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Chapter 1

Introduction

This thesis develops generalizations of unobserved components and factor models
to account for long memory. Long memory describes a strongly persistent and of-
ten non-stationary behavior, as found for numerous time series in macroeconomics,
finance, climate research, and beyond (for an introduction, see Hassler; 2019). Tra-
ditional unobserved components and factor models are limited to integer-integrated
processes, and often make strong assumptions about the integration orders of the
data under study. Generalizing these models to account for fractional integration
seamlessly links integer-integrated specifications, allows for intermediate solutions
between integer integration orders, and provides a data-driven solution to the spec-

ification of the long-run dynamics.

The introduction first outlines the general frameworks of unobserved components
and factor models, and introduces the concept of long memory, along with a brief
motivation for incorporating long memory into unobserved components and factor
models. A second subsection summarizes the three essays contained in this disser-

tation and details the contribution to the literature.

1.1 Methodological framework

To introduce unobserved components models, consider the observable, univariate
time series y; that is measured regularly at ¢ = 1,...,n. Unobserved components
models build on the framework as introduced by Harvey (1985) and Clark (1987),
and assume that 1 is generated as the sum of two latent components, a trend 7 and
a cycle ¢;, such that

Yy = Tt + ¢, t=1,...,n.
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Both 7, and ¢; are unobserved, and are distinguished by their spectra: The cyclical
component ¢; is assumed to be a stationary process with mean zero and is to capture
the short-run dynamics of y;. Typically, it is represented as a stationary autoregres-
sive process of order p (see, for instance, Clark; 1987; Morley et al.; 2003; Oh et al.;
2008)

a(L)ey = €, (1.1)

where a(L) =1 —a1L — ... — a,LP, L is the lag operator, and € is assumed to be
at least white noise, often Gaussian. However, some alternatives to (1.1) have been
considered in the literature, such as ARMA models and mixtures of sine and cosine

waves, see Harvey (1989, ch. 2).

For the trend component, the literature typically assumes that 7; is generated by
a linear deterministic trend py = po + p1t, plus a non-stationary stochastic trend a;

that is integrated of order d, such that
Tt = Jt + T, Ay =y, (1.2)

where A% = (1— L)% d € N is an integer that defines the integration order of z; and

is assumed to be known, and 7 is again at least white noise, often Gaussian.

For log US real GDP, which is arguably the most important application of unob-
served components models, the field is divided into two main groups with respect to
the specification of d: On the one hand, models in the spirit of Beveridge and Nelson
(1981) and Harvey (1985) assume d = 1, i.e. the stochastic long-run dynamics are
modeled by a random walk. On the other hand, models based on Clark (1987) and
Hodrick and Prescott (1997) assume d = 2, i.e. z; becomes a quadratic stochastic
trend. Although the latter specification is clearly at odds with the long-run proper-
ties of log US GDP, which tend to support setting d = 1, choosing d = 2 forces the
estimated trend component to be very smooth, leaving rich dynamics to be captured
by the cycle. Conversely, setting d = 1 yields an estimated trend component that
is erratic, along with a noisy cyclical component, once 7; and €; are allowed to be

correlated, see Morley et al. (2003).

A major limitation of unobserved components models is the dichotomy between
specifying the stochastic trend as a random walk and specifying it as a quadratic
stochastic trend. Both are rather extreme cases of long-run dynamics, where past
shocks enter the trend either as an unweighted sum, or with quadratically increas-

ing weights. While other parameters are defined as continuous and are subject to
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estimation, the unobserved components literature treats d as discrete and known,
thus allowing for no intermediate solutions between specifying the trend as a random
walk and specifying it as a quadratic stochastic trend. As the coexistence of I(1) and
I(2) trend specifications for log US real GDP illustrates, there is often no consensus
on the appropriate choice of d, and estimates of trend and cycle differ massively
between the two specifications.

This thesis addresses this limitation by generalizing unobserved components mod-
els to account for fractional integration. The concept of fractional integration allows
for integration orders d € R, i.e. also for intermediate solutions between the integer
integration orders. For d € R, the differencing operator in (1.2) exhibits a polynomial

expansion in L of order infinite

> Il 1(d) =
. - 371( ) ] 1,2, ceey
A= (1 -0 =Y m@r, md= 7
=0 1 J=0,

where the weights 7;(d) are determined recursively. The concept of fractional inte-
gration encompasses integer integration orders as special cases, seamlessly links the
random walk trend specification with the quadratic stochastic trend specification,
and adds flexibility to the weighting of past long-run innovations. Since d is defined
on the real line, it can be treated as an unknown parameter and can be estimated
jointly with the other model parameters. Thus, the fractional generalization of un-
observed components models provides a data-driven solution to the specification of
the long-run dynamics.

A second methodological focus of this thesis is on factor models, in which latent
variables also play a key role. In contrast to univariate unobserved components
models, factor models are typically used to model high-dimensional data, both in
the time domain and in the cross section. For an N-dimensional vector of observable
variables Y; = (14, ..., yn+)'!, which are measured regularly at t = 1,..., T, the basic

structure of a factor model is given by
Y;:f(xt)—i-ut, t=1,..,T,

where u; is an N-vector holding the idiosyncratic component, and f(x¢) is the com-
mon component that is driven by the r common factors x¢ = (X1, ..., xrt). While

traditional factor models treat all observable variables as I(0) (see Bai and Ng; 2008,

'In chapter 4 of this thesis, the observable variables are denoted as y;. However, in the in-
troduction I use a capital Y; to avoid confusion with the notation of the unobserved components
model.
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for an overview), there are several generalizations to I(1) processes, see Bai (2004),
Bai and Ng (2004), Eickmeier (2009), Chang et al. (2009), Banerjee et al. (2014),
and Barigozzi et al. (2021) among others. However, such models again rule out in-
termediate solutions between the rather extreme cases of short memory and perfect
memory. For fractionally integrated data, the literature has so far mostly consid-
ered semiparametric factor models, where the factors are estimated via principal
components (see Morana; 2004; Luciani and Veredas; 2015; Cheung; 2022; Ergemen;
2023). Recently, Hartl and Jucknewitz (2021) developed a parametric factor model
that allows for stationary and non-stationary factors, fractional integration, and het-
erogeneous integration orders among the factors and data. Building on their work,
this thesis investigates several fractionally integrated factor model formulations and
examines their forecast performance for the high-dimensional macroeconomic data

set of McCracken and Ng (2016).

1.2 Overview and contribution

1.2.1 The fractional unobserved components model: a generaliza-
tion of trend-cycle decompositions to data of unknown per-

sistence

The first paper addresses the aforementioned limitation of unobserved components
models that arises by the dichotomy between specifying the stochastic trend as a
random walk and specifying it as a quadratic stochastic trend. I introduce a novel
unobserved components model that generalizes the stochastic trend component x;
in (1.2) to a fractionally integrated process of order d € R, denoted as xy ~ I(d).
The model encompasses the two main specifications in the literature, which assume
either that the trend component is I(1) (e.g. Beveridge and Nelson; 1981; Harvey;
1985; Morley et al.; 2003), or that it is I(2) (e.g. Clark; 1987; Hodrick and Prescott;
1997; Oh et al.; 2008). Since d can take any value on the positive real line, the
model allows for intermediate solutions between the integer-integrated specifications
and thus for even more general patterns of persistence. In addition to the fractional
trend, the model allows for flexible parameterizations of the cyclical component,
including stationary ARMA specifications.

Estimates for trend and cycle are obtained from the Kalman filter and smoother,
as is common in the unobserved components literature. However, the fractional gen-
eralization of the trend comes at the cost of making the state vector high-dimensional,

in contrast to traditional, integer-integrated models. Consequently, running the
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Kalman recursions for the fractional unobserved components model is computation-
ally expensive. To speed up the computation, I derive an analytical solution to the
optimization problem of the Kalman filter, which allows the filtered and smoothed
trend and cycle to be computed directly, thus bypassing the Kalman recursions. This
has the additional advantage that I obtain an analytical expression for the prediction
error that depends only on the model parameters and the observable data, and not
on recursive solutions for the filtered trend and cycle. Since the prediction error
enters the objective function for parameter estimation, this simplifies the derivation
of the asymptotic estimation theory.

Parameters can be estimated using either the conditional sum-of-squares estima-
tor or the quasi-maximum likelihood estimator. Both estimators minimize the sum
of squared prediction errors, and are asymptotically equivalent. A key part of this
paper is to derive the asymptotic theory for parameter estimation, where I show that
both estimators are consistent and asymptotically normally distributed. The deriva-
tion of the asymptotic theory is complicated by the non-ergodicity of the prediction
errors and the non-uniform convergence of the objective function. The finite sample
properties of the estimators are evaluated in a Monte Carlo study, which supports
the results on consistency for both estimators.

The fractional unobserved components model is then applied to model log an-
nual US carbon emissions. Estimation results indicate an integration order of 1.75,
suggesting that integer-integrated models are misspecified for log annual US carbon
emissions. The estimated trend is smooth and has two major turning points, the
1979 energy crisis and the Great Recession. Since the former, per capita emissions
decline, while total annual US emissions decline since the Great Recession. This
supports the environmental Kuznets curve hypothesis, i.e. an inverted U-shaped
relationship between economic development and carbon emissions. The estimated
cyclical component shows a persistent behavior and appears to be closely coupled to

the business cycle.

1.2.2 Solving the unobserved components puzzle: a fractional ap-

proach to measuring the business cycle

The second paper is joint work with Rolf Tschernig (University of Regensburg)
and Enzo Weber (University of Regensburg and Institute for Employment Research
(IAB) Nuremberg). It addresses the puzzling estimates for the business cycle ob-
tained from traditional unobserved components models with integer-integrated trend

components: Once correlation between trend- and cycle innovations is allowed for,
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the results from unobserved components models with an I(1) stochastic trend are
virtually identical to the Beveridge-Nelson decomposition of log US real GDP. As
shown by Morley et al. (2003), the estimated correlation between long- and short-
run innovations is close to —1, the estimated trend is volatile, and the estimated
cycle is noisy, lacking a clear cyclical pattern and missing the NBER, chronology.
At the same time, unobserved components models that either force the correlation
between long- and short-run innovations to be zero (e.g. the model of Harvey and
Jager; 1993), or restrict the variance-ratio between long- and short-run innovations
to be small (e.g. the model of Kamber et al.; 2018), yield economically plausible

decompositions into trend and cycle, but exhibit a smaller likelihood.

We provide evidence that the puzzling results are an artifact generated by the
presence of a smooth fractionally integrated trend in log US real GDP with an
integration order greater than one but less than two. The correlated unobserved
components model of Morley et al. (2003) then misspecifies the integration order,
which upward-biases the variance estimate for the long-run innovations, leading to an
estimate for the trend component that is erratic. By allowing for correlation between
long- and short-run innovations, the cyclical component can adjust for the erratic
behavior of the trend, which also makes the cycle noisy. Conversely, unobserved
components models with a stochastic trend that is I(2) (e.g. the models of Hodrick
and Prescott; 1997; Oh et al.; 2008) will estimate a trend that is too smooth, and

attribute too much variation in GDP to the cycle.

We revisit the problem of decomposing log GDP into trend and cycle using the
fractional unobserved components model as introduced in chapter 2 of this thesis.
The model allows for intermediate solutions between an I(1) and an I(2) specification
of the trend component. In addition, it allows the integration order to be estimated
jointly with the other model parameters, thus providing inference on the appropriate
specification of the trend in unobserved components models for log GDP. We consider
several specifications for the cyclical component, including ARMA models as well as
autoregressive models that replace the lag operator with the fractional lag operator

as suggested by Granger (1986).

For the preferred specification in terms of the Bayesian information criterion,
we reject the hypotheses that log GDP is I(1) and I(2), respectively, and estimate
an integration order of about 1.3. The business cycle estimate from the fractional
unobserved components model rises gradually in periods of economic upswing, falls
sharply during the NBER recession periods, and exhibits the same turning points
as the theory-based output gap measure of the US Congressional Budget Office. In
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addition to the latter, the fractional model reveals an overheating economy in the

run-up to the Great Recession, as also found by Barigozzi and Luciani (2021).

1.2.3 Macroeconomic forecasting with fractional factor models

The third paper combines high-dimensional factor models with fractional integration
methods. Factor models are popular in fields where rich data sets with strong cross
sectional dependencies are evident, as they efficiently bundle common dynamics into
a typically small number of common factors. In contrast to the cross section, strong
dependencies in the time domain have received comparably little attention: The bulk
of the literature on factor models assumes stationary factors and data, and typically
pre-processes the latter by taking first or second differences to ensure stationarity.
While there are some generalizations to non-stationary factors and data, these are
typically semiparametric models (see the discussion in subsection 1.1).

The core of the paper is to infer whether the combination of parametric factor
models and fractional integration methods improves the forecast performance for
macroeconomic data. I consider three different factor models that allow for possibly
non-stationary, fractionally integrated data and factors with possibly heterogeneous
integration orders. The first model generalizes the non-stationary dynamic factor
model of Barigozzi et al. (2021) with I(1) factors to fractionally integrated factors.
As a second model, I examine the fractional components model of Hartl and Juck-
newitz (2021), which distinguishes between long memory factors that are purely
fractionally integerated noise, and short memory factors that are modeled as autore-
gressive processes. The third model is a dynamic factor model that is set up for the
observable variables in fractional differences. For all models, I derive the state space
representation, so that factors, loadings, and integration orders can be jointly esti-
mated by a combination of the Kalman recursions and maximum likelihood. To keep
the dimension of the state vector manageable, I use approximations to the fractional
differencing operator as proposed by Hartl and Jucknewitz (2022) among others.

In a pseudo out-of-sample forecast experiment for the US macroeconomic data
set of McCracken and Ng (2016), I study the forecast performance of the differ-
ent fractional factor models. I consider a total of 112 macroeconomic variables in
monthly frequency and perform forecasts from one to twelve steps ahead. In order
to relate the forecast performance to the existing literature, I also include several
benchmark models as competitors, such as the approximate dynamic factor model
of Stock and Watson (2002), and the factor-augmented error-correction model of

Banerjee and Marcellino (2009). For several variables, I find that fractional factor
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models can significantly improve the forecasts in terms of the mean squared pre-
diction error (MPSE). In particular the fractional components model of Hartl and
Jucknewitz (2021) often yields a smaller MSPE than its competitors, with reductions
of more than 50% possible.



Chapter 2

The fractional unobserved
components model: a
generalization of trend-cycle
decompositions to data of

unknown persistence

2.1 Introduction

The decomposition of time series into trend and cycle plays a key role in applied
research. In modern trend-cycle models, the long-run dynamics, particularly the
integration order of the trend, must be specified prior to estimation, which opens
the door to model specification errors. This paper introduces an encompassing trend-
cycle model that treats the integration order as unknown. It offers a flexible, robust,
and data-driven approach to decomposing time series into trend and cycle, and is
termed the fractional unobserved components model.!

The literature on trend-cycle decompositions has been shaped by the seminal
works of Beveridge and Nelson (1981), Harvey (1985), Clark (1987), and Hodrick
and Prescott (1997). Since then, a variety of unobserved components (UC) models

have been proposed, and often the integration order of the trend was subject to

!Note that the literature has come up with a variety of names for unobserved components models,
such as structural time series models and trend-cycle models among others. To avoid confusion,
the term unobserved components model will be used for any model that specifies one or more time
series as a function of latent components and assigns an interpretation to these components by
imposing assumptions on their spectra.



10 The fractional unobserved components model

debate. The field is divided into two main groups, one assuming the trend to be
integrated of order one in the spirit of Beveridge and Nelson (1981) and Harvey
(1985), the other group preferring an integration order of two as suggested by Clark
(1987) and Hodrick and Prescott (1997). Since empirical results are sensitive to the
choice of the integration order, a data-driven model selection procedure would clearly
be beneficial. However, the literature to date lacks an encompassing model allowing
for trends of different memory. Thus, model specification is left open to the applied
researcher, who often faces a trade-off between the economic plausibility of the model
specification and the economic plausibility of the resulting decomposition. Little is
known about the consequences of model misspecification on the estimates of the
unobserved components. In addition, the asymptotic estimation theory is not fully

developed for UC models, particularly when shocks are not necessarily Gaussian.

This paper aims to bridge these gaps by introducing a novel UC model that
specifies the stochastic trend component x; as a fractionally integrated process of
order d € R, denoted as x; ~ I(d). It allows for random walk trend components
(as suggested among others by Beveridge and Nelson; 1981; Harvey; 1985; Morley
et al.; 2003) for d = 1, but also includes quadratic stochastic trend specifications
(e.g. those of Clark; 1987; Hodrick and Prescott; 1997; Oh et al.; 2008) for d = 2.
Since the integration order d can take any value on the positive real line and enters
the model as an unknown parameter to be estimated, the model seamlessly links
integer-integrated specifications. By including non-integer d, it allows for even more
general patterns of persistence between the integer cases. Besides the fractional
trend, the fractional UC model includes a cyclical component that encompasses the
ARMA specifications common in the UC literature, but also allows for a broader
class of processes such as e.g. the exponential model of Bloomfield (1973). Long-
and short-run innovations are assumed to be martingale difference sequences, which

is somewhat more general than the usual Gaussian white noise assumption.

While the UC literature has mostly considered integer-integrated specifications,
there are some generalizations to non-integer integration orders: For asymptotically
stationary processes (i.e. d < 1/2) Chan and Palma (1998, 2006), Palma (2007) and
Grassi and de Magistris (2014) consider approximations to long-memory processes
in state space form by truncating either the autoregressive or the moving average
representation of the fractional differencing polynomial. Their models have been
found valuable for realized volatility modeling (see Ray and Tsay; 2000; Harvey; 2007,
Chen and Hurvich; 2006; Varneskov and Perron; 2018) but exclude non-stationary

stochastic trends that are indispensable for general UC models. Recently, Hartl
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and Jucknewitz (2022) studied ARMA approximations to fractionally integrated
processes in state space form, also including the non-stationary domain. However,

their inference is limited to Monte Carlo studies.

To also assess the theoretical properties of parameter estimation, this paper de-
rives the full estimation theory for both the unobserved components and the model
parameters. In line with the UC literature, the unobserved components are estimated
by minimizing the objective function of the Kalman filter. While the literature typ-
ically relies on iterative estimates for trend and cycle via the Kalman recursions,
I derive an analytical solution to the optimization problem.? Since the iterative
and analytical solutions to the Kalman filter differ only in the way they are com-
puted, both approaches yield the minimum variance linear unbiased estimators for
the trend and cycle (Durbin and Koopman; 2012, lemma 2). However, using the an-
alytical solution is computationally less expensive for the fractional UC model. As
an additional advantage, it provides a closed-form solution to the objective function
of the conditional sum-of-squares (CSS) estimator, which is used to estimate the
model parameters. Under the relatively weak assumption that long- and short-run
shocks are stationary martingale difference sequences, the CSS estimator is shown
to be consistent. Under the somewhat stronger assumption that the prediction error
of the Kalman filter is also a martingale difference sequence, the CSS estimator is

shown to be asymptotically normally distributed.

The proofs are complicated by non-ergodicity of the prediction errors and non-
uniform convergence of the objective function. The latter is caused by a prediction
error that is stationary when the estimate for d is close to the true value, while it
becomes non-stationary when the estimate is too far off. While all proofs are carried
out for the computationally superior conditional sum-of-squares (CSS) estimator,
they are shown to extend seamlessly to the quasi-maximum likelihood (QML) esti-
mator that is typically used in the UC literature. Furthermore, estimation results
are shown to also hold for models with deterministic terms and correlated trend
and cycle innovations (as e.g. in Balke and Wohar; 2002; Morley et al.; 2003). The
finite sample properties of the CSS and QML estimators are evaluated in a Monte
Carlo study, which supports the results on consistency for both estimators. In ad-
dition, the parameter estimates for the integration order outperform the exact local
Whittle estimator of Shimotsu and Phillips (2005), which is biased by the cyclical

fluctuations.

2 Analytical solutions to the Kalman filter have been reported for trend plus noise models by
Burman and Shumway (2009) and Chang et al. (2009), where the trend is a random walk and the
cycle is white noise.
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An application to carbon emissions illustrates the benefits from the fractional
UC model: Log annual US carbon emissions are estimated to be integrated of order
around 1.75, which is clearly at odds with integer-integrated models. The resulting
trend-cycle decomposition finds evidence that the trend component exhibits an in-
verted U-shape, supporting the existence of an environmental Kuznets curve as well
as the often hypothesized decoupling of economic activity and carbon emissions in
terms of the trend. In contrast, as a glimpse on figure 2.3 reveals, cyclical emissions
appear to remain coupled to the business cycle, as they exhibit rich pro-cyclical

dynamics. Integer-integrated benchmarks fail to capture these stylized facts.

The rest of the paper is organized as follows: Section 2.2 introduces the fractional
UC model and discusses the underlying assumptions. Section 2.3 discusses trend
and cycle estimation, while section 2.4 details parameter estimation using the CSS
estimator. Generalizations of the fractional UC model are discussed in section 2.5.
Section 2.6 examines the finite sample properties of the proposed methods in a Monte
Carlo study, while section 2.7 applies the fractional UC model to carbon emissions.
Section 2.8 concludes. The proofs for consistency and asymptotic normality are

contained in the appendix.

2.2 Model

While the literature on unobserved components (UC) models is vast, it builds on
a simple model that decomposes an observable time series {y;}"; into unobserved

trend x; and cycle ¢
Yt = Tt + Gt (2.1)

¢t and x; are distinguished by their different spectral densities: The cycle (or short-
run component) ¢; is assumed to follow a mean zero stationary process to capture
the transitory features of y;. The trend (or long-run component) x; is characterized
by an autocovariance function that decays more slowly than with an exponential
rate. It models the persistent features of the observable series and is allowed to be
non-stationary.

I generalize state-of-the-art UC models by modeling x; as a fractionally integrated

process of unknown memory d € Ry

INETES (2.2)
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The fractional difference operator Ai depends only on the parameter d and controls
the memory of z;. Without subscript, it exhibits a polynomial expansion in the lag

operator L of order infinite

i =Ele (d) j=1,2,..,
Al=1-0)0=Y"m@r, wd={ 7 " 1(d) ‘7 (2.3)
7=0 1 ] = O’

where the weights 7;(d) are determined recursively. The motivation behind (2.2)
and (2.3) is that the higher d, the greater the effect of a past shock 7;,—; on x, and
the more differencing is required to eliminate the persistent impact of the past shock
via (2.2). For this reason z; ~ I(d) is said to have long memory whenever d > 0 (see
Hassler; 2019, for more details). The +-subscript in (2.2) denotes the truncation of
an operator at t < 0, Aixt = Al l(t>1) = Z;;%) mj(d)xi—j, where 1(t > 1) is the
indicator function that takes the value one for positive subscripts of x;_;, otherwise
zero. The truncated fractional difference operator reflects the type II definition of
fractionally integrated processes (Marinucci and Robinson; 1999) and is required to

treat the asymptotically stationary case alongside the non-stationary case.

Equation (2.2) encompasses several trend specifications in the literature: For d =
1, it nests the random walk trend model as considered by Harvey (1985), Balke and
Wohar (2002), and Morley et al. (2003) among others. For d = 2, one has the double-
drift model of Clark (1987) and Oh et al. (2008), but also the filter of Hodrick and
Prescott (1997, HP filter in what follows) as will become clear. For d € N, the model
of Burman and Shumway (2009) is obtained. Allowing for d € R, seamlessly links
these integer-integrated models and allows for far more general dynamics of the trend:
For 0 < d < 1/2, it covers stationary and strongly persistent processes as considered
by Ray and Tsay (2000), Chen and Hurvich (2006), and Varneskov and Perron
(2018) for realized volatility modeling. For 1/2 < d < 1, it allows for non-stationary
but mean-reverting processes, while d > 1 yields non-stationary non-mean-reverting
processes that are indispensable for trend-cycle decompositions of macroeconomic
variables among others. Since d enters the model as an unknown parameter to be
estimated, the model allows for a data-driven choice of d and provides statistical

inference on the appropriate specification of UC models.

Turning to the cyclical component, I treat ¢; as any short memory process that

is independent of x; and may depend non-linearly on a parameter vector ¢

e = alL, @) = 3 aj(p)ers. (2.4)
j=0
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The parametric form of a(L, ) is assumed to be known. For example, ¢; may be an
ARMA process as typically assumed in the UC literature, but the specification gen-
erally captures a broader class of processes, e.g. the exponential model of Bloomfield
(1973).

In what follows, the model (2.1), (2.2), and (2.4) is analyzed under the following

assumptions:

Assumption 2.1 (Errors). The errors €, ny are stationary and ergodic with finite
moments up to order four and absolutely summable autocovariance function. For the
joint a-algebra F; = a((ns,€s),s < t), it holds that E(e;|Fi—1) = 0, E(|F1) =
o, and BE(n|Fi—1) = 0, B(n?|Fi—1) = o7. Furthermore, conditional on F;_1, the
third and fourth moments of €, n: are finite and equal their unconditional moments.

Finally, €, and n; are independent.

Assumption 2.2 (Parameters). Collect all model parameters in ¢ = (d, 072], a2, ¢,
and let = D x X, x X x § denote the parameter space of 1 € ¥, where D = {d €
R|0 < dmin < d < dpae < 00}, Xy = {O’% € R0 < U?me < O'% < O'%’maz < oo},

Ye={c2eR0<o? ., <o?<o? < 00}, and ¢ C RY? is conver and compact.

€,min €,max

Then for the true parameters g = (dp, 02’0, UZO, wp) it holds that 1y € W.

Assumption 2.1 allows for conditionally homoscedastic martingale difference se-
quences (MDS) 7; and €;. This is somewhat more general than the UC literature,
which typically assumes Gaussian white noise disturbances (e.g. in Morley et al.;
2003). The generalization is of great practical importance given the applications of
UC models in macroeconomics and finance.

Assumption 2.2 allows for both, stationary and non-stationary fractionally in-
tegrated trend components, and for an arbitrarily large interval d € D. Positive
integration orders guarantee that x; is a long-run component, and that it can be

distinguished from c¢; based on its spectrum.

Assumption 2.3 (Stability of a(L, ¢)). For all ¢ € @ and all z in the complex unit
disc {z € C: |z| <1} it holds that

(i) ao(w) =1, and 3°72|a;j(p)| is bounded and bounded away from zero,

(ii) each element of a(e™, @) is differentiable in X with derivative in Lip(C) for any
¢>1/2,

(ii) a(z,¢) = 372 aj(p)z? is continuously differentiable in ¢, and the partial
derivatives a(z, o) = Z;; &gig’)zj = Z;; aj(p)2? satisfy a;(@) = O,
and 8%07;@) =0.
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Under assumption 2.3, a(L,)™' = b(L, ) = > 720 bj(p)L7 exists, is well de-
fined, and the sum » 22 [b;j(¢)| is bounded and bounded away from zero. By the
Lipschitz condition it holds that

aj(p) = 0@G~17°), bi(p) =0@G17°), uniformly in ¢ € &.

The rate for a;(y) follows directly from assumption 2.3(ii), while that for b;(y)
follows from Zygmund (2002, pp. 46 and 71). The convergence rate for the par-
tial derivative a;(¢p) is a direct consequence of compactness of ¢ and continuity of
Jaj(p)/0¢’. Assumption 2.3 imposes some smoothness on the linear coefficients in
a(L, ), and thus also on b(L, ). It is satisfied by any stationary and invertible
ARMA process. For ARFIMA models, the asymptotic estimation theory is well es-
tablished under assumptions similar to 2.1, 2.2, and 2.3, see Hualde and Robinson
(2011) and Nielsen (2015).

2.3 Filtering and smoothing

The system introduced in (2.1), (2.2), and (2.4) forms a state space model, where
(2.1) is the measurement equation and (2.2), (2.4) are the state equations for trend
and cycle.? This opens the way to the Kalman filter, a powerful set of algorithms
for filtering, predicting, and smoothing the latent components x; and c¢;, but also
for parameter estimation. In this section, I derive an analytical solution to the
optimization problem of the Kalman filter and smoother. As will become clear at
the end of this section, the analytical solution has two decisive advantages over the
usual recursive algorithm for filtering and smoothing: it is computationally more
efficient, and it greatly simplifies the asymptotic analysis of the objective function

for parameter estimation. In addition, it encompasses the HP filter.

Note that y; is only observable for ¢ > 1. Thus, trend, cycle, and parame-
ters can only be estimated based on a truncated representation of the cyclical lag
polynomial. To arrive at a feasible representation, define the truncated polynomial
by (L, ) via by (L,p)ct = b(L, ) 1(t > 1) = Z;;E b;j(¢)ci—j. Furthermore, collect

xp1 = (¢, ...,21) and ¢r.1 = (¢4, ..., ¢1)’, and define the ¢ x t differencing matrix Sg;

3Section 2.5 outlines the state space representation and illustrates the dimensions of the system
matrices. For further details on state space models and the Kalman filter, see Harvey (1989, ch. 3).
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and the ¢ x t coefficient matrix B ;

mo(d) m(d) - me1(d)]
Suo= 0 Wo.(d) mf-z(d) |
L0 0 mld) (2.5)
bo(e) bi(e) - bi—1(p)
R L
00 e bo(e)

such that Sgire1 = (Alay,...,Adzy) and Bycrn = (be(L, @), ... b (L, o)1)
Saq,¢ is defined analogously to the integer-integrated differencing matrix of Burman
and Shumway (2009), and it holds that Sq+S_q+ = I, and So¢ = I. In the following,

I show the closed-form solutions for the updating step of the Kalman filter to be

given by
. -1 .
Zea(ye1, ) = (B Bet +vSy:84t) Bl Beye1 = L1 (Y1, 0), (2.6)
R -1 R
e (ye1, ) = v (Bl Bpt +vSy541)  SqiSaaye1 = ea(yer, 0), (2.7)

where the fraction v = o2 /03] controls for the variance ratio of the innovations,
T (Ye1, ) = (@Y, ¥)s s 1 (Y1, 9)s Cea(yer,¥) = (E(yer, ¥)s s G1(Ye1,¥))
collect the filtered trend and cycle, and 6 = (d,v,¢’)’. (2.6) and (2.7) are identical
to the recursive solutions from the updating equation of the Kalman filter. The one-
step ahead predictions for 2441 and ¢;41 are obtained by plugging (2.6) and (2.7)
into the state equations (2.2) and (2.4)

Fely 0) = = (m(@) o m(d)) (v, ), (28)

eer(y,0) = = (b1(0) - bulg)) éra (. 0). (2.9)

Together, the updating equations (2.6), (2.7) and the prediction equations (2.8),
(2.9) form the Kalman filter, see Harvey (1989, ch. 3.2) for details. Finally, smoothed
estimates for x; and ¢; can be obtained from (2.6), (2.7) by setting ¢ = n. They are
identical to those obtained by the Kalman smoother.

To prove (2.6) and (2.7), I first consider the objective function of the Kalman
filter, which follows from maximizing the quasi-log likelihood of (2.1), (2.2), and

(2.4) with respect to zp1 = (24, ..., 1), ct1 = (¢t ..., 1) given ye1 = (Y, ..., y1) and
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¢ = (d,or,02,¢'). This is the same as minimizing

Tt:1

¢

R 1 1 1 2

xtﬂ(yt:l,w):argmmtz{ﬁ[b+<L,so><yj—xj>12+02(Aixj) } (2.10)
j=1 ~€ g

¢
1 (yr:1, ¥) = argmin % ]Zl {01727 AL (y; — )] C 012 (b+ (L, w)Cj)Q} . (211
Here, the first residual in (2.10) stems from plugging (2.4) into the measurement
equation and solving for €;, while the second is from (2.2). Analogously, the first
term in (2.11) follows from inserting (2.2) into (2.1) and solving for 7;, while the
second follows from solving (2.4) for ;. Constant terms are omitted. As z; and ¢
are estimated based on all observations until period ¢, it holds that &1 (ye1,v) =
Y1 — 1 (ye1, ). I ny and €, are assumed to be Gaussian, the optimization problems
in (2.10) and (2.11) yield the conditional expectations Z¢.1(y1,v¢) = Ey(ve1|ye1)
and ¢u1(ye1,v) = Ey(ce|ye1), see Durbin and Koopman (2012, lemma 1), where
the expected value operator Ey(z;) of an arbitrary random variable z; denotes that
expectation is taken with respect to the distribution of z; given . If 7y, €; are not
normally distributed, the optimization problems (2.10) and (2.11) remain valid. The
filtered Z4.1 (ye:1,%), ¢1(ye1,1) are the projections of x4 and ¢ on the span of y;.1,
and are the minimum variance linear unbiased estimators for x4 and ¢;1 given the
observable information yi, ...,y (Durbin and Koopman; 2012, lemma 2). For ¢t = n,
d=2,b(L,p)=1,v= 062/0%, (2.10) becomes the HP filter with v being the tuning

parameter. Thus, the HP filter constitutes a special case of the fractional UC model.

From (2.5), a matrix representation of (2.10) and (2.11) follows

. .11 1
$t:1(yt:1a¢) = argmin — { ) HBgo,t(ytzl - $t:l)||2 + ) fE;;lséitSd,txt:l} , (212)
1t OF o ’

ee1(ye1,v) = arg IEIIH% {01727 |Sa.t(ye1 — Ct:1)||2 + 016202:13507,53@@:1} ; (2.13)
where ||-|| denotes the Euclidean norm. Calculating the derivative of (2.12) and (2.13)
and solving for z; and ¢ yields (2.6) and (2.7). Note that (2.6) and (2.7) do not
depend on the exact magnitudes of a% and o2, but only on their ratio v, 0 < v < oo.
Thus, for any positive constant K > 0, the parameter vector ¢* = (d, KO’%, Ko?, ¢
yields the same estimates Z4.1(ys.1,%"), ée1(ye1,¥*) as (2.6) and (2.7). By defin-
ing the parameter vector 0 = (d,v,¢'), one has Zy1(ye1,v) = Z41(ye1,0) and
ét1(Ye1, %) = é1(ye1,60). This will be helpful for parameter estimation in section

2.4, since the conditional sum-of-squares estimator is not identified for ¢). Also, using
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0 reduces the dimension of the parameter vector, which speeds up the optimization.
However, 1 can also be estimated directly by maximum likelihood as will be shown

in subsection 2.5.3.

From the filtered latent components in (2.6) and (2.7), the one-step ahead pre-
dictions for x4y1 and ¢p4q follow immediately by plugging (2.6) and (2.7) into the
state equations (2.2) and (2.4). This yields (2.8) and (2.9). While (2.6), (2.7), (2.8),
and (2.9) are required for parameter estimation, as discussed in the next section,
estimates for x; and ¢; typically reported are the projections of x; and ¢; on the span
of Y1, ..., Yn, i.e. on the full sample information. They follow immediately from (2.6)

and (2.7) by setting ¢t = n, and are identical to the Kalman smoother.

Note that the filtered, predicted and smoothed x; and ¢; can be computed either
via the analytical solution above or recursively by executing the Kalman recursions
(see Harvey; 1989, ch. 3, for the latter). Both approaches yield identical results
and only differ in the way they are computed. However, the analytical solution has
two decisive advantages over the traditional recursions: (i) It is computationally
superior for fractional trends. As the state vector of the fractional trend in (2.2) is
of dimension n — 1, the dimension of the state vector for both trend and cycle is of
dimension m > n — 1. Thus, each recursion of the Kalman filter involves multiple
multiplications of (m x m)-dimensional covariance and system matrices, and each
multiplication requires 2m?® — m? flops (Hunger; 2007). The analytical solution also
requires the expensive computation of an (n x n) inverse, however the underlying
matrix is symmetric, positive definite, and thus the Cholesky decomposition can be
used to reduce the complexity to n® + n? 4 n flops per iteration (Hunger; 2007).
Since m > n — 1, the analytical solution speeds up the computation considerably.
This allows to run the Monte Carlo studies in section 2.6, which would otherwise be
computationally infeasible. (ii) The solution allows to derive an objective function
for parameter estimation that does not depend on the Kalman recursions and is thus
easier to analyze. As usual, the objective function for parameter estimation is set
up based on the one-step ahead prediction error, that is obtained by plugging (2.8)
and (2.9) into the measurement equation (2.1). Since (2.8) and (2.9) depend only on
the observable y1, ..., y: as well as on the model parameters, the objective function
does not depend on a recursive solution for the filtered trend and cycle. This greatly
simplifies the asymptotic theory for parameter estimation in section 2.4, since the

convergence rates of all coefficients are either known, or can be derived immediately.
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2.4 Parameter estimation

To estimate 6y = (do, 1o, p)’, denote @ = D x X, x & the respective parameter
space, where X, = {v € R|0 < Upmin < vV < Ve < o0}, and D, @ as defined in
assumption 2.2. By assumption 2.2, © is convex and compact. As usual in the state
space literature, I set up the objective function for parameter estimation based on
the one-step ahead forecast error for y;11, denoted as vi+1(0) = yi+1 — Ter1 (Y1, 6) —

¢t4+1(Ye1,0). By plugging in (2.8) and (2.9), v¢41(f) can be represented as

ves1(0) = ALyer1 v (bi(p) = mi(d) -+ bi(p) — me(d))

. (2.14)
X (B%tB%t + VS(/i,tSd,t)i S:i,tSd,tyt:l-

vi4+1(0) depends on the fractionally differenced observable y;11, as well as on past
Satye1 = (Aiyt, Aiyl)’ weighted by the 1 x ¢ coefficient vector on the right-hand
side of (2.14) that fully depends on 6. Let &.41(d) = A+yt+1 Aiﬁdontﬂ + AiCt+1
and &u1(d) = (&(d) ---&1(d))" = Saryr1 denote the fractionally differenced w41 and
yi:1 respectively. Then, (2.14) can be written as

t ¢
ve1(0) = &41(d) + ZTJ(H JISTR j ZTJ 0,t) 41— J( )s (2.15)
j=1 7=0
where m9(6,t) = 1, and (71(0,t)---7(0,t)) = v(bi(p) — m(d)---bi(p) — m(d))
(Bl 1Byt + l/Sél’tdet)_lS(’i’t collects the t coefficients belonging to &(d), ..., &1(d) in
(2.15). The conditional sum-of-squares (CSS) estimator for 6y follows from minimiz-

ing the sum of squared forecast errors

zn:v (2.16)

t=1

:\H

0 = i 9
arg min Q(y,0),

Since the objective function is proportional to the exponent in the quasi-likelihood
function, (2.16) is similar to the quasi-maximum likelihood estimator that is typically
used in the state space literature, see e.g. Durbin and Koopman (2012, ch. 7). While
the latter allows for a time-varying variance of the prediction error, (2.16) implicitly
assumes a constant variance of the prediction error. However, as subsection 2.5.3
discusses in greater detail, the filtered prediction error variance of the fractional
UC model converges to its steady state solution at an exponential rate. Thus, (2.16)
and quasi-maximum likelihood estimation are asymptotically equivalent. Differences

arise only due to a different weighting of prediction errors at the very beginning of
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the sample. However, (2.16) is computationally much simpler, because it avoids
the Kalman recursions for the prediction error variance. Furthermore, parameter
estimation via the steady-state Kalman filter is identical to (2.16) after some burn-
in period, see Harvey (1989, ch. 4.2.2).

While the asymptotic theory for CSS estimation is well established for autore-
gressive fractionally integrated moving average (ARFIMA) models, see Hualde and
Robinson (2011) and Nielsen (2015), only little is known about the asymptotic the-
ory for unobserved components models of such generality. For the sub-class of I(1)
UC models with Gaussian white noise shocks 7; and €;, the asymptotic theory can
be inferred from the ARIMA literature (Harvey and Peters; 1990; Morley et al.;
2003). Unfortunately, no such results are available for UC models with fractional
trends, so the asymptotic theory for parameter estimation of fractional UC models
must be derived from scratch. While the proofs in this section are given for the
(simpler) CSS estimator, it is shown in subsection 2.5.3 that they also apply to the
traditional quasi-maximum likelihood estimator. Due to the encompassing nature
of the fractional UC model, the results below also hold for CSS and quasi-maximum
likelihood estimation of all sub-classes of UC models such as e.g. integer-integrated
models with MDS shocks.

Theorem 2.4.1. For the model in (2.1), (2.2), and (2.4), and under assumptions

2.1to 2.8, the estimator 0 as defined via (2.16) is consistent, i.e. o -2 0y asn — oo.

The proof is contained in Appendix 2.A.2. While consistency ultimately follows
from a uniform weak law of large numbers (UWLLN), showing that the UWLLN
holds is complicated by the non-uniform convergence of the objective function within
O, as well as by the non-ergodicity of the prediction errors in (2.14): First, as can
be seen from (2.14), the prediction errors are I(dy — d), and thus are asymptotically
stationary for dy — d < 1/2, and otherwise non-stationary. In the former case,
a UWLLN can be shown to hold for the objective function, while in the latter
case a functional central limit theorem holds under some additional assumptions.
Consequently, uniform convergence of the objective function fails around the point
d = dy — 1/2. Following the idea of Nielsen (2015), I partition the parameter space
D into three compact subsets, one where v;() is asymptotically non-stationary, one
for stationary v;(), and an overlapping subset. Next, whenever € is not contained
in the stationary region of the parameter space, I show that the objective function
approaches infinity with probability converging to 1 as n — oco. Thus, the relevant
region of the parameter space reduces asymptotically to the region where dy—d < 1/2

holds, and where uniform convergence of the objective function is not hindered.
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Second, even within the asymptotically stationary region of the parameter space,
the forecast errors are non-ergodic, as can be seen from (2.14) and (2.15): The
truncated fractional differencing polynomial Ai includes more lags as t increases,
and thus &(d) = Ai_dom + Adc; is non-ergodic. In addition, 7;(6,t) in (2.15)
depends on ¢t. Consequently, even for dy — d < 1/2, a law of large numbers for
stationary and ergodic series does not apply directly to v;(f). I tackle this prob-
lem by showing that the difference between the prediction error in (2.14), and the
untruncated and ergodic 0;(0) = Z?io Tj(é?)ft,j (d), is asymptotically negligible in
probability, where g}(d) = A4y, + Ad¢; is the untruncated residual, while the co-
efficients 7;(6) stem from the oo-vector (71(0),72(0) ---) = v(bi(¢) — m1(d), ba(p) —
ma(d), -+ ) (B 0o By.oo + VS oo Sd,00) 8l o and 1o(f) = 1. Since 7;(6) is stationary
and ergodic within the stationary region of the parameter space, it follows that a
weak law of large numbers applies to the objective function. The final part of the
proof is to strengthen pointwise convergence in probability to weak convergence,
which yields the desired result of theorem 2.4.1.

With a consistent parameter estimator at hand, I next derive the asymptotic
distribution of the CSS estimator. For this purpose, assumption 2.3 needs to be

strengthened.

Assumption 2.4. For all z in the complex unit disc {z € C : |z| < 1}, it holds

that a(z, ) is three times continuously differentiable in ¢ on the closed neighborhood

Ns(po) = {p € @ : | — @o| < 6} for some & > 0, and the derivatives satisfy
aj(9)  _ -1 &a;(p) I -

W O(j~179), and W O(j~179), for all entries k) P1)> P(m)
of v.

Assumption 2.4 is similar to assumption E of Nielsen (2015), and strengthens
the smoothness conditions of the linear coefficients in a(L, ). It ensures absolute
summability of the partial derivatives, which is used to prove uniform convergence
of the Hessian matrix and thus to evaluate the Hessian matrix at 6y in the Tay-
lor expansion of the score. The convergence rates of the (second and third) partial
derivatives are a direct consequence of compactness of Nj(¢g) together with conti-
nuity of the partial derivatives. Assumption 2.4 still includes the class of stationary
ARMA processes, and even allows for a slower rate of decay of the autocovariance

function.

Assumption 2.5. The true prediction error of the untruncated process U4(0p) is a
MDS when adapted to the filtration ]-"f = a(és, s <t).

So far, the Kalman filter, when applied to obtain the one-step ahead forecast
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for & = ny + A%¢,, yielded the projection of & onto the span of &, s < t. Thus,
the Kalman filter was the best linear predictor given .7-"571 (in the least squares
sense) Assumption 2.5 forces the prediction error to be a MDS when adapted to
.Ft which makes the Kalman filter the best predictor for §t given ]-"f 1~ Since 04(0p)
plays the role of the (asymptotic) residual for fractional UC models, assumption
2.5 fits well to the usual assumption of MDS residuals for CSS estimation, see e.g.
Hualde and Robinson (2011), Nielsen (2015), and Hualde and Nielsen (2020). In
the UC literature, Dunsmuir (1979, ass. C2.3) imposes the same assumption for his
stationary signal plus noise model, but also discusses the possibility of relaxing the

assumption (see Dunsmuir; 1979, pp. 502f).

Theorem 2.4.2. For the model in (2.1), (2.2), and (2.4), under assumptions 2.1
to 2.5, the estimator 6 as defined via (2.16) is asymptotically normally distributed,
i.e. \/n (é - 90) LN N(O,aaoﬁal) as n — oo, with 030 = limy_,o0 Var(vi(6p)) =

Var(9y(0o)), and £29 has the (i, j)-th entry Qo ., =E (avt(e ‘9 6o 881)5(39) ’9 90>, i, =
1,....,q+ 2.

The proof of theorem 2.4.2 is contained in Appendix 2.A.3. As usual, the
asymptotic distribution of the CSS estimator is inferred from a Taylor expansion
of the score function around 6y. Analogous to Robinson (2006) and Hualde and
Robinson (2011), it is first shown that the normalized score at 6 is asymptotically
equivalent to the score function of the untruncated, stationary and ergodic residual
Vi(0Q(y,0)/00)|,_, = (2/v/n) Xi=; 5(00)(95:(0)/96)|,_, - Next, a UWLLN is
shown to hold for the Hessian matrix, so that it can be evaluated at 6y in the Taylor
expansion, and the difference between the truncated and untruncated Hessian matrix
is shown to be asymptotically negligible in probability. Therefore, both the score
and the Hessian matrix in the Taylor expansion can be replaced by their untruncated
counterparts. While a weak law of large numbers applies to the untruncated Hessian
matrix, a central limit theorem for martingale difference sequences applies to the
score and yields the asymptotic distribution. Finally, while theorem 2.4.2 does not
give an analytical expression for the covariance matrix of the CSS estimator, it shows

that £2, 1 can by estimated via the numerical Hessian matrix.

2.5 Generalizations

One key advantage of fractional unobserved components models is their state space
representation: It makes the Kalman filter and smoother applicable, enables quasi-

maximum likelihood estimation of the model parameters, allows to diffusely initialize



2.5 Generalizations 23

the filter, and to seamlessly add additional structural components to the model.
In addition, several useful methods and generalizations become available that are
beyond the scope of this paper, such as frequency-domain optimization, additional
observable explanatory variables, time-varying and nonlinear models, and mixed-
frequency models among others; see Harvey (1989) for an overview. In this section, I
outline some generalizations of the fractional UC model that are of immediate applied
relevance: Subsection 2.5.1 introduces deterministic components to the model, while
subsection 2.5.2 allows for correlated trend and cycle innovations. Subsection 2.5.3
generalizes parameter estimation to the quasi-maximum likelihood estimator. For all
three modifications, the asymptotic results of section 2.4 are shown to remain valid.
However, before turning to the three generalizations, I first introduce the state space

representation of the fractional UC model.

The basic state space representation has the form

Y = Zoy + ug, (2.17)
ar =Tay_1 + R(, (218)
where the states may be partitioned into oy = (agw)/,agc)/,agr)/)’, with (n — 1)-
vectors for trend agx) = (T4, T4—1, .., Tt—n+2)’, and cycle agc) = (Cty Ct—1y oy Ct—nt+2) -

The observation matrix is Z = (Z®), 2, Z(") where Z®) = (1,0, ...,0), Z() =
(1,0,...,0) are (n — 1)-dimensional row vectors picking the first entry of aiw) and
agc). For the transition equation (2.18), one has T = diag(T®), T, T(") R =
diag(R(’C), R, R(r))’

—m(d) —ma(d) -+ —mp_1(d)
o | ! o
0 1 0 |
—bi(p) —ba(p) —bn—1()
o | 1 0 |
i 0 1 0 |

and R® = (1,0,...,0)', R} = (1,0,...,0)" are (n — 1)-vectors picking the respective
entries of (; = (nt,et,Ct(r)/)’ . Finally, the components aﬁ’”), Ct(r) allow for general
specifications with agr) = T(T)ozl@l + R(T)Ct(r) that load on y; via Z(T)agr). They

may capture additional stochastic trends (possibly of different memory) and sea-
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sonal components among others. Furthermore, u; may account for additional terms
in the measurement equation, such as measurement errors, deterministic terms, or
observable explanatory variables. While both, ay) and u; are implicitly set to zero
in section 2.4, their specification in practice is left open to the applied researcher.

Finally, Var(¢;) = Q.

2.5.1 Deterministic components

In practice, deterministic components often need to be considered. As will become
clear, such terms can be straightforwardly added to the state space framework, and
their estimation can be carried out efficiently by a combination of the Kalman filter,
the GLS estimator, and the CSS estimator. For the GLS estimator to be a consistent
estimator for the coefficients of the deterministic components, the deterministic terms
must diverge at a rate similar to the rate of divergence of the stochastic trend.

Deterministic components can be taken into account either by detrending the
data prior to estimating the fractional UC model, or by adding the components
to the state space model. However, prior detrending biases the estimates for both
deterministic and stochastic trends whenever the data are non-stationary, and thus
should be avoided (Harvey; 1989, ch. 6.1.3). An alternative is to include the deter-
ministic terms into the state vector and to explicitly model their dynamics via the
state equation (2.18). However, state space models with deterministic components
in the state vector are not stabilisable, so the Kalman filter does not converge to its
steady state solution and the CSS estimator is not applicable, see Harvey (1989, ch.
4.2.5). Following the suggestion there, I place the deterministic terms directly in the
measurement equation (2.17). This allows to estimate the deterministic components
by the GLS estimator and does not interfere with the steady state convergence of the
Kalman filter. The remaining 6y can be estimated via CSS as described in section
2.4, with the asymptotic theory being unaffected.

To model the deterministic terms, I set u; = p/w; in the measurement equation
(2.17), where wy is a non-stochastic k-vector holding k deterministic components, and
w is a k-vector of unknown parameters to be estimated. The modified measurement
equation is then y; = p'wy + Zay. Letting W = (wy, ..., wy,)" denote the n x k matrix
collecting all wy, and V' = Var(zy., + c1.,) denote the variance-covariance matrix
of T1., + c1.n, the GLS estimator for u is given by i = (W'V=IW)" W'V =ly,,
see Harvey (1989, ch. 3.4.2). As also shown there, it is not necessary to compute
V=1, To see this, assume for the moment that vy, — w'wy was observable. The

Kalman filter, when applied to y; — p/wy, yields the filtered values for trend and
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cycle in (2.6) to (2.9), together with the prediction errors as denoted by v} (6) in the
following for the modified model. These prediction errors correspond to the linear
filtering F(0)(y1.n, — Wp), where F(6) from the Cholesky decomposition V~!(¢)) =
F(9)'D~1(x))F(0) is a p.d. lower triangular matrix with ones on the leading diagonal,
D() is a diagonal p.d. matrix, and V(1) is the covariance matrix of x1., + ¢1.p
conditional on ¢. Since the Kalman filter is linear, it can be applied separately to the
observable y; and wy, yielding F(0)y1., = y*(0) and F(0)W = W*(6) as prediction
errors. The GLS estimator i then follows from regressing y*(6) = (y1(0), ...,y (6))
on W*(0) = (wi(h),...,w:(0)), see Harvey (1989, ch. 3.4.2). The concentrated

CSS estimator 6 = (J, v, @) follows from minimizing the modified sum of squared

prediction errors
1 n
0 = in— Y v;(f)> 2.19
argmemn;vt(), (2.19)

and v} (0) = y; (0) — @'wy(0) is the GLS residual. Asymptotic standard errors can be
obtained from the Fisher information matrix (Harvey; 1989, ch. 4.5.3 and ch. 7.3).

To derive the asymptotic properties of both the GLS estimator fi and the con-
centrated CSS estimator (2.19), let the j-th term in w; be w;; = O(t%), t > 1,
Bj € R, such that w;; is a polynomial trend. I will only consider —1 < 3; < dg for
all j, as the lower bound is required for Acftﬁj = O(t%~%) to hold, see Robinson
(2005), while the upper bound ensures that the fractional stochastic trend is not
drowned by the deterministic terms. This guarantees that the results on consis-
tency and asymptotic normality of the CSS estimator in theorems 2.4.1 and 2.4.2
remain valid. However, at least for CSS estimation of ARFIMA models, Hualde and
Nielsen (2020) recently derived the asymptotic theory where they also allowed for
deterministic trends of higher power, 5; > dy. As the focus of this paper is not
on the deterministic components, showing their results to carry over to fractional

unobserved components models is left open for future research.

Note that within —1 < §; < dp, the arguments for consistency of the CSS
estimator of #y remain unchanged: y*(0) = F(0)y1.y, is I(dp — d) and precisely equals
the initial prediction error (2.14) in section 2.3 if y; contains no deterministic terms,
since F'(0)y1., is the residual from applying the Kalman filter as defined in section
2.3 to y1.n, given the parameters 6. If deterministic terms are present in g, then
y*(0) = F(0)y1.n, equals the prediction error (2.14) shifted either by a constant, or
by an o(1) term (depending on how close f; is to do, as will become clear). Therefore,

also the prediction error vf(0) = [y*(0) — W*(G)(W*/(H)W*(G))AW*/(H)y*(e)](t) is
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I(dp—d). Thus, both y;(#) and v} (f) are asymptotically stationary for dy—d < 1/2,
otherwise non-stationary. By the same proof as for (2.28), the objective function
(2.19) can be shown to converge in probability whenever dy — d > —1/2, and to
diverge in the opposite case. Therefore, the probability of the CSS estimator to
converge within the non-stationary region of the parameter space is asymptotically
zero. Thus, it is sufficient to consider the region of the parameter space where vy (6)
is asymptotically stationary. Within this region, the same proof as for theorem
2.4.1 applies, showing that a UWLLN holds for the objective function. Thus, 8 is
consistent. This result is somewhat obvious, since the assumption on 3; ensures that

the filtered y;(0) contains at most deterministic terms of order O(1).

For the GLS estimator, define u*(0) = (uf,...,u}) = F(0)(x1., + c1:n) as the
residual from applying the Kalman filter to the true z1., and c¢;.,. u;(0) would equal
the prediction error v} () if there were no deterministic terms. The GLS estimates

[ are thus

= (W (@)W*(0)"" W (0)F(
“OW(0) W (O)F (0 [Wuo+x1n+01 n] (2.20)
Hw

0)yn
(W )
po + (W (O)W*(6)) "' W™ (9)u” (6),

where po denotes the true coefficients to be estimated. [ is consistent if and only
if the latter term in (2.20) is op(1), i.e. the bias converges to zero as n — oo. For
the purpose of illustration, I will focus only on a single deterministic term, such
that W*(0) = (wi(f),...,w*())’. However, the results carry over directly to sev-
eral deterministic components. First, note that by the fractional differencing via
F(0), wi(f) = O(tﬁf‘i), while () ~ I(dy — d). By consistency of the concen-
trated CSS estimator, u(f) is asymptotically 7(0), while w#(§) = O(t°~%), and
thus >, wi’(6) = S O(t2B=d0))  see Hualde and Nielsen (2020, lemma S.10).
Hence, for a single deterministic component, the bias term in (2.20) can be written

as

n 20 -1 n *(0\o % (D)
1 p *(O\\=1117% O\, % (D) Zt:l Wy (9) Zt:l Wy (Q)U‘t(e)

W O @)W G 0) = ( L LT 2L VLOWO (o)
where n7172(57d)2?:1 w;®(6) is bounded from above and below as n — oco. In
contrast, by Hualde and Nielsen (2020, eqn. (S.88)), n~1=2(6- d ISP wiui(f) =
op(1) if and only if dy —1/2 < . Thus, the GLS estimator for the deterministic

terms is consistent only if the deterministic and stochastic trends diverge at similar
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rates. As also can be seen from (2.21), the power of the deterministic term affects
the rate of convergence of the GLS estimator: Since n_1/2_(5_d~)2?:1 w (0)uf(6)
converges in distribution when n — oo, see Hualde and Nielsen (2020, proof of cor.
1), it follows that the GLS estimator converges at the rate nl/2+(B=do) a5 — o0, and
thus the rate is slower than the standard y/n-convergence whenever the deterministic

terms are dominated by the stochastic trend.

In summary, any trend of order dy—1/2 < 8; < dy can be estimated consistently,
and the rate of convergence of the GLS estimator will be faster the closer 3; is
to dg. This is in line with the well-established finding in the literature, that an
intercept (i.e. B; = 0) cannot be estimated consistently for time series with unit roots
(do = 1), whereas a linear trend (; = 1) can be estimated consistently. In addition,
the convergence rate matches the findings of Robinson (2005) for semiparametric
long memory models with deterministic components, of Hualde and Nielsen (2020)
for parametric ARFIMA models with deterministic components, and the general
literature on the estimation of the sample mean for fractionally integrated processes,
see e.g. Hassler (2019, ch. 7).

2.5.2 Correlated trend and cycle innovations

As shown by Morley et al. (2003), at least for integer-integrated structural time series
models of log US real GDP, correlation between permanent and transitory shocks is
found to be highly significant. Therefore, this subsection generalizes the fractional

UC model to account for correlated innovations

2
Var [ ) = | Tn e
2
€ Ope O

The new optimization problem of the Kalman filter is then

o )= (2]

t
1 1
— : 2,2 . 2 2
= argmin ——— 5 E [aenj — 20penj€; + anej} ,
1 T 0502 — 07, 4
n-e ne ]:1

=2

Tt:1

t
N ~ 1
xt:l(yt:la w) = arg min z z;
j:

where ¢ = (d, 0,27,0'776, 02,¢") denotes the new parameter vector that now also in-

cludes the covariance oye. By dropping the determinant and plugging in n; = Aimj
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as well as €; = by (L, ¢)(y; — x;), the optimization problem can be written as

:f:t:l(yt:l,w = arg min — Z [ A‘j_w] QUnEAil'jb+(L,<p)(yj — xj)

Tt:1

2
02 (b4 (L, 9) (s — 5))? ]
o1
= argmin - [U%’\Bgo,t(ym—xm)HQ = 20e(Ye1 — 1) Bl 1 Saa e

2./ !
+0-5 xt:lsd,tsd,tl‘til} b

where the matrix representation in the last step is derived analogously to (2.12).

The solution to the optimization problem is then

A : -1
Te1(Ye1, ) = [UgBé,tho,t + 0ye(Sa Bt + Bl ySap) + UEQS&,tSdat]

2 / 12 (222)
X (Uan,th,t + 0776Sd,tha,t) Yt:1,

and, either by solving the same optimization steps for ¢.1(y.1, 1[1), or by using y..1 =
it:l (yt:lv 12;) + ét:l (yt:h 7;)

. -1
Ce1 (Y1, ¢) [%pr Byt + Une(S&,tBnp,t + pr,tsd,t) + USS&,tSdJ]

, (2.23)
x (Ue Sd7t‘5’d,t + Ur]eBprtSd,t) Ye:1.

Obviously, (2.22) and (2.23) equal (2.6) and (2.7) for o,c = 0. As before, the number
of parameters in the optimization may be reduced by dividing the first and second
parenthesis in (2.22) and (2.23) by o7, defining v = 07 /07 as well as vy = oyc/07,

and replacing ¢ by 0 = (d,v,vs,¢')’. This is necessary for the CSS estimator to
be identified, however the quasi-maximum likelihood estimator derived in subsection
2.5.3 can be used to estimate 1;0 = (do,a72770,a,76,0,a€270,g06), the true parameters,

directly.

The objective function for the CSS estimator can be constructed analogously to
section 2.4: First, the one-step ahead predictions for z;41 and ¢4 are obtained as
n (2.8) and (2.9). Next, they are subtracted from .41, which gives the prediction

error

U1 (P) =A% g1 + (bi(p) — m1(d) -+ be() — me(d))
x [02B, Bt + 0ne(Sh Bet + B 1Sa) + 0255 54, ]

X (U?Sd,t + O-TIEB:a,t) Sa,tyt:1-

! (2.24)

Based on (2.24), a CSS estimator for the true parameters 6y = (do, 1o, V2,0, ¢}) can
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be set up. Note that y;+1 enters (2.24) in fractional differences, and also note that
all terms in (2.24) have the same convergence rates as for the case with uncorrelated
errors. Thus, the CSS estimator with correlated innovations can be shown to be
consistent and asymptotically normally distributed by carrying out the same proofs
as summarized in section 2.4. Finally, as noted by Morley et al. (2003), for the
integer-integrated case dy = 1, the model is not identified if ¢; follows an AR(p)
with p < 2, since the autocovariance function of Ay, dies out after lag one. For
non-integer integration orders, identification is not a problem, as the autocovariance

function of Aiyt dies out only at lag .

2.5.3 Maximum likelihood estimation

Since the vast majority of state space models are estimated by quasi-maximum
likelihood (QML), this subsection relates the CSS estimator to the QML estimator.
For this purpose, denote ¢ = (d, 0727, 02, )" the vector holding the model parameters
of the fractional UC model. Furthermore, let Vary (vi(¢)|y1, ..., yt—1) = o2, denote
the (hypothetical) variance of v;(1)) that is obtained when evaluating the conditional
distribution of v(¢)) at ¢». While the CSS estimator allowed to concentrate out the
%,062 and model only their variance ratio v = o2 /072], this is
not possible for the QML estimator, since the levels of ag, 02 determine a?,t. Thus,

variance parameters o

optimization is conducted over 1. Note further that ) can be extended to account
for correlated innovations, as described in subsection 2.5.2. A recursive solution for
o2 . is typically obtained from the Kalman filter, see Durbin and Koopman (2012, ch.
4.3). The quasi-log likelihood is then set up based on the conditional distribution of
v¢(¢) and is given by

1 & 1 = v2(¢
10gL(¢):7§ZIOgO_?}t7§Z 150-(2 )7
t=1 vt

t=1

see Harvey (1989, ch. 3.4). Now, if the Kalman filter converges to its steady state
solution at an exponential rate, the QML estimator is asymptotically independent of
the initialization of the Kalman filter, see Harvey (1989, ch. 3.4.2), and o2, converges
to a constant. Thus, neither the initialization of the Kalman filter, nor the time-
dependence of o2, matters asymptotically, and therefore the CSS estimator in (2.16)
has the same asymptotic distribution as the QML estimator, see Harvey (1989, p.
129).

For the Kalman filter to converge to its steady state solution at an exponential

rate, it is sufficient that the state space model is detectable and stabilizable (Har-
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vey; 1989, ch. 3.3.3). Detectability is implied by observability, while stabilizability is
implied by controllability (Harvey; 1989, ch. 3.3.1). The state space model as intro-
duced at the beginning of this section is controllable if Rank(G, TG, ..., T™ 1G) = m,
where m is the dimension of oy, and G = RS’ where S is the upper-triangular ma-
trix from the Cholesky decomposition of the covariance matrix @Q = S’S (Harvey;
1989, ch. 3.3.1). The rank condition can be verified by simple algebra, and depends
crucially on @ having full rank. Controllability means that given a realization of
ay at some period ¢, the innovations (415, 7 = 1,...,m, can be chosen such that an
arbitrarily prescribed value of,,, is obtained. Since in each period a new innovation
enters (2.18) for both x; and ¢;, their states in oy, can be controlled by control-
ling (;+;. Thus, the state space model is controllable. Similarly, the state space
model is observable if Rank(Z’,T'Z’,...,(T")™"~1Z’) = m (Harvey; 1989, ch. 3.3.1),
which again can be verified algebraically. The idea of observability is that a; can
be uniquely determined if y, ..., Y4+m—1, as well as (, ..., (+m—1 are known. This is
easy to see: Suppose y;y; is known for some j > 0. Then Aiytﬂ- = N5 + A‘j_ctﬂ
can be calculated. With ;4 ; at hand, we can directly calculate c;1;, and thus also
Z¢4;. It follows that the system is observable. Thus, as n — oo, the CSS estimator
and the QML estimator become identical, which was also pointed out by Harvey
(1989, p. 187) for integer-integrated models. Consequently, the results in section 2.4
also hold for the QML estimator.

Finally, while computational efficiency clearly favors the CSS estimator, which
avoids the Kalman recursions for the conditional variance of the state vector, the
QML estimator may be advantageous in finite samples where the initialization of the
Kalman filter plays a non-negligible role. In particular, a combination of the QML
estimator, for an initial burn-in period, and the CSS estimator, once the filtered
prediction error variance has sufficiently converged, seems promising: It combines the
possibility of diffuse initialization and thus assigns a lower weight to initial prediction
errors, but switches to the computationally efficient CSS estimator once the benefits
of the QML estimator have vanished. The performance of this estimator, typically
called the steady-state filter (Harvey; 1989, p. 185f), is also examined in a Monte

Carlo study in section 2.6 and compared to the CSS estimator.

2.6 Simulations

By the means of a Monte Carlo study, this section examines the finite sample es-
timation properties for the latent components and parameters of the fractional UC

model as introduced in section 2.2. By considering both the CSS estimator of section
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2.4 and the QML estimator of subsection 2.5.3, the study demonstrates the loss of
estimation accuracy of the computationally simpler CSS estimator by treating the
filtered prediction error variance to be constant. Thus, the study puts a price tag on
the computational efficiency gains and provides empirical researchers with guidance
on when to use the CSS estimator. Furthermore, the parameter estimates for the
integration order are compared to the exact local Whittle estimator of Shimotsu
and Phillips (2005) for various choices of tuning parameters as a prominent bench-
mark. To see whether allowing for fractional trends matters, I also present results
for the integer-integrated UC models in the spirit of Harvey (1985) and Morley et al.
(2003). Doing so, I examine whether fractional trends are well approximated by
integer-integrated models, or whether the estimates for x; and ¢; are significantly bi-
ased. Furthermore, I investigate whether misspecifying d as one biases the parameter

estimates.

Two different data-generating mechanisms are considered: Subsection 2.6.1 sim-
ulates data based on the fractionally integrated UC model with uncorrelated trend
and cycle innovations as introduced in section 2.2, while subsection 2.6.2 in addition
allows for correlated innovations as discussed in subsection 2.5.2. Both studies vary
over the sample size n € {100,200, 300}, the integration order dy € {0.75,1.00,1.25},
and the variance ratio of trend and cycle innovations vy = % € {1,5,10}. Thus,
they capture small to medium sized samples as typical in empirical applications
of UC models, allow for non-stationary mean-reverting trends as well as for non-
mean-reverting trends, and reflect situations where short- and long-run shocks are
of equal magnitude as well as situations where the long-run shocks are drowned by

the short-run dynamics. Each simulation consists of R = 1000 replications.

Unlike the CSS estimator, the QML estimator uses the Kalman iterations for

the variance of the prediction error, thereby allowing it to be time-dependent: In

2
n

Then, in a burn-in period, the QML estimator takes into account the exponential

the Kalman filter, trend and cycle are first initialized with variances o2 and 2.

convergence of the prediction error variance by allowing it to converge to its steady-

state value. Once the prediction error variance has converged sufficiently, i.e. it

Vary, (ve41 () y1,...,y¢ ) — Vary (ve ()| y1,...,ye—1)
Vary, (ve(¥)|y1,.-yt—1)

to the steady state Kalman filter, which assumes the prediction error variance to

satisfies < 0.01, the optimization switches
be fixed from that point on. This avoids further iterations of the Kalman filter
for the prediction error variance, speeds up the computation, and has a negligible
impact on the estimation accuracy. The exact local Whittle estimator of Shimotsu

and Phillips (2005) is introduced as a benchmark for m = |n? | Fourier frequencies,
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j € {.50,.55, .60, .65, .70}.

Estimates for 6y are compared by the root mean squared error (RMSE), as well as
by the median bias. To assess how well trend and cycle are estimated, the coefficients
of determination R2 and R2 from regressing x; and c¢; on their respective estimates

from the Kalman smoother are reported for both the CSS and QML estimates.

2.6.1 Fractional UC model with uncorrelated innovations

In this subsection, I study the finite-sample properties of the CSS estimator for the

simple fractional UC model
Yt = Tt + Ct, Al gy =, ct — bic—1 — bacr—o = €, (2.25)

where 1, ~ NID(0,1), ¢ ~ NID(0,v) are uncorrelated. The cyclical coefficients
are set to by g = 1.6, bag = —0.8 to reflect strong cyclical patterns. Starting val-
ues for the numerical optimization are set to Ostart = (dstarts Vstarts Dlararss 02erars) =
(1,1,0.5,—0.5)’, for both the CSS and the QML estimator. Note that for the QML
estimator this implies assuming that 072770 = 1is known, since only vy is estimated. Al-
though this assumption is usually violated, it allows for a fairer comparison between
the CSS and the QML estimator, which is the focus of this first simulation study. The
I(1) UC model is initialized analogously using (Vstart, 01,;0res 0250are)’ = (1,0.5,—0.5)".
Table 2.1 shows the RMSE and the median bias for the estimated integration
orders for the CSS estimator, the QML estimator, and the exact local Whittle esti-
mator. As can be seen, the RMSE decreases as n increases, which is in line with the
theoretical results on consistency. As can be expected from the parametric nature,
the fractional UC models yield a smaller RMSE as compared to the nonparametric
Whittle estimator. The differences are particularly striking for higher 1, where the
signal of the fractional trend is drowned by a strong cyclical variation, and for high
n. In a direct comparison, the QML estimator slightly outperforms the CSS estima-
tor for the estimation of the integration order, but the differences are rather small.
Both the CSS and the QML estimator appear to have little or no bias for dy, while
the cyclical dynamics induce a strong bias on the exact local Whittle estimates.
Tables 2.2 and 2.3 contain the RMSE and the median bias for vy and the autore-
gressive parameters, for both the CSS and the QML estimator. In addition to the
fractional UC model, the table also displays the estimation results for an I(1) UC
benchmark that sets d = 1. While there is little difference between the CSS and the
QML estimator in terms of the integration order estimate, for vy both the bias and

the RMSE are significantly smaller for the QML estimator. For b o and bg g, the CSS
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estimator and the QML estimator perform similarly. The direct comparison with
the I(1) benchmark reveals that there is little to no difference for the estimation of
b1,0 and ba o, while 1 is typically estimated with a higher precision via the fractional
UC model whenever dy # 1.

Table 2.4 compares the estimates for z; and ¢; for the fractional UC model and
the I(1) UC benchmark (which sets d = 1). As before, it contains the parameter
estimates for the CSS estimator and the QML estimator. As can be seen, differences
between the coefficients of determination are negligible. Strikingly, for dg = 1 the
fractional UC model shows no loss in efficiency compared to the I(1) UC model. For
non-integer dy, the coefficient of determination for x; should not be interpreted for
the I(1) benchmark, as a high R2 may also result from a spurious regression, and
thus only the R? is considered. There, the fractional model clearly outperforms the
benchmark model, especially when vy is small. However, the R? is still relatively high
for the I(1) benchmarks, so that, at least for the setup considered, integer-integrated

UC models are able to approximate the fractionally integrated trend well.

2.6.2 Fractional UC model with correlated innovations

To examine the estimation properties for the latent components and parameters of
the fractional UC model when the long- and short-run innovations are allowed to be

correlated, I modify (2.25) by allowing for a non-diagonal @ in

€t

<’7t> ~ NID(0, Q). (2.26)

As before, the cyclical coefficients are set to b1 g = 1.6, bag = —0.8. Qo is param-
eterized as 0,0 = 1, 0 = 19 € {1,5,10}, which yields medium to strong cyclical
fluctuations. I'set oc0 = po/vo With pg = —0.2, so that long- and short-run innova-
tions are slightly negatively correlated. Starting values for the numerical optimiza-
tion are set to Osiart = (dstarts Vstart V2.starts Dot s 025are )’ = (1,1,0,0.5,—0.5)", and
to (Ustart V2,starts Dl grarss 0261are) = (1,0,0.5,—0.5)" for the I(1) UC model. For the
fractional UC model, I only present estimation results for the CSS estimator. This
is because the QML estimation in the correlated setup is computationally expensive.
Furthermore, while the optimization is performed over v, results are reported for
the transformed p = v5/4/v, as the correlation is easier to interpret.

For the correlated fractional UC model, table 2.5 shows the RMSE and the
median bias for the estimated integration orders via the CSS and the exact local

Whittle estimator. As before, the RMSE decreases in n. While the fractional UC
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model outperforms most of the Whittle estimates, the latter performs surprisingly
well for a bandwidth choice of @ = 0.65 for n = 100, and a = 0.70 for n = 200.
However, for n = 300, all benchmarks are outperformed by the fractional UC model.
As before, estimates for the fractional UC model show little to no bias for dy, while

the benchmarks are significantly perturbed by the cyclical dynamics.

Tables 2.6 and 2.7 show the RMSE and the median bias for vy, pg, and the
autoregressive parameters for the fractional UC model and the integer-integrated
UC model. As in the uncorrelated case, the estimates for vy have a large RMSE and
are biased. However, the bias is more pronounced for the I(1) benchmark, where
the RMSE is also higher. More interestingly, the benchmark estimates for 1y are
upward-biased whenever dy < 1, and downward-biased whenever dy > 1. Since
vy = 062’0 / a%}o is the variance ratio of the innovations, this is natural: Whenever
dyp < 1, the random walk for a fixed 0727 has a faster diverging variance than the
I(dy) process. To compensate for the slower rate of divergence of the I(dy) process,
U must be upward-biased in the I(1) model, and vice versa for dy > 1. For pg, note
that a similar pattern is visible for the CSS estimates. For dy < 1, the estimates
for the correlation between long- and short-run shocks are upward-biased, and often
positive. This is due to the upward-biased 7, which yields an estimate for the
trend that is smoother than the true one. Thus, the cycle needs to account for the
additional long-run fluctuations that are not captured by the smooth trend, which
can be achieved by a positive estimate for the correlation coefficient. For dg > 1, the
smoothed trend of the I(1) model is more volatile than the true one, and the (1) UC
model re-adjusts by estimating a downward-biased correlation coefficient, resulting
in a more negative relation between trend and cycle than in the data-generating
mechanism. Note that the potential for adjustment of the /(1) model to fractionally
integrated trends via the correlation parameter estimate is limited by the nature of
the correlation p € [—1;1], and thus corner solutions with p = —1 can be expected
when dy is greater than one, and with p = 1 whenever dp is smaller than one.
As before, there are little to no differences for the estimates of the autoregressive

coefficients between the fractional model and the (1) model.

As for the uncorrelated models, table 2.8 compares the estimates for trend and
cycle of the fractional and the I(1) UC model via the coefficients of determination.
As before, the performance is similar for dg = 1. For non-integer integration orders
the fractional model yields better estimates for the cycle whenever v is small. For

high vy, the coefficients of determination are similar.
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2.7 Application

In this section, I apply the fractional UC model to log annual US CO2 emissions.
Beyond estimates of the memory parameter, which may be of interest in their own
right?, I address the following research questions: (i) What is the trending behavior
of US carbon emissions? Does the estimate for x; resemble the shape of the often
hypothesized environmental Kuznets curve, i.e. an inverted U-shaped relation be-
tween economic development and carbon emissions (see e.g. Harbaugh et al.; 2002),
and if so, what is the current position of the US economy on this curve? (ii) What
is the cyclical component of US carbon emissions? Does it align with the business
cycle, as results of Doda (2014) suggest? (iii) Is there evidence of a decoupling of
economic activity and CO2 emissions (see Haberl et al.; 2020)7 Does the decoupling
affect the cycle, the trend, or both? (iv) Is there evidence for correlation between
long- and short-run shocks? If so, is it positive or negative, and can we assign an
interpretation to the correlation structure? (v) Are there any additional insights to
be gained from a fractional model compared to integer-integrated UC models?
Data on annual US carbon emissions stem from the Global Carbon Project and
were collected by Ritchie et al. (2020). The underlying time series spans from 1800 to
2020, consists of 221 observations, is measured in millions of tons, is log-transformed

to account for the exponential growth, and is shown in figure 2.1.

Log US annual CO2 emissions

7.5
5.0
25

0.0

1800 1850 1900 1950 2000

Figure 2.1: Log annual US carbon emissions from 1800 to 2020. Shaded areas
correspond to US recession periods. Data stem from the Global Carbon Project and
were collected by Ritchie et al. (2020).

From figure 2.1, it becomes apparent that log carbon emissions, at least for the

4To date, there is no consensus on how to appropriately model the long-run dynamics of carbon
emissions, see Wagner (2008) for a discussion of model specification issues.
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first halve of the sample, evolve along a rather linear time trend, that needs to be
taken into account in what follows. Furthermore, prior estimates via the exact local
Whittle estimator of Shimotsu (2010), which includes a linear time trend, find an
integration order between 1.29 and 1.44, depending on the choice of the bandwidth.
Note however that the Monte Carlo study of section 2.6 found the exact local Whittle
estimator to be strongly downward-biased for similar sample sizes whenever cyclical

dynamics were present.

In what follows, ¢; is specified as an autoregressive process of order p, which is
consistent with the UC literature. The resulting fractional UC model is thus given
by

p
Yr = po + pat + T + ¢, Aiwt =, Z bjci—j = €, (2.27)
=0

where by = 1, and po and gy account for a constant and a linear trend. Moreover,
Var(n:, €)'’ = Q. To estimate the fractional UC model, I draw 100 combinations
of starting values from uniform distributions with appropriate support (d € [1;2],
v € [1,20], and vy is set to force the correlation to be € [—0.5,0.5]). Autoregressive
parameters are drawn randomly from the set of coefficients that ensure the cycli-
cal AR polynomial to be stable. The objective function of the CSS estimator is
then minimized numerically for each of the 100 starting values, and the estimate
corresponding to the smallest value of the objective function is chosen as the final

estimate.

Table 2.9 shows the estimation results for p € {0,1,2,3,4,5}, along with the
corresponding value of the objective function, for both uncorrelated and correlated
innovations. As can be seen, for p > 3 both the estimates for the correlated and
the uncorrelated model are relatively stable. The integration order is found to be
around 1.75, indicating that trend carbon emissions are strongly persistent, non-
mean-reverting, and clearly closer to a quadratic stochastic trend specification than
to a random walk trend. However, trend CO2 growth (that is, the first difference
of the estimated trend) is (conditionally) mean-reverting, as its integration order is
below unity. This suggests a converging effect of a long-run shock on trend CO2
growth as ¢ — 0o, which would not be the case if d > 2. The variance ratio v is
estimated to be small, which is typical for smooth, persistent trends. Furthermore,
long- and short-run innovations are found to be positively correlated. Since the
specification with p = 5 autoregressive lags for the cyclical component and correlated

innovations encompasses the other specifications in table 2.9, it is more robust to
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model misspecification than the other specifications. It is selected as the preferred

model and is examined in more detail below.

Log US annual CO2 emissions US annual p.c. CO2 emissions

75 20
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0.04

1800 1850 1900 1950 2000 1800 1850 1900 1950 2000

Figure 2.2: Trend CO2 emissions: The left plot sketches log annual US carbon

A~

emissions (black) together with the estimated trend Z¢(yn.1,0) + fio + fu1t (red). The
right plot shows annual US carbon emissions per capita (measured in tons), together
with the respective transformation of the trend estimate. Shaded areas correspond
to US recession periods.

Figure 2.2 plots the smoothed trend estimate ¢ (yn.1, é) + fig + f11t together with
the series for log annual US carbon emissions. The left plot shows the series in logs,
while the right plot displays annual US per capita carbon emissions in tons CO2.
The fractional UC model estimates a smooth trend which is due to the relatively
high estimate U, as well as the high integration order d. As becomes apparent from
the right-hand plot, the 1979 energy crisis as well as the Great Recession mark two
turning points in per capita carbon emissions: Since the former, per capita emissions
are decreasing, while annual emissions for the economy as a whole are declining since
the Great Recession. The turning points, together with concave trend dynamics in
figure 2.2, support the environmental Kuznets curve hypothesis.

Figure 2.3 shows the smoothed estimates for the cycle ¢ (yn:1, é) In line with
the high estimate 7, the smoothed cyclical component exhibits rich dynamics and
persistent behavior. Clearly, ét(ynzl,é) evolves along the business cycle, as sharp
declines occur mostly during recession periods, while gradual increases in cyclical
carbon emissions happen during periods of economic recovery and prosperity. The
massive downturn during the Great Depression is particularly striking. Since the sec-
ond half of the 20th century, the magnitude of pro-cyclical variation appears to have

decreased. While the decoupling of economic activity and emissions may be true

for the long-run behavior, as suggested by figure 2.2, figure 2.3 shows that cyclical
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Cyclical log US annual CO2 emissions
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Figure 2.3: Estimated cyclical log annual US carbon emissions ¢ (yp.1,6). Shaded
areas correspond to US recession periods.

emissions and the business cycle are still coupled. Finally, there is moderate positive
correlation between long- and short-run innovations, as table 2.9 shows. One possi-
ble explanation, which is also supported by figures 2.2 and 2.3, is that recessions do
not only lead to a decline in cyclical economic activity and thus in cyclical emissions.
Instead, they may also have permanent effects on the economy, e.g. through the re-
placement of outdated technologies with newer ones, through a permanent reduction
of the workforce, or through a transformation of energy production. The positive
relationship between permanent and transitory shocks calls for further investigation,

and I leave this open for future research.

Finally, I investigate to what extent the fractional UC model reveals new infor-
mation about the trending and cyclical behavior of carbon emissions by comparing
the above results to integer-integrated benchmark models. I consider a model in
the spirit of Harvey (1985), in which z; is assumed to be a random walk, ¢; is an
autoregressive process, and correlation between long- and short-run innovations is
excluded. As a second model, I consider the correlated UC model of Morley et al.
(2003), that in addition allows for correlated innovations. The third benchmark is
the filter of Hodrick and Prescott (1997), which assumes x; to be I(2). The first two
models are obtained by setting d = 1 in (2.27), while the HP filter is obtained by
setting t =n, d =2, b(L,p) = 1 in (2.10), where v = 062/0,27 is the tuning parameter
of the HP filter, as also discussed in section 2.3.

Estimates for the I(1) UC model are obtained analogously to the fractional UC
model: T draw 100 combinations of starting values from uniform distributions, where

J%, 02 € [0.0001,0.01] was found to be appropriate. All other parameters are initial-
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ized as before. The starting values enter the numerical optimization of the quasi-
likelihood, and the QML estimates corresponding to the highest log likelihood are
chosen as final estimates. Note that while the fractional UC model was estimated by
the CSS estimator, I use the QML estimator for the benchmarks to be in line with
the empirical literature.

Table 2.10 contains the parameter estimates for both the uncorrelated and the
correlated I(1) UC model. For the latter, the estimates for the correlation coefhi-
cients converge to —1, so that the covariance matrix of long- and short-run shocks is
nearly singular. As can be seen from the estimated coefficients of the cyclical compo-
nent, the I(1) trend does not fully capture the long-run dynamics of log annual US
carbon emissions. Instead, the model attributes additional long-run dynamics to the
cycle, forcing it to exhibit near-unit-root behavior. Therefore, the estimated cyclical
components of all parameterizations of table 2.10 evolve in a non-mean-reverting
manner.

While the I(1) specification is clearly at odds with the estimation results for d in
table 2.9, the I(2) trend assumption of the HP filter can be expected to better match
the long-run dynamics of log annual US carbon emissions. Instead of estimating a
parametric model, the HP filter requires setting a tuning parameter v that penalizes
the cyclical dynamics. As shown earlier, it can be interpreted as the variance ratio
of short- and long-run innovations under the restrictions of the HP filter. Thus, the
higher the v, the more variation is attributed to the cyclical component. Following
Ravn and Uhlig (2002), I set v = 6.25, which is typically chosen in the empirical
literature for annual data, and was also set by Doda (2014) for decomposing log car-
bon emissions into trend and cycle via the HP filter. Figure 2.4 shows the estimated
cycle from the HP filter along with the estimate from the fractional UC model with
correlated innovations. The HP filter attributes less variation to the cyclical com-
ponent than the fractional UC model. It lacks the persistent patterns of peaks and
troughs, is comparatively noisy, and misses the cyclical patterns at the end of the
sample. Thus, compared to both, I(1) and I(2) trend specifications, the fractional
UC model offers additional insights into the permanent and cyclical dynamics of

annual US carbon emissions.

2.8 Conclusion

This paper introduces a novel unobserved components model in which the trend
component is specified as a type II fractionally integrated process. The model en-

compasses the bulk of unobserved components models in the literature, allows for
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richer long-run dynamics beyond integer-integrated specifications, and for a data-
dependent specification of the trend. Trend and cycle are estimated via the analyti-
cal solution to the optimization problem of the Kalman filter. The model allows for
a joint estimation of the integration order and the other model parameters via the
conditional sum-of-squares estimator, which is shown to be consistent and asymp-
totically normally distributed. For log annual US carbon emissions, the fractional
unobserved components model reveals a smooth trend component starting to exhibit
an inverted U-shape, together with a rich cyclical component that evolves along the
business cycle.

To applied researchers, the fractional unobserved components model offers a ro-
bust, flexible, and data-driven method for signal extraction of data of unknown
persistence. It does not require prior assumptions about the integration order, nor
the choice of any tuning parameter. Therefore, it provides a solution to the model
specification problem in the unobserved components literature, and calls for further

applications beyond carbon emissions.
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2.A.1 Additional figures and tables

Cyclical log US annual CO2 emissions
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Figure 2.4: Estimated cyclical component of the HP filter with A = 6.25 as suggested
by Ravn and Uhlig (2002) (red, dashed), and of the fractional UC model with corre-

~

lated innovations ¢ (yn.1,6) (black, solid). Shaded areas correspond to US recession

periods.



RMSE bias
n_w do |dess dowr dBY A5 ARV dEY dEYV | dess dowp d%Y dBY 4 ARy dRY
100 1 .75 | 280 228 638 579 410 228 574 | 026 -.006 675 -.560 -.363 032 .500
100 | 250 228 681 614 460 .222 .397 | -.013 -.012 -.652 -577 -408 -.108 .316
125 | 260 494 651 591 464 258 258 | -.004 005 -.602 -.546 -.415 -.186 .149
5 75 | 379 289 714 673 507 268 743 | 062 -.037 -750 -.727 -ATT 047 .702
100 | .328 263 .871 810 638 .289 526 | -.013 -031 -896 -.806 -.602 -.162 .464
125 | 264 205 .903 842 694 .382 .338 | -.014 -.031 -872 -805 -.659 -.330 .233
10 75 | 401 380 726 .690 527 276 773 | -.081 -.073 -750 -750 -501 .043 729
100 | .370 322 919 866 .692 .309 549 | -.035 -.049 -976 -.880 -.664 -.180 .490
125 | 295 308 .995 934 779 426 354 | -.033 -.036 -.978 -.907 -743 -375 .25
200 1 .75 | .166 .148 618 .642 568 389 .139 | -.021 -.015 -.622 -653 -550 -.363 .030
1.00 | 118 122 598 637 563 415 153 | -.014 -.010 -556 -.610 -.534 -.388 -.099
125 | 128 138 530 584 526 407 200 | -.005 -.008 -.486 -.552 -.498 -.378 -.166
5 75 | 285 250 722 732 697 521 164 | -.036 -.024 -750 -750 -.737 -504 .037
100 | 205 188 .821 852 784 615 221 | -.012 020 -817 -850 -769 -.597 -.168
125 | 181 192 .786 835 773 .640 .335 | -.003 -.016 -749 -812 -751 -618 -.315
10 75 | 336 247 736 743 719 553 169 | -.041 045 -750 -750 -750 -542 036
100 | .242 203 .890 914 857 .683 .241 | -.019 -031 -914 -941 -855 -.665 -.187
125 | 192 193 890 934 870 729 .384 | -016 -019 -.865 -911 -.849 -T10 -.362
300 1 .75 | .128 .110 508 .607 .603 .494 216 | -.007 -.006 -.482 -596 -590 -.474 -.197
1.00 | .090 100 448 577 581 487 272 | -.004 -.000 -.405 -547 -560 -.470 -.256
125 | 132 206 .369 515 534 457 .200 | .001  .001 -.318 -.486 -511 -.439 -.273
5 75 | 232 157 671 724 723 650 305 | 009 -.012 -.696 -.750 -750 -.648 -.286
100 | 160 124 682 .795 796 .701 431 | .000 -.006 -.655 -.777 -781 -.686 -.421
125 | 155 119 611 .74 760 691 .491 | -.002 -.004 -577 -726 -743 -.673 -ATT
10 75 | 276 225 707 739 739 687 .326 | -.013 -.023 -750 -750 -750 -701 -.310
100 | 185 186 771 869 870 778 484 | -.003 -005 -.756 -870 -867 -768 -.475
125 | 161 154 715 850 862 .782 568 | 010 -.007 -.687 -.823 -.839 -764 -.555

The fractional unobserved components model

Table 2.1: Root mean squared errors (RMSE) and median bias for the integration order estimates of the fractional UC model with
uncorrelated innovations in subsection 2.6.1. The columns indicate the integration order estimates via the CSS estimator (dcgs), the
QML estimator dgasr, and the Whittle estimator of Shimotsu and Phillips (2005) with tuning parameter a (d5¥").
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N N T IO 3 z o3 (€)Y (6 z T (D)
n o &O vess N\QN’\NH\ TQM% N\QSH\ @HQMM @H@?&h @HQMM @H@?\h @mem @w@gh WMQMM TMONSP

100 1 .75 064 -.008  -.230 164 -.012  -.013 -.015 -.061 -.004 .005 -.010 .045
1.00 | -.004 039 -0vr8 -005 -009 -017 -.007 -014 -.003 .007  -.008 .007

1.25 | -.007 048 -.238 080 -.009 -.017 .028 015 -.002 017 -.027 .027

5 .75 | 1451 -233 29.748 296 -.009 -.008 -.043 -.032 -.001 .000  .032 .023
1.00 | 676 -.195 131 052 -.004 -.009 -.008 -.015 -.002 .001  .000 .012

1.25 | -.066 -.121 -3.075 148 -.002 -.011  .031 .009 -.008 .007  -.036 .016

10 .75 | 4.023 -.604 89.903 307 -.005 -.004 -.030 -.025 -.005 -.000 .024 .020
1.00 | 3.226 -413  2.023 073 -.003 -.006 -.007 -.015 -.006 .002  -.000 .013

1.25 | -.344 -.262 -6.835 311 .002  -.011  .025 .003 -.011 006 -.032 .016

200 1 .75 027 028  -.215 A72 0 -.008  -.008 -.014 -.051  .004 .008  .001 .043
1.00 | .026 .096  -.006 008 -.004 -.013 -.003 -.009 .002 .011  .000 .009

1.25 | .009 020  -.370 060 -.003 -.008 .044 025 .002 .010 -.031 .012

5 .75 851 -.132 43.591 274 -.006 -.004 -.048 -.024 .004 003  .045 .019
1.00 | .309 -.098 198 .002 -.003 -.005 -.005 -.008 .003 .005  .005 .008

1.25 | .222  -.085 -3.088 080 -.001 -.004 .038 013 -.002 004 -.035 .010

10 .75 | 2,758  -.270 89.909 293 -.004 -.002 -.033 -.018 .001 .001  .030 .014
1.00 | 1.159  -.148 .898 059 -.001 -.003 -006 -.010 .001 .004  .005 .009

1.25 | .668 -.133 -6.983 254 .001 -.005  .030 007  -.004 004  -.029 .014

300 1 .75 | -.002 039  -.234 162 -.001  -.0056 -.007 -.043 -.000 .003 -.006 .037
1.00 | .002 121 -.033 .002 -.001 -.012 -.001 -.004 -.002 .010 -.005 .003

1.25 | -.007 011 -.390 069 -.001 -.005 .045 .024  -.003 .003 -.034 .007

5 .75 271 -.051 42.045 260 -.001 -.001 -.046 -.020 -.000 .001  .046 .015
1.00 | .022 -071 -162 -002 -.000 -.001 -.001 -.004 -.001 002 .001 .004

1.25 | 108 -.064 -3.173 058  .000 -.003 .041 015 -.003 .003 -.039 .004

10 .75 | 1.420 -.140 89.910 237 .001  -.001 -028 -.016 -.001 .000  .029 .012
1.00 | .057 -.088 -.006 -.006 .002 -.001 -.001 -.005 -.001 002 .002 .006

1.25 | -.294 -.069 -7.135 199 004  -.002  .034 .008 -.005 .003 -.034 011

Table 2.3: Median bias for the other parameter estimates of the fractional UC model with uncorrelated innovations in subsection 2.6.1.
The different columns indicate the parameter estimates via the CSS estimator (subscript CSS) and the QML estimator (subscript QML)
for the fractional UC model and the I(1)-integrated UC model (superscript 1(1)).
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Trend Cycle

n v do | Rhss Riup Ré%?; RS}V}QL Rtss Rouw Ré%); Rég(z{}j:
100 1 .75 476 .018 474 021 .831 .845 .809 .841
1.00 738 774 756 783 .762 782 772 788

1.25 901 918 .867 .870 .688 .682 .608 .b44

5 .75 267 .294 311 325 .938 945 .935 943
1.00 .o74 .604 .606 .629 .897 .907 .903 916

1.25 .822 .838 .818 .809 .853 .865 .847 187

10 .75 205 217 277 276 .960 .964 961 .965
1.00 .488 007 .543 .558 .930 .936 .935 945

1.25 768 774 781 765 .892 .896 .895 .841

200 1 .75 .610 .633 .88 .626 .846 .854 827 .848
1.00 .867 .875 .870 .876 792 797 .796 .800

1.25 967 .969 .940 928 729 737 671 D72

5 .75 .363 .399 .383 404 .943 .944 .940 941
1.00 734 .750 .740 .760 .908 910 .909 915

1.25 927 928 .924 901 .868 .866 .865 783

10 .75 278 .303 .330 323 .964 .965 .965 .962
1.00 .653 .674 .667 .688 .935 .936 .936 941

1.25 .898 .897 .894 .870 .903 901 .899 .834

300 1 .75 .681 .693 .660 .683 .854 .859 .834 .848
1.00 908 913 911 912 799 .803 .803 .804

1.25 .982 .983 .959 .952 .738 .739 .678 051

) .75 461 483 .459 474 .944 947 941 940
1.00 .809 .821 .812 .824 910 914 912 914

1.25 .958 .960 .958 945 .873 .875 .872 .815

10 .75 .367 .381 .396 .379 .964 .965 .965 961
1.00 751 757 755 754 937 937 .938 936

1.25 .939 .938 937 913 .903 .904 .902 .819

Table 2.4: Coefficient of determination from regressing true trend and cycle x; and
¢t on their respective estimates from the Kalman smoother for the uncorrelated UC

models.
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RMSE bias
n_w dy |doss A% dBY ARV AR dEY | doss dEY dRY AR 4R R
100 1 .75 332 639 578 409 240 .602 | -.136 -.623 -.554 -.357 .065 .551
1.00 | 279 .668 .593 .432 214 .440 | -.050 -.636 -.560 -.385 -.050 .376
1.25 | 282 .631 .560 .420 .219 .309 | -.015 -.589 -520 -.374 -.115 .231
5 .75 379 718 679 511 274 776 | -.195 -714 -668 -468 .074 .728
1.00 | .352 .867 .804 .623 .274 569 | -.142 -.854 -.788 -.591 -.120 .503
1.25 | .324 894 826 .664 .345 .385 | -.111 -.871 -803 -.637 -.267 .290
10 .75 410 728 694 530 279 .803 | -.233 -.725 -.686 -.489 .075 .755
1.00 | .399 918 .863 .681 .293 .587 | -.225 -910 -.851 -.651 -.141 .521
1.25 | .363 .988 .922 754 .393 .394 | -.192 -.970 -.903 -.729 -.317 .293
200 1 .75 237 614 .640 567 .389 154 | -.077 -.600 -.631 ~-.555 -.370 .036
1.00 | .169 .589 .628 .551 .396 .145 | -.019 -.562 -.609 -.534 -.377 -.065
1.25 | .185 .522 572 507 .376 .164 | -.019 -.490 -551 -.488 -.356 -.118
5 .75 335 724 734 700 525 184 | -.160 -.721 -.733 -.696 -.511 .038
1.00 | .288 .816 .848 .779 .606 .220 | -.090 -.803 -.839 -.769 -.594 -.147
1.25 | .258 782 .830 .765 .623 .309 | -.068 -.762 -.815 -.752 -.611 -.277
10 .75 357 738 744 722 558 188 | -.190 -.737 -743 -720 -544 .037
1.00 | .306 .887 .912 .853 .676 .243 | -.144 -.879 -.906 -.845 -.665 ~-.172
1.25 | 288 .885 .928 .864 .716 .364 | -.113 -.868 -.915 -.852 -.705 -.333
300 1 .75 206 505 .612  .605 499 .224 | -.041 -.483 -.602 -.596 -.489 -.200
1.00 42 444 575 575 479 257 | -.008 -.412 -.558 -.562 -.467 -.239
1.25 170 375 514 525 441 260 | -.009 -.335 -.494 -510 -.428 -.243
5 .75 271 675 728 727 658 317 | -.104 -.669 -.726 -.725 -.653 -.294
1.00 | .221 .681 .799 .797 .701 .427 | -.056 -.664 -.789 -.789 -.692 -414
1.25 | 220 .612 .757 .766 .685 .475 | -.043 -.590 -.744 -.755 -.675 -.465
10 .75 338 710 742 742 693 .339 | -.173 -.706 -.741 -.742 -.690 -.316
1.00 | .286 .773 .874 .872 .780 .482 | -.118 -.760 -.867 -.866 -.773 -.471
1.25 | 249 716 .854 .860 .778 .556 | -.072 -.698 -.841 -.850 -.769 -.547

Table 2.5: Root mean squared errors (RMSE) and median bias for the integration order estimates of the fractional UC model with
correlated innovations in subsection 2.6.2. The different columns indicate the integration order estimates via the CSS estimator (dcss)
and the Whittle estimator of Shimotsu and Phillips (2005) with tuning parameter a (dZ").
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N 100 P () 16 Y L) B Y ()Y 1 6) - T 1)
n o &O vess N\Q_mm N\QEN\ pPCss @QM% h@ih @HQMM @HQMM @HONSP TMQMM @mem TMONSN

100 1 .75 1.169 2212 16.654 .049  .958 954 021 -.010 -.035 -.026  .000 025
1.00 | 2.089 1.118 4.404 173 194 270 026 -.027  -.023 -.030 .014 .016

1.25 | 2.563 .446 3.796  .084 -590 -437 039 -178 -.099 -.040 .139 A11

5 .75 4.735 25.868 141.005 -.280 @ .484 486  .001 -.024 -.033 -.005 .015 025
1.00 | 6.973  8.246 4913 -176  .075 153 011 -.028 -.023 -.011  .018 017

1.25 | 6.659  -.547 9.397 -.090 -446 -331 .027 -.055 -.033 -.022 .036 .032

10 .75 3.357 36.145 261.668 -.395  .243 207 -.000 -.025 -.034 -.001 .018 .023
1.00 | 3.299 13.866 88.703 -.333 .036 099 013 -.023 -.024 -.012 .015 .019

1.25 | 3.359 -2.624 2.075 -193 -338 -227 .021 -.030 -.024 -.013 .018 .019

200 1 .75 940  1.037 6.674 113 1.147 1.131 .004 .008 -.020 -.009 -.007 .022
1.00 .868 .553 909 127 140 193 .005 -.005 -.009 -.008 @ .003 .009

1.25 | 1.126 .097 1.207 .033 -.657 -539 .017 -119 -.093 -.015 .103 105

5 .75 7.841 32.742 141.739 -202  .709 655 -.009 -.009 -019 .003 .007 .018
1.00 | 8594 7.090 22.113 -.131  .085 126 -.000 -.007 -.007 -.003 .006 .007

1.25 | 7944 -2.668 -1.668 -.125 -499 -431 .009 -.025 -.021 -.008 .014 .015

10 .75 9.857 48.797 308.955 -.319  .378 283 -.008 -.011 -018 .001  .009 .013
1.00 | 9.145 13.135 62.278 -.259  .044 .080 -.001 -.010 -.007 -.002 .009 .005

1.25 | 8.655 -5.645 -215 -159 -384 -306 .005 -.017 -015 -.005 .009 .006
300 1 .75 1.670 847 4.253 194 1.168 1.164 .008 .011 -.013 -.013 -.008 .014
1.00 563 .305 552 108 107 148 .003  -.003 -.004 -.005 .003 .005
1.25 561 -.139 293 -001 -689 -.604 .017 -130 -.092 -.019 .104 .096

5 .75 8.062 34.267 122729 -.157  .807 74 -008  -.001 -.010  .001  .001 .010
1.00 | 8.101  4.787 1.071 -.151  .048 .093 -.002 -.004 -.003 -.000 .003 .004
1.25 | 8131 -3.324 -3.090 -.130 -.525 -.446 .006 -.021 -.020 -.003 .010 .014
10 .75 | 12.034 55.702 319.616 -.268  .468 392 -.010 -.008 -.011 .004 .007 .008
1.00 | 11.528  8.952 3.993 -236  .036 067 -.002 -.007 -004 -.001 .006 .002
1.25 | 11.500 -7.103  -6.749 -.156 -402 -354 .006 -.012 -.012 -.004 .003 .004

Table 2.7: Median bias for the other parameter estimates of the fractional UC model with correlated innovations in subsection 2.6.2.
The different columns indicate the parameter estimates via the CSS estimator (subscript CSS) and the QML estimator (subscript QML)
for the fractional UC model and the I(1)-integrated UC model (superscript 1(1)).
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Trend Cycle

n vo do R2css Ré(sl*); RéQ(JBQL chss Ré%); Rég(]{/)IQL
100 1 .75 .299 .344 .389 771 733 768
1.00 .607 .687 .678 .679 715 .662

1.25 828 .822 .856 .84 .o47 461

5 .75 138 .207 129 .895 .909 .828
1.00 417 521 .392 .841 .873 782

1.25 723 .766 702 784 789 687

10 .75 .103 182 .090 919 941 .840
1.00 .320 438 .283 873 911 815

1.25 .648 718 .609 .826 .858 748

200 1 .75 445 446 .500 782 743 786
1.00 .786 .833 .803 707 761 .669

1.25 937 912 .930 .651 .086 434

5 .75 224 .270 176 .903 921 .833
1.00 .599 .695 .549 .852 .900 784

1.25 877 .897 .847 .816 .818 .689

10 .75 .163 .239 .104 928 .952 .840
1.00 012 612 424 .885 927 814

1.25 .829 .863 779 .853 .867 744

300 1 .75 523 013 .568 782 741 786
1.00 .855 .889 .858 720 771 .670

1.25 .970 .955 .962 678 .O87 447

5) .75 .300 325 214 904 921 .830
1.00 716 786 .643 .860 902 778

1.25 935 .940 .904 837 .816 .675

10 .75 212 .285 123 933 .955 .839
1.00 .626 722 .520 .890 931 .810

1.25 .903 925 .856 .869 .876 .736

49

Table 2.8: Coefficient of determination from regressing true trend and cycle x; and
¢t on their respective estimates from the Kalman smoother for the correlated UC

models.
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Q(y,0) d v Dy by by bs by bs  Corr(n, &)
1.1349 1.3999  0.7903

1.1272 1.4674  1.7286 -0.2911

1.1141 1.3898  0.3410 0.3415  0.3560

1.1082 15420  3.76983 -0.5436  -0.0595 -0.1822

1.0923 1.8722 48.4906 -0.7278 -0.0419 -0.1618 0.1378

1.0880 1.8413 43.8545 -0.7118 -0.0493 -0.1728 0.1190 0.0678

1.1258 1.6157  4.6707 -2.1612 -1.0000
1.1146  1.6049  7.0201 -2.6495 -0.2703 -1.0000
1.1144 1.6096  7.6008 -2.7569 -0.3096 -0.0205 -1.0000
1.1050 1.5483 27716 1.0818 -0.5675 -0.0279 -0.2077 0.6498
1.0941 1.7443 16.7184 2.7274 -0.7281 -0.0766 -0.1816 0.1517 0.6670
1.0894 1.7313 14.5846 19590 -0.7123 -0.0612 -0.1890 0.0900 0.0892 0.5130

Table 2.9: Estimation results for the fractional UC model of log US CO2 emission
via the CSS estimator for uncorrelated and correlated innovations. Correlations are
estimated using v = 062/0%, vy = ane/a%, and thus Corr(n, €;) = Do /V/D.

log L(’lﬁ) Q(y7 1/)) 1 ) b1 bQ b3 b4 bs COIT(Ut, €t)
-245.6263  1.3420 0.0001
-245.6292  1.3419 0.0217 -0.9997
-264.3214  1.1333 0.0039 -1.9998  1.0000
-264.3018  1.1335 0.0084 -1.6303  0.2620 0.3686
-267.4912  1.1003 0.0524 -0.6677 -0.7618 -0.4631  0.8932
-266.3117  1.1149 0.2964 -0.8260 -0.2469 -0.4881 0.0683 0.4934
-247.3099  1.3287 0.6451 -0.7296 -0.9083
-263.6369  1.1407 0.9681 -0.9797 -0.9935 -0.9957
-266.1118  1.1251 0.8804 -0.9369 -1.1702  0.1900 -0.9985
-266.1579  1.1225 0.9419 -0.9697 -0.8581 -0.1582  0.0300 -0.9992
-267.9061 1.1029 1.0745 -1.0305 -0.9389 -0.1141 -0.0076  0.0741 -0.9941
-267.7790  1.1031 0.8773 -0.9275 -1.0156 0.0342 0.1270 -0.1802 0.0507 -0.9903

Table 2.10: Estimation results for the /(1) UC model of log US CO2 emission via
the QML estimator for uncorrelated and correlated innovations. While optimization
is conducted over 0727, Tne, o2, the transformed v = o2/ 0727, Vo = Ope/ a% are reported.
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2.A.2 Proof of theorem 2.4.1

Proof of theorem 2.4.1. Theorem 2.4.1 holds if the objective function (2.16) satisfies
a uniform weak law of large numbers (UWLLN), i.e. there exists a function g;(ys.1) >
0 such that for all 01,6, € O, it holds that [vZ(01) — vZ(02)] < g:(ye1)||01 — 02|, and
both, v;(0) and g;(ys.1) satisfy a WLLN (Wooldridge; 1994, thm. 4.2). Since vZ(6)
is continuously differentiable, a natural choice for g:(y:1) is the supremum of the
absolute gradient, as follows from the mean value expansion of vZ(#) about 6, see
Newey (1991, cor. 2.2) and Wooldridge (1994, eqn. 4.4).

However, as can be seen from (2.15), uniform convergence of the objective func-
tion fails around the point d = dy — 1/2: Since vy is I(dp), the d-th differences
Alyiir = &11(d) as well as Sqye1 = &1(d) are I(dg — d), and thus asymptotically
stationary whenever d > dy — 1/2, otherwise non-stationary. Subsequently, I will

show that the pointwise probability limit of Q(y, 0) is given by

E(32(0)) ford —do > —1/2,

plim,,_, . Q(y,0) = plim,,_, Q(y, 0) = (2.28)

s else,

where 7,(0) denotes the untruncated forecast error

—i—ZT] )e—i(d) = 7i(0)&—4( (2.29)
7=0

generated by the untruncated fractional differencing polynomial A? and the un-
truncated polynomial b(L,p) = Z;'io bj(p) L. &(d) = A% oy, + Ade, is the
untruncated residual, while the 7;(#) stem from the oco-vector (71(0),72(6),---) =
v(bi(p) — mi(d), ba(p) — m2(d), - )(By, 0o Bip,oo + VS 0 Sd,00) ™ 15(’100, and 19(0) = 1
as before. Note that the dependence of the 7;(6) on ¢ is resolved in (2.29) by letting
the dimension of the t-dimensional coeflicient vector go to infinity. Hence, while the
truncated forecast errors in (2.15) are non-ergodic, the untruncated errors (2.29) are
ergodic within the stationary region of the parameter space where d — dy > —1/2,
as will become clear.

To deal with non-uniform convergence in (2.28), I adapt the proof strategy of
Nielsen (2015) for CSS estimation of ARFIMA models: I partition the parameter
space for d into three compact subsets D1 = Dy (k1) = DN{d:d—dy < —1/2—kK1},
Dy = Dy(ko,k3) =DN{d:—1/2 — ke <d—dy < —1/2+ k3}, and D3 = D3(k3) =
Dn{d:—1/2+ k3 < d — dp}, for some constants 0 < k1 < k2 < k3 < 1/2 to be

determined later. Note that U?:1Di = D. Within D; and D3 convergence is uniform,
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while within the overlapping Ds, which covers both stationary and non-stationary
forecast errors, convergence is non-uniform. Denote the partitioned parameter spaces
for 0 as ©; = Dj x ¥, x &, j = 1,2,3. Non-uniform convergence of (2.28) is then
asymptotically ruled out by showing that for a given constant K > 0 there always
exists a fixed & > 0 such that

Pr inf ,0)>K ) —1 asn— oo, 2.30
<deD\D3(R),ueZU,¢e@Q(y ) > ( )
which implies Pr(é € D3(R) x Xy x @) — 1, i.e. the parameter space asymptotically
reduces to the stationary region ©3(k) = D3(k) x X, x @. The second part of the

proof shows that within ©(k3), a UWLLN applies to the objective function, i.e. for
any fixed k3 € (0,1/2)

sup |Q(y, 0) — E(GEH(H))} 250, as n — 0o, (2.31)
0€ D3 (r3) X 2,y X P

which holds if both the objective function and the supremum of its absolute gradient
satisfy a WLLN (Wooldridge; 1994, thm. 4.2). While the results in (2.30) and (2.31)
are well established for the CSS estimator in the ARFIMA literature, see Hualde and
Robinson (2011) and Nielsen (2015), showing them to carry over to the fractional UC
model requires some additional effort. Even within 6 € O3(k3), the forecast errors in
(2.14) are not ergodic for two reasons: First, since the lag polynomial generated by
the truncated fractional differencing polynomial Ai includes more lags as t increases,
&(d) = Ai_dont + Ad ¢, are not ergodic. Second, the 7;(6,t) in (2.15) depend on ¢.
Consequently, also within ©3(k3) a WLLN for stationary and ergodic processes does
not immediately apply. I tackle these problems by showing the expected difference
between (2.15) and (2.29) to be

E [(D¢41(0) — Ut+1(0))2] — 0, as t — 0o, (2.32)

for all 6 € O3(k3) (pointwise). As within O3(k3), U441(0) is stationary and ergodic,
it follows by (2.32) that the WLLN for stationary and ergodic processes carries over

from ;41(0) to vi41(6)
Qy,8) = Q(y,0) + 0,(1) 2= E(32(8)), as n — oo. (2.33)

(2.33) can be generalized to uniform convergence by showing that a WLLN also

holds for the supremum of the absolute gradient, which yields (2.31). From (2.30)
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and (2.31), theorem 2.4.1 follows. In the proofs, let z(;) denote the j-th entry of
some vector z, and let Z; j) denote the (i, j)-th entry (i.e. the entry in row i and

column j) for some matrix Z.

Convergence on O3(x3) and proof of (2.31) and (2.33) I begin with the case
0 € O3(k3) = D3(k3) x X, x ¢ where v(0) is asymptotically stationary. To prove
(2.32), I first show that

511(6) = v (8) = D 7501) (G115 (d) = ea1y(d))
j=0

') t
+ ) m(0)aa—j(d) + Y (m5(0) = 75(0,)) Ey15(d) (2.34)

j=t+1 j=0

oo
= 600, 0)me11 ]"‘Z (0, )€1,
7=0 7=0

where ¢, ;(0,t) is O((1 + log(t + 1))?(t + 1)max(=d+do.=O)=1) for j < ¢ and O((1 +
log j)3jmax(=dtdo,~O=1) for j > t whereas ¢ ;(0,t) is O((1 + log(t + 1))%(t +
1max(=d=O=1y for j < ¢, and O((1 + logj)*j™ax(=4=0=1) for j > t. This can
be verified by considering the three different terms in (2.34) separately. For the first
term, plugging in & (d) = Ad dont + A+ct, ft(d) = A%=doy, 4 Ade; yields

t
> ri(6,1) (gt—&-l—j(d) - €t+1—j(d))
= N (2.35)
= Z G150, )N1-5 + Z P1,6,5(0,t)€t1-5,
j=t+1 j=t+1

where the coefficients are ¢1,,;(6,t) = > t_o 7%(0, t)mj_1(d — do), and ¢1;(6,t) =
Z};:O Tr(0,1) Z{;éfl a;(¢o)mj—k—1(d). Using Johansen and Nielsen (2010, lemma
B.4), who show Y/_% gmax(=d=O=1(j _ )=dtdo—1 < (1 4 log j)jmax(~d+do,~O)~1
for some finite constant K > 0, together with assumption 2.3, (2.68), lemma 2.A.2,
and j > ¢, the coefficients in (2.35) are ¢1,,; = O((1 + log j)2jmax(=d+do,=O)=1) "and
d1et = O((1+1log j)?jmx=h=0)7T),

Next, consider the second term in (2.34)

Z 7j(0)€r41-5(d) = Z Ne+1—jP2,n,5 (0, 1) + Z €t+1-P2.65(0:1),  (2.36)
j=t+1 J=t+1 j=t+1

with coefficients ¢ ;(6,t) = Zi;%_l Ter1+%(0 )Z] “i=l-ky, ar(po)Tj—t—1—k—i(d) =
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O(( + 10g])3 jmax(— d’fofl), and ¢277]’j(6,t) ZJ —i-l 7Tk<d — do)’l‘j,k(e) = O((l +

log j)2jmax(=d+do,=)=1) by assumption 2.3, lemma 2.A.1 and lemma 2.A.2.

For the third term in (2.34), by lemma 2.A.3

¢
Z 3(0,1)) &r1—(d)
7=0
o0 min(j,t) o0
= - ZntJrlfj Z Tj—k(d — do) Z 77 km(0)
=0 k=0 — (2.37)
0 min(j,t) oo ]—k} ’
- Z €t41—j Z < Z V’T,k,m(9)> Z a;(po)mj—k—1(d)
7=0 k=0 m=t+1 =

)
Z¢3,n,] 0 t nt+1—j + Z¢3 €,7 0 t)€t+1 —j-
7=0 7=0

By lemma 2.A.3, Y7, 7o km(0) = O((1 + log(t + 1))*(t + 1)max(=d,=O=1) " while
mi(d — do) = O(j~4%~1) and 37-F ay(o)mjr—i(d) = O((1 + log(j — k))(j —
k)max(=d:=0)=1) "see lemma 2.A.1 together with Johansen and Nielsen (2010, lemma
B.4). Thus, it holds that ¢g,;(0,t) = — S (3% v pn(0)) 7y (d —
dp) is O ((1 +log(t + 1))%(t + 1)max(=d+do,=O)=1) for j < ¢, whereas for j > t it
is O ((1 + logj)?jmax(=d+do.=0=1) since d — dy > 1/2 for all & € O3(k3). The
other coefficient ¢3;(0,t) = I,:m(l)]’ (i1 Trem(0)) {:_éc ai(o)mj—r—i(d) is
O ((1 +log(t + 1))2(t + 1)max(=d:=0=1) for j < ¢, and O ((1 + log j)ijmax(=d:=0~1)
for j > t. Together, (2.35), (2.36), (2.37) and the rates established below prove
(2.34).

(2.32) can be proven by noting that 0;41(#) is stationary and ergodic, so that a

WLLN for stationary and ergodic processes applies. Thus, it is sufficient to consider

E[(0t41(0) —v+1(0 Z E(n7,,_ ])+¢eg(9 t) B Pl
7j=1
_ Z 10 <<1 + log(t + 1))4(t + 1)2max(fd+do,f()72>
=1
+ i o((1+1og(t+1))8(t+1)2ma’<<—d+d07—<>—2) — o(1),
j=t+1

where the first equality follows by assumption 2.1, while the second follows from
the convergence rates of ¢, ;(0,t), ¢e j(0,t) as derived above, and the third equality
follows from ¢ > 0 and d —dp + 1/2 > k3 > 0 for all § € O3(k3). (2.32) follows
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directly. From the law of large numbers for stationary and ergodic processes, (2.33)

follows immediately.

(2.33) can be generalized to uniform convergence in probability by showing the
supremum of the absolute gradient to be bounded in probability for all § € O(k3)
and any k3, see Newey (1991, cor. 2.2) and Wooldridge (1994, th. 4.2). Then (2.31)
holds, so that the objective function satisfies a UWLLN within the stationary region

of the parameter space @3(k3). The gradient of the objective function is given by

—== == (0 ,
80(5) n ; 69(0
i1 i1 (2.38)
8%(0) _ 87']-(«9,75) - d) + 7’((9 t)agt_j(d)
89(1) = 80(5) J =0 J 89(1) ’

where 6(;) denotes the /-th parameter in §. Now, denote 7;(L,0) = 372 7.5 (0)L7 as
any polynomial satisfying Z?io |75.5(8)] < o0, i = 1,2, uniformly in € ©. Then,
for z14(0) = m, 224(8) = €, and for the set O{(d1,d2,v,9p) € D x D x ¥, x & :
min(d; + 1,da + 1,d; +da + 1) > a}, it holds that

amil = IAE &

8dl Z Tjm( ZJ,tm(e)] ‘

sup
(d1,d2,v,)€0

sz Zzt m

nZ
t=1

O,(1) for a > 0,
Op((logn)t+*+ln=a) for a <0,

(2.39)

i,j = 1,2, k,l = 1,2,..., as shown by Nielsen (2015, lemma B.3). Now, note
that by lemmas 2.A.2 and 2.A.4 both the coefficients 7;(,t) and their partial
derivatives satisfy the absolute summability condition, i.e. Z;;%) |7;(6,t)| < oo and
Z;;%) |07;(0,t)/00)| < oo for all 6y and uniformly in § € 6. In addition, by
assumption 2.3, the absolute summability condition also holds for the polynomi-
als Z] —o7i(0,t)Lia(L, ¢o) and Z;;% d7;(0,t)/(091)) L7 a(L, ¢o). Furthermore, note
that the (truncated) fractional difference operator and the (truncated) polynomi-
als ZJ 17](9 t)L7 as well as their partial derivatives can be interchanged, e.g.
Al ijo 70, t)p—j = Z] OT](H t)Am;_;, as the sum is bounded at ¢ — 1. Fi-
nally, for § € ©O3(k3), it holds that d — dy > —1/2, so that within v;(6) the
term A‘i_dom is integrated of order smaller 1/2; and the same holds for the par-
tial derivative 0&(d)/0d = (8Aiﬁdo/8d)nt + (0A /8d)cy. Therefore, all terms in
(2.38) satisfy the conditions for (2.39) with a > 0. Thus, by (2.39), it follows that
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9Q(y,0)
SUPgco3(r3) aem =

0 € O3(k3). As this holds for any kg, this proves (2.31).

) for all entries in 6. Hence, (2.33) holds uniformly in

Convergence on Os(k1,k2) Next, consider the case § € Oy(k1, ko) = Da(k1, ko) X

Y, x @. Then for the objective function in (2.16), together with (2.15), it holds that

2
n t—1 n t

1

@y, ) - Yoo m0.06-d)| = e >, (Ai_do Tj(«9,t)77t—j)2
i =0 n pard 010
2 U i t-1 ] t—1 :
= <A+ > o, t)m—j) <A+ DA t)ct_j>,
t=1 j=0 =0

where the fractional difference operator and the polynomial Z;;%) 7;(6, t)L7 can be
interchanged as the latter is truncated at ¢ — 1.

For the second term in (2.40), by lemma 2.A.2 Z;;E |7;(6,t)] < oo, and by
assumption 2.3 and lemma 2.A.2 322, me §i—1) |7j(0,t)ax—j(wo)| < oo . Further-
more, as d > 0, d —dyp > —1/2 — k9 > —1, it holds that min(1 +d — dp,1 +d,1 +
2d —dp) =1+ d—dp > 0, so that by (2.39)

n t—1 t—1
1 _
sup =Y AT 0, my | [ALD 70, ) || = O0p(1). (241)
0€O (r2,k3) | TV i j=0 §=0

Next, consider the first term in (2.40), for which one has by lemma 2.A.3

t—1 t—1 t—1 00
ATON" (0, g = AT (O + AT ( > wﬂ'@) M=

=0 =0 j=1 \i=t+1
o0
= Ai_do Z@(@)nt,] —+ rn’t(G), (242)
where
e t—1 00
rna(0) = —ATPN " @)+ AT ey Y ra(0)
j=t 7j=1 i=t+1 (243)
o
= ATON amy,
j=1
and aj = Y72, 77;4(0) for j < t and o = —7(f) for j > t. By lemmas

2.69 and 2.A.3, 7;(0) = O((1 + log j)j™**(=4=9)~1) and St rrgi(0) = O((1+
log t)thax(*d’*C)*l), so that a; = O((1 + log t)ztmax(*d’*C)*l) for j <t and oj =
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O((l + logj)jmax(*d’*ofl) for j > t. Apply the Beveridge-Nelson decomposition to
Tn,t(0)

o o o
rne(0) = Afl[dont_l Z a; + Afi[dOH Z a;nt_j, 04; = — Z o, (2.44)
j=1 j=1 i=j+1

where 322, aj = O((1 +log t)2tmax(=d=0)) - Again, by the Beveridge-Nelson decom-
position for A% > 5o i (0)me—j in (2.42)

ATy Oy = AT Om Y m(0) + AT Y (O)m, (2.45)
5=0 3=0 J=0

where 77(0) = —>2%,, 1 7i(0), and 372, 7;(0) = O(1) by lemma 2.69. By (2.42),
(2.44), and (2.45), it follows for the first term in (2.40) that

n t—1 n 0o
% (Ai—do 75(0, t)m_j)Q > %Z <Ai—dom S Tj(e)f (2.46)
t=1 j=0 t=1 j=0
£ 25 (Ao Y ) (A1 Y o) (2.47)
t=1 | j=0 j=1
£ 23 (Al S r(0) (AL DS ) (2.19)
t=1 | =0 j=0
+ % (Ai_dont Z Tj(9)> (Ai_do"'l Z 04?71&—3’) (2.49)
t=1 | j=0 j=1
+ % (AT S Omes ) (AT Y o) (2.50)
t=1 | j=0 j=1
£ (AL S o) (ALY agm) (2.51)
t=1 | j=0 j=1
2 n [ o o0
+ - (Aiﬁdont,l Z a]-) (AiﬁdOH Z oz;fnt,j) . (2.52)
t=1 | j=1 j=1

From (2.39), it immediately follows that (2.48) to (2.52) are O,(1), as d —do+ 1 >
0 and d —do > —1 for all & € Oz(k2,k3). In addition, as 3772, a; = O((1 +
log t)2t™ax(=d:=0)) and as > 5= 7j(0) is bounded away from zero by assumption 2.3,
it follows that (2.46) asymptotically dominates (2.47), so that the rate of convergence
of (2.40) will depend solely on (2.46). The asymptotic probability limit of the first
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term (2.46) is derived analogously to Nielsen (2015, pp. 163f) by defining w; =

St mild = doyni—i 325 7 (0) and up = Y- mi(d — do)me—i Y520 75(8) for some
N > 1 to be determined. Then Aiﬁdom > 720 7j(0) = wi +ut, and it holds for (2.46)

n

1 n o 2 1
- Z (Ai—dom ZTj(9)> 2~ (wi + 2wpuy) . (2.53)
t=1 §=0

t=N+1

As shown by Nielsen (2015, p. 164), for some x satisfying max(kz, k3) < k < 1/2,

setting N = n® with 0 < a < min (};;;:, 1/21221_@) , it holds by Nielsen (2015,

eqn. B.4 in lemma B.2) that n™t Y7 o weuy 25 0 uniformly in § € Oy(k, k) D
O3 (K2, k3). As also shown by Nielsen (2015, p. 164), the other term in (2.53) satisfies

sup Z wt—a (ZTJ ) Z 2(d — do)| = 0, (2.54)
=0

0€O2(k,k) t ne+1 j=0

as n — 00, and by Nielsen (2015, lemma A.3) the latter sum is bounded from
below by Z] 0 7r (d—dp) > 1+ K% for some K > 0. The limit of
the fraction % is discussed by Nielsen (2015, p. 165): It increases in n
from zero (for n = 2) to 1/(2k3) as n — oo, and decreases in k3 from alog(n — 1)

1_(n_1)72cw<;3
2K3

(00,0). This, together with (2.46), (2.53), and (2.54) yields that the lower bound of
1 Z?Zl(Ai_do Z;;E 7;(0,t)n:—;)? diverges in probability for 6 € Oy(k, k) as (n, k) —
(00,0). By (2.40), (2.41), and (2.42) the result of Nielsen (2015, eqn. 25) for ARFIMA
models carries over to the fractional UC model: For any K > 0, § > 0, there exist

k3 > 0 and Ty > 1 such that

for k3 = 0 to zero for k3 — 1/2. Consequently — 00 as (n,Kk3) —

Pr < inf Q(y,0) > K) >1-9, foral T > Ty, (2.55)
deDs(k2,R3),VEL, ,pEP

and (2.55) holds for any k2 € (0,1/2).

Convergence on ©;(r1) Finally, consider the non-stationary subset ©(k1) =
Di(k1) x £, x @. Starting again with (2.40) above, the second term in (2.40), by
the same argument with respect to absolute summability of the coefficients as for
(2.41), is now

n -1 t—1
% Z (Ai_do Z 7;(0, tmt—j) (Ai Z 7;(0, t)Ct—j) =0, (1 + log(n)ndo_d_l) ,
t=1 j=0 =0

(2.56)
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for all 6 € O1(k1) by (2.39) with di = d — dp, do = d, and thus is Op(1) for
d —dy > —1 and O,(log(n)n®~4-1) otherwise. As will be shown, the first term
in (2.40) will asymptotically diverge at a faster rate compared to the second term
above. To see this, note that the decomposition of the first term in (2.40) into
Afl[do > 5207 (@)ni—j and 7,¢(0) in (2.42) and (2.43) above also applies in O1(#1).
Consequently, the Beveridge-Nelson decompositions in (2.44) and (2.45) also hold
for € ©1(k1). Again, the decomposition in (2.46) to (2.52) applies, however the
terms in (2.48) to (2.52) will not necessarily be O,(1), since d — dy is no longer
bounded from above by —1 or by —2. However, as will become clear, the first term
(2.46) asymptotically dominates all other terms in (2.47) to (2.52) and thus it will

be sufficient to consider only this term.

To arrive at the desired result, consider n2(@—do) Z?Zl(Ai_dUnt > 20T (0))?, a

scaled version of (2.46). It follows from the Cauchy-Schwarz inequality that

2(d—do) zn: (Ai—dont i Tj(0)>2 . (ndfdofl/2 zn: Aoy, i Tj(a))27 (2.57)
t=1 j=0 =1 =0

d—do—1/2

where the scaling by n is required for a functional central limit theorem later

to hold.

The remaining proof for § € (k1) follows Nielsen (2015, pp. 168f) and shows his
results for the CSS estimator for ARFIMA processes to carry over to the fractional
UC model. As also shown there, from Hosoya (2005, thm. 2) a functional central

limit theorem for

r(0) = n® 072N AT R N " () = P TVEATOT N, N " (0)  (2.58)
t=1 j=0 j=0

follows if assumptions A(i) to A(iv) of Hosoya (2005) hold. Since 0 < > 2% |7;(0)] <
oo and E(n;|F;) = 0 for all j > ¢, as well as E(n;n|F) — E(nne) = 0 for j, k >t
by assumption 2.1, it follows that assumptions A(i) and A(ii) of Hosoya (2005) are
satisfied. By Hosoya (2005, lemma 3), assumption A(iii) of Hosoya (2005) is satisfied
if n; is a fourth-order stationary process with a bounded fourth-order cumulant
spectral density, which is satisfied by assumption 2.1. Finally, by Hosoya (2005,
thm. 3) the respective assumption A(iv) is satisfied for the fourth-order stationary

process 1 if 2 > (2(dp — d + 1) — 1)~! holds, which is equivalent to dy —d > —1/4
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and is satisfied for all § € ©1(k1). By Hosoya (2005, thm. 2), as n — oo

nt o= 2G0Ty N " 1i(0) = Way—a(r)  in DJ0,1], (2.59)
j=0

for r € [0,1] and fixed d € D;(k1), where |nr] is the greatest integer smaller or
equal to nr, Wy,—a(r) = T'(do — d + 1)7 [ (r — s)%~4dW(s) is fractional Brown-
ian motion of type II, and W denotes Brownian motion generated by 7, Z?io 7;(0).
(2.59) is equivalent to Nielsen (2015, eqn. 30) for the univariate case. From (2.59)
it follows that r,(6) N r(0) = Wy,—a(1) for fixed d € D;(k1). Pointwise conver-
gence r,(0) can be generalized to uniform convergence in Dj(k1) if 7,(0) is tight
(stochastically equicontinuous) as a function of § on § € ©1(x1). Since the parame-
ters ¢, v only enter r,,(¢) through >-°2, 7;(¢), it is sufficient for tightness of ()
in 6 that nd’dofl/QAifdoflnn is tight in (d — dp). As in Nielsen (2015, pp. 169f),
tightness in (d — dp) can be shown using the moment condition in Billingsley (1968,
thm. 12.3) which requires to show that r,(6) is tight for a fixed d — dp and that
\ndl*lﬂAﬁ?_lnn —ndQ*l/QAﬁif_lnn] < Kldy — dg| for some constant K > 0 that does
not depend on n, dy, or dg, see Nielsen (2015, pp. 169f). As noted there, the first con-
dition is implied by pointwise convergence in probability and distribution, while the
second condition holds by Nielsen (2015, lemma B.1). Consequently, r,(6) = r(0)
in d € D1(k1), and thus infyeg, (x,) mn(0)? <, infyeo, (xy) r(0)%

Coming back to the first term of the objective function (2.40), for which a lower
bound is given by the expressions (2.46) to (2.52), note that by (2.57) the first term
(2.46) is bounded from below (when scaled appropriately) by

n

i 1 d-do, N 2 2(do—d—1/2) - 2
inf — A%~ (0 > p2(do inf  r,(0)2. 260
0€01(r1) M tzz; ( " 777sz;) J( )> N 0€B1 (k1) ( ) ( )

The probability limits of (2.48) to (2.52) can be derived by (2.39) for d; = d—dp and
dy = d—dp+1, and equal Oy, (1 +n~*logn), where a = min(14+d—dy,2+2(d—dy)).
Thus, a = 1+d—doifd—dp > -1, and a =2+ 2(d —dp) if d —dy < —1. In
the former case, a > 0, so that (2.48) to (2.52) are O,(1). In the latter case, they
are O, (n?@=4=D1ogn) and thus diverge at a slower rate than (2.46). For (2.47),
note that 372, a; = O((1 + log t)2pmax(=d,=0)) - while > 729 7(0) is bounded away
from zero by assumption 2.3. Consequently, (2.47) will also diverge at a slower
rate than (2.46). Finally, as already shown in (2.56), the second term in (2.40) is
O, (1 +log(n)n®=4=1) and thus is also dominated by (2.46). It follows that the rate

of divergence of the objective function is determined by the first term in (2.40) and
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is given by the divergence rate of (2.46). This, together with (2.60), yields

inf ,0) > p2do=d=1/2) inf p (0)2 > n2 inf 1, (6)? 2.61

9691(&1)Q(y )_ 0€O1 (K1) n( ) - 0€O1 (k1) n( ) ( )

as n — oo. Thus, one obtains the result of Nielsen (2015, eqn. 34) that for any
K >0andall k1 >0

1
Pr < inf —Q(y,0) > K> —1, asT — oo. (2.62)
deD1(k1),VEX,,pEP T

Together, (2.55) and (2.62) prove (2.30). O

2.A.3 Proof of theorem 2.4.2

Proof of theorem 2.4.2. Since 0 is consistent, see theorem 2.4.1, the asymptotic dis-
tribution theory can be derived based on the Taylor series expansion of the score

function as usual

0:\/5(%2(%’9) _|_\f ( 9)

. —0Q(y,9)
=vn 00 0000/
0=0¢o

(é - 90) o (2.63)

0=0

where for the entries of @ it holds that |6 —bo,)| < |é(i) —bo, | foralli =1,....q+2.

The normalized score at 6y is

0Q(y, 0)
v 00

, (2.64)

0=0¢

with v¢(#) denoting the prediction error as defined in (2.14) and (2.15), and its partial

derivative as given in (2.38). Denote the normalized, untruncated score

8%(9)

9Q(y,0)
V=0 =72 th (60) =,

% , (2.65)

0=0¢

0=0o

with 7,(0) as defined in (2.29). As shown in lemma 2.A.6, the difference between
truncated and untruncated score is asymptotically negligible. Therefore it is suffi-
cient to consider the distribution of the latter. By assumption 2.5, the untruncated
prediction error ¥4(fy) is a stationary MDS when adapted to .7'-5 = 0(&,s < t).
Thus, for (2.65) a central limit theorem can be shown to apply following Nielsen

(2015, p. 175): By the Cramér-Wold device it is sufficient to show that for any
o) 0) 2 o] ,
q + 2-dimensional vector p, p'v/n=%52> Qy o b0 = = VX g ( Qy o 90)() =
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f+12u )Zt 1vt(90)(h1 ¢+ hzt)( ) 4, N(0, 4% ot Qo) as n — oo, with hlt =
Z;’O 1 8%0 o ft j(dp), as well as h27t = ijo Tj(Hg)agtgié(d) b As h1,t and hzyt
=bvo

are }'tfl—measurable, v = Zgilz M(i)ﬁt(eo)(ﬁl,t + ilgyt)(i) together with ]_-té is a MDS.

Thus, by the law of large numbers for stationary and ergodic processes, it holds that

1 n 5 n  q+2
EZE (Vﬂ}-"il) - Z D wniono(has + hog) ) (e + hag) gy
t=1 t 14,5=1
q+2 1 q+2
—Zu( ()0 o2 EZ h1t+h2t (h1t+h2t)(j)—>%ozu o)
4,j=1 t=1 2,7=1

. ~ 3 ~ ov (6 ov
with 02 = E(5(60)|1F,) = E(#(00)), and Qo = E |G, GO 1.
Finally, the Lindeberg criterion is satisfied as ;(6p) is stationary. It follows directly
9Q(y, 80(y,0 d
that /n29WA| = /nl 29ue) 50+ 0p(1) =5 N(0, 402 Q).

Next, consider the second derivatives in (2.63). By Johansen and Nielsen (2010,
lemma A.3), the Hessian matrix in (2.63) can be evaluated at the true parameters 6y if
0 is consistent and if the second derivatives are tight (stochastically equicontinuous).
As also discussed by Nielsen (2015) for the CSS estimator of ARFIMA models,
tightness holds for the second derivatives if its derivatives are uniformly dominated
in d € D3 as defined in the proof of theorem 2.4.1, v € X, as defined in section
2.4, and ¢ € Ng(¢p) as defined in assumptions 2.2 and 2.4, by a random variable
B, = Op(1), see Newey (1991, cor. 2.2). This holds by lemma 2.A.7. Therefore, the

second derivative in (2.63) can be evaluated at the true value 6

82Q(y7 0) _3 - Ouy(0) Ouy(0)
89(@89@) =00 n — 8(9(@ 9=0, 89(1) =0, (2 66)
u 82v,(6) '
+ v (0o
z; 901700
k,l=1,2,...,q4+ 2. By lemma 2.A.8, as t — oo,
8’17,5(9) 8’1),5(9) (9@(9) (9%(9) p
E — — .
( 9 9 o0~ o0 )| 0

From the law of large numbers for stationary and ergodic processes, it then holds

for the first term in (2.66) that + Et 1 8”599) agtg, =1 Et 1 avgéa 6?9(,) +0p(1). In

addition, by lemma 2.A.9 the second term in (2 66) is 237, vt(GO)a;gégf)

~ 0294(0
2570 5y(60) Sonelt)

0=00
+o0,(1). As (0¢(6p), ]-" ) is a stationary MDS, while the sec-

0=09
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ond partial derivatives are ]-'f;l—measurable, it holds that % iy 1715(90)% =g, =
op(1). Taken together, this implies for (2.66) that
82Q(y, (9) 81}15 (%t(e)
+ o0, (1). 2.67
001,00 1) o Z aa(k 89(1) s p(1) (2:67)
=vo
Finally, from the law of largAe numbers, it follows that 869(% 39?” ‘ 9—64 AN QQO(k,l)'
Thus, solving (2.63) for \/n(6 — ) yields the desired result
; PQw.0)|" ~Qw.0)| 2 o1
\/E(Q—QQ) = |: 8080/ :|9 —\/ET _>N(07UU,OQO )
0=0o
O]

2.A.4 Additional lemmas

In what follows, let z(;) denote the j-th entry for some vector z, and let Z; ;) denote

the (i,7)-th entry (i.e. the entry in row ¢ and column j) for some matrix Z.

Lemma 2.A.1 (Convergence rates of m;(d), b;j(¢), and related vector and matrix

entries). It holds that

mi(d) = 0(j~ "), (2.68)

bi(p) =0, (2.69)
O(|i — j|=¢1 or i # 7j,

(B Bo) = (li =477 f .75.7. (2.70)
o(1) fori=j,

o(1) fori =7,

O(li = jI=¢71)  fori# 3,
o) fori=j,

(2.72)

O(Ji — jmxt==971) - for i # j,

O(li — j|=F Y fori#j,
(SdtSdt)(,]){ (i =41 ) Jori# (2.71)

(By,t Byt + V‘S’é,tsd,t)é,lj) = (2.73)
o(1) fori=j,

(BLuBi)g) = O((t—j + 1)), (2.74)

(Siest) ) = O((t— 7+ 1)), (2.75)

with m;(d) as defined in (2.3), bj(¢) as defined below assumption 2.3, By and Sqy
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as defined in (2.5), and B = (be(p) -+ b1()), 8§ = (me(d) - - - 71(d)).

Proof of Lemma 2.A.1. (2.68) follows by Johansen and Nielsen (2010, lemma B.3)
while (2.69) follows by assumption 2.3. (2.70) follows from (2.69) by (Bclp,tB%t)(i,j) =
e Bkl (9) = Ol = 17 S bulp) = Ol = 41771 for
i # j,and (Bl Byt) i) Zz ; b2 () = O(1). The proof for (2.71) is analogous and
follows from (2.68), as (S',,Sa:)(.5) = Sopon V™" mu( @)y gy (d) = O(i — 4|~4)
for i # j, (S5,4Sa0) i) = O(1).
To derive the convergence rates for the entries of (B],,;By:)~" and (B[, By +
VS&7tSd7t)*1 in (2.72) and (2.73), note that as ¢t — oo, B}, B, and Bl B, +
VS&’tSdt converge to the Toeplitz matrices® T;(f1) and Ti(f2) with symbols f1(A\) =
(2m) 7 2o m (@)™, 1) = o be(@)bri(9)s f2(N) = (2m) 7 2320 12(5)e,
12(7) = 2on20 [0k (9)br4 () + vrg(d) iy ()], where 7 (5) = O(j7¢7") and 72(j) =
O(j»x(=d=O=1) a5 j — co. Consequently, (Bl,By)~ " and (B, Byt +vS),Sa, )t
converge to the Toeplitz matrices T;(1/f1) and T;(1/f2) that exist by assumption
2.3. Denote the respective spectral densities as 1/f1(\) = (2m)~! > i203(d)e A
and 1/f4(\) = (2m)~1 > 720 74(j)e™M. Then the convergence rate of y3(j) can be
obtained from the partial derivative (9/0M\)[1/fi(\)] = (27)~! > im0 idvs(d)e A —
— i) T22m) T 35 g igm(G)eN, where jm(5) = O(7°), so that jys(j) = O(~¢)
as f1(A) is bounded away from zero by assumption 2.3. It follows that v3(j) =
O(j=¢1). Similarly, it can be shown that v4(j) = O(j™*(=%=0=1) " As the j-th
descending diagonals of (B"WBW‘/)*1 and (B, ; Byt + v Sy Sa, /)1 converge to v3(j)
and v4(j) as t — oo, one has (2.72) and (2.73).
(2.74) follows immediately from (2.69), since (B, ;) ;) = Zi;é bi(©)bt—jry1(p) =
O((t — j + 1)) be(p) = O((t — j + 1)1, while (2.75) follows im-
mediately from (2.68) by (Sg,st+1) () Zk 07Tk( )T jkr1(d) = O((t — j +
)74 Sz m(d) = O((t — j + 1)7471). O

Lemma 2.A.2 (Convergence rates of 7j(6,t)). For the coefficients 7j(0,t) as defined
n (2.15) and below, it holds that

Tj(9,t)=0(( +log )40 1) (2.76)

Proof of Lemma 2.A.2. To prove (2.76), consider 7;(60,t) as defined in (2.15) and

Gray (2006) provides a good overview about the asymptotic behavior of Toeplitz matrices.
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below

I/; [ ( —mi(d) - b(p) — Wt(d)) @)

! —1
X (B(p,tBSO7t + VSd,tSdat) :|(k:) Sd,tu‘k) .

The left term in (2.77) is

[(bi(@) ~m(d) - Bul) —m(d)) (BBt + vSieSar) ™|

= (b () — 7k (d)) (B Byt + Si4Sat) oy

(k)

k—1
+ Z - 7rz (B:O,tBﬂovt + VS&,tSd,t)g}k) (278)
i=1

t
3 (i) = mild) (Bl By + 1S} Su)
i=k+1

Note that m(d) = O(k™™1), by(p) = O(k™"1), (B, Byt + 1S} 1 Sar) oy = O(1),
and (B[, 1By + Sy Sat) iy = O — k[m=(=4=01) for i # k by (2.68), (2.69),
and (2.73). Thus, the first term in (2.78) is O (k™*(=4=9)~1) 'while the second term
is Yo (max(=d=0O=1( — jymax(=d=0)=1) = O ((1 + log k)k™>(=d:=0)=1) " where
the last equality follows from Johansen and Nielsen (2010, lemma B.4), who show
that SYFT!gmax(=d—O-1(p _ jymax(=d.=O=1 — O((1 4 log k)k™>*(=4=O=1) " Again
using (2.69) and (2.73), the third term in (2.78) can be shown to be bounded by
Z§:k+1 O (max(=d=0=1(j — pymax(=d.=O=1) — O((k 4 1)max(~d=0~1 EZ:k—i—l(i -
fymax(=d,=O=1) — O((k + 1)max(=4.=O=1) Therefore

[(ba(9) = mi(@) -+ bule) = mu(d)) (Bl By + 54,500

(k) (2.79)
0 ((1 +log k)kmaX<*dv*<>*1> .

By plugging (2.79) into (2.77) and using (2.5) together with (2.68), one obtains
(1) =m@ - (o) = mild)) (BB + w0800 S0

() =m@) - ble) =) (BluBps +vSh:Sa0) "] | 7os(d)

i

Il
-

J

t
O((l +logj)j max(— d,*C)*l) + O(]ﬂz]—:’—l(l + log k)kmax(fd,fg)fl(k . j)7d71>
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t—j
= O((l + logj)jmax(*d,*o*1> + O((l + logj)jmax(fd,fg)—l Z kfd,1>
k=1
=0 (1 +1og j) 4071 | (2.80)

since Yt % k=91 = O(1) for all d > 0. This proves (2.76).

Lemma 2.A.3 (Convergence of 7j(0,t) as t — 00). For the coefficients 7;(0,t) as
defined in (2.15) and below, it holds that

Tj(97 t) = Tj(ea t+ 1) + rT,j,tJrl(e)v (281)

where 77j441(0) = O((1+log(t+1))2(t + 1)max(=d=0=L(1 4 log(t + 1 —5))%(t + 1 —
j)max(fd,fg)fl)'

Proof of Lemma 2.A.3. To prove (2.81), I study the impact of an increase from ¢
to t+ 1 on 7;(6,t + 1) = v[(bi(p) — m1(d) - by1(p) — my1(d)) (Bl 111 Bt +
VS&,t+1Sd,tﬂ)_lsfi,tﬂ](j). Denote

Bei ﬂt] Sdt1 =

. (2.82)
1xt

Bgi+1 =

Sd,t St]
?

O1><t 1

with B; = (bi(¢) -+ - b1(p)) and s; = (m¢(d) - - - m1(d))'. Let Z¢11(0) = (B, 411 Bp,t+1+
VSé,t+1Sd7t+1)_l. Then, by the Sherman-Morrison formula

Et(e) + Ry Ry

: 2.83
R R, (2.83)

Err1(0) =

with the block entries

Ry = [(1+ BiBe + v + vsise) — (BiBy + vsiSa)Ze(0)(BL 1By + vSqs)] ™,
Ry = —R3Z(0) (B, 181 + vSy,51),
Rl = R3Et(9)(B</p’tﬁt + VSZLtSt)(Bz/stD,t + I/SQSdi)Et(e).
Clearly R3 = O(1), since by (2.73), (2.74) and (2.75)
j—1

[(BiBgt + vSa)Ze(0)] () = O(Z(t 41— ymax(—d=Q=1(5 _ Z-)max(—d,—o—l)

=1



2.A  Appendix 67

t—j

+ O((t +1— )max( + O(Z t4+1—i— max( d,fC)flimax(fd,7C)71>
=1

= O ((1+1og(t + 1= )(t+1 = jym=x=a=071), (2.84)

and again by (2.74) and (2.75)

(BiBypt + vs;Sat)Ee(0) (B, 18t + 1Sy st)

t
= O<Z(1 +log(t+1—9)(t+1— j)max(—d,—c)—l(t 41— j)max(_d7_<)_1>,
j=1

which is O(1). This, together with 14 3}8;+v+vs}s; = Zj 0 b2 (0)+v 23:0 73 (d) =
O(1), yields Ry = O(1). Furthermore, R3 "' is bounded away from zero, as Z;(6)
is regular by assumption 2.3. Next, consider R, for which by (2.84) it follows that
Ry, = O ((1+1log(t+1—j))(t +1 — j)max(=4=O=1) Finally, for Ry, by (2.84) it
follows that Ry, = O((1+log(t + 1 —))(t + 1 — i)m>E=O"1(1 4 log(t + 1 —

(41 = gymxa=o-t),
Next, consider the vector

(b1(p) = mi(d) - - b1 (0) — o1 (d)) (Bl 411 Bpsr + vSh 1 Saa41)

= ((ba(9) — m(d) -+ bi() — m(D)[E(O) + Ba) + (i () — ma ()R, Ra)

where Ry = (bi(p) — mi(d) - - be() — me(d)) Rz + (be+1(y) — m41(d))Rs. By (2.68)
and (2.69), it holds for the terms in Ry that [bi1(p) — mt1(d)|Rs = O((t +
1)max(—d,—C)—l)’ and (b1 (@) —71(d) - - - be(p) —m(d)) Re = O(Z§:1jmax(—d,—o—l(1+
log(t+1—7))(t+1—j)mx=d=0=1) = O((1 +log(t +1))?(t + 1)max(=d:=O)=1) Thus
Ry = O((1 + log(t + 1))%(t + 1)maX(_d’_O_1). Analogously, for the other terms in
the above vector, one has [(byy1(p) — my1(d)) RSy = O((t + 1ymax(=d,—C)=1(1 4
log(t+1—j))(t+ 1 — j)m=CA=071) “and [(b1(p) — m1(d) - - be() — mi(d)) Ral () =
O((1 +log(t +1 = )t + 1 — j)ym>xCA=O-I570 (1 + log(t +1 — )(t + 1 —
jymax(=d:—O-ljmax(=d.=0)=1) = O((1 + log(t + 1 — j))(t + 1 — j)mex(=d=0)=1(1 4
log(t+1))2(t+ l)ma"(_d’_o_l). Therefore, for j = 1,...,t, the whole term 7;(6,¢t+1)

(0,4 +1) = v ((ba(g) — ma(d) - bi(p) — m(d)Zi(0)S, + RS

=Tj (‘9’ t) + VR5(j) )

) (2.85)

where R = [bi1(¢) — e (D) RS}, + Rasj+ (b () —m1(d) - belp) —mi(d)) Ru Sl
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For R5
t t—j
[RSalG) = Z Ry mi—j(d) = Ra(j) + Z Ry, mi(d)
i=j i=1

- o((1 Flog(t+1— )t +1— J-)max<—d,—o—1)
o

+ 0((1 Hlogt+1—))S (t+1—i— j)max(—d,—O—li—d_l)
=1

=0 ((1+1og(t + 1 - j))2(t+ 1 — jymx-4-0-1),

<

-
I

so that [(bi11(p) —m11(d)) R5S) () = O((t+1)max(=d=O=1 (1 +log(t+1—7))2 (t+1—
§)mex(=d=0=1) 'while [Rys}](;) = O((1+log(t+1))?(t41)max(=d=0)=1 (341 j)=d=1),

Furthermore

[(b1(p) — m1(d) - - - be(p) — me(d)) R1Sg 4] (5)

= [(ba(y) = mi(d) - - belsp) — me(d)) Ra) ymi—(d)

i=j
=[(b1(p) — m1(d) - be () — me(d)) Ral(yy
t—j
+ ) (b1 () = w1 (d) - bi( ) — mi(d)) Ra iy i ()
=1

=0((1 +log(t + 1))2(t + 1)~ ™n@O=1(1 4 log(t +1 — 5))3(t + 1 — j)~mindO-1),

Hence, Rs , = O((1 + log(t + 1))2(t + 1)max(=4=O~1(1 4 log(t + 1 — j))*(t + 1 —
j)max(=d=0)=1) " This completes the proof of (2.81).
O

Lemma 2.A.4 (Convergence rates for partial derivatives of 7;(6,t)). For the partial
derivatives of the coefficients 7;(0,t), as defined in (2.15) and below, it holds that

87—](0>t) _ \4 -max(—d,—¢)—1
S 0] ((1 +logj)%j ) , (2.86)

ot (0,t) 3 max(—d,—¢)—1
2 =0 ((1+108)° ). (2.87)

87']'(9,25) N —d,—¢)—1
12— O (1 +log )3 jrax(=d=0-1) 2.88
5o0 O ) ) (2.89)

where () denotes the [-th entry of p, | =1,...,q.

Proof of Lemma 2.A.4. Denote 7;(d) = dmj(d)/dd = O((1 + log7)j~%"1), see Jo-
hansen and Nielsen (2010, lemma B.3), and I}j(gp(l)) = (%j(gp)/&p(l) =03 by
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assumption 2.3. Furthermore, denote the partial derivatives of S;; and B ; as

[0 #1(d) - 71(d)
. 95, |0 0 - da(d)
Sd,t: ad - . . . P
0 0 0 |
0 bi(eq) be-1(())
5 _0Ber |00 bia(eq)
vt 8(,0@) R E : . . ’
_0 0 0 |

and note that [S&,tsd,t](l,j) =0 forall j =1,...,t, while for 1 < < t it holds that

” S A @) = O((1 4§ —8) ) if i < 4,
[SaeSarlig =y ., , e d e
o Th(d) ki (d) = O((1 +log(i — j)) (i — 5)~471)  ifi>j.

(2.89)

Similarly, [B;o(l),th](Lj) =0 for all j =1,...,t, while for 1 < ¢ <t one has

y b b (o) bij—i(p) = O((L+j —8) 7Y i <,
[Bﬂo(l)vtB@’t](i’j) - j—1 ; A | e
3=0 Uk () brti—j (p@y) = O((i — j) ) ifi>j.

(2.90)

In addition, denote =¢(0) = (B;,tB%t—l—I/S(’LtSd,t)_l to simplify the notation. Starting

with the partial derivatives 07;(6,t)/0d, one has

(‘)ngz,t) — 12 [(bl((p) — Wl(d) ce bt(gﬁ) _ Wt(d))

X E(0) (S5 + Sa.454,)=e(0)Sq4] (2.01)

+v[(b1(9) = m(d) - bulp) = me(d)Ze(0) S5 )

— v[(F1(d) - - 71 (d)) Ee(0) S5 () -
For the first term, note that by (2.89) [S{i,tsd,t + S(’”Sd,t](i,j) = [S’(/Ltsd,t](i,j) +
[Sé,tsd,t](j,z‘) = O((1 +log i — j|)|i — j|=@71) for i # j, and [Sé,tsd,t + Sé,tsd,t](i,i) =
O(1). Together with (2.79) it follows for the first terms in (2.91) that

[(b1(p) — m1(d) -+~ be(p) — me(d))Ze(0)(Sh 4 Sar + Si.eSae)l )
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=0 ((1+log]) jmax(—d,=¢)— )
j—1

+0( 1 +1og )i (Lt log(j —i))(G 1))

=1

t
+0( 3 (1+1ogi)™ 40711 + log(i — )i — ) ™")
i=j+1

=0 ((1+1og j)? =401, (2.92)

where for the last equality, note that the second term satisfies Zz;ll ima"(_d’_o_l( j—
i)~ = O ((1 + log j)jmex(=4=0)=1) "see Johansen and Nielsen (2010, lemma B.4),
and that it dominates the first and third term above. Taking into account the next

product term for the first term in (2.91), by (2.73) and (2.92)

[(b1() = 1(d) -+~ bi(p) — me(d))Z(0) (S Sae + SaeSae)Ee(6)] )
=0 ((1 + logj)3jmax(*d’*<)*1)

7j—1

(Z 1 —i—logz 3 max( d,—¢)— (] _ Z-)max(fd,f()fl>

=1
t

+ O( Z (1 + log i)3imax(=d:=O=1(; _ j)max(—d,—c)—l)
i=j+1

=0 ((1+log jy!jmex--0-1) (2.93)

where the proof is the same as for (2.92) besides the additional log-factor. Adding
the last term, it follows by (2.68) and (2.93) that

[(b1(0) — m1(d) - - be(p) — me(d)Z(0) (S Sae + Sy Sa)Ze(0)Sh ) 5)

= Z[(bl(@) —m1(d) -+ be(p) — me(d))Ze(0) (Sq4Sas + SapSa)Ee(9)] oymi—j (d)

t
- O((l + logj)4jmax(*d7*<)*1) + O( 3 (1 + logiytima-h=0-1(; j)*d*1>
i=j+1

=0 ((1 + log j)4jmax(=d:=¢)— 1) , (2.94)

where the second equality uses my(d) = 1 to obtain the first term, while the last
equality uses Zz 1 Jjmd-1 = = O(1), which holds for all d > 0. Consequently, the first
term in (2.91) is bounded by O ((1 + logj)4jmax(_d’_<)_1). Turning to the second



2.A  Appendix 71
term in (2.91), by (2.79)

[(b1() = m(d) -+ be(p) — me(d)Ze(8) St )

= Z [(b1(p) = m1(d) - - bup) — me(d))Ee(6)] (3 Tri— ()

i=j+1
t
= O( > (14 log i)™ =h=O7(1 4 log (i — j)) (i — j)*d”)
i=j+1
= O (1 +logj)jm=-=0=1), (2.95)

where the last equality follows from Ef;{(l +1logi)i~@=! = O(1) for all d > 0. By

an analogous proof, the third term in (2.91) is

[(7r1(d) -+ 7 (d)Ee(0) Sl ) = Z[(fﬁ(d) -7y (d)Ze(0)] 5y i (d) (2.96)
:O<(1 + logj)2jmax(fd,fg)fl>

t

+0( Y (1+10g )54 (1 4+ log(i — j))(i — )"
i=j+1

= 0 ((1+1ogj)?jmex=4=0-1). (2.97)

Together, (2.94), (2.95), and (2.96) yield (2.86).

To prove (2.87), consider the partial derivatives 07;(6,t)/0v, for which

aTja(S’t) = [(b1() — m1(d) - - - by () — Wt(d))Et(e)S&’t](j) (2.98)

= v[(b1(p) = mi(d) - - bi(p) — me(d)Z4(0) S SatEe(0)Sail ). (2.99)

By (2.80) the first term (2.98) is O((1 + logj)jmax(_d’_o_l), while by (2.71) and
(2.79), it holds for the second term (2.99) that

[(b1() = T (d) - bulp) — T (d)Z(O)ShSadl gy = O((1+ log j)m-d=9-1)

j—1
+0( 001+ logiyim =071 iy
i=1
t
+ O( Z (1 + IOg i)imax(fd,fﬁ)fl(i o j)fdfl)
i=j+1

—0 ((1 n 1ogj)2jmax(—d’—<>—1) , (2.100)
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and the proof is analogous to (2.92) besides one log-factor. Furthermore, by (2.73)
and (2.100)

[(b1(p) —m1(d) - be(p) — Wt(d))Et(e)Sél,tSd,tEt(9)](j)

:O<(1 n logj)2jma><<*dv*<)*1)
1

+O(j

(]

(1 + 10gi)2imax(_d’_0_1(j - i)max(—d,—()—l)

+0(1 3 (1 +logimex=h01(j — jymex-d-0-1)
i=j+1
=0 ((1 + 1ogj)3jma"(_d"o‘1> : (2.101)

Il
S

where again the proof is analogous to (2.93) besides one log-factor. From (2.68) and

(2.101) it then follows for (2.99) that

[(br(p) = m1(d) - be(0) — m(d))Ze(0) 55,49, (0) Sl )
t
= O((1+10g )™= CA=071) 1 O 37 (1 +log)hm==1=071(; — j)=d-1)
i=j+1
= O ((1+1ogj)jmex=4=071), (2.102)

and the proof can be carried out the same way as (2.94). Thus, (2.87) holds.

Turning to (2.88), consider the partial derivatives 07;(0,t)/0¢(), where

or;(0,t . . _
0D (o) bilow) 2Ol (2,103
)
() ~ () ilp) - m(d))E:(6) 00
X (Bi 1Bt + By Boy) t)Ee(0)Sq.) 5)-

By assumption 2.3, the partial derivatives are of order bj(gp(l)) = 0b;(p)/0p) =
O(57¢1), so that for the first term (2.103), analogously to (2.79)

[(b1(qy) -~ be(0@)Ee(0)] ;) = O ((1 + logj)jmax(_d’_o_l) ,
and, analogously to (2.80)

[(61(90(1)) e bt(so(l)))Et(@)Sd,t](j) =0 ((1 + logj)jmax(fd’%)*l) ; (2.105)

so that (2.105) determines the rate of (2.103). Next, consider (2.104), for which one
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has by (2.79) and (2.90)

[(b1(p) — m1(d) - - be () — me(d))E (9)(3'% iBot + Bl i Bow ()
:O<(1+logj) jax(—d,—()— 1)

j—1

+O( (1 + log §)imax(=d=O=1(j _ j)=¢= 1)

1=

<.

=

t
+O( Z 1+ log i)imax(= dv—C)—l(i_j)—C—l)
=741

= O (1 +10g j)2jm(=0=071), (2.106)

where the proof is identical to (2.92). By the same proof as for (2.93), by (2.73) and
(2.106)

[(b1() = m1(d) - be(ip) — e (d)Ee(6) (B, 4Bt + By B ) Ee(0)] )

:O<(1 + logj)Qjmax(—d,—C)—l)
7j—1
+ O( (1 + log i)ZimaX(_d’_O_l(j o i)max(—d,—g“)—l)

i

I
—

t
+0( 3 (1-+logi)imasi--0-1(; _ jymas(-d=0-1)
i=j+1

= O ((1+1og j)? (=401}, (2.107)

Finally, again by using the same proof as for (2.94), by (2.68) and (2.106)

[(b1(p) = m1(d) -~ be(p) = m(d)Ze(0) (Bl ;) e Bt + By Biogy 1)Ze(8) St )
t
= O(( +log])3 jmax(— d’_o_1> —|—O( Z (1+logi)3imax(_d’_o_ (t—7)" —d- 1)
i=j+1
—0 ((1 + logj)?’jmax(_d’_o_l) : (2.108)

Together, (2.105) and (2.108) yield (2.88). O

Lemma 2.A.5 (Convergence of the partial derivatives of 7;(0,t) to 7;(6)). For the
partial derivatives of 7;(0,t), it holds that

0T (6,1) 87'] - 87“73 k 5 —do—¢)—
) . \ _ 141 max(—do—¢)—1
00 0=00 ‘9 0o kzt;rl ’9 =0 0 <( +logt)t )’

(2.109)
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with v+, (0) as given in lemma 2.A.3.
Proof of lemma 2.A.5. From (2.85) and below rrj11(0) = —vR5 ;,, where

Rs,, =[(bey1(p) — me11(d)) (RySq, + Rasi)] ()
+ [(b1(p) = m1(d) -+ be() — me(d)) (Rasy + R1Sq,)] (),

and with B, ; and Sy, as defined in (2.5), 5] = (bi(¢) - - - b1(9)), s; = (m(d) - - - m1(d))
as given in lemma 2.A.1, and Ry, Ro, R3 as stated below (2.83). The partial deriva-
tive of R, w.r.t. the [-th entry ;) is thus given by

ORs,. _
b6 [8(1’”1(@) mi1(d)) (RySY, +R382)} (2.110)
0 ) ’ ()
[(0(b1(p) —mi(d)  O(bi(e) 7Tt(d))> / : ]
+ Ros, + RyS 2.111
< 90 20 (R 1) ) ( )

a8/ os,
_ ) P dt t
+ | (be41(9) — m41(d)) <R2 a0, + Rs 30(1)> (2.112)

()

882 aS(Ii t
" <wuw>—wxd»~-w4¢>—ﬂud»>(R%wa)+fﬁaa5>] (2113)
L (4)
+—gm+mw>—an«n><§£3sgf+§§i$>}u) (2114)

Rty o OF1 g )} (2.115)
)

(0o =m0t = ) (G2 + s

As noted in the proof of lemma 2.A.4, the partial derivative of 7;(d) only adds a
log-factor to the convergence rate of m;(d), i.e. dm;(d)/dd = O((1 + logj)j~¢71),
see Johansen and Nielsen (2010, lemma B.3), while 9b;(¢)/d¢q = O(j ') by
assumption 2.3. Thus, the convergence rates of (2.110) and (2.111) can be derived
analogously to the proof of lemma 2.A.3. This yields that (2.110) is O((1 + log(¢ +
D) (t + 1)ax(=d=O0=1(1 log(t + 1 — §))2(t + 1 — j)™x(=d=0=1) while (2.111) is
O((1+1log(t+1))3(t + 1)max(=d=0=1(1 4 log(t + 1 — j))(t + 1 — j)m>*(=4=O~1) "and
the additional (1 +log(t+ 1)) term stems from Om;(d)/dd. Analogously, the partial
derivatives of s; and Sg; only add a log-factor to the convergence rates as derived in
the proof of lemma 2.A.3. Thus, it holds that (2.112) is O((t + 1)™(=d:=0=1(1 4
log(t + 1 — §))3(t + 1 — j)max(=4=O=1) while (2.113) is O((1 + log(t + 1))2(t +
1ymax(=d=O=1(1 4 log(t +1 —5))3(t+ 1 — j)maX(_d’_O_l), and the additional (1 +
log(t+1— 7)) term stems from 9s;/dd and 9S; ,/0d. For the last two terms (2.114)
and (2.115), note that R3 = O(1) as shown in (2.84) and below. Since ;(953:/00),
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51(0st/00)), si5t, (BiByt + v51Sa)Zt(0)0(Bi Byt + vsiSar)' /00y, and (BB, +
v5184.4)(054(0)/000)) (B Byt + v51S4,¢) are O(1), it follows that

OR3

0
— = = —(R3)?’—— [(1 + BBt + v + vsisy)
89(1)

90
- (/Bz/tha,t + VS;Sd,t)Et(e)(B:o,tﬂt + VSZLtSt)] = O(1).
For the partial derivatives of Rg(j), consider

a@(l) = 89(1) [(Béka,t + VS;Sd,t)Et(e)] ) (2116)
0=y (0
— R3 [(BQBW + vs;Sat) aat( )} (2.117)
M 1
8B<p 9By 57/
— i B
(2.118)
e Js; Sy +vs, GSd,t) - (9)}
89(5) ot t 89(1) t G)’

where the first term (2.116) is O ((1 + log(t + 1 — 7)) (t + 1 — j)max(=d=O=1) by (2.84)
and by OR3/00;) = O(1). For the term (2.117), one has [(3; By +vs1Sa) Z¢(0)] ;)
O((1+1og(t+1—7)) (t+1—j)max(=d=0=1) from (2.84). Together with 0Z4(0)/00;) =
—Z(0)[(0/00)) (B, 1 Bp,t + vS) 1Sa1)1Z¢(0), (2.89) and (2.90), it follows that

_ 0
{351+ vsi50020) [ 55

=O((1 +log(t +1 = )(t + 1 — jym=4=0=1)
j—1

(Z 1+ log(t+1—k))(t+ 1 — k)max(-d=0=1
k=1

x (14 log(j — k))(j — kymxC-4=0-1)

(B, B%t+uS&7tSd7t)} b
()

t—j
(Z (I+logt+1—j—k))(t+1—j— fymax(=d=0-1
=1

x (1+log k)k:max(*d”@*l)

—0 ((1 +log(t+1—5)*(t+ 1 — jym=x d’_CH) '
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Finally, using (2.73), one obtains

- 0 -
{(@B@,t + vs1Sa) = (0) 20 (B, By + VSél,tSd,t)} :t(e)}
@ () (2.119)

= O ((1+1og(t + 1= At +1— jymsh=0-1),

which yields the binding rate of convergence for the second term in (2.116). For
(2.118)

OB,, 0B o 9! 9S4,
/ P, tB + / t VI 5
<t39<1) 90y 7" 00, ()

=0 ((1 +log(t+1—9)(t+1— j)max(fd,fg),l) ’

by lemma 2.A.1. Hence, using (2.73) yields an upper bound for (2.118)

OB op; v s, 9S4+ \ —
[( f 80‘“ aft B, + 20~ $¢Sat + ”Tet Sat +vs, 89d7t> =t }
) ) @ @ *) () (2.120)

Together, the rates of convergence of (2.116) and (2.118) yield

aRQm

~0 ((1 Flog(t+1— )3t +1— j)maﬂ*dv*O*l) . (2.121)

For the partial derivatives of R;, note that

aRl(m‘) aR?(i)

0 9 (BB + vsiSa0) 56 (2.122)
0=,(0
— R,y | (BBt + vsiSay) 1) (2.123)
My ),
0By,: | OB, ov
— ) / L) t B /
Ragy | (8 980, "0 B, o
(2.124)

852 /85d t
=) =4 (6 .
V@G(Z) Sd’t + Yt 89(1) ) t( )} )

+

From (2.84) and (2.121), the first term in (2.122) is O((1 + log(t + 1 —4))*(t + 1 —
i)max(=d=O=1(1 4 log(t + 1 — 5))(t + 1 — j)™>(=4=0=1) " Similarly, using (2.119)
and the convergence rate of Ry, as derived in the proof of lemma 2.A.3, the second
term in (2.123) is O((1 +log(t+1—4))(t + 1 — )™=~ 1(1 flog(t + 1 — j))*(t +
1 — j)ymax(=d=O=1) By (2.120), it follows that (2.124) is O((1 + log(t + 1 —i))(t +
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L= i) xCAO7 (1 log(t + 1 — ) (t + 1 — j)™>-4=971). Thus

aRl<m‘>

= O((1+1log(t +1— i)t +1 —q)ymax(=d=0)-1
g =O(( +loglt+ 1= (e +1-1)

(2.125)
X (1 log(t 41— )" (¢ 41— §)mC4=071),

With (2.121) at hand, it follows directly for (2.114) that

/
<8R2 0yt 8R38;) =0 ((1 +log(t+1—7))°(t+1— j)maX(—d,—C)—l) )
My ™ 90y 7/

By (2.68) and (2.69), it follows that (2.114) is O((t + 1)m&(=4=0=1(1 4 log(t + 1 —

3)°(t + 1 — j)mex(=d=O=1) " For (2.115), it follows from (2.121) and (2.125) that
(gé?; s} + géf;) Sél’t>(ij) = O((l +log(t4+1—14))*(t+1—i)max(=d=O=1(1 4 log(t + 1 —
NP (t+1— j)maX<—da—’<>—1). Again using (2.68) and (2.69), it thus follows that (2.115)
is O((1+log(t + 1))°(t + 1)max(=d=0=1(1 4 log(t + 1 — §))>(t + 1 — j)max(=d=0=1),
Together, this implies for (2.109) that

w = O((l + log(t + 1))5(15 + 1)max(fd,7§)fl
90
X (1 log(t + 1= 7))°(t+1 — )™= 47071),
and thus % > et rT7j7k(9)‘0:90 =0 ((1 + log t)5tmax(—d0—§)—1) . 0

Lemma 2.A.6. For the truncated score function as given in (2.64), and the untrun-

cated score function as given in (2.65), it holds for all 6 € O3(k3) that

9Q(y,0)
|2

~0Q(y,0)
00

] = 0,(1). (2.126)

=0y 0=0o

Proof of lemma 2.A.6. For brevity, define h1; = Z;;ll 87%(9“ ‘9 " &—j(do), hl,t =
S5 T, Gmi(do). as well as hay = SZpmi(00.) %50 and by =
)

7=1

>0 Tj(ﬁo)agtaé( )‘0 . Then plugging (2.64), (2.65) into (2.126 and using (2.38)
=0o

yields
~0Q(y,0) ]
0=00

00

9Q(y, 0)
|2

0=069
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n

- jﬁ [Z Be(00) (hae — hag) + > hag (Te(6o) — Ut(eo))]
t=1 t=1

+ \/277 [Z 1(00) (hay — hay) + Z ha,t (0¢(60) — Ut(e‘)))] ’
pt t=1

(2.127)

so that it remains to be shown that all four terms in (2.127) are op(1).

For the proofs it will be very useful to note that 9;(6y) adapted to the filtration
ff = 0(£s, s < t) is a stationary martingale difference sequence (MDS), as explained
in the proof of theorem 2.4.2. Note in addition that all l~117t, il27t are }"ffl—measurable,

as 7o = mg = 1 are invariant w.r.t. 6.

Starting with the first term of (2.127), by plugging in hq; and ilLt

;ﬁ Z 0¢(00)(h1,t — hit)
t=1
_ 2 v ~ - 87_'(0775) ;
= U 2 Tl DI » (G-5(do) — &-5(do)) (2.128)
2 a0 a7;(0,1) ) ~
+—= ) U(bo) : - &—;(do) (2.129)
n ; 0 J; By o 90 - F\¢0
+ % Zn: % (o) i 87529) §-(do). (2.130)
t=1 j=t =00

oo OTj( o -
As Zj ] ’9 00 & ;(do) 15-7:t ,-measurable, 0;(6p) ZJ ta] ’9 80 & ;(dp) is also

a MDS. Slnce BTJ(O)LQ —op = = O((1 +log j)*jmax(=do,=0)=1) ‘see lemma 2.A 4, it follows
that (2.130) is o,(1). In (2.129), %(0p) X7} (‘%J locg, — 28|, ao)gt i(do)

adapted to .7:5 is a MDS, while the sum Z;;l <8Tgé9) oo %’0 ; ) ft—j(do) =
=bo =vo
O,((1+1log t)®tmax(=do,=C)) by lemma 2.A.5. Hence (2.129) is 0,(1). For (2.128), note

that by assumption 2.1

2
(6 5(do) - 5t—j(d0)>] }
6=00

( anznin(s,t)—jTj (QO)TJ"Ht_S‘ (60))

st=1  j=0
0o t—1

% 627.](287' 0,t

=0 k=0
S

" ( 1 o6, 5)
k

Z al(@O)ﬂ'jthfkfl(dO)) (2.131)
, 1=0

0=0

az(@o)ﬂj+3_k—z(do)> ]

0=0, 1=0

00’

=0
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n min(s,t)—1 j j—k
+ Z E l( Z €mmin(s,t)—j (Z Tk(ao)zal(%)ﬂj—k—z(do)>

s,t=1 =0 k=0 1=0

J+lt—s| j+|t—s|—k
X( Z 7(6o) Z az(@t])ﬂjth_s_k—l(d(J)))

) (2.132)
XZG (Z t) Z(ll S00 Tjtt—k— l(d0)>
j=0 k 6=0, 1=0
s—1 J
(Z S) Zal 900 Tjts—k— l(d0>>]
k=0 0=0, 1=0
J Jj—k
+ 3| (S (S0 Satemicaa)
s,t=1 k=0 1=0
( 3Tk Q,t) ZGZ(SDO)Wj—k—l(dO)))
N ’“:‘3 9:90 =0 (2.133)
x(Ze (ZTk ar(po)mj—k— l(d0)>
j=s k=0 =0
1

(g

Zaz ©0)mj—k—1( do)) )1

0=0, =0

For (2.131), I use Zjoonfnin(s B— ;Ti(00)Tjtt—s)(B0) = Op([t — s[™* (=do,=0)=1) for
t # s, else Op(1), see lemma 2.A.2, and >4 ; aTk et ‘9 6o Zl 0 @1(00)Tjri—k—1(do) =
O((1+1log(t+5))° (t + j)max(=do.=0)=1) " gee (2.68) together with lemma 2.A.4. This
yields the upper bound for (2.131)

3 ( 3 - o)

t=1 s=1, s<t

(1 + log t)12t2 max(—dp,—¢)—1

n Z _ max —do,—C¢)— 1(1+10gt)6tmax( do, —g)—1>
s=t+1

<K (14 logt)btmaxt=do=O=1 = O(1).
t=1

Similarly, for the second term (2.132), by (2.68) and lemma 2.A.2 it holds that

J—

min(s,t)—1 j
E [ Z mln(st <Z Tk 90

k
a1 (o) Tj—k—1 do))
=0

=0

j+t—s| j+t—s|—k
X Tk(eo) Z al(@ﬂ)ﬂj+|t—s|—k—l(d0) ]
k=0 =0
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-1

in(s,t
Z (14 log j)3;~minldo:O=1(1 4 log(j + |t — s|))3(j + |t

| /\

— )7 min(do©)—1

Furthermore, by lemma 2.A.4

> L or 0,t
5|3 (27

Z al(goo)ﬁj+t—k—l(d0)>

=0 k=0 0=0, 1=0
s—1 j
oTi(0, s
X Z 8(9’ ) Zal(SOO)T"jJrskl(dO))
k 6=0y 1=0

=0
< KZ(l + log(t +j))6(t +j)maX(—do7—C)—1(1 + log(s +j))6(8 +j)max(—d0,—§)—1

so that by the same proof as for (2.131), it holds that (2.132) is also O(1)

By (2.68) and lemmas 2.A.2 and 2.A 4, the third term (2.133) is bounded from
above by

n 00 J Jj—k
Y E KZ - (Z 7k(60) Zaz(wo)ﬂjkl(do)>
s,t=1 j=t k=0 1=0
t—1 Jj—t
X ( (%%(z’t) az(@o)?@—k—z(%)) )
k=0 =0, 1=0

o'¢) J Jj—k
X ( Z eg_j (Z 71 (00) Z az(@o)%’—k—l(%))

j=s k=0 =0
s—1 j—s
oTi(0, s
X( ka(e,> > ai(po) k- 1%)))]
k=0 9=0, 1=0

<K Z (1 + log t)9t2max(—dg,—C)—1(1 + log 8)952max(—d0,—0—1 — 0(1)
s,t=1

As all three terms (2.131) to (2.133) are O(1), it follows directly by the scaling that

(2.128) is 0p(1). Now, since (2.128) to (2.130) are op(1), the first term in (2.127) is
also op(1).

Next, consider the third term in (2.127). I plug in hg+ and iLZt which gives

2 Nn N 0&—5(d) 0&(d)
- > 4 (60) jz%rj(eo,t) ( aé . - 67; - (2.134)
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t—1 nd
th (60) Y _ (5(60) — »(eo,t))a&(;;(d) (2.135)
7=0 0=>0o
+ = th (00) > (0 )85t5é(d) (2.136)
j=t 6=6o

For (2.136), note that (0;(6y), ]:5) is a stationary MDS, and 7%, 7;(0 0)8§t 5(@) ‘6 o
is ff_l-measurable. Since 9&;_ i(d) / 06 is Op(1) for all d > d() — 1/2, it follows by
lemma 2.A.2 that 322, 7;(6o )8& : = O,((1 + logt)t™ax(=do,=Q) " and thus
(2.136) is o0p(1).

os, =

For (2.135), note that #(80) S02b (5(60) — 75(60, 1)) 2522, o,
.7-"5 is a MDS. Furthermore, by lemma 2.A.3, it holds that 7;(6p) — 7;(00,t) =
O((1 + logt)?tmax(=do,=O)=1) = Since the partial derivatives of &(d) are bounded
in probability, Y-'74 (7j(fo) — (60, 1)) i) 5o = Op((1+ logt)2max(=do=0)),
Therefore, (2.135) is 0p(1).

together with

For (2.134), I use M|d &y = = —j~! as shown by Robinson (2006, pp. 135-
136) and Hualde and Robinson (2011, p. 3170). Thus, the partial derivative in
(2.134) wor.t. d is

06, (6)
od

_06(0)
od

ar(¢o)-
0=0¢

__Z] To— J+ZE—JZ&TH—] k
7=0

0=6o 0=06o

(2.137)

As the partial derivatives w.r.t. all other entries in 6 are zero, by assumption 2.1 it
is sufficient to consider
06 _,(d) 2
t=1 0=0o 6=6
n min(s, t) 1
= Z E [ Z nmln (s,t)—57 90)7—J+|t S|(90)]
s,t=1
t—1 s—1
K (o, 1) 7 (0o, 5)
S (S (Z a0

7=0

_ 0&—(d)
od

(2.138)

o0

+j262,j <ZTk(90,t)Zal(<po)W
<Z +(00. 5 Z )37Tj+sa—;—z(d)

»
2
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n [min(s,t)l

j j—k
OBl D e (Z Tk(eo)zaz(@o)ﬂj—k—z(do)>
k=0 =0

s,t=1 =0

Jt+|t—s| Jt+t—s|=k
X ( Z 71 (0o) Z al(@())ﬂj+t—s—k—l(d(]))]

k=0 =0

> 2 m00,1) \ (22 (6o, 5)
<E Y n?; (Z 70, ) <Z &0 5 ) (2.139)
= J k:0t+jfk: k=03+jfk
oo t—1 7 )
+D e Tk(%i)Z“l(@o)amHa;C’;_lw) )
Jj=0 k=0 1=0 0=0
s—1 7 )
x <ZTk(9o7S)Za1(<Po)W )]
k=0 1=0 0=0,
n [e'e] t—1 —7 9070
+ Z E Znt—JTJ(GO) Z ik
s, t=1 j=t k=0
oo 7 i—k
+> e <Zm(90) ai(po)mj—k l(d0)>
j=t k=0 1=0
t—1 Jj—t
Omj_k—1(d)
X 0o, t a J
<I§Tk(o ); 1(¢0) 2 -
X =00 (2.140)
= ~— —7x(6o, 5)
Zﬁiﬂj(@o) J—k
j=s k=0
oo 7 j—k
+Z€§—j (Z 7%(6o) al(@o)”j—k-l(%))
j=s k=0 =0
s—1 j—s
87T'_k_l(d)
< (32 7l00,9) S aulip) Tkt .
<k0 1=0 od 9=0,

For (2.138), note the first expectation is 077 0 me (s,6)=1 75(00)Tj 41— (00) = O(|t —

s|max(=do.=Q)=1) for all t # s, and O( ) for t = s, see lemma 2.A.2. For the other
terms it holds that E [Z;‘io % < 4 k0o, )H;_k) ( e Tk(eo,s)sﬂ%kﬂ <
K772 0(1+ log(t + N2+ )71 +log(s + 7))%(s +§) 71, together with

S e (zm ) > e >W\M)

§=0 1=0

X <§_: (6o, ) Z az(@o)W‘e—%) ]
k=0

(1+log(t + 7)) (¢ + )™ =071 (1 4 log(s + 5))* (s + )™=~

IA
=

<
I
o
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by lemma 2.A.2. It follows that (2.138) is bounded from above by

KZ Z )max(—do,—g)—l

t=1 Ls=1, s<t

X i (1 +log(t + 5))2(t + 4) (1 +log(s + 5))*(s + 4)
7=0

+i (14 log(t + )t + )

n

+ (S _ 75)rnax(7do,fC)71
s=t+1

< D (1 +log(t+ )2 (t + 4) M (1 +log(s + 4))*(s + 5) !

I

<
Il
o

<KZ

(1+logt)t™ H”] < Kn",

for 0 <k < 1/2, since 3272 4(s +7)72 = O(s7!), see Chan and Palma (1998, lemma
3.2), and, as the logarithm is dominated by its powers, > -2 ,(1 + log(s + N2 (s +
§)72 = O(s717%) for all 0 < k < 1/2. For (2.139), by lemmas 2.A.1 and 2.A.2, the
first expectation is bounded by

J—

min(s,t)—1 j k
E[ Z 612nin(s,t)fj <Z 71(6o) Zal ©0)Tj—k—1 do))
k=0 =0

=0
J+|t—s| j+|t—s|—k

< | >0 ) D ao)mip—si—ki(do) | | = O(Jt — s (=HomO),
k=0 1=0

for all ¢ # s, and is O(1) for ¢ = s. Hence, by the same proof as for (2.138) the
second term (2.139) is also O(n*), 0 < k < 1/2. For the third term (2.140) one has
by lemma 2.A.2

Al

t—1 Jj—t 87‘1’
700, ) Y ar(ipo) — 5~ k d

k=0 =0

NGE

s,t

s—1

= o j ik
Znt it Z _Tk 90’ -s-ZEf j (Z 71 (0o) Zal(@o)ﬂjkl(d0)>
= j=t k=0 1=0
—7% (00, 8)
)] [Z"é ml) 2 =
6 J(ZTk (6o) Zal (¢o0) Tj—k— ld0> (ZTk (6o, s Zal (o) 375 k l(d) >]}
0=0o

n (i0< +10gj 3 -max(—do,—()— ) (Z 1+10g] 3 max( do,—¢)— 2))

st=1 \ j=t

X

YR

+
Mg

Jj=s



84 The fractional unobserved components model

iO ((1 + logj)7j2max(d0,C)2>) (i 0 ( (1+ logj)7 ‘Zmax(dg,()2))

Jj=t J1=s

w

~
Il
—

- -
= il

iO ((1 + logj)gjma"(d“oz’)) (ZO ( (1 + log j)7 j2max(~do. cm))

Jj=t j=s

»
S
Il
—_

<
3

Il
—

s,t Jj=t

+ io ((1 +logj)7j2max(do,c>2>) <i0< (1 + log j)3jmax(—do, c)2>) :
j=s

which is O(1), and thus all terms (2.138) to (2.140) are O(n"). As (2.134) is appro-
priately scaled, it follows that (2.134) is 0,(1) and thus the third term in (2.127) is

op(1).

Next, consider the second term in (2.127) that can be decomposed into
n
T Z (0¢(60) — v:(6o))

- jﬁ S e S o) — ()30,
t=1 §=0
(2.141)

n t—1
+ jﬁ > he S (15(00) — 75(60, 1) (do)

t=0 j=1

P = :
+ 7 tzl hiy ; 7j(00)&t—;(do)-

For the first term in (2.141), note that by assumption 2.1

n t—1 2
E { [Z his Z(ét—j(do) —&—5(do))7; (0o, t)] }
=1 i—0

2 . mln(svt)—laTj(Q,mm(s,t)) OTj4|t—s|(0, max(s, 1)) 2
_ Z Z 5 o0’ nmin(s,t)—j
s,t=1 j=0 =00 f=bo

00 t—1 J
xE lZEQ (Z 7k (0o, t Zal 0O)Tjt—k— l(d0)> (2.142)
k=0 1=0
X (iTk(GOa Z (P0)Tjts—k— 1(%))]
k=0 1=0
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min(s,1)= g 071 (0, min(s, 1))
Z Eonin(s.t) ZT

j—k
Z Wl(do)aj_k—l((p0)>

s, t=1 7=0 k=0 0=0, 1=0
Jtlt—s| J+|t—s|—k
071 (0, max(s,
< Z k—)) Z m (do)aj+t—s—k—l(90o)>]
k=0 0=0 =0
0 2.143
o J 2149
x E lzg_] ( T (0o, t Zal ©0)Tj4t—k— l(d0)>
j:(] : l
s—1 J
(ZTk 0o, s Zal ©0) T jts—k— l(d0)>1
1=
n ) — min(j—k,t—1)
ot (0,t
+2F K P (Z 6. > Wz(do)ajkl(@o)>
s,i—1 =t k=0 0=0o 1=0
t—1 j—t
X (Z Tk 90,t)zaz(<ﬂo)7rj—k—l(do)> >
k=0 =0 o (2.144)
s—1 87% (9 S) min(j—k,s—1)
X Zes j 80,’ Z Wl(do)aj_k_l<@0)
k=0 0=0, 1=0

X ( Y (0o, 5) 3 al(SDO)'ﬂ'j—k—l(dO)> )]
k=0 =0

For (2.142), one has for all ¢ # s

min%)_l O7;(0, min(s, t))
0o

OTj4j1—s| (0, max(s, 1))

b 507

2
nmin(s,t)—j]

j=1 0=6, 0=6,

= O(ft = 5|01,

by lemma 2.A.4, and O(1) for t = s. Furthermore, for (2.143), the first term is
bounded by

min(s,t)—1 , J 073,(6, min(s, 1))
Z €min(s,t)—j Z 00

j—k
Zﬁl(do)aj_k—l(900)>

=0 k=0 =00 (=0
Jtlt—s| ek
07 (0, max(s,t
( Z A 50 (s,1)) Z ﬁl(do)aj+|t_s|—k—l(900)>]
k=0 b=60  1=0

_ O(’t - Slmax(—do,—g‘)—l)’

by lemmas 2.A.1 and 2.A.4 for t # s, and O(1) otherwise. In addition, for both
(2.142) and (2.143), by lemmas 2.A.1 and 2.A.2 the other remaining term is bounded
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t—1

Z&j (Z 7 (6o, 1) Z al(900)77j+tkl(do)>
j=0 k=0 =0
s—1 j
X (Z (0o, 5) Z al(@o)ﬂj+sk1(do)) ]
k=0

=0
=0 ((1 + log t)3tmax(*do,*4)(1 + log 8)3smax(—d0,7§)71> .

E

Consequently, both (2.142) and (2.143) are Zztle((l + log t)3tmax(—do,—C) (1 4
log 5)3smax(=do,=O)—1|¢ s\max(_do’_o_l) = O(1). Finally, by lemmas 2.A.1, 2.A.2,

and 2.A.4, (2.144) is

S E

s,t=1

S0 ((1+10g j)°j2ms(=do=0=2)

ieg_jO( 1+ log j)?j2max(=do,=¢)— 2) ]
j=s

Z +logt t2max( do,— )—1(1+logs)982max(—do,—§)—1 :O(l).

Thus, the first term in (2.141) is 0,(1). For the second term in (2.141), note that
by lemma 2.A.3, Y57 (75(60) — 75(00,8)) < K 3023 3702, 4 (1 +log k)2 (1 + log (k —
j))?kmax(—do,—@—l(k._j)max(—do,— )—1 < Kzt—l(1+10gt)thax(—do,—C)—l(1+10g(t_
j))g(t _ j)max(—do,—g) < K( + logt)Qt_lz max( do,— C)( )max(—do,—g“)(l +
log(t — j))? < K(1 + logt)>tmax(=do,—O)—1 and thus ﬁthl hi ¢ Z;;ll(v'j(eo) -
7;(00,t))&—;(do) = 0p(1). For the third term in (2.141)

t=1 j=t

E Z hit Z Tj (ao)gt—j (dO)]

_ . mine 0t 9 07;(0, min(s, t)) OTj4j1—s|(0, max(s, )
S0 S a
86=1 7=0 0=0o =00
x B Zvﬁ Ti45(00) 7515 (60) +Z&J (Zm,@ (6o) Z (o)) k- l(do)> (2.145)

(ZTerk (6o) Z (P0)Tj—k— z(%))]
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n

min(s,t)—1 j .
071 (0, min(s, t))
2 ) )
+ Z E Z €min(s,t)—j (Z o0

ji—k
Z ﬂl(do)aj_k—l(¢0)>

s,t=1 =0 k=0 9=0, 1=0
J+lt—s| GH|t—s|—k
01 (0, max(s,t
<> ]C(T,()) Y mdo)ajyje—si-k-1(%0) 1
k=0 f=60  1=0 (2.146)
X E | 02 mai(00)7eri(00) + > € <ZTt+k (6o) Z (o) Tj—k— l(do)>
7=0 7=0 k=0
J j—k
X (ZTs+k(90) az(@o)ﬂj—k—l(dO))]
k=0 1=0
n oo t—1 min(j—k,t—1)
ot(0,t
+2_E (Zefa( Tka(g ) > Wz(do)ajkz(%)>
s,t=1 j=t k=0 0=0¢ =0
J—t ot
X ( Tik(0) Y al(‘PO)Trj—t—k—l(dO))>
h=0 =0 o (2.147)
00 s—1 aTk(o S) min(j—k,s—1)
2D DY 86” > mldo)aj_k-i(po)
j=s k=0 0=0¢ =0
j—s j—s—k
X ( Ti+1(00) Z al(@o)ﬂjskz(do)> )1
k=0 1=0
For (2.145) and (2.146), it holds that
0o i i—k
E[ € (Z Te41(00) > ai(po) i ,(d0)>
=0 k=0 1=0
J Jj—k
x| > err(bo) az(wo)ﬂy—k—l(do)ﬂ
k=0 =0
— ((1+10gt>3tmax(_d0’_o(1+10g8)38max(—d0’_o_1),

and B [ S350 12 7 (00) 7 (60) | = O((1+log )t~ (000 (1 4 log )~ min(do<)-1)
Thus, analogously to (2.142) and (2.143), expressions (2.145) and (2.146) are O(1).
Also analogously to (2.144), by lemmas 2.A.1, 2.A.2, and 2.A.4, (2.147) is bounded
from above by

ZE

s,t=1

(Z 2,0 ((1+1og )% 4= O=1(1 4 log(j — 5))*(j - s)max(d““))

Jj=s

(Z 250 ((1+10g.) 5 40=071(1 4 log(j — 1)*(j — t)max(do,ol))

Jj=t

= 0(1).

Therefore, also the third term in (2.141) is op(1). It follows that the second term in
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(2.127) is 0p(1). Finally, consider the last term in (2.127)
Zth t(6o) — ve(6o))

_jﬁ Z ha,t Z(ét—j(do) —&—j(do))7j(6o,1)

(2.148)
+ 7Zh2tz Tj 90 _T](907 ))ét ](dO)
J=1
2 -
+ % Z ho ¢ ZTj(GO)ft—j(dO)-
t=1 j=t
For the first term in (2.148), by assumption 2.1 it holds that
. o6-@| ) 2
{ Z (ZTJ 0o, t) == J )Z €—j(do) §t—j(d0))7'j(907t)] }
t=1 =0 0=0 7=0
n min(s,t)—1
= SEIE ; Umln(st) —j (Z kT] % (0o, min(s t)))
J+lt—sl 1
X Z %Tjﬂt,s‘,k(%,max(s,t)) ]
=t (2.149)
oo t—1 J
[Z (ZTk 00,t) > ai(po)mje—k—1(do )
7=0 k=0 =0
s—1 7
X <Z7'k(9o, ) > ai(o)myps—k—i(do) >]
k=0 1=0
n min(s,t)—1 i _ d
+ Z E Z mm(s H—j (Z T (6o, min(s, t)) Z aj_k_l(cpo)>
s,t=1 j=0 k=0 1=0 0=0o
Jt|t—s| jH|t—s|—k
om(d
><< Y o max(s,) Y O ajﬂskl(sao))]
h=0 =0 0=6o (2.150)

x E €2 (Zm 0o, t Z (00)Tjtt—k— l(d0)>

(ZTk (6o, s Z (P0)j+s—k— l(d0)>1

=0
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aj—k—l(@o))
0=0

x (Z 7k(6o, t) i az(%)%‘kl%)) )

k=0 =0 (2.151)
0o s—1 s—1—k 87rl(d)
)| el Do mlbos) Y 9 aj—k—1(o0)
Jj=s k=0 =0 0=0¢
s—1

x <Z 7100, 5) X_: az(@o)%‘—k—l(%)) )] ;
k=0 =0

while all other partial derivatives of &_;(d) (i.e. those w.r.t. all other entries except

d) are zero. By lemma 2.A.2, the first term in (2.149) is

min(s,t)—
[ Z nmln (s,t)—J (Z ]CT] k 007m1n(8 t)))

J+t—s| 1
% Z %Tjﬂtfs\—k(@o, max(s, t))

= O(‘t - S|71)7

for t # s, and O(1) otherwise. In addition, by lemmas 2.A.1 and 2.A.2 it holds that
the first term of (2.150) is

min(s,t)—1 j— kaﬂ_ (d
1
E Z mm(st <Z Tk (0o, min(s, t)) Z 2 ajkl(goo)>
=0 1=0 =00
J+t=sl| Jt—s|-k
om(d
X Z Tk (6o, max(s, t)) 6[; ) @ ft—s|—k—1(¢0) ]
k=0 =0 0=069
= O(|t — s|max(zdo,=0)= 1) (2.152)

for ¢t # s, and O(1) otherwise. The second term in (2.149) and (2.150) is

Z €, (Z 71 (6o, t Z (WO)Wjthkl(dO))

7=0 =0

X <i Tk(eo, S) Z al(‘PO)WjJrskl(dO)) ]
k=0 =0

:O((l + log t)gtmax(*dﬂyfo(l + log S)Ssmax(ido’ic)il)

Thus, analogously to (2.142), (2.143), (2.145) and (2.146), it holds that (2.149) and



90 The fractional unobserved components model

(2.150) are O(1). Finally, (2.151) is bounded from above by

Z (1+logt) 7t2max( do,—¢)— 11 4 log 3)7smax(*d°’7<)71) = O(1).

Hence, the first term in (2.148) is o,(1). For the second term in (2.148), by lemma
2.A.3, Z;;ll (15(60) — 7j(00,t)) = O((1 + logt)>¢max(=do,=0)=1) ag already noted for
the second term in (2.141), and thus % g hot Z;;ll (75(60) —7;(60,1))&—i(do) =
op(1). For the third term in (2.141)

‘A

s,t=1

Z hai ZTj(Qo)gtj(do)l }
min(s,t)—1
Z 77m1n s t (Z kTJ k 907m1n(s t))>

k=1

J+|t*5|1
X Z %Tj-i-\t—s\—k(oOvmaX(svt)) ‘|

> 1 745 (80) 7 (Bo) (2.153)

=0

[e’e) j—k
+Y € (ZTtH@ (60) Y ai(0)mj—k—i(do) )
=0 k=0 1=0
J Jj—k
X ZTs+k 6o)
k=0

a;(o)mj—k—i(do) ]
=0

n min(s,t)—1 j i—k
. om(d)
2
+Y E Z €min(s,t)—j (Z 760, min(s, 1)) > 9 aj—k—z(s00)>
s,i=1 j=0 k=0 1=0 0=0,
=] JHlt—s |-k
om(d
X( > 7wlbo,max(s,t) Y 8lc(l ) aj+t—s—k—l(900)>
k=0 1=0 0=0o

(2.154)

00 j —k
ZU T (00)Ter i (B0) + > €5 <ZTt+k (60) > ai(po)mj—k—i do))
7=0 7=0 k=0 =0
: ik
(zw )
1=

ai(po)mj—k—i(do) ]
0
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aj—k—l(@o))
] =6,

j—t j—t—k
X ( Te+k(600) al((PO)thkl(dO)> )

k=0 =0 (2.155)
0 s—1 s—k—1 87Tl(d)
(Y e, 7(00,5) Y 9d a;j—k-1(o)
Jj=s k=0 =0 0=0¢
j—s j—s—k
X <Z Ts+k(00) al(@o)ﬂj—s—k—z(do)> )]
k=0 =0

As noted above, the first expected value in (2.153) is O(|t — s|7!) for s # ¢,
else O(1). For the second term (2.154), note that the first expectation is O(]t —
s|max(=do,=O=1) for s £ t, else O(1), see (2.152). Furthermore, as shown below
(2.147), the second expectation in (2.153) and (2.154) is O((1+log t)3t™ax(=do,=C) (1 4-
log 5)3s™2x(=do,=O=1) "and thus (2.153) and (2.154) are O(1). Finally, the last term
(2.155) is O(1), and the proof is identical to (2.151). Thus, also the third term in
(2.148) is 0p(1). This shows that (2.127) is 0p(1) and completes the proof. O

Lemma 2.A.7 (Boundedness of third partial derivatives of Q(y,#)). For d € D3
as defined in the proof of theorem 2.4.1, v € X, as defined in section 2.4, and
¢ € Ns(po) as defined in assumptions 2.2 and 2.4, the third partial derivatives of

the objective function (2.16) are uniformly dominated by some random variable By,

that is Op(1),

3
B, = sup 862((%;0)‘ = 0p(1).
dEDg,I/EEV,sDEN(;(cpo) 80
Proof of lemma 2.A.7. The third partial derivatives are
>Q(y,0) i d%u(0) Ouy(0) + 2 - v (0) 0%vi(6)

0 4y00 100 < 961091 ae(m) nt 99y 901y,

" 622115 6’Ut 3 (9)
T Zae(k 0my D0 42 Z“t 00,900,001

for k,l,m =1,...,q + 2, with dv(0)/(90,) in (2.38),

82v,(6) _ti 0%7;(0,t) o dHaTj(e,t) a&—(d)
- —J]
00— = | 900, by 09

97(0,t) 9&—;(d) 7:(60,1) & j(d)
89(1) 89(;@ ae(k)ae(l) ’
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&Pvy(0) _ti Fr0.0) o g P10, %)
07i(0,) 9&—j(d)  Imi(6,t) 0%—(d)
90(1)00(my 00 00y 0000,y
0%7i(0,1) 0&—j(d) | 97(0,1) 9%6—(d)
07;(6,t) 9°€—4(d) 0%6—j(d)
00y 00100 00 190,100 1)

J=0

+ Tj(@,t)

Boundedness in probability of the third partial derivatives then follows from (2.39)
upon verification of the absolute summability condition of the partial derivatives of
7;(0,t), as the derivatives of &_;(d) are zero for all entries of 6 except for d, and
as those derivatives w.r.t. d are contained in (2.39). As can be seen from lemma
2.A 4 and its proof, the second and third partial derivatives of 7;(f,t) depend on
the coefficients bj(¢) and m;(d), the matrices Z¢(6), Sq¢, By, and their partial
derivatives. While the convergence rates of the former are given in lemma 2.A.1,
those for the first partial derivatives are contained in the proof of lemma 2.A.4. In
addition, we require 82%2@ = itj(d) = O((1 + log j)%i~¢~1) and aggégd) =7;(d) =

O((1 4 log5)%j~%1) (see Johansen and Nielsen; 2010, lemma B.3), % =

H . 9%b; =
bi(eun) = O(~¢1) and Wéﬁw = bi(p@wim) = O™ for k,l,m =
1,...,q by assumption 2.4. Based on them, the convergence rates of the following

matrices are obtained

. 0?84 7ij-i(d) = O((1 +1og(j —1))*(j —4)~971) if i <4,
(Sd»t)(ivj) = Od2 G.d) =
i,

_<a?)sd7t) _ {'fr'j_xd)=o<<1+1og<j—i>>3<j—z'>“) ifi < j,
(4,9)

0 else,

0 else,
b ()T —i(d) = O((L+ 5 — )~ 1) if i < j,
S0 m(d) i (d) = O((1 +log(i — §))2(i — )4 1) else,

128 (@) itpriog (d) = O((1 +log(i — 1)2(i — §) =% 1) else,
i () j—i(d) = O((1+j — i) =91 if i < j,
10T (d) 7 primy (d) = O((1 +log(i — §))3(i — 5)~*1)  else,

0B, ) _ Jbinileen) =0(G -7 i<,
(4:4)

0 else,
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i Yo = < P By > _ {.i)‘j—i(@(k,l,m)) =0((j—i)~<7h) ifi<y,
%’(k,l,rn)vt (17]) - -
(4,9)

Py 02 (1) 0 (m) 0 else,

211;11 Bm(@(k l))bm-l-j i(‘ﬂ) = O((l +J- i)_c_l) ifi < Js
b

(Bg/o( . ),tBsa,t)(i,j) =
. S b (©)bmii (Peny) = O((i — )71 else,

(B! Bot)( = Z;L_:ll Bh(w(k,l))bh-i-j—i((p(m)) O((1+j—i)~¢1) ifi<j,
Pk,1),t7P(m) i,7) — o .
Sh21 b () onti—g (Pny) = O((E = 7)) else,
(B/ B )( = Z;L_:ll 'I')'h(@(k,l,m))bh-i-j—i((ﬁ) = O((l +i— ,L')—C—l) if i < 4,
Pr,t,m) st Pt (4,5) — o
S0 bn (@) Dtz (Petmy) = O((i — §)~7Y) else,

for k,I,m = 1,2,...,q + 2. As becomes apparent, the partial derivatives just add a
log-term to the convergence rates that is always dominated by its powers and thus
does not affect the convergence of the partial derivatives. It follows that the first,

second and third partial derivatives of 7;(#,t) are absolutely summable in j and thus
33Q(y,9)‘ _

©o0) |~ 90®)

Op(1). O

satisfy the condition for (2.39). By (2.39), By, = SUPycp, ves, pens(

Lemma 2.A.8. For the partial derivatives of vi(0), it holds that

ov(0)
00

B 611,5 (9)
00

m ~ ~
= Z [%,Mm’ + ¢e,j6tﬁ}
j=1

0=09 0=09

where ¢y, ; is O((1+1og§)%§~"), while ¢ ; is O((1 + logt)>tmax(=do.=O=1) for j < ¢
and O((1 + log 7)7jmax(=do,=O=1) for j > ¢.

Proof of lemma 2.A.8. Consider

0ve(9 vy (6 — 07 (6 _
%té ) N %é ) - Z 0.1 {ftfj(do) - §t—j(do)} (2.156)
0=0o =0, j=1 0=0,
t—1 T
S agém - afgz,w ] £ (do) +ZaT] b (215)
T 6=0o =0 0=0
+ 3y 7(00:t) [a&ég(d) = (%tcf)é() (2.158)
=0 =0to 0=09
+Z 7j(00) — 7(00,1)] a&(f;é,(d) +ZT] 0o) 08— J (d) (2.159)
=00 J= 6=t

Since & ;(do) — &—j(do) = Yoo, _jTk(do)ct—j—k, by (2.68), lemma 2.A.4, and as-

sumption 2.2, the term (2.156) is 3 7%, €;—; St 87%5 )

{:_é ar(po)mj—k—1(do) =
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Z] L O((1+1og j)8jmax(=do.=C)=1)¢, .. By lemma 2.A.5, (2.68), and assumption 2.3,
the first term in (2.157) is

t—1 t—1
87'] 0T (6,1) ~ or;(0) o1 (6,1)
2 Y -3(do) = Z 00 Y =i
Jj=1 60=0¢ 0=09 Jj=1 0=09 0=0o
min(j,t—1) j—k
ot (0 or;(0,t
+ ‘i Y léé) - ]ase ) ] > " ai(po)mj—k-i(do)
9290 0= 0 =0

7j=1 k=1
t—1

O((1 +log t)> o=y, 5 4 ¢y )

& 1

|
~+~

J

+) O((1 +log j)Tjmax(zdo=0O=1ye, .

J

For the second term in (2.157), by lemma 2.A.4, (2.68), and assumption 2.3

> 97;(0) .
20
Jj=t 0=0¢
> 97:(0 9 j—t—k
:Z Téé) ntj—i_zetﬂz THk ) Zaﬂpoﬂgtkl(do)
=t 6=00 j=t 0=0, 1=0

— ZO((1+10g])4 :max(—dp,—()— 1 +ZO —|—10g] 6 max( dO’_C)_l)Et,J‘.

Note that (2.158), (2.159) are non-zero only for the derivative w.r.t. d. For (2.158),
it holds that 2mld-do)| 4, = —i~', see Robinson (2006, pp. 135-136). Thus

_96-4(d) ] Z e jZTkz (6o, 1)
=00

j=t

0=09

oo
= O((1 +1og§)* ")m- ]+ZO ((1 4 log j)tjmax(=do,=Q)=1ye, .
j=t J=t

by lemma 2.A.2, Johansen and Nielsen (2010, lemma B.3), and assumption 2.3. For
the first term in (2.159), by lemmas 2.A.2, 2.A.3, Johansen and Nielsen (2010, lemma
B.3), and assumption 2.3

t—1 min(j,t—1)

S 00 — 0. By ) )

=1 o=0,  i=1 k=1 JHl-k
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o min(j,t—1) ]—k O . l(d)
+> ey Y, ((00) = mk(00,1) D il ]7
=0 k=0 l:O P
00 t—1
= O((1 +1og )% me—j + > O((1 +logt)?tmex(=do=O= 1y,
=1 =1
oo
+ZO(( +log j)7 (= dmO " )e,

while for the second term in (2.159), by lemma 2.A.2, Johansen and Nielsen (2010,

lemma B.3), and assumption 2.3

- 9&—;(d) R 75(6o)
2700 =55 2 JZ]Jrl—k
j=t =6y Jj=t k=t
00 Jj—t j—t—k
Omi_p—_p_1(d
FY s Yo mnlto) Y o) I
j=t k=0 1=0 6=0o

j=t J=t
Together, the results above prove lemma 2.A.8. O

Lemma 2.A.9. For v(0) as defined and (2.15) and 04(0) as defined in (2.29), it
holds that

foralli,j=1,...,q+2.

Proof of lemma 2.A.9. The proof is analogous to the proof of lemma 2.A.6 and thus
is only summarized briefly. It will be helpful to note that there exists a constant

0 < K < oo such that

*71,(0,1) K —d,—()—1
— 2 — O ((1+ logk)K gmax(=d—0)=1) (2.160)
96,00, ( )
6277.3(9) 82Tk(9 t) K —d—C)—
- LA 1 + log t)K¢max(=d,—0)=1) 2.161
0000, D06, (@ +1080) ) (2.161)

(2.160) can be seen directly from the proof of lemma 2.A.4, as the second partial
derivatives only add a log-factor to the convergence rates in lemma 2.A.4. (2.161)
can be shown analogously to the proof of lemma 2.A.5, where again the second

partial derivatives only add a log-factor to the convergence rates in lemma 2.A.5.
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i ; : _ oxt—1 Pr(6,0) .
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and thus the different terms in (2.162) can be considered separately and will be shown
to be o,(1). Note that 0,(6p) adapted to the filtration ]-"f is a MDS as explained
in the proof of theorem 2.4.2, while iL&t(i’j), ﬁ4’t(i,j)7 B57t(i,j) are ff_l—measurable.

Starting with the first term in (2.162), by plugging in hat e M3
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The latter two terms in (2.163) are MDS when adapted to ]:tg, as (@t(eo),ff) is a
stationary MDS and as the other terms are .7-'f ;-measurable. By (2.160) and (2.161),

92T, 0°1(0) 9%7,(0,t)
2 e taa(l)kae(])‘e 90& k(do) as well as 37, (ae< 90, o6 ae(lfao(])‘e 60> §-k(do)

are op(1). Hence, the latter two terms in (2.163) are also op(1). In contrast, the first

term in (2.163) is not a MDS. However, by the same proof as for (2.128) (replacing
the first partial derivative of 7(6,t) by the second partial derivative and noting that
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this only adds a log-factor to the convergence rate) it can also be shown to be o,(1).

Thus, (2.163) is 0p(1). For the third term in (2.162), by plugging in B4,t(ij>, hag

1 -
n tz_; 0t(00) (hat(, ;) — hai)

1 n . t—1 82"_ d
==Y (o) Y (1r(60) — (b0, 1)) 89&;9()
nia k=1 YY) | —
=0 (2.164)
S0 S o (a%}k( ) P&uld )) '
nia 09005 0990 ) |,_p

0261, (d)
90:005) |,

)

i
NE
NeLRiNg

ﬁt(eo) Tk(eo)

&
Il
—
B
Il
L

=6y

where the first and third term are MDS when adapted to ]-'f , as 0¢(0y) is a MDS
and the remaining term is ]-"f ,-measurable. The third term is op(1), because

Py Tk(eo)%\e g, 18 op(1) by lemma 2.A.2, and by Hualde and Robinson

. . d2¢
(2011, lemma 4). The first term is 0,(1) since (74(6o) — 7% (00, 1)) 8936’“@(5) ‘9 6o 1

op(1) by lemma 2.A.3. The second term can be shown to be o,(1) analogously

to (2.134) by replacing the first partial derivatives of ét(d) with the second partial
derivatives, as this only adds a log-factor to the convergence rate, see Hualde and
Robinson (2011, lemma 4). For the fifth term in (2.162), similarly to (2.163) and
(2.164)

1< .
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where the first and third term are MDS as before. The first term is 0,(1) by lemma
2.A.4, while the third term is 0,(1) by lemma 2.A.5. The second term can be shown
to be 0p(1) analogously to (2.134) using (2.137), as the partial derivatives of 73(0,t)
only add a log-factor to the convergence rates, see lemma 2.A.4. Thus, (2.165) is
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also 0,(1). The second, fourth and sixth term in (2.162) can be written as
1 n
- ;hl,t@’j) (0¢(00) — ve(60))

n -1
- % Zh“(i,j) Z(ét—k(do) — & —1(do)) (60, 1)
- o (2.166)

n t—1
1 ~
+ d B, Y (Tk(00) — 7 (00, )&k (do)
=1 k=1

1 n oo 5
+ D g, Y k(60)6k(do),
t=1 k=t

with [ = 3,4,5. For [ = 3, (2.166) only differs from (2.141) as it contains the second
partial derivatives of 7% (6,t) in h37t(i7j). However, they only add a log-factor to the
convergence rates of the first partial derivatives, see (2.160). For [ = 4, (2.166) is
almost identical to (2.148), where the only difference is that the former considers the
second partial derivatives of & (d) via h47t(i,j)' Again, the second partial derivatives
only add a log-factor to the convergence rates in (2.148) (Hualde and Robinson; 2011,
lemma 4). For | = 5, (2.166) is again almost identical to (2.148) but now includes
the first partial derivative of 74 (6,t) via h57t(i,j)' As for the other terms, by lemma
2.A.4 the derivative again only adds a log-factor to the convergence rate of 71(0,1t).
Thus, it follows directly from (2.141) and (2.148), together with (2.160) and Hualde
and Robinson (2011, lemma 4), that (2.166) is 0,(1). The two remaining terms in
(2.162) are o,(1) by (2.165) and (2.166), as 4, j can be interchanged. This completes
the proof.

O



Chapter 3

Solving the unobserved
components puzzle: a fractional
approach to measuring the

business cycle

3.1 Introduction

Measuring the business cycle plays a key role in applied research, as many macroe-
conomic models make assumptions about the long- and short-run behavior of real
output. In order to verify these assumptions, appropriate methods for decomposing
time series into trend and cycle are necessary and are considered in this paper.

For log US real GDP, which is the main application of trend-cycle decompositions
(see e.g. Harvey; 1985; Morley et al.; 2003; Morley and Piger; 2012), the results in
the literature are puzzling. While empirical evidence supports a strong negative
correlation between long- and short-run innovations, both the correlated unobserved
components (UC) model as proposed by Balke and Wohar (2002) and Morley et al.
(2003), and the decomposition of Beveridge and Nelson (1981), estimate a volatile
long-run component along with a noisy cycle, thereby missing the NBER chronology
and contradicting macroeconomic common sense.

Since the above models do not provide plausible estimates of the business cycle,
some empirical researchers prefer trend-cycle models in the spirit of Hodrick and
Prescott (1997), which assume a trend component integrated of order two for log
GDP. Although this specification is at odds with both, economic theory and empir-

ical evidence, modeling the trend of log GDP as an I(2) process yields an estimated
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variance of the long-run innovations close to zero, making the estimated trend com-
ponent very smooth. Any dynamics of log GDP away from the smooth trend are
attributed to the cycle, yielding rich cyclical oscillations. As a similar solution but
with an (1) specification for the trend, Kamber et al. (2018) suggest fixing the
correlated I(1) UC model by restricting the parameter space to the region where
the variance-ratio of long- and short-run innovations is small. This forces the I(1)
long-run component to be smooth, leaving additional dynamics to be captured by
the cycle. However, since the constrained parameter space is a subspace of the pa-
rameter space of the correlated I(1) UC model, the question arises as to why the
unconstrained optimization yields different parameter estimates corresponding to a
higher log likelihood. In summary, both assuming an I(2) trend for GDP, as well as
restricting the parameter space of the correlated I(1) UC model to the region where
the variance-ratio of long- and short-run innovations is small, clearly yields a mis-
specified model for log US real GDP, but at the same time provides an economically

plausible estimate of the business cycle.

We argue that the puzzling business cycle estimate of the correlated I(1) UC
model is an artifact generated by the presence of a smooth fractionally integrated
long-run component in log US real GDP with an integration order greater than
one but less than two. Misspecifying the integration order upward-biases the vari-
ance estimate for the long-run innovations in the correlated I(1) UC model, as the
additional memory that is not captured by the I(1) trend feeds directly into the
estimated long-run innovations. As a glance at figure 3.2 shows, the periodogram
of the long-run innovations has a peak at the origin, indicating that the estimated
innovations have long memory. The upwardly biased variance estimate leads to an
erratic estimate of the trend component, along with a noisy cycle that adjusts for
the fluctuations in the trend. Conversely, misspecifying the trend as an I(2) process
produces estimates of the long-run innovations that are anti-persistent, a trend that

is too smooth, and attributes too much of the variation in GDP to the cycle.

We contribute to the literature by revisiting the puzzling estimates for the busi-
ness cycle using the fractional UC model that was derived in chapter 2 of this thesis.
Like traditional models, the fractional UC model allows to decompose an observable
variable into trend and cycle, but the stochastic part of the trend is modeled as a
fractionally integrated process of order d € R, denoted as x; ~ I(d). It encompasses
the above I(1) and I(2) UC models as special cases. Since d can take any value on
the real line, the model seamlessly links integer-integrated UC models and allows for

intermediate solutions. Parameter estimation is performed by the quasi-maximum
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likelihood (QML) estimator, where the integration order is estimated jointly with the
other model parameters. This provides a data-driven solution to the specification
of the memory of the trend. In addition, the model allows inference about the ap-
propriate specification of the long-run component, and in particular the hypotheses
that d equals one or two can be tested. For the cyclical component ¢;, we consider
several specifications, including both rich and parsimonious ARMA models as well
as replacing the traditional lag operator with the fractional lag operator of Granger
(1986). Furthermore, we include a deterministic trend component that is a polyno-
mial of order b, b € R, as a generalization of the traditional linear trend. Estimates
for trend and cycle are obtained from the analytical solution of the Kalman filter

and smoother that was derived in chapter 2 of this thesis.

For empirical researchers, we provide guidance on the appropriate specification of
UC models for arguably their most important use case: For log US real GDP, we in-
vestigate whether an integer-integrated trend component is appropriate, or whether
a generalization to fractionally integrated processes better captures the long-run dy-
namics. We consider several different specifications for the cyclical component and
select the most appropriate specification by minimizing the Bayesian information
criterion (BIC). And we comment on whether a deterministic polynomial trend im-
proves the fit as compared to the traditional linear deterministic specification. For
the preferred specification in terms of the BIC, we estimate an integration order of
about 1.30 for log US real GDP, while rejecting both the d = 1 and d = 2 hypotheses.
This is consistent with the finding that smoothed long-run innovations from 7(1) UC
models exhibit long memory, while those of 1(2) UC models are anti-persistent. Our
results suggest a very parsimonious parameterization of the cycle for GDP, and the
fractional lag operator improves the fit relative to the traditional lag operator. For
the deterministic trend component, our results show that a general polynomial trend

has little to no advantage over a linear trend.

The resulting estimate of the business cycle from the selected fractional UC model
is well in line with economic common sense: As a glance at figure 3.3 reveals, the
estimated cyclical component exhibits the same turning points as the theory-based
output gap measure of the US Congressional Budget Office (CBO). It rises gradually
in periods of economic recovery and prosperity, and falls sharply during the NBER
recession periods. Moreover, we obtain new insights about the business cycle in
addition to those of the CBO, most notably an overheating economy in the run-up
to the Great Recession as also found by Barigozzi and Luciani (2021) using a high-

dimensional dynamic factor model with many macroeconomic indicators as inputs.
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Thus, our specification of the fractional UC model can serve as a complement to the
theory-based CBO model. Finally, despite the generality of the fractional UC model,
we find that long- and short-run innovations are (almost) perfectly correlated. While
this aligns well to the empirical results from integer-integrated UC models (Morley
et al.; 2003; Iwata and Li; 2015), it implies that long- and short-run innovations
cannot be identified separately for US GDP.

The paper is organized as follows. Section 3.2 details the unobserved components
puzzle and motivates the need for a fractional UC model, which is introduced in
section 3.3. Section 3.4 outlines parameter estimation via the QML estimator, and
details the estimation of trend and cycle via the Kalman filter and smoother. Section
3.5 applies the model to log US real GDP, while section 3.6 concludes. Robustness

checks and additional figures and tables are included in the appendix.

3.2 The unobserved components puzzle

The UC literature builds on a simple model that decomposes an observable time

series {y;}7—, into unobserved trend 7 and cycle ¢;
Yt :Tt—l-Ct. (31)

Trend and cycle are disentangled by their different spectra: The cyclical component
¢t is a mean zero stationary process that is expected to capture the transitory fluc-
tuations of y; and is interpreted as the business cycle for y; being log GDP. The
long-run component 7, on the other hand, has an autocovariance function that de-
cays more slowly than with an exponential rate, is allowed to be non-stationary, and
is expected to capture the long-run dynamics of GDP. The UC literature specifies 7
as the sum of a stochastic trend component and some deterministic terms, usually

a constant plus a linear deterministic trend
Tt = po + pat + Ty, Ay = .

The difference operator is defined as A% = (1 — L)%, where L is the lag operator, and
d € N. It takes the d-th difference of x;, and thus z; ~ I(d) is a stochastic trend
with memory d.

The cyclical component is modeled as a mean zero stationary autoregressive

process

b(L)Ct = &¢,
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and long- and short-run innovations are assumed to be Gaussian white noise with

covariance matrix @)

(Ut) ~ NID(0,Q), 0- [ag an;] .
€t Ope OF
To date, the literature has come up with a variety of different specifications
for log GDP that are encompassed by the above UC model. Key differences are the
specification of the trend memory d, and whether long- and short-run innovations are
allowed to be correlated. The first generation of UC models builds on the seminal
work of Harvey (1985) and Clark (1987): Models in the spirit of Harvey (1985)
assume that the stochastic trend is a random walk and thus set d = 1. They will be
called UC-I(1) models. In contrast, the double-drift model of Clark (1987) assumes
that x; is a quadratic stochastic trend, setting d = 2. Models in the spirit of Clark
(1987) will be referred to as UC-I(2) models. Both classes of models specify ¢; as

a stationary, finite, zero mean autoregressive process and force @ to be diagonal.

The second generation of UC models was introduced by Balke and Wohar (2002)
and Morley et al. (2003), and modifies the first generation models to allow for con-
temporaneously correlated long- and short-run innovations. For log US real GDP,
Morley et al. (2003) provide extensive evidence that long- and short-run innova-
tions are strongly negatively correlated. Since both Balke and Wohar (2002) and
Morley et al. (2003) specify z; to be a random walk, their models will be called
UC-I(1)-corr models. Analogously, Oh et al. (2008) generalize the UC-I(2) model
to non-diagonal ). Their model will be referred to as the UC-I(2)-corr model.

Besides the first and second generation of UC models, less structural frameworks
are proposed by Hodrick and Prescott (1997) and Kamber et al. (2018): The filter of
Hodrick and Prescott (1997) assumes z; ~ I(2), implicitly treats ¢; as white noise,
and assumes a constant signal-to-noise ratio between long- and short-run innovations
that is determined by the tuning parameter of the filter, see the discussion in chapter
2 of this thesis. It is hereafter referred to as the HP-filter, and is a special case of the
Clark (1987) model, where the parameter space for @ is constrained by setting the
variance-ratio of long- and short-run innovations to a certain value. The counterpart
for x; ~ I(1) is derived by Kamber et al. (2018) and is called the BN-filter in what
follows. Like the HP-filter, it also restricts the parameter space for ) by forcing the
variance-ratio of long- and short-run innovations into a certain region. Both HP- and
BN-filter are popular among empirical researchers, because the restricted parameter

space typically forces the variance of long-run innovations to be small, yielding a
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smooth stochastic trend z;, while at the same time forcing the variance of short-run
innovations to be comparatively large, thus attributing rich dynamics to the cyclical
component ¢;. A summary of all models and their underlying restrictions in terms

of (3.1) is given in table 3.1.

Tt Ct Q
UC-I(1) Az =m b(L)er =& Q diagonal
UC-1(2) Azy=mn, b(L)e = ¢ Q diagonal
UC-I(1)-corr | Azy=1m b(L)es =e; (Q non-diagonal
UC-1(2)-corr | A%z =1n b(L)e; = Q non-diagonal
BN-filter Azy=n b(L)ey =& aé /o2 small
HP-filter A%z =y = &y o, /o2 small

Table 3.1: Restrictions from the different UC models on trend, cycle, and innovations
covariance matrix.

As becomes clear from table 3.1, the parameter spaces of the UC-I(1) model and
the BN-filter are subspaces of the parameter space of the UC-I(1)-corr model, while
the parameter spaces of the UC-1(2) model and the HP-filter are subspaces of the
parameter space of the UC-I(2)-corr model. Thus, for the restricted models to be
correctly specified for log US real GDP, it is necessary that the globally optimal
parameter combinations within the encompassing parameter spaces of the UC-I(1)-
corr and the UC-I(2)-corr model are contained in the respective restricted parameter
spaces. If that holds, the maximum likelihood estimator for the underlying model
parameters has the same optimum for the restricted and the encompassing models.
Consequently, also the decomposition into trend and cycle is identical. However,
as will be shown below, for log US real GDP, this is neither the case for models
with d = 1, nor for models with d = 2. It is noteworthy that while the restricted
models have a smaller log likelihood than their unrestricted counterparts, they yield a
decomposition into trend and cycle that is more in line with economic common sense
and, in particular, with the NBER chronology. This is what we call the unobserved
components puzzle.

To learn more about an appropriate UC model for log US real GDP, we compare
the trend-cycle decompositions and the corresponding parameter estimates for the
UC models in table 3.1. The data on seasonally adjusted US real GDP come from
the Federal Reserve Bank of St. Louis!, are in quarterly frequency, cover the period
from 1947Q1 to 2022Q4 (except for the BN-filter, as explained below), and are log
transformed. Parameter estimates and filtered trend and cyclical components for the
UC-I(1), the UC-1(2), the UC-I(1)-corr, and the UC-I(2)-corr models are obtained

!The series can be downloaded here: https://fred.stlouisfed.org/series/GDPC1
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as described in the aforementioned literature: First, @ and b(L) are estimated by
maximum likelihood (ML), where the likelihood is based on the prediction error of
the Kalman filter (see Harvey; 1989, ch. 3 and 4). The order of the AR polynomials is
determined by the Bayesian information criterion, is equal to two for all models, and
the chosen lag length is consistent with the literature. Estimates for x; and ¢; are
obtained from the Kalman smoother, see Harvey (1989, ch. 3.6). Results for the HP-
filter are obtained by setting the tuning parameter to 1600, as usual for quarterly
data. Results for the BN-filter are those of Kamber et al. (2018), and thus only
consider data up to 2016Q4. We have attempted to update their results with the
most recent data, but were unable to reproduce as pronounced cyclical behavior as
in Kamber et al. (2018), instead obtaining results very close to those of Morley et al.
(2003). Figure 3.1 plots the estimated cyclical component of log US real GDP for
the six models, while table 3.3 presents the parameter estimates for the parametric
UC models.

Starting with the I(1) models, note that all three decompositions are consis-
tent with the estimates in Harvey and Jéger (1993, fig. 2), Morley et al. (2003, fig.
3), and Kamber et al. (2018, fig. 3). The UC-I(1) model provides an estimate for
the business cycle that takes the form of an asymmetric sine curve: It falls sharply
during the recession periods and gradually recovers in the aftermath. Surprisingly,
the estimated cycle becomes less pronounced when correlation between long- and
short-run innovations is allowed for: The UC-I(1)-corr model estimates a rather
noisy cycle with no clear pro-cyclical pattern during the economic recovery periods.
Instead, the estimated business cycle is characterized by sharp increases just before
the recessionary periods, followed by a sharp downturn at the recessions. When the
variance-ratio between long- and short-run shocks is restricted to be small, as for
the BN-filter, the resulting business cycle estimate again exhibits a more pronounced
cyclical behavior than in the UC-I(1) model, but it retains some of the noisy fluctu-
ations of the correlated model. Results from multivariate UC models, such as those
of Harvey and Trimbur (2003), Basistha and Nelson (2007), Harvey et al. (2007),
and Barigozzi and Luciani (2021), support the pronounced cyclical behavior of the

two restricted models rather than the noisy dynamics of the UC-I(1)-corr model.

Turning to the I(2) models, note that the decompositions are again consistent
with the literature, see Clark (1987, fig. IVb), Hodrick and Prescott (1997, fig.
1). The UC-I(2) and the UC-I(2)-corr models yield a similar log likelihood and
produce almost identical estimates for the cyclical component, although the corre-

lation coefficient is strongly negative whenever it is allowed to deviate from zero. In
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Figure 3.1: Estimated cyclical components ¢ for the UC-I(1), the UC-1(2), the UC-
I(1)-corr, and the UC-I(2)-corr model, as well as for the BN- and HP-filter. The
first four models specify ¢; as an AR(2) process as suggested by the literature and
by the Bayesian information criterion. Estimates for the cyclical components there
are obtained from the Kalman smoother. Results for the BN-filter are taken from
Kamber et al. (2018). For the HP-filter the tuning parameter is set to 1600, as
suggested by the literature. Shaded areas correspond to US recession periods as
reported by the NBER.

contrast, the HP-filter attributes comparatively less variation to the cyclical compo-
nent. Compared to the I(1) models, the cyclical patterns appear to be much more
path-dependent, taking longer to return to their mean. This is clearly due to the
I(2)-specification of the trend, which forces a smaller parameter estimate for O'% to
capture the long-run dynamics of GDP. As a result, the estimated trend becomes

smoother, leaving more variation to be captured by the cycle compared to the I(1)
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models.

Figure 3.1 immediately raises the question of which specification, if any, is ap-
propriate for log US real GDP. The obvious first step in narrowing down the model
choice is to look at the long-run component, which is the core difference between the
I(1) and I(2) models. If log US real GDP is indeed I(2), the Kalman filter under-
differences the observable variable in the /(1) models, and the remaining memory
goes into the smoothed long-run shocks. The latter become long-range dependent,
and the corresponding estimates for a% in the I(1) models are upward-biased to
capture the additional variation that is caused by under-differencing of y;. Con-
versely, if log US real GDP is I(1), then the I(2) models over-difference y;, and the
smoothed long-run shocks become anti-persistent, while the estimates for 03] in the
I(2) models are downward-biased. A simple way to detect both long-range depen-
dence and anti-persistence is to look at the periodogram of the smoothed long-run
innovations: Long-range dependent processes allocate much spectral density at the
low frequencies, while anti-persistent processes have little or no spectral mass at the
origin. The smoothed periodograms for the smoothed long-run innovations 7; of the
different models considered are sketched in figure 3.2.

As can be seen in figure 3.2, the periodogram for the long-run innovations of
both I(1) and I(2) trend specifications is anything but flat. For the I(1) models,
the innovations appear to be long-range dependent, as the periodograms peak at the
origin. This suggests that there is memory left in the smoothed long-run innovations,
resulting in a trend that is integrated of order d > 1 for log US real GDP. The
opposite holds for the UC-1(2) and the UC-I(2)-corr models, where the corresponding
periodograms show little or no spectral mass at the origin, indicating that the long-
run innovations are anti-persistent. This suggests that log US real GDP is integrated
of order d < 2. Therefore, figure 3.2 indicates that a fractionally integrated trend of
order 1 < d < 2 may be more appropriate for log US real GDP.?

We can further examine this hypothesis by estimating the integration order of
the smoothed long-run innovations. Table 3.4 summarizes the integration order esti-
mates from the exact local Whittle estimator of Shimotsu and Phillips (2005) as well
as from the estimator of Geweke and Porter-Hudak (1983) for different bandwidth
choices. For the two parametric I(1) UC models, the estimates for the integration
order of the long-run innovations fall into the interval [0.09;0.70], while for the two
parametric 1(2) UC models they fall into [—1; —0.05]. Taken together, the integra-
tion order estimates support the hypothesis that trend GDP is integrated of order

2For readers unfamiliar with fractionally integrated processes, Hassler (2019) provides a good
introduction.
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Figure 3.2: Smoothed periodogram for the smoothed long-run innovations for the
UC-I(1), the UC-I(2), the UC-I(1)-corr, and the UC-I(2)-corr model, as well as for
the BN- and HP-filter.

somewhere between one and two.

The fractional hypothesis also explains the puzzling results in figure 3.1: If the
stochastic trend of GDP is integrated of order greater than one, the UC-I(1) and
the UC-I(1)-corr model attribute the additional persistence, that is not captured by
the I(1) specification, to the long-run shocks 7, resulting in an upwardly biased
estimate of 0727. This bias forces the Kalman filter to attribute additional short-run
fluctuations to the trend, resulting in a rather noisy estimate. While the UC-I(1)
model prohibits correlation between the long- and short-run innovations, the UC-
I(1)-corr model allows the cyclical shocks to adjust for noisy long-run innovations.

Therefore, the noisy behavior of the estimated trend innovations spills over directly
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into the estimated cyclical innovations, producing an erratic cyclical estimate as
shown in figure 3.1. By excluding the region of the parameter space where the
variance-ratio between long- and short-run innovations becomes large, the BN-filter
appears robust to under-differencing, as the constrained parameter space prohibits
a large variance estimate for the trend innovations. However, strong long-range
dependence in the long-run innovations lowers the likelihood of the BN-filter that
is constructed under the assumption that long- and short-run innovations are white
noise.

To finally assess the question on whether log US real GDP is indeed integrated
of order between one and two, the next section develops a fractional UC model in
which the integration order d of the stochastic trend is no longer restricted to positive
integers. Instead, allowing for d € R, seamlessly links /(1) and 1(2) UC models and
allows for intermediate solutions. The memory parameter d enters the model as an
unknown parameter to be estimated, allowing the specification of the trend to be

chosen in a data-driven manner.

3.3 The fractional unobserved components model

In order for the trend-cycle decomposition (3.1) to be suitable for fractionally inte-
grated processes, we specify the trend 7; as the sum of a type II fractionally integrated

process of order d, and a deterministic trend u; to be determined later
Ty = pit + T, Az, =, (3.2)

The integration order d € D = {d € R|1/2 < dpin < d < dipaz < o0} determines
the memory of the trend, while 7, are the long-run shocks to be defined in (3.6)
below. The lower bound d,,;;, > 1/2 is to ensure that x; is a long-run component,
while d;,q, can be arbitrarily large and is required to keep the parameter space
bounded. The fractional difference operator Ai depends only on the integration
order d and controls the memory of x;. Without the +-subscript, it exhibits a

polynomial expansion of order infinite in the lag operator L

s A Zd=le (d) j=1,2,..,
Al=(1-0) =", md)=3 7 i(d) ] (3.3)
20 1 j=0.

The +-subscript denotes the truncation of an operator at ¢ < 0, Aixt = Ay 1(t >

1) = Z;;B mj(d)x—;, where 1(¢t > 1) is the indicator function taking the value one
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for positive subscripts of x;_;, otherwise zero. The use of the truncated fractional
difference operator reflects the type II definition of fractionally integrated processes

(Marinucci and Robinson; 1999), and is required for non-stationary trends (d > 1/2).

The stochastic trend specification in (3.2) encompasses the integer-integrated
specifications in the UC literature as considered in the previous section: Setting d =1
makes x; a random walk as considered by Harvey (1985), Balke and Wohar (2002),
Morley et al. (2003), and Kamber et al. (2018). For d = 2 one obtains the quadratic
stochastic trend specification of Clark (1987), Hodrick and Prescott (1997), and Oh
et al. (2008). Furthermore, general integer-integrated trends as studied by Burman
and Shumway (2009) are contained for d € N. Allowing for non-integer d seamlessly
links the integer-integrated models and allows for more general patterns of long-run
dynamics with memory between the integer-integrated cases: An integration order
1/2 < d < 1 yields a trend that is asymptotically non-stationary but (conditionally)
mean-reverting, while 1 < d < 2 yields a trend with more memory than the random
walk but less than the quadratic stochastic trend. Since the model treats d as an
unknown parameter to be estimated, it allows d to be determined in a data-driven
manner and does not rely on strong prior assumptions about d. While the empirical
macroeconomic literature has, to the best of our knowledge, so far only considered
UC models with integer integration orders, stationary long memory models (i.e.
d < 1/2) are popular in the field of realized volatility modeling, see Ray and Tsay
(2000), Chen and Hurvich (2006), and Varneskov and Perron (2018). In chapter 2
of this thesis, the asymptotic estimation theory for the general class of fractional
unobserved components models was derived, also allowing for d > 1/2. We build on
this work by studying explicit specifications for trend and cycle, and tailor them to
be suitable for log GDP.

For the deterministic term p;, we consider a polynomial trend of order b together

with an intercept

pie = o + pat. (3.4)

The exponent b € B = {b € R|0 < bpin < b < bypar < 00} determines the shape of
the deterministic component. While b = 1 yields a linear trend as typically assumed
in the UC literature for log GDP, setting b = d yields a deterministic trend of
the same order as the stochastic long-run component. The latter is equivalent to
including a non-zero constant in A‘imt. Alternatively, b can also be treated as an
additional parameter to be estimated, allowing the order of the deterministic trend

to be determined by the data.
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Turning to the transitory component, we allow for an ARMA(p, q) process in

the fractional lag operator L

6) Ct = &¢, (35)

(Ls, p)er = m(Ls)

where a(Ls) = 1 _Z§:1 a; Lg is a stable AR polynomial in the fractional lag operator
Ls as introduced by Granger (1986), b(Ls) = 1 + > 5_; m;Ly is an invertible MA
polynomial in the fractional lag operator Ls, ¢(Ls, ) = 1— Z?; ¢i(p)L}, Ls =1—
A‘i is the fractional lag operator with § € C' = {0 € R|0 < dpin < 0 < Jppaz < 00},
and ¢ = (6,a1, ..., ap, m1, ..., my) holds the relevant parameters governing ¢(Ls, ¢).
e are the short-run innovations to be defined in (3.6) below. For stability of the
fractional lag polynomials a(Ls) and m(Ls), the condition of Johansen (2008, cor.
6) is required to hold and is imposed in what follows. It implies that the roots of
|a(z)| = 0 and |m(z)| = 0 lie outside the image C; of the unit disk under the mapping
21— (1—2)%. Tt follows immediately that ¢(Ls, ¢)c; is stationary for all feasible
. In fractional models L plays the role of the standard lag operator L; = L, since
(1 — Ls) = A%. While, for an arbitrary I(0) process z, the standard lag operator
Lz =(1—-(1— L))z = 2zt — Az subtracts an I(—1) process from z;, the fractional
lag operator Lsz; = (1 — (1 — Lj))2r = 2z — A% 2 subtracts an I(—6) process from
z. In addition, Lgz; = — 23;11 7j(6)z—; is a weighted sum of past z;, and thus
Ls qualifies as a lag operator. By definition, the polynomial ¢(Ls, ) preserves the

integration order of a series since § > 0.

Turning to the long- and short-run shocks 7y, £;, we assume that they are mean-
zero stationary and ergodic martingale difference sequences when adapted to their
joint natural filtration F; = o ((ns,€5),s < t), and their autocovariance functions
are assumed to be absolutely summable. Conditional of F;_1, their third and fourth
moments are assumed to be finite and equal to their unconditional moments. (1, e;)

may exhibit a non-diagonal covariance matrix (), which implies that
0 o or Ope
E =0, Var =Q=|" 5|
Et Et Ung O;
Cov | [ , L 02,2 Vs # 0.
€t Et—s

The assumptions about (7, e;) are identical to those in chapter 2 of this thesis, and
are necessary for consistency and asymptotic normality of the parameter estimates as

discussed in section 3.4. They are somewhat more general than most of the literature
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on UC models, which assumes the shocks to be Gaussian white noise (e.g. Clark;
1987; Morley et al.; 2003).

Since different parameterizations of the model will be considered later in the
application, it will be helpful to refer to the model in (3.1), (3.2), (3.4), (3.5), and
(3.6) as a UC(d, b, ¢, p) model. It follows immediately from this convention that the
model nests the different UC models in the previous section: The model of Harvey
(1985) is a UC(1, 1, 1, 0) model, while allowing for correlated shocks as in Balke
and Wohar (2002), Morley et al. (2003), and Weber (2011) yields a UC(1, 1, 1, p)
model. The double-drift model of Clark (1987) is a UC(2, 1, 1, 0) model, which is

generalized to allow for correlated innovations by Oh et al. (2008).

A key property of integer-integrated UC models is that they encompass the de-
composition of Beveridge and Nelson (1981) for p = —1, see Proietti (2004, 2006),
and Oh et al. (2008). This carries over to the fractional UC(d, b, d, —1) model,
which can be interpreted as a generalization of the Beveridge-Nelson decomposition
to the fractional domain. To see this, assume p = —1, substitute (3.2), (3.4), and

(3.5) into (3.1), replace ey = —(0</0y)n:, and take fractional differences. Then

_10¢ O¢
AL (g — ) = me — ALd(La, @) l;nm =1 — (1 = La)y(La, @);ﬂft, (3.7)
where ¢(Lg, )" = ¥(Lg, 0) = 14+ 1L+ oL + ..., with ¢1(0) = ¢1(e0), ¥j() =
$5(0) + 421 Ur(9)bs-k(9), 5 > 2. ¥(La, p) exists since ¢(La, @) is stable. By the
aggregation properties of white noise processes (Granger and Morris; 1976, p. 248f),

(3.7) is an ARFIMA model in the fractional lag operator L,
Ai(yt - ,U’t> = 775(-[/d7 So)utv U ~ WN (07 (Un - 08)2) ) (38)

where §(La, ) = 1+ 91(p) La+92(0) LG + ., o = 1, 1 () = 0:(1=41(9))/ (0 —
0c), Yi(p) = 0e(¥j-1(p) = ¥j(p))/(oy — 0c) for all j > 2, and up = n:(1 — 02 /0y).
The Beveridge-Nelson decomposition of (3.8) follows from noting that

$(La, p)ur = (1, 9wy — (1= La) Y Liue Y (), (3.9)
k=0

j=k+1
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where

(L pJup = |14+ — (1—101( Z% 1(0) =i (0) | w

g
:<1+ £ >ut:17t.
On — O¢

Consequently, 1[}(1, ©)ug in (3.9) is the fractionally differenced trend from the Beve-

ridge-Nelson decomposition and equals the long-run innovations from the UC(d, b, d,
—1) model, while —(1 — Lg) Y"1 _o LRus D ikt ;(i) is the fractionally differenced
cycle from the Beveridge-Nelson decomposition and equals Aict of the UC(d, b, d,
—1) model. Un-taking fractional differences then generalizes the Beveridge-Nelson

decomposition to fractionally integrated processes, where

= Ajrd@(l, ©)ug = Ajrdnt = 1y, ZLdUt Z % = ¢t.

j=k+1

3.4 Estimation

Having introduced the fractional UC model, we now turn to the estimation of the
model parameters and the latent components. For this, let § = (d, b, 6, ¢/, O'%, One, 02)!
denote the vector collecting all model parameters of the fractional UC model, and let
8o = (do, bo, 9o, ¢, 072770, Tne.0, 0370)’ denote the true parameters of the data-generating
mechanism to be estimated. The parameters of the fractional UC model are esti-
mated by the quasi-maximum likelihood (QML) estimator as derived in section 2
of this thesis. Trend and cycle are estimated by the Kalman filter and smoother,
for which an analytical solution was derived in chapter 2 that is computationally
superior to the Kalman recursions for fractional UC models. In the following, we
summarize the main results of chapter 2 about the estimation of fractional UC mod-
els and discuss identification.

In subsection 3.4.1, we first show that our fractional UC model in (3.1), (3.2),
(3.4), and (3.5) is a state space model. Therefore, the Kalman recursions can be
applied and allow to filter, predict, and smooth the unobserved x; and c¢;, which is
the core of subsection 3.4.2. The filtered values are the projections of x; and ¢; onto
the space of y1, ..., 44, i.e. the data observable at period t, again conditional on some
realization of the parameter vector §. Based on (3.2) and (3.5), the one-step ahead
predictions for z;41 and c¢py1 (given yi, ..., y:, 0) can be obtained, which is referred

to as the prediction step of the Kalman filter in the state space literature. Estimates
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for x; and ¢; conditional on the full sample information ¥, ..., y, are referred to as
smoothed values and are obtained by projecting x; and ¢; onto the space of y1, ..., yn,
conditional on some realization of the parameter vector . Subtracting the one-step-
ahead predictions for x;41 and c¢;41 from yu41 yields the prediction error, based
on which the quasi-likelihood function for parameter estimation can be set up, as
done in subsection 3.4.3. There, we also discuss the asymptotic theory for the QML
estimator of fractional UC models as derived in chapter 2 of this thesis, as well as
the identification of the fractional UC model.

In the following, collect xy1 = (x4, ..., 1), ct1 = (ctyoscr)y 1 = (pty ooy 1),

and yz.1 = (yt, ...,y1)" in the respective t-vectors.

3.4.1 State space form

The state space form is a special case of the more general model considered in chap-
ter 2 of this thesis, and is set up analogously. Define ¢(L, @) =1 — Py bj(p) LI =
1- Z§:1 ¢;L’ as the representation of ¢(Ls, ) in the standard lag operator L,
and denote ¢ (L, p)c; = (L, p)erl(t > 1) = ¢; — 23;11 ¢j(p)ci—; as the truncated
¢(L, ¢) polynomial, where 1(¢ > 1) is the indicator function, which takes the value
one for positive subscripts of ¢;—;, otherwise zero. The truncation takes into account
that y, is only observable for positive ¢, and thus parameter and unobserved compo-
nents estimation can only be carried out for the observable {y;}}_;. The state space

representation of the fractional UC model is

Yyt = pt + Zay, (3.10)
oy =Toy—1 + R, (3.11)

where the state vector can be partitioned into oy = (agx) , agc) )/, with (n—1)-vectors

aﬁ”“’) = (T4, T4_1, .., Tt—n12) for the stochastic trend, and agc) = (Ct, Ct—1, s Ct—pi2)’

for the cycle. The observation matrix Z = (Z(®), Z(9)) consists of the (n — 1)-

dimensional row vectors Z(*) = (1,0,...,0) and Z© = (1,0,...,0), which pick the
(x) (o)

first entry of o’ and «; . The transition equation (3.11) is specified via T =
diag(T®@), 7)), R = diag(R™, R(9)), where
—m(d) —ma(d) - —mn1(d) 01() d2(0) - Pn-1(v)

co | ! 0 1 0
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and R® = (1,0,...,0)', R = (1,0,...,0) are (n — 1)-vectors picking the respective
entries of ¢; = (11, ), and Var(¢;) = Q. Note that whenever ¢(L, ¢) is a polynomial
of order r <mn—1 (e.g. for 6 =1, p < n, ¢ = 0), there exists a minimal state space
representation where agc), Z©_ R are vectors of dimension 7, and T is r x r.
The same holds whenever d is an integer, since x; then admits a d-dimensional state
space representation. The system is initialized deterministically with x;,c; = 0 for
all j <0, and the deterministic terms are placed directly in the observations equation
(3.10), as this ensures stabilisability of the model (see Harvey; 1989, ch. 4.2.5). They

are estimated using the GLS estimator as discussed at the end of subsection 3.4.2.

3.4.2 Filtering and smoothing

By the state space representation of the fractional UC model in (3.10) and (3.11),
the Kalman recursions can be used to filter, predict, and smooth the latent x; and
¢t (see e.g. Harvey; 1989, ch. 3). However, as argued in chapter 2 of this thesis,
instead of computing the filtered states recursively via the Kalman filter, one can
also derive an analytical solution to the optimization problem of the Kalman filter.
Both approaches yield the identical filtered components, however for the fractional
UC model the analytical solution is computationally much simpler, see the discussion
in chapter 2 of this thesis. Given the high dimension of the state vector when x;
is a fractionally integrated trend (see subsection 3.4.1), reducing the computational
complexity is an important issue for fractional UC models, and thus we briefly outline
the analytical solution to the Kalman filter optimization problem below. To arrive at
the analytical solution, consider the optimization problem of the Kalman filter, which

is obtained by minimizing the concentrated joint quasi-log likelihood of {(n;, 5]’),};:1

t

R o1 _ i o1 1
Z.1(ye:1,0) = arg min n [(nj Sj) Q1 <773>] = arg min —
; ,

2452 _ 52
£; el L 0R0Z — 05

where the second equality follows from inserting n; = Aixj via (3.2), as well as
gj = d(L,p)(y; — pj — x;) via (3.1) and (3.5). For a matrix representation of

the optimization problem, introduce the ¢ x t difference matrix Sg;, and the ¢ x ¢
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coefficient matrix By ¢ analogously to (2.5) in chapter 2

(mo(d) m(d) - mei(d)]
Sy = 0 WO,(d) wt,.z(d) ,
L0 0 mld) (3.12)
L —¢i(p) -+ —thfl(SD)
PO L —<z>t_.2(so>
0 0 1]

Then Sd,txtzl = (Aixt') ey Aixl)/a and Btp,tctzl = (&-F(La ‘P)Cu cey (5+<L7 @)cl)/' Omit-
ting the constant fraction, the optimization problem for z;.; becomes

. 1

211 (ye1,0) = arg min — [0'621‘2;15&,t5d,t96t:1 — 20e(Ye1 — Te1 — pi:1) Bl 1 Sapen

+ 072] (ytzl — Tg:1 — ﬂt:l)lB:p7tB<p,t(yt:1 — Tt:1 — Mt:l) s

which yields the analytical solution to the optimization problem of the Kalman filter
as derived in chapter 2 of this thesis

. -1
Tp1 (Y1, 0) = [@%BZNB%t + Une(S:j,tha,t + pr,tsd,t) + Uzsé,tsd,t]

2/ / (313)
X (03Bl Bot + 00eSqBoyt) (ye1 — pea)-

Either analogously, or by using ¢x.1(y#:1,0) = yr.1 — pe1 — $e1(ye1,0), the filtered

cycle is

~ —1
ce1(ye1,0) = [0-727B:0,tBS0,t + Une(Sz/i,th,t + B:o,tSd,t) + Uezsé,tsd,t]

. , (3.14)
X (028448a + oneBl,1Sat) (Y1 — pe1)-

The one-step ahead predictions for trend and cycle are then obtained by rolling the

transition equations for trend and cycle (3.2) and (3.5) one period ahead, i.e.

it+1(yt;1,0) = — (Wl(d) o Wt(d)> i'tll(yt:he)’ (3'15)

een(en,0) = (31(9) -+ Gu()) el 0). (3.16)
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Finally, the prediction error is obtained by subtracting the one-step ahead predictions

Ve1(0) = Yer1 — per1 — Tep1 (Y1, 0) — Eep1(ye, 0). (3.17)

In practice, computing (3.17) as well as the Z;+1(ye1,0) and ¢é41(ye.1,0) requires
knowledge about fi(s41).1, which is unobservable. However, since the Kalman filter
is a linear operation, we can write (3.17) as vi11(0) = F(0,t + 1) (Y41):1 — H41):1);
where F'(0,t+ 1)y(t+1):1 would be the prediction error of the Kalman filter if the de-
terministic terms were zero. Since vi11(0) = F'(0,t+1)yqq1y.1—F (0, t+1)pu11).1, the
same filter can be applied separately to the observations y(;41).; and the determin-
istic terms fu(;41).1, see Harvey (1989, ch. 3.4.2). An estimate for the coefficients 1
and p in (3.4) is then obtained by regressing F'(6,t+1)y41).1 on F(0,t+1) M1y,
where M;11).1 is the (t 4 1) x 2 regressor matrix of p41y.1 = Myi1y.1 (o, p1)’, and

the resulting estimator for ug, 1 is the GLS estimator.

3.4.3 Parameter estimation and identification

To estimate 6y, the QML estimator is set up based on the prediction error v;41(60)

as defined in the previous subsection. Let o2 () denote the (hypothetical) variance

2

of the prediction error v;(0) for a given parameter vector 6. o,

() depends only
on 0, is independent of 41, ..., y,, and can be calculated recursively via the Kalman
recursions for the prediction error variance as given in Harvey (1989, ch. 3.2). Since

the state space model in (3.10) and (3.11) is both detectable and stabilizable, it

2

follows that the Kalman recursions for o},

2
v

2

O

(0) converge to the steady state value
o5(f) at an exponential rate. Typically, only a few iterations are required until
(0) is sufficiently close to its steady state, where the Kalman recursions can be
terminated and Jgt () can be assumed to be constant from then on. The QML
estimator for y is then constructed based on the prediction error v;(f) and is given

by

0 = arg max log L(0),

n 1 —
log L(0) = 5 log(2m) — 5 Zlog o2 — 5

2
o
t=1 t Ve

1

The asymptotic theory for the QML estimator of fractional UC models was de-
rived in chapter 2 of this thesis and carries over to (3.18) upon verification of assump-
tions 1 to 5 of chapter 2. The assumptions we make in section 3.3 about the long-

and short-run innovations as well as about the parameters are identical to assump-
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tions 1 and 2 of chapter 2 and are thus satisfied. Assumption 3 requires that the
cyclical polynomial ¢(Ls, ) in (3.5) is stable with stable partial derivatives and is
satisfied for any stationary and invertible ARMA polynomial, both in the standard
lag operator L, as well as in the fractional lag operator Ls (under the additional
condition of Johansen (2008, cor. 6) as imposed below (3.5)). Thus, assumptions 1
to 3 of chapter 2 hold, so that the QML estimator for 8 is consistent. Furthermore,
(3.18) is asymptotically normally distributed under the additional assumptions 4
and 5 of chapter 2: Assumption 4 strengthens the smoothness assumption on ¢(Ls)
and is again satisfied for all stationary and invertible ARMA polynomials. Assump-
tion 5 essentially requires that the Kalman filter asymptotically becomes the best
predictor for y; given F;_1 as t — oo, forcing the prediction error to converge to a
martingale difference sequence when adapted to the filtration of all past ys, s < t.
While assumption 5 follows immediately when long- and short-run innovations are
assumed to be Gaussian, it cannot be verified for non-Gaussian shocks. Therefore,
when interpreting the standard errors in our application, we assume assumption 5

of chapter 2 to be satisfied.

Finally, it should be noted that the results on consistency and asymptotic nor-
mality as derived in chapter 2 are conditional on the model being identified. While
identification is a crucial problem in the traditional UC literature that is discussed
among others by Morley et al. (2003), Oh et al. (2008), and Trenkler and Weber

(2016), it is less of an issue for the fractional UC model as will become clear.

To illustrate that the fractional UC model is identified under comparatively weak
conditions as compared to traditional UC models, let a(L,p) = 1-3>_72, aj(p) L7 =
a(Ls) = 1- 532, a; 14 and (L, @) = 143352, g ()17 = m(Lg) = 1 Y352, m, L]
denote the cyclical AR and MA polynomials of (3.5) in the standard lag operator L,
and note that a;(p) = a; as well as m;(p) = m; for all j = 1,2, ... whenever § = 1.
Moreover, let a (L, p) = a(L, p)1(t > 1) and by (L, ) = b(L, ©)1(t > 1) denote the
truncated polynomials that take into account that g; is only observable for ¢t > 1.

Then the (truncated) reduced form of the fractional UC model is
Qi (L, )AL (g — ) = @y (L, @) + 104 (L, 9) Aler = by (L, O)er,  (3.19)

which is obtained by plugging (3.2) and (3.5) into (3.1), taking fractional differences,
and multiplying both sides by a4 (L,¢). By the aggregation properties of moving

average processes (see Granger and Morris; 1976, p. 248f), (3.19) equals the moving
2

2, whose order depends

average process by (L,0)e; = Z;j) bj(L,0)e—j, Var(e) = o

on d, as well as on . Obviously, d, d, a1, ..., a, are identified based on the observ-
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able left-hand side of (3.19), and thus identifiability crucially depends on whether
mi, ..., mg, and a%, Tpes o2 can be recovered from the right-hand side of (3.19). For
this purpose, let v;(0) = Cov(a (L, o) A% (y¢ — ), a+ (L, ) A% (ys—j — pu—;)) denote
the j-th autocovariance of (3.19), so that for all j < ¢

t—j—1
¥i(0) = 07 > ()5 ()
:;i j+k k
+o? <Z mj+k—l(@)ﬂl(d)> <Z mk—l(SO)ﬂ'l(d))
k=0 =0 =0
t—j1 itk
+0ne ar(p) ) mMmjre—1(p)m(d) (3:20)
k=0 =0
t—j—1 k
+ ) &Hk(@zmk—l(@)m(d)]
k=0 1=0
t—j-1
=o; b (6)bre+-5(6)
k=0

Obviously, for d ¢ N, the autocovariance ;(#) # 0 for all j = 0,1,...,t — 1. Since
t = 1,...,n, indexes the observable y;, we have n 4+ 1 equations to identify the
(g+3) parameters (myq, ..., mq, a%, Tnes 02). Tt only remains to be checked whether the
contribution of the different parameters (mi, ..., mq, 03, 0y, 02) to ;(0) is nonzero

for j=0,1,...,q + 3.

Let d ¢ N. Then o2 enters (3.20) only via the term in the second row of (3.20),
which is non-zero for all j < t. Moreover, oy, enters (3.20) via the term in the third
and fourth row of (3.20), which is again non-zero for all j < t. o7 enters (3.20) via the
term in the first row of (3.20), which is non-zero for j = 0, and for all j = 1,...,p,
where p is the number of non-zero a;(y),...,a3(¢) # 0. Finally, my,...,m, enter
(3.20) via the term in the second row and the term in the third and fourth row of
(3.20), both of which are non-zero for all j < t. Consequently, for non-integer d,
the contribution of my,...,m, and o2, oy to v;(0) is non-zero for all j < ¢, while
the contribution of a% to 7;(0) is non-zero at least for j = 0. It follows that for
non-integer d, the fractional UC model is identified for any reasonable choice of the
lag orders of the cyclical ARMA polynomials p > 0, ¢ > 0. However, for high ¢,
the identification of the MA parameters becomes weak because m;(d) = O(1=471)

converges to zero quickly.

In contrast, integer-integrated UC models cannot identify such parsimoniously

parameterized models, nor models with rich moving average dynamics. To see this,
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note that for § = 1, d € N, it holds that a; = a;(¢), a; = 0 for all j > p, and
mj = mj(p), mj = 0 for all j > ¢. Thus, in (3.19) the polynomial a;(L,¢) is of
order p, while 4 (L, ¢)(1 — L)% is of order ¢ + d, and thus b (L, ¢,0) is of order
max(p,q + d). Consequently, v;(0) = 0 for all j > max(p,q + d), which allows to
identify max(p,q + d) + 1 parameters. On the other hand, the structural model has
g+ 3 parameters still to be identified, and so identification requires max(p, g+d)+1 >
q + 3. For d = 1, it immediately follows that the correlated UC model is neither
identified for p < 2, nor for p < q + 2.

3.5 Fractional trends and cycles in US GDP

With the fractional UC model at hand, we revisit the puzzling results for the trend-
cycle decomposition of US GDP from traditional UC models as summarized in section
3.2. As will become clear, our new model provides additional insights regarding the
specification of trend and cycle, and explains the puzzling estimates for the business
cycle in the literature:

First, while traditional UC models require to specify the integration order d prior
to estimation, d enters the fractional UC model as a parameter to be estimated.
Therefore, we provide evidence on the memory of log GDP and draw inference on
the appropriate specification of the trend. Specifically, we test the hypotheses that
do = 1 or dg = 2. If both hypotheses are rejected, an intermediate solution may
better explain the long-run dynamics of US GDP.

Second, besides the stochastic long-run dynamics, we also investigate the speci-
fication of the deterministic long-run component u; for log GDP. In addition to the
traditional linear trend component, we check whether the explanatory power of the
model is improved when the constant is placed in the state equation for xy, yielding
a deterministic polynomial trend of order d. Moreover, we check whether allowing
for a polynomial trend of order b € R improves the explanatory power of the frac-
tional UC model for log GDP. This is related to Perron and Wada (2009), who argue
that the long-run component of log GDP evolves as a deterministic, nonlinear trend
rather than a non-stationary stochastic trend. By letting a deterministic polyno-
mial trend compete against a fractional stochastic trend, we investigate empirically
whether the long-run component of log GDP is rather deterministic, or stochastic,
or a combination of both.

Third, we shed light on the appropriate specification of the cyclical component.
As shown in subsection 3.4.3, the fractional UC model is identified under much

weaker conditions than traditional UC models. Therefore, both richer and more
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parsimonious parametrizations of ¢; can be considered. In particular, we allow for
a cyclical ARMA(p,q) polynomial up to orders p,q < 4, and investigate whether
richer cyclical dynamics provide an economically plausible estimate for the cycle.
We also examine the fit of the fractional UC model when the standard lag operator
is replaced by a fractional lag operator.

Fourth, our results allow to draw inference on the correlation between long- and
short-run innovations. While the literature typically finds a correlation coefficient
close to —1 once correlated trend and cycle innovations are allowed for, we investigate
whether this still holds when the integration order is allowed to deviate from one or
two.

In the following, we treat the observable 1; as log seasonally adjusted real US
GDP. As in section 3.2, the data for y; come from the Federal Reserve Bank of St.

3

Louis,? are in quarterly frequency, cover the period from 1947Q1 to 2022Q4, and are

log-transformed.

3.5.1 Model specification and estimation

We consider several specifications for the different components of the fractional UC
model: The deterministic component g, in (3.4) either consists of an intercept plus a
linear time trend (b = 1), as is common in the UC literature for GDP, or it assumes
an intercept plus a polynomial trend of order d (i.e. b = d), which is equivalent
to allowing for a non-zero intercept in the second equation of (3.2) and thus for
a drift in z;. Yet another specification allows for an intercept plus a polynomial
trend of order b € R, where b is estimated jointly with the other parameters, thus
adding additional flexibility to the deterministic trend component. With respect to
the cycle, we parameterize (3.5) either as an ARMA(p, q) process in the standard
lag operator L (i.e. 6 = 1), where p =1,...,4, ¢ = 0,...,4 orders are considered. As
an alternative, we replace L by the fractional lag operator L4, where the memory
parameter takes the integration order of x; as its value (i.e. § = d). For the latter
specification, we consider lag orders p = 1,...,4 for the cyclical AR polynomial.
Moreover, all specifications include a dummy variable as an additional regressor
that takes the value one in the second quarter of 2020, and zero otherwise: Due to
the COVID pandemic, US GDP fell by 8.9 percent in the second quarter of 2020,
the largest single-quarter contraction in more than 70 years. As a glimpse on figure
3.4 reveals, not controlling for the sudden drop of GDP would result in two large

outliers for the prediction errors in quarters two and three of 2020, with the sum

3The series can be downloaded here: https://fred.stlouisfed.org/series/ GDPC1



122 Solving the unobserved components puzzle

of squared prediction errors for these two quarters almost leveling that of all other
quarters. In all trend-cycle decompositions, the regression coefficient of the dummy
is attributed to the cyclical component.

Parameter estimation of 6y via the QML estimator as described in subsection
3.4.3 is carried out as follows: First, for each specification 100 combinations of
starting values are drawn from uniform distributions with appropriate support.* For
each vector of starting values, the quasi-log likelihood is maximized by the BFGS
algorithm, and the estimate with the highest likelihood value is selected as the final
estimate for #y. Note also that by the type II definition of the fractional trend,
pre-sample observations are treated as zero, and thus the prediction errors at the
beginning of the sample should be treated with caution. The UC literature typically
deals with the estimation uncertainty at the beginning of the sample by diffusely
initializing the state vector, i.e. setting the initial variance of the state vector to
an arbitrarily high value. This reduces the contribution of the first few prediction
errors to the objective function to nearly zero, so that they have little effect on the
estimates (see e.g. Harvey; 1989, ch. 3.3.4). We take a similar approach by simply
excluding the first 40 prediction errors when calculating the quasi-log likelihood. In
this way, we eliminate the estimation uncertainty at the beginning of the sample,
but at the same time avoid the computationally intensive Kalman recursions for the

diffuse initialization of the state covariance.®

3.5.2 Estimation results

Tables 3.5 to 3.8 present the estimation results for the different parameterizations of
the fractional UC model, along with the model selection criteria and the estimated
correlations between 7y and e;. Table 3.5 reports the results for fractional UC(d, b,
d, p) models, where ¢; is an autoregressive process in the fractional lag operator Ly,
a(Lg)e; = €4 In contrast, tables 3.6 to 3.8 present the estimation results for UC
models where the cyclical component is modeled as an ARMA(p, q) process, with
p=1,...,4, ¢ = 0,...,4. Specifically, table 3.6 considers the UC(d, 1, 1, p) model
where the deterministic trend is assumed to be linear, u; = pg + p1t, while table
3.7 displays the results for the UC(d, d, 1, p) model with a polynomial deterministic
trend of order d, u; = pig + p1t?. Table 3.8 shows the results for the UC(d, b, 1, p)
model that allows for a polynomial deterministic trend of order b, ju; = g + p1t®,

where b is estimated jointly with the other parameters via the QML estimator.

“In particular, we draw from d,b € [1/2;2].
SHowever, the estimation results are robust to diffuse initialization of the state vector instead of
dropping the first 40 observations (= observations from 1947Q1 to 1956Q4).
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Estimation results for the UC(d, 1, d, p) model in table 3.5, which includes a
linear trend in p; and the fractional lag operator for ¢;, indicate an integration order
of about 1.30 for log US real GDP. Once the linear deterministic trend is replaced by
the polynomial p; = pg + p1t?, the estimate for dy becomes less than one whenever
p > 2. As a glimpse on figure 3.3 shows, log GDP evolves slightly concave in the
long run, which is well approximated by pt? for d < 1. Consequently, the QML
estimator produces a smaller estimate for dy to account for the concave evolution
of log GDP via the deterministic component. Note, however, that the likelihood of
the UC(d, 1, d, p) model is always greater than the likelihood of the UC(d, d, d, p)
model, suggesting that a linear deterministic trend is more appropriate for log US
GDP. Further evidence comes from the UC(d, b, d, p) model in table 3.5: Once b is
allowed to deviate from d, the deterministic component becomes concave, while the
stochastic trend is estimated to be integrated of order greater than one, supporting
the results of the UC(d, 1, d, p) model. All three models find a small variance-ratio
of long- and short-run innovations, which is in contrast to the results from integer-
integrated UC models, see section 3.2 and table 3.3. Furthermore, within the set
of models with fractional lag operator Lg, the information criteria favor the UC(d,
1, d, p) specification. Obviously, placing the constant into the second equation
of (3.2) downward-biases the estimate of the memory of log GDP, thus reducing
the likelihood. Allowing for d # b # 1 again yields an estimated integration order
greater than one, along with an estimate for by slightly below one, but the additional
parameter increases the information criteria. Moreover, table 3.5 provides evidence
against the narrative of Perron and Wada (2009) that the long-run dynamics of GDP
are purely deterministic and driven by a nonlinear trend: If there were no stochastic
long-run dynamics in log US GDP, the UC(d, b, d, p) estimate for the variance of the
long-run innovations should either be indistinguishable from zero, or the estimate for
dp should go to its lower bound of 1/2, such that the trend component captures at
least the very persistent cyclical dynamics. However, the estimates for the UC(d, b,
d, p) model indicate an integration order greater than one, together with a non-zero

variance of the long-run innovations.

Turning to the estimates for UC models with the standard lag operator L for ¢;
in tables 3.6 to 3.8, it is striking that for all three specifications of the deterministic
component, the BIC always favors the most parsimonious model, i.e. where ¢; is
an ARMA(1,0). As discussed at the end of subsection 3.4.3, an advantage of the
fractional UC model is that it remains identified for all d # 1 even when ¢; is an

ARMA(1,0), whereas the I(1) correlated UC model requires at least two autoregres-
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sive lags to identify all parameters. On the other hand, results from the BIC show
that additional AR and MA lags do not improve the fit on a large scale. Thus, while
in principle the fractional UC model allows for rich parameterizations of the cycle,
such specifications are not supported by the data. Iwata and Li (2015) argue that
even an AR(2) specification for the cyclical component is likely to be overparame-
terized for I(1) UC models of US GDP, and this seems to hold for fractional UC
models as well. Another notable result from tables 3.6 to 3.8 is that all three models
yield an estimate of dy that is less than unity for almost all parameterizations of the
cycle, along with comparatively high estimates of 072]70. Consequently, they produce
a rather volatile estimate for the trend component. Of all the specifications, the BIC
favors the UC(d, d, 1, p) model with a single autoregressive lag for the cycle. Since
the more general UC(d, b, 1, p) model yields estimates for by that are close to those
for dy, the additional parameter does not improve the fit of the model by much,
which explains the higher BIC. However, all models with ARMA cycles are clearly
outperformed in terms of the BIC by the UC(d, 1, d, p) model with fractional lag

operator Ly .

Regardless of the specification of the deterministic component p; or the use of
the fractional lag operator for the cycle, all estimates in tables 3.5 to 3.8 converge
to the corner solution where p = 601"\1“(7715,615) = —1. Therefore, the Hessian matrix
of the QML estimator is nearly singular, making the estimated standard errors in
tables 3.5 to 3.8 unreliable. While an estimate p close to —1 is frequently obtained in
the empirical literature once correlation between long- and short-run innovations is
accounted for (see e.g. Morley et al.; 2003; Iwata and Li; 2015), the result ultimately
implies that long- and short-run shocks cannot be identified separately for log US
real GDP, even when rich cyclical ARMA dynamics are considered. This raises
the question whether UC models in general are able to distinguish between long-
and short-run innovations, or whether the estimated correlation coefficient is an
artifact generated by the model and estimation procedure, rather than the data.
We address this question in appendix 3.A.1, where we provide evidence that the
estimated correlation coefficient of (almost) -1 is a feature of the data, not of the

model or the estimation procedure.

Among all fractional UC models, the UC(d, 1, d, p) model with a single autore-
gressive lag for ¢; in the fractional lag operator (i.e. p = 1) minimizes the Bayesian
information criterion. Therefore, it is treated as the preferred fractional UC speci-
fication in the following. The stochastic long-run component of GDP is estimated

to be integrated of order around 1.30, which is quite far from the integer-integrated
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specifications as considered in section 3.2. However, testing the hypotheses that
do = 1 and dg = 2 using the t-test is problematic, because the standard errors re-
ported in table 3.5 are likely to suffer from the corner solution of the QML estimator.

Fortunately, the likelihood ratio test provides a solution.

The right columns of table 3.3 show the estimation results when the integration
order is fixed to one or two. They were estimated analogously to the fractional
UC models by excluding the first 40 prediction errors from the quasi-likelihood and
by including a dummy for the second quarter of 2020 to account for the outlier
generated by the COVID pandemic. Both the correlated I(1) and the correlated
I(2) UC models exhibit a log likelihood of about —316, while the log likelihood of
the UC(d, 1, d, p) model with two autoregressive lags (as for the models under
the null hypothesis) is about —301. The latter includes only the single additional
parameter d, which is set to either one or two in the integer-integrated models. The
test statistic of the likelihood ratio test is about 30 for both models. Consequently,
the test rejects both the hypotheses that dg = 1 and dy = 2 at any conventional level

of significance.

3.5.3 Trend-cycle decomposition

The estimated integration order d=1.30 implies that a long-run shock on GDP
growth (i.e. the first difference of log GDP) not only has a contemporaneous effect,
as imposed in the /(1) model, but evolves as a mean-reverting fractionally integrated
process of order around 0.3. A long-run shock then retains 30% of its initial impact
after one quarter, 20% after two quarters, and 12% after one year. It converges to
zero at a hyperbolic rate, leaving 5% of its initial impact after four years and 3%
after ten years. A possible economic interpretation is that long-run shocks, such as
technological innovations, are not adapted by the whole economy at a fixed point in

time, but rather successively.

Turning to the cycle, we find that a parsimonious parameterization of ¢; is sug-
gested by the BIC, which is in line with the findings of Morley et al. (2003). Addi-
tional lags do not significantly improve the overall fit, as their coefficients are small
and insignificant at the 5% level (to see this, compare the likelihood ratios of table
3.5). As argued by Iwata and Li (2015), a small p in the data-generating mechanism
of log GDP complicates the separation of long- and short-run innovations, which

may also explain the estimated correlation coefficient. From the results in table 3.5,



126 Solving the unobserved components puzzle

it follows for ¢; that
¢ = 0.91L71 306 = 1.18¢;_1 — 0.18¢;_9 — 0.04¢4_3 — 0.02¢4_4 — ...,

where the sign-change after the first coefficient illustrates that the fractional lag
operator is able to generate oscillatory behavior, for which standard AR models
require at least two lags. The parameter estimates for the cycle indicate strong
persistence, which is intuitive for the business cycle. However, the roots of the au-
toregressive polynomial are all outside the unit circle, with the smallest root being
1.03. Moreover, the estimated variance-ratio between long- and short-run innova-
tions is 6727/?72 = 0.11, indicating that much of the variation in log GDP is due to
the cycle, while the stochastic trend is comparatively smooth. This is in contrast to
the results for the correlated I(1) UC model, see section 3.2.

Log US real GDP: Trend Log US real GDP: Cycle
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Figure 3.3: Trend-cycle decomposition for log US real GDP from the UC(d, 1, d,
p) model with p = 1 lags for ¢;. The left plot (a) sketches the smoothed trend
component 7 = p + z; from the fractional UC model in red, dashed, together with
log US real GDP in black, solid. The right plot (b) shows the smoothed cyclical
component ¢; (black, solid) from the same fractional UC model, where ¢; is an
autoregressive process in the fractional lag operator L4, together with the output
gap estimate from the US Congressional Budget Office (blue, dashed). Shaded areas
correspond to NBER recession periods.

Figure 3.3 plots the trend-cycle decomposition for the fractional UC(d, 1, d,
p) model, where the estimates for x;, ¢; are obtained from the single-step Kalman
smoother as discussed in subsection 3.4.2. Due to the small (3%, the decomposition
yields a smooth trend with little short-run variation. Furthermore, the Kalman
smoother attributes much of the variation in log GDP to the cyclical component due

to the relatively high 62. The smoothed cyclical component exhibits a persistent be-
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havior and has the shape of an asymmetric sine curve. It rises gradually in periods
of economic recovery and upswing, and falls sharply during recession periods. Sim-
ilar estimates are obtained from the nonlinear regime-switching UC-FP-UR model
of Morley and Piger (2012), which promotes the generality of the parsimonious frac-
tional UC model. Moreover, the estimate for ¢; shows similar pro-cyclical dynamics
as the US Congressional Budget Office (CBO)® estimate for the output gap that is
sketched in blue. This is striking, because the CBO estimate is based on macroe-
conomic theory: It models potential GDP by a Cobb-Douglas production function
with labor, capital, and total factor productivity as inputs, and ties changes in out-
put to changes in unemployment using Okun’s law. In contrast, our results are fully
data-driven and thus complement the CBO’s theory-based results. While our esti-
mate of the cycle coincides with the output gap estimate of the CBO in terms of the
general patterns as well as the key turning points, there are some interesting differ-
ences: The fractional UC model reveals a persistent overheating of the US economy
in the run-up to the Great Recession, which is a feature not detected by the CBO
estimate. However, our finding aligns well to the output gap measure of Barigozzi
and Luciani (2021), which is based on a dynamic factor model with macroeconomic
indicators as inputs, as well as to Borio et al. (2017), who argue that credit growth
was a key driver of the overheating of the US economy in the run-up to the Great
Recession. Another striking result concerns the COVID-19 recession, where neither

our estimate nor the CBO’s output gap shows any signs of overheating.

From figure 3.3 it becomes clear that the fractional UC model solves the problem
of obtaining implausible cycle estimates in the integer-integrated UC literature. The

solution to the UC puzzle is that, given that log GDP is integrated of order around

2
n’

the additional memory that is not captured by the I(1) specification goes into the

1.3, forcing the long-run component to be I(1) upward-biases the estimate &7, as
estimates for the long-run innovations 7. To adjust for the erratic behavior of
the long-run innovations, the estimate for the cycle becomes noisy. In contrast,
the fractional UC model fully captures the memory of log US GDP, which allows
6’% to be small, and thus yields a smooth trend estimate along with a persistent
cyclical component that hits all NBER recession periods. These results are consistent
with the work of Kamber et al. (2018), who obtain plausible cycle estimates when

restricting the variance-ratio of long- and short-run innovations to be small.

5The series can be downloaded here: https://fred.stlouisfed.org/graph/?g—=f1cZ
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3.5.4 Model diagnostics

A few diagnostic checks for the UC(d, 1, d, p) model are in order: Figure 3.4 plots
the estimated autocorrelation function of the prediction error of the Kalman filter
vy(6) as given in (3.17), the smoothed periodogram for the smoothed long-run inno-
vations 7, the prediction error vt(é) itself, and the prediction error for the UC(d,
1, d, p) model without a dummy variable for the second quarter of 2020. The esti-
mated autocorrelation function shows that there is little autocorrelation left in the
prediction errors, with only slightly significant autocorrelation at lag five. As the
cyclical dynamics of log GDP are well captured by the parsimonious UC(d, 1, d,
p) model with only a single lag for the cyclical component, little to no additional
benefit can be expected from models with richer parameterizations for the cyclical
component. This is consistent with the estimation results in tables 3.5 to 3.8, where
richer models yield only small improvements in terms of the likelihood. Moreover,
the estimated (almost) perfect correlation between long- and short-run innovations
can be expected to persist even in richer models.

For the smoothed long-run innovations 7y, the periodogram in figure 3.4 reveals
a spike at frequency 0.1, which refers to a period of ten quarters and is due to the
slightly significant autocorrelation at lag 5. However, neither a peak, nor a zero at
the origin of the periodogram can be spotted. Thus, contrary to the I(1) UC models
in figure 3.2, allowing for a fractionally integrated trend removes the long memory
from the smoothed long-run innovations, and at the same time ensures them not to
exhibit intermediate memory as for I(2) UC models.

For the prediction errors of the UC(d, 1, d, p) model with a dummy for the first
quarter of the COVID pandemic (i.e. 2020Q2), the bottom-left panel of figure 3.4
shows no large outliers. However, starting in the mid 1980s, the prediction errors
appear to have a lower variance compared to the first half of the sample. For UC
models with an I(1) specification for the trend, a generalization that accounts for
the structural break in the mid 1980s is proposed by Weber (2011). It would be in-
teresting to see whether controlling for a structural break in the fractional UC model
can reveal additional details about the parameters, in particular the correlation of
the innovations, as well as about the dynamics of the trend and the cycle.

To illustrate the importance of the COVID-19 dummy, the bottom-right panel
shows the prediction error of the UC(d, 1, d, p) model without the dummy in the
second quarter of 2020. When the dummy is omitted from the model, the prediction
errors show a strong negative outlier in 2020Q2, followed by a spike in the next

quarter. Since the objective function of the QML estimator minimizes the sum
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Figure 3.4: Diagnostic checks: For the UC(d, 1, d, p) model with p = 1 autore-
gressive lags, the upper-left panel displays the estimated autocorrelation function of
the prediction errors, together with 5% (red) and 1% (blue) confidence bands, the
upper-right panel shows the smoothed periodogram for the smoothed long-run inno-
vations 7, the bottom-left panel plots the prediction errors, while the bottom-right
panel shows the respective prediction errors of the UC(d, 1, d, p) without a dummy
in the second quarter of 2020. Shaded areas highlight NBER, recession periods.

of squared prediction errors, omitting the dummy would assign a strong weight
to the two respective quarters, which is likely to deteriorate the estimation of the
parameters and the latent components. Therefore, any UC model that includes the
period of the COVID pandemic needs to somehow adjust for the strong outliers, and
including a single dummy in 2020Q2 obviously does a good job.

Finally, we take a closer look at the corner solution of the QML estimator: If
long- and short-run innovations are perfectly correlated, we can write 4 = By, where
B = ope /0727 is the regression coefficient from regressing ¢; on 7. The UC(d, 1, d,

p = —1) model can then be written as

a(La) A% (yr — pe) = a(La)ne + (1 — La)Bne = e(La)oe, (3.21)

where v; = (14 8)n; with Var(v;) = (148)%07, and ¢(Lg) = o ché, with ¢g = 1,
c1 =—(a1+5)/(1+B), and ¢; = —a;/(1 4 B) for all 2 < j < p. (3.21) is a single-

source-of-error model that admits an ARFIMA representation in the fractional lag
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operator Ly. For the parameter estimates of the chosen UC(d, 1, d, p) model with
p = 1, the corresponding coefficients in (3.21) can be calculated from the results in
table 3.5. These are 3 = —2.99, ¢ = —1.04, and Var(v¢) = 0.57. However, (3.21)
can also be estimated directly via the QML estimator by solving (3.21) for v; and
optimizing over Ossr = (d, ay, U%,ﬂ),, which vields fsgp = (1.32,0.90,0.16, —3.00)".
The estimates are almost identical to the results from the fractional UC model. In
addition, the log likelihood is —303.69 and thus is very close to the likelihood of the

fractional UC model.

3.6 Conclusion

In this paper, we revisited the puzzling estimates for the business cycle generated
by traditional, integer-integrated unobserved components models. Our hypothesis
was that the long-run dynamics of log GDP are captured neither by UC models
with an I(1) trend component, nor by those with an I(2) component. Instead,
the periodograms of the smoothed long-run innovations for integer-integrated UC
models suggested an integration order somewhere between the I(1) and the I(2)
specifications.

To test whether an intermediate solution for the memory of the trend solves the
unobserved components puzzle, we revisited the puzzling results using the fractional
UC model that was derived in chapter 2 of this thesis, which models the trend as a
fractionally integrated process of order d, nesting the traditional, integer-integrated
specifications. Since d is estimated jointly with the other model parameters, the
fractional UC model provides a data-driven solution to the specification of the long-
run dynamics in UC models.

Our estimation results indicate an integration order of about 1.3, implying that
the trend of log GDP is more persistent than assumed by I(1) UC models, but less
persistent than assumed by 7(2) UC models. The likelihood ratio test rejects both,
an I(1) trend and an I(2) trend in log GDP, indicating that integer-integrated UC
models are misspecified. In contrast to integer-integrated UC models, the trend-
cycle decomposition from the fractional UC model hits all NBER recession periods,
identifies the same turning points as the output gap reported by the US Congressional
Budget Office, and reveals some additional details, e.g. an overheating economy in
the run-up to the Great Recession.

While the estimates for trend and cycle are very different from the traditional
literature, our estimates for the correlation between long- and short-run innovations

are well in line with the literature: For almost all parameterizations considered, we
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estimate an (almost) perfect correlation between long- and short-run innovations.
Thus, for GDP, long- and short-run innovations cannot be structurally identified by
the fractional UC model.

The model offers a variety of opportunities for future research. First, to sepa-
rately identify long- and short-run innovations, a multivariate generalization of the
fractional UC model could be considered. This would allow to model GDP jointly
with other economic variables that may exhibit a more pronounced cyclical behavior.
Second, fractional trends of different persistence could be incorporated, which would
allow to decompose time series into components of different memory.

For applied researchers, the model provides a flexible, data-driven method for
treating permanent and transitory components in macroeconomic and financial ap-
plications. It provides a solution to many model specification issues that have caused
uncertainty and debate about realistic trend-cycle decompositions and the estimation

of recessions.
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3.A Appendix

3.A.1 The corner solution of the QML estimator

In this appendix, we investigate the corner solution of the QML estimator as found in
section 3.5, i.e. the estimated correlation of —1 between long- and short-run innova-
tions. We want to ensure that the estimated (almost) perfect correlation is a feature
of the data on log US real GDP, and not a result of weak identification or an artifact
generated by the fractional UC model. First, to rule out weak identification, we ana-
lyze the log likelihood graphically, and check whether it is flat around the optimum.
If so, then the QML estimator is likely to suffer from weak identification, and nu-
merical optimization routines may converge to the boundary of the parameter space
where they are terminated. Second, we screen out corner solutions by considering
a constrained optimization problem that penalizes strong correlation between long-
and short-run innovations. If the constrained optimization yields a similar value for
the log likelihood, this would also indicate weak identification. Conversely, a much
smaller likelihood would indicate that the (almost) perfect correlation is a feature
of the data. Third, to see whether fractional UC models can in principle identify a
correlation coeflicient other than +1, we perform a small Monte Carlo study, where
all parameters are equal to the estimates for the preferred UC(d, 1, d, p) model
in section 3.5 with a single lag for the cyclical component, except the correlation
coefficient that is set to —0.8 to mimic strong, but not perfect, correlation. We then
examine whether the QML estimator is able to find the true correlation coefficient,
or whether it also converges to the corner solution.

Figure 3.5 plots the negative log likelihood of the UC(d, 1, d, p) model with a
single autoregressive lag for the cyclical component around its optimum in table 3.5:
Each plot shows the negative log likelihood for a two-dimensional grid of two param-
eter combinations in #, with all other parameters held fixed at their estimated values.
Thus, each plot shows how the likelihood changes if we vary over two parameters in
0, holding all other parameters fixed. As can be seen, the likelihood is hump-shaped

for the combinations (d,a1), (d, 0727), (d,0?), (al,o*%), and (aj,0?), indicating that

2
n’

a ridge under perfect correlation. Most interestingly, the likelihood is steep in the

these parameters are well identified. As to be expected, the plot for (02, 02) shows
direction of p around —1: For p > —.995, the negative log likelihood is greater than
315, while at the optimum it is about 301. Thus, the objective function is anything
but flat in the direction p — —1, which rules out that the estimated (almost) perfect

correlation is an artifact generated by the numerical optimization procedure.
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Figure 3.5: Contour plot of the negative log likelihood for the UC(d, 1, d, p) model
with a single autoregressive lag for the cyclical component. The black dot visualizes
the parameter estimate of the QML estimator as also reported in table 3.5. All
parameters except those on the (x,y)-axis are held fixed at their point estimates as
reported in table 3.5.

Next, we reconsider the optimization problem of section 3.5, but constrain the pa-
rameter space: We penalize corner solutions for the correlation coefficient by adding

a penalty term to the log likelihood once |p| > 0.99 that is

log X=1el i 15 > 0.99,
Penalty(0) = & oo !

0 else.

By design, the penalty term is zero for |p| = 0.99, and goes to —oo for |p| — 1.

Thus,the region of the parameter space for © is reduced by excluding (almost) perfect
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correlation of long- and short-run innovations.

Estimation results for the constrained optimization are contained in tables 3.9
to 3.12 for the same parameterizations of fractional UC models as for the uncon-
strained optimization in section 3.5. As can be seen from the four tables, numerical
optimization of the constrained likelihood now yields an estimated correlation of
—0.99 for almost all parameterizations. Thus, constraining the optimization prob-
lem does not yield an optimum where the correlation is significantly less pronounced.
For the preferred UC(d, 1, d, p) model with a single autoregressive lag for the cycle,
the parameter estimates are similar to the unconstrained results, however the log
likelihood is much smaller. This is well illustrated by the plots in figure 3.5 with p
on the ordinate, where the new optimum of the constrained optimization problem
now falls into the green region. In addition, the constrained results often show a
comparatively high estimate for 0370, together with a variance-ratio of trend and
cycle innovations that is estimated to be greater than one. Consequently, a lot of
variation is attributed to the trend, making it erratic, while little variation is left to
be captured by the cycle. Thus, constraining the optimization problem to exclude
(almost) perfectly correlated innovations not only reduces the likelihood, but also

yields economically implausible estimates for trend and cycle.

Finally, we check whether the estimated (almost) perfect correlation is an artifact
generated by the QML estimator for fractional UC models. For this purpose, we
conduct a Monte Carlo study, where we simulate y; by drawing 1000 replications
from the distribution that is generated under 6, = (1.30,0.14,—0.34,1.28,0.91)'
for the selected UC(d, 1, d, p) model. 6 is equal to the QML estimates for the
UC(d, 1, d, p) model with a single autoregressive lag for the cyclical component as
reported in table 3.5, with the only exception that the covariance parameter is set
such that pg = —0.80. Thus, we study a data-generating mechanism in which the
innovations are highly, but not perfectly, correlated. We then examine whether the
QML estimator is able to reliably estimate the covariance parameter, or whether it
again converges to the corner solution where the correlation is perfectly negative.
The latter would imply that the corner solution for US GDP is not a property of
the data, but rather an artifact that is generated by the model and the estimation

procedure.

Table 3.2 illustrates the results from the Monte Carlo study. The correlation
coefficient itself is not estimated directly (since the optimization is conducted over
0pe), however it can be computed for each estimate. As table 3.2 shows, the mean

estimate for pg is slightly upward-biased. Since pg is close to the lower bound of the
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0y | mean q1 qo q.25 qs5 q75 qs q9 tMSE bias median bias
d 1.30 1.26 1.15 120 121 126 132 1.33 1.37 0.11 -0.04 -0.04
072] 0.14 0.20 0.01 0.02 0.03 0.08 0.14 0.16 0.25 0.76  0.06 -0.06
ope -0.34| -028 -045 -0.33 -0.31 -0.17 -0.06 -0.04 0.03 0.77 0.06 0.17
o? 1.28 | 087 045 055 059 074 095 1.06 1.20 0.87 -041 -0.54
ay 091 | 0838 0.77 082 0.84 090 094 095 0.98 0.10 -0.03 -0.01
P -0.80 | -0.59 -1.00 -0.94 -0.91 -0.80 -0.51 -0.39 0.29 0.56 0.21 -0.00

Table 3.2: Simulation results for the UC(d, 1, d, p) model. The table shows the
mean estimate (mean), the respective quantiles (¢.), the root mean squared error
(rMSE), the mean bias (bias) and the median bias (bias) for the QML estimator of
fp in a Monte Carlo study with 1000 replications.

support for p, this is not surprising. As can be seen from the quantiles reported in
table 3.2, at least 10% of all estimates are at the boundary of the parameter space,
where p = —1 is estimated. However, the 20%-quantile is already away from the
corner solution. The median estimate equals pq itself, so that the QML estimator
appears to be median-unbiased, which is reassuring. In sum, the simulation shows
that the QML estimator can identify correlations that differ from the corner solution
in section 3.5, and thus the (almost) perfect correlation for log US real GDP appears
to be generated by the data, and not by the estimation procedure or the fractional
UC model.
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3.A.2 Additional figures and tables

(a) (b)
I(1) I(1)-corr I(2) I(2)-cor I(1) I(1)-corr I1(2) 1(2)-cor

o; 1.06 .73 0.00 0.00 | 0.33 1.60  0.00 0.00
(0.15) (0.42) (0.00)  (0.00) | (0.10) (0.31)  (0.00)  (0.00)

One -0.53 0.03 -0.89 -0.02
(0.32) (0.03) (0.27) (0.00)

o2 0.14 0.32 123 1.23 | 025 0.67  0.63 0.65
(0.12) (0.27)  (0.10)  (0.10) | (0.12) (0.22)  (0.04)  (0.05)

b1 1.51 115 107 1.09 | 1.61 0.67  1.29 1.30
(0.16) (0.29) (0.06)  (0.06) | (0.12) (0.07)  (0.05)  (0.06)

by -0.64 -0.65  -0.12 -0.12 | -0.61 -0.23  -0.32 -0.30

(0.17) (0.20)  (0.06)  (0.06) | (0.12) (0.02) (0.05)  (0.05)
—log L(A) | 469.60  467.56 468.98  468.58 | 317.88  316.81 319.13  316.23

p -0.71 1.00 -0.86 -1.00
AIC 947.19 945.11  945.96 947.16 | 643.77 643.62 646.25 642.46
BIC 962.06 963.70 960.83 965.75 | 658.63 662.20 661.12 661.05

Table 3.3: Parameter estimates for the integer-integrated UC models. Standard er-
rors are denoted in parentheses and are obtained from the numerical Hessian matrix.
Columns (a) contain the quasi-maximum likelihood estimates for the diffusely ini-
tialized state vector, while columns (b) omit the first 40 prediction errors from the
likelihood, avoid the diffuse initialization of the objective function, and allow for a
dummy in the second quarter of 2020.
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I(1) I(1) corr. I(2) I(2)corr. I(1)BN filter I(2) HP filter

dEW 0.53 0.09 -1.00 -1.00 -0.10 0.29
dGPH0.70 0.17 -0.58 -0.58 0.34 -0.03
dEWV 0.56 0.09 -0.76 -0.77 0.48 0.97
dGPH0.65 0.13 -0.63 -0.63 0.41 0.43
dEW 0.44 0.17 -0.65 -0.66 0.60 1.55
dgrH 053 0.19 -0.60 -0.61 0.49 0.85
dEW 0.30 0.35 -0.52 -0.54 0.66 1.98
d¢P? 0.36 0.43 -0.47 -0.48 0.54 1.29
dEW 0.22 0.55 -0.31 -0.33 0.65 2.00
d%PH 0,22 0.53 -0.32 -0.34 0.56 1.61
dEW 0.14 0.32 -0.05 -0.08 0.61 2.00
d%PH - 0.10 0.37 -0.18 -0.20 0.53 1.89

Table 3.4: Estimates for the memory parameter of the smoothed long-run innovations
for the UC-I(1)-, the UC-I(2)-, the UC-I(1)-corr, and the UC-I(2)-corr model, as
well as for the BN- and HP-filter. Memory parameter estimates stem from the exact
local Whittle estimator of Shimotsu and Phillips (2005), denoted as cZ_EW, and the
estimator of Geweke and Porter-Hudak (1983), denoted as dGPH , and the subscript
indexes the bandwidth a € {.5,...,.75}.
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UC(d, 1, d, p) UC(d, d, d, p) UC(d, b, d, p)
P 1 2 3 4 1 2 3 4 1 2 3 4
d 1.30 1.30 130 1.27| 122 090 092 088 | 1.31 130 1.04 1.04
(0.01)  (0.00) (0.00) (0.00) | (0.00) (0.01) (0.00) (0.00) | (0.00) (0.00) (0.00) (0.00)
b 093 090 092  0.92
(0.00)  (0.00) (0.00) (0.04)
o2 014 014 014 014| 126 343 232 511| 009 008 086  0.86
(0.00)  (0.00) (0.00) (0.00) | (0.00) (0.02) (0.02) (0.07) | (0.00) (0.00) (0.00) (0.00)
e 043  -043 -043 -043| -2.17 -329 349 -6.79| -031 -030 -1.55 -1.55
(0.00)  (0.00) (0.00) (0.00) | (0.00) (0.02) (0.02) (0.09) | (0.00) (0.00) (0.00) (0.01)
o2 128 128 128 128| 373 316 524 901 | 111 111 279 279
(0.00)  (0.00) (0.00) (0.00) | (0.00) (0.02) (0.04) (0.12) | (0.00) (0.00) (0.00) (0.01)
a1 091 091 091 091| 096 146 1.07 1.07| 091 090 105  1.05
(0.00)  (0.00) (0.00) (0.00) | (0.00) (0.06) (0.01) (0.00) | (0.00) (0.00) (0.00) (0.00)
as 0.00  0.00 -0.01 050 -0.06  -0.05 0.00 -0.05 -0.05
(0.00)  (0.00)  (0.00) (0.04) (0.01)  (0.01) (0.00)  (0.00)  (0.01)
as 0.00  0.00 0.08  -0.07 0.07  -0.07
(0.00)  (0.00) (0.01)  (0.01) (0.00)  (0.01)
ay -0.01 -0.02 0.00
(0.00) (0.02) (0.01)
—log L(#) | 301.01 300.98 301.66 300.27 | 308.72 306.51 301.40 301.03 | 304.26 303.99 301.39 301.24
p 1.00  -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00  -1.00
110 760.51 760.46 760.52 760.34 | 765.15 760.42 760.64 759.97 | 760.92 760.62 760.75 760.73
11 080 089 088 089 | 027 123 107 126| 105 116 107  1.07
112 802 -803 -804 -803| -807 -7.99 805 -8.05| -804 -8.04 -804 -8.04
AIC 612.02 613.96 617.33 616.55 | 627.45 625.03 616.80 618.06 | 620.51 621.98 618.78 620.48
BIC 629.90 635.41 642.36 645.16 | 645.33 646.48 641.83 646.67 | 641.97 647.01 647.38 652.67

Table 3.5: Estimation results for the UC(d, b, d, p) model. The table shows the quasi-maximum likelihood estimates for the fractional
UC model with a polynomial deterministic trend of order b, s = po + p1t?, where b is either set to unity (left columns), or equals d
(center columns), or is estimated jointly with the other parameters via QML (right columns). Further components are an AR(p) cyclical
component in the fractional lag operator Ly (i.e. , a(Lg)cy = €4, and thus § = d), a fractional trend Dmﬂﬁ = 1, and correlated innovations

p = Corr(m, &¢) as described in section 3.3. e denotes the regression coefficient for the dummy in 2020Q2 as described at the beginning

of section 3.5. Standard errors are denoted in parentheses and are obtained from the inverted numerical Hessian matrix.
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(r9) (Lo)  (Z0) (3500 40 (L) &) Gl &) (12) (22) (32) (42) (13) (23) (33) 43) (14)  (24)  (34) (44)
d 089 089 091 093 090 087 091 093 091 09L 091 096 091 09I 094 096 093 094 094 0093
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

o2 10.74 1076  3.82 195 1074 933 38 192 322 335 38 131 325 335 122 131 176 274 431 469
(0.03)  (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

One 1339 -1341 538 -2.97 -13.39 -11.67 -538 294 -454 -475 538 219 -458 475 204 219 279 -401 -588  -6.37
(0.04) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.09) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

o2 16.70 1672 756 453 1669 1459 756 449 641 674 756 364 646 674 343 364 440 588 802 864
(0.05) (0.00) (0.06) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.16) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

a 094 094 097 101 094 020 097 1.0l 092 127 097 135 092 127 074 135 088 059 067 -0.01
(0.00)  (0.00) (0.09) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

as 000 000 -0.04 070 0.00 -0.03 033 000 -1.29 033 041 -1.29 029 -067 -0.18
(0.00)  (0.01)  (0.00) (0.00)  (0.00)  (0.00) (0.00)  (0.00)  (0.03) (0.00)  (0.00)  (0.00) (0.00)  (0.00)  (0.00)

as -0.05  -0.05 0.05  -0.05 005 093 027 093 085  0.50
(0.12)  (0.00) (0.00)  (0.00) (0.00)  (0.02) (0.00)  (0.00) (0.00)  (0.00)

as -0.01 -0.01 -0.09 -0.09 0.45
(0.00) (0.00) (0.02) (0.00) (0.00)

m 000 073 000 -00l 005 -0.30 000 -0.33 005 -029 027 -033 013 042 033 100
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

my 005 004 000 094 005 004 -016 094 011 011 099 117
(0.00)  (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ms 002 000 000 000 005 006 009  0.60
(0.01)  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ma 004 004 005  0.09
(0.00)  (0.00) (0.00) (0.00)

—logL(A) 303.66 304.48 301.84 301.16 308.63 303.07 301.63 300.88 30220 30175 30170 297.90 301.76 301.72 300.47 297.90 301.45 300.66 297.01 296.24
p 2100 -1.00  -1.00  -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00  -1.00
1o 760.25 760.09 760.53 760.65 758.13 760.41 760.34 760.64 760.58 760.54 760.45 763.34 760.51 760.54 760.75 763.34 760.86 761.00 760.94 760.77
1 115 118 112 106 141 128 114 106 112 114 113 08 114 113 10l 086 103 1.02 102  1.04
12 801 -800 -804 -801 -800 -808 -804 -804 -804 -806 -804 -821 -807 -806 -8.08 -820 -808 -812 -8.14 -8.30
AIC 617.32 620.96 617.68 618.32 629.25 620.14 619.26 619.76 618.41 619.50 621.40 61581 619.52 621.43 620.94 617.80 62091 621.33 616.02 G616.48
BIC 63520 64241 642.72 646.93 650.71 645.17 647.86 651.94 64344 648.11 65358 G651.57 648.13 653.62 656.70 657.14 653.09 657.09 655.35 659.39

Table 3.7: Estimation results for the UC(d, d, 1, p) model. The table shows the QML estimates for the fractional UC model with a
polynomial deterministic trend of order d, s = po + p1t? (i.e. b = d), an ARMA(p, ¢) cyclical component in the standard lag operator
L, a(L)e, = m(L)e; (ie. § = 1), a fractional trend A%z, = 1, and correlated innovations p = Corr(n, ;) as described in section 3.3.
We consider ARMA polynomials up to order p =1, ...,4, ¢ =0, ...,4, and us denotes the regression coefficient for the dummy in 2020Q2
as described at the beginning of section 3.5. Standard errors are denoted in parentheses and are obtained from the numerical Hessian.
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UC(d, 1, d, p) UC(d, d, d, p) UC(d, b, d, p)
P 1 2 3 4 1 2 3 4 1 2 3 4
d 133 1.03 1.03 121| 079 081 082 081 | 129 083 096  0.90
(0.06) (0.16) (0.04) (0.06) | (0.08) (0.05) (0.14) (0.19) | (0.01) (0.05) (0.10) (0.13)
b 084 081 082 081
(0.04) (0.02) (0.07) (0.11)
o2 013 130 432 049 | 562 213 1.05 211| 001 213 035 147
(0.07) (1.07) (0.01) (0.15) | (3.57) (0.46) (0.11) (3.31) | (0.02) (0.96) (0.20) (1.37)
e 036 -080 -5.76 007 | -549 -1.96 -1.82 -1.99 | -0.10 -1.95 -0.80 -1.29
(0.14)  (1.11)  (0.09) (0.06) | (2.98) (0.43) (0.16) (3.40) | (0.11) (0.92) (0.40) (1.51)
o2 105 069 7.8  001| 548 1.84 321 192| 083 183 1.8 115
(0.22) (1.11) (0.27) (0.02) | (2.20) (0.39) (0.23) (2.99) | (0.27) (0.86) (0.76) (1.55)
a1 081 111 107 148 | 062 164 1.24 131| 096 163 118 135
(0.00) (0.52) (0.13) (0.24) | (0.11) (0.37) (0.13) (0.33) | (0.15) (0.48) (0.32) (0.19)
as 046  -0.03  -0.17 0.66 -0.10  0.37 065 -0.09  0.29
(0.31)  (0.07) (0.28) (0.30)  (0.20)  (0.13) (0.39)  (0.43) (0.15)
as 0.05  -0.77 0.16  -1.09 011  -1.06
(0.02)  (0.20) (0.31)  (0.87) (0.47)  (0.46)
as 0.41 0.40 0.41
(0.22) (0.50) (0.25)
—log L(6) | 317.44 316.76 316.19 315.37 | 316.25 313.71 313.01 312.38 | 315.11 313.71 312.63 312.05
p 099 -085 -099 099 | -099 -099 -0.99 -0.99| -0.99 -0.99 -0.99 -0.99
1o 760.90 760.97 761.41 761.45 | 759.03 758.73 760.34 758.84 | 760.41 758.72 760.41 759.22
11 072 075 085 076| 237 206 201 207| 173 207 194 214
o 801 -805 -805 -811| -802 -8.03 -8.06 -8.08| -8.05 -8.03 -8.06 -8.09
AIC 644.87 645.51 646.37 646.73 | 642.50 639.43 640.02 640.76 | 642.23 641.42 641.26 642.10
BIC 662.75 666.97 671.41 675.34 | 660.38 660.88 665.05 669.37 | 663.68 666.45 669.87 674.28

Table 3.9: Estimation results for the constrained UC(d, b, d, p) model where |p| < .99 is imposed. The table shows the QML estimates
for the fractional UC model with a polynomial deterministic trend of order b, j; = g + u1t°, where b is either set to unity (left columns),
or equals d (center columns), or is estimated jointly with the other parameters (right columns). Further components are an AR(p)
cyclical component in the fractional lag operator Ly (i.e. , a(Lg)cy = €, and thus 6 = d), a fractional trend Dwa“ = 1, and correlated
innovations p = Corr(n, &) as described in section 3.3. pg denotes the regression coefficient for the dummy in 2020Q2 as described at
the beginning of section 3.5. Standard errors are denoted in parentheses and are obtained from the inverted numerical Hessian matrix.
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(piq) (100 (200 (300 %0) (1) (21 (1) K1) (12) (22)  (32)  42)  (1B)  (23)  (33)  3)  (14)  (24)  (34) (44)
d 076 082 083 125 078 082 079 125 082 079 078 078 083 078 078 084 083 082 078 079
(0.06) (0.13) (0.00) (0.06) (0.06) (0.20) (0.11) (0.06) (0.14) (0.06) (0.12) (0.14) (0.05) (0.00) (0.15) (0.00) (0.47) (0.01) (0.00) (0.00)

o2 504 121 091 076 500 092 031 076 133 441 423 423 109 371 423 174 099 314 007  0.35
(1.99) (1.52) (0.06) (0.09) (4.25) (1.28) (0.00) (0.06) (0.28) (4.07) (2.94) (3.84) (1.58) (0.18) (4.19) (0.00) (0.20) (0.48) (0.00) (0.02)

Ope 337 -1.02 -163 -007 -648 -0.75 -017 -007 -218 -582 -270 -270 -1.31 -258 -270 -211 -1.19 -3.26 -0.15 -0.78
(2.01) (1.35) (0.07) (0.03) (4.84) (1.13) (0.05) (0.01) (0.41) (4.65) (2.21) (2.8%) (1.70) (0.26) (3.13) (0.00) (0.23) (0.50) (0.00) (0.04)

o2 229 087 297 001 856 062 054 001 366 783 176 176 161 187 176 260 146 345 082  1.77
(2.12)  (1.18) (0.07) (0.00) (5.50) (0.97) (0.01) (0.00) (0.58) (5.27) (1.55) (2.00) (1.79) (0.28) (2.17) (0.00) (0.26) (0.50) (0.00) (0.08)

a 047 154 103 029 098 154 052 014 097 000 015 015 097 -0.81 015 -0.14 096 -035 065 001
(0.06) (0.30) (0.26) (0.36) (0.01) (0.39) (0.77) (0.22) (0.36) (0.04) (0.10) (0.12) (0.01) (0.07) (0.25) (0.01) (0.02) (0.07) (0.01) (0.02)

as 2056 0.01  -0.07 2055 094 -0.15 095 -0.76  -0.76 044  -0.76  1.06 086 -0.58 -0.10
(0.11)  (0.23) (0.22) (0.28)  (0.80) (0.12) (0.04)  (0.06) (0.08) (0.14)  (0.07)  (0.00) (0.03)  (0.00)  (0.00)

as -0.07  -0.48 049  -0.61 037 037 037 037 087 048
(0.21)  (0.22) (1.02)  (0.13) (0.08)  (0.08) (0.16)  (0.00) (0.01)  (0.02)

as 0.82 0.65 0.00 -0.53 0.49
(0.34) (0.22) (0.05) (0.00) (0.02)

my 006 013 092 048 003 093 033 033 050 120 033 070 030 081 057 107
(0.05)  (0.23) (0.09) (0.19) (0.15) (0.06) (0.09) (0.10) (0.33) (0.06) (0.24) (0.02) (0.06) (0.09) (0.01) (0.06)

my 005 -004 08 08 001 08 08 -0.76 045 125 1.25 134
(0.22)  (0.05) (0.10) (0.13) (0.06) (0.14) (0.18) (0.01) (0.01) (0.00) (0.01) (0.01)

ms 013 031 000 -094 -0.15 050 039 083
(0.11)  (0.04) (0.15) (0.00) (0.13) (0.08) (0.01) (0.06)

my 018 016 017 020

(0.10)  (0.01) (0.00) (0.04)
—logL(A) 314.92 31347 312.90 311.20 314.37 31346 312.69 31221 313.12 31264 310.06 310.06 312.83 311.93 310.06 308.93 31226 309.51 307.18 299.23

p -099  -099 -099 -099 -099 -099 -042 -099 -099 -099 -099 -099 -099 -098 -099 -099 -099 -099 -0.65 -0.99
140 759.75 758.99 760.42 764.04 759.97 759.04 759.87 765.76 760.36 760.02 759.50 759.50 760.23 760.24 759.50 759.02 760.41 758.65 759.14 758.84
I 2.76 2.01 1.93 0.19 2.38 2.01 2.41 0.18 1.98 2.27 2.51 2.51 1.94 2.43 2.51 1.84 1.87 2.08 2.54 2.36
142 -8.06 -803 -805 -820 -804 -803 -807 -817 -805 807 -816 -816 -8.06 -822 -816 -8.08 -8.08 -820 -820 -8.30
AIC 639.85 638.95 639.81 638.39 640.74 640.92 641.39 642.42 640.24 641.28 638.12 640.12 641.65 641.87 640.12 639.87 642.52 639.02 636.35 622.46
BIC 657.73 660.40 664.84 667.00 662.20 665.95 669.99 674.60 665.27 669.88 670.31 675.88 670.26 674.05 675.88 679.20 674.70 674.78 675.69 665.37

Table 3.11: Estimation results for the constrained UC(d, d, 1, p) model where |p| < .99 is imposed. The table shows the QML estimates
for the fractional UC model with a polynomial deterministic trend of order d, u; = po + p1t? (i.e. b = d), an ARMA(p, q) cyclical
component in the standard lag operator L, a(L)c; = m(L)e; (i.e. § = 1), a fractional trend A4z, = n;, and correlated innovations
p = Corr(n,e¢) as described in section 3.3. We consider ARMA polynomials up to order p = 1,...,4, ¢ = 0,...,4, and py denotes the
regression coefficient for the dummy in 2020Q2. Standard errors are denoted in parentheses and are obtained from the numerical Hessian.



145

3.A  Appendix

‘“URISSO] [BOLIOWINU 9} WOIJ paure}qo
oIe pue sosojusled Ul oIe SIOLD pPIepur)s Z{H(0Z0Z Ul AWWNp o) I0] JUSIDIFO0D UOISSOIIAI o) sojouadp ¢rf pue ‘g =b ‘g ‘1=d
IopI1o 0} dn sperwoudjod YNYVY IOPISUOD 9A\ ‘€€ UOIJIdS Ul PAQLIdSIp sk (3 71)1100) = d suoryeaouur paje[eLIod pur ‘Hi = “awd puay
reuonoriy ® (1 = ¢ 0°1) *3(7)w = (7)v ‘7 103eI0do Se prepue)s oY) ul Juouoduwiod [ed1Ad (b ‘d)YNYY ue aIe sjuouoduiod Ioyiamj
TN ®IA pojyewyso st g S q o1oym ‘Tl + 0l = ¥ ‘g 1pIo Jo puer) dYSIUIILINP [eTwoUA[od ® YIM [9pOW )() [RUONOIRI} 9} I0]
S9JRIISO TING oY) SMOUS d[qe) o], ‘pasodul st g6 > |d| o1oym [ppowt (d ‘1 ‘q ‘p))H[) POUIRIISUOD dY) I0] SYNSOI UOTIRWISH g1 ¢ 9[qR],

94°699 6€'9L9 GC'TL9  T8°6L9 00°GL9 TI8'0L9 CF6L9 99°9L9 T80L9 ¥C'999 G8EL9 69°0L9 6C8L9 G8ELI 86'0L9 0§°G99 €C€L9 ©8699 L6°999 07'C99 oId
8C'619 8V'€E9 C6'CE9  SOFP9  60CE9 8Y'TEI 99°€V9 LVEV9 8Y'TE9 8¥'6C9 99'T¥9 80TV €TV  L9'TP9  LECGYI 9V 0FV9 CO'T¥V9 1C'1P9 ¥6°0V9 ¥6°079 oIV
¢e'8-  ¥e'8 Ge'8- 808 ¥E'8  ¥e'8 808 908  ¥E'8  ¥¢'8- 808 G608 808 808 808 908~ 608 808 €08  TO'8- el
8C'C 1€°€ €0'¢ 18T 6C'T 1€°€ 76T 9T'c 1€°€ 1€€ ¥6'T €6'T 06T ¥0'c 19'C 76T 112 c0'c 10°¢ 86°T i
LG'8GL  90°8GL  G9'LGL  L¥'09L  €8'8GL  90'8GL  0€°09L LLLSL 90°8GL  90°8GL  0€°09L O0P'09L 9€°09L <€9'8GL TG8GL €€09L T06SL 68°65L 66'8GL 81092 or
66'0- 660~ 660- 660~ 660~ 660- 660~ 660 660~ 660~ 660 660~ 660~ 660~ 660~ 660~ 660 660~ 660 660" d

$9'96C  FLTOE OF'C0E TOTIE FOFOS LIS ERTIE FLTIE FLTOS PLTOS €RTIE FO'EIE LTIIE €8T11E 6ICIE €TEIE €UTIE 09CIE Lyele Lviie (g)7Sor—
(co0) (100) (11°0)  (60°0)

0£0 000 220 900 e
(¢0) (100) (12°0) (1T°0) (20°0) (10°0) (¥0°0) (1T°0)

660 000 ¥90 900  920- 000 000 290 fw
(tro) (100) (810) (20) (e00) (100) (¢10) (200) (e0'0) (v00) (91°0) (v€0)

6V  ¥60 8T 910 160  ¥60  I10- FIO  ¥60  ¥60  I10- €00 tw
(810) (000) (210) (6€0) (000) (000) (L00) (200) (000) (v00) (800) (220) (v00) (000) (8€0) (¥20)

ST'T 020 060 T€0 000 0Z0 980  T0'0- 020 020 980  S00- 960  LLO  L60  GTO- Tw
(61°0) (v0°0) (10°0) (90°0) (ev°0)

0 8¢°0- 000 60°0- 170 i
(91°:0)  (000) (900)  (10°0) (t00)  (c00) (80°0) (81°0) (9z0)  (#¥0)

Te0 8L 660  8L0 8,0  8L0 0£0- 970~ 20T- 620~ €
(¢z0) (000) (¥0°0) (€00)  (000) (£0°0) (000)  (90°0) (20°0) (L000)  (or0) (er0) (ez'0) (200) (LF0)

gro-  ¥90-  98°0- 160-  ¥S0-  ¥6°0 ¥60-  $G0- V60 ¥OT 180 090 0 €0 SS0- &7
(gz0)  (000) (¢00) (go0) (000) (000) (800) (8¢0) (ro0) (900) (600) (090) (0r0) (900) (L&0) (200) (gz0) (sg0) (0g0) (100)

00 2,0  €€0- 960 €0T  ¢L0  200- 960 L0 ©,0  200- 960 080  S90  9¥0- 960 6€T 060 ST L6D 7
(€90) (000) (2900 (09€) (0z0) (000) (820) (€g0) (r00) (820) (620) (9271) (¥g0) (18¢) (s21) (vw) (s00) (9L2) (62°0) (0€¢C)

61T 29T  ¥IT  T¢T  LLT @91 208 LT 29T @91 08 69 .80  SeT 1Tl 1€6  6V0  S¢e  L80  FF9 Z0
(6€0) (000) (eL0) (9re) (o) (000) (ez0) (e¢0) (000) (gg0) (eg0) (err) (re0) (ozw) (121) (29¢) (9000 (8L2) (eg0) (¢8°¢)

8¢'0- 990 680- S¢0- GL0- 990 F0O9- IFI-  G90- S90- F09- €8'€-  FI0-  FFI-  ETI- ¥TL ¥90-  ¢Te-  10T- 619 o
(0z0) (000) (e20) (ee1) (1170) (000) (L10) (020) (000) (ee0) (Lro) (e60) (600) (e2¥) (#91) (erL) (9000 (P2@) (920) (¥1°9)

gro .0  0L0  0T0 gE0  LT0 ¥V 8€T g0 LT0  ¥9F  L9C  ¢00  €§T €%l GLS 980 g€ 6IT  L09 4o
(co0)  (000) (600) (g00) (200) (000) (€0°0) (80°0) (10°0) (80°0) (¢00) (2000) (£0°0) (810) (0'0) (L000) (00°0) (€000) (S0°0) (G0°0)

6,0 €0 €0 €0 680 €0 €0 180 €0 €0 €0 €0 €0 ¢80 L0 €0 180 780 80 80 q
(8z°0) (000) (92°0) (sg0) (v0'0) (000) (€00) (rro) (roo) (1z0) (€00) (00) (eg0) (¢g0) (er0) (8e0) (¥r'0) (8€0) (900) (600)

0T 090 ST'T 20T 8T 090 990 080 090 0S0 990 ¥L0  FET 6.0 290  ¥90 980 0L0 180 190 P

rr)  e)  (e) 1) (en)  (ge) (g2) (e1) (ep) (e (ee) (@1 (p) (e (rg) a1 (n) (¢ (02 (071 (b:d)




146 Solving the unobserved components puzzle



Chapter 4

Macroeconomic forecasting with

fractional factor models

4.1 Introduction

At least since the seminal work of Chamberlain and Rothschild (1983), Forni et al.
(2000), and Stock and Watson (2002), factor models have become an important
tool for economic analysis and forecasting. They are particularly popular in fields
where strong cross sectional dependencies and large data sets are present, such as
macroeconomics and finance, because they handle covariation in the cross section
efficiently by condensing it into a typically small number of common latent factors.
In contrast to the cross section, little attention has been paid to strong dependence
of the factors in the time domain: While economic data are frequently found to be
highly persistent, often non-stationary, and to exhibit long memory, the vast majority
of factor models assume the factors to be stationary. By allowing for factors with
different memory, this paper investigates whether combining fractional integration
techniques and factor models improves the forecast performance for macroeconomic
data.

A major drawback of most factor models is the inefficient use of longitudinal
information. As a simple example, consider a macroeconomic panel in which some
variables are found to have high integration orders around two (e.g. prices, money,
and credit), others have integration orders close to one (e.g. economic output, income,
and employment), and still others are stationary (e.g. interest rates). Suppose the
panel is driven by a set of common factors with heterogeneous integration orders,
where the factors with high memory affect only the non-stationary variables and

impose cointegration relations, while the factors with low memory may affect the
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entire panel. In order to apply traditional factor models, which require stationary
data, to such data, the data are typically first tested for unit roots and differenced if
necessary. However, since the integration order of an observable variable equals the
highest integration order of all factors with non-zero loadings, all factors with lower
memory are likely to be over-differenced when the data are pre-processed. Model
selection criteria and model specification tests for the number of factors may then
miss the over-differenced additional factors, as their corresponding eigenvalues tend

to zero.

The problem of potentially non-stationary factors has been addressed by allow-
ing for unit roots in the factors (see, e.g., Bai; 2004; Banerjee and Marcellino; 2009;
Eickmeier; 2009; Chang et al.; 2009; Banerjee et al.; 2014, 2016; Barigozzi et al.;
2021). While this clearly improves the suitability of factor models for various appli-
cations in macroeconomics and finance, these models come at the cost of requiring
prior assumptions about the integration orders of the factors, and typically all fac-
tors (and thus all observable variables) are assumed to be either I(1) or 1(0). This,
in turn, limits the model to factors (and data) with either perfect or short memory,
reduces statistical inference about the integration orders of data and factors to prior
unit root testing, and hinders a data-driven estimation of the integration orders to-
gether with the other model parameters. Misspecifying the integration orders of the
observable variables and factors may bias factor estimates, lead to incorrect infer-
ence about the number of common factors, and is likely to deteriorate the forecast
performance. Moreover, treating integration orders as (known) integers ignores the
non-standard behavior of many economic series that are fractionally integrated, as
well as the uncertainty about the true integration orders. The latter points are par-
ticularly important in macroeconomics, where the literature has provided extensive
evidence for long memory and fractional cointegration in the data (see e.g. Hassler
and Wolters; 1995; Baillie; 1996; Gil-Alana and Robinson; 1997; Tschernig et al.;
2013).

While some generalizations of factor models to fractionally integrated processes
exist, the literature has so far mostly considered semiparametric models. Morana
(2004) suggests a frequency domain principal components estimator that allows for
long memory, while Luciani and Veredas (2015), Cheung (2022), and Ergemen (2023)
estimate fractionally integrated factors by a principal components estimator based
on a data set in first differences. Recent parametric models have been designed with
a different focus, or are much more restrictive: Ergemen and Velasco (2017) and

Ergemen (2019) focus on eliminating common fractional factors, while Mesters et al.
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(2016) restrict the memory of the common factors to the stationary region. In a setup
closest to the one considered in this paper, Hartl and Jucknewitz (2021) introduce
a parametric fractionally integrated factor model that allows for both, stationary
and non-stationary factors. They decompose a panel of observable data into groups
of purely fractionally integrated factors with different integration orders, plus some
stationary factors that exhibit an ARMA structure. The model is then applied to

analyze and forecast realized covariance matrices.

Building on the model of Hartl and Jucknewitz (2021), this paper aims to pro-
vide insights on whether fractional integration techniques have merit for at least a
relevant fraction of the numerous and heterogeneous macroeconomic variables typi-
cally under study. To this end, I search for a suitable factor model formulation that
decomposes a panel of macroeconomic data with heterogeneous integration orders
into common factors and idiosyncratic errors. The factors may exhibit long mem-
ory and thus generate cointegration relations among the observable variables, and
the memory may differ across the factors. Specifically, I study three different mod-
els that incorporate long memory into a parametric factor model setup: The first
model introduces ARFIMA processes to the non-stationary factor model setup of
Barigozzi et al. (2021), thus allowing for more general patterns of persistence than
the usual integer-integrated specifications. Building on the work of Hartl and Juck-
newitz (2021), the second model distinguishes between purely fractionally integrated
factors, which determine the long-run behavior, and I(0) factors, which model com-
mon cyclical dynamics of the data. The third model generalizes the pre-differencing
of the data: Instead of taking first or second differences, the data enter the model
in fractional differences, with the exact level of differencing determined within the

model. Factors are then estimated based on the fractionally differenced series.

All models are cast in state space form so that factors, loadings, and integra-
tion orders can be estimated jointly by a combination of the Kalman recursions
and maximum likelihood. To arrive at a computationally feasible formulation of
the state space model that keeps the dimension of the state vector manageable, I
approximate the fractional differencing polynomial by small ARMA polynomials as
suggested by Hartl and Jucknewitz (2022). For a given integration order, the ARMA
coefficients are fitted beforehand and are smoothed over a sequence of integration
orders to obtain a continuous function that maps from the integration order to the
ARMA coefficients. Thus, optimization can be carried out over the integration order
parameters. The model parameters are then estimated by means of the maximum

likelihood estimator, where the expectation-maximization algorithm as derived by
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Hartl and Jucknewitz (2022) is used within the numerical optimization procedure.
The factors are estimated using the Kalman filter and smoother. Starting values for
the parametric optimization are obtained via principal components.

Just like the usual factor models, the fractional factor models are applicable to
high-dimensional data, but bear several advantages: They allow joint modeling of
data of different memory, and do not rely on prior assumptions about the memory
of the data. Moreover, they allow for joint estimation of factors, loadings, and
integration orders instead of the multi-step estimation procedure of semiparametric
models. They capture cointegration through the common fractionally integrated
factors, and are more robust to over-differencing.

The forecast performance of the fractional factor models is studied in a pseudo
out-of-sample forecast experiment for the high-dimensional US macroeconomic data
set of McCracken and Ng (2016). I provide a guided choice among the different
models by considering the forecast performance for 112 macroeconomic variables.
Ultimately, I find comprehensive evidence that an adequate combination of fractional
integration techniques and factor models can significantly improve forecasts relative
to standard factor models and other benchmarks.

The remainder of the paper is organized as follows. Section 4.2 details the con-
struction of fractional factor models. Parameter optimization and factor estimation
are discussed in section 4.3. Section 4.4 compares the forecast performance of the
fractional factor models with various benchmarks in a pseudo out-of-sample forecast

experiment, and section 4.5 concludes.

4.2 Fractional factor models

To begin with, consider the following factor model for possibly fractionally integrated

data
Yt = f(Xt) + U, t= 1, ...,T, (41)

where y¢ = (Y14, ..., yn,t)’ holds the observable data, f(x:) is the common component,
and uy = (U1, ...,un)" are the idiosyncratic disturbances. The common component
f(x¢) is driven by r common factors x¢ = (x14, ..., Xr,t)’ that account for common
short- and long-run dynamics among the y;, while u; is purely idiosyncratic and has
a diagonal covariance matrix.

The observable y; + ~ I(d}) are fractionally integrated of type II with integration
orders df, df € D = {b € R|0 < b < dppgz < 0}, for alli =1,..., N, and df may vary
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across ¢ = 1,..., N. D rules out anti-persistence by ensuring the integration orders
to be non-negative, while the upper bound d,,,,, may be arbitrarily large, however it
forces the parameter space for the integration orders to be bounded. An integration
order d; implies that the fractional difference of a series is I(0), i.e. A‘f yit ~ 1(0),
i=1,..,N.

The fractional difference operator Aﬂ_ depends only on the integration order b.
Without subscript, it exhibits a polynomial expansion in the lag operator L of order

infinite

0 . b=l () j=1,2,...,
A= (1-L) = mb)L, ;j(b) = i) (4.2)
=0 1 J=0,

where the ;(b) are defined recursively. The +-subscript of A% denotes the trunca-
tion of an operator at t < 0, e.g. for an arbitrary process z, Ag_zt =Abzl(t>1) =
Z;;B 7j(b)z—;, where 1(¢t > 1) is the indicator function that takes the value one
for positive subscripts of z;_;, else zero. The use of the truncated fractional differ-
ence operator reflects the type II definition of fractional integration (Marinucci and
Robinson; 1999). It is required to treat the asymptotically stationary case (b < 1/2)
alongside the non-stationary case (b > 1/2).

Note that traditional factor models as considered by Forni et al. (2000), Bai
and Ng (2002), and Stock and Watson (2002) among others assume df = 0 for all
i = 1,..., N, while the non-stationary factor models of Bai (2004), Banerjee and
Marcellino (2009), Eickmeier (2009), Banerjee et al. (2014), Banerjee et al. (2016),
and Barigozzi et al. (2021) allow for df € {0;1} for all @ = 1,...,N. Allowing
for integration orders d; € D includes intermediate solutions between the integer-
integrated factor models, such as long-range dependent but mean-reverting processes
for 0 < d7 < 1, and processes that are more persistent than random walks but less
persistent than quadratic stochastic trends for 1 < df < 2. Thus, extending the
parameter space for the integration orders to the real line links the integer-integra-
ted specifications seamlessly. Due to the type II definition, the inverse fractional
difference Ajrbzt is well defined for all b € D.

The key question addressed in the remainder of this section is how to specify a
factor model of the form (4.1) when the y, are allowed to be fractionally integrated.
The dynamic specification of y; is crucial, as it must take into account the strong per-
sistence and possibly non-stationarity of the y;. In addition, the functional relation
between y; and y; has so far been left open, and is of key importance as it determines

the cointegrating properties of the model. In the search for an appropriate specifica-
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tion of the general factor model in (4.1), the next three subsections introduce three
different candidate models that allow for fractionally integrated y;. Subsection 4.2.1
generalizes I(1) factor models (cf. e.g. Barigozzi et al.; 2021) to non-integer integra-
tion orders by allowing for autoregressive fractionally integrated factors. Subsection
4.2.2 decomposes the factors into purely fractionally integrated components that de-
termine the long-run behavior of the y;, and short memory components that reflect
the short-run behavior of the y;, and builds on the model of Hartl and Jucknewitz
(2021). Furthermore, subsection 4.2.3 generalizes the pre-differencing of standard

factor models to fractional differencing.

4.2.1 Dynamic fractional factor models

Consider a simple multivariate unobserved components model
yt:/lft—l—ut, t= 1,...,T, (43)

where f(x¢) = Afy in (4.1), fy = (fit,-.., fre)’ holds the r common factors, A is
a NN x r matrix of factor loadings that is assumed to have full column rank, and
the errors u; account for idiosyncratic dynamics. The latent factors are assumed to

follow r fractionally integrated autoregressive processes
d; .
Bj(L)A_i_ijﬂg = Cj,t7 ] = 1,...,7’, (44)

where Bj(L) =1-7%_, BjjkLk is a stable lag polynomial. For the pervasive shocks
that drive f;, it is assumed that ({1, ..., ¢re) = G ~ NID(0, Q), where @ is diagonal.
A matrix formulation of (4.4) follows directly by defining d = (djy, ..., d,)’, the matrix
polynomials D(d) = diag(Ail, vy Aﬁl:) and B(L) = diag(By(L),..., B-(L)), such
that B(L)D(d) f; = ;.-

The errors u;; are assumed to be mutually independent and are allowed to be

autocorrelated
pi(L)uiy =&ty &t~ NID(0,0%), i=1,..,N, (4.5)

where p;(L) =1— 37" p; ,L* is a stable lag polynomial.

The model may explain various degrees of common persistence that characterize
the data by common components with long memory. For d; = ... = d, = 0, the
model nests the approximate dynamic factor model of Stock and Watson (2002),

while d; € {0,1}, j = 1,...,r, yields a nonstationary dynamic factor model with
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I(1) factors as considered by Barigozzi et al. (2021). Therefore, the model can be
interpreted as a fractional generalization that neither requires prior differencing of

the data, nor prior assumptions about the integration orders.

4.2.2 Dynamic orthogonal fractional components

A more parsimonious factor model is proposed by Hartl and Jucknewitz (2021).
Their model distinguishes between r; purely fractionally integrated factors ft(l) =
( 1(712, - ﬁll?t)’ , that establish cointegration relations among the y;, and 79 stationary
autoregressive components ft( ( 1 t RV f )y ) that account for common short-run
behavior. I consider a slight modification that allows for autocorrelated idiosyncratic
errors. The general framework for the dynamic orthogonal fractional components

model is then given by

(1)
g =40 4@ (;@)) +up, t=1,..T,  (46)
t
d; .
AYF =, j=1,..,r1, (4.7)
BAWL)f) = ¢, j=1,ra,  (48)
pz( )uzt & ty 1= 1,...,N, (49)

for all t = 1,...,7 and r = ry +ry < N. As before, p;(L) = 1 — 3%, p;xLF is a
stable polynomial, and the N idiosyncratic shocks & = (§14,...,Eny)  are assumed
to be independent Gaussian white noise processes it ~ NID(()?O?Z_), i1=1,..,N.
For the pervaswe shocks C(l) (Cl ey T17 ) Ct (Cﬁ), ...,Cﬁz?t)’, it is assumed
that Vec(Ct e )) ~ NID(0, Q) where Q is diagonal. In addition, the errors wu; are

assumed to be independent of the factors f;.

Define B®(L) = diag(B\? (L), ..., B2 (L)), DU (d) = diag(A%", ..., AT"). Then,
it follows immediately that the model is nested in the setup of subsection 4.2.1 for
fo = vec(fV, 1P, B(L) = diag(I, B® (L)), and D(d) = diag(D®")(d), I). In terms
of (4.1) the model specifies f(x;) = A(l)ft(l) + A(2)ft(2).

Note that the Gaussian white noise assumption on (; together with @ being
diagonal yields r orthogonal factors f;. Moreover, since u;, (; are assumed to be
independent, any correlation among the variables in y; stems from the common

long- and short-run components ft(l) and ft(z) .
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4.2.3 Dynamic factor models in fractional differences

The third model takes fractional differences of the observable variables to arrive at
a short memory model, where all components are at most I(0). The model differs
from those in subsections 4.2.1 and 4.2.2 in that it eliminates fractional integration

from the factors. Define

dar .
A.y_zyi,t:/lift"i_gi,t, t=1,...,T, i=1,...,N, (410)

B](L)f],t = Cj,tv .7 = 17 w1 (411)

where A; is a r-dimensional row vector holding the loadings for y;;. As before,
letting ¥+ = (Y1¢,...,yn) denote the observable variables, A = [A], ..., A%]" the
factor loadings, fi = (fi,t, ..., fr) the r latent factors, and & = (§14,...,En )  the

idiosyncratic disturbances, (4.10) can be written as
D(d")ys = Afe + &, (4.12)

where D(d*) = diag(Af, vy Af") is the N x N differencing matrix for the integration
orders d* = (df, ..., d})’". Contrary to the models of subsections 4.2.1 and 4.2.2, the
factor model is now set up based on the pre-differenced y;. In the notation of (4.1),
the dynamic factor model in fractional differences specifies f(x;) = D(—d*)Af; and
ug = D(—d*)&. Thus, the common component can be obtained by taking inverse
fractional differences, that is by multiplying Af; with D(—d*).

By defining B(L) = diag(B1(L), ..., Br(L)) as in subsections 4.2.1 and 4.2.2, the
factors f; can be written as a diagonal VAR, B(L)f; = ¢;, where ¢ = (Cit, - Grt)'
The idiosyncratic and pervasive shocks are assumed to be orthogonal and to follow
independent Gaussian white noise processes & ~ NID(0, H) and ¢; ~ NID(0, Q).

Taking fractional differences prior to estimating a factor model generalizes the
pre-differencing of standard factor models to the fractional domain. In fractional

differences, the model is an approximate dynamic factor model.

4.3 Estimation

This section discusses both, the estimation of the latent factors and of the model
parameters for the fractional factor models as introduced in section 4.2. The factors
are estimated by the means of the Kalman recursions, which requires to cast the frac-
tional factor models in state space form. One particular challenge is to arrive at a

computationally feasible state space representation of the fractional components: As
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(4.2) illustrates, the fractional differencing polynomial admits a polynomial expan-
sion of order infinite that is truncated at lag T by the type II definition of fractional
integration. Thus, an exact state space representation of a single fractionally inte-
grated factor requires a state vector of dimension 7' — 1, which makes the Kalman
recursions computationally infeasible even for moderate T. Therefore, subsection
4.3.1 introduces an approximation to the fractional differencing polynomial by us-
ing small ARMA polynomials. As noted by Hartl and Jucknewitz (2022), small
ARMA polynomials are able to resemble the dynamics of the fractional differencing
polynomial well for both integration orders b < 1/2 and b > 1/2, and keep the
dimension of the state vector manageable. Subsection 4.3.2 then details the state

space representation of the three fractional factor models.

Estimates for the factors via the Kalman recursions are obtained conditional on
a parameter vector that contains the model parameters, i.e. the integration orders,
the factor loadings, the autoregressive coefficients, and the variances of pervasive
and idiosyncratic shocks. Since the true parameter vector is unobservable, it is
estimated by maximum likelihood. To maximize the likelihood, I use the expectation-
maximization (EM) algorithm, which was derived for fractional factor models by

Hartl and Jucknewitz (2022), and is briefly described in subsection 4.3.3

Finally, as starting values are required for maximum likelihood estimation, sub-
section 4.3.4 discusses how to determine a suitable initial estimate for the parameter

vector.

4.3.1 Approximations for the fractional differencing polynomial

The literature has considered a variety of approximations for long memory processes:
For an arbitrary process Aizt = e; with e; white noise, Palma (2007, section 4.2)
suggests to truncate the autoregressive representation of the fractional differencing
polynomial after a certain lag m, i.e. Z;ﬁ:o 7j(b)z—; ~ e, whereas Chan and Palma
(1998) suggest to truncate the MA representation, i.e. z ~ > M mj(—b)e;—;. In a
simulation study, Hartl and Jucknewitz (2022) show that fitting small ARMA (v, w)
models with v, w € {3,4} to approximate the fractional differencing polynomial Ajrb
clearly outperforms AR and MA approximations, and yields an approximation error

that is hardly visible even for large T" and non-stationary integration orders.

To illustrate the idea of approximating the fractional differencing polynomial by

an ARMA polynomial, consider again the generic process z; = A;bet where e; is
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standardized white noise. An ARMA approximation for z; is then given by

~ 1+m1L+ +mw
S Ry —ava} Zﬂj

€t—j7

for finite v, w, where ¢ = (ay, ..., @y, M1, ...,My,)’, and all coefficients in ¢ must be
made functionally dependent on b to approximate z; by Z;. To achieve the latter, note
that the approximation error is Z; —z; = Z;;B [7j(p) — mj(—b)] es—j, for given ¢, b, ¢,
so that the mean squared error (MSE) is E [(Z — 2)?] = Z; %)[w] (¢) — 7;(=b)]?.
Averaging over all ¢ = 1,...,T yields the objective function for a given b that is

minimized to obtain an estimate for ¢

t—1
R . 1
@r(b) = arg min MSE%(p),  MSE% (g 3O [7i(e) = m(=b)? . (4.13)

T t=1 j=0

Consequently, for a given b and the sample size T', (4.13) yields the optimal ARMA
coefficients to approximate the fractional differencing polynomial in terms of the
MSE. To obtain a smooth function that maps from b to the respective ARMA coef-
ficients, the optimization (4.13) is carried out over a reasonable grid of b.! Next, the
ARMA coefficients are smoothed over the grid for b using cubic regression splines.
This yields a continuous, differentiable function ¢7(b) that maps from b to the re-
spective ARMA coefficients. Thus, optimization can be carried out over the inte-
gration order parameters. Further technical details and several simulation studies
are contained in Hartl and Jucknewitz (2022). For the purely fractional factors of
subsection 4.2.2 T use ARMA (4,4) polynomials to approximate the fractional differ-
encing polynomials, as suggested by Hartl and Jucknewitz (2022). For the autore-
gressive fractionally integrated factors of subsection 4.2.1, the approximation quality
of ARMA polynomials is not clear, and using ARMA(4,4) polynomials was found
to deteriorate the estimates for the autoregressive coefficients. Therefore, I choose
pure AR(5) polynomials to approximate the fractional differencing polynomial for
the model in subsection 4.2.1.

Note that the main reason for using ARMA polynomials as approximations to
the fractional differencing polynomial is to reduce the computational burdens of the
Kalman recursions: While the exact state space representation of a single fraction-
ally integrated process zp = AjrbeT requires a state vector of dimension T — 1,
ARMA(4,4) approximations can be represented by a state vector of dimension five,

as will become clear in what follows.

T use b € [-0.5,2.2]
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4.3.2 State space representation of fractional factor models

With a computationally feasible approximation of the fractional differencing poly-
nomial at hand, the fractional factor models can be cast in state space form. The
general form of a state space model for an N-dimensional vector of observable vari-

ables g, is
e = Zoyg + &, i1 = Fog + RGiq1, (4.14)

where the first equation is termed the measurement equation. It maps the state
vector ay to the observable variables g, by the system matrix Z, while & accounts
for serially uncorrelated disturbances with mean zero and diagonal covariance matrix
H = Var(§). The second equation is a first-order Markov process and is called the
transition equation. It determines the development of the system via the transition
matrix F. (; are the systematic shocks that feed into the transition equation and
equal the innovations of the factors. To uniquely identify the factor loadings, the
variance of the factor innovations is set to unity, i.e. Q = Var(¢;) = I. The system
matrices Z, F', R, as well as the states «; differ for the three fractional factor models

and are derived separately in what follows.

Dynamic fractional factor models To begin with, consider the autoregressive
fractionally integrated factors of subsection 4.2.1. As discussed in the previous sub-
section, the fractional differencing polynomial there is approximated by an AR poly-
nomial, where the coefficients are made functionally dependent on the integration
order. Letting a(L,—b) ~ Alj_ denote the respective AR polynomial for integration
order b and fixed T'. Then, the factors of subsection 4.2.1 are approximated by

dA re .
Cj,t = Bj(L)Aﬁfj,t ~ BJ(L)(I(L, _dj)+fj,ta ] = 1, Ty t= 1, ,T

To arrive at a matrix representation, define the matrix polynomial A(L, —d) = I —
> =1 Aj(—=d)L7, Aj(—d) = diag(aj(—dy),...,aj(—d,)), 7 = 1,...,v. Then, one has
B(L)A(L, —d) = Y00 S°F  BiAg_(—d)L* where Ag(—d) = By = —I, Ay(—d) =
0Vl>w,and B =0Vl > p.

Next, note that by (4.5) the idiosyncratic errors u; are allowed to be autocorre-

lated. As suggested by Jungbacker and Koopman (2015), the model can be adjusted

for idiosyncratic autocorrelation by manipulating the measurement equation, i.e. by
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defining
Dpi
gi,t = yiﬂg — Z pi,jyi,tfja \V/’L = 1, ceey N (415)
7j=1

Again, for a matrix representation of (4.15), collect gz = (914, ...,9n¢)" and define

v; = diag(p1,j, ..., pnv,j) with p; j = 0 for all j > p;. Then g, = y; — z?;af(pi) Uiy ;.

With an appropriate matrix representation for the idiosyncratic and systematic
terms at hand, the system matrices for the model in (4.3), (4.4), and (4.5) can be
defined: For the transition matrix, let s = max(p + v, max(p;) + 1), such that

By+Ai(=d) - =30 BilAs1o(—d) — 3o BiAsi(—d)
I o 0 0
F= :
0 I 0 ]

where F' is (sr x sr) and depends on the parameters in d and B(L). For the mea-

surement equation, let
7 = [/1 A e — 571/1],

and thus Z is (N x sr) and depends on the parameters in A and p;(L), i =1,...,N.
Furthermore, let R = [I,,0]" be a (sr X r) matrix that allows for non-zero innovations
in the first r rows of the transition equation, while oy = (ft’, ey ft,—s—i—l)/ is a vector
of dimension sr that holds the factors. To identify the r factors, the first r rows of

A are restricted to be lower triangular.

Dynamic orthogonal fractional components Next, consider the model in sub-
section 4.2.2. Again as discussed in subsection 4.3.1, the fractional differencing poly-
nomial is approximated by an ARMA polynomial, where the respective approxima-
tion is given by £\ ~ [M(L,d)A(L,d)"]+.¢!" = fV. The matrix ARMA polyno-
mials are M (L,d) = I+ M (d)L+...+ M, (d)L", M;(d) = diag(m;(d1), ..., mj(dr,)),
A(L,d) =I1-A(d)L—...—A,(d)L", Aj(d) = diag(a;(d1), ...,a;(dy,)), and M;(d) =0
Vi >w, Aj(d) =0Vj > w.

As before, autocorrelation in the idiosyncratic errors w; is eliminated by trans-

forming 4 = y; — Z?ff (P:) Yy = W(L)y:, with coefficients ¥; as defined below
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(4.15). Multiplication of (4.6) by ¥(L) yields
(1)
W(Lyy = G = (L) [AD 4@ s | 6 (4.16)
t

where (L) AV Y ~ w(L) AV M (L, d)A(L, d) =]V = w(L)A® f.

To arrive at the state space representation (4.14), partition the system matrices
into F' = diag(F(l),F(Q)), Z = [Z(l) Z(Q)}, and R = diag(R(l),R@)), where the
superscript (1) refers to ft(l), while the superscript (2) refers to ft(Q). Starting with the
approximate fractionally integrated factors, for a minimal representation define the
r vector fi = M(L,d)jrlft(l), such that A(L,d) i = Ct(l), and let s; = max(v,w +
max(p;) + 1). Next, place fi; in the state vector agl) = (fig, -y f1}_g, 41)’, such that
multiplication with the MA polynomial yields {I Mi(d) -+ Ms,—1(d) agl) =
ft(l). Moreover, fij+1 = [Al(d) Asl(d)] agl) + Ct(l), which defines the (s171 X

s17r1) dimensional transition matrix

Ar(d) - Aga(d) As(d)
o) _ I ... 0 0
0 Il 0

In the measurement equation, (4.16) needs to be taken into account, which yields
(L) AVFY = w(L)AD 1 My(d) - Mmfl(d)} oV, and thus defines the (N x

$17r1) matrix
20 = 40 S AN, ) S BN, ).

where ¥y = —1I, and Z(M) solely depends on A, d, and the pij- As before, RW =
[I,,0] is a (s17r1 X r1) matrix allowing the first 71 rows of the transition equation to

be influenced by ¢, M,

Turning to the stationary autoregressive factors, it follows directly from (4.8)

that for 04752) = ( 15(2),, vy ft(z)slﬁl)’ and sy = max(p, max(p;) + 1)

_Bgz) Bg),l ng)_
I 0 0
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where F2) is (sar2 X s2r9) dimensional, and B](?) = 0Vj > p. For the measurement
equation, one has the (/N X sgr2) matrix
ZO = [A® _gA® ... g A(?)] ,

and R?) = [I,.,,0]" is (sgrg X 72). Finally, oy = (agl)/,a?),)'.

To identify the stationary autoregressive factors, a lower triangular structure is
imposed on the first 7o rows of A, The purely fractionally integrated factors
are identified by their spectrum whenever dy # dy # ... # d,,. For blocks of
identical memory within ft(l), similar identifying restrictions have to be imposed

on the respective loadings.

Dynamic factor models in fractional differences Since the factors of the third
model (4.10) are stationary autoregressive processes, a state space representation as
in (4.14) follows immediately by defining g = (Afyu, very Af\’yNyt)’. The factors
enter the state vector directly, whereas their AR coefficients in (4.11) are contained
in F. Furthermore, the factor loadings enter the (/N x rp) matrix Z, and R is again

a (rp x r) selection matrix

ft Bl Bp—l Bp A
Jt—1 r .- 0 0 0 I,
Qp = . ) F=. . .o Z=1.1, R= :
: o : : : 0
Jt—p+1 o - I 0 | 0]

For identification of the factors, the first r rows of A are again restricted to be lower

triangular.

4.3.3 Parameter estimation

Turning to the estimation of the model parameters, collect the unknown parameters
in d, A, Bi,...,Bp, p1,1,---,pPNpy, and H, that enter the system matrices of the
state space model F', Z, and H, in a parameter vector 6. 6 is estimated following
the suggestions of Hartl and Jucknewitz (2022), who derive an EM algorithm for
maximum likelihood estimation of fractional factor models. The EM algorithm bears
the advantage of being relatively robust to starting values and converges rapidly
towards the neighborhood of the optimum of the likelihood (Quah and Sargent; 1993;
Doz et al.; 2012; Jungbacker and Koopman; 2015). However, the EM algorithm is

found to be relatively slow around the optimum. Therefore, I switch to gradient-
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based optimization routines with an analytical solution to the score function of the
likelihood after a certain number of iterations. The whole parameter estimation
procedure adopts the approach of Hartl and Jucknewitz (2022) and thus is only
summarized briefly in what follows.

The EM algorithm is based on the expected complete data likelihood as given in
Hartl and Jucknewitz (2022, eqn. (9)), and consists of product moments of the state
vector, the observable y;, and the measurement and transition disturbances & and (;,
as well as of the system matrices Q = I, H, R, F', and Z. In the expectation step, the
product moments of oy, 3¢, & and (; are computed via the Kalman filter and smoother
given some realization of the parameter vector ;3. Next, the maximization step
maximizes the expected complete data likelihood given the product moments from
the expectation step and yields an updated estimate f(;,1}. The procedure repeats
until a certain level of convergence or a certain number of iterations is reached. Next,
the resulting parameter estimates from the EM algorithm are used as starting values
for gradient-based likelihood maximization via the BFGS algorithm, which uses the
analytical solution for the score vector of Hartl and Jucknewitz (2022).

However, the EM algorithm requires an initial vector gy as starting value for
the first run of the expectation step. Therefore, the next subsection details how to

determine an initial guess for 6y, via the principal components estimator.

4.3.4 Starting values for parameter optimization

As shown by Zhang et al. (2019), fractionally integrated factors can be estimated
consistently by the non-parametric method of principal components (PC) given that
the idiosyncratic disturbances are stationary.? Therefore, initial estimates for the
factors are obtained via principal components. Based on them, the model parameters
can be obtained, which is discussed separately for the three different fractional factor

models in section 4.2.

Dynamic fractional factor models The common components of the model in
section 4.2.1 are assumed to follow r independent autoregressive fractionally inte-

grated processes, and their correlation is zero for all leads and lags. To ensure the

2Note that, although stationarity of the idiosyncratic terms is assumed for all three models
considered in this paper, this assumption is a very strong one and is likely to be violated for
various applications. Whenever the idiosyncratic terms are non-stationary, PC are inconsistent.
However, under a violation of the stationarity assumption the factor loadings can still be estimated
consistently via PC when the data is pre-differenced such that the differenced idiosyncratic terms
are stationary. The factors are then obtained by projecting the data onto the space spanned by the
loadings, see Barigozzi et al. (2021) and Cheung (2022).
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latter, the PC estimates are rotated via the method of Matteson and Tsay (2011) to
obtain dynamic orthogonal components. The parameters in (4.4) are estimated by
maximizing the likelihood function for a fractionally integrated VAR (see Nielsen;
2004) which yields estimates for di,...,d,, B, ...,Bp.3 For some data sets the as-
sumption of orthogonal factors may be violated. Then, the diagonal assumption on
B(L) can be dropped, which does not affect the identification of the fractional factor
VAR but increases the number of parameters to be estimated. Factor loadings A in

(4.3) are estimated by ordinary least squares (OLS).

Dynamic orthogonal fractional components To derive an estimator for the
dynamic parameters of the model in section 4.2.2, one first needs to distinguish
between the space spanned by the purely fractional factors and the stationary au-
toregressive components. The two factor subspaces of ft(l) and ft(Q) are identified up
to a rotation by estimating the fractional cointegration subspace and its orthogonal
complement via the semiparametric method of Chen and Hurvich (2006), who use
eigenvectors of an averaged periodogram matrix of the first m Fourier frequencies
to estimate the fractional cointegration subspace. Orthogonal series within the frac-
tional and non-fractional factors are then obtained by applying the decorrelation
method of Matteson and Tsay (2011). The resulting fractional and non-fractional
factor estimates are denoted as ft(l) and ft(2) respectively.

Factor loadings A in (4.6) and AR coefficients in (4.8) are estimated by OLS.
Estimates for the integration orders of the common components in (4.7) are obtained

by maximizing the likelihood of the 7y ARFIMA(0, d;, 0) processes, j =1,...,71.

Dynamic factor models in fractional differences Due to the stationary rep-
resentation of the model in section 4.2.3 the PC estimator of Bai and Ng (2002)
is directly applicable. The factors are again decorrelated by the means of dynamic
orthogonal components of Matteson and Tsay (2011). As before, if the factors do not
admit a dynamically orthogonal representation, the assumption of a diagonal factor
VAR can be dropped and replaced by a non-diagonal VAR. The autoregressive co-
efficients for the » common factors in (4.11) together with their factor loadings in

(4.10) are estimated by OLS.

Autocorrelated idiosyncratic terms An estimate for the idiosyncratic errors

is obtained via 4u; = y; — A ft. Since the errors are assumed to follow N indepen-

3Note that this is the same as fitting an autoregressive fractionally integrated model to each of
the r factors separately.
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dent autoregressive processes, the AR parameters are estimated via OLS. From the

¥ . 4 2 i : 022 _peI~T 2
residuals, an estimate for g, Is obtained via O¢, = T fl-’t, i=1,...,N.

4.4 Macroeconomic forecasting

Having discussed the estimation of the common factors together with the unknown
parameters for the three fractionally integrated factor models in subsections 4.2.1—
4.2.3, I next investigate their forecast performance when neither the DGP, nor the
starting values, nor the number of factors, are known to the researcher. The under-
lying data set is the so-called FRED-MD by McCracken and Ng (2016). It consists
of 112 macroeconomic variables, spans from January 1960 to December 2016, and is
in monthly frequency. Subsection 4.4.1 outlines the forecast design and the model

specifications, while empirical results are presented in subsection 4.4.2.

4.4.1 Forecast design and model specification

Starting with the forecast design, the forecast performance of the three different
factor models is evaluated in a pseudo out-of-sample forecast experiment using a
recursive window scheme. Forecasts are made for horizons h = 1,...,12, where the
first forecast period is January 2000, whereas the last is December 2016, leading
to 204 forecasts for 112 variables and 12 horizons. Forecast performance is then
evaluated based on the mean squared prediction error (MSPE).

For the first forecast (January 2000), starting values for parameter estimation are
obtained as described in subsection 4.3.4, while all subsequent periods use the opti-
mized parameters from the preceding step as starting values. However, I also report
estimates via the semiparametric approach as described in subsection 4.3.4 for all
periods to evaluate the relative performance of the parametric models in comparison
to the semiparametric counterparts. To distinguish between the parametric and the
semiparametric models, the former are denoted as KF for Kalman filter, while the
latter are denoted as PC for principal components. Abbreviations for the three frac-
tional factor models are: Dynamic fractional factor model (DFFM) in subsection
4.2.1, dynamic orthogonal fractional components (DOFC) in subsection 4.2.2, and
dynamic factor model in fractional differences (DFFD) in subsection 4.2.3.

To also compare the forecast performance with competing, non-fractional mod-
els, I include forecasts for four different benchmark models: The first benchmark
is an autoregressive model (AR) where the AR lag order is chosen via the Akaike

Information Criterion for each y; ;. Moreover, two approximate dynamic factor mod-
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els in the spirit of Stock and Watson (2002) are considered as further benchmarks.
Both are estimated via principal components based on a pre-differenced data set.
The second benchmark is denoted as (PC) and has the factor model representation
Akiyi7t+h = A fean+E&itvn, O(L) fron = Cetn, where & ¢, ¢, are mutually independent
and white noise, and k; is an integer that is taken from McCracken and Ng (2016).
The third model adds lagged dependent variables to the approximate dynamic fac-
tor model. It is given by ¢(L) frrn = Coan, Gi(L)A%y; 1o, = A fepn + & 4n, Where
&it» Gt are again mutually independent and white noise. It is denote it as PCAR.
Finally, the last benchmark is the so-called factor-augmented error-correction model
(FECM) of Banerjee and Marcellino (2009), which separates the observable vari-
ables into two groups y = (y',y®") and shrinks the latter group via principal
components to seven factors f, where the number of factors was chosen by the
PC,3) criterion of Bai and Ng (2002).* A vector error-correction model is then
estimated for (y(l)/, f’ ). Details on the forecast properties are found in Banerjee
et al. (2014). Since we only obtain predictions for y, the FECM results are only
reported in tables 4.2 and 4.3.

Model specification is chosen based on the data set from January 1960 to Decem-
ber 1999. To draw inference on an appropriate specification of the three different
fractional factor models semiparametric methods are used: As no information crite-
rion on the number of factors in a fractionally integrated setup is available, I first
estimate the fractional integration orders of all observable variables via the exact
local Whittle estimator of Shimotsu (2010), where I account for an intercept and a
linear time trend, and the bandwidth is set to 1/2.° Next, the data are fractionally
differenced according to their estimated integration orders, and the number of fac-
tors is determined by the PC(,3) criterion of Bai and Ng (2002), which suggests to
include seven common factors.®

For the dynamic orthogonal fractional components model of subsection 4.2.2, the
numbers of long and short memory factors r1 and ro remain to be determined. A pos-
sible grouping of factors with equal integration orders is carried out as follows: First,
I estimate the factor loadings for seven factors based on the data set in fractional
differences as before. Next, I project the data in levels onto the space spanned by
the factor loadings, which yields estimates for the seven factors in levels. Using the

method of Matteson and Tsay (2011), I rotate the factors such that they are dynami-

“The criteria of Bai and Ng (2002) were evaluated for the data from January 1960 to December
1999.

SUsing a higher bandwidth increases the risk of over-differencing and thus makes it more likely
to underestimate the number of factors. Therefore, a comparably small bandwidth is selected.

5The other criteria of Bai and Ng (2002) either also find seven common factors, or slightly fewer.
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cally orthogonal, i.e. uncorrelated for all leads and lags. To determine whether some
factors exhibit the same integration order, the methods derived by Robinson and
Yajima (2002) with the modification to possibly non-stationary integration orders
by Nielsen and Shimotsu (2007) are applied: After estimating the integration order
of each factor by the exact local Whittle estimator, they allow to sequentially test for
the existence of j = 1,2,...,7 groups of identical integration orders within the seven
factor estimates. The sequential test terminates if for some j* the null hypothesis of
within-group equality of the integration order is not rejected. To jointly test within-
group equality of the integration orders for a given grouping (i.e. not only testing for
equal integration orders within one group, but within all groups together), I use the
Wald test as proposed by Nielsen and Shimotsu (2007). For the exact local Whittle
estimator, I again set the bandwidth to 1/2. The procedure suggests four different
groups of factors, where the first three all contain a single factor whose integration
order significantly differs from zero. The fourth group consists of four factors whose
integration order cannot be significantly distinguished from zero. Hence, the latter
are treated as short-range dependent and are assumed to belong to ft(2), which yields

r1 =3 and ro = 4.

For the factor model of subsection 4.2.1, I determine the AR lag order by the
Bayesian information criterion (BIC): As before, factor estimates are obtained by
estimating the factor loadings based on the fractionally differenced data and pro-
jecting the data in levels on the space spanned by the factor loadings. Next, they
are rotated to become dynamically orthogonal by the method of Matteson and Tsay
(2011). The lag order of the AR polynomials is then determined by estimating a
diagonal VAR for the seven factors and choosing the lag order that minimizes the
BIC. The procedure for the model in subsection 4.2.2 is identical, except that only
the four short memory factors are used. For the model in subsection 4.2.3, the same
procedure applies, except that the factors are directly estimated based on the data
in fractional differences. For the dynamic fractional factor model in subsection 4.2.1
and the dynamic factor model in fractional differences in subsection 4.2.3, the BIC
suggests a single lag for the AR polynomial of the factors, while for the dynamic
orthogonal fractional components model in subsection 4.2.2, two lags minimize the
BIC. Finally, for the models in subsections 4.2.1 and 4.2.2, I allow for a single au-
toregressive lag in the lag polynomial of the idiosyncratic term w;. This, on the
one hand, allows for autocorrelation in the idiosyncratic component, but keeps the

dimension of the parameter space somewhat manageable on the other.

Besides the factors and autoregressive idiosyncratic components, the fractional
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factor models as well as the benchmarks include deterministic components: All
models allow for an intercept and a linear time trend for each observable variable.
Furthermore, an observable variable is log-transformed whenever suggested by Mc-
Cracken and Ng (2016).

A few caveats in terms of model specification are of order: First, note that the
number of factors is determined based on the model selection criteria of Bai and
Ng (2002) for the data set in fractional differences. If now an observable variable is
driven by factors of different memory, then its integration order equals the highest
integration order of all factors that load on the variable. Taking fractional differences
thus over-differences those factors with a comparably low memory, which makes it
difficult to identify them via the criteria of Bai and Ng (2002). Therefore, it is very
likely that the number of overall factors is underestimated. As an alternative to the
criteria of Bai and Ng (2002), one could also estimate the different factor models for
several numbers of factors and use a likelihood-based information criterion like the
BIC to determine the number of factors. Second, while the factors are grouped into
different groups of equal memory, the observable variables are not. The number of
non-zero factor loadings could be reduced by also grouping the observable variables
into blocks of equal memory, and imposing a block-triangular structure on the fac-
tor loadings. This would restrict the more persistent factors to only load on those
observable variables with high memory, and would reduce the number of loadings to
be estimated. Third, allowing for different lag lengths among the factors with AR
dynamics is likely to further increase the forecast performance. And last, allowing
for only a single lag in the polynomials of the idiosyncratic terms is very restrictive.
Addressing these caveats may further improve the forecast performance of the frac-
tional factor model and is necessary whenever one aims for a structural analysis of
the data. However, as will become clear in the next subsection, the fractional factor
models are able to significantly improve the forecast accuracy compared to the four

benchmarks, although there is room for improvement in terms of model specification.

4.4.2 Forecast results

For a given forecast horizon h = 1, ..., 12, table 4.1 shows how often each specification
leads to the smallest MSPE for all 112 variables. Hence, it illustrates how frequently
fractional factor models are able to outperform the benchmarks, i.e. autoregressive
models and principal components of integer differences. To draw inference on the ex-
tent of forecast improvement, tables 4.2 and 4.3 report the relative MSPE (in relation

to the AR benchmark) for twelve selected variables and for h = 1,2,3,6,9, and 12.
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Consequently, they also show how large the forecast accuracy fluctuates for each
specification and highlight the robustness of the forecast results when a model is not

chosen to be the best one.

Benchmarks DFFM DOFC DFFD
Horizon | AR PC PCAR | PC KF | PC KF | PC KF
1 14 10 16 7 0 3 26 20 16
2 14 12 11 8 0 1 26 24 16
3 14 10 6 6 1 5 28 23 19
4 17 9 7 11 2 4 25 20 17
5 15 11 7 10 1 5 27 22 14
6 17 8 5 10 6 6 23 19 18
7 15 9 3 10 4 7T 26 18 20
8 14 8 3 10 12 7 20 19 19
9 15 8 3 10 10 722 17 20
10 15 8 3 11 14 7 16 15 23
11 15 8 3 13 15 7T 13 15 23
12 14 7 3 10 17 9 13 16 23

Table 4.1: Frequency of smallest MSPE: The table shows how often, for a given
forecast horizon h, a specification led to the smallest mean squared prediction error
of all models.

As can be seen from table 4.1, fractional factor models tend to outperform au-
toregressive models, pre-differenced principal components models and mixtures of
these two model classes. Over all 1344 forecasts, the benchmarks only exhibit a
smaller MSPE than the fractional factor models in 357 cases (26.6%). Hence, for the
remaining 987 forecasts (73.4 %) the smallest MSPE is achieved by one of the six
fractional factor models. Among the fractional factor models, the dynamic orthog-
onal fractional components model in state space form produces the best predictions
in terms of the MSPE for forecast horizons up to 9 months most frequently.

The DFFD models complement the predictive power of fractional factor models.
They frequently yield the smallest MSPE whenever the DOFC-KF specification is
not the best predictor in terms of the MSPE. Furthermore, principal components
are found to yield a small MSPE at least for smaller forecast horizons when the
data is in fractional differences, however they are frequently beaten by the state
space formulation of the DOFC model. For higher forecast horizons, the forecast
performance of the DFFD-KF model improves, leading to the highest number of
best predictions in terms of the MSPE for h = 10,11, 12.

The DFFM specification performs comparably poor in terms of the MSPE: While
principal components are beaten by the DFFD model in terms of the frequencies of

smallest MSPEs, the Kalman filter-based estimates appear particularly weak for
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small h, where they only yield the smallest MSPE for a handful of forecasts. For
higher horizons the DFFM-KF improves, however it is again outperformed by the
DFFD-KF in terms of the frequency of smallest MSPEs.

More details about the forecast performance of fractional factor models can be
identified by having a closer look at tables 4.2 and 4.3 that visualize the relative
MSPEs for selected forecast horizons h and selected variables. The latter were chosen
because they represent the full breadth of the macroeconomic data set as well as the
full spectrum of integration orders (according to the exact local Whittle estimator
with a constant and a linear time trend): With an estimated integration order smaller
unity, average weekly overtime hours in the manufacturing businesses, the federal
funds rate, and the US / UK foreign exchange rate have comparatively low memory,
while the consumer price index, personal consumption index, and average hourly
earnings have comparably high memory with an estimated integration order greater
3/2. The remaining variables exhibit an estimated integration order somewhere

between the high and low cases.

As can be seen from tables 4.2 and 4.3, relative gains in forecast performance
from the fractional factor models can be substantial: In many cases, fractional factor
models can reduce the MSPE by more than 25% relative to the AR benchmark. For
some variables, the MSPE is cut by half when fractional factor models are used, and
reductions of more than 80% are possible. Within the class of fractional factor mod-
els, the DOFC-KF specification often results in the smallest MSPE, and at the same
time does not show any large outliers in terms of a very high MSPE: For h = 1,2, 3,
the most accurate predictions for the consumer price index, personal consumption
index and average hourly earnings stem from the DOFC-KF specification, which
reduces the MSPE relative to the AR benchmark by more than 50%. In addition,
the DOFC-KF specification exhibits the smallest MSPE for the St. Louis adjusted
monetary base, for total reserves of depository institutions, and for the S&P500 fre-
quently. The stable forecast performance of the DOFC-KF model is illustrated by
the fact that its largest relative MSPE is 1.29, whereas its smallest relative MSPE
is 0.17.

Another model that frequently produces a comparatively small MSPE is the
DFFD model. For the industrial production index, the DFFD-PC specification ex-
hibits the smallest MSPE for any forecast horizon. In addition, the DFFD-KF
specification produces accurate predictions for the S&P500, average hourly earnings
and the US / UK foreign exchange rate. Furthermore, its forecast performance is

almost as stable as the DOFC-KF.
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Benchmarks DFFM DOFC DFFD

AR PC PCAR FECM | PC KF | PC KF | PC KF

Horizon h = 1
INDPRO 1.00 0.92 0.92 1.22 1.60 3.26 196 1.06 0.90 0.99
UNRATE 1.00 0.96 0.95 0.88 1.06 2.67 1.32 091 0.89 0.88
AWOTMAN 1.00 0.85 0.90 0.92 1.25 2.02 140 0.91 0.93 0.96
HOUST 1.00 0.71 0.70 0.99 098 1.36 094 0.87 1.09 1.07
AMBSL 1.00 0.86 1.17 0.69 0.77 262 0.77 0.81 278 3.15
TOTRESNS 1.00 0.71 1.45 0.69 0.66 2.28 0.70 0.69 4.84 5.14
S.P.500 1.00 1.08 1.08 1.01 1.04 2.67 124 1.02 1.06 0.99
FEDFUNDS 1.00 2.51 2.36 2.64 1.15 443 1.17 121 3.53 1.25
EXUSUKx 1.00 1.18 1.08 1.08 1.11 2.75 1.17 1.06 1.12 1.10
CPIAUCSL 1.00 0.64 0.96 0.45 1.77 2.01 158 0.41 0.49 049
PCEPI 1.00 0.69 0.98 0.50 332 198 270 0.41 047 047
CES0600000008 1.00 0.88 1.14 0.48 2.50 1.00 3.06 0.30 0.48 0.41

Horizon h = 2
INDPRO 1.00 0.90 0.90 1.35 2.10 238 2.63 1.15 0.81 0.99
UNRATE 1.00 1.03 0.98 0.79 1.06 2.10 1.62 0.96 0.83 0.86
AWOTMAN 1.00 0.81 0.92 0.80 1.22 1.69 1.50 0.86 0.96 1.02
HOUST 1.00 0.71 0.71 1.01 0.99 1.18 095 0.99 1.02 1.00
AMBSL 1.00 0.79 1.27 0.86 0.76 1.25 0.80 0.72 1.52 1.65
TOTRESNS 1.00 0.69 1.56 0.75 0.67 1.17 0.75 0.65 245 2.51
S.P.500 1.00 1.14 1.16 1.18 1.05 1.55 1.30 1.02 1.11 0.98
FEDFUNDS 1.00 1.66 1.79 2.66 0.91 2.08 092 0.95 240 1.07
EXUSUKx 1.00 1.20 1.13 1.15 1.18 1.71 122 1.05 1.11 1.08
CPIAUCSL 1.00 0.61 0.98 0.54 1.76 0.50 1.62 0.42 0.60 0.55
PCEPI 1.00 0.62 0.99 0.56 324 045 266 0.39 0.52 0.48
CES0600000008 1.00 0.99 1.16 0.37 2.16 0.64 3.26 0.21 0.34 0.28

Horizon h = 3
INDPRO 1.00 1.04 1.04 1.50 241 247 293 1.28 0.81 1.00
UNRATE 1.00 1.15 1.08 0.82 1.11 221 1.76 1.04 0.82 0.88
AWOTMAN 1.00 0.79 0.95 0.76 1.10 1.56 147 0.84 1.03 1.02
HOUST 1.00 0.70 0.70 1.01 0.88 1.11 0.85 0.95 1.09 0.99
AMBSL 1.00 0.77 141 0.97 0.74 095 0.81 0.66 1.16 1.22
TOTRESNS 1.00 0.73 1.62 0.81 0.69 094 0.78 0.64 1.81 1.81
S.P.500 1.00 1.25 1.27 1.30 1.08 1.45 1.35 1.02 1.18 1.00
FEDFUNDS 1.00 1.31 1.41 2.66 0.85 1.54 0.82 0.91 192 1.03
EXUSUKx 1.00 1.26 1.18 1.21 1.22 1.55 1.29 1.07 1.12 1.08
CPIAUCSL 1.00 0.57 1.01 0.54 1.71 0.47 163 0.38 0.63 0.56
PCEPI 1.00 0.60 1.01 0.58 3.12 043 272 0.36 0.53 0.47
CES0600000008 1.00 1.13 1.18 0.40 1.79 0.56 2.95 0.18 0.27 0.22

Table 4.2: Selected relative mean squared prediction errors for h=1, 2, and 3. Vari-
able codes are INDPRO: industrial production index; UNRATE: unemployment rate;
AWOTMAN: average weekly overtime hours in the manufacturing business; HOUST:
housing starts; AMBSL: St. Louis adjusted monetary base; TOTRESNS: total re-
serves of depository institutions; S.P.500: S&P500 index; FEDFUNDS: effective
federal funds rate; EXUSUKx: US / UK foreign exchange rate; CPIAUCSL: con-
sumer price index; PCEPI: personal consumption index; CES0600000008: average

hourly earnings
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Benchmarks DFFM DOFC DFFD
AR PC PCAR FECM | PC KF | PC KF | PC KF
Horizon h = 6

INDPRO 1.00 1.27 1.27 1.59 2.10 1.82 2.55 1.29 0.95 1.08
UNRATE 1.00 1.58 1.46 1.11 1.25 204 18 125 1.05 1.06
AWOTMAN 1.00 0.92 1.12 0.76 1.03 133 140 0.87 1.17 1.13
HOUST 1.00 0.63 0.63 1.02 0.77 0.88 0.78 0.82 0.98 0.87
AMBSL 1.00 0.89 1.87 0.87 0.62 0.68 0.76 0.55 0.89 0.90
TOTRESNS 1.00 0.95 1.62 0.75 0.63 0.68 0.76 0.57 1.18 1.16
S.P.500 1.00 1.50 1.53 1.40 1.09 121 147 100 1.19 1.01
FEDFUNDS 1.00 1.28 1.33 2.70 090 1.21 0.76 0.91 1.36 1.06
EXUSUKx 1.00 1.31 1.30 1.46 1.23 1.18 1.35 1.03 1.06 1.00
CPIAUCSL 1.00 0.57 1.09 0.46 149 026 1.65 0.31 0.63 0.54
PCEPI 1.00 0.59 1.06 0.54 2.69 0.25 2.85 0.34 0.52 044

CES0600000008 1.00 1.82 1.27 0.54 0.86 0.50 2.38 0.17 0.21 0.16
Horizon h = 9

INDPRO 1.00 1.43 1.43 1.85 1.83 148 230 1.25 1.00 1.12
UNRATE 1.00 1.88 1.77 1.48 1.23 1.76 1.65 1.26 1.17 1.12
AWOTMAN 1.00 1.11 1.33 0.74 1.01 120 1.34 091 1.21 1.14
HOUST 1.00 0.60 0.61 1.02 0.72 0.78 0.73 0.76 0.94 0.85
AMBSL 1.00 1.31 3.30 0.91 0.59 059 079 0.51 0.81 0.80
TOTRESNS 1.00 1.54 1.74 0.73 0.61 0.60 0.76 0.53 097 0.94
S5.P.500 1.00 1.76 1.79 1.50 1.09 1.13 1.54 099 119 1.01
FEDFUNDS 1.00 1.41 1.50 2.55 093 116 0.79 096 1.18 1.07
EXUSUKx 1.00 1.40 141 1.78 1.29 1.08 142 1.01 1.05 0.98
CPIAUCSL 1.00 0.64 1.13 0.43 1.32 0.21 156 031 0.60 0.51
PCEPI 1.00 0.65 1.10 0.53 240 0.21 270 0.37 0.50 0.42

CES0600000008 1.00 2.65 1.36 0.60 049 0.46 1.81 0.19 0.16 0.12
Horizon h = 12

INDPRO 1.00 1.57 1.58 2.00 170 128 220 1.20 0.99 1.11
UNRATE 1.00 2.20 2.09 1.68 1.16 150 1.45 1.22 1.18 1.12
AWOTMAN 1.00 1.26 1.50 0.78 099 1.12 127 094 1.17 1.10
HOUST 1.00 0.61 0.61 1.11 0.72 074 071 0.74 094 0.86
AMBSL 1.00 1.84 6.01 0.77 0.52 0.52 0.75 045 0.70 0.69
TOTRESNS 1.00 2.36 1.93 0.63 0.55 0.53 0.70 0.48 0.80 0.77
S.P.500 1.00 2.00 2.03 1.57 1.07 1.09 159 0.98 1.20 1.00
FEDFUNDS 1.00 1.54 1.65 2.39 095 1.11 0.83 1.00 1.10 1.06
EXUSUKx 1.00 1.53 1.58 2.01 1.36 1.05 148 0.99 1.056 0.98
CPIAUCSL 1.00 0.79 1.18 0.40 1.14 0.15 1.43 034 0.54 0.46
PCEPI 1.00 0.76 1.14 0.51 2.08 0.16 247 042 046 0.39

CES0600000008 1.00 4.01 1.47 0.65 036 045 1.52 0.23 0.15 0.11

Table 4.3: Selected relative mean squared prediction errors for h=6, 9, and 12.
Variable codes are INDPRO: industrial production index; UNRATE: unemployment
rate; AWOTMAN: average weekly overtime hours in the manufacturing business;
HOUST: housing starts; AMBSL: St. Louis adjusted monetary base; TOTRESNS:
total reserves of depository institutions; S.P.500: S&P500 index; FEDFUNDS: ef-
fective federal funds rate; EXUSUKx: US / UK foreign exchange rate; CPIAUCSL:
consumer price index; PCEPI: personal consumption index; CES0600000008: aver-
age hourly earnings
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Finally, predictions from the DFFM model, which serves as the most general
framework (as it nests the two other fractional factor models), exhibit large fluctua-
tions in terms of the MSPE. Nonetheless, for higher forecast horizons, the DFFM-KF
model produces accurate forecasts for the consumer price and personal consumption
index. Interestingly, for the variables with highest memory, i.e. the consumer price
index, the personal consumption index, and the average hourly earnings index, the
DFFM-KF model and the DOFC-KF model exhibit the smallest MSPE for almost
any horizon. A possible explanation is that these are the only models where the

fractional factors enter in levels.

Note that the difference between the benchmark PC model and the DFFD-PC
specification is the pre-differencing. The two models coincide in terms of their per-
formance relative to the AR benchmark. The advantages over the AR model are
therefore likely to result from cross-sectional dependencies that are detected by the
common factors. In addition, the smaller MSPEs of the DFFD-PC model can be ex-
plained by the sensitivity of standard PC methods to spurious coefficients whenever
there is autocorrelation left in the data (e.g. due to over- or under-differencing), as

Franses and Janssens (2019) argue.

Note further that the forecast performance of the DOFC-KF model is similar to
the DFFD model for many variables and horizons. Both models have in common
that they allow the data to be fractionally integrated, however the former explicitly
models fractional cointegration relations by common fractional factors, whereas the
latter eliminates the memory by pre-differencing the data. However, there are cases
where gains from the DOFC-KF specification relative to the DFFD model can be
substantial, especially in situations where the latter produces a relative MSPE > 1.
Consider e.g. the forecasts for the adjusted monetary base (AMBSL) and the total
reserves of depository institutions (TOTRESNS) in tables 4.2 and 4.3, where the
DOFC-KF and the FECM model perform well, wheres the DFFD-KF model yields
large MSPEs. While the former two models take cointegration into account, the
DFFD-KF model eliminates long-run components by prior differencing and is likely
to produce over-differenced short-run components. Hence, the DOFC-KF model
may exhibit an advantage over the DFFD-KF model whenever strong cointegration
relations among the variables are apparent, and whenever additive short-run factors

are present that are over-differenced by the DFFD-KF model.

Finally, to examine the forecast behavior when the economy is hit by a large
shock, I take a closer look at the performance of the fractional factor models during

the Great Recession. Figure 4.1 sketches the three-step ahead predictions for the
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Figure 4.1: Forecast performance of the DOFC-KF, DFFD-KF and AR model dur-
ing the Great Recession for h = 3. Variable codes are INDPRO: industrial pro-
duction index; UNRATE: unemployment rate; AWOTMAN: average weekly over-
time hours in the manufacturing business; HOUST: housing starts; AMBSL: St.
Louis adjusted monetary base; TOTRESNS: total reserves of depository institu-
tions; S.P.500: S&P500 index; FEDFUNDS: effective federal funds rate; EXUSUKx:
US / UK foreign exchange rate; CPIAUCSL: consumer price index; PCEPI: personal
consumption index; CES0600000008: average hourly earnings
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twelve selected variables and the two best performing fractional factor models to-
gether with the AR benchmark from January 2007 to December 2011. As the graphs
show, the forecast performance of the fractional factor models is not systematically
disrupted by the Great Recession in comparison to the AR benchmark. Instead,
the forecasts converge towards the realizations of the observable variables rapidly
after the crisis. The DOFC-KF forecasts seem to be the least affected by the large
shock, as they converge faster towards the actual realizations of the predicted vari-
ables than the other forecasts. Furthermore, the AR and DFFD-KF predictions for
the adjusted monetary base and total reserves of depository institutions seem to be
biased by the crisis until the end of 2009, which substantiates the relative robustness

of the DOFC-KF specification.

4.5 Conclusion

This paper considered three different fractional factor models for macroeconomic
forecasting. In a pseudo out-of-sample forecast experiment for the high-dimensional
data set of McCracken and Ng (2016), it was shown that the fractional factor models
are able to improve the forecast accuracy substantially, even when there is room for
improvement in terms of model specification (see the discussion at the end of section
4.4.1). Especially the dynamic orthogonal fractional components model of Hartl and
Jucknewitz (2021) and a dynamic factor model for the data in fractional differences
are promising, as they showed significant forecast improvements in comparison to
standard approximate dynamic factor models for a variety of macroeconomic vari-
ables.

Building on the results, future research could improve the model specification by
carrying out a structural analysis of the FRED-MD data set: Determining the num-
ber of factors in a fractionally integrated panel is challenging, and may be addressed
by means of likelihood-based information criteria, by (fractional) cointegration tests,
or by a new information criterion that is robust to fractional integration in the data.
Moreover, future research could examine whether a combination of the DOFC model
in state space form and a factor model in fractional differences can further improve
the predictive power of fractional factor models. In addition, one could combine
principal components and the Kalman filter analogously to Brauning and Koopman
(2014): By partitioning the data set into two groups, where the former contains the
variables to be predicted, while the latter is shrunk via principal components, one
would greatly reduce the number of parameters and speed up the estimation. More-

over, fractional factor models could be used to explore common trends and cycles
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in macroeconomic data, thus generalizing the work of Barigozzi and Luciani (2021)
to fractionally integrated processes. Finally, the forecast performance of fractional

factor models should also be examined for data other than the FRED-MD.



Chapter 5

Conclusion

The present thesis contributes to the methodological literature on unobserved compo-
nents and factor models by generalizing either a single or multiple common stochastic
trends to account for long memory. The practical benefits of fractional unobserved
components and factor models are demonstrated in empirical applications to climate

and macroeconomic data.

In chapter 2, long memory is incorporated into unobserved components models
by modeling the stochastic trend component as a fractionally integrated process. To
deal with the computational burden imposed by the high-dimensional state vector
associated with the state space representation of fractional unobserved components
models, an analytical solution to the optimization problem of the Kalman filter is
derived. Furthermore, for a prototypical fractional unobserved components model,
the asymptotic estimation theory for the conditional sum-of-squares estimator is de-
rived under relatively mild assumptions as compared to the unobserved components
literature. The results are then shown to carry over to more complex models with
deterministic components and correlated long- and short-run innovations, as well as
to the quasi-maximum likelihood estimator. For US carbon emissions, the fractional
unobserved components model provides new insights on the memory of trend emis-
sions, on the relationship between cyclical carbon emissions and the business cycle,
and on the interaction between long- and short-run innovations.

Building on the methodological results for univariate fractional unobserved com-
ponents models in chapter 2, future research could consider multivariate fractional
unobserved components models, where multiple observable variables are driven by
common, fractionally integrated components. The results in chapter 2 may provide
a starting point for assessing the asymptotic theory, however additional difficulties
can be expected when cointegration is allowed for. For empirical researchers, the
fractional unobserved components model offers a flexible, data-driven solution to

the specification of the trend component in unobserved components models.
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Chapter 3 applies the fractional unobserved components model to revisit the
puzzling estimates for the business cycle obtained from traditional, integer-integrated
unobserved components models. It provides evidence that the puzzling results in
the literature are an artifact generated by the presence of a smooth fractionally
integrated trend in log US real GDP with an integration order greater than one but
less than two. The long-run component of log GDP is found to be well captured
by a fractionally integrated trend with an integration order of 1.30, suggesting that
integer-integrated models for log GDP are misspecified. The resulting trend-cycle
decomposition of log GDP yields a trend estimate that is smooth, along with a

cyclical component that is consistent with the NBER, chronology.

While the estimates for trend and cycle are very different from those of tradi-
tional unobserved components models, the estimated correlation between long- and
short-run innovations is (almost) —1, which is also often found for integer-integrated
correlated unobserved components models. Consequently, long- and short-run in-
novations cannot be structurally identified by the fractional model. This calls for
further investigation, e.g. by a bivariate fractional unobserved components model
that adds an additional variable with a more pronounced cyclical behavior to the
setup. In addition, models that allow for a break in the covariance matrix of long-

and short-run innovations to account for the Great Moderation could be considered.

In chapter 4, three different parametric factor models are considered that allow
the factors to exhibit long memory. The forecast performance of the different frac-
tional factor models is studied and compared to a variety of benchmarks in a pseudo
out-of-sample forecast experiment using the macroeconomic data set of McCracken
and Ng (2016). Among the three fractional factor models, it is found that the frac-
tional components model of Hartl and Jucknewitz (2021) can significantly improve
the forecast accuracy relative to traditional approximate dynamic factor models,
with reductions of the mean squared prediction error of more than 50% possible.
Moreover, instead of taking first or second differences of the observable data, factor
models in which the observable data is fractionally pre-differenced are also shown to

often yield a smaller mean squared prediction error.

However, there is still room for improvement in terms of model specification:
Determining the number of factors in a fractionally integrated panel is challenging,
and is done based on the criteria of Bai and Ng (2002) for the data set in fractional
differences. A more structural analysis of the data set of McCracken and Ng (2016)
may identify additional factors that can further improve the forecast performance.

Moreover, the number of factor loadings may be reduced by shrinking small loadings
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to zero. Finally, the data set of McCracken and Ng (2016) is one out of many high-
dimensional panels with strong dependencies in the cross sections, and examining the
forecast performance of fractional factor models for different data sets may provide

additional insights.
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