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Fast scrambling of quantum correlations, reflected by the exponential growth of Out-of-Time-
Order Correlators (OTOCs) on short pre-Ehrenfest time scales, is commonly considered as a major
quantum signature of unstable dynamics in quantum systems with a classical limit. In two recent
works, by Hummel et al. [1] and by Xu et al. [2], a significant difference in the scrambling rate of
integrable (many-body) systems was observed, depending on the initial state being semiclassically
localized around unstable fixed points or fully delocalized (infinite temperature). Specifically, the
quantum Lyapunov exponent λq quantifying the OTOC growth is given, respectively, by λq = 2λs

or λq = λs in terms of the stability exponent λs of the hyperbolic fixed point. Here we show that
a wave packet, initially localized around this fixed point, features a distinct dynamical transition
between these two regions. We present an analytical semiclassical approach providing a physical
picture of this phenomenon and support our findings by extensive numerical simulations in the whole
parameter range of locally unstable dynamics of a Bose-Hubbard dimer. Our results suggest that
the existence of this transition is a hallmark of unstable separatrix dynamics in integrable systems.
This allows one to distinguish, within the exponential OTOC growth behavior, unstable integrable
(many-body) dynamics from genuine chaotic dynamics featuring uniform growth.

I. INTRODUCTION

The scrambling of quantum correlations is an ubiqui-
tous phenomenon across the physics of interacting many-
body systems [3, 4]. Its connection to quantum chaos
has been established in systems ranging from models for
black holes [5–8] to realistic many-body systems such
as the SYK-model [9], even comprising systems without
a classical limit [10]. Due to the appealing connection
with the powerful concepts of quantum chaos, Out-of-
Time-Ordered Correlators (OTOCs) [11] represent a ma-
jor probe of scrambling and thus have received a swiftly
increasing huge theoretical interest [3, 5] that has driven
efforts for experimental proposals [12] and realizations
[13, 14].

In systems with a semiclassical regime, fast scram-
bling is considered an unambiguous indicator of classi-
cal (mean-field) instabilities [4]. As such, Bose-Hubbard
systems, with their well understood and controlled clas-
sical (mean-field) limit and a large semiclassical region of
state space, are prime models to study imprints of scram-
bling [15–18]. Recently it was shown [1, 19] that an initial
exponential growth of OTOCs does not necessarily imply
chaotic dynamics of the system’s classical counterpart,
i.e. such OTOC behavior alone cannot serve as clear-cut
probe of quantum chaos. These works [1, 19] and further
ones picking up the same idea [2, 20–22] show that for
quantum (many-body) systems with a classical limit and
a semiclassical regime it is sufficient to have local insta-
bilities in a (possibly integrable) phase space to generate
exponentially growing OTOCs. Several examples of this
situation have been numerical studied [23, 24], including
basic models such as an inverted harmonic oscillator [25].

Generically, the prime example of the mechanism for
an exponential OTOC growth in an integrable system is

the existence of an unstable (hyperbolic) fixed point. Al-
though, by definition, all Lyapunov exponents λL are zero
in integrable systems, the classical dynamics around fixed
points is locally hyperbolic if they have at least one pos-
itive stability exponent λs > 0. This type of instability
will be considered here. In the early time regime, defined
up to a time scale depending logarithmically on the effec-
tive Planck constant ~eff, the OTOCs involving dynamics
around unstable points of many-body integrable systems
display two markedly different behaviors. In Refs. [1]
and [2], the quantum Lyapunov exponents λq quantify-
ing the OTOC growth rate are compared to the stability
exponents of dominant unstable fixed points of the cor-
responding classical mean-field dynamics yielding good
agreement with 2λs [1] or λs [2], respectively.

In this paper we resolve this apparent discrepancy with
regard to the operator growth and provide a unified dy-
namical mechanism explaining the two results in a com-
prehensive way. We demonstrate that there is a univer-
sal 2λs to λs transition for the OTOC growth rate λq

for dynamics around unstable fixed points in the pre-
Ehrenfest time regime which interpolates between these
two limits. Furthermore, the crossover develops a kink in
the strictly classical limit ~eff → 0. Moreover, we show
that this 2λs to λs transition is related to an underly-
ing dynamical transition of the initial quantum state in
a phase-space representation and argue that the 2λs to
λs transition is a hallmark of integrable systems. We
propose that this effect can thus be used to distinguish
chaotic and integrable systems by properly analyzing the
growth behavior of OTOCs at pre-Ehrenfest time scales.

The paper is structured into three further sections. In
Sec. II, we present a heuristic argument for OTOCs to
exhibit different exponential regimes and the correspond-
ing 2λs to λs transition. In order to verify the picture
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put forward, we perform an extensive study of the Bose-
Hubbard dimer in Sec. III. There, we start with the def-
inition of the dimer and a study of the classical mean-
field system including an analytical study of the classical
OTOC. Then, numerical results for the OTOCs follow
obtained from extensive simulations that display excel-
lent agreement with the classical results for the OTOCs.
Furthermore, we show how one can tune the 2λs to λs-
transition, and study its robustness with regard to chang-
ing the system parameters. In Sec. IV we summarize
our findings and discuss their possible extension to non-
integrable systems.

II. OUT-OF-TIME-ORDER CORRELATOR
IN INTEGRABLE SYSTEMS WITH LOCAL

HYPERBOLICITY

Our goal in this section is to refine the pre-Ehrenfest
theory for scrambling around hyperbolic fixed points in
integrable systems. In particular we attempt to relax
the localization properties of the initial state considered
in [1, 2]. The OTOC for two operators Â, B̂ with respect
to a state ρ̂ is defined by

C(t) = tr
{
ρ̂
∣∣[Â(t), B̂]

∣∣2}, (1)

which is by itself a modulus-squared commutator. When
this squared commutator is expanded in individual cor-
relators one obtains, besides contributions that admit a
standard time ordering, extra irreducibly un-ordered cor-
relations [5], with anomalous dynamical behavior that are
the central object of study.

The long-time (post-Ehrenfest) saturation of generic
OTOCs has been subject of several studies, both in the
chaotic [18, 26] and integrable [1, 27] regimes where inter-
ference effects beyond a pure quasiclassical (Truncated-
Wigner like-) approach appear [28].

Here, however, our focus is the short time scales, where
a quasiclassical approach based on the Wigner-Moyal ex-
pansion, which is a regular expansion around ~eff = 0
[29–31], is perfectly appropriate. Keeping only leading-
order terms in ~eff, one obtains

C(t) = ~eff
2〈Wρ(~q0, ~p0)

∣∣{AW(~q0, ~p0, t), BW(~q0, ~p0)
}∣∣2〉PS

+O(~eff
3),

(2)

where AW , BW are the Wigner-transforms of the op-
erators Â, B̂ and Wρ(~q0, ~p0) is the Wigner-distribution
corresponding to the state ρ̂. A detailed derivation of
Eq. (2) is in App. V A.

Further, 〈.〉PS indicates integration over the whole
classical (mean-field) phase space parametrized by the
canonical pairs (~q0, ~p0). The Heisenberg time dy-
namics of the quantum operator is mapped to time
dynamics of the classical observable A(q0, p0, t) =

A(q(q0, p0, t), p(q0, p0, t)) which arises from the classical
propagation of the initial condition (q0, p0).

The effective Plank constant ~eff has different expres-
sions in different contexts. It is given by the usual Plank
constant divided a typical action ~/Styp in single particle
cases [32–34], and the inverse of the total spin quantum
number 1/S for spin systems [35, 36]. In the case of
interest here, interacting bosonic systems, ~eff = 1

N is
given by the inverse of the total particle number N after
convenient rescaling of the interaction strength [4, 37].

Without loss of generality, we choose the operators
Â = q̂ and B̂ = p̂, as they are hermitian and their classi-
cal counterparts are generalized coordinates or momenta.
Therefore, at leading order in the Wigner-Moyal expan-
sion, Eq. (2), we drop the index W and take the pure
classical phase space functions. This choice of the op-
erators simplifies the classical Poisson-brackets, that are

now given by an element of the stability matrix ∂~x(t)
∂~x(0)

with ~x = (~q, ~p) [38, 39].
The classical limit of the OTOC in Eq. (2) is so far a

completely general result. Under the assumption of lo-
cal instability, however, the leading order of exponential
growth is given by the maximal local exponent λ(~q0, ~p0)
of the stability matrix:

C(t) ∼ ~eff
2〈Wρ(~q0, ~p0) exp

{
2λ(~q0, ~p0)t

}
〉PS. (3)

At this point, it is convenient to introduce two local
time-scales:

• After the local ergodic time τs = 1/λ(~q0, ~p0), the
exponential growth of the OTOC begins to be visi-
ble. Before τs, we have sub-exponential/polynomial
behavior linked to system-specific mechanisms.

• The Wigner-Weyl approximation breaks down
when the leading order of the integrand in Eq. (2)
becomes large compared to ~eff

2. This break-
down defines the local Ehrenfest time τE =
λ−1(~q0, ~p0) log(1/~eff) and in our many-body case
τE = λ−1(~q0, ~p0) logN .

We exploit the experimentally tunable localization fea-
tures of quantum mechanical states [40] as a tool to
probe the local unstable dynamics around a hyperbolic
fixed point (FP) and consider a coherent-like state ρ̂ cen-
tered around it. In the linearized region around the FP
the dynamics can be precisely described, and we can
express λ(~q0, ~p0) by the maximal stability exponent λs

of the FP. In general, however, the linearized region is
bounded and we express this by the fact that the relation
{A(~q0, ~p0, t), B(~q0, ~p0)} = eλst is valid only if the unstable
manifold coordinate/projection u(~q0, ~p0) is smaller than
a threshold c > 0. For times larger than zero, the ex-
ponential growth u(~q0, ~p0, t) = u(~q0, ~p0)eλst is only valid
if the linearized region u(~q(t), ~p(t), t) < c is still fulfilled.
Afterwards we need to replace the time dynamics of the
unstable manifold by a sub-exponential function. We re-
fer to this mechanism as a kind of leaking from the lin-
earized region [2].
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The key observation is that, although the sub-
exponential function describes the classical evolution out-
side and it is therefore negligibly small compared to the
exponential growth in the linearized region, its contribu-
tion is weighted by a portion of phase space that grows
exponentially. These considerations allow us to heuris-
tically account for the leaking mechanism, by modifying
the Eq. (3) as

C(t) ∼ ~eff
2e2λst〈Wρ(~q0, ~p0)Θ(c− eλstu(~q0, ~p0))〉LR,

(4)

where we restrict the phase-space integration to the dom-
inant linearized region (LR) around the FP.

For definiteness, let us consider now a Gaussian wave-
packet with an initial linear width ∆u along the unsta-
ble manifold u(~q, ~p). In this situation, the wave-packet
reaches the boundary of the linear region by a finite time
τL = λ−1

s ln
(
c/∆u

)
, which we correspondingly call the

leaking time. After τL, we must take the leaking of
the wave-packet into account, i.e., the phase-space vol-
ume causing the exponential growth shrinks exponen-
tially with e−λst, i.e.,

〈Wρ(~q0, ~p0)Θ(c− eλstu(~q0, ~p0))〉LR ∼
{

const. , t < τL
e−λst , t > τL

.

Hence, the exponential growth of the OTOC in Eq. (4)
decreases to eλst. This finally leads to a short-time be-
havior of the OTOC around an unstable fixed point given
by

C(t) ∼


poly. , t < τs
e2λst , τs < t < τL
eλst , τL < t < τE
osc. , τE < t

, (5)

that is schematically displayed in Fig. 1 showing two
exponential regions.

It is important to note that there is a hierarchy of
time scales: the leaking time is only relevant if τL <
τE, otherwise the Wigner-Weyl approximation (in leading
order), see Eq. (2), is already invalid.

The initial linear width ∆u scales with some power ~αeff
for typical states. This gives an asymptotic expression for
the leaking time by τL ∼ α

λs
logN+O(log(c)). Hence, we

have a direct proportional relation to the Ehrenfest time
τL ∼ ατE for ~eff → 0.

We see then, that one can clearly distinguish three
parametric regions: τL < τs, τs < τL < τE and τE ≤ τL
(which is equivalent to α ≈ 0, < 1,≈ 1):

i) Delocalized/uniform states: τL < τs, α ≈ 0
Under the assumption that there is only one un-
stable FP of the classical dynamics, the OTOC is
still governed by Eq. (5) and the e2λst-regime van-
ishes. A typical examples here are high tempera-
ture states (T →∞).

ii) Localized states: τs < τL < τE, 0 < α < 1
In this case we have the 2λs − λs transition and

ln
C

(t
)

time tτs τL τE

∼ e2λst ∼ eλst

in
te
g
ra

b
le

FIG. 1. Expected behavior of an OTOC centered at a FP
if τs < τL < τE: OTOCs grow polynomial for times shorter
τs, exponential with 2λs for times shorter τL, exponential with
λs for times shorter τE, but greater than τL. Post-Ehrenfest
time scales display oscillatory behaviour if the system is inte-
grable [27] and saturation if the system is chaotic [18, 41].

asymptotically (for N → ∞) we expect a sharp
kink to appear at τL. The prime example are the
coherent states centered at a FP. They usually have

a linear size of ~eff
1/2 in all phase space directions.

iii) Well-localized states: τL ≈ τE, α ≈ 1
The second eλst-region is vanishing, only the one
e2λst-region is visible. Fock states are candidates
for the third class. Their linear width is ~eff in
the classical occupation numbers, such that α ≈ 1
if the unstable manifold is aligned in the parallel
direction.

The case α > 1 is unphysical and can be excluded. The
uncertainty principle requires the product of the width
in all directions to be ≥ ~eff/2. Hence if α > 1, one direc-
tion must increase if ~eff → 0, i.e., this direction becomes
delocalized if we approach the classical limit contradict-
ing that the state is associated by a well-defined point in
phase space.

At this point, we can explain the dynamical behavior
of OTOCs reported in [1] and [2]. In the first paper, the
authors investigated a number-projected coherent state
which is simultaneously a Fock state. Its unstable man-
ifold is parallel to the occupation direction [42], there-
fore it falls into the case iii) and they see only the 2λs-
exponential window. Correspondingly, the authors of the
second paper use the infinite temperature state, hence
their state directly falls into the first case and the only
exponential window is given by eλst.

In the next section, we numerically explore the validity
Eq. (5) for a Bose-Hubbard dimer, with the aim of care-
fully investigate the new case ii), where the hierarchy of
time scales τs < τL < τE implies, from our analysis, the
presence of a 2λs − λs transition.
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III. BOSE-HUBBARD DIMER

The Bose-Hubbard dimer describes bosonic degrees of
freedom occupying two discrete levels or sites. Prime
physical setups are individual Josephson-junctions [43] or
cold atoms within a small two-sited optical lattice [44–
49]. In all these cases, one ends with an effective descrip-
tion in terms of the following Hamiltonian

Ĥ = −2J
(
â†2â1 + â2â

†
1

)
+
g

2

(
â†1

2â2
1 + â†2

2â2
2

)
, (6)

where the parameter J is the hopping and g is the (lo-
cal) interaction strength between particles given in units
of energy. Our Hamiltonian differs from the usual dimer
Hamiltonian, the hopping coefficient 2J (instead of J)
is motivated to be consistent with a ring topology for
higher number of wells. Consequently, the two-site ring
has a doubly counted hopping term. We also introduce
a new dimensionless parameter Θ such that we have J =

ε0 cos Θ and g = ε0
2
N sin Θ, with ε0 =

√
J2 +

(
gN/2

)2
representing a global energy scale. We set ε0 = 1 for
a convenient unit system, yielding also the time unit
~/ε0 = 1. The parameter space is thus compactified to
Θ ∈ [−π/2, π/2].

A. Classical mean-field limit

We follow the standard approach [50] to derive the
classical limit for bosons and replace the operators by
complex numbers

âj , â
†
j 7−→ ψj , ψ

∗
j

within the normal-ordered quantum Hamiltonian in
Eq. (6) to obtain a classical mean-field system. The dis-

crete nonlinear Schrödinger equation iψ̇j = ∂H
∂ψ∗

j
yields

Hamilton’s equations of motion that define the classical
dynamics. Due to the conserved total particle number
N , we define new set of conjugated classical variables

N = n1 + n2 , φ = 1
2 (ϕ1 + ϕ2) ,

n = 1
2 (n1 − n2) , ϕ = ϕ1 − ϕ2 − π ,

where the two mean fields ψj =
√
nje

iϕj are written in
phase ϕj and occupations nj . Hence, the Hamiltonian
takes the form

H(N,φ, n, ϕ) = 2 cos Θ
√
N2 − 4n2 cosϕ

+ sin Θ
(2n2

N
+
N

2

)
. (7)

We can reduce the dynamics to a one-dimensional system
with a single conjugated pair (z = 2n/N,ϕ = ϕ1−ϕ2−π)
given by the population inversion and relative phase [51].
With these coordinates, we can reduce the equations of
motion to two coupled real-valued ODEs

ż = −4 cos Θ
√

1− z2 sinϕ,

ϕ̇ = 4 cos Θ
z cosϕ√
1− z2

− 2 sin Θ z,
(8)
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FIG. 2. Stability exponent of the off-phase FP over the whole
parameter space. A change from stable to unstable behaviour
occurs at the bifurcation point Θ = arctan 2.

which is a one-degree-of-freedom system. Conveniently,
the mean-field system deriving from Eq. (8) is integrable
and can thus be exactly solved up to quadrature.

B. Fixed points

A straightforward calculation shows that there are two
fixed points (FPs), at (z = 0, ϕ = π) and (z = 0, ϕ =
0), which are independent of the system parameter Θ.
We call these two FPs the in-phase and off-phase FP,
since both have homogeneous occupations and a zero or
π phase difference between site 1 and 2. We set the zero
point for the relative phase ϕ to the unstable off-phase
FP.

Two bifurcations appear: at Θ = − arctan 2 for the
in-phase FP and at Θ = arctan 2 for off-phase FP. We
restrict our discussion to the off-phase FP, since there
is a symmetry between these two PFs under a change
of sign of the parameter Θ. The stability diagram of the
off-phase FP, displayed in Fig. 2, shows the bifurcation at
arctan 2, where the stability exponent becomes positive.
Its maximum λs = 0.97 is reached at Θ∗ ≈ 1.35.

Fig. 3 shows the reduced phase space structure of the
system, generated by Eq. (8), at the maximal unstable
parameter Θ∗. Note in particular the (red) separatrix
defined by the unstable and stable manifold originating
from the off-phase FP. The merging of stable and un-
stable manifolds indicates that the linearized regime is
bounded, namely, any classical trajectory on the unsta-
ble manifolds converges to the stable manifold leading (in
infinite time) back to the hyperbolic FP. The exact size
of the linearized regime, modeled by the constant c in the
previous Sec. II, plays a negligible role for ~eff → 0, since
it is additive and ~eff-independent constant in the leaking
time τL = λ−1

s ln(c/∆u) ∼ λ−1
s ln(1/~eff))/2 + λ−1

s ln c in
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Eq. (4) with ∆u ∼ ~eff
1/2 (for a coherent state). There-

fore we leave c unspecified in the subsequent discussion.
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FIG. 3. Reduced phase space structure (z, ϕ) for Θ∗: contour
lines of the Hamiltonian correspond to the classical trajecto-
ries. There are three elliptic fixed points and one hyperbolic
fixed point whose associated separatrix is highlighted in red.
Arrows on the separatrix indicate the stable and unstable
manifolds.

Armed with this very specific phase-space structure,
we carry an in-depth analytical study of the OTOC C(t)
for the dimer in the next section.

C. Microscopic approach: separatrix dynamics

We choose for the dimer the operators Â = B̂ = n̂1

to be the number operator n̂1 = â†1â1 at the first site.
Therefore, we get

C(t) = 〈||[n̂1(t), n̂1]||2〉 = 〈||[n̂(t), n̂]||2〉 , (9)

where n̂ = 1
2 (n̂1− n̂2). For this OTOC, we are interested

in evaluating the classical expression which is given by

O(t) =

∫∫
dndϕW (n, ϕ)

(
∂nt
∂ϕ0

)2

, (10)

with W (n, ϕ) the Wigner function associated with
the initial state. The latter is, for the sake of
simplicity, modeled as a coherent quantum state

exp
(√

N0(â†− − â−)
)
|0〉 with â− = â1 − â2, keeping in

mind that for large N0 this coherent state features very
similar properties as a number-projected coherent state
with total particle number N0 as far as the site pop-
ulation exchange dynamics is concerned. The Wigner
function associated with this initial state would be given

by

W (N,φ, n, ϕ) '
1

π2
exp

(
− (N −N0)2

2N0
− 2N0φ

2 − 2n2

N0
− N0ϕ

2

2

)
(11)

in the framework of a quadratic expansion valid for
N0 � 1. Since the Wigner function W describes a tight
localization of N about N0, we set N0 = N henceforth
and model the initial quantum state concerning the inter-
site population exchange dynamics by the Wigner func-
tion

W (n, ϕ) =
1

π
exp

(
−2n2

ωN
− Nωϕ2

2

)
, (12)

where the squeezing parameter ω allows for some flexi-
bility in the definition of the initial quantum state.

Let us first discuss the linearized dynamics in the near
vicinity of the FP (n, ϕ) = (0, 0). Linearizing Eq. (8), we
obtain the system of equations

ż = −4 cos Θϕ ,

ϕ̇ = −2(sin Θ− 2 cos Θ)z ,
(13)

which is readily solved as

zt = z0 coshλst−
4 cos Θϕ0

λs
sinhλst ,

ϕt = ϕ0 coshλst−
λsz0

4 cos Θ
sinhλst

(14)

in terms of the stability exponent

λs = 4 cos Θ

√
γ

2
− 1 , (15)

where we defined the nonlinearity parameter γ = tan Θ =
gN/(LJ). The latter becomes purely imaginary for γ <
2, which implies that (n, ϕ) = (0, 0) turns into a stable
fixed point if the nonlinearity parameter γ is decreased
below two, as it is plotted in Fig. 2.

Considering γ > 2 henceforth, and assuming that the
point (z0, ϕ0) is located very closely to the origin in this
phase space, we can, as in the previous section, identify
a time scale τs � λ−1

s for which we still have |zτs | � 1
and |ϕτs | � 1, such that the above linearization Eq. (13)
of the classical equations of motion remains valid until
t = τs. Since at the same time we have λsτs � 1 by as-
sumption, the solution Eq. (14) of the linearized equation
Eq. (13) for t = τs simplifies as

zτs =

(
z0

2
− 2 cos Θϕ0

λs

)
eλsτs , (16)

ϕτs =

(
ϕ0

2
− λsz0

8 cos Θ

)
eλsτs . (17)

From the time τs on, we can safely assume that the tra-
jectory under consideration very closely follows the sep-
aratrix structure emanating from the unstable antihom.
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fixed point (z, ϕ) = (0, 0). This separatrix structure is
obtained through the identification of the energy

H(n, ϕ) = 2 cos ΘN + sin Θ
N

2
(18)

of the classical Hamiltonian Eq. (7), from which follows
the identity

cosϕ =
1− γ

4 z
2

√
1− z2

.

Inserting this expression into Eq. (8) yields the differen-
tial equation

ż = z

√
λ2

s − sin2 Θz2

describing the motion along the upper or lower separatrix
branch. This equation is straightforwardly integrated
yielding

t− τs =

∫ zt

zτs

dz

z
√
λ2

s − sin2 Θz2

=− 1

λs

[
arcosh

(
λs

sin Θ|zt|

)
− arcosh

(
λs

sin Θ|zτs |

)]
,

from which we obtain

zt =
sgn(zτs)λs/ sin Θ

cosh
[
arcosh

(
λs

sin Θ|zτs |

)
− λs(t− τs)

] . (19)

Using |zτs | � 1 and hence also sin Θ|zτs |/λs � 1 for finite
values of sin Θ and λs, we define

xt = sgn(zτs) exp

[
−arcosh

(
λs

γ|zτs |

)
+ λs(t− τs)

]
' sin Θ

2λs

(
z0

2
− 2 cos Θ

ϕ0

λs

)
eλst

' sin Θ

λs

(
n0

N
− 2 cos Θ

ϕ0

λs

)
sinh(λst) ,

(20)

where we make use of the asymptotic expression

arcosh(u) = ln
(
u+

√
u2 − 1

)
' ln(2u) +O(u−2) (21)

for large u, in combination with Eq. (16). With
(coshu)−1 = 2eu/(1 + e2u) we can thus rewrite Eq. (19)
in terms of the expression Eq. (20) as

zτ =
2λs

sin Θ

xt
1 + x2

t

, (22)

which yields

nt =
Nλs

sin Θ

xt
1 + x2

t

. (23)

Replacing eλst with 2 sinh(λst) in Eq. (20) is clearly valid
for large λst � 1 and has the additional advantage that

the short-time regime in the time evolution of nt will
thereby be correctly captured as well within Eq. (23).

The classical limit of the quantum OTOC, Eq. (10), is
then evaluated as

O(t) =
2 cos2 ΘN2

√
πaλ2

s

sinh(λst)∫
(1− x2)2

(1 + x2)4
exp

[
−
(

x

2a sinh(λst)

)2
]

dx

(24)

where the dimensionless scale is defined as

a =
sin Θ/λs√

8ωN

√
ω2 +

16 cos2 Θ

λ2
s

. (25)

The short-time behavior of the OTOC, for t � τL =
−λ−1

s ln a, is yielded as

O(t) ' 4 cos2 Θ
N2

λ2
s

sinh2(λst) , (26)

while for t� τL we obtain

O(t) ' cos2 Θ

√
πN2

4aλ2
s

eλst . (27)

These two limits correspond to the 2λs − λs transition
that we heuristically derived in Sec. II, as expressed in
Eq. (5). Note that the here defined τL agrees with the
case ii) in Sec. II. The dimensionless constant ln a encodes
the linear width of the wave-packet along the unstable
direction.

With this detailed classical calculation at hand, we an-
alyze the OTOC centered around this local hyperbolic
off-phase FP, considering the parameter Θ∗ at which the
value of the stability exponent is maximal, λs = 0.97.

D. Numerical results for the Out-of-Time-Order
Correlator

We proceed now with the numerical study and calcu-
late the OTOC via Eq. (9) by means of numerically exact

simulations for the operators Â = B̂ = n̂1. We consider
the state

|~ξ 〉 =
1

N
(
ξ1â
†
1 + ξ2â

†
2

)N |0〉 , (28)

which is a number-projected coherent state centered at

the off-phase FP ~ξ = (ξ1, ξ2) = (
√
N/2,−

√
N/2), with

N =
√
NNN ! a normalization constant.

For large total particle number N , the projected co-
herent state inherits properties from the coherent state,

in particular the linear width of ~1/2
eff in each phase space

direction [52], including the unstable direction in Fig. 3.
Furthermore it sets the squeezing parameter ω = 1 in the
classical analysis in Eq. (25). Following the discussion in
Sec. II, case ii), the leaking time τL is therefore half the
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FIG. 4. Top to bottom: OTOC C(t) for N = 103, 104, 5 ·104

and Θ = 1.35; shaping kink from the 2λs − λs transition at
τL = τE/2; the classical expressions Eq. (26) and Eq. (27)
fit tightly the OTOC in each region showing exp(2λst) and
exp(λst) exponential growth rates.

Ehrenfest time τE. We display our numerical OTOCs
for increasing particle N = 103, 104, 5 · 104 in Fig. 4,

where we observe the predicted 2λs − λs transition, pre-
cisely following the heuristic arguments of Sec. II and the
more refined classical analysis of Sec. III C. In particular,
the analytical result Eq. (24) for the classical OTOC fol-
lows perfectly the quantum OTOC C(t), i.e., it captures
both regimes and the transition. The kink at the tran-
sition becomes sharper for N → ∞. This is also seen in
the insets showing the time-derivative of log(C(t)), which
confirm that with increasing N there are more and more
pronounced 2λs and λs regions of exponential growth.

In order to illustrate the leaking from the linearized re-
gion around the FP, we visualize in Fig. 5, via its Husimi
distribution, the time evolution of a wave packet that em-
anates from the coherent state Eq. (28) with N = 103.
With time, the wave packet spreads along the separatrix
and evolves to the upper right and lower left corners of
the phase space. We see that at the time τL = τE/2 the
wave packet folds back from the unstable to the stable
manifold. This back-folding corresponds to the dynami-
cal transition of leaking from the linearized regime.

Calculations for different values of the system param-
eter Θ yield qualitatively similar behavior in the range
where the off-phase FP is unstable, again with excellent
agreement between the quantum OTOC Eq. (9) and its
classical approximation Eq. (24). To demonstrate this
we compute the relative logarithmic deviation between
Eq. (24) and Eq. (9), defined by

η(t) =
∣∣∣ lnO(t)− lnC(t)

lnO(t)

∣∣∣ (29)

for the number projected state |~ξ 〉. Fig. 6 displays, for
various choices of the total particle number N , the time
evolution of η up to the Ehrenfest time for Θ = 1.35
(right panel) as well as its maximal value

ηmax = max
t≤0.8τE

η(t) (30)

in the interval 0 ≤ t ≤ 0.8τE as a function of Θ (left
panel). At the edges of the instability region (i.e., for
Θ → arctan(2) or π/2) the maximal deviation signifi-
cantly increases, since there we have λs → 0 and thus
cannot, for finite ~eff, justify the assumption that the
time evolution of all phase-space points covered by the
initial Wigner function very closely follows the separatrix
arc. Nevertheless, the deviations clearly tend to zero in
the semiclassical limit ~eff → 0, independently of the val-
ues of Θ ∈ (arctan(2), π/2) and t ∈ [0, τE]. This confirms
that the 2λs − λs transition is independent of the spe-
cific value of Θ, i.e., it is a robust signal of a dynamical
transition.

E. Squeezing – engineering the leaking time τL

An important consequence of the leaking mechanism
is that the linear extent of the initial state along the
unstable manifolds is the key ingredient for the exact
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particles. We observe scrambling along the unstable manifold on the separatrix until t ≈ τL.

1.2 1.3 1.4 1.5
system parameter 

10 4

10 3

10 2

10 1

m
ax

 

particle number N
100
1000

10000
50000

0.0 0.2 0.4 0.6 0.8 1.0
rescaled time t/ E

10 8

10 7

10 6

10 5

10 4

10 3

10 2

(t)

particle number N
100
1000

10000
50000

FIG. 6. Left panel: maximal relative logarithmic deviation Eq. (30) plotted as a function of the system parameter Θ in
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calculations were done for the total particle numbers (from top to bottom) N = 100, 1000, 10000, and 50000.

position of the 2λs−λs transition. In order to check this,
we squeeze the coherent state on the off-phase FP and
subsequently calculate the OTOC.

As a matter of fact, squeezed states in optical lattices
can be achieved experimentally to an exquisite degree
[40]. A squeezing protocol that is convenient for our pur-
pose can be effectively (and unitarily) realized by revers-
ing the time evolution, which in the experimental practice
would amount to forward time propagation with reversed
signs of the hopping parameter and the interaction pa-
rameter (to be done by Floquet engineering [48, 53] com-
bined with Feshbach tuning). This means, we replace |ξ〉
by

|ξ(t0)〉 = Û(t0) |ξ〉

with t0 = −3τE/4, where Û(t0) is the time-evolution op-
erator, and then calculate the OTOC, Eq. (1), for the
initial state ρ̂(t0) = |ξ(t0)〉 〈ξ(t0)|. The corresponding

scrambling dynamics is shown in then the left panel of
Fig. 7 for N = 103, while the right panel depicts the
initial Husimi distribution of the squeezed state. This
backward-time evaluated coherent state has a reduced
linear extent along the unstable manifold. Exemplary,
choosing t0 = −3τE/4 (with τE the Ehrenfest time for
the non-squeezed coherent state), we effectively trans-

form ∆u ∼ ~1/2
eff into ∆u ∼ ~eff. Thus, the new leak-

ing time τ∗L is now right at the Ehrenfest time, and no
2λs−λs transition is expected to exist, as fully confirmed
by the numerical simulations.

IV. CONCLUSION

The OTOC associated with a wave packet that is lo-
calized around a hyperbolic fixed point in a quantum
system with integrable classical (mean-field) limit under-
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goes a transition between different dynamical regimes,
which is driven by a leaking mechanism of phase space
volume along classical separatrices. If located within the
pre-Ehrenfest time scale, this dynamical transition im-
prints a characteristic kink structure to the scrambling
as measured by the exponential form of out-of-time-order
correlators. Specifically, the exponential growth changes
from 2λs to λs, and the kink develops for ~eff → 0, where
λs is the stability exponent of the fixed point. We de-
rived an analytical theory and showed how this behavior
is directly related to the classical limit of the out-of-time-
order correlators when their time dependence is governed
by the separatrix dynamics emerging around an unstable
fixed point.

Following this picture, we showed that squeezing the
initial coherent state allows us to engineer the leaking
time and thus the dynamical transition itself exactly as
predicted by our analytical considerations.

If the phase-space localization scale of the initial state
is strong enough, the leaking time is beyond the Ehren-
fest time and we obtain the standard 2λs exponent. In
contrast, an uniform state starts to leak immediately
and even before the ergodic time. Therefore, the infinite
temperature OTOC grows only with the reduced expo-
nent λs.

We supported our picture of the dynamical transition
by means of extensive simulations on the experimentally
accessible, and integrable, Bose-Hubbard dimer. The ex-
tremely clean fixed point and separatrix structure of this
systems allows us for a detailed study of the mechanism,
and the analytical expectations of Sec. II are verified to
an excellent degree.

In order to focus on separatrix effects like the leak-
ing mechanism, requiring a very well controlled classical
phase space, we restricted our numerical findings and the

corresponding analytical theory to integrable systems for
which the theory in Sec. II assumes a bounded linearized
regime around the fixed point. An ansatz generalizing
these concepts to the realm of chaotic systems is that the
role of the stability exponent λs from the fixed point is
translated to the Lyapunov exponent λL from the chaotic
sea, thus providing a bridge to exponential growth laws
of OTOCs that were found for quantum maps with the
exponents 2λL [54, 55] and λL [56], respectively. A first
numerical exploration of this matter, focusing on the be-
haviour of OTOCs in chaotic separatrix layers, was car-
ried out in [57], where the transition from the stabil-
ity exponent λs associated with an unstable fixed point
to the Lyapunov exponent λL characterizing the chaotic
layer was investigated for pre-Ehrenfest time scales. In
such a situation, it is an open and thrilling question to
which extent the 2λs-λs transition could distinguish a
chaotic from an integrable system and can be general-
ized to mixed regular-chaotic dynamics.
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APPENDIX

A. Wigner-Moyal expansion

In this appendix we outline shortly how to obtain
Eq. (2) via a Wigner-Moyal expansion. We refer for an
introduction to the phase-space formalism to [52, 58, 59].
We start with the exact phase space expression for the
expectation value of a general operator Ô given in this
representation by

〈Ô〉 = Tr ρ̂Ô =

∫ ∫
dLq dLp Wρ(~q, ~p)OW(~q, ~p)

where Wρ is the Wigner function of a state described by
the density operator ρ̂, and OW is the Wigner-Weyl sym-
bol of the operator Ô. Note here that OW is a function,
not an operator, i.e., OW(~q, ~p) is a complex number.

To proceed, we will also need the Wigner-Weyl symbol
of a product of operators Â and B̂, given by the so-called
star product of the corresponding Wigner-Weyl symbols
as [

ÂB̂
]
W

(~q, ~p) =AW(~q, ~p) ? BW(~q, ~p)

where the star product is an abbreviation for

= AW(~q, ~p) exp
{ i~eff

2
(
←−
∇~p ·

−→
∇~q −

←−
∇~q ·

−→
∇~p)

}
BW(~q, ~p)

and can be expanded in ~eff as

= AW(~q, ~p)BW(~q, ~p)+
i~eff

2

{
AW(~q, ~p), BW(~q, ~p)

}
+O(~eff

2).

With this expression at hand, starting with Eq. (1) we

easily obtain the expression

C(t) =

∫ ∫
dLq dLp Wρ(~q, ~p)[

[Â(t), B̂]
]
W

(~q, ~p) ?
[
[Â(t), B̂]

]
W

(~q, ~p),

which up to this point of the manipulations is exact.
Since our goal is to obtain the leading order (in the
Wigner-Moyal sense) for the OTOC, the next step is
to expand the two star products inside the commutator[
[Â(t), B̂]

]
W

up to its first non-vanishing order[
[Â(t), B̂]

]
W

=i~eff

{
[Â(t)]W(~q, ~p), BW(~q, ~p)

}
+O(~eff

2).

As it can be derived from expanding the Heisenberg
equation of motion

d

dt
Â(t) =

i

~eff

[
Ĥ, Â(t)

]
,

the time evolution of the Wigner-Weyl symbol of the op-
erator Â is given by

[Â(t)]W(~q, ~p) = AW(~q(~q, ~p, t), ~p(~q, ~p, t)) +O(~eff),

=: AW(~q, ~p, t) +O(~eff),
where ~q(~q, ~p, t) and ~p(~q, ~p, t) are the classical evolved
phase space points. One then can verify that the in lead-
ing order the quantum and classical equations of motion
agree since the quantum commutator reduces to the clas-
sical Poisson-bracket. Putting all together, we arrive to
the leading order result we in Eq. (2)

C(t) = ~eff
2〈Wρ(~q0, ~p0)

∣∣{AW(~q0, ~p0, t), BW(~q0, ~p0)
}∣∣2〉PS

+O(~eff
3),

where we suppressed the phase-space integral into 〈.〉PS

and renamed (~q, ~p) to (~q0, ~p0).
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[55] I. Garćıa-Mata, M. Saraceno, R. A. Jalabert, A. J.
Roncaglia, and D. A. Wisniacki, Phys. Rev. Lett. 121,
210601 (2018).

[56] A. Lakshminarayan, Phys. Rev. E 99, 012201 (2019).
[57] F. Meier, M. Steinhuber, J. D. Urbina, D. Waltner, and

T. Guhr, Phys. Rev. E 107, 054202 (2023).
[58] W. B. Case, American Journal of Physics 76, 937 (2008).
[59] T. L. Curtright and C. K. Zachos, Asia Pacific Physics

Newsletter 01, 37 (2012).

https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1103/PhysRevLett.121.124101
https://doi.org/10.1103/PhysRevLett.121.124101
https://doi.org/10.1103/PhysRevB.98.134303
https://doi.org/10.1103/PhysRevLett.126.110602
https://doi.org/10.1103/PhysRevLett.126.110602
https://doi.org/10.3390/e25010008
https://arxiv.org/abs/2211.10451
https://doi.org/10.1103/PhysRevE.101.010202
https://doi.org/10.1103/PhysRevE.101.010202
https://doi.org/10.1103/PhysRevA.103.033304
https://doi.org/10.1103/PhysRevA.103.033304
https://doi.org/10.1007/jhep11(2020)068
https://doi.org/10.1007/jhep11(2020)068
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1002/3527602976
https://doi.org/10.1142/1197
https://doi.org/10.1142/1197
https://doi.org/10.1142/S0219749908003451
https://doi.org/10.1142/S0219749908003451
https://doi.org/10.1007/978-1-4612-0983-6
https://doi.org/10.1007/978-1-4612-0983-6
https://doi.org/10.1007/978-3-642-05428-0
https://books.google.de/books?id=9mUsAAAAYAAJ
https://doi.org/10.1103/PhysRevLett.118.164101
https://doi.org/10.1103/PhysRevE.101.052201
https://doi.org/10.1103/PhysRevE.92.062907
https://doi.org/10.1103/PhysRevE.92.062907
https://doi.org/10.1007/b97481
https://doi.org/10.1007/b97481
https://doi.org/10.1038/nature07332
https://doi.org/10.1103/PhysRevE.98.062218
https://epub.uni-regensburg.de/43571/
https://epub.uni-regensburg.de/43571/
https://doi.org/10.1103/PhysRevLett.86.5369
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1103/PhysRevLett.101.200402
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevA.95.011602
https://books.google.fr/books?id=80hkPgAACAAJ
https://books.google.fr/books?id=80hkPgAACAAJ
https://doi.org/10.1007/978-3-030-35473-2_9
https://doi.org/10.1007/978-3-030-35473-2_9
https://books.google.de/books?id=a_xsT8oGhdgC
https://books.google.de/books?id=a_xsT8oGhdgC
https://books.google.de/books?id=a_xsT8oGhdgC
https://books.google.de/books?id=a_xsT8oGhdgC
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/physrevlett.118.086801
https://doi.org/10.1103/physrevlett.118.086801
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1103/PhysRevLett.121.210601
https://doi.org/10.1103/PhysRevE.99.012201
https://doi.org/10.1103/PhysRevE.107.054202
https://doi.org/10.1119/1.2957889
https://doi.org/10.1142/S2251158X12000069
https://doi.org/10.1142/S2251158X12000069

	A dynamical transition from localized to uniform scrambling in locally hyperbolic systems
	Abstract
	I Introduction
	II Out-of-Time-Order Correlator in integrable systems with local hyperbolicity
	III Bose-Hubbard Dimer
	A Classical mean-field limit
	B Fixed points
	C Microscopic approach: separatrix dynamics
	D Numerical results for the Out-of-Time-Order Correlator
	E Squeezing – engineering the leaking time L

	IV Conclusion 
	V Acknowledgments
	 Appendix
	A Wigner-Moyal expansion

	 References


