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Particle conserving approach to ac-dc driven interacting quantum dots with superconducting leads
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The combined action of a dc bias and a microwave drive on the transport characteristic of a superconductor-
quantum dot-superconductor junction is investigated. To cope with time dependent nonequilibrium effects and
interactions in the quantum dot, we develop a general formalism for the dynamics of the density operator based
on a particle conserving approach to superconductivity. Without invoking a broken U(1) symmetry, we identify
a dynamical phase connected to the coherent transfer of Cooper pairs across the junction. In the weak-coupling
limit, we show that besides quasiparticle transport, proximity induced superconducting correlations manifest in
anomalous pair tunneling involving the transfer of a Cooper pair. The resulting generalized master equation in
presence of the microwave drive showcases the characteristic bichromatic response due to the combination of
the ac Josephson effect and an ac voltage. Analytical expressions for all harmonics in the driving frequency of
both the current and the reduced dot operator are given for arbitrary driving strength. For the net dc current, the
resulting photon assisted processes give rise to rich current-voltage characteristics. In addition to photon assisted
subgap transport, we find regions of total current inversion in the stability diagram. There, the junction acts as a
pump with the net dc current flowing against the applied dc bias. The first harmonic of the current, being closely
related to the nonlinear dynamic susceptibility of the junction, is discussed at finite applied dc bias.
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I. INTRODUCTION

Superconducting circuits based on Josephson junctions are
currently one of the leading platforms for quantum infor-
mation technology [1–3]. Charge transport in such junctions
exhibits a rich phenomenology due to the presence of both
Cooper pairs and gapped Bogoliubov quasiparticles. The
latter are a fundamental tool in quantum technologies employ-
ing hybrid nanostructures, enabling high resolution transport
spectroscopy [4–6]. However, quasiparticle poisoning [7,8]
can hinder certain applications. Signatures of quasiparticles
extend, e.g., by thermal excitation, also into the gap, where
they contribute distinctive features [9–13], in addition to the
ones produced by Andreev processes [14,15].

Adding an ac drive to nanostructures results in a plethora
of additional effects and rich transport characteristics [16,17].
The presence of a drive further opens up the possibility to
manipulate the system properties using Floquet engineering
[18,19]. For a nanostructure connected to superconducting
leads, quasiparticle transport is modified by the possibility of
photon assisted tunneling processes [9,20–22]. The resulting
transport signatures have been measured, e.g., in scanning tun-
neling microscope experiments with both a superconducting
tip and a superconducting substrate [23–25], where it is shown
that they allow discerning the nature of the charge carriers
employing the separation between the ac-induced sidebands.
For a Josephson junction, the combination of a time-
dependent bias voltage and a supercurrent further results in the
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appearance of Shapiro steps [26], a bichromatic effect arising
from the interplay between the ac bias frequency and the
intrinsic Josephson frequency of the junction. The micro-
scopic origin of these steps has been investigated in several
systems, most notably in quantum point contacts, where mul-
tiple Andreev reflections lead to subharmonic Shapiro steps
[27,28]. Recently, microwave driven Josephson junctions have
attracted interest as a way of detecting 4π -periodic supercur-
rents, one of the key signatures of topological superconductors
[29–32].

In this work, we investigate the transport properties of a
junction formed by an interacting quantum dot (QD) con-
nected to two superconducting leads (an S-QD-S junction)
in the presence of an ac drive. Quantum dots offer an ideal
realization of the weak link required for a Josephson junction,
providing an excellent platform to probe the relationship be-
tween superconducting correlations and interactions [33–35].
One major characteristic of weakly coupled, small sized quan-
tum dots is the energy cost to add extra charge to them. These
charging effects due to the Coulomb repulsion are antagonistic
to Cooper pairing. Thus transfer of Cooper pairs is disfavored
compared to quasiparticle transport for strong interaction.
Conversely, coherent processes involving the transport of
Cooper pairs are dominant below the gap, a situation that
has been studied profusely in the infinite gap limit [36–38],
and other approximation schemes [35,39]. Several implemen-
tations of QD-based Josephson junctions have been devised,
including semiconductor nanowires [40] and carbon-based
weak links such as nanotubes [5,6,12,41–45], fullerenes [46],
and gated monolayers of graphene [47]. QD-based Josephson
junctions have moreover been proposed as a platform for
quantum computing, employing Andreev spin qubits [48–51].
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From a theoretical point of view, nonlinear transport prop-
erties of interacting S-QD-S weak links subject to both dc
and ac biases have been poorly investigated so far. This is
partly due to the many-body character of the problem, to-
gether with the necessity to keep track of the number of
Cooper pairs and quasiparticles transferred from one lead
to another. Density operator-based methods are commonly
used to investigate strongly interacting problems since they
intrinsically enable an exact description of the many body
nature of the interaction [52–60]. In our work, we extend pre-
vious density operator-based treatments of transport through
interacting S-QD-S junctions [10,11,36–38] to include the
effects of a time-dependent ac bias, allowing for generic inter-
action strength and magnitudes of the gap. Superconducting
correlations in the leads are treated within a particle con-
serving approach [61], which allows a systematic treatment
of nonequilibrium phenomena in superconductors, including
Andreev processes in SN interfaces [62] and branch imbal-
ance effects [63,64]. In the relevant case of transport under a
bias voltage, current conservation is ensured without the need
of choosing particular symmetric configurations of the junc-
tion or self consistent procedures [35]. Moreover, it enables
a rigorous discussion of the superconducting proximity effect
for finite bias where distinguishing the individual condensates
is fundamental. Within these formalism, the proximity effect
results in the formation of coherences between states with
differing numbers of Cooper pairs. The dynamics of these
coherences and their role in transport have attracted significant
interest lately [37,65–67].

With this aim, we employ the Nakajima-Zwanzig projector
operator formalism [68,69] to obtain an exact generalized
master equation (GME) for the reduced density operator of
the interacting quantum dot as well as an integral equation for
the current. Moreover, we derive formally exact expressions
for both the current and the reduced density operator in the
steady state which display the expected periodicity in both the
intrinsic Josephson frequency and the frequency of the ac bias.
With focus on the weak-tunneling limit, we retain only the
lowest order terms in the coupling to the electrodes. We in-
vestigate the strength of the proximity induced coherences on
the dot. For strong interaction, we describe their contribution
to transport as a renormalization of the tunneling rates. There,
they contribute an anomalous pair tunneling rate already at
lowest order in the tunnel coupling. Our theory accounts for
driven quasiparticle transport and recovers from a microscopic
derivation similar results for the net dc current in presence
of the drive as found in phenomenological approaches [9,20].
The full treatment of the photon assisted tunneling processes,
as considered in this work, allow us to identify regions of the
stability diagram where the strongly peaked density of states
of the superconductors results, together with the ac bias, in
dominant backward tunneling rates across the junction. For
these regions, our theory predicts total current inversion, in
which the current flows against the applied dc voltage bias.

Beyond the average current, we discuss the first harmonic
of the current. This observable, describing the dynamic re-
sponse of the current through the junction to the applied drive,
is related to the conductivity in the limit of weak ac-drive
amplitudes and dc bias. We investigate it as a function of
applied gate and dc-bias voltages. In addition to replicas of

FIG. 1. Schematic setup of a gated quantum dot (QD) coupled
to two superconducting leads (labeled L and R). A bias voltage
with dc and ac components is applied between the left and right
superconductor. These are characterized by superconducting gaps
�L and �R, respectively. A gate voltage is applied capacitively to
the quantum dot via an electric gate.

the Coulomb resonance, we find intricate behavior in the
gap region around the charge degeneracy points. There, for
high enough driving frequencies, photon assisted sequential
quasiparticle tunneling yields the dominant contribution to the
ac response down to zero bias.

The paper is structured as follows. In Sec. II, we introduce
the model of the junction in a formalism preserving parti-
cle conservation in the superconducting leads. We turn to a
discussion of the transport theory for general ac-dc driven
junctions in Sec. III and give equations for the steady state
properties of the junction in Sec. IV. After truncating the
resulting equations to second order in the tunnel coupling,
we consider the case of a quantum dot junction in Sec. V
and study the transport signatures for both the dc and ac-dc
driven situations in Secs. VI and VII, respectively. Finally,
in Sec. VIII, conclusions are drawn and further avenues of
research are discussed.

II. MODEL

We consider an S-QD-S junction, as exemplified by the
setup of Fig. 1, consisting of a gated quantum dot which
is weakly coupled to two superconducting leads labeled by
l = L, R. The total Hamiltonian is of the form

Ĥtot (t ) = ĤQD +
∑

l

Ĥl (t ) + ĤT, (1)

where ĤQD and Ĥl are the Hamiltonians of, respectively, the
dot and lead l . The tunneling Hamiltonian ĤT accounts for
the tunnel coupling between the leads and the dot. The latter
is modeled by the single impurity Anderson model (SIAM)
[70], with

ĤQD =
∑

σ

(εσ + aGeVG)d̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓, (2)

where σ ∈ {↑,↓}, εσ denotes the spin dependent single par-
ticle energy, eVG is the energy shift due to the gate voltage
and U is a Hubbard like interaction [71]. The lever arm aG

accounts for the imperfect coupling of the gate electrode to
the dot. In the following we will consider, without loss of
generality, aG = 1. The Fock space of the dot is spanned by
the set {|χ〉 = |0〉, |↑〉, |↓〉, |2〉}, comprising the empty, singly
occupied with spin σ , and doubly occupied states, respec-
tively.
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For the leads, we start by considering a Hamiltonian of the
form

Ĥl (t ) =
∑
σ,k

(ξl,k + μl (t ))ĉ†
l,k,σ

ĉl,k,σ

+
∑

σ,σ ′,q
k,k′

Vl (q)ĉ†
l,k+q,σ

ĉ†
l,k′−q,σ ′ ĉl,k′,σ ′ ĉl,k,σ . (3)

Here, ĉl,k,σ is the annihilation operator for an electron from
lead l with momentum k and spin σ , with an associated energy
ξl,k with respect to the chemical potential μl (t ) and electron-
electron interaction Vl (q). The chemical potentials read

μl (t ) = al [eVdc − eVac sin(ωact )], (4)

where aL − aR = 1 and 0 � aL � 1. These factors account
for an asymmetric bias drop across the junction.

In the dc driven case, the transfer of a Cooper pair from
the left to the right lead has an energy cost of 2(μL − μR) =
2eVdc. In presence of an ac-drive, the time-dependency of
the bias is reflected in any transfer of Cooper pairs between
the leads. As such, keeping track of the number of Cooper
pairs is fundamental for a full description of nonequilibrium
transport. Therefore, from here onward, we will consider a
particle-conserving approach to superconductivity, as intro-
duced by Josephson and independently by Bardeen [61,72].
From a fundamental point of view, it is clear that the elec-
trodes’ Hamiltonian (3) conserves the particle number and
hence is invariant under a U(1)-gauge transformation. One of
the benefits of the theory to be discusses below is that such a
fundamental symmetry is not violated.

A. Particle conserving formulation

An attractive interaction in Eq. (3) results in the formation
of a Cooper pair condensate in which electrons are bound in
time-reversed pairs [73]. In the particle-conserving approach,
the ground state is completely described by the number of
Cooper pairs in the condensate Ml , so that we can denote
it simply by |Ml〉 [74]. Cooper pairs can be broken (e.g.,
due to thermal effects), and the minimal energy necessary
to do so is twice the superconducting gap. As a result, the
excitation spectrum of the superconductors is characteristi-
cally gapped. In order to describe these excited states, we
rely on a mean-field description of the interaction. We in-
troduce the superconducting gap for lead l as the anomalous
average �l,k =∑k′ Vl (k − k′)〈Ŝ†

l ĉl,k′,↑ĉl,k̄
′
,↓〉. Here we have

employed the Cooper pair creation and annihilation operators

Ŝ†
l |Ml〉 = |Ml + 1〉, Ŝl |Ml〉 = |Ml − 1〉, (5)

which fix particle conservation in the above average. They
satisfy Ŝ†

l Ŝl = 1 − P̂l,0 [10], where P̂l,0 projects to the state
without Cooper pairs in lead l . In the following, we shall
consider macroscopic leads, such that the action of P̂l,0 can
be neglected. The normal averages in the mean-field approx-
imation result in Hartree-Fock terms, which are diagonal in
both spin and momentum and can thus be absorbed into the
energies ξl,k [74]. We focus in the following on the case of
isotropic dispersion such that ξl,k = ξl,k . Thus we are left with

the mean-field Hamiltonian:

ĤMF
l (t ) =

∑
k,σ

(ξl,k + μl (t ))ĉ†
l,k,σ

ĉl,k,σ

−
∑

k

(�l,kŜl ĉ
†
l,k,↑ĉ†

l,k̄,↓ + H.c.). (6)

For a constant interaction, which we assume in the following,
�l,k = �l and the gap is independent of k, yielding s-type
superconductivity.

We next investigate the properties of this Hamiltonian
under the U(1)-gauge transformation ĉp

l,k,σ
→ ĉp

l,k,σ
eipϕ . The

definition of Ŝl in Eq. (5) is implicit. Nonetheless, it maps a
state with a given number of Cooper pairs onto a state with one
Cooper pair less. Thus, even if its exact representation in terms
of the ĉl,k,σ operators remains unknown, it will be a linear
combination of terms each containing two more annihilation
than creation operators. From this, one concludes the transfor-
mation of Ŝl to be Ŝp

l → Ŝp
l ei2pϕ . Inserting this transformation

behavior endows both the gap and the mean-field Hamiltonian
with the full U(1) symmetry of the original Hamiltonian.

The Hamiltonian in Eq. (6) can be diagonalized employing
the (particle-conserving) Bogoliubov-Valatin transformations
[61,72]

ĉ†
l,k,σ

= ul,k γ̂
†
l,k,σ

+ sgn(σ )v∗
l,kŜ†

l γ̂l,k̄,σ̄ + O(P̂l,0), (7)

where

ul,k = √(1/2)(1 + ξl,k/El,k ), (8)

vl,k = ei arg(�l )
√

(1/2)(1 − ξl,k/El,k ). (9)

Here, we have introduced the quasiparticle excitation en-
ergy El,k =

√
ξ 2

l,k + |�l |2. Equation (7) defines the Bogoli-
ubov quasiparticle operators γ̂l,k,σ , γ̂

†
l,k,σ

, which describe the
fermionic excitations of the system. These excitations are
fermionic for macroscopic leads, since

{γ̂l,k,σ , γ̂
†
l ′,k′,σ ′ } = δl,l ′ [δk,k′δσ,σ ′ + O(P̂l,0)]. (10)

The ground state is the vacuum for the quasiparticles, since
γ̂l,k,σ |Ml〉 = 0, ∀l, k, σ . In turn, for a given particle number
Nl , the excitation spectrum can be obtained by applying the
Cooper pair and quasiparticle operators [which commute, up
to factors O(P̂l,0)] to the ground state. For arbitrary Nl , the
Fock space is spanned by states of the form |Ml , {νl,k,σ }〉,
where νl,k,σ is the occupation of a given quasiparticle mode.
Employing these properties, it can further be shown that
[N̂l , Ŝ†

l ] = 2Ŝ†
l , with N̂l the fermion number operator [61].

B. Particle conserving mean-field Hamiltonian
of an S-QD-S junction

Once the Hamiltonian (3) is diagonalized, we may split it
into quasiparticle and Cooper pair parts Ĥl = ĤQP,l + ĤCP,l .
Here

ĤQP,l (t ) =
∑
k,σ

(El,k + μl (t ))γ̂ †
l,k,σ

γ̂l,k,σ , (11)
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describes the quasiparticle excitations, and

ĤCP,l (t ) = μl (t )
∑
k,σ

(ĉ†
l,k,σ

ĉl,k,σ − γ̂
†
l,k,σ

γ̂l,k,σ ), (12)

accounts for the Cooper pairs in lead l .
The coupling between the dot and the leads is mediated by

the tunneling Hamiltonian

ĤT =
∑
l,k,σ

(tl ĉ
†
l,k,σ

d̂σ + H.c.)

=
∑
l,k,σ

[tl (ul,k γ̂
†
l,k,σ

+ sgn(σ )v∗
l,kŜ†

l γ̂l,k̄,σ̄ )d̂σ + H.c.].

(13)

Introducing a Fock index p = ±, such that f̂ + := f̂ † and
f̂ − := f̂ (as well as h+ := h∗, h− := h for complex numbers),
the tunneling Hamiltonian can be written as

ĤT =
∑

l,k,σ,p

pt p̄
l ĉp

l,k,σ
d̂ p̄

σ

=
∑

l,k,σ,p

pt p̄
l

((
up̄

l,k γ̂
p

l,k,σ
+ sgn(σ )vp

l,kŜp
l γ̂

p̄
l,k̄,σ̄

)
d̂ p̄

σ . (14)

The first and second terms of Eq. (14) provide two trans-
port channels in the quasiparticle representation. The second
term, in particular, involves simultaneously quasiparticles and
Cooper pairs in the process.

III. TRANSPORT THEORY FOR AN AC DRIVEN
SUPERCONDUCTING JUNCTION

In the following, a transport theory is presented to study the
superconducting junction introduced in the previous section.
We include both dc and ac biases as well as anomalous and
normal contributions arising at finite |�l |. The formalism
extends previous works [10–12,37,38] while recovering the
results therein in the appropriate parameter regimes.

A. Current

We will be mainly concerned with studying the current
through the junction. As a convention, we take the current to
be the flow of charge from the quantum dot into the left lead
[75]. The current operator is then given by

ÎL = −e ˙̂NL = −ie

h̄
[Ĥ (t ), N̂L] = ie

h̄

∑
k,σ,p

t p̄
L ĉp

L,k,σ
d̂ p̄

σ , (15)

where e = |e| the elementary charge. The expectation value of
the current can be obtained as

IL(t ) = Tr{ÎLρ̂tot (t )}, (16)

where ρ̂tot (t ) is the density operator for the junction. It satisfies
the Liouville-von-Neumann equation

d

dt
ρ̂tot (t ) = 1

ih̄
[Ĥtot (t ), ρ̂tot (t )] = Ltot (t )ρ̂tot (t ), (17)

where ih̄Ltot (t )Ô = [Ĥ (t ), Ô] defines the Liouvillian super-
operator. Similarly, we introduce LQD,LCP(t ),LQP(t ) and LT

by restricting Ĥtot to the respective part of the Hamiltonian in
Eq. (17).

Josephson junctions are characterized by the dc and ac
Josephson effects [61,76], the latter of which entails the dy-
namics of the condensates caused by a finite dc bias. In order
to treat the periodicity coming from the ac Josephson effect
and the one coming from the ac voltage bias on the same for-
mal footing, we perform the following unitary transformation
on the density operator

ρ̂ ′
tot (t ) = U (t )ρ̂tot (t ) = exp

(
−
∫ t

t0

dt ′LCP(t ′)
)

ρ̂tot (t ). (18)

We denote the transformed operators with a prime from here
onward. The Liouville-von Neumann equation for the trans-
formed density operator reads

d

dt
ρ̂ ′

tot (t ) = [LQD + LQP(t ) + L′
T(t )]ρ̂ ′

tot (t ). (19)

The transformation removes the Cooper pair Liouvillian at
the cost of turning the tunneling Liouvillian time-dependent.
Meanwhile, LQD and LQP(t ) are unchanged, since they com-
mute with the Cooper pair Liouvillian. On the other hand,
employing that LCP(t )Ŝp

l = 2pμl (t )Ŝp
l , the tunneling Liouvil-

lian becomes

L′
T(t ) =

∑
l,k,σ,p,α

pt p̄
l

ih̄

[
up̄

l,k γ̂
p,α

l,k,σ

+ sgn(σ )vp
l,k γ̂

p̄,α
l,k̄,σ̄

e
2ip
h̄

∫ t
t0

dt ′μl (t ′ )Ŝp,α
l

]
d̂ p̄,α

σ , (20)

where we introduced the superoperator index α, defined by

X̂ αŶ =
{

X̂Ŷ , if α = +,

Ŷ X̂ , if α = −.
(21)

These enable us to write the action of the Liouvillian in a
compact fashion

ih̄Lq(t )Ô =
∑

α

αĤα
q (t )Ô, (22)

for q = tot, QD, QP, CP, and T.
Notice that Eq. (20) contains a time integration over the

lead chemical potentials. At a constant voltage bias Vdc,
the ac Josephson effect predicts a steady state current through
the junction which will be, in general, periodic in time with the
Josephson frequency ωJ = 2eVdc/h̄. Due to the two individual
bias drops in our setup, it is here more convenient to define
the vector

ωdc = 2eVdc

h̄
(aL, aR ). (23)

The tunneling Liouvillian thus becomes a sum of functions
of the time t being periodic in the linear combinations of ωdc

and ωac. This property can be made explicit by employing the
Jacobi-Anger expansion [77] to find

e
i2p
h̄

∫ t
t0

dt ′μl (t ′ ) = eipul ·ωdc(t−t0 )
∑

n

inJn(alεac)einωact , (24)

where εac = 2eVac/(h̄ωac) is a parameter quantifying the
strength of the drive, Jn(z) is the nth order Bessel function
of the first kind, ul = (δl,L, δl,R ), and we chose t0 = π/2ωac

for convenience [78].
Equation (19) is the starting point to derive a general-

ized master equation (GME) for the reduced density operator
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which we will employ to describe the transport properties of
the system.

B. Generalized master equation

The density operator describes the full coherent dynamics
of the dot and leads, with the latter including the infinite
degrees of freedom of the quasiparticles and the Cooper pairs.
In turn, the current formula (16) involves the total trace of the
product of the current and density operator. We conveniently
write it as

Tr{· · · } = Trsys{TrQP{· · · }}, (25)

where TrQP{· · · } is the trace over the quasiparticle degrees of
freedom, while Trsys{· · · } is the trace over the system (i.e.,
quantum dot and Cooper pairs). This opens up the possibility
to drastically reduce the number of degrees of freedom that
have to be considered by introducing the reduced density
operator

ρ̂ ′(t ) = TrQP{ρ̂ ′
tot (t )}. (26)

Equation (19) leads to the generalized master equation for the
reduced density operator given by

d

dt
ρ̂ ′(t ) = LQDρ̂ ′(t ) +

∫ t

0
dsK′

T(t, s)ρ̂ ′(s), (27)

where K′
T(t, s) denotes the tunneling kernel superoperator and

we assumed a factorized initial state of system and quasiparti-
cles. The assumption is natural, and amounts to starting from
a quenched system where the coupling between dot and lead
is turned on at time t = 0. For such initial conditions, the
correlations between dot and lead degrees of freedom vanish
at initial times. The tunneling kernel superoperator includes
the effect of the quasiparticles and introduces irreversibility in
the time evolution. The current can be obtained from ρ̂ ′ by

IL(t ) =
∫ t

0
dsTrsys{K′

I,L(t, s)ρ̂ ′(s)}, (28)

where we have introduced the current kernel K′
I,L. Both

Eqs. (27) and (28) and the general form of K′
j (t, s), where

j = T, (I, L) stands respectively for the tunneling and current
kernels, are derived in Appendix A.

C. Weak-coupling limit

The kernel superoperators can be expanded as a power
series in the tunneling amplitudes. In the weak tunneling limit,
only the lowest order contribution in the tunneling coupling is
accounted for. Due to particle conservation in the leads, this
corresponds to the sequential tunneling limit described by the
terms ∝ L′2

T (t ) and ∝ Î ′
LL′

T(t ), for T, (I, L), respectively. The
tunneling kernel to sequential tunneling order is then given by

K′(2)
T (t, s)ρ̂ ′(s) = TrQP{L′

T(t )G ′
0(t, s)L′

T(s)ρ̂ ′(s) ⊗ ρ̂QP},
(29)

where

G ′
0(t, s) = exp

(∫ t

s
ds′LQD + LQP(s′)

)
, (30)

is the free propagator and ρ̂QP is the grand canonical den-
sity operator of the quasiparticles at thermal equilibrium (see
Appendix A). The time-dependence of the chemical poten-
tial translates here into a time dependence of LQP(t ) [cf.
Eq. (11)]. This, together with the time-dependence of L′

T(t )
[i.e., Eq. (20)], breaks time translation invariance and results
in a kernel which is a function of two time variables. While the
presence of a dissipative bath ensures the presence of a steady
state [16], allowing a time-dependent steady state. Similarly,
the current kernel in the sequential tunneling approximation is
given by

K′(2)
I,L (t, s)ρ̂ ′(s) = TrQP{Î ′

L(t )G ′
0(t, s)L′

T(s)ρ̂ ′(s) ⊗ ρ̂QP}.
(31)

Note that the current operator is also transformed by Eq. (18).
The similarity between the current and tunneling kernels will
allow us to treat them in the same manner.

D. Dynamics in the Cooper pair number representation

After tracing out the quasiparticle degrees of freedom, the
density matrix still includes the Cooper pair numbers, which
makes the density operator infinitely-sized. In particular, the
density matrix can be written as

ρ̂ ′(t ) =
∑

M,�M
xsχ,χ ′

�′
χ,χ ′ (�M, M; t )|χ, M + �M〉〈χ ′, M|, (32)

where the vector M = (ML, MR) labels the Cooper pair num-
bers of the two condensates, while �M = (�ML,�MR )
measures the difference of the Cooper pair content of the
condensates in the bra and ket parts of the density operator.
This is the Cooper pair number representation.

The superselection rules discussed in Appendix C force all
components �′

χ,χ ′ (�M, M; t ) to vanish, except where the ket
and bra parts have the same total number of particles. Note
that for an off diagonal state in the Cooper pair Liouville
space, this implies the possibility of having coherences of
the types |0〉〈2|, |2〉〈0| in the Liouville space of the dot. The
dynamics of such coherences has been studied in earlier works
[36,65,66] for zero bias. It highlights the necessity to account
for the respective state of the condensate contributing to a
coherence. For example, the coherence |0〉〈2| on the dot is
associated to a state of �M ∈ {Z(1,−1) + ul}l=L,R in the
condensate.

In order to isolate the action of the kernels on the Liouville
space of the Cooper pairs, we write them as

K′
j (t, s)Ô =

∑
N+,N−

κ ′
j (N

+, N−; t, s)Ŝ
N+

ÔŜ
N−

, (33)

where we use the shorthand notation Ŝ
N = ŜNL

L ŜNR
R , ŜN

l =
(Ŝsign(N )

l )|N |.
These expressions can be simplified considerably, since

the current and most physical observables of interest are in-
dependent of the total Cooper pair number and only take
into account differences of Cooper pairs. In particular, in-
serting Eqs. (32) and (33) into Eq. (28) yields the following
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expression for the current

IL(t ) =
∫ t

0
ds
∑

N+N−
Trsys{κ ′

j (N
+, N−; t, s)Ŝ

N++N−
ρ̂ ′(s)},

(34)

where we used the cyclic property of the trace to move the
Cooper pair operators acting on the right to the left. Due
to this, the total Cooper pair number M is not changed [cf.
Eq. (32)]. Now, applying the trace over the Cooper pair sector
yields the condition

N+ + N− = −�M. (35)

which we employ to fix, e.g., N−. This motivates the follow-
ing definitions:

κ ′
j (−�M; t, s) =

∑
N+

κ ′
j (N

+,−�M − N+; t, s), (36)

�̂′(�M; t ) =
∑

M,χ,χ ′
�′

χ,χ ′ (�M, M; t )|χ〉〈χ ′|. (37)

The �̂′(�M; t ) defined here are operators acting on the dot
sector only. They are a generalization of the partial trace over
the Cooper pair degrees of freedom. In particular, �̂′(0; t ) is
the partial trace proper and thus the reduced density operator
of the dot with respect to the full leads (i.e., Cooper pairs and
quasiparticles). The rest of the �̂′(�M; t ) are sums over the
subdiagonals or supradiagonals of the density matrix. Note
that the dot operators �̂′(�M; t ) are in general not reduced
density operators. In fact, their traces are arbitrary except for
the case of �M = 0 where it is one.

With these definitions, the current can be written as

IL(t ) =
∫ t

0
ds
∑
�M

TrQD{κ ′
I,L(−�M; t, s)�̂′(�M; s)}. (38)

Equation (38) is extremely convenient. It reduces the transport
problem to the evaluation of operators which act only in the
dot space, with the entirety of the Liouville space of the
Cooper pairs reduced to an additional parameter �M. The
presence of �M �= 0 entries in Eq. (38) indicates the key
role that coherent effects between the Cooper pair condensates
have in transport.

The GME for �̂(�M; t ) is obtained by taking the matrix
element 〈�M + M|Ô|M〉 on either side of Eq. (27) and sum-
ming over M in much the same way as for the current. We
find

d

dt
�̂′(�M; t ) =LQD�̂′(�M; t )

+
∑
�M′

∫ t

0
dsκ ′

T(�M − �M ′; t, s)�̂′(�M ′; s),

(39)

where the time evolution of �̂(�M; t ) for different �M,�M ′

is coupled via the action of the kernel κ ′
T(�M − �M ′; t, s).

E. Dynamics in the phase representation

Equation (39) is of Toeplitz form, which suggests turning
to a representation in the conjugate variable of �M. We

denote the adjoint variable to the Cooper pair imbalance �M
by the phase vector ϕ = (ϕL, ϕR). The transforms of kernels
and the reduced dot operators in the phase representation are
given by

κ◦
j (ϕ; t, s) =

∑
�M

ei�M·ϕκ ′
j (�M; t, s), (40)

�̂◦(ϕ; t ) =
∑
�M

ei�M·ϕ�̂′(�M; t ). (41)

We use the symbol ◦ to denote quantities in the phase repre-
sentation. Multiplying the GME in Eq. (39) with exp(i�M ·
ϕ) and summing over �M yields

d

dt
�̂◦(ϕ; t ) = LQD�̂◦(ϕ; t ) +

∫ t

0
dsκ◦

T(ϕ; t, s)�̂◦(ϕ; s). (42)

With this, we have managed to turn an infinite set of coupled
equations into a continuous family of uncoupled GMEs. This
simplified form is possible because of the unitary transforma-
tion performed in Sec. III A. Due to it, the kernel does only act
on the Cooper pair sector via Ŝl operators, which are diagonal
in the phase representation.

In order to evaluate the current, we also bring Eq. (38) into
the phase representation

IL(t ) =
∫ t

0
ds
∫
�

dϕTrQD{κ◦
I,L(ϕ; t, s)�̂◦(ϕ; s)}, (43)

where we write
∫
� dϕ = 1

4π2

∫ 2π

0 dϕL
∫ 2π

0 dϕR as a shorthand.
Hence, the trace over the Cooper pair imbalance becomes an
integral over the phase variables.

The phase introduced in this section has multiple interest-
ing properties, which we now briefly comment on. From an
interpretative point of view, the origin of the phase vector as
the conjugate of a quantity measuring the coherences in the
leads gives a direct interpretation to its role in transport. While
the existence of a physical phase governing the dynamics of
Josephson junctions has been well established experimentally
since the 1960s [26], the interpretation of such a phase as a
difference of two well defined phases of the wave functions of
the condensates composing the junction is inherently incom-
patible with the U(1) symmetry of the gap [79,80]. The above
derivation shows that one can naturally define a phase entering
the expression for the current without invoking the concept of
a spontaneous symmetry breaking at the level of either the gap
or the mean-field Hamiltonian we started from.

IV. THE STEADY STATE

In the last two sections, we significantly simplified the
problem by removing the effect of the Liouville space of
the Cooper pairs up to a parametric dependence on a phase
ϕ. In this section, we focus on the steady state where the
integrodifferential equations for the dot operators acquire a
simpler algebraic form.

The kernels in Eqs. (43) and (42) depend on two time vari-
ables, which account for both the effect of the time-periodicity
of the bias and the memory time of the quasiparticle baths. It
is convenient to write the kernels in a form which showcases
these two time-dependencies distinctively. By employing the
fact that in Eq. (20) each Ŝ operator is associated to an
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exponential of the form given in Eq. (24), we can elucidate
this representation. After performing the integral in Eq. (30),
we expand the constituents of the kernels in their periodicities
as

L′
T(t ) =

∑
n,m

�T;n,mei(nωac+m·ωdc )t Ŝm, (44)

Î ′
L(t ) =

∑
n,m

ĵL;n,mei(nωac+m·ωdc )t Ŝm, (45)

G ′
0(t, s) =

∑
n

g′
0,n(t − s)einωacs, (46)

where in Eqs. (44) and (45) m is restricted to 0,±ul . The ker-
nels to second order only contain contributions of the kind of
Eqs. (44) to (46) and thus one can bring their phase transform
into the form

κ◦
j (ϕ; t, s) =

∑
n,m

k j,n,m(t − s)ei[m·(ωdcs+ϕ)+nωacs], (47)

which manifestly separates into time-translational invariant
operators kj;n,m(t − s) and periodic factors [81]. The time-
translational invariant parts decay exponentially at long times,
ensuring the existence of a steady state for the reduced dot
operator.

In Eq. (47), m has turned into a Fourier index in both the
phase and the Josephson frequency, showing explicitly the
ac Josephson effect. The bichromatic nature of the junctions
dynamics is reflected in the presence of both ωac and ωdc. Due
to the dependence of the kernel components kT;n,m(t − s) on a
single time variable with finite memory time, Eq. (42) can be
turned into an algebraic equation through a Laplace transform
f̃ (λ) = ∫∞

0 dte−λt f (t ). We denote with a tilde the terms in
Laplace space from here onward. Applying this transforma-
tion to Eq. (42) yields

0 = (LQD − λ) ˆ̃ρ◦(ϕ; λ) + ρ̂◦(ϕ; 0)

+
∑
n,m

eim·ϕk̃T;n,m(λ) ˆ̃ρ◦(ϕ; λ − inωac − im · ωdc). (48)

Note that the second term in the right side is the reduced dot
operator at initial time. Hence, it is a real time quantity (i.e.,
not a Laplace space quantity).

Knowledge of ˆ̃ρ◦(ϕ; λ) allows one to find the steady state
solution through the application of the final value theorem
generalized to periodic functions [16]. In particular, the re-
duced dot operator has the following asymptotic form:

ρ̂◦∞(ϕ; t ) =
∑
n,m

�̂◦
n,m(ϕ)ei(nωac+m·ωdc )t , (49)

where we have defined the operatorial Fourier coefficients of
the quasiperiodic reduced dot operator

�̂◦
n,m(ϕ) = lim

λ→inωac+im·ωdc

(λ − inωac − im · ωdc) ˆ̃ρ◦(ϕ; λ).

(50)

In general, such a decomposition for bichromatic driving is
complicated by the corresponding poles in Laplace space ly-
ing dense for incommensurate frequencies. This problem is
avoided here as m is bounded by the large, but finite, number
of Cooper pairs in the leads. Furthermore, the fact that large
m are associated to highly correlated states without an energy

gap protecting them ensures that any additional decoher-
ence mechanism would limit their contribution to the steady
state.

In order to obtain the (n, m) Fourier component of the
steady state reduced dot operator as in Eq. (49), the residua
of ˆ̃ρ◦(ϕ; λ) at its poles have to be extracted by taking a limit
in Eq. (48). That is, one multiplies both sides of Eq. (48)
by λ − inωac − im · ωdc and then takes the limit λ → inωac +
im · ωdc. The GME then reduces to an algebraic equation for
the Fourier components of the steady state reduced dot opera-
tor as

0 = (LQD − inωac − im · ωdc)�̂◦
n,m(ϕ) +

∑
n′,m′

eim′ ·ϕ

× k̃T;n′,m′ (inωac + im · ωdc)�̂◦
n−n′,m−m′ (ϕ). (51)

Solving the phase dependent part of Eq. (51) results in

�̂◦
n,m(ϕ) = eim·ϕF (ϕ)�̂n,m. (52)

Here, the F (ϕ) factor cannot be determined directly from
Eq. (51) as its exact form depends on the initial preparation.
By assuming the dot and the superconducting leads to be
uncoupled at initial time t = 0 and with no additional phase
dependent contributions to the Hamiltonian, this envelope
function is fixed to F (ϕ) = 1. The origin of this envelope and
its form is discussed in more detail in Appendix B.

Once the phase dependent part of the reduced dot operator
is determined, we are left with solving for the �̂n,m. Substitut-
ing Eq. (52) in Eq. (51) results in

0 = (LQD − inωac − im · ωdc)�̂n,m

+
∑
n′,m′

k̃T;n′,m′ (inωac + im · ωdc)�̂n−n′,m−m′ . (53)

This expression describes exactly the steady state limit of the
GME, with the intricate integro-differential form of Eq. (27),
reduced to a set of coupled algebraic equations for the Fourier
components �̂n,m.

The same arguments leading to Eq. (53) can be employed
to simplify the integral form of the current given in Eq. (28).
In general, the current in the steady state IL,∞ will also be
quasiperiodic, with the form

IL,∞(t ) =
∑
n,m

jL,n,mei(nωac+m·ωdc )t . (54)

The Fourier components of the current are defined, following
the same arguments outlined below Eq. (50), as

jL;n,m = lim
λ→inωac+im·ωdc

(λ − inωac − im · ωdc)ĨL(λ). (55)

They can then be related, employing the current kernel, to the
Fourier components of the steady state reduced dot operator
via

jL,n,m =
∑
n′,m′

∫
�

dϕF (ϕ)eim·ϕ

× TrQD{k̃I,L,n′,m′ (inωac + im · ωdc)�̂n−n′,m−m′ }.
(56)
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The current will be, in general, quasiperiodic in both the
Josephson frequency ωJ = (1,−1) · ωdc and ωac. This is a
result of the superselection rules discussed in Appendix C.
Under certain circumstances the motion will be strictly pe-
riodic (i.e., not quasiperiodic). This will be clearly the case
whenever ωJ = ωac. In the weak-coupling limit that we will be
considering next, the current is also periodic in ωac, although
for a different reason. Namely, that the Fourier components
in ωdc other than m = 0 will start appearing in the next
perturbative order (barring resonances). Regardless, we will
focus on the dc component of the current, corresponding to
jL,0,0 and the nonlinear susceptibility jL,1,0. They are given
by

jL,n,0 = TrQD

{∑
n′,m′

k̃I,L;n′,m′ (inωac)�̂n−n′,−m′

}
. (57)

In the following, we will give these quantities in the weak-
coupling limit.

V. SEQUENTIAL TUNNELING KERNELS
FOR A QD JOSEPHSON JUNCTION

After discussing the formalism in its general form, in this
section, we will restrict ourselves to the weak-coupling limit.
We start by giving an analytical form of the kernels to the
lowest nonvanishing order in the tunneling amplitudes |tl |.
First we provide the normal and anomalous kernels in the time
domain, then we obtain their Fourier components needed to
compute the dc-current according to Eq. (56). Finally, ana-
lytical and numerical results for the steady state current are
discussed in the following sections Secs. VI and VII.

A. Tunneling kernel in the time domain

As noted above, the tunneling kernel and the current kernel
differ only in the last operator acting on the argument. This
enables us to deduce the expression for the current kernel from
the one of the tunneling kernel using diagrammatic rules. We
therefore consider Eq. (29), which after inserting the explicit
form of the tunneling Liouvillian given in Eq. (20) and some
minor manipulations reads

K′(2)
T (t, s)ρ̂(s) =

∑
l,l ′,k,k′,σ,σ ′

p,p′,α,α′

−αα′ pp′t p̄
l t p̄′

l ′

(ih̄)2
d̂ p̄,α

σ G ′
QD(t, s)d̂ p̄′,α′

σ ′ ρ̂(s)TrQP
{[

up̄
l,ke

∫ t
s ds′ ip

h̄ (El,k+μl (s′ ))γ̂
p,α

l,k,σ
+ v

p
l,ke

2ip
h̄

∫ t
t0

dt ′μl (t ′ )

× sgn(σ )e
∫ t

s ds′ i p̄
h̄ (El,k+μl (s′ ))Ŝp,α

l γ̂
p̄,α

l,k̄,σ̄

][
up̄′

l ′,k′ γ̂
p′,α′

l ′,k′,σ ′ + sgn(σ ′)vp′
l ′,k′e

2ip′
h̄

∫ s
t0

dt ′μl′ (t ′ )Ŝp′,α′
l ′ γ̂

p̄′,α′

l ′,k̄′
,σ̄ ′

]
ρ̂QP
}
, (58)

where we introduced G ′
QD(t, s) = exp(LQD(t − s)) and used

γ̂
p,α

l,k,σ
G ′

0(t, s) = G ′
0(t, s) exp

(∫ t

s
ds′ ip

h̄
(El,k + μl (s

′))
)

γ̂
p,α

l,k,σ
,

(59)

TrQP{G ′
0(t, s) · · · } = G ′

QD(t, s)TrQP{· · · }, (60)

to bring all the lead operators to the right of the reduced den-
sity matrix. Performing now the trace over the quasiparticles
directly yields

TrQP
{
γ̂

p,α
l,k,σ

γ̂
p′,α′

l ′,k′,σ ′ ρ̂QP
} = δpp̄′δll ′δσσ ′δk,k′ f pα′

(El,k ). (61)

From Eq. (58), the terms after performing the trace can have
either no Ŝl operator, one Ŝl operator or two Ŝl operators
from the same lead and opposite hermiticity. Such two op-
erators would compensate each other, but here they do not
necessarily share the same superoperator index. The possible
contributions are visualized in a diagrammatic form in Fig. 2.
Identifying the terms of the kernel according to Eqs. (33) and
(36), the situation simplifies considerably, as the superopera-

FIG. 2. Diagrams contributing to the second order kernel. Be-
sides quasiparticle vertices (dots), also combined vertices (crosses)
containing both Cooper pair and quasiparticle creation or annihila-
tion operators are possible.

tor index of the Cooper pair operators is effectively rendered
irrelevant. Thus we are able to sum up the outer two and the
central two diagrams in Fig. 2, leaving us with only two types
of nonvanishing contributions to the tunneling kernel. These
two contributions are the normal and anomalous tunneling
kernels, with the former representing the usual quasiparticle
tunneling, while the latter involve one Cooper pair in one of
the vertices. Hence, the anomalous kernel necessarily implies
a coherence in the quantum dot space. After converting the
sums over momenta k to integrals over energies E , these
kernels are given by

κ
′(2)
T (0; t, s) =

∑
l,σ,p,α,α′

αα′|tl |2
(ih̄)2

d̂ p̄,α
σ GQD(t, s)d̂ p,α′

σ

×
∫ ∞

−∞
dEDl (E )e

i
h̄

∫ t
s ds′(E+pμl (s′ )) f α′

(E ),

(62)

κ
′(2)
T (pul ; t, s) =

∑
σ,α,α′

pαα′|tl |2
(ih̄)2

sgn(σ )e−ipφl d̂ p̄,α
σ

× GQD(t, s)d̂ p̄,α′
σ̄ e

ip
h̄

∫ s
0 dt ′2μl (t ′ )

×
∫ ∞

−∞
dEAl (E )e

i
h̄

∫ t
s ds′(E+pμl (s′ )) f α′

(E ),

(63)

where we introduced f q(E ) = 1/(1 + eqβE ), φl = arg(�l

(t∗
l )2) + 2

h̄

∫ t0
0 dsμl (s), with Dl (E ) and Al (E ) the normal and
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anomalous densities of states (DOS), respectively. In the wide
band limit, the latter are given by

Dl (E ) = D0Re

{√
(E − iγ )2

(E − iγ )2 − |�l |2
}
, (64)

Al (E ) = D0Re

{√ |�l |2
(E − iγ )2 − |�l |2

}
sgn(E ). (65)

where D0 is the DOS in the normal state at the Fermi level,
and γ is a Dynes parameter [82,83] which accounts for a
finite broadening of the peaks of the superconducting DOS
at E = ±|�l |. Note that the broadening is introduced here as
a phenomenological parameter. See, e.g., Ref. [82], where this
is discussed in the case of a noninteracting dot.

The differences between Eqs. (62) and (63) reflect the
physical origin of these terms. The normal kernel corresponds
to quasiparticle transport through the junction. In that sense, it
is equivalent to a nonsuperconducting lead with a particular
DOS, given by Eq. (64). The anomalous kernel describes
the tunneling of quasiparticles together with Cooper pairs.
It is the source of the proximity effect. That is, it results
in the appearance of superconducting correlations in the dot
∝ Ŝ†

l d̂↓d̂↑, Ŝl d̂
†
↑d̂†

↓.
Upon performing the integrals over time in Eqs. (62) and

(63), we can use the Jacobi-Anger expansion introduced in
Eq. (24), to find

κ ′
T(0; t, s) =

∑
l,σ,p,α,α′,n

αα′|tl |2 pn

ih̄
d̂ p̄,α

σ Y α′
l,n(pμl (0)

− ih̄LQD, t − s)d̂ p,α′
σ einωacs, (66)

κ ′
T(pul ; t, s) =

∑
σ,α,α′,n

αα′|tl |2 pn+1

ih̄
sgn(σ )e−ipφ′

l d̂ p̄,α
σ Zα′

l,n

× (pμl (0) − ih̄LQD, t − s)d̂ p̄,α′
σ̄ einωacseipωdc,l s,

(67)

with the associated integrals

Y q
l,n(ν, τ ) = (−1)n

ih̄
Jn

[
alεac sin

(
ωac

2
τ

)]
×
∫ ∞

−∞
dEDl (E ) f q(E )ei E+ν+(nh̄ωac/2)

h̄ τ , (68)

Zq
l,n(ν, τ ) = (i)n

ih̄
Jn

[
alεac cos

(
ωac

2
τ

)]
×
∫ ∞

−∞
dEAl (E ) f q(E )ei E+ν+(nh̄ωac/2)

h̄ τ . (69)

In phase space, the tunneling kernel takes the form

κ◦(2)(ϕ; t, s) = κ
′(2)
T (0; t, s) +

∑
p,l

eipϕl κ
′(2)
T (pul ; t, s), (70)

which is an admixture of the normal and anomalous contribu-
tions.

B. Fourier decomposition of the tunneling kernel

From the form of the kernels given in Eqs. (66) and (67)
one can directly identify the expansion coefficients kT,n,m(t −
s) defined in Eq. (47). Instead of giving them explicitly, we
first note that all dependence on the time difference t − s is
contained in the functions in Eqs. (68) and (69). Therefore we
conveniently perform the Laplace transformation on them as∫ ∞

0
dτe−λτY q

l,n(ν, τ ) = Ỹ q
l,n(ν + ih̄λ), (71)

where we introduced Ỹ q
l,n(ν) = ∫∞

0 dτY q
l,n(ν, τ ). Analogously,

we call Z̃ the Laplace transform of the function Z . The nor-
mal and anomalous integrals as defined in Eq. (71) can be
expressed for Vac = 0 in terms of a sum over the Matsubara
frequencies and are given in Appendix D. In the resulting final
form of the components of the kernel, we can again identify
the contribution from the normal (m = 0) sequential tunneling
kernel

k̃T,n,0(λ) =
∑

l,σ,p,α,α′

pn

ih̄
|tl |2αα′d̂ p̄,α

σ

× Ỹ α′
l,n(ih̄(λ − LQD) + pμl (0))d̂ p,α′

σ , (72)

and the one from the anomalous (m = ±ul ) sequential tunnel-
ing kernel given by

k̃T,n,pul (λ) =
∑

σ,α,α′

pn+1

ih̄
|tl |2sgn(σ )αα′e−ipφl e−ipal

εac
2

× d̂ p̄,α
σ Z̃α′

l,n(ih̄(λ − LQD) + pμl (0))d̂ p̄,α′
σ̄ . (73)

The strength of the contribution from the kernels can be
estimated by introducing the rate of tunneling of normal elec-
trons in and out of lead l

�l = 2π

h̄
|tl |2D0. (74)

Near the coherence peaks the density of states increases by a
factor |�l |/2γ . The weak-coupling limit is justified provided
that h̄�l |�l |/2γ is the smallest energy scale in the system (for
l = L, R). Comparing Eqs. (14) and (15) we find that, due to
their definitions in Eqs. (29) and (31), the expressions for the
current kernels follow from the tunneling kernels in Eqs. (72)
and (73) by adding a term ep, fixing α = + and l = L.

VI. TRANSPORT CHARACTERISTICS OF A DC-BIASED
JOSEPHSON QUANTUM DOT

We start by discussing the dc-biased case, in the weak-
coupling limit putting emphasis on the role of the degrees of
freedom of the Cooper pairs. This case has been investigated
in previous works in the limit |�l | → ∞ [37,38], in which the
quasiparticle degrees of freedom can be disregarded or with-
out the anomalous contributions [10,12]. The general situation
of an ac-dc driven junction is discussed in Sec. VII. As we will
see, outside of certain parameter regions where the Cooper
pairs induce resonant transitions between the |0〉 and |2〉 states
of the quantum dot [66], the main effect of the superconduct-
ing correlations appearing due to the anomalous kernel (i.e.,
the proximity effect) is to renormalize the tunneling rates.
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FIG. 3. Coulomb blockade and strength of the proximity induced
correlations on the dot. Shown are the population P0 of the empty
(a) and singly occupied P1 = P↑ + P↓ (b) states of the dot, where
Pχ := (�̂0,0)χχ . The formation of a Coulomb diamond is clearly visi-
ble. The absolute value of the induced correlations with m = (1, 0)
(c) and m = (0,−1) (d) indicates a strong suppression of proximity
induced coherences inside the Coulomb diamond. The proximity
effect is largest along the resonance condition established in Eq. (76)
(�) with appreciable parallel side resonances (�) due to resonant
pumping. The box in (d) indicates the region around the 1-0 charge
degeneracy point on which we focus in later figures. Parameters:
U = 15 meV, T = 1.2 K, �L = �R = 0.32 meV, γ = 100 neV and
2πD0|tL|2 = 2πD0|tR|2 = 93 neV, which results in 2πD0|tL|2β =
0.9.

A. Populations and coherences

First, let us consider which terms in the quasiperiodic ex-
pansion of the reduced dot operator, Eq. (49), are relevant.
Clearly, in the dc-biased case only the terms with n = 0 have
to be considered.

Let us consider first the dc component �̂0,0 = 1. Its di-
agonal elements are the populations of the quantum dot,
P0, P↑, P↓, P2 (i.e., the occupation probabilities of each state).
Due to conservation of probability, TrQD{�̂0,0} = 1 so that the
terms in �̂0,0 are of order 1 in an expansion in �l .

Figures 3(a) and 3(b) display the probability of the dot be-
ing empty and with a single charge denoted by P1 = P↑ + P↓,
respectively. To not needlessly complicate the figures, we
show in the following the case of identical gaps �l = � and

symmetric coupling aL = 1/2. Coulomb blockade features,
where the charge is fixed, P1 � 1, and no current can flow are
clearly seen. For a QD-based junction in the weak-coupling
limit, dc current flows provided that, at the chemical potential
of the dot, there are occupied states in one lead (the source)
and empty states in the other (the drain). For identical gaps
current can only flow for |Vdc| � 2�, as marked in both
figures. The blow up shows the vicinity of the 1-0 charge
degeneracy point (VG = 0). The regions of finite dc current
correspond to the plateaus with P0 = 1/3 and P1 = 2/3 above
and below the 1-0 charge degeneracy point, as observed in
Figs. 3(a) and 3(b). The different populations are due to the
twofold spin degeneracy of the single occupied state.

We consider next the terms with m �= 0. Solving Eq. (53)
for �̂0,m, we find the expression

�̂0,m = 1

im · ωdc − LQD − k̃T,0,0(im · ωdc)

×
∑
p,l

k̃T,0,p̄ul (im · ωdc)�̂0,m+pul , (75)

where we used that the kernels vary m by at most ±ul in the
weak-coupling limit. Equation (75) represents the steady state
occupancy of a particular Fourier mode of the dot operator
in terms of pumping from other modes. The resulting depen-
dence of a given term �̂0,m on �l is remarkably complicated.
Hence, in the spirit of the secular approximation [59], we
consider first the parameter regions for which

|m · ωdc + ωQD| � �l , l = L, R. (76)

where ωQD is a generic Rabi frequency associated with the
action of LQD in the denominator of Eq. (75). That is, for a
term |χ〉〈χ ′|, it is given by

LQD|χ〉〈χ ′| = −iωQD|χ〉〈χ ′|, (77)

which, in the absence of a Zeeman splitting, results in h̄ωQD =
0 for the populations Pχ and h̄ωQD =±(2eVG + U ) for the
coherences |2〉〈0| and |0〉〈2|, respectively.

For any two modes �̂0,m′ and �̂0,m with
∑

l |m′
l | =∑

l |ml | + 1, �̂0,m′ will be smaller than �̂0,m by a factor
∼�l/|m′ · ωdc + ωQD|. This imposes a hierarchy of harmonic
modes, in which �̂0,m become less important as m moves away
from m = 0. In particular, in order to calculate the reduced
dot operator and the current up to order �l , we need only the
contributions m = 0,±ul , provided that Eq. (76) holds.

For m �= 0 the region where Eq. (76) is not satisfied defines
a resonance, where �̂0,m is of one order less in �l than outside
of it. Therefore the contributions m = ±ul are of the same
order in �l as �̂0,0 along these resonances.

Previous works on this model identified the coherences
in m = ±ul as a proximity induced pair amplitude on the
dot [36]. To understand how this proximity effect impacts
transport in the weak-coupling limit, we show the absolute
value of the induced coherences next to the stability diagram
of the junction in Figs. 3(c) and 3(d), where we denote the
entries of the dot operators as

(�̂n,m)χχ ′ = 〈χ |�̂n,m|χ ′〉. (78)

We find that the pair amplitude is most prominent along
the resonance conditions established in Eq. (76) and along
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parallel features that we identify as the consequence of res-
onant pumping. Nonetheless, we find them to be significantly
diminished even on resonance.

Hermiticity of the density matrix imposes that∣∣(�̂0,(1,0))
0
2

∣∣ = ∣∣(�̂0,(−1,0))
2
0

∣∣, (79)

but note that in Figs. 3(c) and 3(d), we have in general∣∣(�̂0,(−1,0))
2
0

∣∣ �= ∣∣(�̂0,(0,−1))
2
0

∣∣. (80)

That is, at finite bias, coherences with different m can differ
even if they share the same states of the quantum dot. This
highlights the need to keep track of the state of the con-
densates when discussing the proximity effect on the dot for
nonequilibrium situations.

To explain the absence of an appreciable effect of the
coherences on the populations even on resonance and their
near perfect suppression inside the Coulomb diamond, we
next investigate their size on the resonance. More specifically,
we focus on the upper right quadrant of the stability diagram,
with the rest following by the particle-hole and left-right sym-
metries of the problem. We start by considering the coherence
(�̂0,(1,0))0

2. The exemplary point eVG = 0, eVdc = U fulfills the
resonance condition as |(1, 0) · ωdc − U/h̄| = 0 there. It lies
outside of the Coulomb diamond on the plateau region above
the 1-0 charge degeneracy point. To leading order in �, we
may write

(�̂0,(1,0))
0
2 = − 1

(Kn)0,0
2,2

∑
χ

(Ka)0,χ

2,χ Pχ , (81)

with Kn = k̃T,0,0(iU/h̄) and Ka = k̃T,0,uL (iU/h̄) and where we
denoted the matrix elements of the kernel by

(̃kT,l,n,m(λ))χ,χ ′′
χ ′,χ ′′′ = 〈χ |[̃kT,l,n,m(λ)|χ ′′〉〈χ ′′′|]|χ ′〉. (82)

The relevant populations P0 and P1 on the right-hand side
(r.h.s.) of Eq. (81) were already discussed for Fig. 3. To
deduce the absolute value of (�̂0,(1,0))0

2 from these, we still
need the kernel elements (Kn)0,0

2,2 and (Ka)0,σ
2,σ , (Ka)0,0

2,0 with the
latter rates representing pumping from the populations. By
construction the kernels in Eq. (81) do not change as we move
along the resonance. It is thus sufficient to calculate all the
rates for one point on the resonance. The latter observation
already indicates that the strong suppression of the coherences
inside the Coulomb diamond must be purely due to the change
in the static populations. In fact, comparing the pumping rates
for the even particle number sector of the density matrix

(Ka)0,0
2,0 = (�L/D0)

[
f +(−U/2)AL(−U/2) + iS̃(2)

L (−U/2)/π
]
,

(83)

(̃S(2)
l is the real part of the anomalous sequential tunneling

integral introduced in Appendix D) and for the odd particle
number sector

(Ka)0,σ
2,σ = (2�L/D0) f +(U/2)AL(U/2), (84)

we find the latter to be exponentially suppressed in βU if U�
�l , β

−1. This reflects the antagonist role interaction plays to
proximitized pairing on the dot. The need for a finite popu-

lation of the even charge sector of the dot has already been
noted in the literature [36].

To explain why the coherences remain suppressed even on
resonance and outside of the Coulomb diamond, we first note
that |(Kn)0,0

2,2| ≈ 3�. Clearly, the suppression must therefore

be due to (Ka)0,0
2,0 � �L. The latter is a consequence of the

anomalous density of states vanishing above the gap. We
conclude that the proximity induced coherences on the dot are
suppressed as �/U throughout the entire stability diagram for
U� �.

The latter condition is natural, e.g., for molecular junctions,
where the interaction is typically of the order of multiple eV
[84]. For leads manufactured from conventional BCS super-
conductors as we consider here, the gap is typically of the
order of a few meV at most [79]. We expect this suppression
to also be present, albeit weaker, for extended quantum dots,
e.g., carbon nanotubes, where the interaction is still typically
an order of magnitude larger than the gap [12]. For weakly
interacting junctions, where effects due to the proximity in-
duced coherences on the dot may be sizable, we predict the
dot pair amplitude to be largest on the resonances inside the
plateau regions. The latter observation is counter intuitive as
quasiparticle transport is usually considered detrimental to co-
herent phenomena in superconducting junctions [8]. For zero
bias, and to sequential tunneling order, we identify the regions
around the charge degeneracy points as the most strongly
proximitized. However, we note that a treatment at least to
cotunneling order is needed to rule out strong proximity effect
inside the Coulomb diamond.

B. Current-voltage characteristics

We turn now to the calculation of the dc current. If the dot
is described by the SIAM of Eq. (2), the current is given, in
general, by the expression

IL = − e

{∑
σ

[
�σ,0

L P0 + (�2,σ
L − �0,σ

L

)
Pσ − �σ,2

L P2
]

+ 2�2,0
L P0 − 2�0,2

L P2

}
, (85)

where �
χ ′,χ
l are the tunneling rates from population χ to

population χ ′, mediated by lead l . Equation 85 has a natural
interpretation as the difference of rates by which charges
enter and exit the left lead. In the normal case, these
rates can be related to elements of the tunneling kernel by
�

χ ′,χ
l = (̃kT,l,0,0(0+))χ

′,χ
χ ′,χ , where the l indicates terms stem-

ming from the tunneling to lead l . In the case of normal leads
the terms �0,2

L and �2,0
L do not contribute in lowest order in

�, since only one charge at a time can be transferred. In the
superconducting case, the latter terms emerge even in lowest
order, if we account for the effect coherences have on the rates
between the populations. Furthermore, a renormalization of
the sequential tunneling rates occurs.

Since we only retain the contributions m = 0,±ul , we can
express the components �̂0,±ul in terms of the populations in
�̂0,0 via Eq. (75). With this, the current becomes a function
of the populations as in Eq. (85), with �

χ ′,χ
l the “secular”
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rates

�
χ ′,χ
l = �

(2),χ ′,χ
l − 2Re

[
ih̄

2eVG + U − h̄ul · ωdc + ih̄(̃kT,0,0(−iul · ωdc))2,2
0,0

(̃kT,0,ul (0))χ
′,2

χ ′,0 (̃kT,0,−ul (−iul · ωdc))2,χ

0,χ

]
. (86)

The first term is of second order in the tunneling amplitude.
The second term in Eq. (86) is ∝ |tl |4 provided that Eq. (76)
is satisfied, but is relevant inside the resonances. Hence, we
see that the main effect of the coherences in the dc current
is to renormalize the normal tunneling rates and introduce a
new Cooper-pair enabled pair tunneling process. Moreover,
the populations Pχ can be obtained explicitly in terms of the
secular rates of Eq. (86). The corresponding expressions for
the populations are given in Appendix E.

In Fig. 4(a), we have represented the current as a function
of the gate voltage VG and the dc component of the bias
voltage Vdc (the stability diagram of the dot) near eVG = 0,
where the empty and the single occupied states of the dot are
degenerate (i.e., the 1-0 charge degeneracy point).

As seen in Fig. 3, in absence of thermal fluctuations current
flow is possible for |Vdc| � 2�. This situation is present for

FIG. 4. Transport in the dc case. (a) Current near the 1-0
charge degeneracy point for the dc case (Vac = 0), showing areas
of Coulomb blockade (clear colors) and of current flow in both
directions. (b) Cascade plot for the same parameters and differ-
ent values of the dc voltage amplitude, from Vdc = 0.08 (blue) to
2 meV (green), showing clearly current peaks due to thermally ex-
cited quasiparticles. (c) Diagrams summarizing the three common
transport situations in this setup: (1) Normal transport, where eVdc

is larger than 2� and the chemical potential of the dot is aligned
so that a current can flow. (2) Transport blockade inside the gap,
where the state of the dot lies inside the superconducting gap. (3)
Transport is mediated by thermally excited quasiparticles above the
gap. Parameters are the same as in Fig. 3.

point (1) in Fig. 4(a). A diagram illustrating the level align-
ment at this point is represented in Fig. 4(c.1). At nonzero
temperature, transport can also occur by transferring ther-
mally excited quasiparticles that occupy states above the gap
[10,11]. At the low temperatures considered here, this subgap
thermal current is small compared to the contribution from
quasiparticles above the gap, and is hard to observe in the
stability diagram of Fig. 4(a). For that reason, we have also
represented in Fig. 4(b) a cascade plot of the current for dif-
ferent values of Vdc = 0.08, . . . , 2 mV capped at a relatively
small value of the current, showing clearly the appearance
of a set of peaks [marked as (3) both here and in Fig. 4(a)].
An asymmetry due to the different degeneracies of the empty
and singly occupied states of the quantum dot is appreciable.
The energy level diagram corresponding to this process is
represented in Fig. 4(c.3). Within these two points, there is a
region where current does not flow, of size 2�. This situation
is represented schematically in Fig. 4(c.2).

VII. TRANSPORT CHARACTERISTICS OF AN
AC-DC-BIASED JOSEPHSON QUANTUM DOT

We turn now to the general situation of Vac �= 0, where we
are investigating the dc current in presence of simultaneous ac
and dc bias as well as the first harmonic of the current. The
latter is related to the dynamic nonlinear susceptibility.

A. The average current

We want to again restrict the range of n we have to consider
as we did in Sec. VI for m. While the sequential tunneling
kernels could only change m by at most ±ul , the kernels
connect all �̂n,m in Eq. (53). Let us consider first the extension
of Eq. (76) to nonzero ac voltages, namely,

|m · ωdc + nωac + ωQD| � �l , l = L, R, (87)

which amounts to staying sufficiently far from any photon
assisted resonance between the unoccupied and the doubly
occupied states (mediated by Cooper pairs). Studying the dc
current, we can immediately make the observation that, given
Eq. (87), any contribution coming from �̂n,m with both n, m �=
0 will be at least ∝ |tl |4 ∼ �2

l and can therefore be neglected
in the sequential tunneling approximation. Combined with
the discussion in Sec. VI, this enables us to focus on m =
0, n ∈ Z. Due to the selection rules discussed in Appendix C,
these indices allow only for populations, such that ωQD = 0.
Following the treatment in the dc case, we find

�̂n,0 = 1

inωac − k̃T,0,0(inωac)

∑
n′

k̃T,n′,0(inωac)�̂n−n′,0. (88)

The tunneling kernel can connect Fourier modes with arbi-
trary difference in n. Thus the hierarchy given by Eq. (88) in
the region of validity of Eq. (87) is flat with all terms n �= 0
of order �/nωac and �̂0,0 again of order 1. Provided Eq. (87)
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holds, this enables us to neglect all n �= 0 contributions when
discussing the dc current. This is the high frequency approxi-
mation on which we will focus in the following. Note that this
approximation requires only that the photon energy is large
compared to �l , not to all other energy scales of the problem.

For the remaining nonvanishing contribution, n = 0, we
can expand

J0[alεac sin(ωact/2)] =
∞∑

k=−∞
J2

k (alεac/2)eikωact . (89)

Using this, we find that the required integrals in Eq. (71) are
given by

Ỹ q
l,0(ν) →

∞∑
k=−∞

J2
k (alεac/2)Ỹ q

l,dc(ν + kh̄ωac). (90)

Here, each term corresponds to a photon assisted rate
weighted by a factor J2

k (εac/2) representing the process as-
sociated with the absorption or emission of k photons.

Equation (90) hints at a connection of the resulting ex-
pressions for high frequency to the well known Tien-Gordon
theory of photon assisted sidebands in tunneling [9,20–22].
Note however, that the original derivation by Tien and Gordon
considered a simple tunnel junction, where there is no addi-
tional energy scale of the central system to compare against
[20]. In previous works on photon-assisted tunneling in quan-
tum dots connected to superconducting leads [9,21,22], the
tunneling rates themselves were phenomenalogically replaced
with a Tien-Gordon like expression. The imaginary part of
Eq. (90), which governs the sequential tunneling rate, recovers
the expressions of these earlier works from a microscopic
derivation. Meanwhile, our result extends the expressions by
encapsulating, e.g., the Lamb shift caused by the real part of
Eq. (90), which was omitted in these earlier works. Note that
the change in the rates Eq. (90) not only affects the current,
but also the steady state solution, via Eqs. (72) and (73) [9].
As such, a naive version of the Tien-Gordon model for the
current yields qualitatively different results from the correct
expression. See Appendix F for details.

In general, the high frequency approximation breaks down
for a bichromatic drive if the difference of the frequencies
becomes comparable to the time scale of the dynamics of the
system [85,86]. With ωdc depending on the position in the
stability diagram, this condition of nondegeneracy translates
into Eq. (87). The respective integrals as defined according to
Eq. (71) are solved analytically in Appendix D.

In Fig. 5(a), we have represented the current as a function
of the gate voltage VG and the dc component of the bias
voltage Vdc near the 1-0 degeneracy point for a strength of
the ac bias of εac = 2b0,1, where bm,n is the nth zero of the
mth Bessel function of the first kind. The resulting stabil-
ity diagram exhibits features reminiscent of the dc case of
Fig. 4 (parameters are otherwise the same) but replicated and
displaced by integers of h̄ωac/e. These replicas arise due to
the photon assisted rates in Eq. (90). Their nontrivial nature
is expected, since the rates enter in a decisively nonlinear
manner in the GME. See, for instance, the analytic result of
Appendix E, which corresponds to the much simpler dc case.

FIG. 5. dc Transport in the ac case. (a) Current near the 1-0
charge degeneracy point for the ac case with εac = 2b0,1, where bm,n

is the nth zero of the mth Bessel function of the first kind. New areas
of current flow appear here as compared to Fig. 4 due to the possibil-
ity of photon assisted transport. (b) Diagrams exemplifying several
transport situations in this setup: (1) Sideband transport, where cur-
rent flows even if the chemical potential of the dot lies within the gap
of any of the leads. (2) Subgap transport, where current flows despite
Vdc < 2�. (3) Current inversion, where the backwards rates are larger
than the forwards rates, and the net current flows from the lead at
lower to the one with the higher (average) chemical potential (i.e.,
from drain to source). (c) Current as a function of the dc bias Vdc for
VG = 0, εac = 2b0,1 (top) and εac = b0,1 (bottom), corresponding to
the cases where two and one photon assisted processes show current
inversion, respectively. The color filling indicates the sign of the
current (blue for negative, red for positive sign). Parameters: Same
as in Fig. 4. The ac energy h̄ωac is set to 0.5 meV and the considered
range of n = −30, . . . , 30 with m = 0,±ul is in accordance with the
discussion in Sec. VI.

We have indicated in Fig. 5(a) exemplary points which
reflect the effect of the ac bias. Point (1) corresponds to
a situation in which the dc voltage is larger than 2� but
the chemical potential of the dot is not aligned as to lead
to current flow. Nonetheless, photon assisted transitions still
allow for a nonzero current. This is represented schemati-
cally in Fig. 5(b.1). Here, dashed lines separated by ±h̄ωac

from the chemical potential of the dot, represented by a
full line, illustrate a tunneling process accompanied by the
absorption/emission of a photon. Note that this representation
is only for illustrative purposes, since the ac voltage is applied
to the leads and not to the dot. On the other hand, point (2)
corresponds to subgap transport, in which the dc bias voltage
is not large enough to overcome the superconducting gap,
but a current still flows due to ac-induced sidebands, as can
be seen in the diagram of Fig. 5(b.2). Such photon assisted
sequential tunneling dc currents beneath the gap are ∼ε2

ac. For
weak driving, such that ε2

ac < �h̄/�, higher order processes
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FIG. 6. Comparison of currents for ac-dc-driven normal and superconducting junctions. For the latter the current is sharper and can become
negative at positive applied dc-bias. (a) Current near the 1-0 charge degeneracy point for the case of normal conducting leads with εac = 2b0,1

and h̄ωac = 0.32 meV. (b) Same, for the superconducting case, with h̄ωac = �. (c) Cut for VG = 0.15 mV, along the arrows marked in (a) and
(b), showing current inversion. We have further represented the case h̄ωac = 2� for the same cut, showing an even larger signature of inversion.
(d) Sign of the current for the same parameters as Fig. (b). Parameters: same as in Fig. 5.

in the tunnel coupling, which are associated with Cooper pair
transport, are expected to remain the dominant contribution to
the dc current below the gap.

The superconducting case differs from the normal con-
ducting case by also containing regions of current inversion,
where the current flows in the opposite direction of the dc
bias. This occurs, for instance, at the point labeled (3) in
Fig. 5(a). This effect is known to appear as a result of a
nonflat DOS [21,22,87]. For point (3), transport without pho-
ton absorption nor emission is suppressed since the chemical
potential of the dot lies in the gap of both leads, while photon
assisted processes are allowed. In this particular configuration,
the backward photon assisted rate transfers charges from the
peak in the DOS of the right lead, while the forward rate
transfers charges from the flat region of the DOS of the left
lead [as represented schematically in Fig. 5(b.3)]. As such,
the backward rate is larger than the forward one (by a factor
∼�/2γ , at most), resulting in a net current flow against the
applied dc-bias. Figure 5(c) showcases this at two values
of the ac bias amplitude, εac = 2b0,1 (top) and εac = b0,1

(bottom). For the latter, current inversion occurs only near
eVdc = ±�, following the same process as described above.
For the former, a further zone of current inversion occurs near
eVdc = ±(2h̄ωac + �) well inside the regions of current flow
in the dc case.

The asymmetry with respect to the gate in Fig. 5(a) arises
from the spin-degeneracy of the single-occupied states similar
to the one in Fig. 4. Note that said asymmetry cannot be
understood within a Tien-Gordon-like ansatz for the current
[20], but is a consequence of the expression for the rates in
Eq. (90). Overall particle hole symmetry is conserved as the
stability diagram at the 1–2 degeneracy point (i.e., the point
where |σ 〉 and |2〉 are degenerate at eVG = U ) is a mirror copy
of this one.

The complex nature of the stability diagram of Fig. 5 is
a result of having two incommensurate energy scales. The
stability diagram under an ac voltage for the normal case is

comparatively simple, as can be seen in Fig. 6(a) for h̄ωac =
0.32 meV, since only the ac frequency comes into play. Sim-
ilarly, for superconducting leads with h̄ωac = � = 0.32 meV,
as represented in Fig. 6(b), the current also exhibits a simpler
structure as compared to Fig. 5, since the two energy scales
are commensurate. In this situation, the ac bias pumps quasi-
particles from below the gap so that a nonzero current can
flow even for for arbitrarily small Vac and Vdc. For the normal
case, the DOS is flat and there is no possibility for current
inversion, as the backwards and forward photon assisted rates
will be equal. As a result, the current always flows in the
direction of the dc bias. Figure 6(c) shows a small vertical cut
of the stability diagram for both the normal (blue) and the su-
perconducting case (green, the lighter color corresponding to
h̄ωac = � and the darker color corresponding to h̄ωac = 2�),
showing current inversion in the latter.

In Fig. 6(d), we have represented the sign of the current
for the same parameters as in Fig. 6(b), in the region close
to Vdc = 0, in order to showcase more clearly the pattern re-
sulting from current inversion. In the two diamondlike current
inversion regions near VG = 0, both the k = 0 and the k = ±1
photon processes are blocked by the gap and the k = ±2 rates
are dominant. Current inversion then corresponds to the region
where the k = 2 rate is large due to the peak of the DOS and
the k = −2 is smaller as it samples the flat region of the DOS
(and vice versa). Apart from these diamonds, current inversion
occurs along VG = 0 in intervals separated by h̄ωac = � but
now has a conic shape. The explanation of their origin is
nonetheless the same (i.e., higher |k| rates being dominant
over the ones with lower k).

Figure 7 shows the emergence of the photon assisted side-
bands as a function of Vac for h̄ωac = 25 µeV. The resulting
fan like pattern has a spacing of 2h̄ωac/e in Vdc between the
individual peaks, in agreement with Eq. (90). As the ac volt-
age increases, ac induced subgap transport at lower voltages
becomes possible. Compared to the normal (i.e., nonsuper-
conducting) case, here we obtain two fans corresponding to
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FIG. 7. Photon assisted side-bands. (a) Differential conductance
as a function of the dc and ac amplitudes of the bias voltage, Vdc

and Vac, respectively, for VG = 0. The fanlike pattern reflects the
appearance of multiple sidebands as Vac increases. (b) Cuts of (a) for
Vac = 0 (blue), 0.125 (green) and 0.25 mV (light red). (c) Full lines:
cuts of (a) for values of Vdc corresponding to the best matches for the
resonances with n = 0 − 3 photons (blue, light green, green and light
red, respectively). Dashed lines: squared Bessel functions J2

n (εac/2)
for the same values of n. Note the close match for most of the param-
eter range. Parameters: same as in Fig. 5 but with h̄ωac = 25 µeV.

the states at the two sides of the gap. The conductance itself
changes sign at the gap edges, as can be seen in Fig. 7(a) and
more clearly in Fig. 7(b). This is a well-known result of the
peaked DOS of superconductors [88]. The resulting conduc-
tance peaks at the different resonances follow nonetheless a
Bessel-like pattern, shown in Fig. 7(c). We have represented,
together with the conductance, the associated squared Bessel
function J2

n (εac/2) (employing dashed lines). The evaluation
of the conductance along the peak of the respective rate
contribution results in it dominating the other rates. Hence,
the result expected from the Tien-Gordon model is recovered
partially, specially at large values of Vac. Similar features have
been observed in recent experiments in scanning tunneling
microscopy with superconducting tip and substrate [24,25].

B. First current harmonic

The formalism presented so far can recover also the n �= 0
Fourier components of the current. Next to the static response,
the dc current, also the dynamic response at the frequency of
the drive, the first harmonic I∞

1 in the current, is of interest. It
is related to the nonlinear dynamic susceptibility χ (ωac, εac)
of the junction via I∞

1 = εacχ (ωac, εac). We consider the re-
sponse of the junction at finite εac. For the charge transport
through a junction in presence of ac drive it is convenient to

FIG. 8. First harmonic of the current. (a) Shown is the absolute
value of the first harmonic I∞

1 for εac = 0.1 near the 1-0 charge
degeneracy point. The other parameters are as in Fig. 5. The response
is strongest along resonances (�) parallel to the Coulomb resonances
(�) and offset by ±2h̄ωac in Vdc. (b) Level alignment of some exem-
plary points at low bias.

use the symmetrized expression I∞
1 = 1

2 ( jL,1,0 − jR,1,0). This
convention is helpful when discussing ac phenomena as it
restores the symmetries of the stability diagram lost due to
the presence of displacement currents. The absolute value of
I∞
1 is depicted in Fig. 8 again for the vicinity of the 1-0 charge

degeneracy point. We consider εac = 0.1 (i.e., relatively weak
drive) for clarity, as the general features of the susceptibility
are already present at this drive strength. The other parameters
were taken from Fig. 5.

To lowest order in �, the first harmonic of the current is
given by

I∞
1 = TrQD

{
1
2 (k̃I,L;1,0(iωac) − k̃I,R;1,0(iωac))�̂0,0

}
. (91)

This expression is analogous to the one for the dc current,
where now the first harmonic of the current kernels has to be
considered, together with the static populations of the dot. The
former vanishes far from the Coulomb resonances. Physically,
this reflects the condition of the dot’s chemical potential being
aligned within an energy window of h̄ωac to either of the
leads’ chemical potential. The peaked density of states results
in replicas of the Coulomb resonance at the boundaries of this
energy window at

±Vdc = 2|VG| − 2V0, (92)

with V0 = h̄ωac − �(� in Fig. 8), and

±Vdc = 2|VG| + 4h̄ωac − 2V0. (93)

These resonances merge into the dc Coulomb resonance (�) in
the limit of vanishing driving frequency, but for finite driving
frequency the response inside the energy window is more
complex. Close to the charge degeneracy point the quantum
dot’s chemical potential is aligned with both leads simultane-
ously. The diagrams in Fig. 8(b) show the level alignment for
some exemplary points marked in (a).
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At both (1) and (3), the populations in �̂0,0 are P0 = P↑ =
P↓ = 1/3, such that both in and out tunneling rates contribute
to the current. The exact form of the rates participating in the
first harmonic of the current are given in Eq. (D16). For the
low value of εac, we consider, it is sufficient to expand

Ỹ q
l,1(ν) ∝ alεac

(
Ỹ q

l,dc(ν + h̄ωac) − Ỹ q
l,dc(ν)

)+ O
(
ε2

ac

)
. (94)

Then the rates in the first harmonic of the current kernel
become differences of the dc sequential tunneling integral.
At low bias, corresponding to region (1), the second term
vanishes for both l = L, R due to presence of the gap. For the
case h̄ωac > � considered here, the first term is finite and due
to aL = −aR = 1/2 additive in the lead index. Then, the first
harmonic in the region around the charge degeneracy points
is dominated by photon assisted sequential tunneling and fi-
nite even at zero bias. As such near the charge degeneracy
point the ac and dc response display different behavior. At
point (2), we have P1 = 1. Looking at the level alignment
in Fig. 8(b) would suggest that the out-tunneling rate to the
left lead would vanish. Indeed, the imaginary parts of the re-
spective dc sequential tunneling integrals either vanish or sum
to zero. However, for dynamic properties, also the real part
contributes, causing a finite response to develop. In point (3),
the levels are particle-hole symmetric. Here, the in-tunneling
from the source and the out-tunneling into the drain both
contribute to the response.

VIII. CONCLUSION

In this work, we provided a microscopic formulation of
the transport through an interacting quantum dot Joseph-
son junction in simultaneous presence of a periodic driving
and dc bias. To this extend we generalized the Nakajima-
Zwanzig projector operator approach to transport to the case
of superconducting contacts and multiple driving frequencies.
The formalism provides an exact generalized master equa-
tion (GME) for the reduced density operator of the quantum
dot and Cooper pair condensate and an integral expression
for the current. At long times, the current naturally exhibits
a bichromatic periodicity, as a result of the transfer of Cooper
pairs across the junction and the ac drive. In the weak tun-
neling limit, the theory allows a straightforward calculation of
the tunneling kernel of the GME in lowest order in the cou-
pling to the leads. In this regime, the dynamics is dominated
by the sequential tunneling of quasiparticles and anomalous
processes involving the coherent transfer of Cooper pairs
between condensate and quantum dot. The latter are responsi-
ble for proximity induced superconducting correlations which
manifest in coherences in the charge sector of the quantum
dot. Noticeably, the coherences naturally arise in our particle
conserving formulation, without the need of invoking U(1)
symmetry breaking.

The existence of an Anderson pseudospin, associated to
such coherences, was already noticed in the literature, and in-
vestigated at zero bias and in the infinite gap limit [36,65,66].
Our theory extends those results to a generic finite bias and
finite gap situation. In particular, we demonstrate that the co-
herences become of particular relevance along some resonant
lines in the bias voltage - gate voltage plane, cf. Eq. (76).

The theory is nonperturbative in the amplitude and fre-
quency of the ac-drive whilst giving access to all harmonics
of both the current and the reduced dot operator. As they
encapsulate the static and dynamic response of the current,
both the zeroth and first harmonics of the current are of par-
ticular experimental and theoretical interest. In the regime of
high frequency, the sequential tunneling rates exhibit photon
assisted tunneling sidebands, which shape the dc current and
all the harmonics in a highly nonlinear manner. For exam-
ple, a characteristic Bessel pattern is easily identified when
considering the dc current as a function of the amplitude of
the external drive. The understanding of other features though
requires a microscopic analysis, as the effect of the ac drive
is less trivial. For example, we predict the emergence of total
current inversion, in which the current flows in the opposite
direction of the dc voltage bias for certain regions of the
stability diagram. We explained its origin as being due to the
strongly peaked density of states of the superconducting leads
and the subsequent dominance of backward photon assisted
tunneling rates.

We find that the same strongly figured density of states also
permeates the dynamic response of the junction. In particular,
we find that photon assisted sequential tunneling can become
the dominant contribution to the ac response at zero dc bias.

The formalism presented here serves as a counterpoint to
nonequilibrium Green’s function techniques [35]. As shown
in this work, density operator methods allow a systematic
expansion of the current and the tunneling kernels in the
tunneling amplitudes. We focused here on the weak-coupling
limit, but the extensions to the intermediate coupling regime
are possible via diagrammatic summation techniques [89,90].
For superconducting junctions a diagrammatic resummation
has been implemented for the case of infinite gap [36,37]. In
that direction, future research may relax the weak-coupling
condition employed throughout this work and consider higher
orders in the tunneling. With the supercurrent arising at the
next higher order [91], this lays the groundwork for a micro-
scopic theory of the physics of ac driven Josephson junctions.

Beyond the weak-coupling limit, such setups are known to
host Shapiro steps, which are commonly investigated within
the semiclassical picture [26,92–95]. As recent experiments
on topological Josephson junctions hint at signatures of Ma-
jorana zero modes in the pattern of Shapiro steps [30,32,96],
a microscopic description of such setups [97–99] is highly
desirable.
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APPENDIX A: DERIVATION OF THE KERNELS

In Eq. (26), we defined the reduced density operator ρ̂(t )
for which we now derive the GME governing its time evo-
lution. We employ the Nakajima-Zwanzig formalism [68,69]
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and extend previous treatments on its applications to transport
topics (see, e.g., Refs. [100,101]). The Nakajima-Zwanzig
projection operator P includes a partial trace over a subset
of the Hilbert space called the bath, which we identify as the
quasiparticles in either lead in agreement with earlier works
on the system [10]. The reduced density matrix can be given
in terms of this projection operator as

P ρ̂tot (t ) := TrQP{ρ̂tot (t )} ⊗ ρ̂QP = ρ̂(t ) ⊗ ρ̂QP. (A1)

The Nakajima-Zwanzig formalism requires defining a refer-
ence density operator ρ̂QP for the bath, which we choose to
be the grand canonical equilibrium density operator of the
quasiparticle sectors of the leads, given by

ρ̂QP = 1

ZQP
exp

[
−β

(∑
l

ĤQP,l −
∑
l,k,σ

μl γ̂
†
l,k,σ

γ̂l,k,σ

)]
.

(A2)

Note that the time dependence of the chemical potential drops
in Eq. (A2), resulting in a static ρ̂QP even in presence of an ac
drive. This choice is valid since in our mean-field formulation
the grand canonical Hamiltonian of the Cooper pairs vanishes.
Thus the grand canonical equilibrium density operator ρ̂G of
the leads factorizes into quasiparticle and Cooper pair sectors.
Explicitly, it has the form

ρ̂G = 1

ZG
exp

[
−β

(∑
l

ĤCP,l + ĤQP,l − μl N̂l

)]
, (A3)

where ZG denotes the partition function in the grand canonical
ensemble. By construction it holds

ρ̂G = ρ̂QP ⊗ ρ̂CP, (A4)

where ρ̂CP = 1CP/ZCP. This enables us to evaluate the parti-
tion function as

ZG =: ZQPZCP, (A5)

where ZCP is formally divergent. The latter is a consequence of
the Cooper pair Hamiltonian being linear in the particle num-
ber. Considering, e.g., a charging energy term would result in
finite ZCP and reproduces the above expression in the limit of
vanishing capacitance, i.e., for macroscopic leads.

The system part of the setup is given by the Cooper pairs
and the dot. We work in the transformed frame given by
Eq. (18). Since the Cooper pair Liouvillian is removed by
this transformation, the system Liouvillian consists only of the
Liouvillian of the dot. Introducing the orthogonal projector
Q := 1 − P , the time-ordering superoperator T and assum-
ing the leads to be in equilibrium at initial time, such that
Qρ̂ ′

tot (0) = 0 the Nakajima-Zwanzig equation for our system
reads

P ˙̂ρ ′
tot(t ) =LQDP ρ̂ ′

tot (t )

+
∫ t

0
dsPL′

T(t )G ′(t, s)L′
T(s)P ρ̂ ′

tot (s), (A6)

where we used the propagator

G ′(t, s) = T exp

(∫ t

s
ds′LQD(s′) + LQP(s′) + L′

T(s′)Q
)

.

(A7)

Expanding Eq. (A7) in powers of L′
T and exploiting the fact

that PL′2n+1
T P = 0 for all integers n due to particle conserva-

tion, we find to first nonvanishing order in L′
T

K′(2)
T (t, s)ρ̂(s) = TrQP{L′

T(t )G ′
0(t, s)L′

T(s)ρ̂ ′(s) ⊗ ρ̂QP}.
(A8)

Here we introduced the propagator in absence of tunneling

G ′
0(t, s) = exp

(∫ t

s
ds′LQD(s′) + LQP(s′)

)
. (A9)

Enforcing particle conservation in Eq. (16) yields

IL(t ) = Tr{ÎL(t )(Q + P )ρ̂ ′
tot (t )} = Tr{ÎL(t )Qρ̂ ′

tot (t )}.
(A10)

Inserting the formal solution for Qρ̂tot [102] and comparing
with Eq. (28), we can identify

K′
I(t, s)ρ̂ ′(s) = Tr{Î ′

LG ′(t, s)L′
T(s)ρ̂ ′(s) ⊗ ρ̂QP}. (A11)

To lowest order, we find

K′(2)
I (t, s)ρ̂(s) = Tr{Î ′

LG ′
0(t, s)L′

T(s)ρ̂ ′(s) ⊗ ρ̂QP}. (A12)

APPENDIX B: PHASE REPRESENTATION

In this Appendix, we briefly discuss the origin of the F (ϕ)
term in the solution of the reduced dot operator, Eq. (52). For
the reduced density operator, the trace property complements
the GME, resulting in an inhomogenous set of equations (see,
e.g., Appendix E). For the generalized partial trace we employ,
the trace property inherited by �̂′(0; t ) only constrains the
average value ∫

�
dϕF (ϕ) = 1, (B1)

which is not sufficient to uniquely determine the solution to
the GME. Thus we need to supplement the GME with a fur-
ther condition, i.e., matching to the initial preparation. For our
calculations we choose a factorized initial condition, whereby
the dot and the superconductors are decoupled. Thus the dot
and the Cooper pairs are initially diagonal in their respective
particle numbers, which results in F (ϕ) = 1.

The origin of this dependence lies in the fact that the phase
variable associated with the Cooper pairs is uncoupled to the
quasiparticles in an ideal superconductor. Cooper pairs and
quasiparticles appear together only in the anomalous term of
the tunneling Hamiltonian. However, since the Cooper pair
operators are diagonal in the phase representation, the phase
operator still commutes with the full Hamiltonian in the trans-
formed frame and remains uncoupled to the quasiparticle bath.
The time evolution of the phase operator is only determined
by the voltage bias, which can be gauged away by going to
the transformed frame. As a result, the phase operator in the
transformed frame yields a constant of motion. In particular

〈ϕ̂〉′(t ) = Tr{ϕ̂ρ̂ ′
tot (t )} = Tr{Û ′†(t )ϕ̂Û ′(t )ρ̂tot (0)}, (B2)

where Û ′(t ) = T exp[−i
∫ t

0 dsĤ ′(s)] and Ĥ ′(s) is the total
Hamiltonian in the transformed frame. Since this Hamiltonian
commutes with the phase operator at all times, we obtain

〈ϕ̂〉′(t ) = Tr{ϕ̂ρ̂tot (0)} = 〈ϕ̂〉′(0). (B3)
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Equation (B3) is then the condition required to supplement the
GME. Throughout this work, we consider the zeroth harmonic
jL,n,0 of the current in the Josephson frequency. For it m = 0
and only the average value of F (ϕ) enters. As this is already
fixed by Eq. (B1), our results presented here remain indepen-
dent of the particular choice of initial condition. For jL,n,m

with m �= 0, it remains necessary to supplement the GME
with the proper initial state. This dependence can be remedied
by accounting for effects (e.g., charging effects or voltage
fluctuations) that couple the phase to dissipative degrees of
freedom.

APPENDIX C: SELECTION RULES

The evaluation of the behavior of the junction at long
times is simplified by symmetries and superselection rules
of the problem we consider. We start by noting that for any
self-adjoint operator X̂ , which fulfills L(t )X̂ = 0 ∀t , we can
choose a simultaneous eigenbasis of the Hamiltonian and X̂ .
One finds that, in the steady state, coherences that involve
states with two different eigenvalues of a conserved operator
vanish. That is, ρ̂ ′(t ) can be block-diagonalized into blocks
of constant eigenvalues of X̂ . A well known example of such
superselection rule is the absence of coherences between dif-
ferent spin states for a dot connected to spin unpolarized leads
as we consider throughout this work. The most relevant super-
selection rule for us will be the one with respect to the overall
particle number, which ensures that coherences between states
with different particle numbers are zero. Hence, the supers-
election rule indicates that the elements �′

χ,χ ′ (�M, M; t ) in
Eq. (32) are constrained by

Nχ + NM+�M = Nχ ′ + NM, (C1)

where Nχ measures the number of particles on the dot for state
|χ〉 and NM = 2

∑
l Ml . Since the dot can host at most a parti-

cle content of two electrons, we find that all �′
χ,χ ′ (�M, M; t )

must vanish except where
∑

l �Ml = 0,±1. �M = 0 allows
only populations, while �M = ±1 allows only for coherences
of the type |0〉〈2| and |2〉〈0| respectively. While the range
of �M is Z2, all nonzero �′

χ,χ ′ (�M, M; t ) lie along the one
dimensional subset �M = nuL − nuR + rul with r = 0,±1.
These superselection rules significantly reduce the number of
entries we have to account for [38]. They further ensure that
no defects in current conservation can occur in the approach
presented here as compared to approaches not explicitly con-
serving the number of particles [103].

Finally, symmetry under hermitian conjugation is inherited
by the reduced dot operators �̂, �̂◦ from the reduced density
operator upon exchange �M,ϕ → −�M,−ϕ. As a result,
the reduced operators satisfy

�̂†
n,m = �̂−n,−m, (C2)

while the kernels satisfy

(̃kT,n,m(λ))† = k̃†
T,n,m(λ∗), (C3)

further simplifying the calculation.

C+

Re E

Im E

C−

iW

-iW

−ν − i0+

FIG. 9. Integration contours for the normal sequential tunneling
integral. The semicircles extend to infinite radius. The branch cut
[−�l , �l ] cancels the contribution along this interval if both con-
tours are summed up with the orientations given by the arrows. The
poles at the Matsubara frequencies iωk are shown as red crosses, the
poles due to the Lorentzian and the denominator of the integrand are
indicated in green and blue, respectively.

APPENDIX D: SEQUENTIAL TUNNELING INTEGRALS

In this Appendix, we give analytic results for the normal
and anomalous sequential tunneling integrals defined accord-
ing to Eq. (71) for the case of vanishing Dynes parameter γ .
We start by considering the simple case of Vac = 0, for which
the time integral can easily be executed. As a result, the term
n = 0 is the only nonvanishing contribution and we find

Ỹ q
l,dc(ν) = lim

W →∞

∫ ∞

−∞
dE

Dl (E ) f q(E )

i0+ + E + ν
LW (E ), (D1)

and

Z̃q
l,dc(ν) =

∫ ∞

−∞
dE

Al (E ) f q(E )sign(E )

i0+ + E + ν
, (D2)

where we added the label dc and removed the subscript 0 to
avoid confusion with the general Ỹ q

l,0 in the ac case. Moreover,
we have introduced a Lorentzian LW (E ) = W 2/(W 2 + E2)
with bandwidth W in Eq. (D1) in order to regularize the in-
tegral. In physical terms, it corrects the ultraviolet divergence
due to the nonvanishing density of states at large energies in
the wide band limit.

For the normal integral, the DOS function is the real part
of a complex function

gl (z) = D0

√
z2

z2 − |�l |2 , (D3)

in the limit γ → 0. We define its analytic continuation gl (z)
so that it has its branch cut along �{z} ∈ [−|�l |, |�l |]. The
real part corresponds to the segments outside of the branch
cut. Then, one can perform an integration along the contours
shown in Fig. 9 in order to solve the integral [104]. The
contour is divided into two parts covering the upper and lower
complex half-plane, leaving out the real axis. Doing so avoids
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the branch cut in the interval [−|�l |, |�l | which originates
from the density of states and cancels this contribution, due
to the opposite signs along the two contours, precisely in the
region �{z} ∈ [−|�l |, |�l |]. Thus we have∫ ∞

−∞
dE

f q(E )Dl (E )

E + ν + i0+ LW (E )

= lim
R→∞

∑
s=±

s

2

∫
Cs

dz
f q(z)gl (z)

z + ν + i0+ LW (z). (D4)

The resulting contour integrals can then be executed em-
ploying the residue theorem. For f q(z) the poles are the
Matsubara frequencies iωk = 2π iβ−1(k + 1/2), k ∈ Z, with
residue −qβ−1, while the Lorentzian has poles at z = ±iW
with residuum (1/2)(∓iW ). Taking the limits, the integral
yields

Ỹ q
l,dc(ν) = −iπ f q̄(ν)gl (ν − i0+) (D5)

−q
[
S (2)

l (ν) − lim
W →∞

C (2)
l (W )

]
,S (2)

l (ν) = 2π

β

∞∑
k=0

ωkgl (iωk )

ω2
k + ν2

,

(D6)

C (2)
l (W ) = 2π

β

∞∑
k=0

1

2

[
gl (iωk ) + gl (iW )

ωk + W

]

+ 2π

β

∞∑
k=0

1

2

[
gl (iωk ) − gl (iW )

ωk − W

]
. (D7)

It satisfies the property Ỹ q
l,dc(ν) = −Ỹ q̄∗

l,dc(−ν) which guaran-
tees the Hermiticity of the reduced dot operator. The last can
be written for large ωk ∼ W as

gl (iW ) − gl (iωk )

ωk − W
� −D0 |�l |2

2ω2
kW 2

(ωk + W ) ∼ D0 |�l |2
W 3

,

and hence neglected when the limit W → ∞ is taken. The
real valued function gl (iE ) is mostly flat except for the region
|E | � |�l | around zero, where it exhibits a dip. For small gap
(or high temperature), the sampling at the Matsubara frequen-
cies ignores the dip and the density of states is effectively flat.
In that case, we recover the formula for the case of normal
leads

lim
β|�l |→0

S (2)
l (ν)

D0
= �

{
� (0)

(
1

2
+ iβν

2π

)}
+ γ�, (D8)

lim
β|�l |→0

C (2)
l (W )

D0
=�

{
� (0)

(
1

2
+ βW

2π

)}
+ γ�, (D9)

where γ� =∑∞
k=1 ln(1 + 1

k ). This expressions can be em-
ployed to approximate the Matsubara sums for finite β|�l |.

For the anomalous kernel, let us consider the function

h�
l (z) = D0

√
|�l |2

z2 − |�l |2 . (D10)

With the regular branch cut chosen to lie in �{z} ∈
[−|�l |, |�l |], h�

l (z) has an extra branch cut in the imaginary
axis. Considering the continuation of Al (E ) to the complex

plane as �hl (E ), where

hl (z) = D0

√
|�l |2

z2 − |�l |2 sgn(�z + 0+), (D11)

removes the branch cut along the imaginary axis. The integral
can then be calculated employing the same contour as for the
normal integral, yielding

Z̃q
l,dc(ν) = iπ f q̄(ν)hl (ν) + qS̃ (2)

l (ν), (D12)

S̃ (2)
l (ν) = 2π

β

∞∑
k=0

iνhl (iωk )

ω2
k + ν2

. (D13)

It satisfies the property Z̃q
l,dc(ν) = Z̃ q̄∗

l,dc(−ν). Note that the

function S̃ (2)
l (ν) is real, since hl (iν) is purely imaginary. In

a similar manner to the Matsubara sum found in the normal
case, S̃ (2)

l (ν) can be truncated for finite β|�l |, as it decays for
k → ∞ as ∼ω−3

k .
We note that in both integrals it is the gl (z), hl (z) func-

tions that appear in the results and not the densities of states
defined in Eqs. (64) and (65). This is similar to how the
imaginary part of a function arises from a real-valued function
in Kramers-Kronig relations and can be obtained by extending
said theorem to functions with poles in the upper and lower
complex half-planes through contour integration. For the dc
current to sequential tunneling order symmetry properties
force the real parts of these integrals to cancel in the evaluation
of tunneling rates between populations, thus reproducing the
known “Fermi’s golden rule” expressions albeit with a mod-
ified BCS like density of states. Considering higher orders in
the expansion of the kernel, the finite real parts can become
important [101]. For coherences and higher harmonics in the
drive they contribute a Lamb shift.

The sequential tunneling integrals in presence of an ac-
drive, Eqs. (68), (69) and (71), are difficult to evaluate
numerically. However, using the definition of the n − th
Bessel function,

Jn(x) =
∞∑

r=0

(−1)r ( x
2 )2r+n

(r + n)!r!
, (D14)

where we consider n � 0 (J−n(x) = (−1)nJn(x)), we can
solve the integral over time as

∫ ∞

0
dτ exp

[
iτ

h̄

(
ν + E + nh̄ωac

2
+ i0+

)]
Jn

[
εac sin

(
ωacτ

2

)]

= ih̄
∞∑

r=0

2r+n∑
k=0

(−1)r+k
( al εac

4i

)2r+n

(r + n)!r!

(
2r + n

k

)

× 1

i0+ + E + ν + (r + n − k)h̄ωac
. (D15)
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Comparing to Eqs. (D1) and (D2), we find

Ỹ q
l,n(ν) = (−1)n

∞∑
r=0

2r+n∑
k=0

(−1)r+k
( al εac

4i

)2r+n

(r + n)!r!

(
2r + n

k

)
× Ỹ q

l,dc(ν + (r + n − k)h̄ωac), (D16)

Z̃q
l,n(ν) = (i)n

∞∑
r=0

2r+n∑
k=0

(−1)r
( al εac

4

)2r+n

(r + n)!r!

(
2r + n

k

)
× Z̃q

l,dc(ν + (r + n − k)h̄ωac). (D17)

From Eqs. (D16) and (D17), we see that the ac integrals are
sums over the dc integrals, with their arguments offset by mul-
tiples of the photon energy associated to the drive. The factori-
als in the denominator of either summand enable a straightfor-
ward truncation of the sums for numerical evaluation. We fur-
ther remark that for all n and r, i.e., all orders in εac, the imag-
inary part of the normal integral vanish for large |ν| � |r +
n|ωac + β−1. There the Fermi functions in the dc integrals
saturate and the inner sum over k becomes an alternating sum
over binomial coefficients which vanishes by a simple com-
binatorical argument. The real part of the normal integral and
the anomalous integral trivially vanish for large arguments.
This ensures the physical behavior of the ac-drive only induc-
ing a significant response of the system if the dot’s chemical
potential is aligned within an energy window of nωac of the
respective lead for a n-photon assisted tunneling process.

APPENDIX E: ANALYTIC SOLUTION
FOR THE POPULATIONS

For the dc driven case, we define �χ,χ ′ =∑l �
χ,χ ′
l as the

total flow out of the population of the dot state χ ′ to population
χ . Then, the rate equation one has to solve for the steady
state can be brought into the form of a linear inhomogeneous
system⎛⎜⎜⎝

�0,0 �0,↑ �0,↓ �0,2

�↑,0 �↑,↑ �↑,↓ �↑,2

�↓,0 �↓,↑ �↓,↓ �↓,2

1 1 1 1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
P0

P↑
P↓
P2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠. (E1)

The populations can then be given analytically as a function
of the rates �χ,χ ′

as

P0 = 1

N

∑
σ

{�0,σ�σ,2(�0,σ̄ + �2,σ̄ )

+ �σ,σ̄ [�0,σ (�↑,2 + �↓,2) + �0,2(�0,σ + �2,σ )]

+ �0,2�2,σ�0,σ̄ } + �0,2(�0,↑�0,↓ + �2,↑�2,↓), (E2)

P↑ = 1

N

∑
σ

{�↑,0�0,↓�σ,2 + �↑,2�2,↓�σ,0

+ �↑,↓[�0,2�σ,0 + �2,0�σ,2 + �σ,2(�↑,0 + �↓,0)]}
+ (�0,↓ + �2,↓)(�0,2�↑,0 + �2,0�↑,2), (E3)

P↓ = 1

N

∑
σ

{�↓,0�0,↑�σ,2 + �↓,2�2,↑�σ,0

+ �↓,↑[�0,2�σ,0 + �2,0�σ,2 + �σ,2(�↓,0 + �↑,0)]}
+ (�0,↑ + �2,↑)(�0,2�↓,0 + �2,0�↓,2), (E4)

and

P2 = 1

N

∑
σ

{�2,σ̄ �σ̄ ,0(�0,σ + �2,σ )

+ �σ,σ̄ [�2,σ (�σ,0 + �σ̄,0) + �2,0(�0,σ + �2,σ )]

+ �2,0�0,σ �2,σ̄ } + �2,0(�0,↑�0,↓ + �2,↑�2,↓), (E5)

where N is an appropriate normalization constant, such that
P0 + P↑ + P↓ + P2 = 1.

FIG. 10. Stability diagram within a simple Tien-Gordon ap-
proach for the current. (a) Current near the 1-0 charge degeneracy
point obtained employing the Tien-Gordon expression for the cur-
rent, Eq. (F1), showing the simpler structure of replicas compared
to Fig. 5. (b) Difference between the full result of Fig. 5 (a) and the
Tien-Gordon approximation. Parameters: Same as in Fig. 5.
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APPENDIX F: COMPARISON
WITH TIEN-GORDON THEORY

In this Appendix, we elaborate on some aspects of the
photon assisted sidebands exhibited by the current for high
frequency driving. The main difference in our result as com-
pared to a direct application of Tien-Gordon theory to the dc
current, cf. Eq. (F1) is that the photon assisted replicas of the
rates do not cause an identical behavior of the current [9].
In Fig. 10(a), we have represented the results of applying the

Tien-Gordon like equation

I (Vdc,Vg) →
∞∑

k=−∞
J2

k (εac/2)I (Vdc − kh̄ωac/e,Vg), (F1)

for the current with the same parameters as in Fig. 5. It can be
seen, that the two results are markedly different, as expected
due to the nonlinear way in which the rates enter the current.
The difference between the two situations is represented in
Fig. 10(b).
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[50] L. Pavešić and R. Žitko, Qubit based on spin-singlet Yu-Shiba-
Rusinov states, Phys. Rev. B 105, 075129 (2022).

[51] M. Spethmann, X.-P. Zhang, J. Klinovaja, and D. Loss, Cou-
pled superconducting spin qubits with spin-orbit interaction,
Phys. Rev. B 106, 115411 (2022).

[52] F. Bloch, Generalized theory of relaxation, Phys. Rev. 105,
1206 (1957).

[53] A. G. Redfield, The Theory of Relaxation Processes, in Ad-
vances in Magnetic and Optical Resonance, Advances in
Magnetic Resonance, edited by J. S. Waugh (Academic Press,
1965), Vol. 1, pp. 1–32.

[54] J. König, H. Schoeller, and G. Schön, Cotunneling at Reso-
nance for the Single-Electron Transistor, Phys. Rev. Lett. 78,
4482 (1997).

[55] J. König, H. Schoeller, and G. Schön, Cotunneling and renor-
malization effects for the single-electron transistor, Phys. Rev.
B 58, 7882 (1998).

[56] J. N. Pedersen and A. Wacker, Tunneling through nanosys-
tems: Combining broadening with many-particle states, Phys.
Rev. B 72, 195330 (2005).

[57] C. Timm, Tunneling through molecules and quantum dots:
Master-equation approaches, Phys. Rev. B 77, 195416 (2008).

[58] M. Leijnse and M. R. Wegewijs, Kinetic equations for trans-
port through single-molecule transistors, Phys. Rev. B 78,
235424 (2008).

[59] S. Koller, M. Grifoni, M. Leijnse, and M. R. Wegewijs,
Density-operator approaches to transport through interacting
quantum dots: Simplifications in fourth-order perturbation the-
ory, Phys. Rev. B 82, 235307 (2010).

[60] O Karlström, C. Emary, P. Zedler, J. N. Pedersen, C.
Bergenfeldt, P. Samuelsson, T. Brandes, and A. Wacker, A
diagrammatic description of the equations of motion, current
and noise within the second-order von Neumann approach,
J. Phys. A: Math. Theor. 46, 065301 (2013).

[61] B. D. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251 (1962).

[62] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transi-
tion from metallic to tunneling regimes in superconducting
microconstrictions: Excess current, charge imbalance, and su-
percurrent conversion, Phys. Rev. B 25, 4515 (1982).

[63] J. Clarke, Experimental Observation of Pair-Quasiparticle Po-
tential Difference in Nonequilibrium Superconductors, Phys.
Rev. Lett. 28, 1363 (1972).

[64] M. Tinkham, Tunneling generation, relaxation, and tunnel-
ing detection of hole-electron imbalance in superconductors,
Phys. Rev. B 6, 1747 (1972).

[65] M. Kamp and B. Sothmann, Phase-dependent heat and charge
transport through superconductor quantum dot hybrids, Phys.
Rev. B 99, 045428 (2019).

115405-22

https://doi.org/10.1038/ncomms10303
https://doi.org/10.1038/s41467-018-08161-2
https://doi.org/10.1103/PhysRevResearch.4.013087
https://doi.org/10.1103/PhysRevB.61.9109
https://doi.org/10.1021/nl071152w
https://doi.org/10.1080/00018732.2011.624266
https://doi.org/10.1088/1367-2630/9/8/278
https://doi.org/10.1103/PhysRevB.77.134513
https://doi.org/10.1103/PhysRevB.86.235427
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1038/nature05018
https://doi.org/10.1103/PhysRevLett.91.057005
https://doi.org/10.1016/j.ssc.2004.05.031
https://doi.org/10.1038/nnano.2006.54
https://doi.org/10.1103/PhysRevLett.99.126602
https://doi.org/10.1038/nphys1811
https://doi.org/10.1038/nphys1433
https://doi.org/10.1038/nphys1911
https://doi.org/10.1103/PhysRevB.81.144519
https://doi.org/10.1103/PhysRevB.96.125416
https://doi.org/10.1103/PhysRevB.105.075129
https://doi.org/10.1103/PhysRevB.106.115411
https://doi.org/10.1103/PhysRev.105.1206
https://doi.org/10.1103/PhysRevLett.78.4482
https://doi.org/10.1103/PhysRevB.58.7882
https://doi.org/10.1103/PhysRevB.72.195330
https://doi.org/10.1103/PhysRevB.77.195416
https://doi.org/10.1103/PhysRevB.78.235424
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1088/1751-8113/46/6/065301
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevLett.28.1363
https://doi.org/10.1103/PhysRevB.6.1747
https://doi.org/10.1103/PhysRevB.99.045428


PARTICLE CONSERVING APPROACH TO AC-DC DRIVEN … PHYSICAL REVIEW B 107, 115405 (2023)

[66] M. Kamp and B. Sothmann, Higgs-like pair amplitude dynam-
ics in superconductor quantum-dot hybrids, Phys. Rev. B 103,
045414 (2021).

[67] M. Heckschen and B. Sothmann, Pair-amplitude dynamics in
strongly coupled superconductor–quantum dot hybrids, Phys.
Rev. B 105, 045420 (2022).

[68] S. Nakajima, On quantum theory of transport phenomena,
Prog. Theor. Phys. 20, 948 (1958).

[69] R. Zwanzig, Ensemble method in the theory of irreversibility,
J. Chem. Phys. 33, 1338 (1960).

[70] P. W. Anderson, Localized magnetic states in metals, Phys.
Rev. 124, 41 (1961).

[71] J. Hubbard, Electron correlations in narrow energy bands,
Proc. R. Soc. Lond. 276, 238 (1963).

[72] J. Bardeen, Tunneling into Superconductors, Phys. Rev. Lett.
9, 147 (1962).

[73] L. N. Cooper, Bound electron pairs in a degenerate Fermi gas,
Phys. Rev. 104, 1189 (1956).

[74] A. J. Leggett, Quantum Liquids: Bose Condensation and
Cooper Pairing in Condensed-Matter Systems (Oxford Uni-
versity Press, New York, 2006).

[75] Due to particle conservation in this formalism, any displace-
ment currents vanish in the time average. Therefore alternative
conventions differ in at most a phase(sign) for the ac(dc) part
of the current.

[76] B. D. Josephson, The discovery of tunnelling supercurrents,
Rev. Mod. Phys. 46, 251 (1974).

[77] M. Abramowitz and I. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
Applied mathematics series (Dover Publications, New York,
1964).

[78] Any other choice is identical up to an additional phase factor
absorbed into vl,k .

[79] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[80] R. Peierls, Spontaneously broken symmetries, J. Phys. A:
Math. Gen. 24, 5273 (1991).

[81] This property also holds to all orders as higher order kernels at
most contain the convolutions of terms of the form Eqs. (44)
to (46) taken at different times.

[82] A. Levy Yeyati, J. C. Cuevas, A. LóPez-Dávalos, and A.
Martín-Rodero, Resonant tunneling through a small quantum
dot coupled to superconducting leads, Phys. Rev. B 55, R6137
(1997).

[83] R. C. Dynes, V. Narayanamurti, and J. P. Garno, Di-
rect Measurement of Quasiparticle-Lifetime Broadening in a
Strong-Coupled Superconductor, Phys. Rev. Lett. 41, 1509
(1978).

[84] A. Siegert, B.and Donarini and M. Grifoni, Effects of spin
orbit coupling and many-body correlations in STM transport
through copper phthalocyanine, Beilstein J. Nanotechnol. 6,
2452 (2015).

[85] T. S. Ho, S. I. Chu, and J. V. Tietz, Semiclassical many-mode
Floquet theory, Chem. Phys. Lett. 96, 464 (1983).

[86] A. Gómez-León and G. Platero, Designing adiabatic time evo-
lution from high-frequency bichromatic sources, Phys. Rev.
Res. 2, 033412 (2020).

[87] M. Kostur, L. Machura, P. Talkner, P. Hänggi, and J. Łuczka,
Anomalous transport in biased ac-driven Josephson junctions:
Negative conductances, Phys. Rev. B 77, 104509 (2008).

[88] Y. J. Doh, S. De Franceschi, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Andreev reflection versus coulomb blockade
in hybrid semiconductor nanowire devices, Nano Lett. 8, 4098
(2008).

[89] J. König, J. Schmid, H. Schoeller, and G. Schön, Resonant
tunneling through ultrasmall quantum dots: Zero-bias anoma-
lies, magnetic-field dependence, and boson-assisted transport,
Phys. Rev. B 54, 16820 (1996).

[90] J. Kern and M. Grifoni, Transport across an Anderson quan-
tum dot in the intermediate coupling regime, Eur. Phys. J. B
86, 384 (2013).

[91] L. I. Glazman and K. A. Matveev, Resonant Josephson current
through Kondo impurities in a tunnel barrier, J. Exptl. Theoret.
Phys. 49, 570 (1989) [Sov. Phys. JETP 49, 659 (1989)].

[92] R. L. Kautz, Noise, chaos, and the Josephson voltage standard,
Rep. Prog. Phys. 59, 935 (1996).

[93] F. Domínguez, F. Hassler, and G. Platero, Dynamical detection
of Majorana fermions in current-biased nanowires, Phys. Rev.
B 86, 140503(R) (2012).

[94] J. Picó-Cortés, F. Domínguez, and G. Platero, Signatures of
a 4π -periodic supercurrent in the voltage response of capaci-
tively shunted topological Josephson junctions, Phys. Rev. B
96, 125438 (2017).

[95] J. Park, Y. B. Choi, G. H. Lee, and H. J. Lee, Characterization
of Shapiro steps in the presence of a 4π -periodic Josephson
current, Phys. Rev. B 103, 235428 (2021).

[96] H. J. Kwon, V. M. Yakovenko, and K. Sengupta, Fractional
ac Josephson effect in unconventional superconductors, Low
Temp. Phys. 30, 613 (2004).

[97] P. Virtanen and P. Recher, Microwave spectroscopy of Joseph-
son junctions in topological superconductors, Phys. Rev. B 88,
144507 (2013).

[98] Y. H. Li, J. Song, J. Liu, H. Jiang, Q. F. Sun, and X. C. Xie,
Doubled Shapiro steps in a topological Josephson junction,
Phys. Rev. B 97, 045423 (2018).

[99] A. V. Galaktionov and A. D. Zaikin, Fractional Shapiro steps
without fractional Josephson effect, Phys. Rev. B 104, 054521
(2021).

[100] R. B. Saptsov and M. R. Wegewijs, Fermionic superoperators
for zero-temperature nonlinear transport: Real-time perturba-
tion theory and renormalization group for Anderson quantum
dots, Phys. Rev. B 86, 235432 (2012).

[101] C. Rohrmeier and A. Donarini, Pseudospin resonances reveal
synthetic spin-orbit interaction, Phys. Rev. B 103, 205420
(2021).

[102] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[103] M. Žonda, V. Pokorný, V. Janiš, and T. Novotný, Perturbation
theory for an Anderson quantum dot asymmetrically attached
to two superconducting leads, Phys. Rev. B 93, 024523
(2016).

[104] J. Picó-Cortés, AC dynamics of quantum dots and Josephson
junctions for quantum technologies, Ph.D. thesis, Universidad
Autónoma de Madrid, 2021.

115405-23

https://doi.org/10.1103/PhysRevB.103.045414
https://doi.org/10.1103/PhysRevB.105.045420
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.9.147
https://doi.org/10.1103/PhysRev.104.1189
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1088/0305-4470/24/22/011
https://doi.org/10.1103/PhysRevB.55.R6137
https://doi.org/10.1103/PhysRevLett.41.1509
https://doi.org/10.3762/bjnano.6.254
https://doi.org/10.1016/0009-2614(83)80732-5
https://doi.org/10.1103/PhysRevResearch.2.033412
https://doi.org/10.1103/PhysRevB.77.104509
https://doi.org/10.1021/nl801454k
https://doi.org/10.1103/PhysRevB.54.16820
https://doi.org/10.1140/epjb/e2013-40618-9
https://doi.org/10.1088/0034-4885/59/8/001
https://doi.org/10.1103/PhysRevB.86.140503
https://doi.org/10.1103/PhysRevB.96.125438
https://doi.org/10.1103/PhysRevB.103.235428
https://doi.org/10.1063/1.1789931
https://doi.org/10.1103/PhysRevB.88.144507
https://doi.org/10.1103/PhysRevB.97.045423
https://doi.org/10.1103/PhysRevB.104.054521
https://doi.org/10.1103/PhysRevB.86.235432
https://doi.org/10.1103/PhysRevB.103.205420
https://doi.org/10.1103/PhysRevB.93.024523

