category theory is the functor

MorC : Cop × C → Set

that takes a pair (x, y) of objects of C to the set of morphisms MorC(x, y). In the
literature, this is often called “Hom-functor”.

Now let C be an ∞-category. One slogan of ∞-category theory is: the role of Set in
1-category theory is taken by Top in∞-category theory. This motivates the desire to find,
for a pair of objects (x, y) of C, not only a set of morphisms x→ y, but instead a space
of such morphisms – and indeed, this is always possible. The following remark indicates
how, but its point is rather to illustrate the analogy between the 1- and ∞-categorical
situation than to provide the reader with a better understanding of the space itself. Thus,
it can also safely be skipped.

Remark B.1 (construction of mapping spaces). We consider the 1-categorical situa-
tion first. Here, the set MorC(x, y) can be found as a pullback of “sets” as in the following
pullback square:

MorC(x, y) Mor(C)

{0} Ob(C)×Ob(C)

(f :a→b)7→

(a,b)

07→(x,y)
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where Mor(C) and Ob(C) denote the set (or class) of morphisms and objects of C,
respectively.

Now if C is instead an ∞-category, we can form the analogous diagram

C∆1

∆0 C∆0 × C∆0

((d01)∗, (d00)∗)

∗(x,y)

in sSet and define the space of morphisms from x to y as (the geometric realization of)
its pullback; here we use the following notation:

– C∆n is the internal Hom simplicial set as in Remark 5.6,

– (d0i )
∗ : C∆1 → C∆0 is the morphism induced by the i-th coface map d0i , and

– ∗(x,y) denotes the unique morphism with

(∆0)0 ∋ Id[0] 7→ (x, y) ∈ C0 × C0

under the identification C0×C0
∼= MorsSet(∆

0, C)×MorsSet(∆
0, C) =

(
C∆0×C∆0)

0
from Example 5.14.

Dugger and Spivak [DS1] discuss multiple ways to construct mapping spaces and in par-
ticular they consider the construction above [DS1, Prop. 1.2]. ⌟

If properly organized [Ci, Sec. 5.8], one can even define a functor of ∞-categories

MapC : Cop × C → Top,

which we call MapC to distinguish it from the 1-categorical concept. (Note, however, that
MapC(x, y) will in general only be weakly equivalent to the space that we constructed in
Remark B.1. Also, in Cisinski’s book the target of the mapping space functor is “S”, so to
get one to Top, we have to compose with an equivalence between those two∞-categories
[Ci, Rem. 7.8.10 and Rem. 7.8.11].) For this functor one can show:

Proposition B.2 ([Ci, Cor. 6.3.5]). Let C be an ∞-category and let x be an object
of C. Then the functor MapC(x, •) : C → Top preserves limits.

In particular, since these are defined via pullbacks, MapC(x, •) maps fiber sequences
to fiber sequences. This gives us a method to convert the fiber sequence (B.1) from
Section B.1 to one in Top: for any test object S of C we obtain

MapC(S,ΩX)→ MapC(S,W )→ MapC(S,U × V ), (B.2)

a fiber sequence of spaces, and canonically also of pointed spaces by virtue of zero maps.
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B.3. The Mayer-Vietoris sequence

As is well known, a fiber sequence F → X → Y of pointed spaces always yields a long
exact sequence of homotopy groups:

· · · → πn(F )→ πn(X)→ πn(Y )→ πn−1(F )→ · · · .

Using this on the fiber sequence (B.2) from the last section, again the fact that MapC(S, •)
preserves limits (Proposition B.2), and well known facts about the homotopy groups, we
get the following exact sequence:

· · · → πn+1MapC(S,X)→ πnMapC(S,W )

→ πnMapC(S,U)× πnMapC(S, V )→ πnMapC(S,X)→ · · · . (B.3)

In this sense, one can always extract Mayer-Vietoris type sequences from a pullback
square.

B.4. Example: singular homology

We shall now explain, how the long exact sequence (B.3) from Section B.3 about ho-
motopy groups also yields the familiar Mayer-Vietoris sequence of homology groups. For
this we have to use the “correct” object S plus some additional arguments.

Let us first recapitulate the situation: We have a space X = U ∪V with U and V open
in X, W = U ∩ V , and C the singular chain complex functor. From the pushout formed
by U ∩V , U , V and X, we get the according pullback of chain complexes. We now apply
the previous material, where for the test complex S we choose the complex Z[0] that has
Z in degree 0 and is trivial elsewhere. Note, that Z[0] is just one usual notation for this
and no connection to the preorder category [0] from Definition 5.1 is intended. Looking
at the sequence (B.3), we then get a lot of terms of the form

πnMapCh
(
Z[0], C(Z)

)
for n ∈ N and Z one of W , U , V , X, which can be computed via the following:

Proposition B.3. Let c be a chain complex and let n ∈ N. Then:

πnMapCh(Z[0], c) ∼= Hn(c)

where the right hand side is the n-th homology of c.

Proof. We can [K, 00PE] view the 1-category of chain complexes as a DG-category, which
we denote by Chdg; this means [K, 00P9] that Chdg is enriched over chain complexes,
i.e. MorChdg(c

′, c) is again a chain complex for all chain complexes c′, c. Then the so-
called DG-nerve [K, 00PK], a gadget similar in spirit to the homotopy coherent nerve
from Remark 5.20, provides us with an ∞-category Ndg(Chdg), which can be seen as
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the localization (Remark 5.23) of chain complexes at chain homotopy equivalences [Lu2,
Prop. 1.3.4.5]. Mapping spaces in∞-categories obtained via Ndg are particularly tractable
[Lu2, Rem. 1.3.1.12], hence

MapNdg(Chdg)(Z[0], c) ≃
∣∣K(

τ≥0MorChdg(Z[0], c)
)∣∣,

where

– |•| denotes the geometric realization of a simplicial set (in this case: after forgetting
the group structure),

– K sends a non-negative chain complex to its associated simplicial Abelian group
under the Dold-Kan correspondence [We, Sec. 8.4], and

– τ≥0 is the good truncation functor [We, 1.2.7] that essentially forces a chain complex
to be non-negative.

Thus, we see

πnMapNdg(Chdg)(Z[0], c) ∼= πnK τ≥0MorChdg(Z[0], c)
∼= Hn

(
MorChdg(Z[0], c)

)
∼= Hn(c),

because taking the homotopy group of a geometric realization is isomorphic to the sim-
plicial homotopy group [GJ, p. 60] and the latter is isomorphic to the homology of the
associated chain complex [We, Thm. 8.4.1]; finally, MorChdg(Z[0], c) ∼= c is easily seen by
expanding the definitions. This shows the claim for Ndg(Chdg) instead of Ch.

To pass from Ndg(Chdg) to Ch (i.e. from localization at chain homotopy equivalences
to localization at all quasi-isomorphisms), we additionally use the so-called Hurewicz
model structure on chain complexes, which has chain homotopy equivalences as weak
equivalences. It can be combined with the projective model structure to yield a mixed
model structure on chain complexes. All three model structures are discussed in May and
Ponto’s book under the names “h-/q-/m-model structure” [MP, Sec. 18.3, 18.4 and 18.6].
Both, projective and mixed, have the quasi-isomorphisms as weak equivalences, but the
latter has the advantage of being a right Bousfield localization of the Hurewicz model
structure. This can be used to see that the restriction of a mapping space functor in the
sense of Cisinski [Ci, (dual/cofibrant version of) 7.10.7] for the Hurewicz model structure
yields a mapping space functor for the mixed model structure. Together with the fact
that Z[0] is cofibrant in all three model structures, we get

MapNdg(Chdg)(Z[0], c) ≃ MapCh(Z[0], c).
■

If we apply this proposition to the long exact sequence (B.3) that we get from Section B.3
for S = Z[0], we indeed arrive at the familiar long exact sequence:

· · · → Hn+1(X)→ Hn(U ∩ V )→ Hn(U)×Hn(V )→ Hn(X)→ · · · .
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Appendix C:

API documentation for

inflexible-0.3.1: Semi-free differential graded-commutative algebras

A package to reason about semi-free differential graded-commutative algebras. Start
reading with the Alg module and the DgaSpec type in the Types module.
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ai
n'

,
is

El
li

pt
ic

,
is

El
li

pt
ic

',
ma

pp
in

gD
eg

re
eA

t,
ma

pp
in

gD
eg

re
eA

t'
,

fi
nd

Ba
si

s,
bd

yB
as

is
,

bd
yM

on
om

ia
ls

,
ha

sO
nl

yB
dy

Mo
no

s,
ll

Di
ff

er
en

ti
al

)
wh

er
e

A
co

ch
ai

n
al

ge
br

a
is,

in
pa

rt
ic

ul
ar

,a
co

ch
ai

n
co

m
pl

ex
.

H
er

e
w

e
pr

ov
id

e
fu

nc
tio

na
lit

y
to

re
as

on
ab

ou
t

th
e

co
ho

m
ol

og
y

of
th

e
la

tt
er

.
T

hr
ou

gh
ou

t
th

is
m

od
ul

e,
w

e
as

su
m

e,
th

at
al

la
lg

eb
ra

s
ar

e
co

nn
ec

te
d

(t
ha

t
is,

th
ey

ha
ve

no
ge

ne
ra

to
rs

of
de

gr
ee

0)
.

M
os

t
fu

nc
tio

ns
in

th
is

m
od

ul
e

ex
pe

ct
ho

m
og

en
eo

us
al

ge
br

a
el

em
en

ts
as

in
pu

t,
an

d
th

is
is

no
t

ch
ec

ke
d.

It
is

th
e

ca
lle

r’s
re

sp
on

sib
ity

to
pa

ss
on

ly
su

ch
el

em
en

ts
.

W
he

n
in

do
ub

t,
se

e
if
de

gr
ee

yi
el

ds
Ju

st
so

m
e

de
gr

ee
.

Fo
rb

re
vi

ty
,w

e
us

e
th

e
te

rm
co

ch
ai

n
as

an
ab

br
ev

ia
tio

n
fo

rh
om

og
en

eo
us

el
em

en
t.

(T
hi

s
co

in
ci

de
s

w
ith

th
e

te
rm

in
ol

og
y

of
co

ch
ai

n
co

m
pl

ex
es

in
ho

m
ol

og
ic

al
al

ge
br

a
w

he
re

no
n-

ho
m

og
en

eo
us

el
em

en
ts

do
us

ua
lly

no
t

ap
pe

ar
.)

A
sa

n
ad

di
tio

na
lc

on
ve

ni
en

ce
(m

ai
nl

y
us

ef
ul

fo
ri

nt
er

ac
tiv

es
es

sio
ns

),
w

ep
ro

vi
de

“p
rim

ed
”

va
ria

nt
s

of
th

e
m

ai
n

fu
nc

tio
ns

of
th

is
m

od
ul

e,
w

hi
ch

di
sc

ar
d

th
e

ca
ch

e
(d
ro

pC
ac

he
)

af
te

r
th

ey
ar

e
do

ne
.

is
Co

cy
cl

e
::

EN
O

k
a

=>
Dg

aS
pe

c
k

a
->

La
m

k
a

->
Ca

ch
ed

k
a

Bo
ol

C
he

ck
w

he
th

er
an

al
ge

br
a

el
em

en
t

is
a

co
cy

cl
e,

i.e
.

w
he

th
er

it
is

in
th

e
ke

rn
el

of
th

e
di

ffe
re

nt
ia

l.
(T

hi
s

al
so

w
or

ks
on

no
n-

ho
m

og
en

eo
us

el
em

en
ts

.)

is
Co

cy
cl

e'
::

EN
O

k
a

=>
Dg

aS
pe

c
k

a
->

La
m

k
a

->
Bo

ol

Se
e
is

Co
cy

cl
e.

is
Co

bo
un

da
ry

::
(E

NO
'

k
a,

El
im

'
k,

Eq
(U

nF
ra

c
k)

)
=>

Dg
aS

pe
c

k
a

->
La

m
k

a
->

Ca
ch

ed
k

a
Bo

ol

C
he

ck
w

he
th

er
a

co
ch

ai
n

is
a

co
bo

un
da

ry
,

i.e
.

w
he

th
er

it
is

in
th

e
im

ag
e

of
th

e
di

ffe
re

nt
ia

l.
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isCoboundary'
::

(ENO'
k

a,
Elim'

k,
Eq

(UnFrac
k))

=>
DgaSpec

k
a

->
Lam

k
a

->
Bool

See
isCoboundary.

fillCochain

::
(ENO'

k
a,

Elim'
k,

Eq
(UnFrac

k))
=>

DgaSpec
k

a
->

Lam
k

a
cochain

c
to

be
filled

->
Cached

k
a

(Maybe
(Lam

k
a))

a
cochain

c'
such

that
d

c'
=

c,or
N

othing
if
c

w
asn’t

a
coboundary.

G
iven

a
cochain,com

pute
Just

a
preim

age
ofit

under
the

differential;or
Nothing

ifit
isn’t

a
coboundary.

fillCochain'

::
(ENO'

k
a,

Elim'
k,

Eq
(UnFrac

k))
=>

DgaSpec
k

a
->

Lam
k

a
cochain

c
to

be
filled

->
Maybe

(Lam
k

a)
a

cochain
c'

such
that

d
c'

=
c,or

N
othing

if
c

w
asn’t

a
coboundary.

See
fillCochain.

isElliptic
::

(ENO'
k

a,
Elim'

k,
Eq

(UnFrac
k))

=>
DgaSpec

k
a

->
Cached

k
a

(Maybe
Bool)

G
iven

a
dga,

w
e

try
to

show
w

hether
it

is
elliptic;

because
our

cochain
algebras

are
finitely

generated
by

design,ellipticity
is

equivalent
to

finite
dim

ensionalco-
hom

ology.

T
he

return
value

Nothing
signifies

unknow
n

ellipticity
status.

C
urrently,

this
function

can
only

determ
ine

the
latter,

if
all

generators
of

even
degree

are
cocycles.

T
his

includes
the

case
ofpure

Sullivan
algebras.

isElliptic'
::

(ENO'
k

a,
Elim'

k,
Eq

(UnFrac
k))

=>
DgaSpec

k
a

->
Maybe

Bool

See
isElliptic.

mappingDegreeAt

::
(ENO'

k
a,

Elim'
k)

=>
DgaSpec

k
a

->
Lam

k
a

representative
offundam

entalclass
->

DgaEndo
k

a
endom

orphism
->

Cached
k

a
k

m
apping

degree
ofthe

endom
orphism

10

Suppose
k

is
a

field.
Let

f
be

an
endom

orphism
ofthe

given
dga

A
and

let
c

be
a

cochain
in

A
ofdegree

n,such
that

•
the

cohom
ology

H
n
(A

)
in

degree
n

is
one-dim

ensionalover
k,and

•
the

cochain
c

represents
its

non-trivial
class,

i.e.
c

is
a

cocycle
but

not
a

coboundary.

T
hen

this
function

com
putes

the
m

apping
degree

of
f

with
respect

to
c,

i.e.
the

elem
ent

λ
from

k,such
that

H
(f
)[c]

=
λ
·
[c]

∈
H

n
(A

)
holds.

In
the

case
ofa

Poincaré
dga,e.g.

an
elliptic

dga,ofdim
ension

n,the
cochain

c
is

a
representative

of
the

fundam
entalclass

and
this

function
sim

ply
returns

the
m

apping
degree

of
f.

mappingDegreeAt'

::
(ENO'

k
a,

Elim'
k)

=>
DgaSpec

k
a

->
Lam

k
a

representative
offundam

entalclass
->

DgaEndo
k

a
endom

orphism
->

k
m

apping
degree

ofthe
endom

orphism

See
mappingDegreeAt.

3.1
U

tilities

findBasis
::

ENO'
k

a
=>

DgaSpec
k

a
->

Deg
->

Cached
k

a
(Basis

k
a)

C
ached

version
of

findBasis_.

bdyBasis
::

(ENO'
k

a,
Elim

k)
=>

DgaSpec
k

a
->

Deg
->

Cached
k

a
(Basis

k
a)

C
om

pute
a

basisofthe
subm

odule
ofcoboundariesofa

given
DgaSpec

in
a

specified
degree.

bdyMonomials
::

(ENO'
k

a,
Elim

k)
=>

DgaSpec
k

a
->

Deg
->

Cached
k

a
(Set

(FGCA
a))

C
om

pute
the

Set
ofallm

onom
ials

that
appear

in
the

subm
odule

ofcoboundaries
in

a
specified

degree.

hasOnlyBdyMonos
::

(ENO'
k

a,
Elim

k)
=>

DgaSpec
k

a
->

Deg
->

Lam
k

a
->

Cached
k

a
Bool

11



C
he

ck
w

he
th

er
an

al
ge

br
a

el
em

en
t

co
nt

ai
ns

on
ly

m
on

om
ia

ls
th

at
ap

pe
ar

in
th

e
su

bm
od

ul
e

of
co

bo
un

da
rie

s
of

a
gi

ve
n

de
gr

ee
.

T
hi

s
is

m
ai

nl
y

us
ef

ul
as

a
fir

st
(a

nd
qu

ic
k

to
ch

ec
k)

ne
ce

ss
ar

y
co

nd
iti

on
on

an
el

em
en

t
to

be
a

co
bo

un
da

ry
.

3.
2

Lo
w

-le
ve

la
cc

es
s

ll
Di

ff
er

en
ti

al
::

(E
NO

'
k

a,
El

im
k)

=>
Dg

aS
pe

c
k

a
->

De
g

->
Ca

ch
ed

k
a

(E
ch

el
on

In
fo

(M
at

k)
)

R
ed

uc
e

a
m

at
rix

re
pr

es
en

ta
tio

n
of

th
e

di
ffe

re
nt

ia
li

n
th

e
sp

ec
ifi

ed
de

gr
ee

to
ro

w
ec

he
lo

n
fo

rm
an

d
ad

di
tio

na
lly

ca
ch

e
ot

he
ri

nf
or

m
at

io
n

th
at

is
ob

ta
in

ed
on

th
e

w
ay

.

T
hi

s
fu

nc
tio

n
is

us
ed

in
te

rn
al

ly
by

th
e

re
st

of
th

is
m

od
ul

e.

12

4
Al
g.
Ge
ne
ri
cM
or

mo
du

le
Al

g.
Ge

ne
ri

cM
or

(
ge

ne
ri

cA
lg

Mo
r,

ge
ne

ri
cD

ga
Mo

rC
on

st
ra

in
ts

,
ge

ne
ri

cD
ga

En
do

Co
ns

tr
ai

nt
s

)
wh

er
e

In
th

is
m

od
ul

e,
w

e
pr

ov
id

e
ge

ne
ri

c
m

or
ph

ism
s

fr
om

on
e

al
ge

br
a

to
an

ot
he

r
an

d
de

du
ce

po
ly

no
m

ia
l

co
ns

tr
ai

nt
s

fo
r

it
be

in
g

a
dg

a
m

or
ph

ism
.

In
m

or
e

de
ta

il,
th

is
m

ea
ns

th
e

fo
llo

w
in

g:

Le
t(

A
,d

A
)

an
d
(B

,d
B
)

be
co

ch
ai

n
al

ge
br

as
ov

er
k,

ge
ne

ra
te

d
by

a
1
,.
..
,a

r
an

d
b 1
,.
..
,b

s
,

re
sp

ec
tiv

el
y.

A
m

or
ph

ism
of

al
ge

br
as

A
→

B
m

us
tm

ap
ea

ch
a
i
to

a
lin

ea
rc

om
bi

na
tio

n
of

m
on

om
ia

ls
in

th
e
b j

of
th

e
sa

m
e

de
gr

ee
,a

nd
ea

ch
su

ch
ch

oi
ce

fo
rm

ap
pi

ng
th

e
ge

ne
ra

to
rs

yi
el

ds
a

m
or

ph
ism

(s
ee

al
so

ex
te

nd
To

Al
g)

.
A

bs
tr

ac
tin

g
ov

er
th

e
co

effi
ci

en
ts

,
w

e
m

ay
de

sc
rib

e
a

ge
ne

ri
c

m
or

ph
is

m
f

by
th

e
ru

le
s

a
i
7→

∑ m

T
i,
m
·m

w
ith

m
ra

ng
in

g
ov

er
al

lm
on

om
ia

ls
in

B
th

at
ar

e
of

th
e

sa
m

e
de

gr
ee

as
a
i,

w
he

re
th

e
T
i,
m

ar
e

va
ria

bl
es

of
a

po
ly

no
m

ia
lr

in
g

ov
er

k.

T
he

eq
ua

tio
n
d
B
◦f

−
f
◦d

A
=

0
,e

va
lu

at
ed

on
th

e
a
i,

de
te

rm
in

es
a

fin
ite

nu
m

be
r

of
po

ly
no

m
ia

le
qu

at
io

ns
in

th
e
T
i,
m

.
A

ch
oi

ce
of

su
bs

tit
ut

io
n

fo
r

th
e
T
i,
m

in
f

de
te

rm
in

es
a

dg
a

m
or

ph
ism

(A
,d

A
)
→

(B
,d

B
)

if
an

d
on

ly
if

it
sa

tis
fie

s
th

is
sy

st
em

of
po

ly
no

m
ia

l
eq

ua
tio

ns
.

ge
ne

ri
cA

lg
Mo

r
::

fo
ra

ll
p

k
a

b
m

v.
(E

NO
O

k
a

b,
Po

ly
Ri

ng
k

p
m

v,
En

um
v)

=>
Dg

aS
pe

c
k

a
->

Dg
aS

pe
c

k
b

->
Al

gM
or

p
a

b

G
en

er
at

e
a

ge
ne

ric
m

or
ph

ism
of

al
ge

br
as

.
T

he
ty

pe
of

va
ria

bl
es

v
m

us
tb

e
an

En
um

,
fr

om
w

hi
ch

th
e
T
..
.-v

ar
ia

bl
es

ar
e

sa
m

pl
ed

(a
sc

en
di

ng
an

d
st

ar
tin

g
at

“1
”)

.
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genericDgaMorConstraints
::

forall
p

k
a

b
m

v.
(ENOO

k
a

b,
PolyRing

k
p

m
v,

Enum
v)

=>
DgaSpec

k
a

->
DgaSpec

k
b

->
[p]

B
ased

on
genericAlgMor,this

com
putes

the
polynom

ialconstraints.

genericDgaEndoConstraints
::

forall
p

k
m

v
a.

(ENO
k

a,
PolyRing

k
p

m
v,

Enum
v)

=>
DgaSpec

k
a

->
[p]

Specialization
of

genericDgaMorConstraints
w

here
dom

ain
and

codom
ain

of
the

m
orphism

coincide.

14

5
Cache

module
Cache

(
cacheResult,

cachePureResult,
viewCache,

setCache,
viewCached,

setCached,
viewCachedErr,

dropCache,
emptyCache

)
where

T
his

m
odule

provides
a

sim
ple

cache
fram

ew
ork

for
storing

and
retrieving

results
of

functions
that

expect
a
DgaSpec

and
a

particular
degree

as
input.

For
Keys

w
e

use
the

lens
from

the
Lens

m
odule,w

hich
facilitates

easy
access

to
the

values.

cacheResult
::

ENO'
k

a
=>

Key
k

a
y

->
(DgaSpec

k
a

->
Deg

->
Cached

k
a

y)
->

DgaSpec
k

a
->

Deg
->

Cached
k

a
y

cachePureResult
::

ENO'
k

a
=>

Key
k

a
y

->
(DgaSpec

k
a

->
Deg

->
y)

->
DgaSpec

k
a

->
Deg

->
Cached

k
a

y

viewCache
::

ENO'
k

a
=>

Key
k

a
y

->
DgaSpec

k
a

->
Deg

->
Cache

k
a

->
Maybe

y

setCache
::

ENO'
k

a
=>

Key
k

a
y

->
DgaSpec

k
a

->
Deg

->
y

->
Cache

k
a

->
Cache

k
a

viewCached
::

ENO'
k

a
=>

Key
k

a
y

->
DgaSpec

k
a

->
Deg

->
Cached

k
a

(Maybe
y)

setCached
::

ENO'
k

a
=>

Key
k

a
y

->
DgaSpec

k
a

->
Deg

->
y

->
Cached

k
a

()

viewCachedErr
::

ENO'
k

a
=>

String
->

Key
k

a
y

->
DgaSpec

k
a

->
Deg

->
Cached

k
a

y

dropCache
::

Cached
k

a
y

->
y

emptyCache
::

Cache
k

a
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6
Ex
te
rn
.M
ap
le

mo
du

le
Ex

te
rn

.M
ap

le
(

Ma
pl

eI
nt

er
p(

Ma
pl

eI
nt

er
p,

hp
ro

c,
ho

ut
,

hi
n)

,
ne

wM
ap

le
,

cl
os

eM
ap

le
,

pu
tM

ap
le

,
ge

tM
ap

le
)

wh
er

e

T
hi

s
m

od
ul

e
pr

ov
id

es
a

ve
ry

el
em

en
ta

ry
in

te
rf

ac
e

to
th

e
ma

pl
e

ex
ec

ut
ab

le
.

da
ta

Ma
pl

eI
nt

er
p

C
on

st
ru

ct
or

s

=
Ma

pl
eI

nt
er

p
{
hi

n
::

Ha
nd

le
,
ho

ut
::

Ha
nd

le
,
hp

ro
c

::
Pr

oc
es

sH
an

dl
e

}

ne
wM

ap
le

::
IO

Ma
pl

eI
nt

er
p

C
re

at
e

ne
w

in
st

an
ce

of
th

e
m

ap
le

in
te

rp
re

te
r.

T
he

ma
pl

e
ex

ec
ut

ab
le

m
us

tb
e

av
ai

l-
ab

le
on

th
e

ex
ec

ut
in

g
sy

st
em

(a
nd

m
us

t
be

ab
le

to
ob

ta
in

a
lic

en
se

,i
fn

ec
es

sa
ry

).

cl
os

eM
ap

le
::

Ma
pl

eI
nt

er
p

->
IO

()

Q
ui

ts
a

m
ap

le
in

te
rp

re
te

r
an

d
w

ai
ts

fo
r

its
te

rm
in

at
io

n.
T

he
pa

ss
ed

Ma
pl

eI
nt

er
p

sh
ou

ld
no

t
be

us
ed

af
te

rw
ar

ds
.

pu
tM

ap
le

::
Ma

pl
eI

nt
er

p
->

St
ri

ng
->

IO
()

Fe
ed

in
pu

t
to

a
m

ap
le

in
te

rp
re

te
r.

ge
tM

ap
le

::
Ma

pl
eI

nt
er

p
->

IO
[S

tr
in

g]

R
ea

d
on

e
“c

hu
nk

”
of

m
ap

le
ou

tp
ut

(s
pl

it
at

lin
eb

re
ak

s)
;

w
e

co
ns

id
er

th
e

en
d

of
ea

ch
ch

un
k

to
be

th
re

e
em

pt
y

lin
es

(w
hi

ch
ar

e
no

t
pa

rt
of

th
e

re
tu

rn
ed

lis
t)

.
Fo

r
ex

am
pl

e,
ru

nn
in

g
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do
m

<-
ne

wM
ap

le
pu

tM
ap

le
m

"4
1

+
1;

pr
in

tf
(\

"\
\n

\\
n\

")
;"

re
s

<-
ge

tM
ap

le
m

re
tu

rn
(r

es
==

["
42

"]
)

in
th

e
IO

m
on

ad
sh

ou
ld

yi
el

d
Tr

ue
.
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7
Extern.Sage

module
Extern.Sage

(
initialize,

VarNum,
Polynomial,

IdealGenerators,
idealDimension,

idealDimension',
hasFiniteProjection,

hasFiniteProjection',
eliminationIdeal,

eliminationIdeal',
numberOfVariables,

onPyException,
printPyException

)
where

T
his

m
odule

provides
an

interface
to

som
e

functionality
ofSageM

ath.
M

ore
specifically,

w
e

use
the

m
odule

for
“Ideals

in
m

ultivariate
polynom

ialrings”.

A
n

accom
panying

Python
m

odule
pybits/Extern/sageglue.py

is
responsible

for
calling

the
actual

sage
functions.

W
e

use
the

cpython
package

to
call

this
Python

m
odule

directly
from

H
askell.

U
sage

notes

Everything
in

this
m

odule
happens

over
the

base
field

Q
,i.e.

the
rationalnum

bers.

For
sim

plicity,this
interface

im
poses

the
follow

ing
restrictions:

•
A

Polynomial
in

the
sense

of
this

interface
has

a
fixed

variable
type

of
VarNum

=
Int

and
by

convention,w
e

use
only

non-negative
variables.

•
N

o
variable

gaps
are

possible:
ifthe

variable
2

::
VarNum

is
used

in
som

e
polyno-

m
ial,w

e
autom

atically
w

ork
over

a
polynom

ialring
in

three
variables,nam

ely
0,

1,and
2,w

hether
0

and
1

are
used

or
not.

(See
also

numberOfVariables.)

T
his

m
eans

that,
in

order
to

use
this

interface,
you

have
to

enum
erate

your
variables

by
0,1,…

and
convert

your
polynom

ials
to

Polynomials
first.

In
the

case
of

a
newtype

around
Int

as
variable

type
(as

used
in

the
interactive/

exam
ples)

the
conversion

is
easily

handled
by

coerce.

18

7.1
Initialization

initialize
::

IO
()

Initialize
the

Python
and

Sage
bits.

C
alling

this
is

m
andatory

before
using

the
interface

below
.

7.2
Exposed

Interface

type
VarNum

=
Int

type
Polynomial

=
GrevlexPoly

Q
VarNum

Polynom
ialsasused

by
thisinterface,based

on
them

odule
Math.CommutativeAlgebra.Polynomial

from
the

HaskellForMaths
package.

type
IdealGenerators

=
[Polynomial]

idealDimension

::
Int

totalnum
ber

ofvariables
->

IdealGenerators
->

IO
Integer

D
im

ension
ofthe

generated
idealw

ithin
a

polynom
ialring

w
ith

specified
num

ber
ofvariables.

idealDimension'
::

IdealGenerators
->

IO
Integer

C
onvenience

function
that

calls
idealDimension

w
ith

the
num

ber
of

variables
as

com
puted

by
numberOfVariables.

hasFiniteProjection

::
Int

totalnum
ber

ofvariables
->

IdealGenerators
->

VarNum
projection

target
->

IO
Bool

Let
V

be
the

zero
locusofthe

given
ideal(generators)in

n-dim
ensionalaffi

ne
space,

w
here

n
isthe

firstargum
ent.

T
hen

thisfunction
com

putesw
hetherthe

projection
of

V
onto

the
affi

ne
line

that
is

given
by

the
third

argum
ent

has
a

finite
im

age.

hasFiniteProjection'
::

IdealGenerators
->

VarNum
->

IO
Bool

C
onvenience

function
thatcalls

hasFiniteProjection
w

ith
the

num
berofvariables

as
com

puted
by

numberOfVariables.
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el
im

in
at

io
nI

de
al

::
In

t
to

ta
ln

um
be

r
of

va
ria

bl
es

->
Id

ea
lG

en
er

at
or

s
->

[V
ar

Nu
m]

va
ria

bl
es

to
el

im
in

at
e

->
IO

Id
ea

lG
en

er
at

or
s

C
on

sid
er

th
e

po
ly

no
m

ia
lr

in
g

in
a

gi
ve

n
nu

m
be

r
of

va
ria

bl
es

an
d

le
t
I

be
th

e
id

ea
l

gi
ve

n
by

th
e

sp
ec

ifi
ed

ge
ne

ra
to

rs
.

T
hi

s
fu

nc
tio

n
co

m
pu

te
s

th
e

el
im

in
at

io
n

id
ea

l
re

su
lti

ng
fr

om
el

im
in

at
in

g
th

e
gi

ve
n

va
ria

bl
es

fr
om

I.

el
im

in
at

io
nI

de
al

'

::
Id

ea
lG

en
er

at
or

s
->

[V
ar

Nu
m]

va
ria

bl
es

to
el

im
in

at
e

->
IO

Id
ea

lG
en

er
at

or
s

C
on

ve
ni

en
ce

fu
nc

tio
n

th
at

ca
lls

el
im

in
at

io
nI

de
al

w
ith

th
e

nu
m

be
r

of
va

ria
bl

es
as

co
m

pu
te

d
by

nu
mb

er
Of

Va
ri

ab
le

s.

nu
mb

er
Of

Va
ri

ab
le

s
::

[P
ol

yn
om

ia
l]

->
In

t

C
om

pu
te

s
th

e
nu

m
be

r
of

va
ria

bl
es

“u
se

d”
in

th
e

gi
ve

n
po

ly
no

m
ia

ls.
H

er
e,

a
va

ri-
ab

le
j

co
un

ts
as

us
ed

if
th

er
e

ex
ist

sa
va

ria
bl

e
k

in
th

e
gi

ve
n

po
ly

no
m

ia
ls

w
ith

j
�
k.

In
ot

he
r

w
or

ds
,i

t
sim

pl
y

re
tu

rn
s
1

+
ma

xi
ma

l
va

ri
ab

le
th

at
ac

tu
al

ly
ap

pe
ar

s.

7.
3

P
yt

ho
n

ex
ce

pt
io

ns

on
Py

Ex
ce

pt
io

n
::

Ex
ce

pt
io

n
->

IO
()

A
n

ex
ce

pt
io

n
ha

nd
le

r
fo

r
Py

th
on

ex
ce

pt
io

ns
,p

rin
tin

g
ty

pe
,v

al
ue

,a
nd

tr
ac

eb
ac

k
(if

av
ai

la
bl

e)
to

st
an

da
rd

er
ro

r.

pr
in

tP
yE

xc
ep

ti
on

::
IO

a
->

IO
()

T
hi

s
fu

nc
tio

n
is

us
ef

ul
fo

r
de

bu
gg

in
g

a
Py

th
on

ex
ce

pt
io

n:
W

he
n

yo
u

ge
t

a
no

n-
in

fo
rm

at
iv

e

**
*

Ex
ce

pt
io

n:
<C

Py
th

on
ex

ce
pt

io
n>

m
es

sa
ge

,
fe

ed
in

g
th

e
sa

m
e

ac
tio

n
to

th
is

fu
nc

tio
n

w
ill

m
ak

e
Py

th
on

pr
in

t
m

or
e

de
ta

ils
ab

ou
t

th
e

ex
ce

pt
io

n.
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8
Fr
ac
Cl
ea
r

mo
du

le
Fr

ac
Cl

ea
r

(
Fr

ac
Cl

ea
r(

un
fr

ac
s,

un
fr

ac
,

fr
om

Un
Fr

ac
,

Un
Fr

ac
)

)
wh

er
e

Se
e
Fr

ac
Cl

ea
r

ty
pe

cl
as

s.

B
ac

kg
ro

un
d:

T
hi

s
m

od
ul

e
ex

ist
s,

be
ca

us
e

ex
ac

t
ca

lc
ul

at
io

ns
w

ith
Ra

ti
o

k
el

em
en

ts
ca

n
be

te
rr

ib
ly

slo
w

,p
os

sib
ly

in
co

nt
ra

st
to

di
re

ct
co

m
pu

ta
tio

ns
w

ith
el

em
en

ts
of

k.
So

if,
fo

r
a

pa
rt

ic
ul

ar
ta

sk
,d

en
om

in
at

or
s

ca
n

be
“p

ut
ou

ts
id

e
of

th
e

ca
lc

ul
at

io
n”

,u
sin

g
Fr

ac
Cl

ea
r

m
ig

ht
gi

ve
a

pe
rf

or
m

an
ce

in
cr

ea
se

.

cl
as

s
(N

um
k,

Nu
m

(U
nF

ra
c

k)
)

=>
Fr

ac
Cl

ea
r

k
wh

er
e

M
ak

in
g

a
co

m
m

ut
at

iv
e

rin
g
k

an
in

st
an

ce
of

Fr
ac

Cl
ea

r
en

ca
ps

ul
es

th
e

ab
st

ra
ct

co
nc

ep
t

of
“c

le
ar

in
g

fr
ac

tio
ns

”.

N
ot

e,
th

at
th

is
do

es
no

t
re

qu
ire

th
e

pr
es

en
ce

of
ac

tu
al

fr
ac

tio
ns

:
fo

r
ex

am
pl

e,
th

e
in

te
ge

rs
al

so
fit

th
is

co
nc

ep
t(

w
ith

al
l“

de
no

m
in

at
or

s”
eq

ua
lt

o
1)

.
In

th
is

se
ns

e,
th

e
te

rm
in

ol
og

y
“f

ra
ct

io
n”

,“
nu

m
er

at
or

”
an

d
“d

en
om

in
at

or
”

is
us

ed
ab

st
ra

ct
ly

he
re

.

A
ss

oc
ia

te
d

Ty
pe

s

ty
pe

Un
Fr

ac
k

Un
Fr

ac
k

is
th

e
ty

pe
of

nu
m

er
at

or
an

d
de

no
m

in
at

or
of

an
el

em
en

t
of

k.

M
et

ho
ds

fr
om

Un
Fr

ac
::

Un
Fr

ac
k

->
k

In
cl

us
io

n
of

Un
Fr

ac
k

in
to

k,
us

ua
lly

by
pu

tt
in

g
1

as
de

no
m

in
at

or
.

un
fr

ac
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::
k

->
(UnFrac

k,
UnFrac

k)
(num

erator,denom
inator)

Split
an

elem
ent

into
num

erator
and

denom
inator,i.e.

w
e

w
ant

let
(x,y)

=
unfrac

val
in

val
*

y
==

x

to
be

True.

unfracs
::

[k]
->

([UnFrac
k],

UnFrac
k)

G
iven

a
list

ofelem
ents,clear

alldenom
inators

sim
ultaneously,i.e.

w
e

w
ant

let
([xs],y)

=
unfracs

vals
in

map
(*

y)
vals

==
xs

to
be

True.

A
default

im
plem

entation
in

term
s

of
unfrac

is
provided

–
how

ever,a
better

m
ethod

m
ight

be
available.

For
exam

ple,
for

rational
num

bers,
the

least
com

m
on

m
ultiple

ofallpresent
denom

inators
provides

a
suitable

y.

instance
FracClear

Q
instance

FracClear
Integer

instance
FracClear

Int
instance

Integral
i

=>
FracClear

(Ratio
i)

22

9
HFMext

module
HFMext

(
basisElems,

coeffs,
changeBaseRing

)
where

T
hism

odulecontainssom
efunctionality

thatisdirectly
related

to
the

HaskellForMaths(-
excerpt)

package,but
does

not
seem

to
exist

there.

basisElems
::

Vect
k

b
->

[b]

coeffs
::

Vect
k

b
->

[k]

changeBaseRing
::

(Eq
k',

Num
k')

=>
(k

->
k')

->
Vect

k
a

->
Vect

k'
a
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10
Le
ns

mo
du

le
Le

ns
(

de
ep

Se
tD

ef
)

wh
er

e

T
hi

s
m

od
ul

e
pr

ov
id

es
Le

ns
'

in
th

e
se

ns
e

of
th

e
op

ti
cs

pa
ck

ag
e

fa
m

ily
(m

ai
nl

y)
fo

r
th

e
Ca

ch
e

m
ac

hi
ne

ry
.

Le
ns

ar
e

ge
ne

ric
al

ly
de

riv
ed

vi
a

th
e

pa
ck

ag
es

ge
ne

ri
cs

-s
op

an
d
op

ti
cs

-s
op

fo
rt

he
re

co
rd

fie
ld

s
of

th
e

ty
pe

s
Ca

ch
e,

Ge
nP

ro
pC

ac
he

,D
ga

Pr
op

Ca
ch

e,
an

d
Dg

aS
pe

c;
fo

llo
w

in
g

th
e

us
ua

l
co

nv
en

tio
n

th
at

th
e

le
ns

es
’n

am
es

ar
e

th
e

sa
m

e
as

th
e

re
co

rd
fie

ld
na

m
es

w
ith

ou
t

th
e

in
iti

al
un

de
rs

co
re

.

de
ep

Se
tD

ef
::

(A
lt

er
na

ti
ve

f,
Is

k
A_

Se
tt

er
,

Is
l

A_
Se

tt
er

)
=>

a
->

Op
ti

c'
k

is
s

(f
a)

->
Op

ti
c'

l
is

'
a

x
->

x
->

s
->

s

G
iv

en o1
::

Se
tt

er
'

s
(f

a)

an
d

o2
::

Se
tt

er
'

a
x

w
he

re
f

is
an

Al
te

rn
at

iv
e

an
d

w
e

ha
ve

so
m

e
de

fa
ul

t
va

lu
e

fo
r
a,

co
m

bi
ne

o1
an

d
o2

in
th

e
fo

llo
w

in
g

w
ay

:
if
o1

’s
ta

rg
et

is
em

pt
y,

re
pl

ac
e

it
by

pu
re

th
e

gi
ve

n
de

fa
ul

t;
th

en
us

e
o2

to
se

t
th

e
in

ne
r

ta
rg

et
.
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11
Ty
pe
s

mo
du

le
Ty

pe
s

(
Dg

aS
pe

c(
Dg

aS
pe

c,
_d

if
f,

_g
en

s)
,

De
g,

Ge
ne

ra
to

rs
,

Di
ff

er
en

ti
al

,
La

m,
FG

CA
,

Po
ly

Ri
ng

,
Al

gM
ap

,
Li

nH
om

,
Al

gM
or

,
Dg

aM
or

,
Li

nE
nd

o,
Al

gE
nd

o,
Dg

aE
nd

o,
EN

O,
EN

OO
,

EN
O'

,
El

im
,

El
im

',
Ca

ch
e(

Ca
ch

e,
_d

ga
Pr

op
,

_g
en

Pr
op

),
De

gM
ap

,
Ba

si
s,

Ma
t,

Ge
nP

ro
pC

ac
he

(G
en

Pr
op

Ca
ch

e,
_c

ha
in

sB
as

is
),

Dg
aP

ro
pC

ac
he

(D
ga

Pr
op

Ca
ch

e,
_d

if
fe

re
nt

ia
lF

s,
_d

if
fe

re
nt

ia
lU

F,
_m

on
om

ia
ls

Bd
y,

_b
ou

nd
ar

ie
sB

as
is

),
Ca

ch
ed

,
Ke

y(
Dg

aK
ey

,
Ge

nK
ey

),
Pr

op
Ke

y
)

wh
er

e

T
hi

sm
od

ul
e

co
lle

ct
sa

ll
da

ta
ty

pe
sa

nd
ty

pe
sy

no
ny

m
st

ha
ta

re
us

ed
in

th
e

m
ai

n
lib

ra
ry

.

N
ot

e,
th

at
w

e
us

e
th

e
te

rm
in

ol
og

y
th

at
w

e
in

tr
od

uc
e

in
th

e
be

gi
nn

in
g

of
th

e
Al

g
m

od
ul

e.

da
ta

Dg
aS

pe
c

k
a

A
Dg

aS
pe

c
k

a
co

nt
ai

ns
th

e
sp

ec
ifi

ca
tio

n
of

a
dg

a
ov

er
k,

in
te

rm
s

of
al

ge
br

a
ge

n-
er

at
or

s
w

ith
de

gr
ee

s
an

d
a

di
ffe

re
nt

ia
l.

H
er

e,
k

is
th

e
ba

se
rin

g
an

d
a

is
th

e
ty

pe
of

th
e

ge
ne

ra
to

rs
.

(N
ot

e,
th

at
no

t
al

l
in

ha
bi

ta
nt

s
of

a
ne

ed
be

ge
ne

ra
to

rs
.

Fo
r

ex
am

pl
e,

a
m

ig
ht

be
St

ri
ng

bu
t

on
ly

“x
”

an
d
“y

”
be

us
ed

as
ge

ne
ra

to
rs

.)

C
on

st
ru

ct
or

s

=
Dg

aS
pe

c
{
_g

en
s

::
Ge

ne
ra

to
rs

a
,
_d

if
f

::
Di

ff
er

en
ti

al
k

a
}
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instance
Generic

(DgaSpec
k

a)
instance

(Show
k,

Show
a,

ENO
k

a)
=>

Show
(DgaSpec

k
a)

instance
Generic

(DgaSpec
k

a)
instance

ENO
k

a
=>

Eq
(DgaSpec

k
a)

instance
(ENO

k
a,

Ord
k)

=>
Ord

(DgaSpec
k

a)
type

instance
Rep

(DgaSpec
k

a)
=

D1
('MetaData

“DgaSpec”
“Types”

“inflexible-0.3.0-inplace”
'False)

(C1
('MetaCons

“DgaSpec”
'PrefixI

'True)
(S1

('MetaSel
('Just

“_gens”)
'NoSourceUnpackedness

'NoSourceStrictness
'DecidedLazy)

(Rec0
(Generators

a))
:*:

S1
('MetaSel

('Just
“_diff”)

'NoSourceUnpackedness
'NoSourceStrictness

'DecidedLazy)
(Rec0

(Differential
k
a))))

type
instance

Code
(DgaSpec

k
a)

=
GCode

(DgaSpec
k

a)

type
Deg

=
Int

T
ype

synonym
for

degree
in

the
sense

ofgradings.

type
Generators

a
=

Map
a

Deg

A
collection

ofalgebra
generators

is
represented

as
a
Map

w
hose

keys
are

the
gen-

erators
w

ith
value

the
respective

degree.

type
Differential

k
a

=
Lam

k
a

->
Lam

k
a

A
differentialis

represented
by

an
actualH

askellfunction.
N

ote,that
this

m
eans

that
a
DgaSpec

itselfis
usually

not
a

“finite”
object,but

see
finiteRepr.

type
Lam

k
a

=
Vect

k
(FGCA

a)

Lam
k

a
types

the
elem

ents
ofalgebras

specified
by

instances
of

DgaSpec
k

a.

type
FGCA

a
=

Tensor
(SymmetricAlgebra

a)
(ExteriorAlgebra

a)

Follow
ing

the
HaskellForMaths

convention
(e.g.

in
Math.Algebras.TensorAlgebra),

the
type

(synonym
)
FGCA,w

hich
is

short
for

FreeGradedCommutativeAlgebra,types
the

basis
elem

ents
ofthe

free
m

odule
structure

ofsuch
an

algebra.

type
PolyRing

k
p

m
v

=
(MonomialConstructor

m,
Ord

(m
v),

Algebra
k

(m
v),

p
~

Vect
k

(m
v))

T
he

type
constraint

synonym
PolyRing

k
p

m
v

says
that

w
e

w
ant

the
type

p
to

represent
a

polynom
ial

ring
over

k
in

variables
com

ing
from

the
type

v,
us-

ing
the

m
onom

ialconstructor
m

(see
Math.CommutativeAlgebra.Polynomial

of
the

HaskellForMaths
package).

11.1
Type

synonym
s

for
various

types
of

m
aps

O
fcourse,the

follow
ing

type
synonym

s
do

not
provide

any
type

safety,e.g.
an

AlgMor
is

not
guaranteed

to
preserve

the
algebra

structure.
H

ow
ever,it

m
akes

type
signatures

self-contained
and

clearly
states

the
assum

ptions
on

the
input.

type
AlgMap

k
a

b
=

Lam
k

a
->

Lam
k

b

Short
for

a
set

m
ap

ofalgebras.
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type
LinHom

k
a

b
=

AlgMap
k

a
b

Shortfor
LinearHomomorphism,i.e.

a
graded

k-hom
om

orphism
ofunderlying

graded
m

odules
ofalgebras

(possibly
ofnon-zero

degree,i.e.
grade-shifting)

type
AlgMor

k
a

b
=

LinHom
k

a
b

Short
for

AlgebraMorphism,i.e.
a

m
orphism

in
the

category
ofgraded

algebras,i.e.
a

graded
k-hom

om
orphism

ofdegree
0

that
is

com
patible

w
ith

m
ultiplication

and
unit.

type
DgaMor

k
a

b
=

AlgMor
k

a
b

Short
for

a
m

orphism
ofcochain

algebras,i.e.
an

AlgMor
that

com
m

utes
w

ith
the

differentials

type
LinEndo

k
a

=
LinHom

k
a

a

Short
for

a
k-linear

endom
orphism

ofthe
underlying

graded
m

odule
ofan

algebra

type
AlgEndo

k
a

=
AlgMor

k
a

a

Short
for

an
endom

orphism
ofa

graded
algebra

type
DgaEndo

k
a

=
DgaMor

k
a

a

Short
for

an
endom

orphism
ofa

cochain
algebra

11.2
C

onstraint
abbreviations

M
ost

functions
need

som
e
Eq,

Num
and

Ord
instances.

T
he

follow
ing

synonym
s

are
used

for
convenience.

type
ENO

k
a

=
(Eq

k,
Num

k,
Ord

a)

type
ENOO

k
a

b
=

(ENO
k

a,
Ord

b)

type
ENO'

k
a

=
(ENO

k
a,

Ord
k)

11.2.1
R

ow
echelon

reduction

A
dditionally,com

putationsin
Alg.Cohomology

use
row

echelon
reduction

ofm
atrices,for

w
hich

w
e

require
the

base
ring

k
to

satisfy
the

follow
ing

type
constraints.

(“Elim
”

as
in

“G
aussian

elim
ination”.)
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12
Util

module
Util

(
(.:),

(<&>),
allSatisfy,

solveDegreeEquation,
multiAt,

toSupscript,
allM

)
where

(.:)
::

(c
->

d)
->

(a
->

b
->

c)
->

a
->

b
->

d

C
om

position
w

ith
“tw

o
argum

ents”:
(f

.:
g)

x
y

=
f

(g
x

y).

(<&>)
::

Functor
f

=>
f

a
->

(a
->

b)
->

f
b

Flipped
(<$>).

allSatisfy
::

Foldable
t

=>
t

a
->

(a
->

Bool)
->

Bool

Flipped
all

for
infix

use.

solveDegreeEquation

::
Integral

i
=>

[i]
input

coeffi
cients

->
i

target
value

->
[[i]]

solutions

A
naiveim

plem
entation

to
solvethefollow

ing
D

iophantineproblem
:G

iven
positive

integers
d
1 ,...,d

r ,
n,find

allsolutions
x
∈
(Z

≥
0 )

r
to

the
equation

r
∑j=

1

d
j ·x

j
=

n

w
ith

the
additionalproperty

that
x
j ∈

{
0,1}

if
d
j

is
odd.

multiAt
::

Integral
i

=>
[a]

->
[i]

->
[a]

Like
genericIndex

but
for

m
any

indices.
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toSupscript
::

Char
->

Char

Transform
digits

to
supscript

characters.
Produces

an
error

on
non-digit

input.
Exam

ple:

map
toSupscript

"123"
=

"¹²³"

allM
::

Monad
m

=>
(a

->
m

Bool)
->

[a]
->

m
Bool

From
GHC.Utils.Monad:

M
onad

version
of

all,aborts
the

com
putation

at
the

first
False

value
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