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The notion of many-body quantum scars is associated with special eigenstates, usually concen-
trated in certain parts of Hilbert space, that give rise to robust persistent oscillations in a regime
that globally exhibits thermalization. Here we extend these studies to many-body systems pos-
sessing a true classical limit characterized by a high-dimensional chaotic phase space, which are
not subject to any particular dynamical constraint. We demonstrate genuine quantum scarring
of wave functions concentrated in the vicinity of unstable classical periodic mean-field modes in
the paradigmatic Bose-Hubbard model. These peculiar quantum many-body states exhibit distinct
phase-space localization about those classical modes. Their existence is consistent with Heller’s scar
criterion and appears to persist in the thermodynamic long-lattice limit. Launching quantum wave
packets along such scars leads to observable long-lasting oscillations, featuring periods that scale
asymptotically with classical Lyapunov exponents, and displaying intrinsic irregularities that reflect
the underlying chaotic dynamics, as opposed to regular tunnel oscillations.

The past decade has witnessed tremendous progress
in the understanding of the key mechanisms that inhibit
thermalization in complex quantum many-body systems.
While many-body localization generically arises in the
presence of a significant amount of disorder and/or in-
teraction [1–5], nongeneric phenomena of weak ergodic-
ity breaking, typically manifested by persistent oscilla-
tory behaviour of observables [6], can occur in systems
that globally exhibit eigenstate thermalization in the con-
sidered parameter regime. Such ergodicity breaking be-
haviour is generally attributed to scarring [7], a concept
that was originally introduced in single-particle chaotic
quantum systems exhibiting two degrees of freedom [8, 9].
A scar in the proper sense refers to a quantum eigenstate
that is semiclassically anchored on an unstable periodic
orbit [8, 9] instead of being equidistributed over the en-
tire chaotic phase space as predicted by the eigenstate
thermalization hypothesis [10, 11]. As argued by Heller
[8], such a scarred eigenstate can exist provided the pe-
riod T of the orbit is relatively short and its Lyapunov
exponent λ relatively weak, i.e. Tλ . 2π, such that a
wave packet that is launched along this orbit will almost
recover its original shape after one period. Scars are not
to be confused with ordinary “regular” quantum states
anchored on stable periodic orbits, whose existence and
characteristics are most straightforwardly inferred from
Einstein-Brillouin-Keller quantization rules [12].

The recent discovery of many-body scars in quantum
simulators [6, 13], followed by numerous theoretical stud-
ies employing spin chains, PXP models, or dynamically
constrained systems (e.g. [7, 14–24], see [25–27] for re-
cent reviews), calls for an investigation of those scar
characteristics in the high dimensional domain. In the
context of the widely considered spin-chain like systems
such a study is however hampered by the fact that those
quantum Hamiltonians do not have an obvious classi-
cal counterpart that would naturally arise from a semi-
classical evaluation of Feynman’s path integral [28]. Ar-
tificial classical phase spaces can nevertheless be con-

FIG. 1. Persistent oscillations reflecting quantum
chaotic scarring – (a,b): Time evolution of the on-site oc-
cupancy 〈n̂2〉. When initialized in staggered dimer product
states |πm〉 [see Eq. (9)] the system oscillates [blue lines, with
(a) m = 0 and (b) m = 2] between coupled partners (c) |πm〉
and (d) |πN−m〉, symmetry-related by 90◦-rotation of the pla-
quette. In contrast, classical dynamics (as implemented by
TWA, black) as well as quantum evolution of initial Fock
states |N−m
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〉 (dotted gray) undergo fast ther-

malization (for particle number N = 40 and effective interac-
tion γ=0.95).

structed using the time-dependent variational principle
[18], by which means unstable periodic orbits associated
with many-body scars can indeed be identified.

To extend the investigations of many-body scars to
quantum systems possessing a true classical (chaotic)
limit, we propose here to study many-body scars in Bose-
Hubbard (BH) systems, whose high-dimensional classical
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counterpart is well defined and given in terms of a dis-
crete nonlinear Schrödinger equation. Unlike other recent
studies on scarring in BH systems [21–23], we shall not
consider a dynamically constrained configuration owing
to the presence of correlated hopping, periodic driving,
or tilting, but study unconstrained homogeneous rings of
finite size, square plaquettes in particular. The scars that
we find there are anchored on unstable classical staggered
dimer configurations, for which the exchange of popula-
tion between adjacent lattice sites is dynamically sup-
pressed despite nonvanishing hopping matrix elements.
As is shown in Fig. 1, a preparation of a quantum state
on such a classical configuration gives rise to persistent
oscillatory behaviour in one-body observables, indicat-
ing the absence of thermalization. Irregular features are
identified in these oscillations [panels (a),(b)], in line with
the high dimensionality of the underlying chaotic phase
space in which the dynamics takes place.

We consider N interacting bosonic particles confined
to a one-dimensional periodic lattice of L wells. This
system is described by the BH Hamiltonian

Ĥ = −J
L∑
l=1

(â†l+1âl + â†l âl+1) +
U

2

L∑
l=1

n̂l(n̂l − 1) (1)

with bosonic on-site creation-, annihilation-, and num-

ber operators â†l , âl, and n̂l = â†l âl, where we have
nearest-neighbor hopping J , repulsive on-site interac-
tion U > 0 and periodic boundary conditions, l ∈ ZL.
It formally admits a well-defined classical limit where
the system is described by a condensate wave function
ψ = (ψ1, . . . , ψL) ∈ CL whose time evolution is governed
by the discrete non-linear Schrödinger equation (DNLSE)

iψ̇l = −J(ψl−1 + ψl+1) + U(ψ∗l ψl − 1)ψl (2)

(setting ~ = 1). The latter is obtained as saddle point
equation in the path integral formulation of the quantum
system [29–31], yielding the quantum-to-classical map-

pings âl 7→ ψl, â
†
l 7→ψ∗l , and n̂l+1/2=(âlâ

†
l + â†l âl)/2 7→

|ψl|2. As a purely classical description, Eq. (2) becomes
formally valid in the mean-field regime of large average
site occupancies N/L→∞ and small U → 0, scaled such
that the effective dimensionless interaction parameter

γ = (N/L+ 1/2)U/J (3)

is kept fixed. Up to a scaling of the time t and a constant
shift in energy, γ is the only parameter of the DNLSE.

We now focus on site numbers L that are multiples
of four. In that case, the staggered dimer configuration,
generally characterized by a wave function of the form

ψ = (ψ1, ψ2,−ψ1,−ψ2, ψ1, ψ2,−ψ1,−ψ2, . . .) (4)

for a pair of complex amplitudes ψ1, ψ2, represents a fixed
point of the site occupancies in the framework of the clas-
sical DNLSE (2). Despite a nonzero J > 0, hopping is
dynamically suppressed in this configuration, and the site

amplitudes ψl feature only phase oscillations with fre-
quencies ωl = U(nl− 1) at constant nl = |ψl(0)|2. While
this resembles the Mott-insulator physics of U/J → ∞,
it is here a result of a fragile balance, crucially depend-
ing on the equal populations and relative phase of π be-
tween next-nearest neighbors. A slight deviation from
the staggered-dimer manifold MSD, given by all ψ of
the form (4), breaks this balance, leading to population
transfer that may further push the system away from
this manifold. As a result, staggered dimer waves are,
in a wide parameter range, at the same time fundamen-
tal short and unstable periodic modes, thus representing
excellent candidates for scarring.

Semiclassically, the phenomenon of scarring is gener-
ally described as concentration of particular eigenstates
of the Hamiltonian along unstable periodic orbits of the
corresponding classical system that are at least locally
embedded in a patch of chaotic motion. In the present
context, “periodicity” of a mean-field solution has to be
understood modulo a global phase, i.e., we call ψ(t) pe-
riodic with period T if for some (irrelevant) θ ∈ R

ψ(t+ T ) = ψ(t)eiθ . (5)

To test whether a given state is scarred by such a periodic
orbit ψ(t), or, more generically, by a family of such orbits
defined in a finite range of energy, we employ so-called
tube states [32, 33] constructed as

|Tψ(t)〉 ≡ N
∫ T

0

dt ei[S(t)−πµ(t)/2] |ψ(t)〉N . (6)

Here we define the number-projected coherent state

|ψ〉N =
1√
N !

(eψ · a†)N |0〉 ∝ Π̂Neψ·a
†
|0〉 (7)

centered about the phase-space point ψ, with eψ ≡
ψ/
√
ψ ·ψ∗, |0〉 the vacuum state, and Π̂N the projec-

tor to the N -particle sector. These tube states are forced
to be concentrated along the trajectory by placing a wave
packet |ψ(t)〉N at each of its points. The dressing with a
phase factor determined by classical dynamics, contain-
ing the accumulated classical action S and Maslov index
µ, ensures constructive interference of neighboring wave
packets and is here especially devised for oscillator-like
systems [34]. Demanding the wave packets at t = 0 and
after time T to be in phase gives the Bohr-Sommerfeld
(BS) type quantization condition

S(T )− πµ(T )/2 +Nθ ≡ 0 (mod 2π) , (8)

singling out a discrete set of quantized orbits and corre-
sponding tube states for each family of periodic orbits.

To ease discussions, we first focus on the simplest
case L = 4, corresponding to a single square plaque-
tte, and thus consider the manifold of staggered dimers
given by condensate wave functions of the form ψ =
(ψ1, ψ2,−ψ1,−ψ2). Then the above semiclassical con-
struction yields quantized tube states (6) with an intrigu-
ing structure. Specifically, one finds that the m-th quan-
tized staggered dimer tube state |Tm〉, m ∈ {0, . . . , N},
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starting with maximal population of sites l=1, 3 atm=0,
is very well described by a product state of the form

|Tm〉 ' |πm〉 ≡
∣∣(ψ1,−ψ1)

〉(1,3)

N−m ⊗
∣∣(ψ2,−ψ2)

〉(2,4)

m
. (9)

The two factors are states (7) on the Hilbert sub-
spaces living on sites (1, 3) and (2, 4), respectively [see
Fig. 1(c),(d)]. As a direct product of number states on
disjoint subspaces, the states (9) do not show any phase
coherence between the two diagonals (1, 3) and (2, 4), as
is classically evident from the different phase velocities
ω1 and ω2, whereas the phase relation between the two
opposite sites within each diagonal is fixed to π.

A characteristic hallmark for the existence of many-
body scars anchored on staggered dimers can indeed be
found by the numerical propagation of quantum many-
body wave packets that are initialized on the states (9).
As shown in Fig. 1, persistent oscillations, displaying no
decay over very long time scales (blue lines), arise in the
mean site occupancies, in contrast to classical simulations
based on the Truncated Wigner Approximation (TWA)
that would predict rapid relaxation to thermal equilib-
rium (black). Note that such a relaxation behaviour
would also occur (grey) if the wave packet was initial-
ized on a Fock state |ν1, ν2, ν1, ν2〉 having the same mean
site occupancies ν1 = (N −m)/2 and ν2 = m/2 as the
state (9). This demonstrates the importance of the spe-
cific structure of the staggered dimer states for the oc-
currence of scarring.

Further confirmation for the existence of genuine quan-
tum scarring on staggered dimers is obtained via several
(semi-)classical indicators, which are evaluated in Fig. 2
as functions of the imbalance z = (n1 − n2)/(n1 + n2).
For the chosen intermediate coupling γ = 0.95, Eq. (3),
we find that quantum scars are likely to occur, inde-
pendently of N , for imbalances z & z∗ with z∗ ' 0.33
(dotted vertical line), where dynamics is chaotic as indi-
cated by Fig. 2a). The likelihood for scarring increases
when approaching the maximally imbalanced limit due to
ever shorter periods T . This is demonstrated in Fig. 2b),
where we use an a-priori indicator 2πχ/λ+

ΣT > 1 for pe-
riodic orbits to support quantum scars, generalizing the
heuristic Heller criterion [8] for two-dimensional single-
particle systems [34, 35]. Here, λ+

Σ ≡ Σ>j λj is the sum of

positive stability exponents, and χ ≡
∏>
j 2λj/(λth + λj)

is a heuristic factor to suppress close-to-regular or mixed
dynamics with a threshold chosen as λth = 0.3J .

Additionally, we investigate in Fig. 2c) the phase-space
localization of the corresponding tube states by means of
the inverse participation ratio (IPR)

IPR|φ〉 ≡ N
∫

d2Lψ δ
(
||ψ||2 − L/2−N

)
Q|φ〉(ψ)2 (10)

of a state |φ〉, defined in terms of the Husimi function

Q|φ〉(ψ) ≡
∣∣〈φ|ψ〉N ∣∣2, which is independent of the single-

particle basis owing to canonical invariance. We com-
pare the IPR of tube states to the one of random-wave
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FIG. 2. Indicators for scarring – (a) Dominant stabil-
ity exponents, λ1,2 ≥ 0, along the staggered-dimer manifold.
Central orbits of Bohr-Sommerfeld (BS)-quantized tubes are
marked by dots. Inset: Husimi section of one quantized tube
T −2 in the manifold mapped to a Bloch sphere. (b) Heuristic
rating for the likelihood of quantum scarring based on the
Heller criterion (see text). (c) Inverse participation ratio (10)
of BS-quantized tube states (black dots) and random-wave
states (green dots) on local constant-energy layers (see text).
As a guide to the eye, a running median is added (solid green).

states spread across the local layers of constant energy in
which the corresponding relevant orbits are embedded.
These locally ergodic states are obtained similar to the
tubes (6) but with slightly perturbed initial conditions,
putting wave packets |ψ(t)〉N with random phases after
finite time steps dt 7→ ∆t and following the classical dy-
namics long enough to saturate the local constant-energy
surface. While in the regime z . z∗ of mixed regular
and chaotic dynamics the tubes are found to fill up thin
constant-energy layers alike random waves, they are, as
seen in Fig. 2(c), significantly more localized than the
latter in the dominantly chaotic regime z > z∗, thereby
confirming their nonclassical scar-like nature [36].

To confirm the existence of actual quantum scarring
of staggered dimer solutions, we perform exact diagonal-
ization and examine all individual eigenstates for their
phase-space localization and overlap with tube states.
Figure 3 shows again the case γ = 0.95, for which the
energy range relevant for staggered dimers lies in the
central spectrum of highly excited states, as indicated by
the highlighted region of the inset. We focus on the sub-
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FIG. 3. Phase-space localization of eigenstates – as
measured by the IPR (10) for γ = 0.95 and N = 28 in
the central energy range where staggered dimer waves are
located [highlighted regions in the full-range spectra (+,+)
and (−,−) shown as inset]. The overlap |〈φ|T ±m 〉|2 of eigen-
states |φ〉 with the symmetric and anti-symmetric tube states,
whenever greater than 0.1, is indicated by the size of triangles
pointing up and down, respectively. In the unstable regime
z & z∗, these are shown in blue and red, respectively, with
shading and labels marking eigenstates of dominant overlap.
Locally ergodic random waves about MSD (see Fig. 2c) are
shown in orange.

spectra with the symmetry (+,+), denoting fully even
parity with respect to the two diagonal exchange opera-
tions (sites 1↔ 3 as well as 2↔ 4) of the plaquette. For
even particle number N this symmetry class is shared by
the staggered dimer tube states of even BS quantization
index m [odd m gives tube states of odd parity (−,−)].
We find a small number of eigenstates that are anoma-
lously localized as compared to the majority of eigen-
states with comparable energy. As confirmed by strong
overlaps with tube states, a big part of these can be di-
rectly identified as a class of staggered-dimer-like states.
Apart from some genuinely “regular” states featuring a
high IPR due to localization on classically stable phase-
space structures which are, hence, not scars according to
the definition of this concept [8]), this class also contains
eigenstates that are strongly concentrated along unstable
staggered-dimer solutions embedded in chaotic portions
of the phase space. Since their number scales propor-
tionally to N as does the number of tube states (9), they
constitute a vanishing fraction of the full spectra with
Hilbert-space dimension ∼ NL−1 as N →∞. We thus
find all criteria for genuine quantum scarring fulfilled.
Note that even in the deep quantum regime of very few
particles, where quantum-to-classical correspondence is
no longer expected to hold, we can unambiguously iden-
tify direct descendants of genuine quantum scars by main-
taining the link between tube states and eigenstates while
successively lowering N [34].

Let us discuss the absence of regularity in the oscil-

latory behaviour of the mean site occupancies, shown
in Fig. 1. They oscillate due to the (anti-)symmetry
of eigenstates with respect to the rotation of the lat-
tice by one site, induced by the operator R̂1, such that
scar states in the Hamiltonian’s eigenspectrum exhibit a
strong overlap with the two linear combinations |T ±m 〉 ∝
(1±R̂1)|Tm〉. Hence, the preparation of the quantum sys-
tem on a staggered-dimer state with broken symmetry,
such as |Tm〉, is expected to give rise to Rabi-like oscil-

lations between |Tm〉 and R̂1|Tm〉, with a frequency that
corresponds to the level splitting of the two eigenstates
|T ±m 〉. This simplified reasoning is to be amended due to
the fact that several eigenstates can generally be scarred
with the same orbit [8, 33]. An initial product state |πm〉
gives thus rise to a superposition of corresponding fre-
quencies and amplitudes, resulting in beatings that do
not feature a clean harmonic behaviour. In a semiclas-
sical picture, the beating period can be estimated to be
related to the classical rate to leave (or approach) the
vicinity of one of these orbits, i.e., to be proportional
to their inverse stability exponents λj [37]. We confirm
this scaling for the regime of weak to moderate inter-
actions [34] where all classical stability exponents tend
to be equal to a unique Lyapunov exponent, λj ' λL,

such that a uniform time scale ∼ λ−1
L emerges. Most no-

tably, this oscillatory behaviour is in stark contrast to the
more pronounced and regular oscillations that one finds
in a regime of locally stable or close-to-stable classical
dynamics, where by definition scars cannot occur [34].

Scarring on the staggered dimer configuration (4) is not
restricted to the 4-site plaquette but can be found also
for larger systems [34], such as the L = 8 site BH ring,
where scars are anchored on wave functions of the form
|(ψ1,−ψ1, ψ1,−ψ1)〉(1,3,5,7)

N−m ⊗|(ψ2,−ψ2, ψ2,−ψ2)〉(2,4,6,8)
m ,

as well as the L= 12 site ring. In both cases, similar ir-
regular long-period oscillations are encountered as for the
4-site plaquette [34]. The staggered-dimer modes in those
high-L BH rings are found to have very similar Lyapunov
exponents λj ∼ γJ and periods T ∼ π/γJ , yielding a γ-
independent Heller-type indicator 2π/λ+

ΣT ∼ 2/(L − 2)
that scales inversely with the number of chaotic degrees
of freedom transverse to the mode. This would a pri-
ori predict a decreasing likelihood for the existence of
staggered-dimer scars with increasing L. However, we
expect this effect to be counterbalanced by the increas-
ing number ν = L/4 of discrete rotational symmetries
that staggered dimer configurations feature. The associ-
ated quantum states live in the corresponding symmetry
subspaces whose dimensions are consequently lowered by
a factor ∝ 1/L with respect to the full Hilbert space and
which thus exhibit a reduced density of states as com-
pared to the latter. This reduction factor is expected [34]
to effectively enhance the otherwise deficient Heller-type
indicator to a sufficient extent, yielding support for the
existence of staggered dimer scars in the thermodynamic
long-lattice limit; see, e.g., scarring within a 1.35 × 106-
dimensional Hilbert space in the specific case of a L = 12
site BH ring [34].
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In summary, we present solid evidence for the exis-
tence of genuine scars in a preeminent bosonic many-
body system that is not subject to any dynamical con-
straint, namely a homogeneous disorder-free BH ring.
These scars form in the vicinity of the classical staggered
dimer configuration (4) where population exchange be-
tween sites is dynamically suppressed despite a nonvan-
ishing hopping parameter. The time evolution of quan-
tum states launched on such staggered dimers reveals
an intriguing feature that we conjecture to be generic
for many-body scars in a high-dimensional chaotic phase
space, namely the existence of persistent long-period os-
cillations that do not exhibit a well identifiable regularity.
This feature is open to experimental verification within
state-of-the-art quantum simulators employing ultracold

bosonic atoms in optical lattices [5]. There, staggered-
dimer product states (9) can be created by quantum
quenches starting, e.g., from spatially separated left- and
right-diagonal sublattices that are brought together at
t = 0 to form the plaquette. We believe that scarring is a
generic phenomenon in high-dimensional bosonic many-
body systems exhibiting chaotic dynamics, and our study
lays proper foundations for their unambiguous identifica-
tion and characterization.
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J. C. Halimeh, and Z. Papić, Phys. Rev. B 106, 104302
(2022).

[25] M. Serbyn, D. A. Abanin, and Z. Papić, Nature Physics
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to host quantum scars for sufficiently large total particle
number N . For all investigated parameters, however, a
clear characterization of tube states as strongly embedded
within locally ergodic patches by means of Eq. (10) was
only possible for the steadily chaotic regime z & z∗.

[37] Q. Hummel, B. Geiger, J. D. Urbina, and K. Richter,
Phys. Rev. Lett. 123, 160401 (2019).

SUPPLEMENTAL MATERIAL

Appendix A: Details of the tube state construction

The construction of tube states as auxiliary quantum
states that are concentrated along a given periodic or-
bit of the underlying classical system, governed by the
discrete non-linear Schrödinger equation (DNLSE), re-
lies solely on classical properties of that orbit. A com-
monly used prescription [1] is to place isotropic Gaussian
wave packets along the periodic trajectory, dressed with
a phase factor that accounts for the accumulation of the
classical action S(t) and a Maslov-type phase µ(t). After
one full period, t = T , these have to coincide with the
canonical action S(T ) =

∮
dq · p and the Maslov phase

µ(T ) [1] in order to guarantee that the trajectory ful-
fills the correct Bohr-Sommerfeld quantization condition
if and only if the wave packet after one full period is in
phase with the initial one. While S(T ) and µ(T ) are thus
uniquely determined canonical invariants, the evolution
S(t) and µ(t) for intermediate times t /∈ TZ are usually
chosen to fit the specifics of the system at hand.

Here, we employ a variant devised for oscillator-like
systems by using the radial action

S(t) =
1

2

∫ t

0

(p · dq− q · dp) (A1)

and

µ(t) =
1

π

∫ t

0

d arg det(At − iBt) , (A2)

where the matrices At and Bt are uniquely determined
by the polar decomposition

Mt = Ut · Pt ≡
(
At −Bt
Bt At

)
· Pt (A3)

of the Jacobian Mt. The latter encodes the evolution of
deviations δz(t) = (δq(t), δp(t)) about the given trajec-
tory z(t) = (q(t),p(t)) in linearized approximation:

δz(t) = Mt · δz(0) . (A4)

While the symplectic and orthogonal matrix Ut describes
the winding of invariant manifolds around the reference
trajectory, Pt = (MT

t Mt)
1/2 is positive definite with

eigenvalues eλj(t)t, λj ∈ R. Since Mt is symplectic, its
singular values come in pairs of mutual reciprocals, i.e.,
for each j there is a k 6= j with λk(t) = −λj(t). For a full
period t = T , we omit the argument, writing λj ≡ λj(T ),
which we refer to as the stability exponents of the peri-
odic orbit under consideration. Due to periodicity, they
are identical to the Lyapunov spectrum of the orbit.

The choice (A1) for S(t) and (A2) for µ(t) distributes
the accumulated phase most evenly along an oscillator
orbit. Under this prescription, the orbits of a simple
harmonic oscillator [or its square, as in the single-site

http://dx.doi.org/10.1103/PhysRevLett.123.160401


7

case of the DNLSE, see Eq. (2) of the main text] lead
to Bohr-Sommerfeld quantized tube states that coincide
with the exact eigenstates of the corresponding quantum
Hamiltonian.

Appendix B: Generalization of Heller’s scar criterion

1. Multiple dimensions

Here we define and generalize a heuristic criterion
for the occurrence of quantum scarring on a particular
unstable periodic orbit of a classical Hamiltonian sys-
tem with an arbitrary number of degrees of freedom
d ≥ 2. We closely follow Heller’s argument for d = 2
[2], which is based on wave packet propagation being
essentially classical for times well below the Ehrenfest
time tE = λ−1

L log ~−1
eff . Here λL is the classical Lyapunov

exponent describing the degree of instability and ~eff is
Planck’s constant divided by a typical classical action
of the system. A Gaussian wave packet that is initially
localized on a point of an unstable periodic trajectory un-
dergoes, under classical evolution for one full period T ,
simultaneously stretching and compression in the direc-
tions corresponding to the unstable and stable manifolds,
respectively. As a consequence, its quantum probability
to return is a periodically recurring signal with an expo-
nential damping ∼ e−λt arising from the deformation of
the wave packet up to times of the order of tE.

From a semi-quantitative Fourrier analysis of such a
characteristic signal, Heller found an estimate for the up-
per bound of the number of eigenstates participating in
the process in terms of the period T and the damping
rate λ [2]. If this approximate bound is well below the
participation ratio expected from the eigenstate thermal-
ization hypothesis [3, 4], there has to be a number of
scarred eigenstates that are anomalously localized along
the classical trajectory. In order to translate the result-
ing heuristic criterion λT . 2π to an arbitrary number
of degrees of freedom d ≥ 2, it is thus sufficient to de-
termine the exponential damping of the return signal in
terms of the stability matrix M ≡MT (see Appendix A),
which encodes the deformation of the classically evolved
wave packet.

To this end, we linearize the classical dynamics about
the periodic orbit within a Truncated Wigner Approxi-
mation [5], i.e., we express the classical return probability
after one period as the phase-space integral

P cl
ret(T ) ∼

∫
d2dx exp

[
−(x− x0)T(1 + MTM)(x− x0)

]
(B1)

for a wave packet with centroid x0 and uncertainties
equally distributed among position and momentum coor-
dinates. Correspondingly, the classical return probability
after n periods is, up to a constant prefactor,

P cl
ret(nT ) ∼ det

(
1 + (MT)nMn

)−1/2
. (B2)

To proceed with our derivation, we assume for simplic-
ity that the eigenvectors of M are orthogonal, i.e., that
MT = M. Further, since M is a symplectic matrix we
can write its 2d eigenvalues as µj ≡ eλjT with stability
exponents ordered such that λj ≥ 0 and λj+d = −λj for
j = 1, . . . , d. We denote the number of independent con-
stants of motion by c. Each of them will contribute two
vanishing exponents which we associate with the indices
j = d−c+1, . . . , d and j = 2d−c+1, . . . , 2d. This yields,
after appropriate ordering,

det
(
1 + (MT)nMn

)
= 22c

d−c∏
j=1

(1 + e2nλjT︸ ︷︷ ︸
|·|>1

)(1 + e−2nλjT︸ ︷︷ ︸
|·|<1

) .

(B3)
To extract the damping in the regime where P cl

ret de-
creases exponentially with n, we neglect e−2nλjT com-
pared to unity. Combining Eqs. (B2) and (B3) then
yields

P cl
ret(nT ) ∼ e−λ

+
ΣnT (B4)

with the sum of positive stability exponents

λ+
Σ ≡

d−c∑
j=1

λj ≡
>∑
j

λj . (B5)

The generalization to d dimensions of the heuristic a-
priori Heller-type criterion for quantum scarring of a par-
ticular unstable periodic orbit is thus

λ+
ΣT . 2π . (B6)

We use this equation to estimate the likelihood for scar-
ring in BH models with L = 4ν sites.

2. Discrete symmetries

The original derivation [2] of Heller’s criterion and
along with it the multidimensional generalization (see
appendix B 1) does not account for the presence of dis-
crete symmetries. Consider a discrete symmetry in form
of a finite symmetry group G with a group action on
the Hilbert space H given as the unitary transforma-
tions Û(g), g ∈ G that leave the system invariant, i.e.,

Û†ĤÛ = Ĥ, and which correspond to classical point
transformations q 7→ fg(q) acting on the classical coor-

dinates q such that 〈fg(q)|Û(g)|φ〉 = 〈q|φ〉 for arbitrary
quantum states |φ〉 and coordinate eigenstates |q〉. The
Hamiltonian then generically assumes a block-diagonal
structure with blocks corresponding to the independent
symmetry subspaces Hα,i of Hilbert space. These corre-
spond to the (components of the) Nir irreducible repre-
sentationsM (α) ofG, henceforth called irreps. Each irrep
α has a dimension sα and its components i = 1, . . . , sα
constitute independent Hilbert subspaces with degen-
erate eigenvalues of Ĥ. Formally, there exists a basis
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{|α, i,m〉} with

Û(g)|α, i,m〉 =

sα∑
j=1

M
(α)
ij (g)|α, i,m〉 ,

Ĥ|α, i,m〉 = E(α)
m |α, i,m〉 ,

(B7)

with i, j indexing the sα components of irrep α and m
indexing the different eigenstates within one component
i of α. The total number of symmetry subspaces Hα,i is
Ns =

∑
α sα.

Under this premise, we give a modified version of
Heller’s derivation, closely following the original, indicat-
ing that under certain assumptions scarring within sym-
metry subspaces can occur even if the Heller criterion is
not fulfilled. For this purpose, we may jump over details
that are not touched by the symmetry aspects. If an ini-
tial wave packet |ψ〉 is centered on a point of a classical
periodic orbit which lies within a certain classical sym-
metry subspace, it generically also inherits certain sym-
metry properties as a Hilbert space element at quantum
level. In general, it can be written as a unique superposi-
tion of states belonging to the symmetry subspaces Hα,i.
In other words, we have

|ψ〉 ∈
⊕

(α,i)∈Aψ

Hα,i ≡ Hψ , (B8)

where Aψ is the set of all symmetry subspaces occupied
by |ψ〉, indexed by (α, i). The central quantities of inter-
est are the spectral intensities

In = |〈n|ψ〉|2 (B9)

of the wave packet, where |n〉 are the eigenstates of the
Hamiltonian. The basic reasoning behind Heller’s cri-
terion is to give two different estimates for these inten-
sities: one based on Berry’s conjecture, i.e., assuming
the eigenstate thermalization hypothesis (ETH), and the
other based on classical wave packet dynamics, which is
valid for short enough times. When the two contradict
each other, it indicates a violation of ETH, i.e., quantum
scarring occurs.

One way to express the ETH is to say that the phase
space density of an eigenstate |n〉, i.e., the Wigner trans-
form of the density matrix |n〉〈n| basically follows the
microcanonical density

ρm(q,p) = δ[E −H(q,p)]/D(E) , (B10)

where E is the energy En of the eigenstate |n〉, H the
classical Hamiltonian, or more precisely, the Wigner sym-
bol of the quantum Hamiltonian, and D(E) is the (total)
density of states.

With discrete symmetries present, only spectral inten-
sities of states belonging to Hψ, |n〉 ∈ Hψ, are non-zero,
which we also write as n ∈ Nψ, i.e., Nψ is the set of all
quantum numbers n belonging to the states in Hψ. Thus
we look at spectral intesities In of eigenstates in Hψ,

i.e., that belong to those symmetry classes (α, i) ∈ Aψ
that are occupied by the wave packet |ψ〉. As a sim-
plification, we will use the unmodified microcanonical
density (B10) also for eigenstates of a specific symme-
try class. We neglect the effect of enhanced or lowered
density very close to the various symmetry manifolds in
phase space which comes with each specific symmetry
class (α, i), and which becomes arbitrarily narrow in the
semiclassical limit ~ → 0. Under this assumption the
normalization in (B10) with the total density of states
D(E) is still consistent. We must not use here the re-
duced density of states Dα,i(E) of the symmetry sub-
space Hα,i, as can be easily seen from the normalization
condition tr(|n〉〈n|) = 1, written as phase space integral

(2π~)−L
∫

dLq dLp δ[E −H(q,p)]/D(E) = 1 . (B11)

As the ETH-based estimate for the non-zero spectral in-
tensities we get thus

IETH
n '

{
Sψ(En)/D(En) for |n〉 ∈ Hψ ,
0 for |n〉 /∈ Hψ ,

(B12)

where Sψ(E) is the normalized energy probability distri-
bution for the wave packet |ψ〉.

We turn now to the finite-resolution spectrum

ετ (ω) =
1

π

∑
n∈Nψ

sin[(En/~− ω)τ ]

En/~− ω
|〈n|ψ〉|2 , (B13)

which equals the Fourier transform

ετ (ω) =
1

2π

∫ τ

−τ
dt eiωt〈ψ|ψ(t)〉 (B14)

of the return signal 〈ψ|ψ(t)〉 with resolution τ . From clas-
sical wave packet propagation one knows that the return
signal is a series of exponentially damped recurrences,
with a time interval given by the classical period Tcl and
the damping exp(−λ+

Σt/2) given by the sum λ+
Σ of posi-

tive stability exponents of the classical periodic orbit that
the wave packet has been placed on initially. This is a
valid description for times well below the Ehrenfest time
and is not affected by symmetries. From this one infers
that the finite-resolution spectrum, calculated for a value
of τ that exceeds the time scale when the recurrences
have exhausted, is a series of broadened bands, separated
by the spacing ∆ω = ωcl = 2π/Tcl and each with a band-
width λ+

Σ . Recognizing that the low-resolution spectrum
ετ (ω), with τ in between the first decay time scale and
the first recurrence time scale, is equal to the normal-
ized energy probability distribution Sψ(E) with E = ~ω,
one can estimate the intensities of eigenstates within one
band. The total intensity Ib

tot within one band (located
at energy Eb) is equal to the energy probability distribu-
tion integrated over one band-spacing,

Ib
tot = ~∆ω Sψ(Eb) . (B15)
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This total intensity has to be shared among the symmetry
classes (α, i) ∈ Aψ relevant for our wave packet. Assum-
ing equal sharing among all relevant eigenstates gives the
intensity in the band contributed by one symmetry class
(α, i) as

Ib
α,i =

Nb
α,i

Nb
ψ

Ib
tot , (B16)

where

Nb
α,i = Dα,i(Eb)~λ+

Σ (B17)

is the number of eigenstates in the band that are of sym-
metry (α, i), with Dα,i(E) the density of states of the
corresponding subspace, and where

Nb
ψ =

∑
(α,i)∈Aψ

Nb
α,i (B18)

is the number of eigenstates in the band that are rele-
vant for |ψ〉 as regards symmetry. The average intensity
Ib
n = Ib

α,i/N
b
α,i = Ib

tot/N
b
ψ of one (symmetry-relevant)

eigenstate |n〉 ∈ Hψ in the band is thus

Ib
n =

2π

λ+
ΣT
× Sψ(Eb)∑

(α,i)∈Aψ Dα,i(Eb)
. (B19)

The ratio between the average intensity based on classi-
cal wave propagation and spectral band analysis to the
estimate from the ETH is thus

Ib
n

IETH
n

' 2π

λ+
ΣT
× D(Eb)∑

(α,i)∈Aψ Dα,i(Eb)
≡ 2π

λ+
ΣT

gsym ,

(B20)
where the first term is the Heller-type indicator without
symmetry (but generalized to multiple dimensions). This
Heller-type indicator is then effectively enhanced due to
symmetry by the factor gsym given by the ratio of the
total density of states to the combined density of states
of only the relevant symmetries. In full analogy with
the conventional Heller criterion, a value of this indicator
that exceeds unity would here indicate the (weak) break-
ing of ergodicity, i.e., that there are some eigenstates that
have increased overlap with wave packets placed along
the periodic orbit and exhibit an enhanced probability
density along the orbit, i.e., they violate the eigenstate
thermalization hypothesis.

This finding is in line with the fact that conventional
quantum scarring in two-dimensional systems has been
observed to be most prominent for scars along orbits in
symmetry planes [2].

Appendix C: Scars in the deep quantum regime

As pointed out in the main text, scarring around stag-
gered dimer configurations is predicted to occur in a
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FIG. C1. Inverse participation ratio (IPR) measuring phase
space localization. Same as Fig. 3 of the main text but for
N = 16 (left column) and N = 8 (right column). We can
clearly identify scars anchored about the staggered dimer con-
figuration that are descendants of the scars found for N = 28.

chaotic parameter regime featuring an intermediate cou-
pling parameter γ ' 1 as well as a sufficiently strong
population imbalance z between the even and odd sites
of the plaquette. Keeping those two parameters fixed,
we can now use the freedom of lowering the average site
occupancy to explore how far the concept of staggered-
dimer scars can be extrapolated from the semiclassical
into the deep quantum regime.

In analogy with the analysis in the main text for
N/L = 7 (see Fig. 3 of the main text), we also find for
lower average site occupancies classes of eigenstates that
exhibit strong overlap with the BS-quantized tube states
anchored at staggered-dimer orbits. In a certain regime,
these classical solutions are again unstable, such that the
criteria for quantum scarring would technically be ful-
filled. However, when leaving the semiclassical regime
one has to be careful here and keep in mind that in
the deep quantum regime the discrimination of quantum
states by localization in phase space—and in particular
along periodic orbits—can become inadequate due to the
small Hilbert space dimension. Consequently, an eigen-
state could have a strong overlap with a tube state of an
unstable orbit out of pure coincidence, whereas the cor-
responding analysis in the semiclassical limit could reveal
that the two features are not causally related.

In order to rule out that the found staggered-dimer sig-
natures of eigenstates are coincidental, we decrease the
number of atoms N in a successive step-by-step manner
and are thus able to maintain the connection between
specific eigenstates and unstable staggered-dimer orbits.
Figure C1 shows two steps with N/L = 4 and N/L = 2
of such a protocol performed in the plaquette with oth-
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FIG. C2. Dynamics of the expectation value of a single-site occupancy in the Bose-Hubbard plaquette with N = 40 atoms
and four different interaction strengths γ = 0.1, 0.2, 0.4, and 0.8 (left panels, from top to bottom). When prepared in staggered
dimer product states |πm〉 (here m = 0, i.e., z = 1, colored blue, green, orange, and purple), the persistent oscillations
attributed to quantum scarring tend towards a universal non-trivial function n∞l of tλmax, the time scaled with the largest
stability exponent, when one approaches the regime of very weak interaction γ . 0.2 (upper panels). For stronger interaction,
the persistent oscillations remain (in contrast to Fock states, shown in gray), although not following the universal function any
longer. The time intervals of universality are indicated by green shading. This finding is explained by the classical (in)stability
spectra of the staggered dimer orbits (right panels), which tend towards uniformity, λ1 = λ2 ∼ γ, (dotted) for γ → 0 as well as
their classical period scaling accordingly (see text).

erwise the same parameters as used in Fig. 3 of the main
text. We can clearly identify scar states that have very
similar characteristics to the ones found for N = 28 (see
Fig. 3 of the main text). Most notably, this allows us
to identify eigenstates that are closer to the “quantum
many-body scar” phenomenology as direct descendants
of genuine quantum scars in the many-body system with
increasing atom number.

Appendix D: Uniform time scale for weak
interactions

In the weakly interacting regime γ . 0.5 we find that
a uniform time scale emerges that governs the dynamics
of imbalanced staggered dimers. As shown in Fig. C2,
changing γ in the occupation dynamics of the Bose-
Hubbard plaquette initialized in the product state m = 0
results in a scaling of time. For very weak interaction
the non-trivial form of the signal due to superimposed
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FIG. C3. Fourier spectra of long time occupancy oscillations with parameters as in Fig. C2. The frequency windows are
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classical staggered-dimer period 1/Tcl instead. For very weak interactions γ . 0.2, all peaks scale almost identically (upper
four panels). For stronger interactions, scaling with λmax and 1/Tcl yields different spectra and the peak frequencies apparently
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processes of various frequencies remains unchanged in a
broad time range. The weaker the interaction, the longer
it takes until residual dephasing leads to deviations from
a universal limiting function n∞l (τ):

〈n̂l(t)〉 ' n∞l (t/t0(γ)) , (D1)

valid up to some break time t . t∞break(γ) with
t∞break/t0 → ∞ as γ → 0. This scaling behaviour is
strongest for coupling parameters γ . 0.2. There the
correspondence with a unique wave form n∞l is clearly
visible up to long times λmaxt > 200 with maximum Lya-
punov exponent λmax (indicated by green shading within
panels a and b of Fig. C2). For γ = 0.4 (panel c), the
correspondence still holds for shorter times t∞break ' 100–
200. For interactions as strong as γ = 0.8 (panel d), the

breaking time becomes comparable to the dominant peri-
ods in the beatings, such that the scaling behavior cannot
be observed anymore. Note, however, that the respon-
sible dephasing happens only between a relatively small
set of discrete frequencies. It therefore does not lead to
a damping of the oscillatory behaviour, i.e., thermaliza-
tion, as it generically occurs when initializing the system
in “typical”, non-scarred states, such as Fock states in
the site basis (shown in grey).

We attribute this behaviour of universal time scal-
ing to a peculiarity of the underlying classical system.
For small γ, we find that the stability spectrum of pos-
itive Lyapunov exponents of the staggered dimer or-
bits becomes uniform, λ1(γ) → λ2(γ) (see right panels
in Fig. C2). Furthermore, the unique limiting stabil-
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ity exponent scales linearly with the coupling strength,
λL(γ) ∼ γ as γ → 0. At the same time, the period of
the staggered dimer orbits scales inversely proportional,
Tcl = π/γzJ . As a consequence, all available classical
time scales become inversely proportional to γ.

To further corroborate this, in Fig. C3 we show the
corresponding Fourier spectra of the occupation dynam-
ics 〈n̂l(t)〉 in Fig. C3. All oscillation modes contribut-
ing to the time evolution of 〈n̂l(t)〉 show up as sharp
peaks that strongly dominate an almost vanishing back-
ground noise in the case of a quantum wave packet that
is launched on the staggered dimer configuration. This
has to be contrasted to the more uniform and shallow
Fourier spectra that are found when Fock states are time
evolved (shown in black). We compare the same four
Fourier spectra of increasing γ, both with time scaled
with λmax(γ) (left panels) and with Tcl(γ) (right panels).
In the regime of very weak interactions γ . 0.2 (up-
per four panels), all dominant peaks scale almost iden-
tically with γ (and thus also with 1/λmax and Tcl). A
closer look on the Fourier spectra for increasing γ reveals
that the scaling of the dominant frequencies lies some-
where between the Tcl scaling and the 1/λj scaling, but
with varying weights and thus breaking uniformity. This
strongly indicates the existence of various classical peri-
odic orbits that oscillate between the vicinities of the two
symmetry-related staggered-dimer orbits, as their peri-
ods would be strongly influenced by both the period Tcl

of the approached staggered-dimer orbits and the time
scale 1/λL for leaving (and approaching) the vicinity of
the latter.

Appendix E: Scars versus tunneling oscillations
between stable regions: A comparison to the

self-trapped regime

In Appendix D we have identified strong indicators for
the time scales of the persistent oscillations to be traced
back to underlying classical quantities. To further sub-
stantiate this, in Fig. E1 we investigate their dependence
on the total particle numberN . By fixing γ = 0.8 and the
imbalance z = 0.6 of the initial staggered dimer state, N
serves as an effective inverse quantum of action (effective
Planck’s constant), while the purely classical dynamics is
independent of N (up to scaling). Looking at the Fourier
spectra of different N (b)–(f), a direct comparison of in-
dividual peaks such as in Fig. C3 is not possible here,
because the graining of the spectrum of the Hamiltonian
and thus the available frequencies depend strongly on
the Hilbert space dimension. However, we find that the
dominant frequencies stay in bands that are not varying
strongly with N . This clearly discriminates the observed
oscillations from quantum phenomena such as tunneling,
where time scales depend exponentially on the inverse
quantum of action.

Moreover, we find that the absolute amplitude of the
oscillations around the ergodic average apparently does
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FIG. E1. (a) Persistent oscillations in the single-site oc-
cupancy 〈n̂1(t)〉 of staggered-dimer product states |πm〉 [see
Eq. (9) of the main text] for various total particle numbers
N = 10, 20, 30, 40, 50 (bottom to top) with fixed scaled in-
teraction parameter γ = 0.8. The index m of the product
states is scaled such that the corresponding classical stag-
gered dimer orbit is situated at a fixed imbalance of z = 0.6.
The oscillations about the thermal average do not decay over
time and show an amplitude that does not vanish for inr-
creasing N . This suggests that observability is maintained for
large N despite the increasing number of contributing scarred
eigenstates. In contrast, the truncated Wigner approximation
(black dashed) undergoes fast thermalization. (b)–(f); Corre-
sponding discrete Fourrier transforms of 〈n̂1(t)〉 for N = 10–
50 show that the dominant frequencies of the oscillations stay
in a band that does not change strongly with N .
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not decrease with increasing N , as can be seen in panel
(a), although more and more frequencies get involved.
In a semiclassical picture, more and more “mediating or-
bits” that oscillate between the two symmetry-related
staggered-dimer orbits are fulfilling the BS quantization
condition. Since their scaled classical actions S/N (which
is a classical invariant under fixing z and γ) is quantized
in steps of O(1/N), the number of contributing quantized
orbits can roughly be estimated to scale linearly with N ,
while the local Hilbert space dimension scales ∼ N3.

In the following, we further contrast persistent oscilla-
tions originating from genuine quantum scarring as ob-
served here from tunneling oscillations between classi-
cally regular islands as in a double-well scenario. For an
example of the latter, we tune the Bose-Hubbard pla-
quette into the self-trapping parameter regime. To be
precise, we fix γ = 9.5 and initialize the system in imbal-
anced Fock states

|φ(t = 0)〉 = |N/2, 0, N/2, 0〉 (E1)

with alternating occupied and unoccupied sites, probing
different (even) particle numbers N . In contrast to the
staggered-dimer states |πm〉, these do not exhibit a fixed
phase relation between opposite sites. We choose these
states reflecting the fact that we are in the regime of Mott
insulation.

For a better understanding, consider the correspond-
ing two-site Bose-Hubbard system, in which self-trapping
starts at γ = 2 with a bifurcation in the classical phase
space: The stable fixed point at ψ = (

√
N/2,−

√
N/2)

becomes unstable and two symmetric stable fixed points
appear, the points of classical self-trapping. With grow-
ing γ they depart towards the “north-” and “south pole”
of the Bloch sphere, thereby enclosed by an ever grow-
ing separatrix. The latter separates two symmetric is-
lands of elliptic motion around the stable fixed points and
touches the north pole ψ = (

√
N, 0) and the south pole

ψ = (0,
√
N) at γ = 4. For γ = 9.5, it has grown well

beyond the poles, such that the latter are now embed-
ded deeply in the stable islands of elliptic motion. Points
initially around the poles move along deformed circular
orbits. For γ → ∞, these would become perfectly hor-
izontal circular orbits, corresponding to Fock states as
their tube-state counterpart. For finite but strong inter-
action, γ = 9.5, they are deformed and tilted, but only
slightly varying in the imbalance z corresponding to the
latitude on the Bloch sphere.

The two-site phase space is fully embedded in the
four-site system as the low-dimensional manifold of two-
site symmetric (or dimer-) states of the form ψ =
(ψ1, ψ2, ψ1, ψ2). While further apart from this manifold,
non-trivial four-site dynamics takes place, the dynamics
within this manifold is exactly given by the two-site dy-
namics. This implies that the self-trapped fixed points
of the two-site system have fixed points as their counter-
parts in the four-site system, or any Bose-Hubbard ring
of even sites L ∈ 2N by periodic repetition. Moreover,
the stability of these fixed points is also partially inher-

0

0.5

1

1.5

2

0
1
2
3
4
5
6

0

1

2

3

4

4 6 8 10 12 14 16 18 20 22 24 26

N/2 even

N/2 odd

FIG. E2. (a) Oscillations of the expectation value of a single-
site occupancy in the strongly interacting (γ = 9.5) Bose-
Hubbard plaquette (L = 4). The system is initialized in the
Fock state |φ〉 = |N/2, 0, N/2, 0〉 for varying particle numbers
N = 4, 8, 12. The distinct regularity and strongly varying
periods clearly indicate that the observed oscillations origi-
nate from tunneling between symmetrically separated regular
islands (see text). (b) The dominant periods of these oscilla-
tions, extracted for various N (blue: even, red: odd), match
the typical exponential decrease of tunneling rates with the
quantum of action (see text). The blue and red dashed lines
correspond to linear exponentials to guide the eye.

ited from the elliptic motion of the two-site system. For
L = 4 and γ = 9.5 the two self-trapping fixed points, lo-
cated at ψ1,2 = ±

√
(N/L+ 1/2)(1± z) with imbalance

z = z0 ≡
√

1− 4/γ2 and z = −z0, have six fully van-
ishing stability exponents. This leaves only a single sta-
ble/unstable pair with minor instability. Our simulations
suggest that the latter originates from a residual non-
trivial coupling of the relative phases. Only for extremely
strong interactions the phases are fully decoupled, turn-
ing the remaining stable/unstable dynamics into meta-
stable behavior. One signature of this is that the corre-
sponding deviation δz(t) [see Eq. (A4)], or more precisely
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the corresponding singular value of Mt, is growing only
linearly in time instead of exponentially. Here, we see
apparently a precursor of this meta-stability in the form
of two disconnected thin locally chaotic patches around
the two fixed points, stretched in the direction of altering
relative phases.

In Fig. E2a we show the resulting occupation oscil-
lations in the four-site plaquette for particle numbers
N = 4, 8 and 12. Note the distinct regularity and
strongly differing time scales. This regularity manifests
itself in very few (mostly one or two) strongly dominat-
ing frequencies in the corresponding Fourier spectra. We
have extracted the most dominant frequencies for a wide
range of particle numbers. The corresponding periods are
displayed on a logarithmic scale in Fig. E2b, implying an
exponential dependence on the inverse effective Planck
constant, N . The dashed lines correspond to linear ex-
ponentials to guide the eye. The outliers with enhanced
rate are reminiscent of resonance phenomena in quantum
tunneling.

To conclude, the simulations strongly indicate that
regular occupancy oscillations as observed in Fig. E2
are to be attributed to tunneling oscillations between
two classically separated close-to-regular islands. They
are here symmetrically arranged about the points ψ =
(
√
N/2, 0,

√
N/2, 0) and ψ = (0,

√
N/2, 0,

√
N/2), or

correspondingly the tori given by

ψ = (
√
N/2eiθ1 , 0,

√
N/2eiθ2 , 0) (E2)

and

ψ = (0,
√
N/2eiθ1 , 0,

√
N/2eiθ2) (E3)

with θ1,2 running through (0, 2π]. They are clearly to
be distinguished from the genuine quantum scarring we
have found for staggered dimer states.

Appendix F: Scarring in larger systems

1. Periodic repetition of classical dynamics —
quantum scarring for L = 8, 12

Regarding the classical dynamics, staggered dimer so-
lutions are easily generalized from L = 4 to L = 4ν with
integer ν by periodic extension ψl+4(t) = ψl(t). In order
to investigate if correspondingly scarred eigenstates exist
also in larger systems ν > 1, one cannot rely on a direct
analysis of eigenstates. Since the Hilbert space dimen-
sion grows exponentially with L (keeping N/L fixed), ex-
act diagonalization becomes numerically intractable very
soon. However, investigating the time evolution of occu-
pancy expectation values as a signature offers a means
to numerically identify the existence of scarring in some-
what larger systems. We realize this within a Krylov-
type scheme that operates on a low-dimensional subspace
at every finite but small time step and obtain extremely
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FIG. F1. Occupancy oscillations of N = 16 atoms in the
periodic Bose-Hubbard chain with L = 8 sites in the regime
of very weak interaction γ = 0.05, 0.10, 0.15 (c)–(e). When
preparing the system in staggered dimer states (a), scarring
leads to persistent oscillations [colored in (c)–(e)]. In contrast,
an initialization in Fock states (b) shows fast thermalization
(up to minor quantum revivals due to the finite dimensional
Hilbert space). The data of the latter has been smoothed with
a Gaussian of small width ∆t = 0.5J−1 and 1.0J−1 (light and
dark gray, respectively) to suppress the fast quantum fluctua-
tions on the scale of the hopping time J−1, not present in the
evolution of staggered dimer states due to the inherent sup-
pression of hopping. As in the four-site case (see Fig. C2), a
uniform time scale emerges which leads to a universal limiting
wave form (see text).

well-converged results (relative error∼ 10−12) by increas-
ing the dimension of the Krylov subspace or decreasing
the time step.

In Fig. F1 we show that staggered dimer states in
an eight-site chain filled with N = 16 bosons exhibit
non-thermalizing persistent oscillations very similar to
the case L = 4 (c.f., Fig. C2 and Fig. 1 of the main
text). As in the four-site system, we find that all posi-
tive stability exponents λν=2

j (here j = 1, . . . , 6) become
equal in the regime of weak on-site interaction γ → 0.
Moreover, two of them, say λ1 and λ2, (as functions of
γ and z) conincide exactly with those of the four-site
system. This exact inheritance originates in an embed-
ding of the L = 4 phase space as a submanifold within
the full L = 8 phase space by periodification: Any trajec-
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tory ψL=4(t) = (ψ1(t), . . . , ψ4(t)) that solves the DNLSE
[see Eq. (2) of the main text] of the four-site ring with
a given interaction parameter γ gives rise to a solution
ψL=8(t) = (ψ1(t), . . . , ψ4(t), ψ1(t), . . . , ψ4(t)) in the cor-
responding eight-site ring with equal γ. In particular, de-
viating trajectories defining the stability spectrum about
a given “central” orbit in L = 4 are passed on to corre-
sponding deviating trajectories (and thus stability expo-
nents) in L = 8 with four-site periodicity. Analogously,
all 16 stability exponents of the eight-site ring are inher-
ited by the sixteen-site ring and so on. In addition, we
conjecture that all other stability exponents not inherited
by the smaller system assume the same equal values in
the limit γ → 0, as we have confirmed for small ν. For the
stability spectrum of staggered dimer orbits this implies
that all λj ∼ γ as γ → 0, resulting again in the emer-
gence of a uniform classical time scale, since the classical
period Tcl = π/γzJ as inherited by the L = 4 system has
the same behavior. This uniformity, or, more precisely,
the resulting universal limiting wave form for occupancy
oscillations, can clearly be seen by direct comparison of
the quench dynamics for γ = 0.05, 0.10, and 0.15 in the
L = 8 ring.

The inheritance of stability spectra and the conjec-
tured homogeneity has a strong impact on quantum scar-
ring along staggered dimers in bigger rings. For γ → 0
the decrease of all (positive) stability exponents λj ∼ γ
is exactly compensated by the increasing classical period
Tcl ∼ 1/γ, such that the inverse multidimensional Heller
indicator becomes

λ+
ΣTcl =

4ν−2∑
j=1

λjTcl → 2π(2ν − 1)f(z) , (F1)

with a universal function f(z) that tends to ' 1 for max-
imum imbalance z = 1. From a semiclassical perspective
based on the Heller-type criterion (B6), λ+

ΣTcl . 2π, this
has two consequences. First, arbitrarily lowering the in-
teraction will, most likely, not enhance quantum scarring
beyond a certain point. This is confirmed by the obser-
vation that the “magnitude” of scarring, as measured by
the amplitude of occupancy oscillations, reaches a stable
plateau for weak interaction as seen in Fig. F1. Second,
for increasing system size ν, the increasing number of
unstable directions makes quantum scarring less and less
likely. For ν = 2, i.e., L = 8, we still find strong ev-
idence for staggered dimer quantum scarring. But the
overall amplitude of occupancy oscillations is already di-
minished as compared to the four-site case.

As demonstrated in Fig. F2, even in the correspond-
ing L = 12 site system with N = 12 the occupancy os-
cillations traced back to scarring were still found to be
present, with a magnitude of about 10%–20% with re-
spect to the thermal average. In contrast, the latter is
reached very fast with hardly visible remaining fluctua-
tions in the case of an initial Fock state |φ〉. This is the
expected behavior of a generic state in a high-dimensional
Hilbert space. Both states live in the same invariant sub-
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FIG. F2. Occupancy oscillations of N = 12 atoms in the pe-
riodic Bose-Hubbard chain with L = 12 sites in the regime of
very weak interaction γ = 0.10 [(c) and (d)]. When preparing
the system in a staggered dimer state (a), scarring leads to
oscillations [blue in (c) and (d)] which persist for long times
(d). In contrast, an initialization in a corresponding Fock
state (b) that lives in the same Hilbert subspace shows fast
thermalization. The data of the latter are shown both raw
and smoothed with a Gaussian of small width ∆t = J−1

(light and dark gray, respectively).

spaceH0⊕H2, which (at unit filling N = L) has a dimen-
sion of dim(H0)+dim(H2) ' 105 (see section F 2 below).
On the one hand, the overall slightly lower magnitude of
oscillations as compared to L = 8 (with equal fillingN/L)
is in line with the smaller Heller-type indicator. On the
other hand, it is surprising that scarring takes place at
all for a Heller indicator as small as 2π/λ+

ΣTcl ' 1
5 � 1.

This apparent contradiction is resolved when accounting
for the present discrete symmetries in the Heller criterion
(see section B 2).

2. Symmetry-enhancement of quantum scarring —
thermodynamic limit

The Hamiltonian of the L-site Bose-Hubbard ring
comes naturally in blocks that correspond to the ir-
reducible representations of the underlying symmetry
group, in this case the dihedral group D2L (we take L
even). It is generated by two elements, which can be
taken as the rotation r by one site and the reflection
(inversion) s on the first site. we will refer to the cor-

responding group actions on Hilbert space as R̂ = Û(r)

and Ŝ = Û(s). The total number of group elements is
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|D2L| = 2L. Our scar candidates, i.e., the classically pe-
riodic staggered dimer orbits, lie within a particular sym-
metry subspace of classical phase space, and thus the cor-
responding tube state, as elements of the Hilbert space,
inherit specific symmetry properties. As a consequence,
the quantum dynamics of the tube states is generically
restricted to an invariant subspace of the Hilbert space,
given by one or the direct sum of several irreducible rep-
resentations, or their components in case of irreps of di-
mension sα > 1. This restriction effectively lowers the
available Hilbert space dimension and, as we have found
in appendix B 2, has a non-negligible enhancing effect on
the scarring-likelihood.

In the dihedral group with even number of sites L, the
number of irreducible representations is Nir = L/2 + 3,
which come as the four one-dimensional irreps M (α), α =
0, 1, 2, 3 with

M (0)(r) = 1, M (0)(s) = 1,
M (1)(r) = 1, M (1)(s) = −1,
M (2)(r) = −1, M (2)(s) = 1,
M (3)(r) = −1, M (3)(s) = −1,

(F2)

and L/2 − 1 two-dimensional ones. The total dimen-
sion, i.e., the total number of independent symmetry sub-
spaces Hα,i of Hilbert space is thus Ns = L + 2. We
denote with H0,1,2,3 the subspaces corresponding to the

one-dimensional irreps M (0), . . . ,M (3).
The staggered dimer product states |πm〉 that we use

in the quench scenarios [see Eq. (9) of the main text] can
be written as superpositions

|πm〉 =
1

2

(
|π+
m〉|+|π−m〉

)
(F3)

of the (non-normalized) states

|π±m〉 ≡ |πm〉 ± |πN−m〉 . (F4)

Throughout, we assume that the total particle number
N is even. The above states then have symmetry

|π+
m〉 ∈

{
H0 for m even ,
H3 for m odd ,

|π−m〉 ∈
{
H2 for m even ,
H1 for m odd ,

(F5)

implying for example that the maximally imbalanced
state |π0〉 lives in H0⊕H2 (and will stay in that subspace
after the quench). At the same time, this is the subspace
to which the dynamics of the corresponding Fock state
|φ〉 (as used in the quench simulations) is confined.

To find the symmetry enhancement factor gsym of the
Heller-type indicator (B20) that should be applied to
estimate the scarring likelihood of staggered dimer-like
eigenstates, one needs to identify the symmetries of a sin-
gle wave packet placed on the staggered dimer orbit, i.e.,
the number-projected coherent state |ψ〉N with staggered
dimer configuration ψ = (ψ1, ψ2,−ψ1,−ψ2, . . .). This

symmetry is different form = 0, N , i.e., ψ2 = 0 or ψ1 = 0,
and m 6= 0, N . In the first case one can write |ψ〉N
as superposition of |ψ〉N + R̂|ψ〉N and |ψ〉N − R̂|ψ〉N ,
which have symmetry α = 0 and α = 2, respectively,
meaning that |ψ〉N lives in H0 ⊕ H2. In the second
case, m 6= 0, N , |ψ〉N has to be written as the super-
position of four states that have symmetry α = 0, 1, 2, 3.
These four states are in turn constructed as linear com-
binations of |ψ〉N , R̂|ψ〉N , Ŝ|ψ〉N , and R̂Ŝ|ψ〉N with
coefficients (1, 1, 1, 1), (1,−1, 1,−1), (1, 1,−1,−1), and
(1,−1,−1, 1) for the symmetries α = 0, 1, 2, 3, respec-
tively. This means that for m 6= 0, N , |ψ〉N lives in the
larger subspace H0⊕H1⊕H2⊕H3, the reason being that
then the staggered dimer configuration has a rotational
direction and thus is not symmetric under reflection as is
the case for m = 0, N . This difference manifests itself in
the generally more pronounced scarring of the maximally
imbalanced m = 0, N staggered dimers as compared to
the partially imbalanced ones m 6= 0, N that has been
observed throughout.

In a first rough estimate we could assume that in the
highly excited spectrum all symmetry classes have similar
density of states, which would yield a symmetry factor of

g(equal)
sym =


Ns
2

=
L

2
+ 1 for m = 0, N ,

Ns
4

=
L

4
+

1

2
for m 6= 0, N .

(F6)

In both cases the linear increase with L counterbalances
the decrease of the Heller-type indicator 2π/λ+

ΣTcl '
2/(L − 2) in the weakly interacting regime with a sym-
metry enhanced indicator

2π

λ+
ΣTcl

g(equal)
sym '


L+ 2

L− 2
for m = 0, N ,

L+ 2

2(L− 2)
for m 6= 0, N .

(F7)

Under these assumptions the enhanced indicator for
the maximally imbalanced staggered dimer (m = 0, N)
would always be greater than one and tend towards
the marginal value of unity in the thermodynamic limit
L→∞. In contrast, the partially imbalanced case would
drop below the critical value of unity already for L = 8
and tend towards 1/2 in the thermodynamic limit.

A more sophisticated estimate for the symmetry-
reduced densities of states in relation to the full one is to
relate the dimensions dimHα, α = 0, 1, 2, 3 of the corre-
sponding subspaces to the full Hilbert space dimension
dimH. To do so, one can build the subspaces from the
Fock basis by superimposing a Fock state |φ〉 with all
symmetry-group transformed versions of it with coeffi-
cients corresponding to the one-dimensional representa-
tion M (α). We define the symmetrized Fock state

T̂α|φ〉 =
∑
g∈G

M (α)(g−1)Û(g)|φ〉 . (F8)
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It can be easily checked that this state has symmetry
α, i.e., T̂α|φ〉 ∈ Hα for any |φ〉. In the thermodynamic
limit, i.e., L → ∞ while keeping N/L fixed, almost all
Fock states are fully asymmetric, i.e., the addends in the
sum (F8) can be generically considered as 2L mutually
distinct states. Each of them, when exchanged with |φ〉,
will produce the same symmetrized state (up to a scalar
factor). The dimension dimHα thus tends towards the
total Hilbert space dimension divided by 2L due to over-
counting for all four one-dimensional irreps α = 0, 1, 2, 3.
The symmetry enhancement of the Heller-type indicator
from the analysis of subspace dimensions, valid for large
L, can thus be estimated as

g(dim)
sym =


dimH

2 dimH0
= L for m = 0, N ,

dimH
4 dimH0

=
L

2
for m 6= 0, N ,

(F9)

with an even more optimistic view towards staggered-
dimer quantum scarring in the thermodynamic limit, as
the enhanced Heller indicator would tend to 2 or 1 for
the maximally or partially imbalanced case, respectively.

3. Dimer plane waves as additional candidates for
scarring

Moreover, the linear growth of the bare Heller indi-
cator (F1) for weakly interacting staggered dimer states
with system size is based on the exact compensation of
the (single-channel) instability and the orbit period as
γ → 0, which is a peculiarity of staggered dimer orbits.
This also leaves open the possible existence of genuine
quantum scars along other orbits in large BH chains. For

example, for even L ≥ 6, the classical staggered dimer
configurations can be generalized to dimer plane waves,
where adjacent dimers have a relative phase θ other than
π. To be precise, the corresponding classical periodic
orbits are of the form

ψ = (ψ1, ψ2︸ ︷︷ ︸
one dimer

, eiθψ1, e
iθψ2, e

i2θψ1, e
i2θψ2, . . .) (F10)

with a phase satisfying θL/2 = 0 (mod 2π). A trajec-
tory initialized in this way remains of this form for all
times, only changing in the single-dimer degrees of free-
dom ψ1 and ψ2. The dynamics of ψ1(t) and ψ2(t) fol-
lowing from the full DNLSE applied to (F10) is governed
by effective two-site BH physics. For convenience, we
define (ψ̃1, ψ̃2) ≡ (ψ1, e

−iθ/2ψ2). In these phase-shifted
variables the equations of motion read

i
˙̃
ψ1 = −2J cos(θ/2)ψ̃2 + U(ψ̃∗1ψ̃1 − 1)ψ̃1 ,

i
˙̃
ψ2 = −2J cos(θ/2)ψ̃1 + U(ψ̃∗2ψ̃2 − 1)ψ̃2 ,

(F11)

with only partially suppressed hopping J cos(θ/2) if θ 6=
π. This means that in contrast to staggered dimer orbits,
dimer plane waves do in general not feature a diverging
orbit period Tcl when γ → 0, while all stability expo-
nents must continuously go to zero as one approaches
the integrable limit of non-interacting atoms. Thus, the
multidimensional Heller criterion (B6) could possibly be
fulfilled in the thermodynamic limit of arbitrarily large
systems as long as the interaction parameter γ is cho-
sen small enough, even without symmetry considerations.
Such dimer plane waves thus offer another intriguing pos-
sibility of finding genuine quantum scarring in large-scale
many-body systems. We leave the thorough investigation
of these promising circumstances for future research.
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