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Chapter 1

Introduction

For a complex manifold, we can define a sheaf A* of complex-valued differential
forms. There is a canonical decomposition A* = @p +q=r AP"? equipping this
sheaf with a bigrading. Furthermore, there are differential operators 0 and
0 on differential forms, yielding a bicomplex (A"', 0, 5). The cohomology of
the complex (Ap",g) is called the Dolbeault cohomology and it is canonically
isomorphic to the sheaf cohomology of the sheaf of holomorphic differential p-
forms. This result is known as Dolbeault’s Theorem (from about 1950), and it
is a complex analogue of de Rham’s Theorem.

In non-archimedean analytic geometry, complex manifolds are replaced by
analytic spaces over non-archimedean fields. Non-archimedean fields were dis-
covered in the beginning of the last century, and they are defined as fields k
together with an absolute value |.| that satisfies the ultrametric triangle in-
equality, meaning that |x + y| < max{|z|,|y|}. As a result, the topology of a
non-archimedean field (k,|.|) is totally disconnected. For this reason, the naive
approach defining analytic spaces over a non-archimedean field k analogously
to the complex analytic case does not work.

This lead to different approaches towards the definition of non-archimedean
analytic spaces together with a suitable sheaf of analytic functions. Tate devel-
oped the theory of rigid geometry around 1960. His work gave rise to a good
theory of sheaves of analytic functions, but the underlying spaces only come
with a Grothendieck topology. More recently, Raynaud’s formal models and
Huber’s adic spaces lead to other approaches to non-archimedean geometry.

In this thesis we are going to build upon the theory of analytic spaces de-
veloped by Berkovich in 1990. His analytic spaces are actual, well-behaved
topological spaces. For example, they are locally compact and locally path-
connected. An algebraic variety X over a non-archimedean field k gives rise in
a natural way to a Berkovich analytic space X" the so-called Berkovich ana-
lytification of X. Locally, on affine open subsets Spec(R) of X, the Berkovich
analytification is given by the collection of all multiplicative seminorms on R
extending the given absolute value on k, together with the coarsest topology
such that for all f € R the map Spec(R)*" — R, |.|; — |f]z is continuous.

There are results — known as GAGA-results — which connect algebraic prop-
erties of the variety X with properties of the topological space X?". To name
a few, X is separated (resp. proper, connected) if and only if X?" is Hausdorff

5



6 CHAPTER 1. INTRODUCTION

(resp. compact, arcwise connected). All analytic spaces we consider in this
thesis are meant to be good strictly k-analytic spaces in the sense of [Ber93].

There is a theory of smooth real-valued differential forms on Berkovich an-
alytic spaces together with differential operators and a so-called Dolbeault co-
homology, which is due to Chambert-Loir and Ducros [CD12] and can be seen
as an analogue of the complex analytic case in the non-archimedean world.
This theory was generalized by Gubler, Jell and Rabinoff in their recent pa-
per [GJR21], giving rise to a larger bigraded sheaf of so-called weakly smooth
differential forms with essentially the same properties, but with a better coho-
mological behaviour. Furthermore — in contrast to the space of smooth forms
— they contain certain forms that arise in a natural way on the analytfication
of abelian varieties.

In this thesis, our main goal is to study the Dolbeault cohomology of weakly
smooth forms of a particular class of Berkovich analytic spaces. Namely, we
consider the Berkovich analytic space A*" associated to an abelian variety A
over k, where (k,|.|) is a field which is complete with respect to a non-trivial
non-archimedean absolute value. The motivation comes from the fact that in
the complex analytic case, this class of cohomology groups can be described
very precisely: For an abelian variety A over C of dimension n, the complex
analytic space A(C) is a connected compact Lie group, and hence a complex
torus. Denoting by V' the tangent space of A(C) at zero, the exponential map
exp : V. — A(C) is a surjective morphism of Lie groups and a topological
covering map whose kernel A is a complete lattice in V. The morphism exp
and the description of A(C) as the quotient of V' by its kernel then allow us to
construct a canonical isomorphism of complex vector spaces

p q
ng (A((C)) = /\ HomC(V, C) Qc /\ Hom(C—antilinear(Va C)v

where HZ?(A(C)) denotes the g-th 0-Dolbeault cohomology group of A(C).

The goal is now to study the Dolbeault cohomology of abelian varieties in
the non-archimedean setting. The key ingredient here is the uniformization
theory by Raynaud, Bosch and Liitkebohmert and its analytic consequences
investigated by Berkovich. Given an abelian variety A over a non-archimedean
field k, their results provide us (after possibly passing to a finite separable
extension of k) with a short exact sequence

(1.1) l1—T-—FE—B—0

of algebraic groups over k. In the sequence above, T is a split algebraic torus
over k, the so-called algebraic torus associated with A, and B is an abelian va-
riety over k of good reduction. This gives rise to a similar setup as in the
complex case. Now the connection with our original Berkovich analytic space
A" is the following: The short exact sequence (1.1) comes with a morphism
p: B — A2 of k-analytic groups which is a covering map in the topological
sense, and whose kernel A := ker(p) is a discrete subgroup of the k-rational
points E(k) C E*" such that the map

E¥ /A o~ A



induced by p is an isomorphism of k-analytic groups. As a result, we obtain
the so-called Raynaud uniformization cross

A

[

P]I‘al’l I Eal’l Bal’l

ln

an
A :

a diagram of k-analytic groups. In his thesis [Sto21], Stoffel considered the case
where A has totally degenerate reduction, meaning that B = 0 and £ = T
(which always holds in the complex case). He showed that in this case, there is
a canonical injective morphism of real vector spaces

pq p q
oh: \ My == \ Mg @r [\ Mg — HP(A™),

where My denotes the real vector space associated to the character group M =
Hom (T, Spec (k [T*'])) of the torus T, and HP9(A*") denotes the Dolbeault
cohomology of (smooth) forms on A*". The aim of this thesis is to generalise
this result by dropping the assumption that A has totally degenerate reduction.
In this more general setting, we will on the one hand recover Stoffel’s result,
but also specify the contribution of the abelian variety B of good reduction to
the Dolbeault cohomology of A. More precisely, we will define another injective
morphism

p.q
p+dim B,q+dim B
/\ Mg < HY (A,

this time to the cohomology of so-called strong currents, which are continuous
linear functionals on the space of compactly supported weakly smooth forms
on A",

Let us consider the construction of the map ®%? and the strategy of proof
for its injectivity in more detail. First of all, let us consider the construction
of the sheaf of weakly smooth forms on a Berkovich analytic space X over
k. An essential ingredient are Lagerberg forms. Lagerberg forms on R" were
introduced by Lagerberg in [Lag12] as analogues of real-valued (p, ¢)-differential
forms on complex manifolds. More precisely, for an open subset U of a finite
dimensional real vector space Ng, a Lagerberg form of bidegree (p,q) on U is
an element of

APUU) := AP(U,R) @coe 1y A (U, R),

where A*(U,R) denotes the space of smooth real differential forms of degree
k on U. The resulting sheaf of Lagerberg forms on Ng is then given by A :=
@D, A??. There is a A-product and natural differential operators d’ and d”
on Lagerberg forms turning (LA®**®,d’,d”) into a bicomplex of real vector spaces.
Furthermore, by a shrinking procedure, we obtain a space of Lagerberg forms
A(o) on each polyhedron o C Ng, and also on each polyhedral set.
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Now we can use so-called tropicalization maps to pass from the analytic
space X to some finite dimensional real vector space, and thus build the bridge
from Lagerberg forms to the sheaf of (weakly) smooth forms Ax = P, , AR
on X. More precisely, a smooth differential form on X is locally given by pull-
backs of Lagerberg forms via smooth tropicalization maps. These maps are
given by analytic morphisms to the Berkovich analytification of some split torus

G}, = Spec(k [Tlil, .. .,T,,ﬂ]) over k composed with the tropicalization map
trop: G — R” which maps a multiplicative seminorm |.|, € G to the
r-tuple (—log|Ti|g, ..., —log|Ty|z) € R".

In [GJR21], Gubler, Jell and Rabinoff extend this theory of differential
forms by allowing pull-backs via harmonic tropicalization maps, which are G-
locally given by smooth tropicalization maps. Here we mean the G-topology on
Berkovich analytic spaces, this is a Grothendieck topology generated by analytic
subdomains, closely related to rigid geometry. Both the smooth as well as the
harmonic tropicalization maps share the important property that their image is
a polyhedral set which admits in a natural way a polyhedral complex structure
together with weights turning them into a tropical cycle away from the image
of the boundary.

Coming back to our abelian variety A, there is the so-called canonical
tropicalization map tropy : E*" — N on the Raynaud extension E?*", where
Ng is now defined as the real vector space associated to the cocharacter lattice
of the algebraic torus T associated to A from (1.1). In general, this tropical-
ization map fails to be smooth, but in [GJR21, §16] the authors show that it
is a harmonic tropicalization map. This was also one of the motivations for
Gubler, Jell and Rabinoff to introduce their theory of weakly smooth forms
based on harmonic tropicalizations. In Chapter 3, we are going to use the fact
that tropy locally induces a harmonic tropicalization map on A*" to show that
each A-invariant Lagerberg form o/ € AP7(Ng)? defines a weakly smooth form
() = a € ARL(A*™) on A* ~ E/A via tropp. Denoting by Mg the
dual vector space of Ng, the canonical map

p.q
51 \ Mg — HPI(A™), o/ s DR(d)) = [¢5%(d)]

obtained by this construction will help us to study the contribution of the
torus part to the Dolbeault cohomology. The map <I>§"q can be defined on all
d"-closed A-invariant (p,q)-Lagerberg forms on Ng, but the result by Stoffel
that the natural morphism AP? My — HI(AP*(Ng)?,d") given by mapping a
Lagerberg form with constant coefficients onto its class in the cohomology group
is an isomorphism (see [Sto21, 3.4.26]) shows that with regards to cohomology,
it is enough to consider only the forms with constant coefficients. We note
here also that, while in the case of totally degenerate reduction, the injectivity
of ®%7 showed that the Dolbeault cohomology HP4(A*") is non-trivial for all
p,q € N with max{p, ¢} < dim A, in our more general setting we obtain that
HP(A*") is non-trivial for all p,q € N with max{p,q} < dimT if dim T > 0.
So already here the abelian variety B of good reduction appears implicitly.
The construction of the map (Iﬂ’q is based on the torus part T of the Raynaud
extension (1.1), and the proof of its injectivity is where the abelian variety B



of good reduction comes in. The overall idea of the proof is to find for every
weakly smooth form of the form ¢%%(¢/) induced by o € AP! My and tropg
another d”-closed form 3 — now coming from the good reduction part B! —
such that pairing it with ¢%7(a/) yields a non-zero integral. The requirements
on [ are hence to yield a non-zero integral, and to come from B?*" but descend
to A?". Passing to an algebraic closure of k, Gubler’s and Kiinnemann’s results
in [GK17] and [GK19] suggest a canonical candidate for the choice of f: the
Chern current [c1(L, || . ||z)] associated to an ample line bundle L on B together
with the canonical metric || . ||z on L induced by a cubic model £ for L over
the valuation ring of k. They proved that the pull-back of this element to
E?" can be shown to be translation invariant under A, hence it descends to
A ~ E? /A, Furthermore, its integral can be computed using the degree of
the line bundle L on B.

The current [ci(L, | . ||£)] is not induced by a weakly smooth form, but it
is a so-called 0-form in the sense of [GK17]. Hence, in order to pair a weakly
smooth form ¢%?(a/) as above with a d-form, we have to pass to a larger space
containing both types of forms. This is where the space of §-forms introduced
by Mihatsch in [Mih21] comes in. It contains both the weakly smooth forms as
well as the §-forms in the sense of [GK17]. Furthermore, the sheaf of j-forms
in the sense of [Mih21] comes with a A-product. Then, letting 5 denote the
§-form on A*™ which is induced by the d-form [e1(L, | . [|2)] ™) on B2 our
main Theorem 5.2.8 states that the formula

dim T,dim T
oy (& YNB = o -deg; 1 (B)
Aan FR

holds for all o € /\dim T.dimT Mg, where F denotes a fundamental domain for
the lattice tropg(A) in Ng. The injectivity of the natural map ®%? can be
derived from this product formula, and furthermore we can use it to show that
the d-form [c1(L, || . ||z)] gives rise to an injective map

p,q
/\MR N Hp+dim B,q+dimB(Aan)
D

to the cohomology of strong currents, i.e. of continuous functionals on com-
pactly supported weakly smooth forms on A*". It is given by mapping o’ €
A% Mg to the class of the strong current

AL D=p(dimT)=a( g2y _ R R ¢ (o) A B
in the cohomology of strong currents. In particular, the cohomology groups
HZ?(A™) are non-trivial for all r,s € N with 7, s > dim B and max{r, s} <
dim A.

Outline of the thesis. In Chapter 2 we define the sheaf of weakly smooth
differential forms on Berkovich spaces based on harmonic tropicalizations after
[GJR21]. As a preparation, in Section 2.1 we give basic definitions from poly-
hedral geometry and then introduce Lagerberg forms on real vector spaces and
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polyhedra. In the second part of Chapter 2, we define smooth and harmonic
tropicalization maps giving rise to the sheaf of weakly smooth forms. Then we
can define the corresponding Dolbeault cohomology.

In Chapter 3 we deal with the analytification of abelian varieties over non-
archimedean fields. First, we recall results from the uniformization theory of
Bosch, Liitkebohmert and Raynaud, and analytic consequences thereof outlined
by Berkovich. This then allows us to define the canonical tropicalization map
on the Raynaud extension of an abelian variety. It is a harmonic tropicaliza-
tion map and gives rise to the definition of the canonical map describing the
contribution of the torus part of an abelian variety to its Dolbeault cohomology.

Chapter 4 has two parts: We define J-forms on Berkovich analytic spaces,
and furthermore we prove a product formula for their integration theory. In
order to define d-forms on Berkovich spaces, we first need the notion of §-forms
on finite dimensional real vector spaces after [Mih23]. This is the content of
Section 4.1. In Section 4.2, we first introduce the notion of tropical spaces in
order to be able to give a definition of J-forms first on tropical spaces, and then
on Berkovich spaces. Furthermore, we investigate the integration theory of 4-
forms in order to prove the product formula. This formula is stated in much
more generality than it will be used in the proof of the main theorem. Its proof
uses Mihatsch’s intersection theory as well as analytic results from [Ber90] and
[CD12], and it does not rely on any properties of abelian varieties.

The fifth and last chapter contains the proof of our main theorem. In Section
5.1, we introduce the é-form on the good reduction part B*" of the Raynaud
extension, which is crucial for our study of the cohomology. For this, we collect
some results by Gubler and Kiinnemann in [GK17] and [GK19]. The aim of the
second part is to use the short exact sequence (1.1) of the Raynaud extension
to apply the product formula for integration of J-forms in our specific setting,
in order to obtain our main theorem. For this, some technical observations and
constructions are needed. In Section 5.3 we finally use the product formula from
our main Theorem 5.2.8 to describe the (non-trivial) contributions of the torus
part as well as the good reduction part of the abelian variety to its cohomology.
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Chapter 2

Weakly smooth forms on
Berkovich spaces and their
cohomology

2.1 Lagerberg forms

The aim of this section is to recall the construction of Lagerberg forms and
Lagerberg currents introduced by Lagerberg in [Lagl2, §1], which are real ana-
logues of complex (p, q)-forms and currents on C". They are defined on real
vector spaces, as well as on polyhedral subsets, and together with their inte-
gration theory they build the basis for the construction of the later considered
weakly smooth forms and J-forms on non-archimedean analytic spaces. For all
this we follow [Gub16, §2, §3] and use the language of polyhedral geometry from
[GJR21, §2.4] and [Mih23].

2.1.1 Definitions from polyhedral geometry

In this first part we introduce some fundamental definitions from polyhedral
geometry following [GJR21, §2.4] and [Mih23, §2.2].

In the subsequent, let N always be a lattice of rank r, i.e. a free Z-module
of finite rank r, and we denote by Ng := N ®z R the ambient real vector space.
We denote by M := Homg(N,Z) the dual abelian group of of N, and by Mg
the dual vector space of Ng.

Convention 2.1.1. We fix a subring R of R which is commutative and with
1, and an R-submodule G of R. Let Mg := Homgz(N, R).

Remark 2.1.2. In applications R is often taken to be the integers, and G is
taken to be the value group I' := v(k*) of a non-archimedean valued field (k,v).

Definition 2.1.3. i) An affine function on Ng is a map f : Ng — R of the
form f = wu + ¢ for some u € Mg and ¢ € R.

ii) An affine function f = u+c (u € Mg, c € R) on Ny is called (R, G)-linear
if u € Mgp and ¢ € G.

13



14 CHAPTER 2. WEAKLY SMOOTH FORMS ON BERKOVICH SPACES

iii)

Let N’ be another lattice. Then amap L : Np — Ng is called (R, G)-linear
if foL : N, — Ris (R,G)-linear on N} for each (R, G)-linear function
f : Nr — R.

Definition 2.1.4. i) A polyhedron o in Np is a finite intersection

ii)

iii)

iv)

o= ﬂle H; of halfspaces
H; = {w € Nr ’ fz(w) > O},

where f; = u; + ¢; (u; € Mg, c; € R) is an affine function on Ny for all
ie{l,..., k}.

We call a polyhedron o as in i) an (R, G)-polyhedron if all affine functions
fi,i=1,...,k, can be chosen (R, G)-linear.

A face of a polyhedron o is the intersection of ¢ with the boundary of a
closed halfspace in Ny containing o. Here, also ¢ and the empty set are
allowed as faces of 0. We write p < ¢ if p is a face of o.

The relative interior of a polyhedron ¢ in Np is defined by

relint(o) :=0° : =0\ U T,

T=0 proper

where the union is taken over all faces 7 of ¢ with 7 # o.

Definition 2.1.5. For an (R, G)-polyhedron o in Ng, let N, denote the linear
space spanned by all differences z —y for x,y € o and let M, := N, denote its
R-dual. Furthermore, as in [GK17, A.2], let A, be the smallest affine space in
Ngr containing . Then A, = x + N, for some & € o. The dimension of o is
defined as the dimension of N,.

Definition 2.1.6. i) An (R, G)-polyhedral complex in Ny is a locally finite

i)

iii)

iv)

v)

collection IT of (R, G)-polyhedra such that for any o € II, all faces of o
are contained in II and such that for o, p € II, the intersection o N p is a
face of both ¢ and p. The property of being locally finite is meant to be
the following: There is an open covering Ng = J;c; Ui of Nr such that
for every i € I, the set U; is disjoint from almost all polyhedra o € II. If
IT is finite, then II is called a finite (R, G)-polyhedral complez.

The support of a polyhedral complex II is the union |II| := | J, ¢y o of all
polyhedra in II.

For a polyhedral complex II and some n € N, we denote by II, the
collection of all polyhedra of II of dimension n.

For n € N a polyhedral complex II in Ny is called of pure dimension n if
all its maximal polyhedra (with respect to inclusion) have dimension n.

A subcomplex of a polyhedral complex II is a polyhedral complex ¥ C II.
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vi) A subdivision of a polyhedral complex II is a polyhedral complex II" with
ITI| = |II'| and such that each polyhedron o € II is a union of polyhedra
in IT'. If both IT and II" are (R, G)-polyhedral complexes, we call II' an
(R, G)-subdivision of 1I.

vii) A subset S C Ng is called a polyhedral set if S is the support of a poly-
hedral complex in Ng. It is called pure dimensional if it is the support of
a pure dimensional polyhedral complex.

Remark 2.1.7. We note that the definition of a polyhedral complex we use
here is the one from [Mih23]. A polyhedral complex in the sense of [GJR21]
and [GK17] is the same as a finite polyhedral complex in our sense.

2.1.2 Lagerberg forms on real vector spaces

The aim of this section is to recall the construction of Lagerberg forms and
Lagerberg currents introduced by Lagerberg in [Lagl2, §1]. Lagerberg forms
on R" are bigraded real-valued differential forms, which come with a wedge
product and differential operators d’,d” and d analogous to the differential
operators 9,0 and 0 + 0 on complex differential forms. For all this we follow
[Gubl6, §2] and [Mih23, §2].

Convention 2.1.8. We choose a Z-basis of M leading to coordinates x1, ..., z,
on Ngr. Furthermore, we fix an open subset U of Ng.

Definition 2.1.9. Let A¥(U,R) denote the space of smooth real differential
forms of degree k. A Lagerberg form of bidegree (p,q) on U is an element of

p q
APUT) := AP(U,R) @coo(ry AUU,R) = C*(U) @z \ M @z \ M.
Remark 2.1.10. Formally, a Lagerberg form a € AP4(U) may be written as
o= Z argdzy ANd"xy, where I = {iy < ...<i,} C{1,...,r},
[I|=p.|J|=q
J={j1<...4¢t C{1,...,r},ar; € C°(U) and
d,w[ AN d”xj = (dmil VANPIRAN dxzp) RR (dle VANPAN Clqu).

Definition 2.1.11. We denote by A(U) := @ APY(U) the space of
Lagerberg forms on U.

D,g<r

Remark 2.1.12. There is a wedge product on A(U), defined in the usual way.
In coordinates, the wedge product on Lagerberg forms of bigedree (p,q) and

(', q') is given by
A AP x AP (U) — AP (1)

(aud/aq AN dHJJJ, O/I/J/d/x[/ A d//:L'J/) — Oz[JO/I/J/d/.%] N d”xJ A dlaj]/ N dHJIJ/ =
(—1)plqa[J0¢’I,J,d’x1 VAN d,wp VAN d//.%'J A d”le,
where a = Z|I|=p7\«f|=q arjdzyNd"zy; € APY(U) and o = Z|],|:p,’|J,|:q,
a’p],d’a;p Nd'x g € .Ap/’q/(U).
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Remark/Definition 2.1.13. There is a canonical C*°(U)-linear isomorphism
JP1: APY(U) — APP(U) obtained by switching factors in the tensor product
APA(U) = AP(U,R) @coo (1) AY(U, R), i.e. JP? is given by

TP API(U) = ATP(U)

o= Z ajjdlxj/\d//x] — Z a[Jd//JJ]/\d/{L‘J:
[|=p,|J|=q [Tl=p,|J|=q
= (_1)pq Z aIJd/:L'J/\d”x[.
[1=p,|J|=q

The maps JP? and J?P are inverse to each other. We call a Lagerberg form
a € APP(U) of bidegree (p,p) symmetric if JPP(a) = a.

Remark 2.1.14. There are differential operators

d : APYU) — AP resp. d” = AP9(U) — APITH(U) given by

T
aoqj
/ / 1 o /. / I
d E arjgdxr Nd'zy | = E E Txid:xz/\dxf/\dacjresp.
[I|=p,|J|=q [1|=p,|J|=q i=1
" da
1" ! 1" L IJ . ! 1"
d E arjdrzrANd'zy | = E E axjd:):j/\drrj/\dxj
|I|=p,|J|=q [1|=p,|J|=¢ j=1

which anti-commute and thus induce a differential operator d := d’ + d”. The
definitions above do not depend on the choice of coordinates as d’ (resp. d”) is
given by d' = D®id using AP4(U) = AP(U,R)®@zA\? M (resp. d’ = (—1)?id®@D
using AP4(U) = NP M @7 A1(U,R)), where D denotes the classical differential
operator on forms. By linearity, we extend these differential operators to the
space of Lagerberg forms A(U).

Remark 2.1.15. As in the classical theory, the Leibniz formulae
dand)=danad + (-1 a Add and
d'(and)y=d"and + (-1)!Tand o

hold for all a € AP4(U), see [CD12, (1.2.11)].

Remark 2.1.16. For all p,q € N the functor
U APUU)

defines a sheaf on Ng. We obtain a sheaf of bigraded differential algebras
(A%*,d',d") on Ng, see [CD12, (1.2.6)].

Remark 2.1.17. Let N’ be a lattice of rank ', N the ambient real vector
space and F : Np — Ng an affine map with F(V) C U for an open subset V'
of N. Then there is a well-defined pullback morphism F* : AP9(U) — AP4(V)
that commutes with the differentials d’, d”, d, the operator J”¢ and the wedge
product, see [Gubl6, 2.3], [Jel16, Remark 2.1.5].
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Definition 2.1.18. The support supp(«) of a Lagerberg form o € AP4(U) is
its support in the sense of sheaves, thus it is the set of points x € U which do
not have a neighbourhood U, in U such that «|y,= 0. A Lagerberg form is said
to have compact support if its support is a compact set. We denote by A.(U)
the space of Lagerberg forms on U with compact support in U.

Remark 2.1.19. If o € AP9(U) and o € AP"7(U) such that o or o/ has
compact support on U, then a A o has compact support on U by [JSS19,
Remark 2.2].

Definition 2.1.20. For a Lagerberg form o = 37,,_, /-, arjdry Nd'zy €
A2Y(U) as in Remark 2.1.10 we define

r(r=1)
/a:: (—1) = /OZLLdibl/\.../\d:L‘rWithL:z{l,...,T},
U U

where the right hand side denotes the usual integration of r-forms with respect
to the orientation induced by the choice of coordinates.

Definition 2.1.21. A Lagerberg current on U is a continuous linear functional
on the locally convex vector space ALY (U), where continuity is with respect to
the usual topology from the theory of distributions as explained in [GGJ*20,
§3.2]. The space of such Lagerberg currents, i.e. the topological dual space of
AZU(U), is denoted by Dy, 4(U), and furthermore we set D(U) := @, ,<, Dp,q(U)-
We denote the evaluation of a Lagerberg current T' € D, ,(U) at a Lagerberg
form o € A2Y(U) by (T, @) or by T(«).

Remark 2.1.22. There is a canonical embedding
APUU) = Dr—pr—q(U), = [a],

where [a] is given by ([a], 8) := [o](B) := [;a A B for any 3 € A."""Y(U).
We note that this is well-defined by Remark 2.1.19. The linear differential
operators d,d’ and d” extend to D(U). More precisely, for a Lagerberg current
T € Dp4(U), the evaluation of the differentials of 7" at a Lagerberg form o €
A BT (resp. oo € ARTH(U)) is given by

(d'T, o) = (—=1)PTHYT, d'a) (resp. (d'T,a) = (=1)PTHT, d"a)).

For a Lagerberg form a € AP4(U), the formation of the corresponding Lager-
berg current [a] € D,_p,—4(U) is compatible with the operators d,d and d”.

2.1.3 Lagerberg forms on polyhedra and integration

The aim of this section is to give a notion of Lagerberg forms on polyhedra and
define their integral with respect to weights. We follow [Mih21, §2.2] here.

Remark/Definition 2.1.23. Let n € N, and let o be an arbitrary polyhedron
in R™.
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i)

ii)

A smooth function on o is a map ¢ : ¢ — R such that there exists a
smooth function ¢ € C*°(R") with ¢|, = ¢. We denote the ring of
smooth functions on o by C*°(0).

A Lagerberg form of bidegree (p,q) on o is defined to be an element of
AP(0) := C(0) ®coo(a,) A" (Ag),

and a Lagerberg form on o is defined as an element of the direct sum
@D, jen AP(0). Following [Mih23, §2.2], the space of Lagerberg forms
of bidegree (p,q) on o consists of the (p, q)-Lagerberg forms on the open
subset relint(c) C A, that come by restriction of elements in AP9(A,).
There is a restriction map AP4(0) — AP4(7) for each face 7 < ¢ which
commutes with the A-product and the differentials d’ and d”.

Definition 2.1.24. Let n € N.

i)

ii)

iii)

Let o be a polyhedron in R™. A weight on o is a generator u of det(N,)
up to sign. We use the following convention on 0-dimensional polyhedra:
The determinant of the O-space is R, and a weight is a positive scalar.

A weighted polyhedron in R™ is a pair [o, u], where o is a polyhedron in
R"™ and p is any weight on o.

A weighted polyhedral complex is the datum of a polyhedral complex T
together with weights p, for all its polyhedra p € 7.

Remark 2.1.25. i) Following [Mih23, §2.3], a weight on a polyhedron o

ii)

iii)

in R™ can equivalently be defined as the datum of a Haar measure for
M. In the following, if we consider a weighted polyhedron [o, u] with
p € det(Ny), we will always write A, for the associated Haar measure on
M,.

In the situation of i), more precisely the mapping p — X, is given as
follows ([Mih23, §2.3]): If dim(/N,) = 0, then A, is given by the Dirac
measure of volume p € R-g. In the case where dim(N,) > 0, we pick
a basis e1,...,e, € N, of N, such that u = +e; A ...e,. Denoting by

x1,...,Tn € M, the associated dual basis of M,, the Haar measure A,
is defined to be the Haar measure for M, such that the parallelepiped
spanned by x1,...,x, has measure 1.

For every (Q,R)-polyhedron ¢ C R™ there is a natural weight on o,
namely the - up to sign - unique generator pg of det(N, NZ"™). We note
here that N, NZ" is a lattice in Ny, see [GK17, A.2]. Any other weight
on o is then in a unique way of the form cug for ¢ € Ryg.

Remark/Definition 2.1.26. Let 0 C R" be a polyhedron of dimension d and
let u € det(N,) be a weight for o. Let n € Ag’d(a) be a Lagerberg form of top
degree on o. Let e1,...,eq € N, be a basis of N, such that y =e; A... ANeg
and let z1, ..., x4 denote the associated dual basis of M,. Let ¢ € C*°(o) such
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that n = od'x1 ANd"zy A ... ANd'zg A d"z4. Then the integral of n along [o, p is
defined as (see [Mih23, (2.11)])

/ n::/npd)\u,
[ou] o

where the right hand side is the Lebesgue integral with respect to the measure
defined by the choice of the isomorphism (z1,...,zq) : Ny = RY,

Definition 2.1.27. For n € N, the standard weight on R™ is defined as the
Lebesgue measure on the dual space of R", where the identification (R™)" = R"
is with respect to the dual of the standard basis of R”. This measure on (R")"
is denoted by A,,,. Equivalently, it is defined as purn := ey A... Ae, € det(R™)
for the standard basis vectors ey, ..., e, of R, see [Mih21, Definition 2.8].

Remark 2.1.28. i) The transformation formula, stating that for an affine
map f: R® — R” and a Lagerberg form n € A" (R"), the equality

[ n = |det fl/ n
R» R

holds, ensures that the integral in Definition 2.1.26 is well-defined. Here
the determinant of f is meant to be the determinant of the linear part of

f.

ii) A weighted d-dimensional polyhedron [o, ] in R™ may be viewed as an
(n — d,n — d)- Lagerberg current

[o,) + ALY (o) = Ry [ .
[o,u]
iii) Every weighted d-dimensional polyhedron [o, | in R™ together with a
Lagerberg form a € AP%(o) defines an (n — d + p,n — d + q)-Lagerberg
current

Alo,p) s ATPA(g) — R,y s aAn.
[ou]
Remark/Definition 2.1.29. Let S be polyhedral set of pure dimension n in
Ng, and let II be a polyhedral complex in Ng with support |II|] = S. Follow-
ing [GK17, 3.1], we define the sheaf Afr’[ql of (p,q)- Lagerberg forms on |II| as
follows: For any open subset U of |II|, a Lagerberg form a € Aﬁ’]q'(U ) on U
is represented by a Lagerberg form & € Ap’q(ﬁ ) for any open subset U C Ng
with U N |TII| = U, where two such elements are identified if they induce the
same element in AP4(0) for every maximal polyhedron o € II,,. We denote the

corresponding sheaf of Lagerberg forms on |II| = S by Ajr.

Definition 2.1.30. Let (II, 1) be a finite weighted polyhedral complex in Ng
of pure dimension d. Let S := |II| denote the support of II. Let n € Ag’fi(S)
be a Lagerberg form of top bidegree on S with compact support. Then the
integral of n along (II, u) is defined as

n = / 77’0‘
/(H,u) Z [o,4]

o€elly
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2.2 Weakly smooth forms on Berkovich spaces
based on harmonic tropicalizations

In their paper [GJR21], Gubler, Jell and Rabinoff enhance the construction of
the bigraded sheaf of smooth real-valued differential forms on non-archimedean
analytic spaces by Chambert-Loir and Ducros in [CD12]. Their approach is to
allow pulling back Lagerberg forms via more general harmonic tropicalization
maps instead of smooth tropicalization maps. This gives rise to a larger sheaf
of differential forms with essentially the same properties, but with a better
cohomological behaviour. The main focus of this thesis is to investigate this
cohomological behaviour in the case of the Berkovich analytification of abelian
varieties - where the so-called canonical tropicalization map fails to be smooth,
but not to be harmonic. To do so, at first a detailed study of the theory of the
so-called weakly smooth forms from [GJR21] is needed. This is the content of
this section.

For the rest of this chapter, we fix a field k that is complete with respect
to a non-trivial non-archimedean absolute value |.| : & — R. We denote by
v := —log|.| the corresponding valuation and by I' := v(k*) its value group.
An analytic space is meant to be a good strictly k-analytic space in the sense
of [Ber93]. For a field extension ! of k which is complete with respect to a
non-archimedean absolute value extending the absolute value on k (called a
non-archimedean field extension), there is a ground field extension functor from
the category of k-analytic spaces to the category of [-analytic spaces. Once we
pass to some extension field, we also consider our analytic spaces as objects of
the larger category of analytic spaces over k (see [Ber93, 1.4]), whose objects
are [-analytic spaces for any field extension [ of k£ as above. This allows us in
particular to consider the structure morphism 7 : X®l — X for a k-analytic
space X. Furthermore, for an algebraic variety Y over k we denote by Y2" its
Berkovich analytification. As a set, Y*" consists of pairs of the form (p,|.|,),
where p € Y and |.|, is an absolute value on the residue field x(p) which extends
the absolute value |.| on the field k.

2.2.1 Tori and (smooth) tropicalization maps

In this chapter, we introduce smooth tropicalization maps, which we will also
call tropical coordinates. They form - together with the Lagerberg forms -
the building blocks for the smooth differential forms from [CD12], but also for
the so-called d-forms in the sense of [GK17] as well as in the sense of [Mih21].
Furthermore, they are needed to define skeletons which are of great importance
for both the weakly smooth forms as well as the d-forms. In this chapter we
follow [GJR21, §3, §4] and [Mih21, §3].

Remark/Definition 2.2.1. Let T be an n-dimensional split torus over k£ with
character lattice M and cocharacter lattice N. For w € M let x* : T —
Spec (k[T*1]) = G}, be the corresponding character of T = Spec(k [M]). Let
Ng := N ®z R, and choose a Z-basis of M leading to coordinates x1,...,x, on
T identifying N with Z™.
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i) We define the tropicalization map trop : T*" — Ny as follows: The image
trop(x) € Ny of x € T*" is characterized by

< u,trop(z) >= —log|x"(z)| for all v € M.

Under the identification Ng ~ R"™ given by the z;, trop(x) is given by the
tuple (—log|zi(z)]);—; _, for all z € T*".

ii) There is a canonical section ty : Ng — T?" of the tropicalization map
which is defined by

tr(w) : k[M] =R
W= ZUEM aué-u = queM aug“”brﬂ-(w) =
exp (— min{—log|a,|+ < u,w >| a, # 0})

for all w € Ng.
iii) The image of ¢y in T?" is called the canonical skeleton X(T) of T.

Convention 2.2.2. For an n-dimensional split torus T over k, we always use
the notations from Remark/Definition 2.2.1.

Remark 2.2.3. The tropicalization map trop on a split torus T is a continuous
proper map of topological spaces.

Definition 2.2.4. A moment map is a morphism ¢ : X — T of an analytic
space X to the analytification of some split torus T. The map ¢ is also called
tropical coordinates on X. The corresponding map

t, :=tropoy: X — Np
is called smooth tropicalization map.
Example 2.2.5. For n € N the multiplicative split torus
Gy, := Spec (k‘ [Tlﬂ, e ,Tiﬁl})
over k is an n-dimensional split torus over k with character lattice Z".

Definition 2.2.6. For r, s € N, a morphism of tori G}, — G, is defined to be
an algebraic group homomorphism composed with a multiplicative translation.

Convention 2.2.7. For r,;s € N, by a morphism G!, — G$, (resp. Gp;" —
Gy™) we always mean a morphism of tori (resp. the map on analytifications
induced by a morphism of tori).

Definition 2.2.8. Let X be a compact analytic space over k of pure dimension
d € N, and let ¢ : X — T?" be a moment map. Then the tropical variety of ¢ is
by definition the image ¢,(X) C Nr. We call this image also the tropicalization
of X with respect to ¢ and denote it by T"(X, ¢).
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Remark 2.2.9. In the situation of Definition 2.2.8, by [Ducl2, Théoreme 3.2]
the following holds: The tropical variety t,(X) is the support of a finite (Z,I')-
polytopal complex IT in Ng of dimension at most d. Furthermore, the polyhedral
complex II might be chosen such that ¢,(0X) is contained in a subcomplex of
dimension at most d — 1. If X is chosen strictly affinoid, then ¢,(0X) equals
the support of such a subcomplex.

Definition 2.2.10. Let X be an analytic space and f : X — G’ a moment
map on X. Then a refinement of f is a pair (g, p) consisting of a moment map
s,an

g: X — G and a map p : G — G which is induced by a morphism
G:, — G, of tori, such that f = pog. This means that the diagram

G%an trop R"

\
commutes. Here and also in the following, the map R®* — R" which is induced
by p, trop and (g is also denoted by p.

trop
G 2 R?

2.2.2 Harmonic tropicalization maps

The aim of this part is to introduce harmonic tropicalization maps as described
in [GJR21, §8]. They can G-locally be described in terms of smooth tropical-
ization maps as introduced in the previous chapter, and allow to define weakly
smooth forms on non-archimedean analytic spaces. A crucial ingredient for
this is that the skeleta or tropical varieties arising from harmonic tropicaliza-
tion maps are - as in the case of smooth tropicalization maps before - balanced,
as we will explain in Chapter 4.

Definition 2.2.11. Let X be an analytic space and A C R an additive sub-
group. Then a continuous map h : X — R is called piecewise A-linear if there

exists a G-covering {X;}ier of X such that for each ¢ € I, there exists a finite
index set J; and A\;j € A, fi; € O(X;)™ for all j € J; such that

hlx, =Y Aijlog| i
Jj€J;

for all i € I. A piecewise Z-linear function is called piecewise linear map. The
group of piecewise A-linear functions on X is denoted by PL (X).

Remark 2.2.12. Let X be an analytic space and A C R an additive subgroup.
Then by [GJR21, 5.2], the following holds:

i) A function h : X — R is piecewise linear if and only if there exists
a G-covering {X;}ier of X and f; € O(X;)* for all i € I such that
hlx, = log| fi| for all i € I.
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ii) The restriction of a piecewise A-linear function to a strictly analytic do-
main is again piecewise A-linear.

iii) PLy defines a sheaf in the G-topology and in the analytic topology.

Definition 2.2.13. Let X be an analytic space and A C R an additive sub-
group. We assume that A = 7Z or that A is divisible. Let h : X — R be
a piecewise A-linear function. The map h is called harmonic at x € X if
there exists a paracompact neighbourhood U of = in X, a formal k°-model U/
of U and a numerically trivial element £ € M (U)p := M(U) ®z A such that
hly = —log||1||z, where ||.||z denotes the canonical metric induced by £ on Oy.
Here M (U) denotes the abelian group of isomorphism classes of line bundles
O on U equipped with an identification O, = Oy of the generic fibre, and a
line bundle £ € M (U) is said to be numerically trivial if its restriction to the
special fibre of U has this property. The map h is then called harmonic if it is
harmonic at all points z € X.

Remark 2.2.14. More details and equivalent definitions for a map to be har-
monic can be found in [GJR21, §7]. The definition chosen above is due to
[GJR21, 7.3].

Convention 2.2.15. For the rest of this chapter, let X be a compact analytic
space of pure dimension d € N.

Definition 2.2.16. Let
h=(h1,...,hy) : X - R"

be a map. Then h is called piecewise linear tropicalization map if hq,..., hy,
are piecewise linear functions, h is called harmonic tropicalization map if in
addition hq, ..., h, are harmonic, and h is called smooth tropicalization map if
for all i € {1,...,n} there is some f; € O%(X) such that h; = log| f;|.

Remark 2.2.17. A smooth tropicalization map h : X — R" has the form ¢,
for a moment map ¢ : X — G;;™", i.e. the definition above is consistent with
the one from Definition 2.2.4. Furthermore, a piecewise linear tropicalization
map on X is G-locally a smooth tropicalization map. This important property
will be used to define a tropical space structure on the image h(X) of X under
a harmonic tropicalization map h using the tropical space structure on the

tropical variety coming from smooth tropicalization maps (G-locally).

Remark 2.2.18. By [GJR21, 8.2 (4)], harmonic tropicalization maps pull back
under morphisms of analytic spaces and arbitrary base change.

Proposition 2.2.19. A map h : X — R is piecewise linear if and only if
each x € X admits a strictly affinoid neighbourhood U together with a smooth
tropicalization map h' : U — R™ and a piecewise (Z,T)-linear function F :

R(U) = R such that hl|y = Fol'.

Proof. [GJR21, Proposition 8.3] O
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Definition 2.2.20. Let A : X — R"™ be a piecewise linear tropicalization.
Then h is said to be covered by a smooth tropicalization map h' : U — R™ on a
compact strictly analytic subdomain U C X if there is a pieceweise (Z, I')-linear
function F : h'(U) — R™ such that h|y = F o h'.

Remark 2.2.21. Proposition 2.2.19 yields that locally on X, a pieceweise linear
tropicalization is always covered by a smooth tropicalization map.

Remark 2.2.22. Let h : X — R" be a piecewise linear tropicalization map.
Then h(X) is the support of an at most d-dimensional finite (Z, I')-polyhedral
complex. In the following, we denote by h(X)y always its d-dimensional locus.

Proposition 2.2.23. Let I[/k be a non-archimedean field extension, let X; :=
X&®l and let 7+ X; — X be the structure morphism. Let h be a piecewise
linear function on X and let hy := how. Then h is harmonic if and only if h;
s harmonic.

Proof. [GJR21, Proposition 7.7 (2’)] O

2.2.3 Weakly smooth forms on Berkovich spaces

In this section, we introduce weakly smooth forms on non-archimedean analytic
spaces. All the constructions are due to [GJR21, §10, §11].

Definition 2.2.24. [GJR21, Definition 10.3] Let X be an analytic space and
U C X an open subset with compact strictly analytic closure U. A weakly
smooth preform of type (p,q) on U is given by a tuple (h, a), where h : U — R"
is a harmonic tropicalization map and « € AZ’(%) U

(h(U)) a Lagerberg form on
h(U) C R™ Two such tuples (h,a) and (h',a’) define the same preform if
and only if pja = 1/)30/ on (h,h')(U), where p1 Tesp. p denote ihe proj,ection
maps py : R" x R" — R" resp. pp : R" X R" — R™ and U —R" d e

s (1(0)).

Lemma 2.2.25. In the situation of Definition 2.2.2/, the equivalence (h,a) =
0 < a=0 holds.

Proof. [GJR21, Lemma 10.4] O

Definition 2.2.26. [GJR21, 10.6] Let X be an analytic space and U C X an
open subset with compact strictly analytic closure U. Let (h, ) and (1, /) be
two weakly smooth preforms on U of type (p, q) and (p/, ¢'), respectively. Then

g:=(hK):U =R 2z (h(z), K (z))

is a harmonic tropicalization map and the equalities (g,pja) = (h,a) and
(9,p50/) = (K, ') of weakly smooth preforms hold, where p; and ps denote
the canonical projection maps on R™ x R™ . Then we define the wedge product
of (h,a) and (W', /) as

(h,a) A (W, ) :== (g,pja A pia).
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It is a weakly smooth preform of type (p + p’,q+ ¢') on U and satisfies
(W, &) A (h,a) = (—1) PV (b o) A (B o).
Furthermore, we define differentials of preforms by
d'(h,a) := (h,d'a) and d"(h,a) := (h,d"a).
They satisfy the Leibniz rule
d ((h,a) A (W, ) =d (h,a) A (W, o)+ (=1)PT9(h,a) Ad' (R, )
and likewise for d”.

Definition 2.2.27. Let X be an analytic space. Following [GJR21, 10.5, 10.7],
the weakly smooth preforms define a presheaf of bigraded differential R-algebras
on the category of open subets of X whose closure is a compact strictly analytic
domain. Such open subsets form a basis for the analytic topology of the analytic
space X. We denote the associated sheaf on the underlying topological space
of X by Ax or simply by A. It is a sheaf of bigraded differential R-algebras
A= @p,q AP4. The elements of A are called weakly smooth forms.

Remark 2.2.28. Following [GJR21, 10.8], for a morphism f : X’ — X of
analytic spaces over k, there is a pull-back homomorphism

ffrAx = fulx

of sheaves of bigraded differential R-algebras, defined on preforms as follows:
For open subsets U C X and U’ C X’ with U’ C f~Y(U) and such that
the closures of U and U’ are compact strictly analytic domains, the pull-back
f*(h,a) of a preform (h,a) on U is given by f*(h,a) := (ho f,a).

Convention 2.2.29. For a weakly smooth preform (h, ) on a compact analytic
space X over k we denote the associated weakly smooth form by h*(a) € A(X).

Proposition 2.2.30. Let X be a compact analytic space.
i) The natural map from weakly smooth preforms to weakly smooth forms on
X s injective.

it) If h : X — R™ is a harmonic tropicalization map, then the corresponding
pull-back morphism h* : .A;l’(.X)(h(X)) — AYN(X) is an injective homo-
morphism of bigraded differential R-algebras.

iii) If f : X' — X is a morphism of analytic spaces, then (ho f)* = f* o h*.
Proof. [GJR21, Proposition 10.9] O

Definition 2.2.31. Let X be an analytic space. The support of a weakly
smooth form w € AP9(X) is defined in the sense of sheaves: It is the set of
points x of X such that the germ of w in x is non-zero. This is a closed subset
denoted by supp(w). Furthermore we denote the cosheaf of weakly smooth
(p, q)-forms with compact support on X by AP
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Proposition 2.2.32. Let X be an analytic space of pure dimension d. Then
there is a unique linear functional

/ :Ag’d—HR
X

such that the following holds for all w € Ag’d(X):
i) Ifsupp(w) C W for a strictly analytic domain W of X, then ow = [y w.

it) For closed analytic domains V,W of X we have fVuW w = fv w + ow -
Jvaw w-

i11) If X is compact and w is given by h*(«) for a harmonic tropicalization map
h: X — R" and a Lagerberg form o € A% (h(X)), then [y w = fh(X)d a,
where the d-dimensional locus h(X)gq of h(X) is considered as a weighted
polyhedral complex via Remark 4.2.43.

Proof. [GJR21, Proposition 11.1] O

2.2.4 Strong currents

The aim of this section is to introduce the notion of continuous linear functionals
on the space of compactly supported weakly smooth forms on non-archimedean
analytic spaces: This space is equipped with a topology that coincides with
the topology on smooth differential forms in the Schwartz sense introduced in
[CD12, (4.1.1)] if one restricts to the smooth case. This gives rise to the notion
of the so-called strong currents which will be of use to study the Dolbeault
cohomology of the analytification of abelian varieties later. All this is object of
[GJR21, §12].

Throughout this section, let X denote a Hausdorff analytic space of some
pure dimension d with empty boundary.

Definition 2.2.33. Following [GJR21, 12.1], we define a (locally convex) topol-
ogy on the space of weakly smooth (p, ¢)-forms on X with compact support ex-
actly as in [CD12, (4.1.1)], replacing smooth tropicalization maps by harmonic
tropicalization maps. For details, see [CD12, (4.1.1)].

Remark 2.2.34. Following [GJR21, 12.1], roughly speaking, convergence in
ALY(X) means that the supports of the weakly smooth forms are covered by
finitely many compact strictly analytic subdomains V' in X and the strictly an-
alytic subdomains tropicalize the weakly smooth forms such that all the deriva-
tives of the corresponding Lagerberg forms converge uniformly.

Definition 2.2.35. A strong current on X of bidegree (p, q) is defined to be a
continuous linear functional A2?(X) — R. The space of strong currents on X of
bidegree (p, q) is denoted by D, 4(X) or D4~P4=4(X), and a strong current on X
is an element of D(X) := @, e Pp,q(X)-

Remark 2.2.36. Mapping open subsets U of X to the space D(U) of strong
currents on X defines a sheaf on X by [GJR21, 12.2].
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Example 2.2.37. The current of integration dx : Ag’d(X) el N
defines a strong current dx € Dy q(X) on X.

Remark 2.2.38. Following [GJR21, 12.4], there is an injective linear map

APYX) = D g—q(X),w = (0 = Sx(w A7)

for n € ATPY(X),

Remark/Definition 2.2.39. We define differentials d’ : D), 4(X) — Dp_1,4(X)
and d’ : D, ¢(X) — D, ¢—1(X) on strong currents by

d'T(w) := (—=1)PTTT(d'w) and d"T(n) := (—1)PTITLT(d"n)
for all T € D) 4(X),w € AL""9(X) and n € AP (X).

Remark 2.2.40. Following [GJR21, 12.5], the homomorphism A — D induced
by mapping a weakly smooth form onto its associated strong current respects
the differentials d’ and d”.

Remark 2.2.41. As in [CD12, (4.3.5)], there is a generalization of Remark
2.2.38: For every weakly smooth form w € AP9(X) and every strong current
T € D, s(X) we obtain a strong current w AT € D,_,, s_4(X) which is defined
by

WAT : AP X) - Ryp— T(wAn).

Lemma 2.2.42. Let w € APY(X) be a d’-closed weakly smooth form and T €
D, s(X) a d"-closed strong current on X. Then the strong current w AT €
Dy_p.s—q(X) is again d"-closed.

Proof. For d"-closed elements w € AP(X) and T' € D, 4(X), the definition of
the differentials on strong currents together with the Leibniz formula gives that

(@ AT) () = + (@ AT) (&)
=4T (w A d”n)
=T (+d"(w A n) £ (d"w A7)
=+T (d"(wAn)) £T (d"wAn)
=+d"T(wAn)=0

for all n € Az 7" 9(X), where in the last two steps we use that w and T are
d"-closed. This yields that w A T is d”’-closed. O

2.2.5 Dolbeault cohomology of weakly smooth forms

In this section, we define the Dolbeault cohomology of weakly smooth forms for
general Berkovich analytic spaces following [GJR21, §13].

We fix an analytic space X of dimension d. We note that by applying the
Lagerberg involution JP4, every result for d” has a natural counterpart for d’
after switching the roles of p and q. So we only consider d” here.
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Theorem 2.2.43. For all p € N>, the differential operator d” on the sheaf A
of weakly smooth forms induces a complex

00— AP0 5 5 AP 5

of sheaves on X which is exact at APY for all g € N>.
Proof. [GJR21, Theorem 13.1] O

Definition 2.2.44. Applying the global section functor to the complex in The-
orem 2.2.43, we get the so-called Dolbeault complex

0— APY(X) = ... = APYX) = 0.

The resulting cohomology is called the ¢-th Dolbeault cohomology and the co-
homology groups are denoted by HP?(X) for all p,q € N.

Remark 2.2.45. Let [/k be a non-archimedean field extension, let X; := X Rl
and let 7 : X; — X be the corresponding structure morphism. Then for all
p,q € N, the base change from k to [ induces a natural map on the Dolbeault
cohomology groups

HP(X) — HPUX))

which is obtained as follows: Every weakly smooth form a € AP4(X) is given by
an open cover (U;);e; of X such that the closure U; of U; is a compact strictly
analytic domain for all ¢ € I, together with a compatible family (h;, a;)ier,
where h; : U; — R™ is a harmonic tropicalization map and a; € AP4(R™) a
Lagerberg form for all ¢ € I. Using Proposition 2.2.23, the assignment

(his i)ier = (hi o T, ay)icr

defines a natural map pP?¢ : AP9(X) — AP9(X;) which is compatible with d”
by definition of d”. More precisely, the definition of d” gives

d" P ((hi, i) = d"(hi o m, ) = (hi o m,d" ;) = PP (hy, d" ;)

for all i« € I. The d”-compatibility of ¢”¢ shows that ¢ induces a natural
map

HP(X) = HP(X1), [o] = [¢P(a)]

on the Dolbeault cohomology groups.



Chapter 3

Weakly smooth forms and
Dolbeault cohomology on the
analytification of abelian
varieties

In this section, we recall results from the uniformization theory of Bosch,
Liitkebohmert and Raynaud and their analytic consideration by Berkovich,
which give rise to the building blocks for the main result: Roughly speaking,
every abelian variety over a suitable field admits a covering space, the so-called
Raynaud extension, which can locally be divided in two parts. One of them
is a multiplicative split torus which gives in a natural way rise to a harmonic
tropicalization map. The other part is an abelian variety of good reduction.
This is explained in [GJR21, §16], [Gubl0, §4], [BL93] and [Ber90, 6.5]. We
follow those papers here.

3.1 Canonical tropicalization of abelian varieties

The aim of this first part of the chapter is to explain the construction of the
canonical tropicalization of abelian varieties. It is based on the torus part of
the so-called Raynaud extension of the abelian variety, and gives in a natural
way rise to weakly smooth forms on the Berkovich analytification of abelian
varieties. These weakly smooth forms will be the ones occurring in our main
theorem, and the ones which we will use to describe the Dolbeault cohomology.

In this section, we fix a field k that is complete with respect to a non-trivial
non-archimedean absolute value |.| : K — R. We denote by k° the corresponding
valuation ring.

Remark/Definition 3.1.1. Let A be an abelian variety over k. Following
[Ber90, 6.5], there exists a unique compact subgroup G of A*" such that

i) G is an analytic domain;

ii) G is a formal k-analytic group;

29
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iii) for some finite separable extension [ of k, G&l has semiabelian reduction
which means that the reduction of G®jl is an extension of an abelian
variety by a torus.

Furthermore, the group G contains a unique closed k-analytic subgroup T{"
that is a k-affinoid torus. This affinoid torus T¢" is isomorphic to the locus
{peT* ||Ti(p)| = ... =|Ta(p)| = 1} for some algebraic torus T over k, where
T1,...,Ty denotes a Z-basis of the character lattice of T. The algebraic torus
T is called the algebraic torus associated with A.

Definition 3.1.2. Let A be an abelian variety over k. Furthermore, let G
be the compact subgroup of A*" from Remark/Definition 3.1.1, and let T be
the algebraic torus associated with A. Then A is called split over k if G has
semiabelian reduction and T is split over k.

Remark 3.1.3. Following [Ber90, 6.5], for any abelian variety A over k there
is some finite Galois extension [ of k£ such that A ®y [ is split over [.

Remark/Definition 3.1.4. Let A be an abelian variety over k that is split
over k. Following [BL93], [Ber90, 6.5], [GJR21, §16] and [Gubl0, §4], the
uniformization theory of Bosch, Liitkebohmert and Raynaud yields the fol-
lowing: Let G be the the compact subgroup of A*" from Remark/Definition
3.1.1, and let T be the algebraic torus associated with A. We identify the
unique closed k-analytic subgroup T{" of G that is a k-affinoid torus with
{p € T | |[T7(p)| = ... = |Ta(p)| = 1}, where T,...,Ty denotes a Z-basis
of the character lattice of T. There is a unique abelian scheme B over Spec(k°)
with generic fiber B yielding an exact sequence

1 —T -G B™ 90

of formal analytic groups. We embed T9" into G xj, T*" by mapping x € T" to
(,271), and call the analytic group E®® := (G xj, T3) /T3 obtained via the
resulting group action of T¢" on G x T?" the uniformization of A*". Using the
canonical maps v : G — E*" and q: E*" — B following [BL93, §1] we get
a commutative diagram

1 T —— E* —1 B — ()
oo
1 Tan y G —1 s B ),

where the upper row is an exact sequence of analytic groups, called the Raynaud
extension of the abelian variety A. Furthermore, the Raynaud extension is al-
gebraizable, i.e. there is an algebraic variety E over k with Berkovich analytifi-
cation E?" for the analytic group E?" constructed above, and a canonical short
exact sequence

(3.1) 1 —-T—FE-5B-—0
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of algebraic groups which induces the exact sequence on the Berkovich analytifi-
cations above. The closed immersion T9" — G extends uniquely to a morphism
Ta" — A2 of analytic groups, and the morphism G — A®" extends uniquely
to a morphism p : E*" — A" of analytic groups. The kernel A := ker(p) of
p: E*™ — A®" is a discrete subgroup of the k-rational points E(k), and the
homomorphism E*"/A — A" induced by p is an isomorphism. Hence we may
use the identification

(3.2) AP gan /A

Furthermore, in (3.1), B is of good reduction, and we denote the unique Shilov
point of B* by £g. The homomorphism q : £ — B is an algebraic T-torsor
for the Zariski topology, whereas the quotient homomorphism p : E?" — A2"
is only an analytic morphism. It is a covering map in the sense of topology,
meaning that p is surjective and for all x € A*" there is an open neighborhood
U of z such that p~!(U) = | |;c5 Ui with U; C E®® open for all i € A and such
that p maps U; homeomorphically onto U for all i € A.

Convention 3.1.5. For the rest of the section let A be an abelian variety
which is split over k. We fix the notations from Remark/ Definition 3.1.4.
Furthermore, we denote the character lattice of the split torus T by M and let
N := Homy(M,Z) be the cocharacter lattice. Let d := dim Ng, b := dim B and
n := dim A.

Remark/Definition 3.1.6. Let u € M and consider the corresponding char-
acter x* : T — G,,, i.e. the canonical map from the torus T to the multiplicative
split torus Gy, in one variable over K. Then the pushout diagram

0 T E-1.B 0
o
0 G E, B 0

of the Raynaud extension with respect to x“ exists and gives rise to a translation
invariant extension of B by G,,, and to a rigidified translation invariant line
bundle E, on B by [GJR21, §16] and [BL93, §3]. We note that q*(E,) is trivial
over E and the pushout construction gives a canonical frame e, : E — q*(E,).
Then there is a unique map

(3.3) tropg : E*" — Ng,
called canonical tropicalization map, satisfying
(3.4) < tropp(e),u >= —loga* || eu(®) ||,

for all z € E*", where || . || g, denotes the canonical metric of the rigidified line
bundle E,. This is the formal metric associated to the - up to isomorphism -
unique formal k°-model of E, on the formal completion of B. For more details
we refer to [Gubl0, §3]. For € T*" considered as an element of E*" via the
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map T# — E*" induced by the Raynaud extension, we obtain < trop(x),u >=
—log|.]ox*(x), i.e. the canonical tropicalization map trop agrees with the usual
tropicalization map on the split torus T?". Another important fact is that trop
maps A isomorphically onto a complete lattice in Ng by [Gub10, 4.2] which we
also denote by A C Ny in the following.

Remark 3.1.7. Following [Gub10, 4.2], an alternative description of the canon-
ical tropicalization map tropy : F*" — Np is given as follows: There is an open

affine cover {U;};es of B such that q;l(uf‘) o~ Z/{j:l xp, T9™ for all j € J, where

U7 = {z € UM | |f(2)] < 1Vf € Oy, (Us)} C U™ C B™,

and where U; denotes the generic fiber of U;. For every j € J, we fix such a
trivialization ql—l(uf) ~ Z/{j—-l X, T4™ given by a section 3]3 : Z/{j3 — G. The image

of the transition functions g; := s];‘ - Sl: are maps from Z/{j:l NUF to T3, We

choose a Z-basis 11, ..., Ty of the character lattice M of T. Now using that the
image of the transition functions gj lies in T" = {& € T*" | [T1(z)| = ... =
|Ty(z)| = 1}, the pull-backs of |T;(.)| : T*" — R to the trivializations Z/{j:l X Tan
via the projections L{j: X Ta — T?" yield well-defined maps

IT:(.)|: B*" = R

for all i € {1,...,d}. Furthermore, they are independent of the choice of the
open affine cover {U;}jcs of B. Identifying N with R? via the Z-basis T1, . .., Ty
of the character lattice M of T, the canonical tropicalization map tropy on E?"
is then given by

tropg : E™ — RY ~ N,z — (—log|T\ ()], ..., —log|Ty(x)|) € RY.

Proposition 3.1.8. The canonical tropicalization map tropg : E* — Ny is a
harmonic tropicalization map.

Proof. [GJR21, Proposition 16.2] O

Remark 3.1.9. For any non-archimedean field extension [/k, there is a com-
mutative diagram

1 "JI‘aH Ean q B an O

L]

1 —— T@pl —— E¥@pl —— B™Rpl —— 0

with exact rows, where the vertical maps are the structure morphisms. Then
the fact that the diagram

Tan®kl - . Tan
Nr

commutes together with the construction of the Raynaud extension and the
map tropg : B*" — N gives that the formation of the Raynaud extension and
its canonical tropicalization is compatible with base change.
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Lemma 3.1.10. There is an affine Zariski-open subset W C B with generic
fiber W in B and associated affinoid domain W= = {z € W** | |f(z)| < 1Vf €
Ow(W)} C B* with 5 € W= C W2 and an isomorphism ¢ : q~ L (W) ~
Ta" x, WA such that the restriction of the isomorphism ¢ to g~ (W=3) yields
a commutative diagram

¢|q_1(W:l)

qfl(wﬂ) Tan Xk WJ

JtrV
tropx e
Rd

where trop x e : T x W= C T2 x;, W2 — R? denotes the composition
trop o pryan of the projection prypan @ T Xy W= — T2 from the fibre product
with the canonical tropicalization map trop on T?".

Proof. We use the description of the canonical tropicalization map tropy from
Remark 3.1.7. Let {U;}jc; be an affine open cover of B as in Remark 3.1.7,
leading to an affine open cover of B by the corresponding generic fibers {U;}je..
Using that the algebraic morphism ¢q : £ — B is locally trivial, by possibly
refining the cover {U;}c;, we may assume that there is an index j € J such that
¢ € U C U™ and such that g~ (U") ~ U2 x;, T*" and q7 ' (U3) ~ U x, T,
We fix sections sj: : Z/lj:l — G and s; : U™ — E* = (G x; T*") /T{" for those
trivializations. Then the commutativity of the diagram

1 —— T —— g0 1, poan 0
Joowel
1 —— T3® G —— B 0

shows that there exists some isomorphism f : T?* — T?" of analytic tori
such that (g o s]:-‘ = (idg xf) o sj|Mj:, where (idg xf) : (G x T*) /T —
(G xj, T*") /T = E*". If we now replace the trivialization s; by the trivial-
ization (idg % f) o s;, we get the claim for W :=U;. O

Remark 3.1.11. Following [Gubl0, 4.2], the canonical tropicalization map
tropy on E*" induces a canonical map trop 4 : A*" — Ngr/A given by trop 4(z) :=
tropp(Z) + A for all # € E*" with corresponding x := & + A := p(Z) € A*" =
E?/A:

tropg

A gon Ni
b
Aen TP N A

We note that trop 4 is nevertheless only locally a harmonic tropicalization map,
which means that we can not define weakly smooth forms on A*" using trop 4
globally, but we can make use of it by local considerations.
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Definition 3.1.12. The subgroup A C E(K) (resp. the complete lattice A C
Ngr) acts on E®" (resp. Ng) by translation. For A € A C E*" (resp. ' € A C
Ngr) we denote the corresponding translation map by 7 : E*" — E*" (resp.
T NR — NR).

Definition 3.1.13. Let Q@ C Nk be an arbitrary subset. Then € is called
A-invariant if for all A € A and v € Q, also v+ X\ € 2. Furthermore, 2 is called
A-small if for all non-zero elements A € A\ {0} the equality @ N7, '(Q) = 0
holds. An arbitrary subset U C E?" is defined to be A-small resp. A-invariant
in exactly the same way.

Definition 3.1.14. Let 2 C N be a A-invariant open subset and o/ € AP(Q)
a (p, q)-Lagerberg form on €. Then we say that o' is A-invariant if

o =a forall X € A,
Using a description for o’ as

o = Z apydxr Nd"zy, oy € CF(Q)

[1|=p,|J|=q
this means that
oo = g arjorydzy Nd'zy = Z apydzr Nd' vy =d
[I|=p,|J|=q [|=p,|J|=q

for all ' € A, i.e. the functions o/, : @ — R are A-invariant. We denote by
AP1(Q)A the space of A-invariant Lagerberg forms of bidegree (p,q) on €. For
a A-invariant open subset U of E®", the space of A-invariant weakly smooth
forms of bidegree (p,q) on U is defined in exactly the same way.

Lemma 3.1.15. Every A-invariant Lagerberg form o € AP9(Ng)* on Ny
induces in a canonical way a A-invariant weakly smooth form & € AP9(E)A
on E* and a weakly smooth form o € AP1(A*) on A*".

Proof. Let o/ € AP7(Ng)? be a A-invariant Lagerberg form on the real vector
space Ng. Let {U;};cr be a cover of E*" by A-invariant open subsets such that
the closure U; is a compact and A-small analytic domain in E". Such a cover
always exists; one explicit construction can be found in the proof of Theorem
5.2.8: The space E*" can be covered by the interiors of the preimages tropEl(A)
of the polyhedra A from Lemma 5.2.5 and all its A-translates. For all ¢ € I let
now

FT / /
h; = tFOPE‘ﬁiZ Ui — Ng and o :== « ‘tropE(ﬁ-).

Then h; is a harmonic tropicalization map on U; for all i € I, and the family
(hi, @), defines a weakly smooth form in AP4(E**). We write
o = Z o d'zy A d"xy for suitable oy ; € C°°(Ng).

I,JC{1,....d}
[I|=p,|J|=q
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For I,J C {1,...,d} with |I| = p,|J| = g, the A-invariance of o} ; together with
the fact that tropy maps A C E(k) isomorphically onto A and E?"/A = A"
shows that (h;,«}),c; is A-invariant, and that there are induced well-defined
maps gy : A* = R,z — o jotropg(z) for & € E** withx = Z+A (ie. p(Z) =
z) and o}, : Ng/A — R such that the diagram

tropg

Ean

Ng R

A
s
l s /
.7 apy !
p N]R/A //

troy' /
/

e
~ arg

Aan _ -

commutes. For i € I, the compact analytic domain U; is A-small, hence p|U—i is
a homeomorphism and

(wopstro () ) (0 (@)

is a A-small subset of Ng. The commutativity of the diagram above yields that

-1 —
hf = trOPE‘ﬁ-o <p|a) : ]J(Ui) — Ng

is a harmonic tropicalization map for all ¢ € I and the family (h{‘, ag)i ¢ defines
a weakly smooth form o € AP7(A%").

3.2 The torus part of the Dolbeault cohomology of
abelian varieties

Using the theory from the last section, we can now formulate one of the main
results with regards to the Dolbeault cohomology of abelian varieties. In order
to do this, let A be an abelian variety which is split over k.

Remark 3.2.1. The space of Lagerberg forms with constant coefficients on Ny
is defined as AP? Mg := AP Mg @r A\? Mg C AP9(Ng). They are d”-closed A-
invariant Lagerberg forms on Ng, so in particular there is a canonical map

P

(3.5) U\ Mg — HI(AP*(Ng)*, d"), 0 > [o]

given by mapping a (p, ¢)-Lagerberg form with constant coefficients on N onto
its class in cohomology. By [Sto21, Proposition 3.4.26], this canonical map is
an isomorphism of real vector spaces.

Theorem 3.2.2. For all p,q € N there exists a canonical injective morphism

p.q

N\ Mz s HP9(A™)
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which is induced by applying Lemma 3.1.15 to Lagerberg forms with constant
coefficients on Ng.

Proof. Later, in 5.3.6. O

Remark 3.2.3. We observe that the construction of the morphism A”? My <
HP(A*") is based on the torus part of the Raynaud extension. The abelian
variety B of good reduction from Remark/ Definition 3.1.4 does not appear
in this construction, but it will be needed to prove the result. More precisely,
we have to define a so-called §-form [y on B?" which induces a suitable strong
current T3 on A*" such that weakly smooth forms « induced by Lagerberg
forms with constant coefficients on the torus vector space Ng do not vanish,
i.e. such that Ts(a) # 0. In order to do so, we first have to introduce the
theory of d-forms. We note here that the §-forms introduced by Gubler and
Kinnemann in [GK17] contain the -form Sy on B*" which is the one that we
need, and moreover, in their paper [GK17], they study this particular é-form in
great detail. Furthermore, they explain how to pair their -forms with so-called
piecewise smooth forms, and thus in particular with weakly smooth forms. We
can furthermore pull-back the §-form Sy to the Raynaud extension E?" via the
algebraic morphism q : E — B as in [GK17]. However, in order to pass to the
analytification A*" of our original abelian variety A, we have to use the covering
map p : BF*" — A*" which is an analytic morphism. For this reason, the more
general theory of §-forms by Mihatsch from [Mih21] will be the one that we use
here. Furthermore, the sheaf of weakly smooth forms embeds into the sheaf of
d-forms in the sense of [Mih21] which allows us to do all our computations in
this space of §-forms.



Chapter 4

0-forms on Berkovich spaces

In this chapter, we follow the two papers [Mih23] and [Mih21] by Mihatsch.
We introduce d-forms in the sense of Mihatsch - which generalize the -forms
introduced by Gubler and Kiinnemann in [GK17] in the algebraic setting. First
we consider d-forms on R-vector spaces R™, then on so-called tropical spaces
(X, u, L) and then on non-archimedean spaces (without boundary).

Throughout this chapter, let k£ be a field that is complete with respect to a
non-trivial non-archimedean absolute value |.| : & — R.

4.1 The sheaf of /-forms on R"

In his paper [Mih23], Mihatsch introduced o-forms on real vector spaces R".
They generalise classical tropical intersection theory. Roughly speaking, 6-
forms are sums of products of smooth differential forms on polyhedra with
integration currents, which fullfill some balancing condition. They come with
differentials and a wedge product extending the tropical intersection product
on cycles.

Definition 4.1.1. i) A polyhedral current on R™ is a current which is a
locally finite sum of currents of the form a, A [0, u] for a weighted poly-
hedron [o, | in R™ and a Lagerberg form a, of any bidegree on o. We
write P(R™) for the space of all polyhedral currents on R™.

ii) We write PP%"(R™) C DPT™4+7(R™) for the space of all polyhedral cur-
rents which may be written as locally finite sum of currents o, A [o, p],
where o C R" is of codimension r, and o, € AP?(c). We call elements of
PP@T(R™) trihomogeneous of tridegree (p,q,r).

Remark 4.1.2. i) There is a direct sum decomposition
P(R") =@, g ren PP (R).

ii) Let T' = ) ,c; i A 04, ;] be a representation for a polyhedral current
T € P(R™). Then the datum of all (o, 0y, it;)icr representing 7' is unique
up to locally finitely many operations of the following kinds: Subdividing
the polyhedra o;,7 € I, adding or removing terms with o = 0, replacing a

37
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triple (a, o, 1) by (Aa, o, A\=1p) for some A € R+, and writing (v, , o, p) +
(aiy, 0, ) instead of (a4, + «;,, o, p) or the other way round.

Definition 4.1.3. Let T' = ), ; a; A [0y, pii] be a polyhedral current in P(R™).
We define the polyhedral derivatives of T as the polyhedral currents

IPT = Z (d'ai) A [Uz‘,,ui] and IIIDT = Z (d”Oéi) A [O’i,ui] .
el el

Remark 4.1.4. By [GK17, Remark 2.4 (iii)], the polyhedral derivatives d,
and d% on P(R"™) do in general not coincide with the derivatives d' and d”
in the sense of currents on P(R™) C D(R™). The derivatives d'T" and d"T of
a polyhedral current 7' € P(R™) might even be non-polyhedral. An example
is given in [Mih23, Example 2.10]. The ¢-forms introduced by Mihatsch are
polyhedral currents that have the property that their derivatives as currents
are again polyhedral.

Definition 4.1.5. Let 7' € P(R™). Then a polyhedral complex 7 in R™ is
called subordinate to T if T' can be represented as T' = Y .+ aqg A [0, lig].

Remark 4.1.6. In the situation of Definition 4.1.5, the datum (g, o )oeT is
uniquely determined up to replacing a tuple (v, fio) by (Mg, A" i) for some
A€ Ryp.

Definition 4.1.7. i) Let 0 C R™ be a polyhedron. Then a piecewise smooth
form on o is the datum - up to subdivision - of a polyhedral complex T
in R™ with support o together with smooth forms a, € A(p) for all p € T
such that ap]T = a, for all 7,p € T with 7 C p. We denote the space
of piecewise smooth forms on o by PS(0), and the space of all piecewise
smooth forms on o of the form (o,),e7 with a, € AP4(p) for all p € T
by PSP4(o).

ii) Let [o, ] be a weighted d-dimensional polyhedron in R™, and let a@ =
(ap)peT be a piecewise smooth form on 0. We observe that ;o defines a
weight on all p € T with dimp = dimo since N, = N, for dimension
reasons. We define the polyhedral current

alo,p]: A(o) = R,p— Z a, Alp,pl | ().

pET
dim p=dim o

iii) Let [o, p] be a weighted d-dimensional polyhedron in R™. Using (ii), there
is an integral

/ : PSg’d(O') — R.
[ovu]

Remark 4.1.8. From Definition 4.1.7 ii) we obtain for every polyhedron o C
R™ and a fixed weight 1 on o an embedding PS(c) C P(R") C D(R").
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Remark 4.1.9. i) For an exact sequence of finite dimensional R-vector

ii)

iii)

iv)

spaces
0— Ny — Ny — N3 — 0,

there is a canonical isomorphism det No = det N7 ®g det N3. So given
weights u; for N; for two out of { N1, No, N3}, they uniquely determine a
weight for the third space through the relation

(4.1) p2 = pa A pg = pa A s,

where jiz € AN Ny is any lift of us, see [Mih23, (2.12)].

Let 0 C R™ be a polyhedron and f : R® — R™ an affine map. Then f
maps o onto a polyhedron f(o) C R™. Let p be a weight on o, and v
a weight on f(0). Let K := ker ((f — f(0))|n, : No = Ny(s)). Then the
short exact sequence

0= K —= Ny — Nyo)—0

together with i) acquires a weight ¢ for K C N, C R", called fibre weight
on K, and there is a natural fibre integration map

f(S,* :Ag,q(o_) N PSp_dimK’q_dimK(f(O')).

For a € PS(o) with corresponding polyhedral current aA[o, u], we obtain
a projection formula

(o A [0, ) (F*m) = / an

[o1]

= / (fé,*a) AT
[f(o)v]
= (fsxa N [f(0),7]) (n)
for all n € A.(f(0)).

In other words, fibre integration provides a representative for the push-
forward of currents in the sense that for all & € PS(o), the identity

felan[op]) = (fs) Nf(0), V]

holds, see [Mih23, (2.14)]. This shows in particular that the push-forward
of a polyhedral current with relatively compact support is polyhedral
again.

Given a surjective affine map f : R" — R™ and a current 7" on R™, we
define the pull-back current f*T on R™ by

(f*T)(n) :=T(fun)

for a Lagerberg form n € A.(R™), where f.n denotes the fibre integral of
n with respect to the standard weights on R™ and R". We observe that
f«m is again a Lagerberg form on R™.
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vi) We note that the differentials d’ and d” commute with taking pull-backs.

Definition 4.1.10. A J-form on R™ is a polyhedral current T' € P(R™) such
that the differentials d’T" and d”T are again polyhedral.

Remark/Definition 4.1.11. Let [0, u| be a weighted polyhedron in R™, and
let 7 < o be a facet together with a weight v on 7. Then there is a unique
vector M, ; € Ny /N, that points in direction of ¢ and is such that p = v A7, 7
in the sense of (4.1). A normal vector for T < o is any choice of a lift n, » € Ny
for Ny 7.

Definition 4.1.12. Let 7 be a polyhedral complex in R" together with weights
te and smooth forms «, € A(c) for all its polyhedra o € T. This datum
(Ko, o) yeg is called balanced if the following holds: For all 7 € T, the sum

> ol @R o € A(T) @R R”
=

7=0 facet

lies in the subspace A(7) ®g M, where the normal vectors n, , are taken for
the weights u, for ¢ and pu, for 7.

Remark 4.1.13. i) We consider a datum (jts, g), o as in Definition 4.1.12,
defining a current

T= Zag/\[a,,ug].
€T
Then, for the datum (i, as),c7, being balanced is stable under the op-
erations in Remark 4.1.2 ii), which yields that it only depends on the
current 7', not on its representation.

ii) Writing a polyhedral current T = > _ra, A [0, 5] as a sum T =
> paren TPOT with TP@T € PP4T(R™) the current T is balanced if and
only if TP%" is balanced for all p, ¢, € N, see [Mih23, Theorem 3.3].

Definition 4.1.14. Let 7' € P(R™) be a polyhedral current. Then T is called
balanced if there is a datum representing 7" which is balanced. We observe that
this is well-defined by Remark 4.1.13 ii).

Theorem 4.1.15. A polyhedral current T € P(R™) is a d-form if and only
if it is balanced. In particular - writing T as a sum T = ijqyreN TP with
Per € PPOT(R™) - T is a d-form if and only if TPP" is a §-form for all
p,q,7 € N. Furthermore, T is already a 6-form if one out of d'T and d"T is
polyhedral.

Proof. [Mih23, Theorem 3.3] O

Remark/Definition 4.1.16. i) For p,q,7 € N, we denote by BP%"(R")
the space of d-forms on R™ of tridegree (p,q,r), and by
BR") =, . B (R") the space of all §-forms. Furthermore, we de-
note by BP4(R") = @, oy BP~"7""(R"™) the space of J-forms of bidegree
(p, q) in the sense of currents.
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ii) There are derivatives
d : BP(R") — BPYH(R™) and d” : BPY(R") — BP7TH(R™)
for all p, ¢ € N obtained by restricting the corresponding maps on currents.
iii) The polyhedral derivatives restrict to operators
d), : BP9 (R") — BPTLOT(R™) and df) : BPO"(R"™) — BP4TLT(R™)
for all p,q,r € N.

iv) We define boundary operators ' := d» —d’ and 9" := d, —d", which can
be shown to be trihomogeneous in the sense that they are maps

' : BPOT(R™) — BPA=Lr+l and @ : BPOT(R™) — BP e+

Lemma 4.1.17. i) LetT € B(R"™) be a §-form on R™ with compact support,
and f : R™ — R™ an affine map such that T has relatively compact support
with respect to f. Then the push-forward of currents f, T € B(R™) is also
a d-form.

it) Let f : R™ — R™ be a surjective affine map and S € B(R™) a §-form.
Then the pull-back f*S € B(R™) is again a 0-form.

Proof. [Mih23, Lemma 3.5] O

Lemma 4.1.18. For, p,q € N, the §-forms BP9 (R") are precisely the currents
of the form a A [R™, ugn] for a € PSP4(R™).

Proof. [Mih23, Lemma 3.7] O

Example/Definition 4.1.19. Let o € PS(R"™) be a piecewise smooth form
and T' € P(R™) a polyhedral current on R™. Let 7 be a polyhedral complex in
R™ which is subordinate to both T" and «. We write

o= (o) 7 and T' = Z Bo A [ps 1p)
pET

for suitable o, 8, € A(p) and weights 1, for all p € T. Then the product of a
and T is defined as

aT = Zap/\ﬁp/\[p,up].
pET

We note that if T" is assumed to be a J-form, then oT is also a J-form, see
[Mih23, Example 3.8].

Remark 4.1.20. i) Following [Mih23, §4], there is an exterior product of
currents, given as follows: For homogeneous currents 77 € D(R™) and
Ty € D(R™) the exterior product 77 X Ty of 77 and T, is the unique
current 71 X Ty € D(R™ x R™) such that

(T2 R To) (pim A pame) = (=1) BTV, (5) Ty (172)
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for ;1 € A:(R™) and 72 € A:(R"™). The exterior product of currents
preserves polyhedral currents since for weighted polyhedra (o, py) in
R™, (om, ) in R™ and smooth Lagerberg forms «,, on o, and «;, on
om the equality

(4.2)
ap N [O'naﬂn] X, A [O'maﬂm] = pfan /\pﬁam A [Un X Oy pn N Nm]

holds (see [Mih23, (4.3)]), where o, X oy, 1= i1(0y) X i2(0p) € R” x R™
for the inclusions 71 : R™ — R™ x R™ and i : R™ — R™ x R™, and where
Un A i, is defined as in Remark 4.1.9 with respect to the canonical short
exact sequence

0 — Ny, =& Ng, ® Ny, = No,, — 0.
By [Mih23, 4.1], the exterior product of §-forms is again a d-form.

Now, in [Mih23, §4], Mihatsch defines a A-product on J-forms, which
coincides with the tropical intersection product on tropical cycles for §-
forms of degree (0,0,7), r € N (those d-forms are tropical cycles, see
[Mih23, Example 3.8]). By [Mih23, Lemma 4.14], the identity of d-forms

SKT =piSApT

holds, where the left-hand side denotes the exterior product of S and T as
currents, and the right-hand side denotes the A-product of §-forms. We
observe that the two terms also coincide with the intersection product
piS - p5T of S and T as tropical cycles, see [Mih23, 4.1].

Notation 4.1.21. In the following, we denote by A = (id,id). [R™, ustd] €
BYO(R"™ x R™) the diagonal viewed as a é-form.

Theorem 4.1.22. There is a unique way to define an associative product

A : B(R") x B(R") — B(R")

that satisfies the Leibniz rules with respect to d' and d”, extends the definition

(a AN [R™, ugn]) AT := T

for all « € PS(R™), T € B(R"™), and can be computed by restriction to the
diagonal, meaning that

SAT =pis (AA(SHT))

for all S, T € B(R™). This product A\ has the following additional properties:

i) It is graded commutative and trihomogeneous in the sense that it restricts

to maps
A : BPAT(R™) x BSbY(R™) — BPFs:attriurn)

for all p,q,r,s,t,u € N. In particular, it satisfies the Leibniz rule with
respect to the operators 9',0",dp and d7,.
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i1) It commutes with pull-backs, i.e. for all surjective affine maps f : R" —
R™ and d-forms S, T € B(R™), the equality

f(TAS)=f"TANf*S
holds.

i11) It satisfies the projection formula, i.e. for all surjective affine maps f :
R™ — R™, §-forms S € B(R™) and T € B(R™) with support compact
over R™, the equality

(T NANfS)=fTANS
holds.

Proof. [Mih23, Theorem 4.1] O

4.2 The sheaf of /-forms on Berkovich spaces

In this section we introduce d-forms on non-archimedean analytic spaces fol-
lowing [Mih21]. Roughly speaking, they are obtained by locally pulling back
d-forms on real vector spaces via smooth tropicalization maps. In order to make
this precise, at first we have to define §-forms on tropical spaces - hence locally
on skeleta of tropical coordinates. Then, there is an integration theory of -
forms leading to a product formula for fibre products which will be needed to
prove the main theorem 5.2.8.

For the rest of this chapter, we fix a field k that is complete with respect
to a non-trivial non-archimedean absolute value |.| : & — R. In this section,
an analytic space is always meant to be a good strictly k-analytic space in the
sense of [Ber93] which is Hausdorff and paracompact.

4.2.1 The sheaf of §-forms on tropical spaces

In the setting of non-archimedean analytic spaces together with tropical coordi-
nates, tropical spaces arise in a natural way. Locally, they are roughly speaking
just tropical cycles in the classical sense, together with a so-called sheaf of linear
functions which is given by the coordinate functions of the tropical coordinates.
Then we can define §-forms on such spaces using the J-forms on real vector
spaces defined before, and pulling them back under tropical coordinates.

Definition 4.2.1. Let C' C R" be a polyhedral set.

i) A map f: C — R is called piecewise linear if it is continuous and if C
can be written as a locally finite union of polyhedra C' = J;c;0; in R"
such that the restriction f|,, is affine for all 7 € I.

ii) A map f:U — R on an open subset U C C' is called piecewise linear if
for every polyhedron o C U C R", the restriction f|, is piecewise linear.
We denote the so-defined sheaf of piecewise linear functions on C by Ac.
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A piecewise linear space is a pair (X, Ax) of the following kind: X is a
paracompact Hausdorff topological space, and Ay C C(—,R) is a subsheaf
of the sheaf of real-valued continuous functions on X such that for every
x € X there is a neighbourhood V of z in X together with a polyhedral
set D and a homeomorphism ¢ : V' — D such that Ap o ¢ = Ax|y.
Here Ax|y := Im (z(/l : Ax — C(—,R)) denotes the sheaf on V' of those
continuous R-valued functions that locally extend to a section of Ax,
where iy : V C X. In the above situation, we often only write X instead
of (X, AX) .

A map of piecewise linear spaces ¢ : (X,Ax) — (Y,Ay) is a continuous
map ¢ : X — Y of topological spaces such that Ay oo = Ax.

Let ¢ : (C,Ac) — (D, Ap) be a piecewise linear map between polyhedral
sets. Then polyhedral complex structures C for C' and D for D are called
subordinate to ¢ if for all o € C there exists some p € D such that p(o) C
p and such that ¢|, : 0 — f(0) is a linear map for all o € C.

A piecewise linear space (X, Ax) is called polyhedral if it is itself isomor-
phic to some polyhedral set (C, A¢).

Remark/Definition 4.2.2. Let C' C R” be a polyhedral set.

i)

ii)

iii)

iv)

For p,q € N, a piecewise smooth form of bidegree (p,q) on C is the datum
of - up to refinement - a locally finite decomposition C' = |J;c; 0; of C' as
a union of polyhedra together with Lagerberg forms w; € AP4(0;) for all
i € I such that wils;ne; = Wjlone; for all 4,5 € I.

For all p,q € N, the piecewise smooth forms of bidegree (p, ¢) on C define
a sheaf on C, denoted by PSZ? or PSP if the polyhedral set is clear
from the context. We define the sheaf of piecewise smooth forms on C by
PS:=PSc =, 4en PSZ.

The piecewise smooth forms on C are equipped with a A-product and
differentials: The A-product and the differentials d’ and d” on Lagerberg
forms are computed on piecewise smooth forms polyhedron-by-polyhedron.
We denote the resulting operators by A, dp and d%.

For a piecewise linear map ¢ : (C,Ac) — (D,Ap) of polyhedral sets,
there is a pull-back morphism

f*: f71PSp — PSc

which is computed by using the pull-back of Lagerberg forms polyhedron-
by-polyhedron.

Remark 4.2.3. The definitions from 4.2.2 on polyhedral sets C C R" ex-
tend by locality to all piecewise linear spaces (X, Ax). For a piecewise linear
space (X, Ax), we denote the sheaf of piecewise linear forms on X by PSx =
D, en PSR we write A for the defined wedge product, d resp. d} for the
differentials, and for a piecewise linear map f : (X,Ax) — (Y,Ay) to some
piecewise linear space (Y, Ay ), write f* for the induced pull-back.
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Definition 4.2.4. Let C be a polyhedral set and n € PSc(C) a piecewise
smooth form on C. Then a polyhedral complex structure C for C is called
subordinate to n if the restrictions 7|, are Lagerberg forms for all o € C.

Definition 4.2.5. Let C C R” be a polyhedral set. The local dimension of C
in a point z € C' is defined as

dim, C := max dim o.
o CC polyhedron
xreo
The dimension of C is defined as dim C' := max,cc dim, C. We call C' pure of
dimension d if dim, C' = d for all z € C.

Remark 4.2.6. The above definition can be extended from polyhedral sets
C C R" to more general piecewise linear spaces X.

Definition 4.2.7. Let C' C R" be a purely d-dimensional polyhedral set. Then
a familiy of weights for C' is the datum - up to refinement - of a locally finite
decomposition C' = |J;c;0; of C into d-dimensional polyhedra o; € R" and
weights p = (u;)ier for (0;)ier such that

tiloino; = tjloine; Whenever dim(o; Noj) = d.
The pair (C, ) is then called a weighted polyhedral set.

Definition 4.2.8. Enhancing Definition 4.1.7, for all weighted polyhedral sets
(C, ), there is a natural integral

/ . PS%4(C) — R.
[C.u]

Remark 4.2.9. i) Note that by convention, all weighted polyhedral sets
are already pure dimensional.

ii) Let (C,u) be a d-dimensional weighted polyhedral set and let D be an-
other pure dimensional polyhedral set, together with an isomorphism of
piecewise linear spaces f : (C,A¢) — (D, Ap). Then there is a unique
way to define a weight fy,u for D such that for all € PS’g’d(D), the

equality
/ n= / fn
[D,fep] [C,u]

holds. To construct this weight f.u for D, let C' = J;c;0i be a de-
composition of C' into d-dimensional polyhedra, fine enough such that
flo, is linear for all ¢ € I. Then, the push-forward weights are given by
fere = (f(pi));cr, where for all i € I, f(u;) € det Ng(,,) denotes the image
of p; under the corresponding map of determinant spaces.
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iii) Let (X, Ax) be a piecewise linear space of some pure dimension. Using ii),
the definition of being weighted extends from polyhedral sets to piecewise
linear spaces, such that for every d-dimensional weighted polyhedral set
(C, 1) C X and every a € PS?Y(C), there is a linear functional

aA[C, ] : PSTPA-UX) 5 R,y — / aAn|c.
[C.u]

Definition 4.2.10. Let X be a weighted piecewise linear space, and U C X
an open subset. Then a polyhedral current on U is defined to be an element of
Hom(PS.(U),R) which is a locally finite sum of currents of the form aA[C, p] for
a weighted polyhedral set (C, ) in X and a piecewise smooth form o € PS.(C).

Remark 4.2.11. Let X be a weighted piecewise linear space. Since by [Mih21,
Proposition 2.2], piecewise linear spaces admit piecewise smooth partitions of
unity, polyhedral currents form a sheaf on X, which is denoted by P or Px.
Furthermore, there is a grading Px = @, , 4oy Fy?; where the sheaf PP? is
generated by the currents of the form a A [C, u] for a d-dimensional weighted
polyhedral complex (C, ) in X and o € PS2(C).

Remark 4.2.12. As an extension of Remark 4.1.9, we consider a linear map
f o0 — R" on a d-dimensional polyhedron o C R"™. Let u be a weight for o, v a
weight for f(o), and let § be the corresponding fibre weight with the property
that p = v A in the sense of Remark 4.1.9. Then fibre integration is the unique
map

fe: PSe(a) = PS(f(0))
with the following properties (see [Mih21, (2.14), (2.15)]):

i) For o € PS> (o), the image foa € PS%O(f(c)) is the piecewise smooth
function on f(o) which is pointwise given by

43 G w= [l bralye fio)
),

where (4.3) is defined to be zero if f~!(y) has dimension less than d.
ii) The projection formula
e (ffanp)=an f.p
holds for all « € PS9P?=4(f(0)) and B € PSP(0).

Proposition 4.2.13. Let f : X — Y be a map of weighted piecewise linear
spaces and let T € P)?(X) be a polyhedral current on X such that supp(T) — Y
is proper. Then there exists a polyhedral current f, T € P(Y) onY such that
for all n € PS¥PI=9(Y'), the equality

(f<T) () =T (f"n)
holds.
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Proof. [Mih21, Proposition 2.8] O

Definition 4.2.14. Let f : (X,u) — (Y,v) be a map of weighted piecewise
linear spaces. The map f is said to be flat if for every n € PS.(X) there exists
a piecewise smooth form f.n € PS(Y') such that

fe A Xs pl) = (fen) ATY, V]
In that case, the element f.n is called the push-forward of n along f.

Proposition 4.2.15. Let f : (X,u) — (Y,v) be a flat map of weighted piece-
wise linear spaces, and T € P(Y') a polyhedral current on Y. Then there is a
polyhedral current f*T € P(X) such that for all « € PS.(X), the formula

(f*T) (o) = T(fee)
holds.
Proof. [Mih21, Proposition 2.14] O

Definition 4.2.16. Let (X, Ax) be a piecewise linear space and L C Ax a
subsheaf. Then, for any polyhedral set i : K C X, we denote by

Llg:Im(i"': L - C(—,R))

the restriction of L to K and by L(K) = L|x(K) the space of piecewise linear
functions on K that locally extend to a section of L.

Definition 4.2.17. Let (X, Ax) be a piecewise linear space. A sheaf of linear
functions on X is a subsheaf of R-vector spaces L C Ax such that the following
holds:

i) L contains all constants, i.e. R C L.

ii) For every x € X there exists a polyhedral neighbourhood K, some r € N
and f = (f1,..., fr) € L(K)" such that f : K — R has finite fibres.

iii) For every polyhedral set K in X, the restriction L|g is finitely generated
in the following sense: There is a polyhedral structure K for K, called
subordinate to L, such that for all open subsets U C X, every ¢ € L(U)
and every o € I, the restriction ¢|,ny is linear.

Definition 4.2.18. i) A piecewise linear space with linear functionsis a tu-
ple (X, Lx) where X = (X, Ax) is a piecewise linear space and Lx is a
sheaf of linear functions on X.

ii) Let (X, Lx) and (Y, Ly) be piecewise linear spaces with linear functions.
Then a linear map f : X — Y is defined to be a map of piecewise linear
spaces such that Ly o f C Lx.

Example 4.2.19. Considering R" as a piecewise linear space with the usual
sheaf of linear functions, a linear map z : X — R" from some piecewise linear
space with linear functions X is the same as an r-tuple (z1,...,2,) € L(X)" of
linear functions.
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Definition 4.2.20. Let (X, Lx) be a piecewise linear space with linear func-
tions. A smooth (p,q)-form on X is a piecewise smooth form on X that is
locally on U C X open of the form z*a’ for a linear map = : U — R” and a
Lagerberg form o € AP4(R"). The resulting sheaf of smooth (p, q)-forms on X
is denoted by A%’ or AP4. Furthermore, we write Ax := A := @, oy Ay’ for
the sheaf of smooth forms on X.

Remark 4.2.21. Let (X, Lx) and (Y, Ly ) be piecewise linear spaces with linear
functions. Then by [Mih21, §2], the following holds:

i) Smooth forms on X are stable under the A-product and the polyhedral
derivatives d}» and d’, of piecewise smooth forms. For a smooth form « on
X, we write d'« resp. d”« for the polyhedral derivatives of a € Ax(X) C
PSx(X).

ii) For a linear map f : (X, Lx) — (Y, Ly) and a smooth form o € Ay (Y),
the pull-back f*a of a via f is defined as the pull-back of « viewed as a
piecewise smooth form on Y. We note here that the pull-back of a smooth
form on Y is again a smooth form on X since for any tuple x € L(Y)"
of linear functions and any Lagerberg form o' € A(R"), the equality
[*(x*a/) = (z o f)* o holds.

Remark 4.2.22. Let (X, Lx) be a piecewise linear space with linear functions
and U C X an open subset. We equip the smooth forms with compact support
on U, hence A.(U) C Ax(U), with the following topology: A sequence (a;)iecr
of smooth forms on U is said to be convergent to a smooth form « on U if and
only if the following holds: There exist finitely many compact polyhedral sets
Ki,..., K, C X and presentations K; ~ UjeJl o;; € R™ as unions of polyhedra
such that

i) supp(«),supp(e;) C K3 U... UK, for all i € I;

ii) for all 4 € I,1 € {1,...,n},j € J;, the restriction a;|y,; is smooth, i.e. a
Lagerberg form in A(oy;);

iii) for all € {1,...,n},j € J;, the sequences (ai|gl].)i61 converge to oy, in
the Schwartz sense, i.e. all higher partial derivatives of all coefficients of
@ilg,; converge uniformly.

Definition 4.2.23. Let (X, Lx) be a purely n-dimensional piecewise linear
space with linear functions.

i) We define the sheaf of (p, q)-currents DP? = DX? on X by mapping open
subsets U of X to the space of continuous linear functionals on the space
of smooth (n —p,n — q)-forms Az"?""9(U) on U with compact support.

ii) We endow the space of currents on X with partial derivatives d’ and d”
which are defined by duality as

(d'T) () = (~=1)* 8T T (d'n) and (d"T) (n) = (=1)**THT(d"n)

for a current 7" and a smooth form 7 on X.
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iii) We define an associative pairing
P1,q1 D2,42 D1+D2,q1+q2
AL x D2 — DY
by (a,T) + (—1)desxdes TP (o A —),

iv) Let f : (X,Lx) — (Y,Ly) be a linear map of piecewise linear spaces
with linear functions. We define the push-forward f. : Do(X) — D (Y) of
currents with compact support as the dual of pull-back of smooth forms
on piecewise linear spaces.

Remark 4.2.24. In the situation of Definition 4.2.23, the restriction maps
DRYU) — DRI(V) are given as the dual maps to the inclusions A (V) — A.(U)
of smooth forms, for all open subsets V' C U C X, see [Mih21, Proposition 2.19].

Remark 4.2.25. Let (X, Lx) be a piecewise linear space with linear functions.
Then every polyhedral current on X defines a current on X, and one can show
that this realizes Px(U) as a subset of Dx(U) for all open subsets U of X. In
particular, we obtain derivatives d’ and d” on polyhedral currents on X (which
do not coincide with d and d7 in general).

Remark 4.2.26. Let (X, Lx) be a piecewise linear space with linear functions.
Then there is a balancing condition for polyhedral currents 7' € Px(X). It
demands that 7" is balanced on the interior of all polyhedral sets contained in
X. For a polyhedral set C' in X, being balanced means the following: Let C
be a polyhedral complex structure that is subordinate to T' and Lx, and write
T =3 cc® N[0, ). Then the condition is that for all U € C open, 7 € C
and ¢ € Lx(U) with ¢|.ny constant the sum

> e
oeC anU’T o
T=<ofacet

vanishes, where the normal vectors n, . are taken with respect to the weights
pr and pig.

Proposition 4.2.27. Let (X, Lx) be a piecewise linear space with linear func-
tions, and let T € Px(X). Then the following are equivalent:

i) T is balanced
it) Both derivatives d'T and d"T are again polyhedral.
iii) One out of d'T and d"T is polyhedral.

iv) For every compact polyhedral set K C X and every tuple of linear func-
tions f € L|x(K)", the push-forward f, (T\K\f_l(f(aK))) is balanced (i.e. a
d-form) away from f(OK).

Proof. [Mih21, Proposition 2.23] O
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Definition 4.2.28. A tropical space is a triple (X, pu, L) that consists of a
weighted piecewise linear space (X, u) with linear functions L such that the
fundamental cycle [X, u] - viewed as a current for smooth forms on X with
respect to L - is closed with respect to d’ and d”.

Remark 4.2.29. Let (X, u) be a weighted piecewise linear space with linear
functions L. Then by [Mih21, Corollary 2.26], the following are equivalent:

i) The triple (X, u, L) is a tropical space.
ii) [X,p] is balanced with respect to L.

iii) For every compact polyhedral set K C X and every linear map f: K —
R", the push-forward f, (K, N|K\f*1(f(8K))) is balanced away from f(90K).

Definition 4.2.30. Let (X, Lx) be a piecewise linear space with linear func-
tions. Then a refinement of a linear map f : X — R” is a pair (g,p), where
g: X — Rfis alinear map and p : R®* — R" is an affine map such that f = pog.

Lemma 4.2.31. Let X be a piecewise linear space, T € P(X) a polyhedral
current on X and f : X — R" a piecewise linear map with finite fibres. Then
T is uniquely determined by all push-forwards f, (T’K\ffl(f(aK))) for K C X
a compact polyhedral set.

Proof. [Mih21, Lemma 2.28] O

Proposition 4.2.32. Let (X, u, L) be an n-dimensional tropical space, f : X —
R" a linear map and v € B(R") a §-form. Then there is a unique polyhedral
current f*y € P(X) such that for all compact polyhedral sets K and all refine-
ments (g,p) of f such that g : K — R® has finite fibres, the identity

(4.4) 9« () li\g-1(g01))) = 9+ Ap*T

holds away from g(0K). On the right-hand-side, the A-product is meant in the

sense of §-forms, where g, K is viewed as tropical cycle via Remark 4.2.29 (away
from g(0K)).

Proof. [Mih21, Proposition 2.29] O
Definition 4.2.33. Let (X, u, L) be a tropical space.

i) A d-formon (X, u, L) is a polyhedral current on X which is locally of the
form f*v for a linear map f mapping to R" for some r € N, and a d-form
v € B(R"). The resulting sheaf of §-forms on X is denoted by Bx or B.

ii) A d-form w on X is said to have degree (p,q,r) if this is the case for T
viewed as a polyhedral current. We denote the sheaf of d-forms of degree
(p,q,7) on X by B?" or BPaT.

Remark 4.2.34. Let (X, pu, L) be a tropical space. Then a j-form w on X is
of degree (p,q,r) if and only if w is locally of the form f*v for a linear map f
to some R" and a d-form v on R" of degree (p,q,r). Furthermore, there is a

. .. o D,q,7
direct sum decomposition Bx = @p,q,TGN By
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Remark/Definition 4.2.35. Let (X, u, L) be a tropical space. There is a
A-product and differential operators d’,d”, dp,d},, 0" and 9" on é-forms on X,
obtained from the corresponding operators on d-forms on spaces R": They are
computed locally in charts as

(f ) A (f 72) = " (1 A7) and d(f*y) := f* (dv)

for d e {d',d",dp,d},,d,0"}, linear maps f to some R" and d-forms ~, 71,72 €
B(R").

Proposition 4.2.36. Let (X, u, L) be a tropical space of dimension n. Then
for any §-form w € Bx(X) on X, its derivatives d'w and d'w as current and
as 6-form agree. In particular, Stokes’ formula holds, i.e.

/d’a:O:/d"ﬁ
X X

for all a € Bl "(X) and 8 € Bl H(X).
Proof. [Mih21, Proposition 2.31] O

Proposition 4.2.37. Let ¢ : X — Y be a flat linear map of tropical spaces.
Then the pull-back ¢*w of any d-form w € By (Y) is again a d-form on X.
More precisely, if w € By (Y) is locally given by a linear map f to some R" and
a 0-form v € B(R"), then

¢" (f* )= (fod) (7).
Proof. [Mih21, Proposition 2.43] O

Remark/Definition 4.2.38. Let X be a compact purely n-dimensional an-
alytic space, and let f : X — G be tropical coordinates on X. We de-
note by T(X, f) C T'(X, f) the n-dimensional locus of the tropical variety
T'(X, f) = ty(X) from Remark 2.2.9, i.e. the union of all n-dimensional poly-
hedra contained in 77(X, f). Following [Mih21, Definition 3.3, Theorem 3.4]
resp. [CD12, §2], there exists a weighted polyhedral complex structure (7, )
for T(X, f) such that (T'(X, f),u) is a tropical cycle away from ¢;(0X), ob-
tained as follows: We choose a polyhedral complex structure 7 for T'(X, f)
such that t;(0X) is contained in its (n — 1)-skeleton. For o € 7,, we choose a
surjective morphism ¢q : Gy — G such that ¢, is injective, where ¢ also
denotes the induced map g : R™ — R" on tropicalizations. Then it can be
shown that the map

10 fli10) 17 (0) = B (a(0))

is finite flat of some degree d,, over a neighbourhood of the relative interior
q(c°), viewed as a subset of the canonical skeleton ¥(G7;,) via tgn . The polyhe-
dron o € Ty, is then endowed with the weight p, := dyq - ¢~ (urn), where pgn
denotes the standard weight on R™ induced by the lattice Z™ C R", see [CD12,
(2.4.4)]. This construction is independent of the choice of ¢, see [GJR21, §4].
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Remark/Definition 4.2.39. Let X be a compact analytic space of pure di-
mension n, and f : X — Gy tropical coordinates on X. By [Ducl2, Théoréme

5.1], the closed subspace

Y n= U @enNTEGH)

q.GrﬁanHGZ{an

of X is naturally a piecewise linear space, where ¢ runs through all morphisms
q : G — G of analytic tori. By [Mih21, Theorem 3.1], ¥'(X, f) is of
dimension at most n, and ¥/(X, f) N 0X is contained in a piecewise linear
subspace of dimension at most n — 1. Let (X, f) denote the n-dimensional
locus of ¥/(X, f), called skeleton of f in X.

Remark 4.2.40. In the situation of Remark/Definition 4.2.39, [GJR21, Propo-
sition 3.12] states that X'(X, f) \ 0X agrees with all x € X \ dX such that
dim¢;(U) = n for all neighbourhoods U of # in X. In particular ¥'(X, f) \ 0X
only depends on the tropicalization map ¢; (and not on the moment map itself).
Furthermore, the equality

Y(X, f)\0X = 5(X, f)\ 0X
holds.

Remark/Definition 4.2.41. Let X be a compact analytic space of pure di-
mension n, and f : X — G tropical coordinates on X. Then there exists a
weighted piecewise linear space structure (7, ) for ¥(X, f) such that for the
sheaf L on (X, f) generated by ty,,...,ty,, the triple (X(X, f)\0X,u, L) is a
tropical space. Here ty, is the composition 7; o £ of the tropicalization map ¢
with the projection 7; : R — R onto the i-th coordinate for all ¢ € {1,...,7}.
The construction of (7, u) is as follows: Working locally, we may assume that
Y (X, f)is a polyhedral set. Let T be a polyhedral complex structure for ¥(X, f)
such that ¥(X, f)N0X is contained in its (n — 1)-skeleton. For each o € T,, we
choose a morphism ¢ : G;;;"™ — G;;™" such that (qo f) |, is injective. Then the
weight s on o is defined as piy 1= dgq - tq_olf (urn ), where dg 4 is the degree of
X over (go f)(o) C X(Gp™) near the interior of 0. The independence of the
choice of ¢ is shown in [GJR21, §4], and also a more detailed construction can
be found in [GJR21, §3, §4].

Remark 4.2.42. Let X be a compact analytic space of pure dimension n, and
f: X — G tropical coordinates on X. Then there is an equality of tropical
cycles

away from t¢(X(X, f) N 0X), see [Mih21, (3.3), Corollary 3.7].

Remark 4.2.43. Proposition 2.2.19 gives the following: Let A : X — R" be a
piecewise linear tropicalization map on a compact purely d-dimensional analytic
space. Then there exists a (Z,I')-polytopal complex II of dimension at most
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d with support h(X) such that h(0X) is contained in a subcomplex of dimen-
sion at most d — 1, and such that using G-locally tropical multiplicities, there
are weights u, for each d-dimensional polyhedron in the polyhedral complex
structure, such that h(X), satisfies the balancing condition away from h(0X).
The construction of the polyhedral complex structure and the weights is done
in [GJR21, §8], and the proof of the balancing property is [GJR21, Theorem
9.7]. We consider h(X )y in the subsequent always with those weights.

Remark 4.2.44. We assume that X = (). Then each harmonic tropicalization
map h: X — R"™ defines a tropical space, where the sheaf of linear functions is
the one generated by the harmonic functions h1, ... hy,.

4.2.2 The sheaf of )-forms on Berkovich spaces

The aim of this section is to finally introduce é-forms on non-archimedean
analytic spaces following [Mih21, §4]. This theory relies on the theory of J-
forms on tropical spaces from the previous section. The existence of differential
operators and wedge products can be deduced from the theory of J-forms on
tropical spaces introduced before. Furthermore, we will give some examples of
already known classes of 6-forms in this section. In particular, the in Chapter 2.2
considered sheaf of weakly smooth forms by [GJR21] can naturally be embedded
into the sheaf of d-forms on Berkovich analytic spaces, as well as the sheaf of
piecewise smooth and the sheaf of smooth forms, which we will define here.
The fact that weakly smooth forms can be considered as J-forms allows to pair
weakly smooth forms with J-forms later, which is essential for the proof of the
main theorem 5.2.8.

Definition 4.2.45. Let H C K C R™ be polyhedral sets and T' € Pg(K) a
polyhedral current on K. Let K be a polyhedral complex structure for K which
is also subordinate to T" and H, and let a, € A(o) be Lagerberg forms for all
o € K such that T = 3 s as A [0, pis] for weights p, on each polyhedron
o € K. Then the (polyhedral) restriction of T' to H is defined as

TG = Z ay Ao, ) € Pg(H).

e
oCH

Remark 4.2.46. In the situation of Definition 4.2.45, the term T|%; is inde-
pendent of the choice of the polyhedral complex K. Furthermore, given an
isomorphism K ~ K’ C R" of polyhedral sets, the image of H under this
map is also a polyhedral set since Ax|g = Ag. Then the definition of T'|% is
independent of the representation of K as a polyhedral set. This gives that
for inclusions of piecewise linear spaces (Y, Ay) C (X, Ax) with the property
that (Y, Ax|y) is also a piecewise linear space, the above construction defines
a (polyhedral) restriction

Px(X) = Py(Y), T — T|7,

which is locally given as in Definition 4.2.45.
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Lemma 4.2.47. Let (X, u, L) be an n-dimensional tropical space and let f =
(f1,---5 fr) € L(X)" be a tuple of linear functions on X.. We denote by X the
union of all n-dimensional polyhedra o of ¥ such that f|, is injective. Let
v € B(R") be a d-form. Then the following holds:

i) The triple (X', /', L") for i/ := plsy and L' := R+ (f1,..., fr) is a tropical
space.

i1) There is an equality of polyhedral currents
NS = (fle)* ()

Remark 4.2.48. Let X be an analytic space. For an open subset U of X
and tropical coordinates f and g on U such that g refines f, the inclusion of
skeletons

XU, f) € 2(U,9)

is of the type considered in Lemma 4.2.47 with respect to the tuple of linear
functions given by ¢;. This follows from Remark 4.2.40.

Remark/Definition 4.2.49. Let U be an open subset of an analytic space X,
and let f and g be tropical coordinates on U. We assume that g maps to R"
and let v € B(R") be a é-form. We define a polyhedral current, the restriction
t5(V)Isw,p) of ty(7) from X(U, g) to X(U, f) as follows:

i) First we consider the case that g refines f. Then (U, f) C 3(U, g) is an
inclusion of tropical spaces as in Lemma 4.2.47. In this case, we set

ty(Mlsw.p) = 6505w, p)-

ii) Next we consider the case that g does not refine f. We choose any common
refinement (h,p) of both f and g and set

tsNlsw.p) = @ NEw.p-
This is well-defined by Lemma 4.2.47.

Definition 4.2.50. Let X be an analytic space. A skeleton in X is a locally
closed subset 3 C X which is locally a piecewise linear subspace of some X(U, f)
for an open subset U of X and tropical coordinates f on U.

Remark 4.2.51. We observe that there is no natural tropical space structure
on skeletons in analytic spaces. They might not even be pure dimensional.

Remark 4.2.52. Let X be an analytic space and let U be an open subset of
X together with a tropical coordinates f: U — Gy and a -form v € B(R").
Let 3 be a skeleton in X with > C U. We obtain by locality a well-defined
restriction t}(7y)ls.
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Definition 4.2.53. Let X be an analytic space of pure dimension n with

0X

i)

i)

iii)

= 0.

A §-form on X is the datum of a polyhedral current wy, for every skeleton
> in X such that every € X has an open neighbourhood U together
with tropical coordinates f : U — G and a d-form v € B(R") such
that for all skeletons > in X with ¥ C U:

*

ws = t5(7)|s-

For a é-form w = (ws)5CX skeleton W€ Write wy, := wy, for every skeleton
Y in X.

For an open subset U of X together with tropical coordinates f : U —

,an

Gp," and a d-form v € B(R") we denote the J-form which is given by the
assignment

(4.5) S 57l

for any skeleton ¥ in X by ¢}(7).

Remark/Definition 4.2.54. Let X be an analytic space of pure dimension n
with 0X = (.

i)

ii)

Definition 4.2.53 gives rise to a sheaf, the sheaf of d-forms on X which is
denoted by Bx or B. There is a natural trigrading Bx = @, , ey BX""
stemming from the trigrading of -forms on real vector spaces R".

For a tropical space (X, pu, L), the operators A,d’,d",dp,d?}, 0" and 0"
on d-forms on (X, u, L) were defined through charts. This fact together
with Lemma 4.2.47 yields that they all commute with formation of the
polyhedral restriction of polyhedral currents. We endow the sheaf By of
0-forms on the analytic space X with those seven operators by setting

(tFa) A (t55) := th(a A B), d'(tra) = t}(d'a)
d"(tya) == t}(d"a), dp(tia) = t}(dpa)
p(tha) == t}(dpa), d (tha) == t3(9'er) and
" (tha) := t3(9" )

for all open subsets U C X, tropical coordinates f : U — G and
d-forms a, f € B(R").

Remark 4.2.55. Let X be a pure dimensional analytic space with 0X = ()
and w € Bx(X) a 0-form on X. Then he restrictions (w|s)nc yskoleton fOrm a
compatible family in the sense that for all inclusions of skeletons ¥/ C ¥ C X,
there is an equality

(wls) s = wyr.



56 CHAPTER 4. §-FORMS ON BERKOVICH SPACES

Theorem 4.2.56. Let m: X — Y be a morphism of pure dimensional analytic
spaces with 0X = () = Y. Then there is a well-defined pull-back map m*
7 'By — Bx which satisfies

T (7 (7)) = tfor(7)

for all open subsets U of X, tropical coordinates f : U — G on U and
v € B(R").
Proof. [Mih21, Theorem 4.5]. O

Remark 4.2.57. In the situation of Theorem 4.2.56, the pull-back map =*
commutes with the operators A, d’,d”, dpp,d%,d" and 9" on é-forms on analytic
spaces since they are computed in charts. In the case of immersions 7 := 7 :
X < Y, we write w|x instead of i*w for d-forms w € By (Y').

Remark/Definition 4.2.58. Let A be an abelian variety that is split over k,
and let

1—T* 5 E™ 3 B™ 0

denote the Raynaud extension of A from Remark/Definition 3.1.4. We recall
that there is a morphism p : E?" — A®" which is a covering map in the topologi-
cal sense. Its kernel A := ker(p) is a discrete subgroup of E(k), and p induces an
isomorphism E*'/A ~ A®". For any a € A, there is a natural translation map
To » B — E?". We call a d-form @ € Bgan(E*") A-invariant if for all a € A,
the equality 7,7 (w) = @ holds. We denote the space of A-invariant §-forms on
E® by Bpan (Ean)A‘

Lemma 4.2.59. In the situation of Remark/Definition 4.2.58, every A-invariant
§-form & € Bgan(E*) descends to a 6-form w € Baan (A™) via p in the sense
that there is a §-form w € Bgan (A*™) such that p*(w) = @.

€ Bpa(E*™)* be a A-invariant d-form on

E?". 'We choose a A-periodic open cover~{Ui}ie 7 of E*™ by A-small open subsets
together with tropical coordinates f; : U; — G,2*" and o-forms v; € B (R"™) for
all 4 € I such that for all skeletons ¥ in E?" with ¥ C U; for some ¢ € I, the

*

equality @y, = #7 (7i)[s holds. The property A-periodic is meant in the sense
that for all i € T and all @ € A there is some j € I such that 7,(U;) = Uj.
Furthermore, for simplicity we assume that for all i # j € I, U; is not properly
contained in U The existence of such triples (UZ, fi>vi)ier follows from the
definition of o- forms once we observe that a suitable cover of E?" can always
be constructed by taking the preimages of the interiors of suitable (refinements
of) polyhedra A in Ng as in Lemma 5. 2.5, together with all their A-translates.
For each i € I we denote by U; := p(U;) € A the image of U; under p. We
note here that for all i € I, the sets U; and U; are isomorphic via p since U;
was chosen to be A-small. In this way, we obtain an open cover {U; };er of A?".
Now we define a 0-form w € Byan (A®") by setting

Proof. Let @ = (@z)ggEan skeleton

wy 1= t;o(p‘" )—1(%‘)\2
io(blg,
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for all skeletons ¥ in A*" with X C U; for some i € :T . We note here that for
all i € I, the restriction p[j is an isomorphism since U; is A-small. We have to

show that this is well-defined. Using the assumptions on our cover {(Z}ze I, we
only have to show that for i # j € I such that U; = p(U;) = p(U;) = Uj, the
equality

* *

tfjo(ﬂffj)_l(%)IE B tfio<)3|gi>_1(%)|z

holds for all skeletons ¥ in A" with ¥ C U; = U;. So let i # j € I with
Ui = Uj. Then, using the assumptions on our covering {Ui}ier, there is some
a € A such that U; = 7,(Uj), i.e. such that the diagram

0, T 0
e
U; = Uj

commutes. Since @ is a A-invariant é-form on E?", we have that 7
hence in particular

(4.7) 7 (8, 00) = t5.(0)

holds on every skeleton ¥ in E*" with ¥ C U;. Together we obtain that for
every skeleton ¥ in A*" with ¥ C U; = U; we have

(4.6)

* (4.6) &
t ()l =11 g
ij(P|Uj) 1( J)| fj0Ta0 ( ‘ ( ])‘

4.2.56

2 (pw ) o) 2
4.2.56

= < > tf] Y5) >|E

. ((plv) ) G o

This shows that w € Bgan(A™") is well-defined. Furthermore, for every i € I,
on every skeleton > in E*" with ¥ C U; we have that

wly =1}, (v)ls —t* 1 (s
(p‘U ) 0P|UZ,
4.2.56 *
2% (wlg,) (a0 ) 1s = (blg,) @l Is
5ol
Since E*" = (J;¢; U; this shows that p*w = @, and the claim follows. O

Definition 4.2.60. Let X be an analytic space. Then Chambert-Loir and
Ducros define in [CD12| the sheaf Aj,, of smooth forms on X as follows: We
consider the presheaf () on X, where

QW) ={(f;n) | f: U — G moment map, n € A(R®)}
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for every U C X open. For U C X open, two elements (f1,n1), (f2,m2) € Q(U)
are defined to be equivalent if for every affinoid domain K C U, the equality

PI) |70 o x o) = P (M2) |70 (K x o)

holds, where f1 : U — Gip'™", fo : U — G;2™" and p; and po denote the canon-
ical projection maps on R®* x R®2. The above defines an equivalence relation
on ), and the sheaf Agy, of smooth forms on X is defined as the sheafification
of @/ ~. For (f,n) € Q(U) for some U C X open, we denote the associated
smooth form on U by f*n.

Proposition 4.2.61. Let X be an affinoid space, and let « € Agn(X) be a
smooth form on X. Then there exists a finite family (g1, ..., gm) of holomorphic
functions on X with the following property:

Letx € X, and let I := {i € {1,...,m} | gi(x) # 0}. Let U := X \ U;c; Z(9:)
denote the Zariski-open subset of X which is defined as the complement of the
union of the zero loci of all g; fori € I. Then g := (g:);c; : U — GEL™ defines
a moment map on U such that O‘|tg‘1(Q) = g*(n) for some open neighbourhood

Q of ty(z) in R#*! and some Lagerberg form n € A(R#1).
Proof. [CD12, Proposition (3.4.1)] O

Definition 4.2.62. Let X be an analytic space. Then there is a sheaf PSy =
PS of piecewise smooth forms on X defined as follows: We consider the presheaf
@ on X, where

QW) ={(f;n) | f: U — G™ moment map, n € PS(R?)}

for every U C X open. For U C X open, two elements (f1,11), (f2,m2) € Q(U)
are defined to be equivalent if for every k-affinoid domain K C U, the equality

DI 77 (), x o) = P2(M2) 77 (K, x f)

holds, where f1 : U — Gu™, fo : U — G, and p; and py denote the
canonical projection maps on R% x R*2. The above defines an equivalence
relation on @), and the sheaf PSx of piecewise smooth formson X is defined as
the sheafification of @/ ~. For (f,n) € Q(U) for some U C X open, we denote
the associated piecewise smooth form on U by f*n.

Remark 4.2.63. Let X be an analytic space. Then by [GJR21, Proposition
8.3, Remark 10.15], a piecewise smooth form w on X is the datum of a G-
covering X = J;c; X; of X together with smooth forms w; € A, (X;) for each
i € I such that wi|x,nx; = wj|x;nx; for all 4,5 € I; up to refinement.

Remark 4.2.64. Let X be an analytic space.

i) The topology on weakly smooth forms A2?(X) is compatible with the
inclusion of sheaves Ay, C A in the sense that the topology on the
smooth forms A%% .(X) on X with compact support defined in [CD12,
(4.1.1)] coincides with the subspace topology induced by the inclusion
ADE (X)) C ARY(X).
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ii) Following [GJR21, 12.2], the restriction of a strong current S € D, ;(X) to
the compactly supported smooth forms A% -(X) is a current in the sense
of [CD12, 4.2]. This yields a canonical linear map Dy 4(X) — D, (X),
where D;ZL(X) denotes the space of currents on X, i.e. the topological

dual of AL} (X).

Remark 4.2.65. Let X be an analytic space. Then by [GJR21, Proposition
10.14], there are natural inclusions of sheaves of bigraded differential R-algebras

Asm — A — PS.

Furthermore, assuming that 0X = (), [Mih21, 4.2] shows that there is a natural
inclusion

(4.8) A — Bx

which is compatible with derivatives, the A-product and pull-backs. Also by
[Mih21, 4.2], the d-forms B{X of Gubler and Kiinnemann [GK17] embed into
the spaces of §-forms Bx in the case where X is the Berkovich analytification
of an algebraic variety over k.

Proposition 4.2.66. Let X be a pure dimensional analytic space with X = ).
Then the piecewise smooth forms of bidegree (p,q) on X are precisely the 0-
forms of tridegree (p,q,0) on X.

Proof. [Mih21, Proposition 4.6] O

Remark 4.2.67. Let X be the Berkovich analytification of an algebraic variety
over k. Let a € A(X) be a weakly smooth form on X and let 8 € B{E(X)
be a d-form on X in the sense of [GK17]. Then the wedge product of a and 3
considered as elements of Bx(X) via the natural inclusion maps coincides with
the wedge product of o and S in the space PSP(X) as in [GK17], where « is
considered as piecewise smooth form on X via the natural inclusion A < PS.

4.2.3 Integration of /-forms on Berkovich spaces

There is an integration theory for §-forms of top degree on non-archimedean
analytic spaces. Integration can be defined in terms of integration along tropical
spaces, or equivalently through partitions of unity. There is also an inclusion-
exclusion type formula. All this is due to [Mih21, 4.3].

Lemma 4.2.68. Let (X, u, L) be an n-dimensional tropical space and w =
t}(’y) € BYY(X) a presented §-form.

i) If dim f(K) < max{p,q} for every compact polyhedral set K C ¥, then
w = 0.

ii) We assume max{p,q} =n and let i : ' C X be the tropical space defined
by f as in Lemma 4.2.47. Then supp(w) C X/, or more precisely

W= 14 ( }|E/ (7)) )
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Proof. [Mih21, Lemma 4.7] O

Corollary 4.2.69. Let X be a pure dimensional analytic space with 0X = (),
and let w € BRI (X) be a &-form.

i) The equality supp(w) N{z € X | d(x) < max{p,q}} = 0 holds.

i) We assume max{p,q} = n and that w = t}(7) is a presented d-form
for tropical coordinates f : X — Gy and a 6-form v € B(R"). Then
supp(w) C X(X, f) and for every refinement (g,p) of f, the equality

wls(x.g) = i (@lsex.n)
holds, where i : (X, f) — X(X, g) denotes the inclusion map.
Proof. [Mih21, Corollary 4.8] O

Remark 4.2.70. Let X be a purely n-dimensional analytic space with 0X = (),
and let w € BYY(X) be a d-form on X with compact support and with p = n
or g =n.

i) There exists a skeleton ¥ C X with supp(w) C X: We pick a covering
supp(w) € U,e; K7 by a finite union of the interiors of affinoid domains
K; in X such that for all ¢+ € I there exist tropical coordinates f; : K —
G extending to K; and d-forms ; € B(R™) such that w|xe = % ().
Then supp(w) C ¥ := ;e 2(K5, fi).

ii) Let X be a skeleton in X with supp(w) C . Then by Corollary 4.2.69 the
equality i, (w]y) = w|xy holds for every skeleton ¥/ in X with i : ¥ C 3.

Definition 4.2.71. Let X be a purely n-dimensional analytic space with X =
§) and w € B.""(X) a compactly supported d-form of top bidegree. Then the
integral of w along X is defined as

/w::/w|g,
X )

where ¥ C X is any skeleton in X with supp(w) C X.

Remark 4.2.72. The definition of integration of §-forms on analytic spaces is
well-defined by Remark 4.2.70.

Remark 4.2.73. There is an equivalent definition of the integral of d-forms
through partitions of unity of piecewise linear spaces. Furthermore, there is an
inclusion-exclusion type formula, see [Mih21, 4.9 (3)].

Remark 4.2.74. Let K be an n-dimensional affinoid space, f : K — G
tropical coordinates, and v € B (R") a é-form with
supp(y) € R™\ f (0K NX(K, f)). Then for the presented é-form w := t}(7) €
B (K \ OK), the integral of w along K is given by

(4.9) o= [ T,
see [Mih21, 4.9 (4)].
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Remark 4.2.75. We assume that k is algebraically closed and let X be an al-
gebraic variety over k of dimension n with associated Berkovich analytification
Xa  Then the injective map from the space of J-forms on X" in the sense
of [GK17] to the space Byan(X?") of §-forms on X" in the sense of [Mih21]
is compatible with integration: Let w be a compactly supported d-form of top
bidegree (n,n) on X" in the sense of [GK17]. Using a partition of unity argu-
ment, it suffices to consider the case that w is supported on an open subset U
of X where w can be described in terms of tropical coordinates f : U — G
and a d-form v € B(R™). More precisely, U, f and v are chosen with the prop-
erty that ¢3(v) represents w|y as a d-form in the sense of [GK17, Proposition
4.18]. Following [Mih21, §4.2], the corresponding d-form w|y € Bxan(U) in the
sense of [Mih21] is then given by ¢3(v). The integral of ¢}(v) in [Mih21, Defini-
tion 4.9 (4)] as well as the integral of ¢3(v) in [GK17, 5.1] is now computed by
passing to the associated tropical variety T'(U, f). This shows that the integral
of w along X" in the sense of [GK17]| agrees with its integral in the sense of
[Mih21].

Lemma 4.2.76. Let X be a purely n-dimensional analytic space and wi,ws €
B (X) compactly supported §-forms of top bidegree. Furthermore, let ¥ C X
be a skeleton such that supp(wy),supp(w2) C ¥ and such that wi|ys = wals.
Then the integrals of wy and we along X agree, i.e.

/wlz/WQ.
X X

Proof. This follows directly from the definition of the integral of §-forms on
analytic spaces, see Definition 4.2.71. ]

Definition 4.2.77. Let X be a purely n-dimensional analytic space with X =
0, and let w € BR?(X). We define a linear functional associated to w by

]+ AL 100 > R [ w,
X
where the A-product is meant in the sense of d-forms, by viewing the smooth
form 7 as a J-form.

Proposition 4.2.78. Let X be a purely n-dimensional analytic space with
0X =0, and let w € BRY(X).

i) Then [w] is a current, i.e. the map is continuous with respect to the
Schwartz topology on the source space.

it) The natural map Bx(X) — D(X),w — |[w] is injective and commutes
with the differentials d’' and d".

ii) For any o € B V"™(X) and B € BY™ 1 X)), the equality

/d’a:/d”ﬁzo
X X

holds, i.e. there is a Stokes’ Theorem for d-forms on analytic spaces.
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Proof. [Mih21, Proposition 4.10] O

Lemma 4.2.79. Let X be an analytic space of pure dimension n with 0X = ().
Let w € BRYY(X) be a §-form on X. We associate to the §-form w € BY?(X)
the linear functional

Tw:AZp’”q(X)ﬁR,n%/ wAmn,
X

where the N-product is the A-product of §-forms. Then T, is a strong current
on X. Furthermore, the resulting map

Bx(X)—>D(X),w+—T,

from the space of §-forms on X to the space of strong currents on X is injective
and commutes with the differentials d' and d”.

Proof. The proof works analogously to the proof of [Mih21, Proposition 4.10]
once we observe the following: The topology on the space of weakly smooth
forms on X is the one adapted from the space of smooth forms on X in [CD12,
(4.1.1)], only replacing smooth by harmonic tropicalization maps. And fur-
thermore, G-locally, every harmonic tropicalization map is given by a smooth
tropicalization map. Hence, more precisely, the proof is literally the same as
the proof of [Mih21, Proposition 4.10] if we replace all smooth tropicalization
maps by harmonic tropicalization maps, and then - using [GJR21, 8.6] - pass
to a finite affinoid refinement of the affinoid covering such that the restric-
tion of the harmonic tropicalization maps to any covering element is smooth.
Then the claim follows exactly by the arguments named in the proof of [Mih21,
Proposition 4.10]. O

Remark 4.2.80. Lemma 4.2.79 can be considered as an extension of [Mih21,
Proposition 10.4] from smooth forms to weakly smooth forms.

Lemma 4.2.81. Let X be an analytic space of some pure dimension n with
0X =0 and let w € BYY(X) be a d"-closed 6-form on X. Then the map

T, : AP UX) = Rn— / WA
X
from Lemma 4.2.79 induces a linear form on the Dolbeault cohomology.

Proof. Let n € Ae """ %(X) such that [n] = 0 € H" P""9(X). Then there is
some weakly smooth form 7 € A" "P"~9-1(X) such that n = d”7j. Then using
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the Leibniz formula and Stokes’ Theorem we obtain that

Tw(n)Z/XwAn

:/ wAd'f
X

L2y / 4" (7 Aw) £ (=1)> P~ A
X

::t/d”(ﬁ/\w)j:/ﬁ/\d"w
b's b's

4'2:'790i/ AAd"w=0
X
since w is d”-closed. This gives the claim. O

4.2.4 The product formula for fibre products

This section serves as one main ingredient for the proof of the main result.
Namely, there is a product formula for the integration theory of d-forms in the
sense of Mihatsch. This allows to split integration of forms on the Berkovich
analytification of abelian varieties into two parts: The torus part, which is very
explicit, and the part of good reduction, where Gubler and Kiinnemann explain
useful results in their paper [GK17]. Here in this section, we prove the product
formula in a general setting. Everything relies purely on the theory of é-forms
in [Mih23] and [Mih21].

For analytic spaces X and Y, we denote by X x; Y its fibre product in
the category of k-analytic spaces in the sense of [Ber93]. We note here that
the fibre product exists for k-analytic spaces, but in general not for analytic
spaces over k, i.e. X and Y need to be defined over the same ground field. For
more details, see [Ber93, 1.4]. Furthermore, for a k-affinoid algebra G we denote
by M(G) its Berkovich spectrum. For any point z in an analytic space X we
denote by H(z) the corresponding completed residue field. For more details on
this theory we refer to [Ber90] and [Ber93].

Remark 4.2.82. Let [0, 15| Tesp. [p, i,] be weighted polyhedra in R™ resp.
R™ and let

o X pi= ’il(U) X iQ(p)

for the canonical inclusions 71 : R® — R™ x R™ and iy : R™ — R" x R™. Let
furthermore p; : R™” x R™ — R” and po : R" x R™ — R™ denote the canonical
projection maps, and let ¢ € C*°(0) and ¢ € C*°(p) be smooth functions with
compact support. Then Fubini’s Theorem shows that the equality

/ vionso= [pin, - [ody,
loX pspio Atip) o P

holds, where p,; A 1, is meant in the sense of Remark 4.1.9.
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Remark 4.2.83. For analytic spaces X and Y, there is an inclusion
(4.10) Int(X) xp Int(Y) CInt (X %, Y),

where Int(Z) = Z\ 0Z denotes the interior of the morphism Z — M (k) in the
sense of [Ber93, Definition 1.5.4] for any analytic space Z. Indeed, denoting by
pry : X XY — X and pry : X X3 Y — Y the canonical projection maps from
the fibre product, [Ber93, Proposition 1.5.5 (iii)] applied to X — M (k) resp.
Y — M(k) yields

(4.11)
pry’ (Int(X)) C Int(X x; Y/X) resp. pry’ (Int(Y)) C Int(X x; Y/Y).

Here Int(Z/Z") = Z \ 9(Z/Z') denotes the relative interior of the morphism
Z — Z' in the sense of [Ber93, Definition 1.5.4], where Z and Z’ are analytic

spaces. Applying [Ber93, Proposition 1.5.5 (ii)] to X x; Y XX — M(k)
resp. X x, Y 25 Y — M(k) furthermore gives
(4.12) pry" (Int(X)) NInt (X x5 Y/X) C Int (X x5 Y) resp.

pry’ (Int(Y)) NInt (X x5, Y/Y) CInt (X x;, Y).

Hence (4.11) and (4.12) together imply that
pry’ (Int(X)), pry’ (Int(Y)) C Int (X x5 Y)
which finally gives (4.10).

Lemma 4.2.84. Let X resp. Y be affinoid spaces — i.e. analytic spaces that
r,an

are already affinoid — of pure dimension n resp. m. Let f : X — Gy, resp.
g:Y — G™ be tropical coordinates on X resp. Y. Then the equality

T(X xp Y, f xg)=piT(X, f) ApaT (Y, g)
of 6-forms holds away from (t; (0X) x ty(Y)) U (t¢(X) x t4(9Y)).

Proof. Let ty x ty := tyyg. We denote by prx : X xx Y — X and pry :
X X Y — Y the projection maps coming from the definition of the fibre
product and by pr; and prs the canonical projection maps on the R-vector
space R” x R®. Then the morphism f X g is by definition the unique morphism
fxg: X x, Y = Gp™ xi G making the diagram

foprx
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commute. Hence the resulting bigger diagram obtained by applying the canon-
ical tropicalization maps to the tori

also commutes, which shows that the inclusion t 4 (X x,Y) Ct4(X) xty(Y) C
R"™ x R?® holds. The diagram above also shows that for the converse inclusion,
it suffices to show that for each x € X and each y € Y, the intersection of
fibres pr* ({z}) Npry'({y}) € X x; Y is not empty. Solet z € X and y € Y.
Then there exist affinoid neighbourhoods M(A;) of x in X and M(Ay) of y
in Y for strictly k-affinoid algebras A, and A,. Using the well-known natural
homeomorphisms

er\_l(A@kAy)({x}) ~ M ((Ax@kAy)@)Ame(m)) and
pry| M(Ar&pA )({y}) ~ M ((Ax@k/ly)@fly%(y))

giving rise to a natural homeomorphism

prx|, l(A oA )({UC}) Npryl, 1(A e A, )({y}) ~ M(H(2)@H(y))
C X xpY,

the Berkovich spectrum M (H(z)®;H(y)) of the completed tensor product of
the fields H(z) and H(y) is non-empty by [Gru66, Sect. 2, Theo.1]. Alltogether
we obtain an equality trx (X X5 Y) = t£(X) x t4(Y) C R” x R® of sets. By
[CD12, (2.3.3)] t7(X) is a polyhedral set of dimension < n, t4(Y’) is a polyhedral
set of dimension < m, and (ty x t4)(X X Y) is a polyhedral set of dimension
< n + m. Hence it follows that, as a set, the n + m-dimensional locus of
(tf xty)(X x;Y) is given by the union of all products i1(0) X i2(p) € R" x R?,
where 0 C R” runs through all n-dimensional polyhedra in ¢;(X) and p C R®
runs through all m-dimensional polyhedra in ¢,(Y’), and i¢; : R™ — R” x R®
resp. 22 : R® — R" x R? denote the natural inclusions. This gives the equality
T(X %Y, fxg)=10(T(X, f))xiz(T(Y,g)) of sets. Now we consider the weights
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onT(X, f),T(Y,g) and T(X XY, f x g) that Chambert-Loir and Ducros assign
to those polyhedral sets. For this, we follow [Mih21, Definition 3.3]. We choose
polyhedral complex structures Tx for T'(X, f) such that ty(0X) is contained
in its (n — 1)-skeleton, and Ty for T'(Y,g) such that t,(0Y’) is contained in
its (m — 1)-skeleton. Furthermore, let 7 := Tx x Ty := {i1(0) X i2(p) | 0 €
Tx,p € Ty}. Then T is a polyhedral complex structure for T'(X x Y, f x g) by
the above set-theoretical observations. Furthermore, using that by (4.10) the
inclusion

Int(X) xg Int(Y) C Int (X X3 Y)

holds and that the boundary of a Berkovich analytic space is by definition the
complement of its interior, we obtain that

trxg (O(X %3 Y)) C (ia(tr(0X)) X ia(ty(¥))) U (in(t7(X)) x i2(4(9Y))),

hence tyq (0 (X %1 Y)) is contained in the (m +n — 1)-skeleton of 7. Now let
T € Tx x Ty be an (n+ m)-dimensional polyhedron, and let o € Tx n,p € Ty.m
such that 7 = i1(0) x i2(p). Let gx : G — Gi™ be a surjective morphism
of analytic tori, inducing a map R" — R” which is also denoted by ¢x, such
that gx|, is injective. Following [Mih21, Definition 3.3], the composite map
quof: t;l(a) — Gi™(gx (o)) is then finite flat of some degree dy, 4, over a
neighbourhood of the relative interior gx (c°) viewed as a subset of the skeleton
Y(Gl). Denoting by pgn the standard weight on R™ induced by the standard
basis of Z", o is then endowed with the weight p, := doqy - q)}1 (ugn). By
[GJR21, §4] this weight is independent of the choice of the morphism gx. Now
we do the same to endow p with a weight p,. So let gy : G — G™ be a
surjective morphism inducing a map ¢y on the corresponding real vector spaces
with the property that gy |, is injective. Let d, 4, be the degree of the composite
map gy o g over a neighbourhood of the relative interior gy (p°) C 3(G]?') where
qy o g is finite flat. Let ugrm denote the standard weight on R™ induced by the
standard basis of Z™ and we equip p with the weight p, := d, 4, - q;l(,uRm).
We consider the short exact sequence of real vector spaces

0—+ Ny, — N — N,—0
obtained by the observation

N, =span{z — 7' | 2,2/ € 7}
= span{(z1,y1) — (¥2,92) | 21,22 € 0, Y1, 2 € p}
= span{(z1 — 22,91 — ¥2) | 21,22 € 0, 41,92 € p)}
=span{z; — x2 | 1,22 € o} ®span{yr —y2 | y1,¥2 € p} = No & N,,.
As in Remark 4.1.9, there is a canonical isomorphism det/N; = detN, ®g detN,,
and the weights p, and p, uniquely determine a weight i for 7 C R" x R® by

Pr = o A fp == g N [ip, where ji, € A" N is any lift of p,. Now we consider
the surjective morphism

. . ran s,an n,an m,an
q.—quqY.Gm Xka —>Gm Xka
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with corresponding map ¢ : R"™ x R® — R"™ x R™ on real vector spaces. Since
gx is injective on o, gy is injective on p and 7 = i1(0) X ia(p), q|r is injective
as well. The composite map

go(fxg)=(axof)x(qvog):tsr,(r) = G (q(r))

is then finite flat of degree d; 4 = dy ¢y -d) 4, OVer a neighbourhood of the relative
interior ¢(7°) C X(G%M™). Following definition [Mih21, Definition 3.3], 7 con-
sidered as an element of the polyhedral complex structure Tx x Ty for the poly-
hedral set T(X x; Y, f x g) is then endowed with the weight d ;- ¢~ (trnxrm ),
where prnxgrm denotes the standard weight on R™ x R™. Note here again that
drq - ¢ H(purnxrm) is independent of the choice of g. The canonical weight on
T CT(X XY, f x g) is hence given by

drq - g (prnxam) = drg - (ax X qv) ™" (e A )
=do,qx * dp,gy - q;(l (prn) A (I}?l(MRm) = o N\ fp = fir,

where the wedge products of the weights purn and pugm and their preimages
under ¢gx and qy (resp. jis and ju,) are meant as in Remark 4.1.9 with respect
to the canonical short exact sequences 0 — R” — R" x R™ — R — 0 and the
induced short exact sequence by ¢ (resp. 0 = Ny = Ny ® N, = N, — 0). This
identity together with the construction of the wedge product, or more precisely
with (4.2), yields that the weights of the tropical cycles piT'(X, f)ApsT(Y, g) =
T(X,f)®RT(Y,g) and T(X x Y, f x g) (away from the boundaries) agree.
Alltogether this proves the claim. O

Lemma 4.2.85. Letr,s € N and let a € Be'" (R") and 8 € B2*(R®) be §-forms
with compact support. Let p1 : R" x R® — R" resp. po : R” x R% — R? denote
the projection maps. Then

/ pTaAp’g‘B:/ a- [ B
Rr xRS r Rs

Proof. We choose weighted polyhedral complexes of definition (C, p) in R” resp.
(D,v) in R® for a resp. . Let furthermore (o )sec and (B,),ep with a, €
A(o), B, € A(p) for o € C, p € D such that

a=Yas Ao, o] and 5= B, A lp, ).
oceC pED

For every o0 € C and every p € D we fix d, := dimo,d, := dimp and
pick bases e1,...,eq, € Ny a1,...,aq, € N, with dual bases x1,...,24, €
Mo, y1,-- -5 ya, € My such that p, = fe; A... Aeg, and v, = a3 A .. Nag,.
Let ¢, € C*(0), ¢, € C*(p) such that

ag = podzy Nd"z1 A ... Nd'zg, Nd 14, and
By=opdyr Nd"yr Ao Nd'yq, Nd"yq,.

Then

(4.13) Pids A p;ﬁp = (piws A p;@%) Po N Vp
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for all o € C, p € D, where the product p, Av, is meant in the sense of Remark
4.1.9. Furthermore

4.1.20ii) (4.2)
(4.14) plaApsf = Vamp = prao A Dp3Bp N0 X p, e A1),

oceC
pED

where o x p :=i1(0) X i2(p) for the canonical inclusions i; : R” — R” x R® and
i3 : R® — R" x R®. Integration of the §-forms o« and 3 in terms of integration
of Lagerberg forms on polyhedra is by definition given as

/ a:Z/%dAW and / 5:2/%(&,@.
" ocec? Re peD P

This yields

/To" Rf:Z/%dAuo-Z/qﬁde

oeCc”? peD VP
= Z/‘PU Ay, '/¢pd)‘up
oeC 9 P
pED
4.2.82
= Z / P1%o N D3gpdAy, d,,
oxpeCxD Y IXP
(4.13) (4.14)
2oy vioe np35, 2 [ pianp
oxpeCxD " [XPpa NVp] R™xR®
and hence the claim. ]

Theorem 4.2.86. Let X and Y be analytic spaces with 0X = () = 0Y. We
assume that X is of pure dimension r and Y of pure dimension s for r,s € N.
Let a € BZ"(X) and 8 € BZ*(Y) be 5-forms of top bidegree with compact
support, and we denote by px : X Xz Y — X resp. py : X xp, Y — Y the
canonical projection morphisms. Then the equality

/ p}aAp*yﬁz/a-/B
XxLY X Y

Proof. First we note that pia A piB € Bi™" (X x; Y) is a d-form on the
purely (r+ s)-dimensional analytic space X XY of top bidegree, hence the left
hand side in the equation is well-defined. Now let (X;);cr be a finite collection
of affinoid domains in X such that the finite union (J;.; X; contains supp(a)
and such that we may write

holds.

ol xs =t (o)

for suitable tropical coordinates fx, : X7 — Gy™" extending to a moment map
on X;, and d-forms o € B(R™). Such a covering exists since X is a good
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analytic space in the sense of [Ber93]. Now let (\;)ic; € A%°(X) be a smooth
partition of unity subordinate to (X} );es, which exists by [CD12, Proposition
(3.3.6)]. For all i € I we proceed now as follows: Using Proposition 4.2.61, there
is an m; € N and a finite family of holomorphic functions g; = (gil, e ,giMi) :
X; — A™o2 guch that ); is given by t;()‘;) on the open subset U; := X, \
U2, Z(gi;) for a suitable X} € APO(R™i). Let A; be a strictly k-affinoid algebra
with Berkovich spectrum M(A4;) = X;, and let p;,,...,p; denote the finitely
many minimal prime ideals of the noetherian ring A;. rflhen, passing to the
Zariski-irreducible components M(A/p;,), ... M(A/p;,) of X; = M(4;), we
may assume that none of the chosen holomorphic functions g;,, ..., gi,,, is zero
or a zero divisor, once we observe that the image of tropog = t, : X;\Z(g) — R"
is just a single point for a nilpotent holomorphic function g : X; — A"92?",
Hence we may assume that codim(Z(g;;)) = 1 for all j € {1,...,m;} using
Krull’s principal ideal theorem. Then the inclusion ¥(Xj, fx,) € U; holds
since elements z in a skeleton always have maximal local dimension d(z) (they
are Abhyankar points, see [GJR21, Proposition 3.12]). Since supp(\;) C X7,
in particular supp(\i|y;) N 0X; = 0 holds, and the equality supp (\i|y,) =
t,t (supp A}) yields that ¢4, (0X;) Nsupp(A;) = 0. This gives

(try, X tg;)(0Xi N U;) Nsupp (piog A psA;) =0,

where p; : R™ x R™ — R"™ and py : R x R™ — R™i are the canonical
projection maps, and pio ApsA; denotes the wedge product of -forms, whence
the smooth form p3\. is considered as d-form. Alltogether, this gives

(4.15) /a—Z/A alx,

el

->/ () At (o)

icl (XungfX )

->/ (tge % b1 ) (BT A (ty, % s ) (03(0)

el (szgzfo )

=Z/ (te % £ ) (BN A pi()
icl E(szngfX )

:Z/R s V91X Fx:) A (P (X) A p3 ()

el

using integration theory via partitions of unity from [Mih21, (4.8)], the def-
inition of the wedge product of §-forms on non-archimedean spaces and the
calculation of the integral in a special case as in Remark 4.2.74. Doing exactly
the same procedure for § we obtain

@) [ 5= §jﬁéxR] b % ) AW (0)) A S().

Here, (Y});e is a finite collection of affinoid domains in Y such that supp(3) C
U]6 7Y} and such that B|yo =1}, (ﬁ’ ) for suitable tropical coordinates fy; :
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Yj = Gp™ and §-forms 8} € B(R*). The sequence (p;)jes € A%°(Y) denotes
a smooth partition of unity subordinate to (on)jej, and hj : V; — GL™ are
suitable tropical coordinates such that p;ly, = t,*lj (p;) on some open subset V;
of Y; with X(Yj, fy;) C Vj, where p); € AP0 (REY. Now we use Lemma 4.2.84
and 4.2.85 to compute the product of the two integrals. For ¢ € I let «; :=
pi(N) Aps(af) and to, ==ty X tg, : X; = R™ x R™, where p; and pa denote
the canonical projection maps on R™ x R For j € J let B; := pi(p}) Ap3(B})
and tg, = tp, X tfyj 1Y — Rl x R%, where p; and po denote the canonical
projection maps on RY x R% here. Now let p; : R™ xR" x R x R% — R™: x R"
and py : R™ x R™ x Rl x R% — R% x R% be the natural projection maps. We
note that (p% A\i Apypj)(ij)erx. is a partition of unity subordinate to the open
cover (X7 xx Y?) (i jerxs of X xx Y. Then we obtain

/ PanpB =

XXkY

=> > Px i A pypj Apxa A py
iel jeg ? XxKY

= [ O An )
icl jeJg ’ XxxY

= ZZ px (th, (i) A py (t5,(85))
icl jeg’ XxkY

S [ et e i)
iel jeg v XxKY

=>.2 T(X; x Yj, (95  fxi) % (hj % f;)) Apias A v

iel jeJ R™i xR"i xRl xRS

1.2.84 ZZ/Rm

PIT(Xs, 90 % fx;) NpsT(Yj, hj X fy;) A piog A p3f;

i xR7i xR xRS

el jeJ
:ZZ/ l Py (T(Xi, 95 % fx,) ANaq) Aps (T(Yj, hy x fy,) A Bj)
icl jeJ R™i xR"™ xR' xR%i
4.2.85
- ZZ Rmi xR T(Xi’gi . fXZ) hai /Rlixuzzsi T(}/J’hj X fY]) A IBj
i€l jed
:Z/ " T(Xi’ginXiMO‘i'Z/ . TGy x fyy) A B;
el R B ier Rl xR%

(4.15);(4.16)/ a-/ )
X Y

This gives the claim. O



Chapter 5

Tropical Dolbeault
cohomology of abelian
varieties

Having introduced J-forms on non-archimedean analytic spaces, we can now
introduce the key §-form of this thesis: It is subject of the main theorem 5.2.8
which will then allow us to investigate the Dolbeault cohomology of abelian
varieties. More precisely, we will see that there are two non-trivial parts that
contribute to the Dolbeault cohomology of abelian varieties: One part coming
from the algebraic torus associated to the abelian variety, and one part coming
from the good reduction part of the abelian variety. The first part comes from
the canonical tropicalization tropy of the Raynaud extension and was already
introduced in Section 3.2, whereas the latter is given by the announced key
d-form which we will introduce in Section 5.1.

Throughout this chapter, let k£ be a field that is complete with respect to
a non-trivial non-archimedean absolute value |.| : & — R. Let k° denote the
valuation ring of k.

5.1 The good reduction part of the Dolbeault
cohomology of abelian varieties

Here in this section, we consider the part of good reduction B of the Raynaud
extension of an abelian variety A over an algebraically closed field. There exists
some d-form Sy on the analytification B®", the so-called Chern-d-form associated
to some metrized line bundle on B which defines a d-form in the sense of [GK17],
and hence in particular in the sense of [Mih21] as introduced in the last chapter.
In [Gub10] and [GK17], those metrized line bundles and their corresponding 6-
forms are studied in more detail, and the definitions and results in this section
are due to them. One crucial aspect is that a suitable choice of a metrized
line bundle gives rise to a Chern é-form on B®" which also descends to the
original analytified abelian variety A*". Furthermore, integration of this J-form
can be done in terms of the degree of the line bundle, which is very explicit,

71
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too. All together, the constructed Chern d-form will on the one hand allow
to manifest the non-trivial part of the Dolbeault cohomology of A" coming
from the algebraic torus associated to A, and on the other hand it will induce
a non-zero element in the cohomology of strong currents on A*". We will see
this later in Section 5.3 as a corollary to the main theorem 5.2.8.

In this first section, we assume that k is algebraically closed. Let A be an
abelian variety over k£ with Raynaud extension

1-T—-FEF—B—0

from Remark/ Definition 3.1.4. We note here that in the case of an algebraically
closed field k, A is always split over k.

Convention 5.1.1. We use the notations and definitions from Remark/ Defi-
nition 3.1.4. In particular, let b be the dimension of B and let I be the abelian
scheme over Spec(k°) with generic fibre B. We note here again that this exists
since B is of good reduction, and we denote the unique Shilov point of B#" by
¢p. Furthermore, let q denote the (algebraic) morphism £ — B, and we denote
the corresponding analytic morphism E*" — B?®" also by q. Furthermore, let
A C E(k) be the normal subgroup such that A*" ~ E2"/A via the topologi-
cal covering map p : E?" — A®". For every a € A, we denote the associated
translation map E*" — E*" by 7,.

Remark/Definition 5.1.2. Let L be an ample line bundle on the abelian va-
riety B, and let £ be a cubic model for L on B over Spec(k®). The correspond-
ing metric || . ||z is a canonical metric, see [GK17, Example 8.15]. Following
[GK17, Remark 9.16], [GK17, Proposition 8.11] yields that || . ||z is a d-metric
in the sense of [GK17, Definition 9.9]. Then the so-called first Chern d-form
of (L,] . |lz) from [GK17, Definition 9.12], denoted by ¢1 (L, || . ||z), defines a
d-form in the sense of Gubler and Kiinnemann, i.e. an element ¢; (L, || . ||2) €
B (B*™) C By, (B®™) by [GK17, Proposition 9.11]. Following [GK17, 10.1],
Yo
B%’,gn (B*"). Locally on a trivialization U of L with nowhere vanishing section
se (U, L), c1 (L,| - ||z) is given by d'd” [—log || s|yan ||z], see [GK17, 7.7].

we denote the associated d-form of top bidegree on B*" by By :=¢1 (L, || . ||

Remark 5.1.3. Let L’ be a line bundle on a proper smooth algebraic variety
over k which is algebraically equivalent to zero. Then by [GK19, Remark 8.11],
we have the following results: Using [GK17, Example 8.16], the line bundle L’
carries a canonical metric || . ||can Which is a J-metric since a positive tensor
power || . ||&h is piecewise linear. Furthermore, the canonical metric is ob-
tained from a canonical metric on an odd line bundle on an abelian variety via
pull-back, and using [GK19, Example 8.10] it then follows that ¢; (L', || . ||can)
vanishes.

Lemma 5.1.4. In the situation of Remark/Definition 5.1.2, the pull-back
we=q'ci(L || . ||z) € BH(E™)

is translation invariant under rational points E(k). In particular, w is transla-
tion invariant under A.
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Proof. Let a € E(k) be an arbitrary element with corresponding point a =
q(a) € B(k), and let 7, : E*" — E® resp. 75 : B* — B® denote the
corresponding translation map. Using that the formation of the first Chern
d-form is compatible with tensor products of metrized line bundles and with
pull-backs we obtain

rew—w=q"ct(GLOL || |2 ee—1) =0,
where the second equality follows from Remark 5.1.3. 0

Remark/Definition 5.1.5. We consider the situation of Remark/ Definition
5.1.2. Let

Bo = c1(L, || - [l2)"" € BB (B™).

Then Lemma 5.1.4 together with Lemma 4.2.59 shows there is some J-form
RS Bi"gn (A2™) such that q*5y = p*S.

Proposition 5.1.6. In the situation of Remark/ Definition 5.1.5 we have that

Bo = degy, . (B) > 0.
Ban
Proof. The first equality follows directly from [GK17, Proposition 10.4] once
we observe that [y defines a J-form on B*" in the sense of [GK17] and using
that the injective map Bgi (B*') — Bpan(B*") from the space of d-forms in
the sense of [GK17] to the space of d-forms in the sense of [Mih21] is compatible
with integration, see Remark 4.2.75. The fact that deg; ;(B) > 0 holds by
Kleiman’s Criterion since L is ample. O

Remark 5.1.7. In the situation of Remark/ Definition 5.1.5, following [GK17,
10.1], more generally the following holds: The wedge product By = ci1(L, || - ||z
)\ defines a Radon measure on B*'. The measure associated to g is called
Monge-Ampére measure.

5.2 The product formula for abelian varieties

The goal of this section is to prove the main theorem 5.2.8. It gives a product
formula for the integration of wedge products on the analytification of an abelian
variety A, where one factor is given by any weakly smooth form on A*" coming
from the torus part of A, and the other factor is the d-form from the last section
which is based on the good reduction part of A.

In this section, we assume that k is algebraically closed. Furthermore, we
fix an abelian variety A over k with associated Raynaud extension

1—Ten 5 pan 5 pan
as in Remark/ Definition 3.1.4. We recall some of the definitions and results
explained there: We denote by p : E?" — A®*" the topological covering map
whose kernel A is a discrete subgroup of E(k) giving rise to an isomorphism
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A ~ E* /A, Furthermore, we denote the character lattice of the algebraic
torus T associated to A by M, and we let N be the cocharacter lattice. We let

:==dim T, b:=dim B and n := b+ d. We denote the canonical tropicalization
map E* — N by tropg, and we recall that it is a harmonic tropicalization
map in the sense of [GJR21]. Furthermore, it maps A C E*" isomorphically
onto a complete lattice in Ng which we also denote by A. We fix a Z-basis
T1,...,Ty of the character lattice M of T giving rise to coordinates z1,...,xq
on Ng and a natural isomorphism Nr =2 R?. We will use this isomorphism to
identify Ng with R¢, and we also identify the lattice A C Nr with a lattice
in R? via Ng = R%. We denote this lattice in R? also by A. Furthermore, we
denote by trop resp. tropp not only the smooth resp. harmonic tropicalization
map trop : T*" — Ny resp. tropg : E*" — Ng, but also its composition with
the identification Np = R,

Definition 5.2.1. Let Ay, be the Haar measure on Nr with the property
that Ay, (Fn) = 1, where Fy denotes a fundamental domain for the lattice
N in Nr. We consider the lattice A C Ng and define the covolume of A by
covol(A) := Ay, (Fp), where Fy C Ng is a fundamental domain for A C Ng.

Remark 5.2.2. The covolume of A in Definition 5.2.1 does not depend on the
choice of the fundamental domain F for A since the Haar measure is translation

invariant. Furthermore, it is strictly positive since A is a complete lattice in
Ng.

Remark 5.2.3. Considering A as a lattice in R? via the fixed isomorphism
Ng = R%, the covolume of A is equivalently given by Aga(F)) where Fy C R?
is any fundamental domain for A in R? and Aga denotes the Lebesgue measure
on R,

Convention 5.2.4. Let (by,...,by) be a Z-basis for the lattice A in R?, i.e.
bi,...,bg € R? are linearly independent vectors such that A = {Zle aby | a; €
ZVl € {1,...,d}}. Furthermore, let F) C R? be the fundamental domain for
the lattice A in R? given by F} + v/ where F} = {Zle ANby | A €[0,1)V1 €
{1,...,d}} and o' = (-1) Zle b; € RZ. We keep these notations for the whole
section.

Lemma 5.2.5. There exists a finite family {A;}ier with #1 = 2% of A-small
(Q, R)-polyhedra in R? such that the following holds:

i) FiA - UieIA;')-

it) Uier (Urea Ta(A9)) =R, i.e. the set {Uyen Ta(A7) Yier is an open cover
of R%.

iii) There exists a A-invariant smooth partition of unity {p.}icr on R? subor-
dinate to the finite open cover {{UJycp TA(A]) bier of R* such that for every

i € I there is some vector v; € R% with the property that
AY CFR+v;:={z+v; |z € F§} and supp(p;) N (Fa + v;) C AS.

)
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) The finite set {p (tropy (AS))}ier defines an open cover of A™ which is
induced by the A-small open subsets tropEI(Af) C E®" wvia the covering
map p.

Proof. For v € R% and € € Ry let

d
A(v,€) := {U+€-Z)\lbl|)\l € [-1,1] VlE{l,...,d}}

=1

denote the d-dimensional cube around v with edge length 2e. We consider the
set

d
Z = {ZAlbl |\ € {0;} \ﬂe{1,...,d}}

=1

of vectors in R? with #Z = 2%. For v € Z let

1
A, =A(v,= ).
(+3)

We claim that the family {A, } ez - that is obviously a family of A-small (Q, R)-
polyhedra in R? - fullfills the desired properties. First of all, we show that
F) C Upez Ay So let 2 € Fj. Then there exist Aj,...,\q € [0,1] such that
z =10+ Ele A\ib;. Now let

[01]—>{01} L0 ey
: ) yo (@
4 2 %,ifa>%.

Then a — ¢(a) € [0,1] for all @ € [0,1], and for all I € {1,...,d} we set
= =3 430N —oN)) € [<2,3]. Forv:= ", ¢(\)b € Z we obtain that
x € A} since

d d 1 d 1
—_— I — PR — _ pa—
r=v + Z)\lbl = Z <)\l 4) b Z (go()\l) 1 + N go()\l)> b
=1 =1 =1

a 1

d
;w( )by 3;/%1

d
1 o
:U+3l_21,ulbl€Av.

Furthermore, by definition of a fundamental domain, for an arbitrary z € R?
there is always some A € A with 7\ (z) € Fj. Hence the fact that F C Uvez A7
also shows that the set {{Jyc, T2 (A2)} ez is an open cover of R%. Now let us
consider the subsets tropgl(Ag) C E?" for arbitrary v € Z. Since A, is A-small
and tropy maps the subgroup A C E(k) homeomorphically onto the complete
lattice A C R? = N, the preimage tropgl(Ag) of Ay under tropg is A-small in
E?". Since A* ~ E?/A via the topological covering map p : E*" — A®" this
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gives that p (tropEl(Ag)) =~ trop,' (A9) via p, and since Fp C Uwez A% the
above shows that the sets p (tropgl(Afu)) C A®" with w varying over Z cover
A" So now it is left to show that there exists a A-invariant smooth partition of
unity {}, }wez on R? subordinate to the finite open cover {{J,cn 7a(A%) bwez
of R% such that for every w € Z there is some vector v,, € R? with the property
that

A C FR 4+ vy = {x + vy |z € Fy} and supp(p),) N (Fp + vy) C A,

For every w € Z we denote by A,, C R?/A the image of the polyhedron A,
under the canonical projection map 7 : R¢ — R?/A. Since R%/A is a manifold,
there is a smooth partition of unity {py}wez subordinate to the open cover

{Zf”}wez of R4/A which is given by the topological interiors of A, in R?/A
for w € Z, where R?/A is equipped with the quotient topology. Now we let
oy = pwom € APORHA for all w € Z. Then {p!, }wez is a A-invariant smooth
partition of unity on R? subordinate to the finite open cover {{J,cp Ta(AS) bwez
of R?. If we now fix for every w € Z the vector v, = 27:1 Y(N)b € R, where
AM,...,\ € {O, %} such that w = Zld:l by and

1 11 11 1

90, ===, 2,0 —, - = =

/llz) { b 2 } { 6 b 6 } ) 67 2 6 )
we get the desired properties that A C F{ +wv,, and supp(p,,) N (Fa+vy) C A3,
for all w € Z. This shows the claim. O

Convention 5.2.6. Let b be the dimension of B, and let B be the abelian
scheme over Spec(k°) with generic fibre B. Let L be an ample line bundle on
B, and L a cubic model for L on B over Spec(k°®). Let By := c1(L, || . ||2)" €
B%Zn (B*"), and let 5 € Bﬁ{i’n (A2) such that 3 := q*fy = p*S € B%ZH(E‘“)A as
in Remark/ Definition 5.1.5.

Convention 5.2.7. In the following, we consider all weakly smooth forms also
as d-forms via the natural inclusion of the sheaf of weakly smooth forms into
the sheaf of d-forms on Berkovich analytic spaces, see Remark 4.2.65.

Theorem 5.2.8. For arbitrary o/ € Ad’d(NR)A with corresponding weakly
smooth form a € A%Y(A*™) induced by o and tropg (see Lemma 3.1.15) and
B as before we have

Ty(a) = / anp=[ odegs 1(B),
an X

where the wedge product is meant in the sense of d-forms, Iy denotes the in-
terior of F in R%, and Ty denotes the strong current associated to the 6-form

B e Bg’i’n (A*™) as in Lemma 4.2.79.

Proof. We are going to use a partition of unity argument to reduce to the
case that the support of o is contained in the interior A° of some A-small
(Q,R)-polyhedron A in Ng. First we note that o/ € A%¢(Ng)® may always be
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considered as a A-invariant Lagerberg form on R¢ using the fixed isomorphism
Ng 2R Let I :={1,...,2%} and let {A;}ic; be a family of A-small (Q,R)-
polyhedra in R? as in Lemma 5.2.5. For i € I let p} € A%(R?)* such that
{p}icr defines a smooth partition of unity on R? subordinate to the finite open
cover {{Uyep TA(A9)}ier of R? as in Lemma 5.2.5. Hence for every i € I there
is some vector v; € R? with the property that

AY C FR 4 v :={x+v; |z € Fy} and supp(p}) N (Fy +v;) € AS.
For every i € I, we fix such a v; € R?, and furthermore we define
of = plaol € AYYRA,

Using Lemma 3.1.15, the harmonic tropicalization map tropg on E*" then gives
for all 7 € I corresponding weakly smooth forms

&; € A(E™) and o; € AY(A™) with supp(a;) C p(tropy'(AY)).

)

We claim now that it suffices to show that for ¢ € I, the equality

(5.1) / i A B = / of - deg; _(B)
p(tropzt (A2)) A?

holds. So let us assume that (5.1) holds for all i € I. By Lemma 5.2.5, A*" is
covered by the sets p(trop' (A?)) for i € I. Furthermore, using that {p}}cr
was chosen as a A-invariant smooth partition of unity on R¢ we obtain that
Yier @ = € AYRYN and Y, ;0 = o € ABI(A) C BEY (A*™). Hence
summing up over ¢ € I gives

/ana/\ﬁz/an;ai/\ﬁ
—Z/anai/\ﬁ

iel
= Z/ a; A\ ﬁ
ic1 /p(tropg ! (A?))
(5.1)
= Z/ O‘;'degL,...,L(B)
iel Y87
= Z/ ag : degL,.,.,L(B)
iel Y FR+i
= Z/ 0‘2 : degL,...,L(B)
el YR
:/ Zo‘g'degL,...,L(B)
R i€l

Z/ o -degr  1(B),
FX 9 bl
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where in the third-to-last step we use the A-invariance of «.

The above now allows us to assume in the following that there exists some
A-small (Q,R)-polyhedron A in R? such that supp(e/) € A°. We fix such
a polyhedron A C R%. Now we turn to the element § in the considered A-
product o A § € Blyan (A*"). By [GK17, Proposition 10.4], the support of Sy is
just the Shilov point g of B*. Furthermore, by [GK17, §5], there is an open
neighbourhood of £ in B*" of the form W?" for W C B affine open, a smooth
tropicalization map t,, : W*" — R” induced by a moment map ¢ : W — Gz,
for some 7 € N and a d-form S rop € B(R") such that on W?", 5y is given by
tfp(ﬁmtrop). Using Lemma 3.1.10, by possibly shrinking W (i.e. intersecting W
with the generic fiber of a suitable Zariski-dense open subset W of the model
B of B over k°), we may assume that there is an isomorphism

qfl(Wan) g Tan Xk Wan

together with an affinoid domain W= C B* with £ € W= C W2 such that
¢|yy2 is compatible with the tropicalization maps trop on T*" and tropp on
q~'(W?3), i.e. such that the diagram

(5.2) gt N X W=

JtropE
tropxe
Rd

commutes. Then supp(8y) € W= C W2 supp(3) = supp(q¢* ) € g~ (W) C
g~ (W) and supp(B) € p(q~*(W=)) C p(q~(W?")). We note here that in
the resulting bigger diagram

(53) qfl(Wan) D W: —>Tan>< W:l C Tanx Wan

tropg

Rd

only the inner triangle commutes, and the outer triangle does not in general.
Now the idea is to pass to small enough subsets of £?" resp. A®*" where we can
concretely describe & A B resp. a A 3, but which are also big enough such that
they contain the support of & A 8 resp. a A 8. The subsets we consider are
given by the A-small subsets (A-smallness follows from the A-smallness of the
polyhedron A)

q (W) Ntrop,' (A°) C E* and w3 n tropy' (A°) C E*®

resp. their images under the covering map p : E*" — A®". We note here that
since every A-small subset of E*" is isomorphic to its image under the map p,
the restriction to A-small subsets allows us to work with & A 8 instead of a A .
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Now we consider the restriction of the isomorphism ¢ to q~* (Wj)ﬁtropgl (A°) C
E® and to q~ 1 (W™)Ntrop,' (A°) C E*". Since the inner triangle of (5.3) com-
mutes, ¢ restricts to an isomorphism

V) n tropy' (A°) 2 trop” H(A°) x W2 C T™ x,;, W2,

Since ¢~ 1(Wa) N tropEl(Ao) C E?" is open and so is its image under ¢, there
exist open subsets Vp C T?" and Wy C W?2" such that

P(q (W) Ntropt(A®)) = trop ™1 (A®) x W3
CVrxxWp
C ¢(q~H(W™) Ntropy' (A°))
g Tan Xk; Wan‘

The tuple (trop|y;, o) defines an element in A%?(Vr) with corresponding d-form
ol = (trop* (o/ A {Rd, uRdD) vy € B%;?,(VT)

and well-defined restriction aT|trop_1( Ay € B%ﬁ, (trop~1(A®)). By commutativ-
ity of the triangle

Tan L Ean

trop
tropg

Rd

the equality of §-forms +*(&)|y; = o holds. We consider now furthermore the
0-form

Bolwg = t3,(Bo,trop) Wi € BY, (W)

on Wp C W C B*. Let py, and pw, denote the canonical projection maps
on Vp X Wpg. Then we consider the d-forms

w = (0o 1w (s (aF) Apiv, (Bolwn)) € BRE (671 (Ve xi W)
and

(d A 3) ‘¢71(VT><]€WB) = d’(ﬁ*l(VTXkWB) N (q*BO) ‘(ﬁ*l(VTXkWB)
€ Bt (¢ (Ve i W)

on the open subset qﬁ_l(qu xr Wp) C E?". Furthermore, we consider the
skeleton

Ypana =2 (q_l(WJ) N trop 1 (A), (trop x ty) o gb)
C g (W3 Nntrop H(A) € E™
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obtained from the - by [Gub10, 4.7] - affinoid domain q~'(W=) Ntrop~'(A) in
E?" and the tropicalization map
(trop x ty) o ¢ : W) Ntrop~H(A) 2 trop” 1(A) x W= TR R R

Now the facts that g~ (W=)Ntrop,' (A°) C ¢~ (Vex,Wg) and t*(&)|v, = aT =
(trop*(a’ A [R%, pigal)) |v4 together with the commutativity of the inner triangle
of (5.3) and the facts that supp(a’) € A° and supp(fy) = {{8} € W= C Wp
yield that

w’EWD,A = (d A B) ’ZW:,A and supp(w),supp(a A ) C Swaa-

Applying Lemma 4.2.76, using the projection formula and the earlier proved
product formula 4.2.86 we obtain

(5.4)

/¢1(VTXkWB

A

) |<Z5 H(VrxiWg)

VTXkWB

a
/ VTXkWB (Gl maann)” (v (07) A iy Gil,)
8

pV']I‘ ) /\pWB (tw(ﬁo trop)‘WB)

VrxyWp

/ ol Bolwy-
Vi Wp

The fact that supp(a A B8) Cp (¢~ (Ve xx Wg)) = ¢~ (Vi xj, Wp) then yields
(5.5)

alhp= / o JAB
/p(tropgl(A")) p(e~ (Ve xxWg)) |P(¢> (VexsWs) |p '(VexxWg))

a|¢71(VTXkWB) A B‘¢71(VTXkWB)

/ ¢~ 1 (Ve x Wp)

| (07/\@ =1 (Ve x W)

CJW

(5.4)
/ Bolwp
Vr Wg
T
:/ «@ |tr0p*1(A°) / Bo
trop~1(A°) Ban
:/ O/ : 607
o Ba]’l

where in the second-to-last step we use that the support of 5y is just the Shilov
point g € B* which already lies in W3, and that supp(a”) C trop~'(A®).
In the last step we just use the definition of the é-form ar. Since [ pan B0 =
degy, . 1(B) by Proposition 5.1.6, the claim follows. O
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Corollary 5.2.9. For o' := day ANd"vy N ... Ndxg Nd"xg € /\d’d Mr C
AL (Ng)A with corresponding weakly smooth form w € A% (A*) induced by w'
and tropg (see Lemma 3.1.15) we have the formula

(5.6) Tp(w) = covol(A) - degy, _ 1.(B),

where T denotes the strong current associated to the 6-form [ as in Lemma
4.2.79.

Proof. This follows directly from Theorem 5.2.8. O

5.3 Conclusions: The Dolbeault cohomology of
abelian varieties

In this last section, we will use the main theorem 5.2.8 to investigate the Dol-
beault cohomology of the analytification of an abelian variety A. We will show
that the two forms occurring in Theorem 5.2.8 contribute to the cohomology of
A" as non-trivial elements: For the weakly smooth form «, this contribution
is directly onto the Dolbeault cohomology of A®", whereas the d-form S may
be considered as a non-trivial element in the cohomology of strong currents on
A?r,

In this section, we do not assume that k is algebraically closed. We fix an
abelian variety A over k, and assume that A is split over k. We note here
again that by [Ber90, 6.5], this can always be achieved by passing to a suitable
finite separable extension of k. Furthermore, we use the notations from the last
section with regards to the Raynaud extension of A.

Proposition 5.3.1. There is a canonical morphism of real vector spaces
P .Ap’q(NR)A — API(A™M)
which is compatible with the differential d’ and the N-product.

Proof. The existence of the canonical morphism ¢%;? follows directly from Lemma
3.1.15. Let o € AP4(Ng)? and let {U;}icr be an open cover of E** such that
the closure U; is a compact and A-small analytic domain in E*". For all i €
let

h; = trOPE‘ﬁi : Uz — Ng and Oé; = a/|trOpE(Ui)'

Then ¢%%(a’) is given by the family (h;, o), ;, and d” (%)) is given by
(hi,d" ), by definition of the differential d” on weakly smooth forms. Hence
#%? is d"-compatible. Now we consider another A-invariant Lagerberg form
B e AP0 (Ng)™ and let g := B,’tropE(Ui) for all i € I. Then ¢5 7977 (/ A ')
is by definition given by the weakly smooth preforms (h;, o, A Bl)ier. It agrees
with ¢5(a’) A ¢%,'7 (8') which is by definition given by ((hi, hi), pies A psBlict
since the pull-back of Lagerberg forms commutes with the A-product. Here, p;
and po denote the canonical projection maps on Ng X Ng. ]
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Remark 5.3.2. We observe that the morphism d)i’q from Proposition 5.3.1
induces a morphism

(5.7) APU(NR) — HPU(A™), o [¢5()]
using d”-compatibility.
Remark 5.3.3. We consider the commutative diagram

(5.7)

AG! (Ne) HPA(A™M)

This gives the desired canonical morphism of real vector spaces

p.q
o5t \ Mg — HPI(A™).

It is now left to show that the map is injective. We keep this notation for the
rest of the chapter.

Remark 5.3.4. We assume that k is algebraically closed and let 8 € szl’gn (A2m)
be the element from Remark/Definition 5.1.5. The §-form S is d”-closed by
[GK17, 9.14] together with the Leibniz formula and the fact that the differential
d” commutes with pull-back morphisms of analytic spaces. Then the map

T : ADY(A™) — R, n B AN
Aan

from Lemma 4.2.79 induces a linear form on the cohomology H%?(A*") by
Lemma 4.2.81.

Lemma 5.3.5. Let o/ € AP? Mg be a non-zero element. Then there exists
some o/ € NP9 My such that

NS =dei Ny N N Nd g N d 2y

Proof. For all I,J C {1,....d} with |I| = p, |J| = qlet I = {1,...,d} \ I,
J:={1,...,d}\ J and let o} ; € R such that
o = Z apydzr Nd"zy.
H|=p,J|=q
We consider the set
Z:={,J) C{L,....dY?* [ [I| =pA|J| = qgnaf; #0}.
Note that Z # () since ' is non-zero. For (I,J) € Z we define
(I J) {1, ifdzrANd"z; A d/.%'f VAN d”l‘j =dzi ANd"z1 AN o ANdzgNd 2y
s(I,J) =

—1, else

1 _
afy=s(l,J)- 27 (af)™

and
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and for all I,J C {1,...,d} with |I| = p, |J| = ¢ and (I,J) ¢ Z let of; :=
Now let

d—p,d—q

"o._ "o "
o = Z apjdryNdxy e /\ Mg,
[|=p,|J|=q

Then
o Ao

_ ;o 7 "o "
= Z apdxy Nd'xy | A Z adry Nd xy
‘I|:p7|J|:q ‘I|:p7|J|:q
= Z Z a’Ua'Ifjd'x[/\d"xj/\d’fod”a:j
[|=p,|J|=q [I|=p,|J|=q
= Z a'Uo/i'jd’xI/\d":cj/\d':rf/\d"xj
[=p,|J|=q
= Z a}Jo/Ifjd’x] Nd"zgNdzgNnd'x;
(1,J)ez

= Z ahy-s(I,J) -

(I,J)eZ

1
= Z ﬁd’xl ANd'zi N ANdxghd g

(I,)Hez
:d'acl A d//.%'l VANPIRAN d’xd A d"a:d.

1
ﬁ .

(o)) rdarnd"vy ANdzy A d"zj

Corollary 5.3.6. For all p,q € N, the canonical morphism

pq

oht: \ Mg — HPI(A™),0 — [¢57(a))]

s injective. In particular, if the dimension dimT of the algebraic torus as-
sociated to A is non-zero, then the Dolbeault cohomology HP4(A®™) of A* is
non-trivial for all p,q € N with max{p,q} <d=dimT.

Proof. Let o/ € A\P"? Mg be a non-zero element. Then by Lemma 5.3.5 there
exists some o € NP4 My such that

d,d
Ji=dAd =dey Nd" e N N xgNd g € /\ Mg.

By Remark 2.2.45, base change induces a morphism on the Dolbeault coho-
mology groups of weakly smooth forms, and by Remark 3.1.9, base change
is compatible with the formation of the Raynaud extension and its canonical
(harmonic) tropicalization map. Hence we may assume that k is algebraically
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closed by considering the commutative diagram

PP -
AP Mg AORk HPU(A™ k)
% /
Hp,q(Aan)

and observing that the completion & of an algebraic closure k of k is again
algebraically closed by Krasner’s Lemma. Let L be an ample line bundle on B,
B the abelian scheme over Spec(k°) with generic fibre B and £ a cubic model
for L on B over Spec(k®). Let

Bo = er(L || - [12)™

as in Remark/ Definition 5.1.5. Then there is some J-form 5 € Bi{gn (A*") such
that q*By = p* 5. We obtain

(5.6)
T3(¢5"(«) =" covol(A) - degy, . (B) # 0.
By Remark 5.3.4, T3 induces a linear form on the cohomology H®%4(A*). This
gives that the linear functional T applied to the class [qu’d(w’ )} € Hbd(An)
is non-zero, and since [¢i’d(w’)} = [¢%9(a)] A [(bi_p’d_q(a”)} this gives the

claim. O

Corollary 5.3.7. We assume that k is algebraically closed. Then there is an
injective morphism

p.q
/\MR N Hg+p7b+(I(Aan)

to the cohomology of strong currents on A®".

Proof. We consider an ample line bundle L on B together with a cubic model
L for L on B over Spec(k®). We denote the associated d-form, the first Chern
d-form of (L,| . |¢) from Remark/Definition 5.1.2 by £y := ¢ (L, | . |lz) €
BEL(B™), and define By := fo € BY.(B™). By Lemma 5.1.4, the 6-form
q*(Po) € B%l;n (E") is A-invariant, and using Lemma 4.2.59 we get an induced
o-form S € BZ’ZB (A*") on A*" with p*(8) = q*(Bo) as in Remark/ Definition
5.1.5. We consider the strong current

Tp : AB4(A™) - R, 7 s nApB
Aan
on A*™, see Lemma 4.2.79. We recall here that dim(A4) = n = b+ d where
b = dim(B) and d = dim(Ngr) = dim(T). By [GK17, 9.14], By is d"-closed,
and hence — using the Leibniz formula and the fact that the differential d”
commutes with pull-back maps — /3 is d”-closed as well. Since the map B(A4*") —
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D(A*) from Lemma 4.2.79 which maps the d-form  to the strong current Tz
is compatible with the differential d”, it follows that Tz € D**(A™) is a d’-
closed strong current on A*". Furthermore, for every (p,q)-Lagerberg form
o' € N\P? My with constant coefficients on Ng, the associated weakly smooth
form ¢%9(a’) € AP9(A*") induced by tropy is d”-closed since o is d”-closed
and ¢%? is compatible with d” by Proposition 5.3.1. Hence by Lemma 2.2.42,
we obtain a d”-closed strong current

() AT ATPAI(AM™) S R,

0 (&0 (o) A ) = /

O CORY NIV
Aan

and hence an element [¢%%(a/) ATp] € H%er 4 gan) in the cohomology of
strong currents for every o/ € AP? Mg. Using this observation, we can now
define a morphism

p,q
e /\MR N H%—I—p,b-ﬁ-Q(Aan),a/ — [d)l;l’q(a/) A Tﬁ]

and we claim that this map is injective. So let o/ € AP? Mg be a non-zero
Lagerberg form with constant coefficients on Ni. By Lemma 5.3.5 there is
some o/ € N*P%79 My such that

N =dei Nd"sy N N NdegNd g =W
and we obtain
(¢%7(a) A Tp) (6577970 = T (5%(e) A 65 (a))
2Ty (63w))
(59) covol(A) - degy 1 (B) # 0.

We can now conclude the injectivity of ¥ using the following observation: For
every strong current S € DPHe0+a=1(Aan) and every i € AC P49 My we have
that

d//S ((biiq—p,d—q(n//)) -9 (d//¢dA—p,d—q(n//)>
53.1 S (¢Z—p,d—q+1 (d//n//))
= S5(0) =0,
since every Lagerberg form with constant coefficients on Ny is d”-closed. Since

d—p,d—
(5% (/) A Tp) <¢A P q(o/’)) # 0 we get that ¢(o/) = [¢5%(a/)ATp] €
HbD+p ¥4 gan) is non-zero in the cohomology of strong currents on A™. O
Remark 5.3.8. In the situation of Corollary 5.3.7, roughly speaking, the in-
jective map

p,q

/\MR N H%+p,b+Q(Aan)
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represents the contribution of the good reduction part B*" of the Raynaud
extension to the Dolbeault cohomology of A?". Also roughly speaking, this
contribution is is given by the first Chern d-form ¢; (L, || . ||z) of an ample line
bundle L on B together with a cubic model £ for L on B.
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