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Chapter 1

Introduction

This thesis develops generalizations of unobserved components and factor models

to account for long memory. Long memory describes a strongly persistent and of-

ten non-stationary behavior, as found for numerous time series in macroeconomics,

finance, climate research, and beyond (for an introduction, see Hassler; 2019). Tra-

ditional unobserved components and factor models are limited to integer-integrated

processes, and often make strong assumptions about the integration orders of the

data under study. Generalizing these models to account for fractional integration

seamlessly links integer-integrated specifications, allows for intermediate solutions

between integer integration orders, and provides a data-driven solution to the spec-

ification of the long-run dynamics.

The introduction first outlines the general frameworks of unobserved components

and factor models, and introduces the concept of long memory, along with a brief

motivation for incorporating long memory into unobserved components and factor

models. A second subsection summarizes the three essays contained in this disser-

tation and details the contribution to the literature.

1.1 Methodological framework

To introduce unobserved components models, consider the observable, univariate

time series yt that is measured regularly at t = 1, ..., n. Unobserved components

models build on the framework as introduced by Harvey (1985) and Clark (1987),

and assume that yt is generated as the sum of two latent components, a trend τt and

a cycle ct, such that

yt = τt + ct, t = 1, ..., n.

1



2 Introduction

Both τt and ct are unobserved, and are distinguished by their spectra: The cyclical

component ct is assumed to be a stationary process with mean zero and is to capture

the short-run dynamics of yt. Typically, it is represented as a stationary autoregres-

sive process of order p (see, for instance, Clark; 1987; Morley et al.; 2003; Oh et al.;

2008)

a(L)ct = εt, (1.1)

where a(L) = 1 − a1L − ... − apLp, L is the lag operator, and εt is assumed to be

at least white noise, often Gaussian. However, some alternatives to (1.1) have been

considered in the literature, such as ARMA models and mixtures of sine and cosine

waves, see Harvey (1989, ch. 2).

For the trend component, the literature typically assumes that τt is generated by

a linear deterministic trend µt = µ0 + µ1t, plus a non-stationary stochastic trend xt
that is integrated of order d, such that

τt = µt + xt, ∆dxt = ηt, (1.2)

where ∆d = (1−L)d, d ∈ N is an integer that defines the integration order of xt and

is assumed to be known, and ηt is again at least white noise, often Gaussian.

For log US real GDP, which is arguably the most important application of unob-

served components models, the field is divided into two main groups with respect to

the specification of d: On the one hand, models in the spirit of Beveridge and Nelson

(1981) and Harvey (1985) assume d = 1, i.e. the stochastic long-run dynamics are

modeled by a random walk. On the other hand, models based on Clark (1987) and

Hodrick and Prescott (1997) assume d = 2, i.e. xt becomes a quadratic stochastic

trend. Although the latter specification is clearly at odds with the long-run proper-

ties of log US GDP, which tend to support setting d = 1, choosing d = 2 forces the

estimated trend component to be very smooth, leaving rich dynamics to be captured

by the cycle. Conversely, setting d = 1 yields an estimated trend component that

is erratic, along with a noisy cyclical component, once ηt and εt are allowed to be

correlated, see Morley et al. (2003).

A major limitation of unobserved components models is the dichotomy between

specifying the stochastic trend as a random walk and specifying it as a quadratic

stochastic trend. Both are rather extreme cases of long-run dynamics, where past

shocks enter the trend either as an unweighted sum, or with quadratically increas-

ing weights. While other parameters are defined as continuous and are subject to
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estimation, the unobserved components literature treats d as discrete and known,

thus allowing for no intermediate solutions between specifying the trend as a random

walk and specifying it as a quadratic stochastic trend. As the coexistence of I(1) and

I(2) trend specifications for log US real GDP illustrates, there is often no consensus

on the appropriate choice of d, and estimates of trend and cycle differ massively

between the two specifications.

This thesis addresses this limitation by generalizing unobserved components mod-

els to account for fractional integration. The concept of fractional integration allows

for integration orders d ∈ R, i.e. also for intermediate solutions between the integer

integration orders. For d ∈ R, the differencing operator in (1.2) exhibits a polynomial

expansion in L of order infinite

∆d = (1− L)d =
∞∑
j=0

πj(d)Lj , πj(d) =


j−d−1
j πj−1(d) j = 1, 2, ...,

1 j = 0,

where the weights πj(d) are determined recursively. The concept of fractional inte-

gration encompasses integer integration orders as special cases, seamlessly links the

random walk trend specification with the quadratic stochastic trend specification,

and adds flexibility to the weighting of past long-run innovations. Since d is defined

on the real line, it can be treated as an unknown parameter and can be estimated

jointly with the other model parameters. Thus, the fractional generalization of un-

observed components models provides a data-driven solution to the specification of

the long-run dynamics.

A second methodological focus of this thesis is on factor models, in which latent

variables also play a key role. In contrast to univariate unobserved components

models, factor models are typically used to model high-dimensional data, both in

the time domain and in the cross section. For an N -dimensional vector of observable

variables Yt = (y1,t, ..., yN,t)
′1, which are measured regularly at t = 1, ..., T , the basic

structure of a factor model is given by

Yt = f(χt) + ut, t = 1, ..., T,

where ut is an N -vector holding the idiosyncratic component, and f(χt) is the com-

mon component that is driven by the r common factors χt = (χ1,t, ..., χr,t)
′. While

traditional factor models treat all observable variables as I(0) (see Bai and Ng; 2008,

1In chapter 4 of this thesis, the observable variables are denoted as yt. However, in the in-
troduction I use a capital Yt to avoid confusion with the notation of the unobserved components
model.
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for an overview), there are several generalizations to I(1) processes, see Bai (2004),

Bai and Ng (2004), Eickmeier (2009), Chang et al. (2009), Banerjee et al. (2014),

and Barigozzi et al. (2021) among others. However, such models again rule out in-

termediate solutions between the rather extreme cases of short memory and perfect

memory. For fractionally integrated data, the literature has so far mostly consid-

ered semiparametric factor models, where the factors are estimated via principal

components (see Morana; 2004; Luciani and Veredas; 2015; Cheung; 2022; Ergemen;

2023). Recently, Hartl and Jucknewitz (2021) developed a parametric factor model

that allows for stationary and non-stationary factors, fractional integration, and het-

erogeneous integration orders among the factors and data. Building on their work,

this thesis investigates several fractionally integrated factor model formulations and

examines their forecast performance for the high-dimensional macroeconomic data

set of McCracken and Ng (2016).

1.2 Overview and contribution

1.2.1 The fractional unobserved components model: a generaliza-
tion of trend-cycle decompositions to data of unknown per-
sistence

The first paper addresses the aforementioned limitation of unobserved components

models that arises by the dichotomy between specifying the stochastic trend as a

random walk and specifying it as a quadratic stochastic trend. I introduce a novel

unobserved components model that generalizes the stochastic trend component xt
in (1.2) to a fractionally integrated process of order d ∈ R+, denoted as xt ∼ I(d).

The model encompasses the two main specifications in the literature, which assume

either that the trend component is I(1) (e.g. Beveridge and Nelson; 1981; Harvey;

1985; Morley et al.; 2003), or that it is I(2) (e.g. Clark; 1987; Hodrick and Prescott;

1997; Oh et al.; 2008). Since d can take any value on the positive real line, the

model allows for intermediate solutions between the integer-integrated specifications

and thus for even more general patterns of persistence. In addition to the fractional

trend, the model allows for flexible parameterizations of the cyclical component,

including stationary ARMA specifications.

Estimates for trend and cycle are obtained from the Kalman filter and smoother,

as is common in the unobserved components literature. However, the fractional gen-

eralization of the trend comes at the cost of making the state vector high-dimensional,

in contrast to traditional, integer-integrated models. Consequently, running the
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Kalman recursions for the fractional unobserved components model is computation-

ally expensive. To speed up the computation, I derive an analytical solution to the

optimization problem of the Kalman filter, which allows the filtered and smoothed

trend and cycle to be computed directly, thus bypassing the Kalman recursions. This

has the additional advantage that I obtain an analytical expression for the prediction

error that depends only on the model parameters and the observable data, and not

on recursive solutions for the filtered trend and cycle. Since the prediction error

enters the objective function for parameter estimation, this simplifies the derivation

of the asymptotic estimation theory.

Parameters can be estimated using either the conditional sum-of-squares estima-

tor or the quasi-maximum likelihood estimator. Both estimators minimize the sum

of squared prediction errors, and are asymptotically equivalent. A key part of this

paper is to derive the asymptotic theory for parameter estimation, where I show that

both estimators are consistent and asymptotically normally distributed. The deriva-

tion of the asymptotic theory is complicated by the non-ergodicity of the prediction

errors and the non-uniform convergence of the objective function. The finite sample

properties of the estimators are evaluated in a Monte Carlo study, which supports

the results on consistency for both estimators.

The fractional unobserved components model is then applied to model log an-

nual US carbon emissions. Estimation results indicate an integration order of 1.75,

suggesting that integer-integrated models are misspecified for log annual US carbon

emissions. The estimated trend is smooth and has two major turning points, the

1979 energy crisis and the Great Recession. Since the former, per capita emissions

decline, while total annual US emissions decline since the Great Recession. This

supports the environmental Kuznets curve hypothesis, i.e. an inverted U-shaped

relationship between economic development and carbon emissions. The estimated

cyclical component shows a persistent behavior and appears to be closely coupled to

the business cycle.

1.2.2 Solving the unobserved components puzzle: a fractional ap-
proach to measuring the business cycle

The second paper is joint work with Rolf Tschernig (University of Regensburg)

and Enzo Weber (University of Regensburg and Institute for Employment Research

(IAB) Nuremberg). It addresses the puzzling estimates for the business cycle ob-

tained from traditional unobserved components models with integer-integrated trend

components: Once correlation between trend- and cycle innovations is allowed for,
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the results from unobserved components models with an I(1) stochastic trend are

virtually identical to the Beveridge-Nelson decomposition of log US real GDP. As

shown by Morley et al. (2003), the estimated correlation between long- and short-

run innovations is close to −1, the estimated trend is volatile, and the estimated

cycle is noisy, lacking a clear cyclical pattern and missing the NBER chronology.

At the same time, unobserved components models that either force the correlation

between long- and short-run innovations to be zero (e.g. the model of Harvey and

Jäger; 1993), or restrict the variance-ratio between long- and short-run innovations

to be small (e.g. the model of Kamber et al.; 2018), yield economically plausible

decompositions into trend and cycle, but exhibit a smaller likelihood.

We provide evidence that the puzzling results are an artifact generated by the

presence of a smooth fractionally integrated trend in log US real GDP with an

integration order greater than one but less than two. The correlated unobserved

components model of Morley et al. (2003) then misspecifies the integration order,

which upward-biases the variance estimate for the long-run innovations, leading to an

estimate for the trend component that is erratic. By allowing for correlation between

long- and short-run innovations, the cyclical component can adjust for the erratic

behavior of the trend, which also makes the cycle noisy. Conversely, unobserved

components models with a stochastic trend that is I(2) (e.g. the models of Hodrick

and Prescott; 1997; Oh et al.; 2008) will estimate a trend that is too smooth, and

attribute too much variation in GDP to the cycle.

We revisit the problem of decomposing log GDP into trend and cycle using the

fractional unobserved components model as introduced in chapter 2 of this thesis.

The model allows for intermediate solutions between an I(1) and an I(2) specification

of the trend component. In addition, it allows the integration order to be estimated

jointly with the other model parameters, thus providing inference on the appropriate

specification of the trend in unobserved components models for log GDP. We consider

several specifications for the cyclical component, including ARMA models as well as

autoregressive models that replace the lag operator with the fractional lag operator

as suggested by Granger (1986).

For the preferred specification in terms of the Bayesian information criterion,

we reject the hypotheses that log GDP is I(1) and I(2), respectively, and estimate

an integration order of about 1.3. The business cycle estimate from the fractional

unobserved components model rises gradually in periods of economic upswing, falls

sharply during the NBER recession periods, and exhibits the same turning points

as the theory-based output gap measure of the US Congressional Budget Office. In
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addition to the latter, the fractional model reveals an overheating economy in the

run-up to the Great Recession, as also found by Barigozzi and Luciani (2021).

1.2.3 Macroeconomic forecasting with fractional factor models

The third paper combines high-dimensional factor models with fractional integration

methods. Factor models are popular in fields where rich data sets with strong cross

sectional dependencies are evident, as they efficiently bundle common dynamics into

a typically small number of common factors. In contrast to the cross section, strong

dependencies in the time domain have received comparably little attention: The bulk

of the literature on factor models assumes stationary factors and data, and typically

pre-processes the latter by taking first or second differences to ensure stationarity.

While there are some generalizations to non-stationary factors and data, these are

typically semiparametric models (see the discussion in subsection 1.1).

The core of the paper is to infer whether the combination of parametric factor

models and fractional integration methods improves the forecast performance for

macroeconomic data. I consider three different factor models that allow for possibly

non-stationary, fractionally integrated data and factors with possibly heterogeneous

integration orders. The first model generalizes the non-stationary dynamic factor

model of Barigozzi et al. (2021) with I(1) factors to fractionally integrated factors.

As a second model, I examine the fractional components model of Hartl and Juck-

newitz (2021), which distinguishes between long memory factors that are purely

fractionally integerated noise, and short memory factors that are modeled as autore-

gressive processes. The third model is a dynamic factor model that is set up for the

observable variables in fractional differences. For all models, I derive the state space

representation, so that factors, loadings, and integration orders can be jointly esti-

mated by a combination of the Kalman recursions and maximum likelihood. To keep

the dimension of the state vector manageable, I use approximations to the fractional

differencing operator as proposed by Hartl and Jucknewitz (2022) among others.

In a pseudo out-of-sample forecast experiment for the US macroeconomic data

set of McCracken and Ng (2016), I study the forecast performance of the differ-

ent fractional factor models. I consider a total of 112 macroeconomic variables in

monthly frequency and perform forecasts from one to twelve steps ahead. In order

to relate the forecast performance to the existing literature, I also include several

benchmark models as competitors, such as the approximate dynamic factor model

of Stock and Watson (2002), and the factor-augmented error-correction model of

Banerjee and Marcellino (2009). For several variables, I find that fractional factor
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models can significantly improve the forecasts in terms of the mean squared pre-

diction error (MPSE). In particular the fractional components model of Hartl and

Jucknewitz (2021) often yields a smaller MSPE than its competitors, with reductions

of more than 50% possible.



Chapter 2

The fractional unobserved

components model: a

generalization of trend-cycle

decompositions to data of

unknown persistence

2.1 Introduction

The decomposition of time series into trend and cycle plays a key role in applied

research. In modern trend-cycle models, the long-run dynamics, particularly the

integration order of the trend, must be specified prior to estimation, which opens

the door to model specification errors. This paper introduces an encompassing trend-

cycle model that treats the integration order as unknown. It offers a flexible, robust,

and data-driven approach to decomposing time series into trend and cycle, and is

termed the fractional unobserved components model.1

The literature on trend-cycle decompositions has been shaped by the seminal

works of Beveridge and Nelson (1981), Harvey (1985), Clark (1987), and Hodrick

and Prescott (1997). Since then, a variety of unobserved components (UC) models

have been proposed, and often the integration order of the trend was subject to

1Note that the literature has come up with a variety of names for unobserved components models,
such as structural time series models and trend-cycle models among others. To avoid confusion,
the term unobserved components model will be used for any model that specifies one or more time
series as a function of latent components and assigns an interpretation to these components by
imposing assumptions on their spectra.

9
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debate. The field is divided into two main groups, one assuming the trend to be

integrated of order one in the spirit of Beveridge and Nelson (1981) and Harvey

(1985), the other group preferring an integration order of two as suggested by Clark

(1987) and Hodrick and Prescott (1997). Since empirical results are sensitive to the

choice of the integration order, a data-driven model selection procedure would clearly

be beneficial. However, the literature to date lacks an encompassing model allowing

for trends of different memory. Thus, model specification is left open to the applied

researcher, who often faces a trade-off between the economic plausibility of the model

specification and the economic plausibility of the resulting decomposition. Little is

known about the consequences of model misspecification on the estimates of the

unobserved components. In addition, the asymptotic estimation theory is not fully

developed for UC models, particularly when shocks are not necessarily Gaussian.

This paper aims to bridge these gaps by introducing a novel UC model that

specifies the stochastic trend component xt as a fractionally integrated process of

order d ∈ R+, denoted as xt ∼ I(d). It allows for random walk trend components

(as suggested among others by Beveridge and Nelson; 1981; Harvey; 1985; Morley

et al.; 2003) for d = 1, but also includes quadratic stochastic trend specifications

(e.g. those of Clark; 1987; Hodrick and Prescott; 1997; Oh et al.; 2008) for d = 2.

Since the integration order d can take any value on the positive real line and enters

the model as an unknown parameter to be estimated, the model seamlessly links

integer-integrated specifications. By including non-integer d, it allows for even more

general patterns of persistence between the integer cases. Besides the fractional

trend, the fractional UC model includes a cyclical component that encompasses the

ARMA specifications common in the UC literature, but also allows for a broader

class of processes such as e.g. the exponential model of Bloomfield (1973). Long-

and short-run innovations are assumed to be martingale difference sequences, which

is somewhat more general than the usual Gaussian white noise assumption.

While the UC literature has mostly considered integer-integrated specifications,

there are some generalizations to non-integer integration orders: For asymptotically

stationary processes (i.e. d < 1/2) Chan and Palma (1998, 2006), Palma (2007) and

Grassi and de Magistris (2014) consider approximations to long-memory processes

in state space form by truncating either the autoregressive or the moving average

representation of the fractional differencing polynomial. Their models have been

found valuable for realized volatility modeling (see Ray and Tsay; 2000; Harvey; 2007;

Chen and Hurvich; 2006; Varneskov and Perron; 2018) but exclude non-stationary

stochastic trends that are indispensable for general UC models. Recently, Hartl
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and Jucknewitz (2022) studied ARMA approximations to fractionally integrated

processes in state space form, also including the non-stationary domain. However,

their inference is limited to Monte Carlo studies.

To also assess the theoretical properties of parameter estimation, this paper de-

rives the full estimation theory for both the unobserved components and the model

parameters. In line with the UC literature, the unobserved components are estimated

by minimizing the objective function of the Kalman filter. While the literature typ-

ically relies on iterative estimates for trend and cycle via the Kalman recursions,

I derive an analytical solution to the optimization problem.2 Since the iterative

and analytical solutions to the Kalman filter differ only in the way they are com-

puted, both approaches yield the minimum variance linear unbiased estimators for

the trend and cycle (Durbin and Koopman; 2012, lemma 2). However, using the an-

alytical solution is computationally less expensive for the fractional UC model. As

an additional advantage, it provides a closed-form solution to the objective function

of the conditional sum-of-squares (CSS) estimator, which is used to estimate the

model parameters. Under the relatively weak assumption that long- and short-run

shocks are stationary martingale difference sequences, the CSS estimator is shown

to be consistent. Under the somewhat stronger assumption that the prediction error

of the Kalman filter is also a martingale difference sequence, the CSS estimator is

shown to be asymptotically normally distributed.

The proofs are complicated by non-ergodicity of the prediction errors and non-

uniform convergence of the objective function. The latter is caused by a prediction

error that is stationary when the estimate for d is close to the true value, while it

becomes non-stationary when the estimate is too far off. While all proofs are carried

out for the computationally superior conditional sum-of-squares (CSS) estimator,

they are shown to extend seamlessly to the quasi-maximum likelihood (QML) esti-

mator that is typically used in the UC literature. Furthermore, estimation results

are shown to also hold for models with deterministic terms and correlated trend

and cycle innovations (as e.g. in Balke and Wohar; 2002; Morley et al.; 2003). The

finite sample properties of the CSS and QML estimators are evaluated in a Monte

Carlo study, which supports the results on consistency for both estimators. In ad-

dition, the parameter estimates for the integration order outperform the exact local

Whittle estimator of Shimotsu and Phillips (2005), which is biased by the cyclical

fluctuations.

2Analytical solutions to the Kalman filter have been reported for trend plus noise models by
Burman and Shumway (2009) and Chang et al. (2009), where the trend is a random walk and the
cycle is white noise.
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An application to carbon emissions illustrates the benefits from the fractional

UC model: Log annual US carbon emissions are estimated to be integrated of order

around 1.75, which is clearly at odds with integer-integrated models. The resulting

trend-cycle decomposition finds evidence that the trend component exhibits an in-

verted U-shape, supporting the existence of an environmental Kuznets curve as well

as the often hypothesized decoupling of economic activity and carbon emissions in

terms of the trend. In contrast, as a glimpse on figure 2.3 reveals, cyclical emissions

appear to remain coupled to the business cycle, as they exhibit rich pro-cyclical

dynamics. Integer-integrated benchmarks fail to capture these stylized facts.

The rest of the paper is organized as follows: Section 2.2 introduces the fractional

UC model and discusses the underlying assumptions. Section 2.3 discusses trend

and cycle estimation, while section 2.4 details parameter estimation using the CSS

estimator. Generalizations of the fractional UC model are discussed in section 2.5.

Section 2.6 examines the finite sample properties of the proposed methods in a Monte

Carlo study, while section 2.7 applies the fractional UC model to carbon emissions.

Section 2.8 concludes. The proofs for consistency and asymptotic normality are

contained in the appendix.

2.2 Model

While the literature on unobserved components (UC) models is vast, it builds on

a simple model that decomposes an observable time series {yt}nt=1 into unobserved

trend xt and cycle ct

yt = xt + ct. (2.1)

ct and xt are distinguished by their different spectral densities: The cycle (or short-

run component) ct is assumed to follow a mean zero stationary process to capture

the transitory features of yt. The trend (or long-run component) xt is characterized

by an autocovariance function that decays more slowly than with an exponential

rate. It models the persistent features of the observable series and is allowed to be

non-stationary.

I generalize state-of-the-art UC models by modeling xt as a fractionally integrated

process of unknown memory d ∈ R+

∆d
+xt = ηt. (2.2)
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The fractional difference operator ∆d
+ depends only on the parameter d and controls

the memory of xt. Without subscript, it exhibits a polynomial expansion in the lag

operator L of order infinite

∆d = (1− L)d =

∞∑
j=0

πj(d)Lj , πj(d) =


j−d−1
j πj−1(d) j = 1, 2, ...,

1 j = 0,
(2.3)

where the weights πj(d) are determined recursively. The motivation behind (2.2)

and (2.3) is that the higher d, the greater the effect of a past shock ηt−j on xt, and

the more differencing is required to eliminate the persistent impact of the past shock

via (2.2). For this reason xt ∼ I(d) is said to have long memory whenever d > 0 (see

Hassler; 2019, for more details). The +-subscript in (2.2) denotes the truncation of

an operator at t ≤ 0, ∆d
+xt = ∆dxt1(t ≥ 1) =

∑t−1
j=0 πj(d)xt−j , where 1(t ≥ 1) is the

indicator function that takes the value one for positive subscripts of xt−j , otherwise

zero. The truncated fractional difference operator reflects the type II definition of

fractionally integrated processes (Marinucci and Robinson; 1999) and is required to

treat the asymptotically stationary case alongside the non-stationary case.

Equation (2.2) encompasses several trend specifications in the literature: For d =

1, it nests the random walk trend model as considered by Harvey (1985), Balke and

Wohar (2002), and Morley et al. (2003) among others. For d = 2, one has the double-

drift model of Clark (1987) and Oh et al. (2008), but also the filter of Hodrick and

Prescott (1997, HP filter in what follows) as will become clear. For d ∈ N, the model

of Burman and Shumway (2009) is obtained. Allowing for d ∈ R+ seamlessly links

these integer-integrated models and allows for far more general dynamics of the trend:

For 0 < d < 1/2, it covers stationary and strongly persistent processes as considered

by Ray and Tsay (2000), Chen and Hurvich (2006), and Varneskov and Perron

(2018) for realized volatility modeling. For 1/2 < d < 1, it allows for non-stationary

but mean-reverting processes, while d ≥ 1 yields non-stationary non-mean-reverting

processes that are indispensable for trend-cycle decompositions of macroeconomic

variables among others. Since d enters the model as an unknown parameter to be

estimated, the model allows for a data-driven choice of d and provides statistical

inference on the appropriate specification of UC models.

Turning to the cyclical component, I treat ct as any short memory process that

is independent of xt and may depend non-linearly on a parameter vector ϕ

ct = a(L,ϕ)εt =

∞∑
j=0

aj(ϕ)εt−j . (2.4)
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The parametric form of a(L,ϕ) is assumed to be known. For example, ct may be an

ARMA process as typically assumed in the UC literature, but the specification gen-

erally captures a broader class of processes, e.g. the exponential model of Bloomfield

(1973).

In what follows, the model (2.1), (2.2), and (2.4) is analyzed under the following

assumptions:

Assumption 2.1 (Errors). The errors εt, ηt are stationary and ergodic with finite

moments up to order four and absolutely summable autocovariance function. For the

joint σ-algebra Ft = σ((ηs, εs), s ≤ t), it holds that E(εt|Ft−1) = 0, E(ε2t |Ft−1) =

σ2
ε , and E(ηt|Ft−1) = 0, E(η2

t |Ft−1) = σ2
η. Furthermore, conditional on Ft−1, the

third and fourth moments of εt, ηt are finite and equal their unconditional moments.

Finally, εt and ηt are independent.

Assumption 2.2 (Parameters). Collect all model parameters in ψ = (d, σ2
η, σ

2
ε , ϕ

′)′,

and let Ψ = D×Ση ×Σε×Φ denote the parameter space of ψ ∈ Ψ , where D = {d ∈
R|0 < dmin ≤ d ≤ dmax < ∞}, Ση = {σ2

η ∈ R|0 < σ2
η,min ≤ σ2

η ≤ σ2
η,max < ∞},

Σε = {σ2
ε ∈ R|0 < σ2

ε,min ≤ σ2
ε ≤ σ2

ε,max < ∞}, and Φ ⊆ Rq is convex and compact.

Then for the true parameters ψ0 = (d0, σ
2
η,0, σ

2
ε,0, ϕ

′
0)′ it holds that ψ0 ∈ Ψ .

Assumption 2.1 allows for conditionally homoscedastic martingale difference se-

quences (MDS) ηt and εt. This is somewhat more general than the UC literature,

which typically assumes Gaussian white noise disturbances (e.g. in Morley et al.;

2003). The generalization is of great practical importance given the applications of

UC models in macroeconomics and finance.

Assumption 2.2 allows for both, stationary and non-stationary fractionally in-

tegrated trend components, and for an arbitrarily large interval d ∈ D. Positive

integration orders guarantee that xt is a long-run component, and that it can be

distinguished from ct based on its spectrum.

Assumption 2.3 (Stability of a(L,ϕ)). For all ϕ ∈ Φ and all z in the complex unit

disc {z ∈ C : |z| ≤ 1} it holds that

(i) a0(ϕ) = 1, and
∑∞

j=0 |aj(ϕ)| is bounded and bounded away from zero,

(ii) each element of a(eiλ, ϕ) is differentiable in λ with derivative in Lip(ζ) for any

ζ > 1/2,

(iii) a(z, ϕ) =
∑∞

j=0 aj(ϕ)zj is continuously differentiable in ϕ, and the partial

derivatives ȧ(z, ϕ) =
∑∞

j=1
∂aj(ϕ)
∂ϕ zj =

∑∞
j=1 ȧj(ϕ)zj satisfy ȧj(ϕ) = O(j−1−ζ),

and ∂a0(ϕ)
∂ϕ = 0.
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Under assumption 2.3, a(L,ϕ)−1 = b(L,ϕ) =
∑∞

j=0 bj(ϕ)Lj exists, is well de-

fined, and the sum
∑∞

j=0 |bj(ϕ)| is bounded and bounded away from zero. By the

Lipschitz condition it holds that

aj(ϕ) = O(j−1−ζ), bj(ϕ) = O(j−1−ζ), uniformly in ϕ ∈ Φ.

The rate for aj(ϕ) follows directly from assumption 2.3(ii), while that for bj(ϕ)

follows from Zygmund (2002, pp. 46 and 71). The convergence rate for the par-

tial derivative ȧj(ϕ) is a direct consequence of compactness of Φ and continuity of

∂aj(ϕ)/∂ϕ′. Assumption 2.3 imposes some smoothness on the linear coefficients in

a(L,ϕ), and thus also on b(L,ϕ). It is satisfied by any stationary and invertible

ARMA process. For ARFIMA models, the asymptotic estimation theory is well es-

tablished under assumptions similar to 2.1, 2.2, and 2.3, see Hualde and Robinson

(2011) and Nielsen (2015).

2.3 Filtering and smoothing

The system introduced in (2.1), (2.2), and (2.4) forms a state space model, where

(2.1) is the measurement equation and (2.2), (2.4) are the state equations for trend

and cycle.3 This opens the way to the Kalman filter, a powerful set of algorithms

for filtering, predicting, and smoothing the latent components xt and ct, but also

for parameter estimation. In this section, I derive an analytical solution to the

optimization problem of the Kalman filter and smoother. As will become clear at

the end of this section, the analytical solution has two decisive advantages over the

usual recursive algorithm for filtering and smoothing: it is computationally more

efficient, and it greatly simplifies the asymptotic analysis of the objective function

for parameter estimation. In addition, it encompasses the HP filter.

Note that yt is only observable for t ≥ 1. Thus, trend, cycle, and parame-

ters can only be estimated based on a truncated representation of the cyclical lag

polynomial. To arrive at a feasible representation, define the truncated polynomial

b+(L,ϕ) via b+(L,ϕ)ct = b(L,ϕ)ct1(t ≥ 1) =
∑t−1

j=0 bj(ϕ)ct−j . Furthermore, collect

xt:1 = (xt, ..., x1)′ and ct:1 = (ct, ..., c1)′, and define the t× t differencing matrix Sd,t

3Section 2.5 outlines the state space representation and illustrates the dimensions of the system
matrices. For further details on state space models and the Kalman filter, see Harvey (1989, ch. 3).
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and the t× t coefficient matrix Bϕ,t

Sd,t =


π0(d) π1(d) · · · πt−1(d)

0 π0(d) · · · πt−2(d)
...

...
. . .

...

0 0 · · · π0(d)

 ,

Bϕ,t =


b0(ϕ) b1(ϕ) · · · bt−1(ϕ)

0 b0(ϕ) · · · bt−2(ϕ)
...

...
. . .

...

0 0 · · · b0(ϕ)

 ,
(2.5)

such that Sd,txt:1 = (∆d
+xt, ...,∆

d
+x1)′ and Bϕ,tct:1 = (b+(L,ϕ)ct, ..., b+(L,ϕ)c1)′.

Sd,t is defined analogously to the integer-integrated differencing matrix of Burman

and Shumway (2009), and it holds that Sd,tS−d,t = I, and S0,t = I. In the following,

I show the closed-form solutions for the updating step of the Kalman filter to be

given by

x̂t:1(yt:1, ψ) =
(
B′ϕ,tBϕ,t + νS′d,tSd,t

)−1
B′ϕ,tBϕ,tyt:1 = x̂t:1(yt:1, θ), (2.6)

ĉt:1(yt:1, ψ) = ν
(
B′ϕ,tBϕ,t + νS′d,tSd,t

)−1
S′d,tSd,tyt:1 = ĉt:1(yt:1, θ), (2.7)

where the fraction ν = σ2
ε /σ

2
η controls for the variance ratio of the innovations,

x̂t:1(yt:1, ψ) = (x̂t(yt:1, ψ), ..., x̂1(yt:1, ψ))′, ĉt:1(yt:1, ψ) = (ĉt(yt:1, ψ), ..., ĉ1(yt:1, ψ))′

collect the filtered trend and cycle, and θ = (d, ν, ϕ′)′. (2.6) and (2.7) are identical

to the recursive solutions from the updating equation of the Kalman filter. The one-

step ahead predictions for xt+1 and ct+1 are obtained by plugging (2.6) and (2.7)

into the state equations (2.2) and (2.4)

x̂t+1(yt:1, θ) = −
(
π1(d) · · · πt(d)

)
x̂t:1(yt:1, θ), (2.8)

ĉt+1(yt:1, θ) = −
(
b1(ϕ) · · · bt(ϕ)

)
ĉt:1(yt:1, θ). (2.9)

Together, the updating equations (2.6), (2.7) and the prediction equations (2.8),

(2.9) form the Kalman filter, see Harvey (1989, ch. 3.2) for details. Finally, smoothed

estimates for xt and ct can be obtained from (2.6), (2.7) by setting t = n. They are

identical to those obtained by the Kalman smoother.

To prove (2.6) and (2.7), I first consider the objective function of the Kalman

filter, which follows from maximizing the quasi-log likelihood of (2.1), (2.2), and

(2.4) with respect to xt:1 = (xt, ..., x1)′, ct:1 = (ct, ..., c1)′ given yt:1 = (yt, ..., y1)′ and
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ψ = (d, σ2
η, σ

2
ε , ϕ

′)′. This is the same as minimizing

x̂t:1(yt:1, ψ) = arg min
xt:1

1

t

t∑
j=1

{
1

σ2
ε

[b+(L,ϕ)(yj − xj)]2 +
1

σ2
η

(
∆d

+xj

)2
}
, (2.10)

ĉt:1(yt:1, ψ) = arg min
ct:1

1

t

t∑
j=1

{
1

σ2
η

[
∆d

+(yj − cj)
]2

+
1

σ2
ε

(b+(L,ϕ)cj)
2

}
. (2.11)

Here, the first residual in (2.10) stems from plugging (2.4) into the measurement

equation and solving for εj , while the second is from (2.2). Analogously, the first

term in (2.11) follows from inserting (2.2) into (2.1) and solving for ηj , while the

second follows from solving (2.4) for εj . Constant terms are omitted. As xt and ct
are estimated based on all observations until period t, it holds that x̂t:1(yt:1, ψ) =

yt:1− ĉt:1(yt:1, ψ). If ηt and εt are assumed to be Gaussian, the optimization problems

in (2.10) and (2.11) yield the conditional expectations x̂t:1(yt:1, ψ) = Eψ(xt:1|yt:1)

and ĉt:1(yt:1, ψ) = Eψ(ct:1|yt:1), see Durbin and Koopman (2012, lemma 1), where

the expected value operator Eψ(zt) of an arbitrary random variable zt denotes that

expectation is taken with respect to the distribution of zt given ψ. If ηt, εt are not

normally distributed, the optimization problems (2.10) and (2.11) remain valid. The

filtered x̂t:1(yt:1, ψ), ĉt:1(yt:1, ψ) are the projections of xt:1 and ct:1 on the span of yt:1,

and are the minimum variance linear unbiased estimators for xt:1 and ct:1 given the

observable information y1, ..., yt (Durbin and Koopman; 2012, lemma 2). For t = n,

d = 2, b(L,ϕ) = 1, ν = σ2
ε /σ

2
η, (2.10) becomes the HP filter with ν being the tuning

parameter. Thus, the HP filter constitutes a special case of the fractional UC model.

From (2.5), a matrix representation of (2.10) and (2.11) follows

x̂t:1(yt:1, ψ) = arg min
xt:1

1

t

{
1

σ2
ε

‖Bϕ,t(yt:1 − xt:1)‖2 +
1

σ2
η

x′t:1S
′
d,tSd,txt:1

}
, (2.12)

ĉt:1(yt:1, ψ) = arg min
ct:1

1

t

{
1

σ2
η

‖Sd,t(yt:1 − ct:1)‖2 +
1

σ2
ε

c′t:1B
′
ϕ,tBϕ,tct:1

}
, (2.13)

where ‖·‖ denotes the Euclidean norm. Calculating the derivative of (2.12) and (2.13)

and solving for xt and ct yields (2.6) and (2.7). Note that (2.6) and (2.7) do not

depend on the exact magnitudes of σ2
η and σ2

ε , but only on their ratio ν, 0 < ν <∞.

Thus, for any positive constant K > 0, the parameter vector ψ∗ = (d,Kσ2
η,Kσ

2
ε , ϕ

′)′

yields the same estimates x̂t:1(yt:1, ψ
∗), ĉt:1(yt:1, ψ

∗) as (2.6) and (2.7). By defin-

ing the parameter vector θ = (d, ν, ϕ′)′, one has x̂t:1(yt:1, ψ) = x̂t:1(yt:1, θ) and

ĉt:1(yt:1, ψ) = ĉt:1(yt:1, θ). This will be helpful for parameter estimation in section

2.4, since the conditional sum-of-squares estimator is not identified for ψ. Also, using
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θ reduces the dimension of the parameter vector, which speeds up the optimization.

However, ψ can also be estimated directly by maximum likelihood as will be shown

in subsection 2.5.3.

From the filtered latent components in (2.6) and (2.7), the one-step ahead pre-

dictions for xt+1 and ct+1 follow immediately by plugging (2.6) and (2.7) into the

state equations (2.2) and (2.4). This yields (2.8) and (2.9). While (2.6), (2.7), (2.8),

and (2.9) are required for parameter estimation, as discussed in the next section,

estimates for xt and ct typically reported are the projections of xt and ct on the span

of y1, ..., yn, i.e. on the full sample information. They follow immediately from (2.6)

and (2.7) by setting t = n, and are identical to the Kalman smoother.

Note that the filtered, predicted and smoothed xt and ct can be computed either

via the analytical solution above or recursively by executing the Kalman recursions

(see Harvey; 1989, ch. 3, for the latter). Both approaches yield identical results

and only differ in the way they are computed. However, the analytical solution has

two decisive advantages over the traditional recursions: (i) It is computationally

superior for fractional trends. As the state vector of the fractional trend in (2.2) is

of dimension n− 1, the dimension of the state vector for both trend and cycle is of

dimension m ≥ n − 1. Thus, each recursion of the Kalman filter involves multiple

multiplications of (m × m)-dimensional covariance and system matrices, and each

multiplication requires 2m3 −m2 flops (Hunger; 2007). The analytical solution also

requires the expensive computation of an (n × n) inverse, however the underlying

matrix is symmetric, positive definite, and thus the Cholesky decomposition can be

used to reduce the complexity to n3 + n2 + n flops per iteration (Hunger; 2007).

Since m ≥ n − 1, the analytical solution speeds up the computation considerably.

This allows to run the Monte Carlo studies in section 2.6, which would otherwise be

computationally infeasible. (ii) The solution allows to derive an objective function

for parameter estimation that does not depend on the Kalman recursions and is thus

easier to analyze. As usual, the objective function for parameter estimation is set

up based on the one-step ahead prediction error, that is obtained by plugging (2.8)

and (2.9) into the measurement equation (2.1). Since (2.8) and (2.9) depend only on

the observable y1, ..., yt as well as on the model parameters, the objective function

does not depend on a recursive solution for the filtered trend and cycle. This greatly

simplifies the asymptotic theory for parameter estimation in section 2.4, since the

convergence rates of all coefficients are either known, or can be derived immediately.
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2.4 Parameter estimation

To estimate θ0 = (d0, ν0, ϕ
′
0)′, denote Θ = D × Σν × Φ the respective parameter

space, where Σν = {ν ∈ R|0 < νmin ≤ ν ≤ νmax < ∞}, and D, Φ as defined in

assumption 2.2. By assumption 2.2, Θ is convex and compact. As usual in the state

space literature, I set up the objective function for parameter estimation based on

the one-step ahead forecast error for yt+1, denoted as vt+1(θ) = yt+1− x̂t+1(yt:1, θ)−
ĉt+1(yt:1, θ). By plugging in (2.8) and (2.9), vt+1(θ) can be represented as

vt+1(θ) = ∆d
+yt+1+ν (b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))

× (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1S′d,tSd,tyt:1.

(2.14)

vt+1(θ) depends on the fractionally differenced observable yt+1, as well as on past

Sd,tyt:1 = (∆d
+yt, ...,∆

d
+y1)′, weighted by the 1×t coefficient vector on the right-hand

side of (2.14) that fully depends on θ. Let ξt+1(d) = ∆d
+yt+1 = ∆d−d0

+ ηt+1 + ∆d
+ct+1

and ξt:1(d) = (ξt(d) · · · ξ1(d))′ = Sd,tyt:1 denote the fractionally differenced yt+1 and

yt:1 respectively. Then, (2.14) can be written as

vt+1(θ) = ξt+1(d) +
t∑

j=1

τj(θ, t)ξt+1−j(d) =
t∑

j=0

τj(θ, t)ξt+1−j(d), (2.15)

where τ0(θ, t) = 1, and (τ1(θ, t) · · · τt(θ, t)) = ν(b1(ϕ) − π1(d) · · · bt(ϕ) − πt(d))

(B′ϕ,tBϕ,t + νS′d,tSd,t)
−1S′d,t collects the t coefficients belonging to ξt(d), ..., ξ1(d) in

(2.15). The conditional sum-of-squares (CSS) estimator for θ0 follows from minimiz-

ing the sum of squared forecast errors

θ̂ = arg min
θ∈Θ

Q(y, θ), Q(y, θ) =
1

n

n∑
t=1

v2
t (θ). (2.16)

Since the objective function is proportional to the exponent in the quasi-likelihood

function, (2.16) is similar to the quasi-maximum likelihood estimator that is typically

used in the state space literature, see e.g. Durbin and Koopman (2012, ch. 7). While

the latter allows for a time-varying variance of the prediction error, (2.16) implicitly

assumes a constant variance of the prediction error. However, as subsection 2.5.3

discusses in greater detail, the filtered prediction error variance of the fractional

UC model converges to its steady state solution at an exponential rate. Thus, (2.16)

and quasi-maximum likelihood estimation are asymptotically equivalent. Differences

arise only due to a different weighting of prediction errors at the very beginning of
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the sample. However, (2.16) is computationally much simpler, because it avoids

the Kalman recursions for the prediction error variance. Furthermore, parameter

estimation via the steady-state Kalman filter is identical to (2.16) after some burn-

in period, see Harvey (1989, ch. 4.2.2).

While the asymptotic theory for CSS estimation is well established for autore-

gressive fractionally integrated moving average (ARFIMA) models, see Hualde and

Robinson (2011) and Nielsen (2015), only little is known about the asymptotic the-

ory for unobserved components models of such generality. For the sub-class of I(1)

UC models with Gaussian white noise shocks ηt and εt, the asymptotic theory can

be inferred from the ARIMA literature (Harvey and Peters; 1990; Morley et al.;

2003). Unfortunately, no such results are available for UC models with fractional

trends, so the asymptotic theory for parameter estimation of fractional UC models

must be derived from scratch. While the proofs in this section are given for the

(simpler) CSS estimator, it is shown in subsection 2.5.3 that they also apply to the

traditional quasi-maximum likelihood estimator. Due to the encompassing nature

of the fractional UC model, the results below also hold for CSS and quasi-maximum

likelihood estimation of all sub-classes of UC models such as e.g. integer-integrated

models with MDS shocks.

Theorem 2.4.1. For the model in (2.1), (2.2), and (2.4), and under assumptions

2.1 to 2.3, the estimator θ̂ as defined via (2.16) is consistent, i.e. θ̂ p−→ θ0 as n→∞.

The proof is contained in Appendix 2.A.2. While consistency ultimately follows

from a uniform weak law of large numbers (UWLLN), showing that the UWLLN

holds is complicated by the non-uniform convergence of the objective function within

Θ, as well as by the non-ergodicity of the prediction errors in (2.14): First, as can

be seen from (2.14), the prediction errors are I(d0− d), and thus are asymptotically

stationary for d0 − d < 1/2, and otherwise non-stationary. In the former case,

a UWLLN can be shown to hold for the objective function, while in the latter

case a functional central limit theorem holds under some additional assumptions.

Consequently, uniform convergence of the objective function fails around the point

d = d0 − 1/2. Following the idea of Nielsen (2015), I partition the parameter space

D into three compact subsets, one where vt(θ) is asymptotically non-stationary, one

for stationary vt(θ), and an overlapping subset. Next, whenever θ is not contained

in the stationary region of the parameter space, I show that the objective function

approaches infinity with probability converging to 1 as n → ∞. Thus, the relevant

region of the parameter space reduces asymptotically to the region where d0−d < 1/2

holds, and where uniform convergence of the objective function is not hindered.
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Second, even within the asymptotically stationary region of the parameter space,

the forecast errors are non-ergodic, as can be seen from (2.14) and (2.15): The

truncated fractional differencing polynomial ∆d
+ includes more lags as t increases,

and thus ξt(d) = ∆d−d0
+ ηt + ∆d

+ct is non-ergodic. In addition, τj(θ, t) in (2.15)

depends on t. Consequently, even for d0 − d < 1/2, a law of large numbers for

stationary and ergodic series does not apply directly to vt(θ). I tackle this prob-

lem by showing that the difference between the prediction error in (2.14), and the

untruncated and ergodic ṽt(θ) =
∑∞

j=0 τj(θ)ξ̃t−j(d), is asymptotically negligible in

probability, where ξ̃t(d) = ∆d−d0ηt + ∆dct is the untruncated residual, while the co-

efficients τj(θ) stem from the ∞-vector (τ1(θ), τ2(θ) · · · ) = ν(b1(ϕ)− π1(d), b2(ϕ)−
π2(d), · · · )(B′ϕ,∞Bϕ,∞+ νS′d,∞Sd,∞)−1S′d,∞, and τ0(θ) = 1. Since ṽt(θ) is stationary

and ergodic within the stationary region of the parameter space, it follows that a

weak law of large numbers applies to the objective function. The final part of the

proof is to strengthen pointwise convergence in probability to weak convergence,

which yields the desired result of theorem 2.4.1.

With a consistent parameter estimator at hand, I next derive the asymptotic

distribution of the CSS estimator. For this purpose, assumption 2.3 needs to be

strengthened.

Assumption 2.4. For all z in the complex unit disc {z ∈ C : |z| ≤ 1}, it holds

that a(z, ϕ) is three times continuously differentiable in ϕ on the closed neighborhood

Nδ(ϕ0) = {ϕ ∈ Φ : |ϕ − ϕ0| ≤ δ} for some δ > 0, and the derivatives satisfy
∂2aj(ϕ)
∂ϕ(k)∂ϕ(l)

= O(j−1−ζ), and ∂3aj(ϕ)
∂ϕ(k)∂ϕ(l)∂ϕ(m)

= O(j−1−ζ), for all entries ϕ(k), ϕ(l), ϕ(m)

of ϕ.

Assumption 2.4 is similar to assumption E of Nielsen (2015), and strengthens

the smoothness conditions of the linear coefficients in a(L,ϕ). It ensures absolute

summability of the partial derivatives, which is used to prove uniform convergence

of the Hessian matrix and thus to evaluate the Hessian matrix at θ0 in the Tay-

lor expansion of the score. The convergence rates of the (second and third) partial

derivatives are a direct consequence of compactness of Nδ(ϕ0) together with conti-

nuity of the partial derivatives. Assumption 2.4 still includes the class of stationary

ARMA processes, and even allows for a slower rate of decay of the autocovariance

function.

Assumption 2.5. The true prediction error of the untruncated process ṽt(θ0) is a

MDS when adapted to the filtration F ξ̃t = σ(ξ̃s, s ≤ t).

So far, the Kalman filter, when applied to obtain the one-step ahead forecast
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for ξ̃t = ηt + ∆d0ct, yielded the projection of ξ̃t onto the span of ξ̃s, s < t. Thus,

the Kalman filter was the best linear predictor given F ξ̃t−1 (in the least squares

sense). Assumption 2.5 forces the prediction error to be a MDS when adapted to

F ξ̃t , which makes the Kalman filter the best predictor for ξ̃t given F ξ̃t−1. Since ṽt(θ0)

plays the role of the (asymptotic) residual for fractional UC models, assumption

2.5 fits well to the usual assumption of MDS residuals for CSS estimation, see e.g.

Hualde and Robinson (2011), Nielsen (2015), and Hualde and Nielsen (2020). In

the UC literature, Dunsmuir (1979, ass. C2.3) imposes the same assumption for his

stationary signal plus noise model, but also discusses the possibility of relaxing the

assumption (see Dunsmuir; 1979, pp. 502f).

Theorem 2.4.2. For the model in (2.1), (2.2), and (2.4), under assumptions 2.1

to 2.5, the estimator θ̂ as defined via (2.16) is asymptotically normally distributed,

i.e.
√
n
(
θ̂ − θ0

)
d−→ N(0, σ2

v,0Ω−1
0 ) as n → ∞, with σ2

v,0 = limt→∞Var(vt(θ0)) =

Var(ṽt(θ0)), and Ω0 has the (i, j)-th entry Ω0(i,j) = E
(
∂ṽt(θ)
∂θ(i)

∣∣
θ=θ0

∂ṽt(θ)
∂θ(j)

∣∣
θ=θ0

)
, i, j =

1, ..., q + 2.

The proof of theorem 2.4.2 is contained in Appendix 2.A.3. As usual, the

asymptotic distribution of the CSS estimator is inferred from a Taylor expansion

of the score function around θ0. Analogous to Robinson (2006) and Hualde and

Robinson (2011), it is first shown that the normalized score at θ0 is asymptotically

equivalent to the score function of the untruncated, stationary and ergodic residual
√
n(∂Q̃(y, θ)/∂θ)

∣∣
θ=θ0

= (2/
√
n)
∑n

t=1 ṽt(θ0)(∂ṽt(θ)/∂θ)
∣∣
θ=θ0

. Next, a UWLLN is

shown to hold for the Hessian matrix, so that it can be evaluated at θ0 in the Taylor

expansion, and the difference between the truncated and untruncated Hessian matrix

is shown to be asymptotically negligible in probability. Therefore, both the score

and the Hessian matrix in the Taylor expansion can be replaced by their untruncated

counterparts. While a weak law of large numbers applies to the untruncated Hessian

matrix, a central limit theorem for martingale difference sequences applies to the

score and yields the asymptotic distribution. Finally, while theorem 2.4.2 does not

give an analytical expression for the covariance matrix of the CSS estimator, it shows

that Ω−1
0 can by estimated via the numerical Hessian matrix.

2.5 Generalizations

One key advantage of fractional unobserved components models is their state space

representation: It makes the Kalman filter and smoother applicable, enables quasi-

maximum likelihood estimation of the model parameters, allows to diffusely initialize
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the filter, and to seamlessly add additional structural components to the model.

In addition, several useful methods and generalizations become available that are

beyond the scope of this paper, such as frequency-domain optimization, additional

observable explanatory variables, time-varying and nonlinear models, and mixed-

frequency models among others; see Harvey (1989) for an overview. In this section, I

outline some generalizations of the fractional UC model that are of immediate applied

relevance: Subsection 2.5.1 introduces deterministic components to the model, while

subsection 2.5.2 allows for correlated trend and cycle innovations. Subsection 2.5.3

generalizes parameter estimation to the quasi-maximum likelihood estimator. For all

three modifications, the asymptotic results of section 2.4 are shown to remain valid.

However, before turning to the three generalizations, I first introduce the state space

representation of the fractional UC model.

The basic state space representation has the form

yt = Zαt + ut, (2.17)

αt = Tαt−1 +Rζt, (2.18)

where the states may be partitioned into αt = (α
(x)′

t , α
(c)′

t , α
(r)′

t )′, with (n − 1)-

vectors for trend α(x)
t = (xt, xt−1, ..., xt−n+2)′, and cycle α(c)

t = (ct, ct−1, ..., ct−n+2)′.

The observation matrix is Z = (Z(x), Z(c), Z(r)), where Z(x) = (1, 0, ..., 0), Z(c) =

(1, 0, ..., 0) are (n − 1)-dimensional row vectors picking the first entry of α(x)
t and

α
(c)
t . For the transition equation (2.18), one has T = diag(T (x), T (c), T (r)), R =

diag(R(x), R(c), R(r)),

T (x) =


−π1(d) −π2(d) · · · −πn−1(d)

1 0
...

. . .
...

0 · · · 1 0

 ,

T (c) =


−b1(ϕ) −b2(ϕ) · · · −bn−1(ϕ)

1 0
...

. . .
...

0 · · · 1 0

 ,

and R(x) = (1, 0, ..., 0)′, R(c) = (1, 0, ..., 0)′ are (n− 1)-vectors picking the respective

entries of ζt = (ηt, εt, ζ
(r)′

t )′. Finally, the components α(r)
t , ζ(r)

t allow for general

specifications with α
(r)
t = T (r)α

(r)
t−1 + R(r)ζ

(r)
t that load on yt via Z(r)α

(r)
t . They

may capture additional stochastic trends (possibly of different memory) and sea-
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sonal components among others. Furthermore, ut may account for additional terms

in the measurement equation, such as measurement errors, deterministic terms, or

observable explanatory variables. While both, α(r)
t and ut are implicitly set to zero

in section 2.4, their specification in practice is left open to the applied researcher.

Finally, Var(ζt) = Q.

2.5.1 Deterministic components

In practice, deterministic components often need to be considered. As will become

clear, such terms can be straightforwardly added to the state space framework, and

their estimation can be carried out efficiently by a combination of the Kalman filter,

the GLS estimator, and the CSS estimator. For the GLS estimator to be a consistent

estimator for the coefficients of the deterministic components, the deterministic terms

must diverge at a rate similar to the rate of divergence of the stochastic trend.

Deterministic components can be taken into account either by detrending the

data prior to estimating the fractional UC model, or by adding the components

to the state space model. However, prior detrending biases the estimates for both

deterministic and stochastic trends whenever the data are non-stationary, and thus

should be avoided (Harvey; 1989, ch. 6.1.3). An alternative is to include the deter-

ministic terms into the state vector and to explicitly model their dynamics via the

state equation (2.18). However, state space models with deterministic components

in the state vector are not stabilisable, so the Kalman filter does not converge to its

steady state solution and the CSS estimator is not applicable, see Harvey (1989, ch.

4.2.5). Following the suggestion there, I place the deterministic terms directly in the

measurement equation (2.17). This allows to estimate the deterministic components

by the GLS estimator and does not interfere with the steady state convergence of the

Kalman filter. The remaining θ0 can be estimated via CSS as described in section

2.4, with the asymptotic theory being unaffected.

To model the deterministic terms, I set ut = µ′wt in the measurement equation

(2.17), where wt is a non-stochastic k-vector holding k deterministic components, and

µ is a k-vector of unknown parameters to be estimated. The modified measurement

equation is then yt = µ′wt+Zαt. Letting W = (w1, ..., wn)′ denote the n×k matrix

collecting all wt, and V = Var(x1:n + c1:n) denote the variance-covariance matrix

of x1:n + c1:n, the GLS estimator for µ is given by µ̃ = (W ′V −1W )−1W ′V −1y1:n,

see Harvey (1989, ch. 3.4.2). As also shown there, it is not necessary to compute

V −1. To see this, assume for the moment that yt − µ′wt was observable. The

Kalman filter, when applied to yt − µ′wt, yields the filtered values for trend and
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cycle in (2.6) to (2.9), together with the prediction errors as denoted by v∗t (θ) in the

following for the modified model. These prediction errors correspond to the linear

filtering F (θ)(y1:n −Wµ), where F (θ) from the Cholesky decomposition V −1(ψ) =

F (θ)′D−1(ψ)F (θ) is a p.d. lower triangular matrix with ones on the leading diagonal,

D(ψ) is a diagonal p.d. matrix, and V (ψ) is the covariance matrix of x1:n + c1:n

conditional on ψ. Since the Kalman filter is linear, it can be applied separately to the

observable yt and wt, yielding F (θ)y1:n = y∗(θ) and F (θ)W = W ∗(θ) as prediction

errors. The GLS estimator µ̃ then follows from regressing y∗(θ) = (y∗1(θ), ..., y∗n(θ))′

on W ∗(θ) = (w∗1(θ), ..., w∗n(θ))′, see Harvey (1989, ch. 3.4.2). The concentrated

CSS estimator θ̃ = (d̃, ν̃, ϕ̃′)′ follows from minimizing the modified sum of squared

prediction errors

θ̃ = arg min
θ

1

n

n∑
t=1

v∗t (θ)
2, (2.19)

and v∗t (θ) = y∗t (θ)− µ̃′w∗t (θ) is the GLS residual. Asymptotic standard errors can be

obtained from the Fisher information matrix (Harvey; 1989, ch. 4.5.3 and ch. 7.3).

To derive the asymptotic properties of both the GLS estimator µ̃ and the con-

centrated CSS estimator (2.19), let the j-th term in wt be wj,t = O(tβj ), t ≥ 1,

βj ∈ R, such that wj,t is a polynomial trend. I will only consider −1 < βj ≤ d0 for

all j, as the lower bound is required for ∆d0
+ t

βj = O(tβj−d0) to hold, see Robinson

(2005), while the upper bound ensures that the fractional stochastic trend is not

drowned by the deterministic terms. This guarantees that the results on consis-

tency and asymptotic normality of the CSS estimator in theorems 2.4.1 and 2.4.2

remain valid. However, at least for CSS estimation of ARFIMA models, Hualde and

Nielsen (2020) recently derived the asymptotic theory where they also allowed for

deterministic trends of higher power, βj > d0. As the focus of this paper is not

on the deterministic components, showing their results to carry over to fractional

unobserved components models is left open for future research.

Note that within −1 < βj ≤ d0, the arguments for consistency of the CSS

estimator of θ0 remain unchanged: y∗(θ) = F (θ)y1:n is I(d0−d) and precisely equals

the initial prediction error (2.14) in section 2.3 if yt contains no deterministic terms,

since F (θ)y1:n is the residual from applying the Kalman filter as defined in section

2.3 to y1:n given the parameters θ. If deterministic terms are present in yt, then

y∗(θ) = F (θ)y1:n equals the prediction error (2.14) shifted either by a constant, or

by an o(1) term (depending on how close βj is to d0, as will become clear). Therefore,

also the prediction error v∗t (θ) = [y∗(θ) −W ∗(θ)(W ∗′(θ)W ∗(θ))−1W ∗
′
(θ)y∗(θ)](t) is
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I(d0−d). Thus, both y∗t (θ) and v∗t (θ) are asymptotically stationary for d0−d < 1/2,

otherwise non-stationary. By the same proof as for (2.28), the objective function

(2.19) can be shown to converge in probability whenever d0 − d > −1/2, and to

diverge in the opposite case. Therefore, the probability of the CSS estimator to

converge within the non-stationary region of the parameter space is asymptotically

zero. Thus, it is sufficient to consider the region of the parameter space where v∗t (θ)

is asymptotically stationary. Within this region, the same proof as for theorem

2.4.1 applies, showing that a UWLLN holds for the objective function. Thus, θ̃ is

consistent. This result is somewhat obvious, since the assumption on βj ensures that

the filtered y∗t (θ) contains at most deterministic terms of order O(1).

For the GLS estimator, define u∗(θ) = (u∗1, ..., u
∗
n)′ = F (θ)(x1:n + c1:n) as the

residual from applying the Kalman filter to the true x1:n and c1:n. u∗t (θ) would equal

the prediction error v∗t (θ) if there were no deterministic terms. The GLS estimates

µ̃ are thus

µ̃ = (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)F (θ̃)yn:1

= (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)F (θ̃) [Wµ0 + x1:n + c1:n]

= µ0 + (W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)u∗(θ̃),

(2.20)

where µ0 denotes the true coefficients to be estimated. µ̃ is consistent if and only

if the latter term in (2.20) is op(1), i.e. the bias converges to zero as n → ∞. For

the purpose of illustration, I will focus only on a single deterministic term, such

that W ∗(θ̃) = (w∗1(θ̃), ..., w∗n(θ̃))′. However, the results carry over directly to sev-

eral deterministic components. First, note that by the fractional differencing via

F (θ̃), w∗t (θ̃) = O(tβ−d̃), while u∗t (θ̃) ∼ I(d0 − d̃). By consistency of the concen-

trated CSS estimator, u∗t (θ̃) is asymptotically I(0), while w∗t (θ̃) = O(tβ−d0), and

thus
∑n

t=1w
∗2
t (θ̃) =

∑n
t=1O(t2(β−d0)), see Hualde and Nielsen (2020, lemma S.10).

Hence, for a single deterministic component, the bias term in (2.20) can be written

as

(W ∗
′
(θ̃)W ∗(θ̃))−1W ∗

′
(θ̃)u∗(θ̃) =

(∑n
t=1w

∗2
t (θ̃)

n1+2(β−d̃)

)−1 ∑n
t=1w

∗
t (θ̃)u

∗
t (θ̃)

n1+2(β−d̃)
, (2.21)

where n−1−2(β−d̃)
∑n

t=1w
∗2
t (θ̃) is bounded from above and below as n → ∞. In

contrast, by Hualde and Nielsen (2020, eqn. (S.88)), n−1−2(β−d̃)
∑n

t=1w
∗
t u
∗
t (θ̃) =

op(1) if and only if d0 − 1/2 < β. Thus, the GLS estimator for the deterministic

terms is consistent only if the deterministic and stochastic trends diverge at similar
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rates. As also can be seen from (2.21), the power of the deterministic term affects

the rate of convergence of the GLS estimator: Since n−1/2−(β−d̃)
∑n

t=1w
∗
t (θ̃)u

∗
t (θ̃)

converges in distribution when n→∞, see Hualde and Nielsen (2020, proof of cor.

1), it follows that the GLS estimator converges at the rate n1/2+(β−d0) as n→∞, and

thus the rate is slower than the standard
√
n-convergence whenever the deterministic

terms are dominated by the stochastic trend.

In summary, any trend of order d0−1/2 < βj ≤ d0 can be estimated consistently,

and the rate of convergence of the GLS estimator will be faster the closer βj is

to d0. This is in line with the well-established finding in the literature, that an

intercept (i.e. βj = 0) cannot be estimated consistently for time series with unit roots

(d0 = 1), whereas a linear trend (βj = 1) can be estimated consistently. In addition,

the convergence rate matches the findings of Robinson (2005) for semiparametric

long memory models with deterministic components, of Hualde and Nielsen (2020)

for parametric ARFIMA models with deterministic components, and the general

literature on the estimation of the sample mean for fractionally integrated processes,

see e.g. Hassler (2019, ch. 7).

2.5.2 Correlated trend and cycle innovations

As shown by Morley et al. (2003), at least for integer-integrated structural time series

models of log US real GDP, correlation between permanent and transitory shocks is

found to be highly significant. Therefore, this subsection generalizes the fractional

UC model to account for correlated innovations

Var

(
ηt

εt

)
=

[
σ2
η σηε

σηε σ2
ε

]
= Σ.

The new optimization problem of the Kalman filter is then

x̂t:1(yt:1, ψ̃) = arg min
xt:1

1

t

t∑
j=1

[(
ηj εj

)
Σ−1

(
ηj

εj

)]

= arg min
xt:1

1

t

1

σ2
ησ

2
ε − σ2

ηε

t∑
j=1

[
σ2
ε η

2
j − 2σηεηjεj + σ2

ηε
2
j

]
,

where ψ̃ = (d, σ2
η, σηε, σ

2
ε , ϕ

′)′ denotes the new parameter vector that now also in-

cludes the covariance σηε. By dropping the determinant and plugging in ηj = ∆d
+xj
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as well as εj = b+(L,ϕ)(yj − xj), the optimization problem can be written as

x̂t:1(yt:1, ψ̃) = arg min
xt:1

1

t

t∑
j=1

[
σ2
ε (∆

d
+xj)

2 − 2σηε∆
d
+xjb+(L,ϕ)(yj − xj)

+σ2
η (b+(L,ϕ)(yj − xj))2

]
= arg min

xt:1

1

t

[
σ2
η‖Bϕ,t(yt:1−xt:1)‖2 − 2σηε(yt:1 − xt:1)′B′ϕ,tSd,txt:1

+σ2
εx
′
t:1S

′
d,tSd,txt:1

]
,

where the matrix representation in the last step is derived analogously to (2.12).

The solution to the optimization problem is then

x̂t:1(yt:1, ψ̃) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
ηB
′
ϕ,tBϕ,t + σηεS

′
d,tBϕ,t

)
yt:1,

(2.22)

and, either by solving the same optimization steps for ĉt:1(yt:1, ψ̃), or by using yt:1 =

x̂t:1(yt:1, ψ̃) + ĉt:1(yt:1, ψ̃)

ĉt:1(yt:1, ψ̃) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
εS
′
d,tSd,t + σηεB

′
ϕ,tSd,t

)
yt:1.

(2.23)

Obviously, (2.22) and (2.23) equal (2.6) and (2.7) for σηε = 0. As before, the number

of parameters in the optimization may be reduced by dividing the first and second

parenthesis in (2.22) and (2.23) by σ2
η, defining ν = σ2

ε /σ
2
η as well as ν2 = σηε/σ

2
η,

and replacing ψ̃ by θ̄ = (d, ν, ν2, ϕ
′)′. This is necessary for the CSS estimator to

be identified, however the quasi-maximum likelihood estimator derived in subsection

2.5.3 can be used to estimate ψ̃0 = (d0, σ
2
η,0, σηε,0, σ

2
ε,0, ϕ

′
0), the true parameters,

directly.

The objective function for the CSS estimator can be constructed analogously to

section 2.4: First, the one-step ahead predictions for xt+1 and ct+1 are obtained as

in (2.8) and (2.9). Next, they are subtracted from yt+1, which gives the prediction

error

vt+1(ψ̃) =∆d
+yt+1 + (b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))

×
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
εS
′
d,t + σηεB

′
ϕ,t

)
Sd,tyt:1.

(2.24)

Based on (2.24), a CSS estimator for the true parameters θ̄0 = (d0, ν0, ν2,0, ϕ
′
0) can
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be set up. Note that yt+1 enters (2.24) in fractional differences, and also note that

all terms in (2.24) have the same convergence rates as for the case with uncorrelated

errors. Thus, the CSS estimator with correlated innovations can be shown to be

consistent and asymptotically normally distributed by carrying out the same proofs

as summarized in section 2.4. Finally, as noted by Morley et al. (2003), for the

integer-integrated case d0 = 1, the model is not identified if ct follows an AR(p)

with p < 2, since the autocovariance function of ∆yt dies out after lag one. For

non-integer integration orders, identification is not a problem, as the autocovariance

function of ∆d
+yt dies out only at lag t.

2.5.3 Maximum likelihood estimation

Since the vast majority of state space models are estimated by quasi-maximum

likelihood (QML), this subsection relates the CSS estimator to the QML estimator.

For this purpose, denote ψ = (d, σ2
η, σ

2
ε , ϕ)′ the vector holding the model parameters

of the fractional UC model. Furthermore, let Varψ (vt(ψ)|y1, ..., yt−1) = σ2
vt denote

the (hypothetical) variance of vt(ψ) that is obtained when evaluating the conditional

distribution of vt(ψ) at ψ. While the CSS estimator allowed to concentrate out the

variance parameters σ2
η, σ

2
ε and model only their variance ratio ν = σ2

ε /σ
2
η, this is

not possible for the QML estimator, since the levels of σ2
η, σ

2
ε determine σ2

vt . Thus,

optimization is conducted over ψ. Note further that ψ can be extended to account

for correlated innovations, as described in subsection 2.5.2. A recursive solution for

σ2
vt is typically obtained from the Kalman filter, see Durbin and Koopman (2012, ch.

4.3). The quasi-log likelihood is then set up based on the conditional distribution of

vt(ψ) and is given by

logL(ψ) = −1

2

n∑
t=1

log σ2
vt −

1

2

n∑
t=1

v2
t (ψ)

σ2
vt

,

see Harvey (1989, ch. 3.4). Now, if the Kalman filter converges to its steady state

solution at an exponential rate, the QML estimator is asymptotically independent of

the initialization of the Kalman filter, see Harvey (1989, ch. 3.4.2), and σ2
vt converges

to a constant. Thus, neither the initialization of the Kalman filter, nor the time-

dependence of σ2
vt matters asymptotically, and therefore the CSS estimator in (2.16)

has the same asymptotic distribution as the QML estimator, see Harvey (1989, p.

129).

For the Kalman filter to converge to its steady state solution at an exponential

rate, it is sufficient that the state space model is detectable and stabilizable (Har-
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vey; 1989, ch. 3.3.3). Detectability is implied by observability, while stabilizability is

implied by controllability (Harvey; 1989, ch. 3.3.1). The state space model as intro-

duced at the beginning of this section is controllable if Rank(G,TG, ..., Tm−1G) = m,

where m is the dimension of αt, and G = RS′ where S is the upper-triangular ma-

trix from the Cholesky decomposition of the covariance matrix Q = S′S (Harvey;

1989, ch. 3.3.1). The rank condition can be verified by simple algebra, and depends

crucially on Q having full rank. Controllability means that given a realization of

αt at some period t, the innovations ζt+j , j = 1, ...,m, can be chosen such that an

arbitrarily prescribed value α∗t+m is obtained. Since in each period a new innovation

enters (2.18) for both xt and ct, their states in αt+m can be controlled by control-

ling ζt+j . Thus, the state space model is controllable. Similarly, the state space

model is observable if Rank(Z ′, T ′Z ′, ..., (T ′)m−1Z ′) = m (Harvey; 1989, ch. 3.3.1),

which again can be verified algebraically. The idea of observability is that αt can

be uniquely determined if yt, ..., yt+m−1, as well as ζt, ..., ζt+m−1 are known. This is

easy to see: Suppose yt+j is known for some j > 0. Then ∆d
+yt+j = ηt+j + ∆d

+ct+j

can be calculated. With ηt+j at hand, we can directly calculate ct+j , and thus also

xt+j . It follows that the system is observable. Thus, as n→∞, the CSS estimator

and the QML estimator become identical, which was also pointed out by Harvey

(1989, p. 187) for integer-integrated models. Consequently, the results in section 2.4

also hold for the QML estimator.

Finally, while computational efficiency clearly favors the CSS estimator, which

avoids the Kalman recursions for the conditional variance of the state vector, the

QML estimator may be advantageous in finite samples where the initialization of the

Kalman filter plays a non-negligible role. In particular, a combination of the QML

estimator, for an initial burn-in period, and the CSS estimator, once the filtered

prediction error variance has sufficiently converged, seems promising: It combines the

possibility of diffuse initialization and thus assigns a lower weight to initial prediction

errors, but switches to the computationally efficient CSS estimator once the benefits

of the QML estimator have vanished. The performance of this estimator, typically

called the steady-state filter (Harvey; 1989, p. 185f), is also examined in a Monte

Carlo study in section 2.6 and compared to the CSS estimator.

2.6 Simulations

By the means of a Monte Carlo study, this section examines the finite sample es-

timation properties for the latent components and parameters of the fractional UC

model as introduced in section 2.2. By considering both the CSS estimator of section
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2.4 and the QML estimator of subsection 2.5.3, the study demonstrates the loss of

estimation accuracy of the computationally simpler CSS estimator by treating the

filtered prediction error variance to be constant. Thus, the study puts a price tag on

the computational efficiency gains and provides empirical researchers with guidance

on when to use the CSS estimator. Furthermore, the parameter estimates for the

integration order are compared to the exact local Whittle estimator of Shimotsu

and Phillips (2005) for various choices of tuning parameters as a prominent bench-

mark. To see whether allowing for fractional trends matters, I also present results

for the integer-integrated UC models in the spirit of Harvey (1985) and Morley et al.

(2003). Doing so, I examine whether fractional trends are well approximated by

integer-integrated models, or whether the estimates for xt and ct are significantly bi-

ased. Furthermore, I investigate whether misspecifying d as one biases the parameter

estimates.

Two different data-generating mechanisms are considered: Subsection 2.6.1 sim-

ulates data based on the fractionally integrated UC model with uncorrelated trend

and cycle innovations as introduced in section 2.2, while subsection 2.6.2 in addition

allows for correlated innovations as discussed in subsection 2.5.2. Both studies vary

over the sample size n ∈ {100, 200, 300}, the integration order d0 ∈ {0.75, 1.00, 1.25},
and the variance ratio of trend and cycle innovations ν0 =

σ2
ε,0

σ2
η,0
∈ {1, 5, 10}. Thus,

they capture small to medium sized samples as typical in empirical applications

of UC models, allow for non-stationary mean-reverting trends as well as for non-

mean-reverting trends, and reflect situations where short- and long-run shocks are

of equal magnitude as well as situations where the long-run shocks are drowned by

the short-run dynamics. Each simulation consists of R = 1000 replications.

Unlike the CSS estimator, the QML estimator uses the Kalman iterations for

the variance of the prediction error, thereby allowing it to be time-dependent: In

the Kalman filter, trend and cycle are first initialized with variances σ2
η and σ2

ε .

Then, in a burn-in period, the QML estimator takes into account the exponential

convergence of the prediction error variance by allowing it to converge to its steady-

state value. Once the prediction error variance has converged sufficiently, i.e. it

satisfies
∣∣∣Varψ(vt+1(ψ)|y1,...,yt)−Varψ(vt(ψ)|y1,...,yt−1)

Varψ(vt(ψ)|y1,...,yt−1)

∣∣∣ < 0.01, the optimization switches

to the steady state Kalman filter, which assumes the prediction error variance to

be fixed from that point on. This avoids further iterations of the Kalman filter

for the prediction error variance, speeds up the computation, and has a negligible

impact on the estimation accuracy. The exact local Whittle estimator of Shimotsu

and Phillips (2005) is introduced as a benchmark for m = bnjc Fourier frequencies,
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j ∈ {.50, .55, .60, .65, .70}.
Estimates for θ0 are compared by the root mean squared error (RMSE), as well as

by the median bias. To assess how well trend and cycle are estimated, the coefficients

of determination R2
x and R2

c from regressing xt and ct on their respective estimates

from the Kalman smoother are reported for both the CSS and QML estimates.

2.6.1 Fractional UC model with uncorrelated innovations

In this subsection, I study the finite-sample properties of the CSS estimator for the

simple fractional UC model

yt = xt + ct, ∆d
+xt = ηt, ct − b1ct−1 − b2ct−2 = εt, (2.25)

where ηt ∼ NID(0, 1), εt ∼ NID(0, ν) are uncorrelated. The cyclical coefficients

are set to b1,0 = 1.6, b2,0 = −0.8 to reflect strong cyclical patterns. Starting val-

ues for the numerical optimization are set to θstart = (dstart, νstart, b1start , b2start)
′ =

(1, 1, 0.5,−0.5)′, for both the CSS and the QML estimator. Note that for the QML

estimator this implies assuming that σ2
η,0 = 1 is known, since only ν0 is estimated. Al-

though this assumption is usually violated, it allows for a fairer comparison between

the CSS and the QML estimator, which is the focus of this first simulation study. The

I(1) UC model is initialized analogously using (νstart, b1start , b2start)
′ = (1, 0.5,−0.5)′.

Table 2.1 shows the RMSE and the median bias for the estimated integration

orders for the CSS estimator, the QML estimator, and the exact local Whittle esti-

mator. As can be seen, the RMSE decreases as n increases, which is in line with the

theoretical results on consistency. As can be expected from the parametric nature,

the fractional UC models yield a smaller RMSE as compared to the nonparametric

Whittle estimator. The differences are particularly striking for higher ν0, where the

signal of the fractional trend is drowned by a strong cyclical variation, and for high

n. In a direct comparison, the QML estimator slightly outperforms the CSS estima-

tor for the estimation of the integration order, but the differences are rather small.

Both the CSS and the QML estimator appear to have little or no bias for d0, while

the cyclical dynamics induce a strong bias on the exact local Whittle estimates.

Tables 2.2 and 2.3 contain the RMSE and the median bias for ν0 and the autore-

gressive parameters, for both the CSS and the QML estimator. In addition to the

fractional UC model, the table also displays the estimation results for an I(1) UC

benchmark that sets d = 1. While there is little difference between the CSS and the

QML estimator in terms of the integration order estimate, for ν0 both the bias and

the RMSE are significantly smaller for the QML estimator. For b1,0 and b2,0, the CSS
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estimator and the QML estimator perform similarly. The direct comparison with

the I(1) benchmark reveals that there is little to no difference for the estimation of

b1,0 and b2,0, while ν0 is typically estimated with a higher precision via the fractional

UC model whenever d0 6= 1.

Table 2.4 compares the estimates for xt and ct for the fractional UC model and

the I(1) UC benchmark (which sets d = 1). As before, it contains the parameter

estimates for the CSS estimator and the QML estimator. As can be seen, differences

between the coefficients of determination are negligible. Strikingly, for d0 = 1 the

fractional UC model shows no loss in efficiency compared to the I(1) UC model. For

non-integer d0, the coefficient of determination for xt should not be interpreted for

the I(1) benchmark, as a high R2
x may also result from a spurious regression, and

thus only the R2
c is considered. There, the fractional model clearly outperforms the

benchmark model, especially when ν0 is small. However, the R2
c is still relatively high

for the I(1) benchmarks, so that, at least for the setup considered, integer-integrated

UC models are able to approximate the fractionally integrated trend well.

2.6.2 Fractional UC model with correlated innovations

To examine the estimation properties for the latent components and parameters of

the fractional UC model when the long- and short-run innovations are allowed to be

correlated, I modify (2.25) by allowing for a non-diagonal Q in(
ηt

εt

)
∼ NID(0, Q). (2.26)

As before, the cyclical coefficients are set to b1,0 = 1.6, b2,0 = −0.8. Q0 is param-

eterized as ση,0 = 1, σε = ν0 ∈ {1, 5, 10}, which yields medium to strong cyclical

fluctuations. I set σηε,0 = ρ0
√
ν0 with ρ0 = −0.2, so that long- and short-run innova-

tions are slightly negatively correlated. Starting values for the numerical optimiza-

tion are set to θstart = (dstart, νstart, ν2,start, b1start , b2start)
′ = (1, 1, 0, 0.5,−0.5)′, and

to (νstart, ν2,start, b1start , b2start)
′ = (1, 0, 0.5,−0.5)′ for the I(1) UC model. For the

fractional UC model, I only present estimation results for the CSS estimator. This

is because the QML estimation in the correlated setup is computationally expensive.

Furthermore, while the optimization is performed over ν2, results are reported for

the transformed ρ = ν2/
√
ν, as the correlation is easier to interpret.

For the correlated fractional UC model, table 2.5 shows the RMSE and the

median bias for the estimated integration orders via the CSS and the exact local

Whittle estimator. As before, the RMSE decreases in n. While the fractional UC
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model outperforms most of the Whittle estimates, the latter performs surprisingly

well for a bandwidth choice of α = 0.65 for n = 100, and α = 0.70 for n = 200.

However, for n = 300, all benchmarks are outperformed by the fractional UC model.

As before, estimates for the fractional UC model show little to no bias for d0, while

the benchmarks are significantly perturbed by the cyclical dynamics.

Tables 2.6 and 2.7 show the RMSE and the median bias for ν0, ρ0, and the

autoregressive parameters for the fractional UC model and the integer-integrated

UC model. As in the uncorrelated case, the estimates for ν0 have a large RMSE and

are biased. However, the bias is more pronounced for the I(1) benchmark, where

the RMSE is also higher. More interestingly, the benchmark estimates for ν0 are

upward-biased whenever d0 < 1, and downward-biased whenever d0 > 1. Since

ν0 = σ2
ε,0/σ

2
η,0 is the variance ratio of the innovations, this is natural: Whenever

d0 < 1, the random walk for a fixed σ2
η has a faster diverging variance than the

I(d0) process. To compensate for the slower rate of divergence of the I(d0) process,

ν̂ must be upward-biased in the I(1) model, and vice versa for d0 > 1. For ρ0, note

that a similar pattern is visible for the CSS estimates. For d0 < 1, the estimates

for the correlation between long- and short-run shocks are upward-biased, and often

positive. This is due to the upward-biased ν̂, which yields an estimate for the

trend that is smoother than the true one. Thus, the cycle needs to account for the

additional long-run fluctuations that are not captured by the smooth trend, which

can be achieved by a positive estimate for the correlation coefficient. For d0 > 1, the

smoothed trend of the I(1) model is more volatile than the true one, and the I(1) UC

model re-adjusts by estimating a downward-biased correlation coefficient, resulting

in a more negative relation between trend and cycle than in the data-generating

mechanism. Note that the potential for adjustment of the I(1) model to fractionally

integrated trends via the correlation parameter estimate is limited by the nature of

the correlation ρ ∈ [−1; 1], and thus corner solutions with ρ̂ = −1 can be expected

when d0 is greater than one, and with ρ̂ = 1 whenever d0 is smaller than one.

As before, there are little to no differences for the estimates of the autoregressive

coefficients between the fractional model and the I(1) model.

As for the uncorrelated models, table 2.8 compares the estimates for trend and

cycle of the fractional and the I(1) UC model via the coefficients of determination.

As before, the performance is similar for d0 = 1. For non-integer integration orders

the fractional model yields better estimates for the cycle whenever ν0 is small. For

high ν0, the coefficients of determination are similar.
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2.7 Application

In this section, I apply the fractional UC model to log annual US CO2 emissions.

Beyond estimates of the memory parameter, which may be of interest in their own

right4, I address the following research questions: (i) What is the trending behavior

of US carbon emissions? Does the estimate for xt resemble the shape of the often

hypothesized environmental Kuznets curve, i.e. an inverted U-shaped relation be-

tween economic development and carbon emissions (see e.g. Harbaugh et al.; 2002),

and if so, what is the current position of the US economy on this curve? (ii) What

is the cyclical component of US carbon emissions? Does it align with the business

cycle, as results of Doda (2014) suggest? (iii) Is there evidence of a decoupling of

economic activity and CO2 emissions (see Haberl et al.; 2020)? Does the decoupling

affect the cycle, the trend, or both? (iv) Is there evidence for correlation between

long- and short-run shocks? If so, is it positive or negative, and can we assign an

interpretation to the correlation structure? (v) Are there any additional insights to

be gained from a fractional model compared to integer-integrated UC models?

Data on annual US carbon emissions stem from the Global Carbon Project and

were collected by Ritchie et al. (2020). The underlying time series spans from 1800 to

2020, consists of 221 observations, is measured in millions of tons, is log-transformed

to account for the exponential growth, and is shown in figure 2.1.

Figure 2.1: Log annual US carbon emissions from 1800 to 2020. Shaded areas
correspond to US recession periods. Data stem from the Global Carbon Project and
were collected by Ritchie et al. (2020).

From figure 2.1, it becomes apparent that log carbon emissions, at least for the
4To date, there is no consensus on how to appropriately model the long-run dynamics of carbon

emissions, see Wagner (2008) for a discussion of model specification issues.
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first halve of the sample, evolve along a rather linear time trend, that needs to be

taken into account in what follows. Furthermore, prior estimates via the exact local

Whittle estimator of Shimotsu (2010), which includes a linear time trend, find an

integration order between 1.29 and 1.44, depending on the choice of the bandwidth.

Note however that the Monte Carlo study of section 2.6 found the exact local Whittle

estimator to be strongly downward-biased for similar sample sizes whenever cyclical

dynamics were present.

In what follows, ct is specified as an autoregressive process of order p, which is

consistent with the UC literature. The resulting fractional UC model is thus given

by

yt = µ0 + µ1t+ xt + ct, ∆d
+xt = ηt,

p∑
j=0

bjct−j = εt, (2.27)

where b0 = 1, and µ0 and µ1 account for a constant and a linear trend. Moreover,

Var(ηt, εt)
′ = Q. To estimate the fractional UC model, I draw 100 combinations

of starting values from uniform distributions with appropriate support (d ∈ [1; 2],

ν ∈ [1, 20], and ν2 is set to force the correlation to be ∈ [−0.5, 0.5]). Autoregressive

parameters are drawn randomly from the set of coefficients that ensure the cycli-

cal AR polynomial to be stable. The objective function of the CSS estimator is

then minimized numerically for each of the 100 starting values, and the estimate

corresponding to the smallest value of the objective function is chosen as the final

estimate.

Table 2.9 shows the estimation results for p ∈ {0, 1, 2, 3, 4, 5}, along with the

corresponding value of the objective function, for both uncorrelated and correlated

innovations. As can be seen, for p > 3 both the estimates for the correlated and

the uncorrelated model are relatively stable. The integration order is found to be

around 1.75, indicating that trend carbon emissions are strongly persistent, non-

mean-reverting, and clearly closer to a quadratic stochastic trend specification than

to a random walk trend. However, trend CO2 growth (that is, the first difference

of the estimated trend) is (conditionally) mean-reverting, as its integration order is

below unity. This suggests a converging effect of a long-run shock on trend CO2

growth as t → ∞, which would not be the case if d ≥ 2. The variance ratio ν is

estimated to be small, which is typical for smooth, persistent trends. Furthermore,

long- and short-run innovations are found to be positively correlated. Since the

specification with p = 5 autoregressive lags for the cyclical component and correlated

innovations encompasses the other specifications in table 2.9, it is more robust to
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model misspecification than the other specifications. It is selected as the preferred

model and is examined in more detail below.

Figure 2.2: Trend CO2 emissions: The left plot sketches log annual US carbon
emissions (black) together with the estimated trend x̂t(yn:1, θ̂) + µ̂0 + µ̂1t (red). The
right plot shows annual US carbon emissions per capita (measured in tons), together
with the respective transformation of the trend estimate. Shaded areas correspond
to US recession periods.

Figure 2.2 plots the smoothed trend estimate x̂t(yn:1, θ̂) + µ̂0 + µ̂1t together with

the series for log annual US carbon emissions. The left plot shows the series in logs,

while the right plot displays annual US per capita carbon emissions in tons CO2.

The fractional UC model estimates a smooth trend which is due to the relatively

high estimate ν̂, as well as the high integration order d̂. As becomes apparent from

the right-hand plot, the 1979 energy crisis as well as the Great Recession mark two

turning points in per capita carbon emissions: Since the former, per capita emissions

are decreasing, while annual emissions for the economy as a whole are declining since

the Great Recession. The turning points, together with concave trend dynamics in

figure 2.2, support the environmental Kuznets curve hypothesis.

Figure 2.3 shows the smoothed estimates for the cycle ĉt(yn:1, θ̂). In line with

the high estimate ν̂, the smoothed cyclical component exhibits rich dynamics and

persistent behavior. Clearly, ĉt(yn:1, θ̂) evolves along the business cycle, as sharp

declines occur mostly during recession periods, while gradual increases in cyclical

carbon emissions happen during periods of economic recovery and prosperity. The

massive downturn during the Great Depression is particularly striking. Since the sec-

ond half of the 20th century, the magnitude of pro-cyclical variation appears to have

decreased. While the decoupling of economic activity and emissions may be true

for the long-run behavior, as suggested by figure 2.2, figure 2.3 shows that cyclical
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Figure 2.3: Estimated cyclical log annual US carbon emissions ĉt(yn:1, θ̂). Shaded
areas correspond to US recession periods.

emissions and the business cycle are still coupled. Finally, there is moderate positive

correlation between long- and short-run innovations, as table 2.9 shows. One possi-

ble explanation, which is also supported by figures 2.2 and 2.3, is that recessions do

not only lead to a decline in cyclical economic activity and thus in cyclical emissions.

Instead, they may also have permanent effects on the economy, e.g. through the re-

placement of outdated technologies with newer ones, through a permanent reduction

of the workforce, or through a transformation of energy production. The positive

relationship between permanent and transitory shocks calls for further investigation,

and I leave this open for future research.

Finally, I investigate to what extent the fractional UC model reveals new infor-

mation about the trending and cyclical behavior of carbon emissions by comparing

the above results to integer-integrated benchmark models. I consider a model in

the spirit of Harvey (1985), in which xt is assumed to be a random walk, ct is an

autoregressive process, and correlation between long- and short-run innovations is

excluded. As a second model, I consider the correlated UC model of Morley et al.

(2003), that in addition allows for correlated innovations. The third benchmark is

the filter of Hodrick and Prescott (1997), which assumes xt to be I(2). The first two

models are obtained by setting d = 1 in (2.27), while the HP filter is obtained by

setting t = n, d = 2, b(L,ϕ) = 1 in (2.10), where ν = σ2
ε /σ

2
η is the tuning parameter

of the HP filter, as also discussed in section 2.3.

Estimates for the I(1) UC model are obtained analogously to the fractional UC

model: I draw 100 combinations of starting values from uniform distributions, where

σ2
η, σ

2
ε ∈ [0.0001, 0.01] was found to be appropriate. All other parameters are initial-
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ized as before. The starting values enter the numerical optimization of the quasi-

likelihood, and the QML estimates corresponding to the highest log likelihood are

chosen as final estimates. Note that while the fractional UC model was estimated by

the CSS estimator, I use the QML estimator for the benchmarks to be in line with

the empirical literature.

Table 2.10 contains the parameter estimates for both the uncorrelated and the

correlated I(1) UC model. For the latter, the estimates for the correlation coeffi-

cients converge to −1, so that the covariance matrix of long- and short-run shocks is

nearly singular. As can be seen from the estimated coefficients of the cyclical compo-

nent, the I(1) trend does not fully capture the long-run dynamics of log annual US

carbon emissions. Instead, the model attributes additional long-run dynamics to the

cycle, forcing it to exhibit near-unit-root behavior. Therefore, the estimated cyclical

components of all parameterizations of table 2.10 evolve in a non-mean-reverting

manner.

While the I(1) specification is clearly at odds with the estimation results for d in

table 2.9, the I(2) trend assumption of the HP filter can be expected to better match

the long-run dynamics of log annual US carbon emissions. Instead of estimating a

parametric model, the HP filter requires setting a tuning parameter ν that penalizes

the cyclical dynamics. As shown earlier, it can be interpreted as the variance ratio

of short- and long-run innovations under the restrictions of the HP filter. Thus, the

higher the ν, the more variation is attributed to the cyclical component. Following

Ravn and Uhlig (2002), I set ν = 6.25, which is typically chosen in the empirical

literature for annual data, and was also set by Doda (2014) for decomposing log car-

bon emissions into trend and cycle via the HP filter. Figure 2.4 shows the estimated

cycle from the HP filter along with the estimate from the fractional UC model with

correlated innovations. The HP filter attributes less variation to the cyclical com-

ponent than the fractional UC model. It lacks the persistent patterns of peaks and

troughs, is comparatively noisy, and misses the cyclical patterns at the end of the

sample. Thus, compared to both, I(1) and I(2) trend specifications, the fractional

UC model offers additional insights into the permanent and cyclical dynamics of

annual US carbon emissions.

2.8 Conclusion

This paper introduces a novel unobserved components model in which the trend

component is specified as a type II fractionally integrated process. The model en-

compasses the bulk of unobserved components models in the literature, allows for
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richer long-run dynamics beyond integer-integrated specifications, and for a data-

dependent specification of the trend. Trend and cycle are estimated via the analyti-

cal solution to the optimization problem of the Kalman filter. The model allows for

a joint estimation of the integration order and the other model parameters via the

conditional sum-of-squares estimator, which is shown to be consistent and asymp-

totically normally distributed. For log annual US carbon emissions, the fractional

unobserved components model reveals a smooth trend component starting to exhibit

an inverted U-shape, together with a rich cyclical component that evolves along the

business cycle.

To applied researchers, the fractional unobserved components model offers a ro-

bust, flexible, and data-driven method for signal extraction of data of unknown

persistence. It does not require prior assumptions about the integration order, nor

the choice of any tuning parameter. Therefore, it provides a solution to the model

specification problem in the unobserved components literature, and calls for further

applications beyond carbon emissions.
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2.A Appendix

2.A.1 Additional figures and tables

Figure 2.4: Estimated cyclical component of the HP filter with λ = 6.25 as suggested
by Ravn and Uhlig (2002) (red, dashed), and of the fractional UC model with corre-
lated innovations ĉt(yn:1, θ̂) (black, solid). Shaded areas correspond to US recession
periods.
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Trend Cycle
n ν0 d0 R2

CSS R2
QML R

I(1)2

CSS R
I(1)2

QML R2
CSS R2

QML R
I(1)2

CSS R
I(1)2

QML

100 1 .75 .476 .518 .474 .521 .831 .845 .809 .841
1.00 .738 .774 .756 .783 .762 .782 .772 .788
1.25 .901 .918 .867 .870 .688 .682 .608 .544

5 .75 .267 .294 .311 .325 .938 .945 .935 .943
1.00 .574 .604 .606 .629 .897 .907 .903 .916
1.25 .822 .838 .818 .809 .853 .865 .847 .787

10 .75 .205 .217 .277 .276 .960 .964 .961 .965
1.00 .488 .507 .543 .558 .930 .936 .935 .945
1.25 .768 .774 .781 .765 .892 .896 .895 .841

200 1 .75 .610 .633 .588 .626 .846 .854 .827 .848
1.00 .867 .875 .870 .876 .792 .797 .796 .800
1.25 .967 .969 .940 .928 .729 .737 .671 .572

5 .75 .363 .399 .383 .404 .943 .944 .940 .941
1.00 .734 .750 .740 .760 .908 .910 .909 .915
1.25 .927 .928 .924 .901 .868 .866 .865 .783

10 .75 .278 .303 .330 .323 .964 .965 .965 .962
1.00 .653 .674 .667 .688 .935 .936 .936 .941
1.25 .898 .897 .894 .870 .903 .901 .899 .834

300 1 .75 .681 .693 .660 .683 .854 .859 .834 .848
1.00 .908 .913 .911 .912 .799 .803 .803 .804
1.25 .982 .983 .959 .952 .738 .739 .678 .551

5 .75 .461 .483 .459 .474 .944 .947 .941 .940
1.00 .809 .821 .812 .824 .910 .914 .912 .914
1.25 .958 .960 .958 .945 .873 .875 .872 .815

10 .75 .367 .381 .396 .379 .964 .965 .965 .961
1.00 .751 .757 .755 .754 .937 .937 .938 .936
1.25 .939 .938 .937 .913 .903 .904 .902 .819

Table 2.4: Coefficient of determination from regressing true trend and cycle xt and
ct on their respective estimates from the Kalman smoother for the uncorrelated UC
models.
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Trend Cycle
n ν0 d0 R2

CSS R
I(1)2

CSS R
I(1)2

QML R2
CSS R

I(1)2

CSS R
I(1)2

QML

100 1 .75 .299 .344 .389 .771 .733 .768
1.00 .607 .687 .678 .679 .715 .662
1.25 .828 .822 .856 .584 .547 .461

5 .75 .138 .207 .129 .895 .909 .828
1.00 .417 .521 .392 .841 .873 .782
1.25 .723 .766 .702 .784 .789 .687

10 .75 .103 .182 .090 .919 .941 .840
1.00 .320 .438 .283 .873 .911 .815
1.25 .648 .718 .609 .826 .858 .748

200 1 .75 .445 .446 .500 .782 .743 .786
1.00 .786 .833 .803 .707 .761 .669
1.25 .937 .912 .930 .651 .586 .434

5 .75 .224 .270 .176 .903 .921 .833
1.00 .599 .695 .549 .852 .900 .784
1.25 .877 .897 .847 .816 .818 .689

10 .75 .163 .239 .104 .928 .952 .840
1.00 .512 .612 .424 .885 .927 .814
1.25 .829 .863 .779 .853 .867 .744

300 1 .75 .523 .513 .568 .782 .741 .786
1.00 .855 .889 .858 .720 .771 .670
1.25 .970 .955 .962 .678 .587 .447

5 .75 .300 .325 .214 .904 .921 .830
1.00 .716 .786 .643 .860 .902 .778
1.25 .935 .940 .904 .837 .816 .675

10 .75 .212 .285 .123 .933 .955 .839
1.00 .626 .722 .520 .890 .931 .810
1.25 .903 .925 .856 .869 .876 .736

Table 2.8: Coefficient of determination from regressing true trend and cycle xt and
ct on their respective estimates from the Kalman smoother for the correlated UC
models.
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Q(y, θ̂) d̂ ν̂ ν̂2 b̂1 b̂2 b̂3 b̂4 b̂5 ̂Corr(ηt, εt)

1.1349 1.3999 0.7903
1.1272 1.4674 1.7286 -0.2911
1.1141 1.3898 0.3410 0.3415 0.3560
1.1082 1.5420 3.7698 -0.5436 -0.0595 -0.1822
1.0923 1.8722 48.4906 -0.7278 -0.0419 -0.1618 0.1378
1.0880 1.8413 43.8545 -0.7118 -0.0493 -0.1728 0.1190 0.0678
1.1258 1.6157 4.6707 -2.1612 -1.0000
1.1146 1.6049 7.0201 -2.6495 -0.2703 -1.0000
1.1144 1.6096 7.6008 -2.7569 -0.3096 -0.0205 -1.0000
1.1050 1.5483 2.7716 1.0818 -0.5675 -0.0279 -0.2077 0.6498
1.0941 1.7443 16.7184 2.7274 -0.7281 -0.0766 -0.1816 0.1517 0.6670
1.0894 1.7313 14.5846 1.9590 -0.7123 -0.0612 -0.1890 0.0900 0.0892 0.5130

Table 2.9: Estimation results for the fractional UC model of log US CO2 emission
via the CSS estimator for uncorrelated and correlated innovations. Correlations are
estimated using ν = σ2

ε /σ
2
η, ν2 = σηε/σ

2
η, and thus ̂Corr(ηt, εt) = ν̂2/

√
ν̂.

logL(ψ) Q(y, ψ̂) ν̂ ν̂2 b̂1 b̂2 b̂3 b̂4 b̂5 ̂Corr(ηt, εt)

-245.6263 1.3420 0.0001
-245.6292 1.3419 0.0217 -0.9997
-264.3214 1.1333 0.0039 -1.9998 1.0000
-264.3018 1.1335 0.0084 -1.6303 0.2620 0.3686
-267.4912 1.1003 0.0524 -0.6677 -0.7618 -0.4631 0.8932
-266.3117 1.1149 0.2964 -0.8260 -0.2469 -0.4881 0.0683 0.4934
-247.3099 1.3287 0.6451 -0.7296 -0.9083
-263.6369 1.1407 0.9681 -0.9797 -0.9935 -0.9957
-266.1118 1.1251 0.8804 -0.9369 -1.1702 0.1900 -0.9985
-266.1579 1.1225 0.9419 -0.9697 -0.8581 -0.1582 0.0300 -0.9992
-267.9061 1.1029 1.0745 -1.0305 -0.9389 -0.1141 -0.0076 0.0741 -0.9941
-267.7790 1.1031 0.8773 -0.9275 -1.0156 0.0342 0.1270 -0.1802 0.0507 -0.9903

Table 2.10: Estimation results for the I(1) UC model of log US CO2 emission via
the QML estimator for uncorrelated and correlated innovations. While optimization
is conducted over σ2

η, σηε, σ2
ε , the transformed ν = σ2

ε /σ
2
η, ν2 = σηε/σ

2
η are reported.
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2.A.2 Proof of theorem 2.4.1

Proof of theorem 2.4.1. Theorem 2.4.1 holds if the objective function (2.16) satisfies

a uniform weak law of large numbers (UWLLN), i.e. there exists a function gt(yt:1) ≥
0 such that for all θ1, θ2 ∈ Θ, it holds that |v2

t (θ1)− v2
t (θ2)| ≤ gt(yt:1)||θ1 − θ2||, and

both, vt(θ) and gt(yt:1) satisfy a WLLN (Wooldridge; 1994, thm. 4.2). Since v2
t (θ)

is continuously differentiable, a natural choice for gt(yt:1) is the supremum of the

absolute gradient, as follows from the mean value expansion of v2
t (θ) about θ, see

Newey (1991, cor. 2.2) and Wooldridge (1994, eqn. 4.4).

However, as can be seen from (2.15), uniform convergence of the objective func-

tion fails around the point d = d0 − 1/2: Since yt is I(d0), the d-th differences

∆d
+yt+1 = ξt+1(d) as well as Sdyt:1 = ξt:1(d) are I(d0 − d), and thus asymptotically

stationary whenever d > d0 − 1/2, otherwise non-stationary. Subsequently, I will

show that the pointwise probability limit of Q(y, θ) is given by

plimn→∞Q(y, θ) = plimn→∞ Q̃(y, θ) =

E(ṽ2
t (θ)) for d− d0 > −1/2,

∞ else,
(2.28)

where ṽt(θ) denotes the untruncated forecast error

ṽt(θ) = ξ̃t(d) +
∞∑
j=1

τj(θ)ξ̃t−j(d) =
∞∑
j=0

τj(θ)ξ̃t−j(d), (2.29)

generated by the untruncated fractional differencing polynomial ∆d and the un-

truncated polynomial b(L,ϕ) =
∑∞

j=0 bj(ϕ)Lj . ξ̃t(d) = ∆d−d0ηt + ∆dct is the

untruncated residual, while the τj(θ) stem from the ∞-vector (τ1(θ), τ2(θ), · · · ) =

ν(b1(ϕ) − π1(d), b2(ϕ) − π2(d), · · · )(B′ϕ,∞Bϕ,∞ + νS′d,∞Sd,∞)−1S′d,∞, and τ0(θ) = 1

as before. Note that the dependence of the τj(θ) on t is resolved in (2.29) by letting

the dimension of the t-dimensional coefficient vector go to infinity. Hence, while the

truncated forecast errors in (2.15) are non-ergodic, the untruncated errors (2.29) are

ergodic within the stationary region of the parameter space where d − d0 > −1/2,

as will become clear.

To deal with non-uniform convergence in (2.28), I adapt the proof strategy of

Nielsen (2015) for CSS estimation of ARFIMA models: I partition the parameter

space for d into three compact subsets D1 = D1(κ1) = D∩{d : d−d0 ≤ −1/2−κ1},
D2 = D2(κ2, κ3) = D ∩ {d : −1/2− κ2 ≤ d− d0 ≤ −1/2 + κ3}, and D3 = D3(κ3) =

D ∩ {d : −1/2 + κ3 ≤ d − d0}, for some constants 0 < κ1 < κ2 < κ3 < 1/2 to be

determined later. Note that ∪3
i=1Di = D. WithinD1 andD3 convergence is uniform,
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while within the overlapping D2, which covers both stationary and non-stationary

forecast errors, convergence is non-uniform. Denote the partitioned parameter spaces

for θ as Θj = Dj × Σν × Φ, j = 1, 2, 3. Non-uniform convergence of (2.28) is then

asymptotically ruled out by showing that for a given constant K > 0 there always

exists a fixed κ̄ > 0 such that

Pr

(
inf

d∈D\D3(κ̄),ν∈Σν ,ϕ∈Φ
Q(y, θ) > K

)
→ 1 as n→∞, (2.30)

which implies Pr(θ̂ ∈ D3(κ̄)×Σν × Φ)→ 1, i.e. the parameter space asymptotically

reduces to the stationary region Θ3(κ̄) = D3(κ̄) × Σν × Φ. The second part of the

proof shows that within Θ(κ3), a UWLLN applies to the objective function, i.e. for

any fixed κ3 ∈ (0, 1/2)

sup
θ∈D3(κ3)×Σν×Φ

∣∣Q(y, θ)− E(ṽ2
t+1(θ))

∣∣ p−→ 0, as n→∞, (2.31)

which holds if both the objective function and the supremum of its absolute gradient

satisfy a WLLN (Wooldridge; 1994, thm. 4.2). While the results in (2.30) and (2.31)

are well established for the CSS estimator in the ARFIMA literature, see Hualde and

Robinson (2011) and Nielsen (2015), showing them to carry over to the fractional UC

model requires some additional effort. Even within θ ∈ Θ3(κ3), the forecast errors in

(2.14) are not ergodic for two reasons: First, since the lag polynomial generated by

the truncated fractional differencing polynomial ∆d
+ includes more lags as t increases,

ξt(d) = ∆d−d0
+ ηt + ∆d

+ct are not ergodic. Second, the τj(θ, t) in (2.15) depend on t.

Consequently, also within Θ3(κ3) a WLLN for stationary and ergodic processes does

not immediately apply. I tackle these problems by showing the expected difference

between (2.15) and (2.29) to be

E
[
(ṽt+1(θ)− vt+1(θ))2

]
→ 0, as t→∞, (2.32)

for all θ ∈ Θ3(κ3) (pointwise). As within Θ3(κ3), ṽt+1(θ) is stationary and ergodic,

it follows by (2.32) that the WLLN for stationary and ergodic processes carries over

from ṽt+1(θ) to vt+1(θ)

Q(y, θ) = Q̃(y, θ) + op(1)
p−→ E(ṽ2

t (θ)), as n→∞. (2.33)

(2.33) can be generalized to uniform convergence by showing that a WLLN also

holds for the supremum of the absolute gradient, which yields (2.31). From (2.30)
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and (2.31), theorem 2.4.1 follows. In the proofs, let z(j) denote the j-th entry of

some vector z, and let Z(i,j) denote the (i, j)-th entry (i.e. the entry in row i and

column j) for some matrix Z.

Convergence on Θ3(κ3) and proof of (2.31) and (2.33) I begin with the case

θ ∈ Θ3(κ3) = D3(κ3) × Σν × Φ where vt(θ) is asymptotically stationary. To prove

(2.32), I first show that

ṽt+1(θ)− vt+1(θ) =
t∑

j=0

τj(θ, t)
(
ξ̃t+1−j(d)− ξt+1−j(d)

)

+

∞∑
j=t+1

τj(θ)ξ̃t+1−j(d) +

t∑
j=0

(τj(θ)− τj(θ, t)) ξ̃t+1−j(d)

=

∞∑
j=0

φη,j(θ, t)ηt+1−j +

∞∑
j=0

φε,j(θ, t)εt+1−j ,

(2.34)

where φη,j(θ, t) is O((1 + log(t + 1))2(t + 1)max(−d+d0,−ζ)−1) for j ≤ t, and O((1 +

log j)3jmax(−d+d0,−ζ)−1) for j > t, whereas φε,j(θ, t) is O((1 + log(t + 1))2(t +

1)max(−d,−ζ)−1) for j ≤ t, and O((1 + log j)4jmax(−d,−ζ)−1) for j > t. This can

be verified by considering the three different terms in (2.34) separately. For the first

term, plugging in ξt(d) = ∆d−d0
+ ηt + ∆d

+ct, ξ̃t(d) = ∆d−d0ηt + ∆dct yields

t∑
j=0

τj(θ, t)
(
ξ̃t+1−j(d)− ξt+1−j(d)

)
=

∞∑
j=t+1

φ1,η,j(θ, t)ηt+1−j +

∞∑
j=t+1

φ1,ε,j(θ, t)εt+1−j ,

(2.35)

where the coefficients are φ1,η,j(θ, t) =
∑t

k=0 τk(θ, t)πj−k(d − d0), and φ1,ε,j(θ, t) =∑t
k=0 τk(θ, t)

∑j−t−1
l=0 al(ϕ0)πj−k−l(d). Using Johansen and Nielsen (2010, lemma

B.4), who show
∑j−1

k=1 k
max(−d,−ζ)−1(j − k)−d+d0−1 ≤ K(1 + log j)jmax(−d+d0,−ζ)−1

for some finite constant K > 0, together with assumption 2.3, (2.68), lemma 2.A.2,

and j > t, the coefficients in (2.35) are φ1,η,t = O((1 + log j)2jmax(−d+d0,−ζ)−1), and

φ1,ε,t = O((1 + log j)3jmax(−d,−ζ)−1).

Next, consider the second term in (2.34)

∞∑
j=t+1

τj(θ)ξ̃t+1−j(d) =
∞∑

j=t+1

ηt+1−jφ2,η,j(θ, t) +
∞∑

j=t+1

εt+1−jφ2,ε,j(θ, t), (2.36)

with coefficients φ2,ε,j(θ, t) =
∑j−t−1

k=0 τt+1+k(θ)
∑j−t−1−k

l=0 al(ϕ0)πj−t−1−k−l(d) =
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O((1 + log j)3jmax(−d,−ζ)−1), and φ2,η,j(θ, t) =
∑j−t−1

k=0 πk(d − d0)τj−k(θ) = O((1 +

log j)2jmax(−d+d0,−ζ)−1) by assumption 2.3, lemma 2.A.1 and lemma 2.A.2.

For the third term in (2.34), by lemma 2.A.3

t∑
j=0

(τj(θ)− τj(θ, t)) ξ̃t+1−j(d)

=−
∞∑
j=0

ηt+1−j

min(j,t)∑
k=0

πj−k(d− d0)
∞∑

m=t+1

rτ,k,m(θ)

−
∞∑
j=0

εt+1−j

min(j,t)∑
k=0

( ∞∑
m=t+1

rτ,k,m(θ)

)
j−k∑
l=0

al(ϕ0)πj−k−l(d)

=
∞∑
j=0

φ3,η,j(θ, t)ηt+1−j +
∞∑
j=0

φ3,ε,j(θ, t)εt+1−j .

(2.37)

By lemma 2.A.3,
∑∞

m=t+1 rτ,k,m(θ) = O((1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1), while

πj(d − d0) = O(j−d+d0−1) and
∑j−k

l=0 al(ϕ0)πj−k−l(d) = O((1 + log(j − k))(j −
k)max(−d,−ζ)−1), see lemma 2.A.1 together with Johansen and Nielsen (2010, lemma

B.4). Thus, it holds that φ3,η,j(θ, t) = −
∑min(j,t)

k=0

(∑∞
m=t+1 rτ,k,m(θ)

)
πj−k(d −

d0) is O
(
(1 + log(t+ 1))2(t+ 1)max(−d+d0,−ζ)−1

)
for j ≤ t, whereas for j > t it

is O
(
(1 + log j)3jmax(−d+d0,−ζ)−1

)
since d − d0 > 1/2 for all θ ∈ Θ3(κ3). The

other coefficient φ3,ε,j(θ, t) =
∑min(j,t)

k=0

(∑∞
m=t+1 rτ,k,m(θ)

)∑j−k
l=0 al(ϕ0)πj−k−l(d) is

O
(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1

)
for j ≤ t, and O

(
(1 + log j)4jmax(−d,−ζ)−1

)
for j > t. Together, (2.35), (2.36), (2.37) and the rates established below prove

(2.34).

(2.32) can be proven by noting that ṽt+1(θ) is stationary and ergodic, so that a

WLLN for stationary and ergodic processes applies. Thus, it is sufficient to consider

E[(ṽt+1(θ)−vt+1(θ))2] =
∞∑
j=1

[
φ2
η,j(θ, t) E(η2

t+1−j) + φ2
ε,j(θ, t) E(ε2t+1−j)

]
=

t∑
j=1

O
(

(1 + log(t+ 1))4(t+ 1)2 max(−d+d0,−ζ)−2
)

+

∞∑
j=t+1

O
(

(1 + log(t+ 1))8(t+ 1)2 max(−d+d0,−ζ)−2
)

= o(1),

where the first equality follows by assumption 2.1, while the second follows from

the convergence rates of φη,j(θ, t), φε,j(θ, t) as derived above, and the third equality

follows from ζ > 0 and d − d0 + 1/2 > κ3 > 0 for all θ ∈ Θ3(κ3). (2.32) follows
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directly. From the law of large numbers for stationary and ergodic processes, (2.33)

follows immediately.

(2.33) can be generalized to uniform convergence in probability by showing the

supremum of the absolute gradient to be bounded in probability for all θ ∈ Θ(κ3)

and any κ3, see Newey (1991, cor. 2.2) and Wooldridge (1994, th. 4.2). Then (2.31)

holds, so that the objective function satisfies a UWLLN within the stationary region

of the parameter space Θ3(κ3). The gradient of the objective function is given by

∂Q(y, θ)

∂θ(l)
=

2

n

n∑
t=1

vt(θ)
∂vt(θ)

∂θ(l)
,

∂vt(θ)

∂θ(l)
=

t−1∑
j=1

∂τj(θ, t)

∂θ(l)
ξt−j(d) +

t−1∑
j=0

τj(θ, t)
∂ξt−j(d)

∂θ(l)
,

(2.38)

where θ(l) denotes the l-th parameter in θ. Now, denote τ̃i(L, θ) =
∑∞

j=0 τ̃i,j(θ)L
j as

any polynomial satisfying
∑∞

j=0 |τ̃i,j(θ)| < ∞, i = 1, 2, uniformly in θ ∈ Θ. Then,

for z1,t(θ) = ηt, z2,t(θ) = εt, and for the set Θ̃{(d1, d2, ν, ϕ) ∈ D × D × Σν × Φ :

min(d1 + 1, d2 + 1, d1 + d2 + 1) ≥ a}, it holds that

sup
(d1,d2,ν,ϕ)∈Θ̃

∣∣∣∣∣ 1n
n∑
t=1

[
∂k∆d1

+

∂dk1

∞∑
m=0

τ̃i,m(θ)zi,t−m(θ)

][
∂l∆d2

+

∂dl2

∞∑
m=0

τ̃j,m(θ)zj,t−m(θ)

]∣∣∣∣∣
=

Op(1) for a > 0,

Op((log n)1+k+ln−a) for a ≤ 0,

(2.39)

i, j = 1, 2, k, l = 1, 2, ..., as shown by Nielsen (2015, lemma B.3). Now, note

that by lemmas 2.A.2 and 2.A.4 both the coefficients τj(θ, t) and their partial

derivatives satisfy the absolute summability condition, i.e.
∑t−1

j=0 |τj(θ, t)| < ∞ and∑t−1
j=0 |∂τj(θ, t)/∂θ(l)| < ∞ for all θ(l) and uniformly in θ ∈ Θ. In addition, by

assumption 2.3, the absolute summability condition also holds for the polynomi-

als
∑t−1

j=0 τj(θ, t)L
ja(L,ϕ0) and

∑t−1
j=0 ∂τj(θ, t)/(∂θ(l))L

ja(L,ϕ0). Furthermore, note

that the (truncated) fractional difference operator and the (truncated) polynomi-

als
∑t−1

j=1 τj(θ, t)L
j as well as their partial derivatives can be interchanged, e.g.

∆d
+

∑t−1
j=0 τj(θ, t)ηt−j =

∑t−1
j=0 τj(θ, t)∆

d
+ηt−j , as the sum is bounded at t − 1. Fi-

nally, for θ ∈ Θ3(κ3), it holds that d − d0 > −1/2, so that within vt(θ) the

term ∆d−d0
+ ηt is integrated of order smaller 1/2, and the same holds for the par-

tial derivative ∂ξt(d)/∂d = (∂∆d−d0
+ /∂d)ηt + (∂∆d

+/∂d)ct. Therefore, all terms in

(2.38) satisfy the conditions for (2.39) with a > 0. Thus, by (2.39), it follows that
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supθ∈Θ3(κ3)

∣∣∣∂Q(y,θ)
∂θ(l)

∣∣∣ = Op(1) for all entries in θ. Hence, (2.33) holds uniformly in

θ ∈ Θ3(κ3). As this holds for any κ3, this proves (2.31).

Convergence on Θ2(κ1, κ2) Next, consider the case θ ∈ Θ2(κ1, κ2) = D2(κ1, κ2)×
Σν ×Φ. Then for the objective function in (2.16), together with (2.15), it holds that

Q(y, θ) =
1

n

n∑
t=1

 t−1∑
j=0

τj(θ, t)ξt−j(d)

2

≥ 1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)2

+
2

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)(
∆d

+

t−1∑
j=0

τj(θ, t)ct−j

)
,

(2.40)

where the fractional difference operator and the polynomial
∑t−1

j=0 τj(θ, t)L
j can be

interchanged as the latter is truncated at t− 1.

For the second term in (2.40), by lemma 2.A.2
∑t−1

j=0 |τj(θ, t)| < ∞ , and by

assumption 2.3 and lemma 2.A.2
∑∞

j=0

∑min(j,t−1)
k=0 |τj(θ, t)ak−j(ϕ0)| <∞ . Further-

more, as d > 0, d − d0 ≥ −1/2 − κ2 > −1, it holds that min(1 + d − d0, 1 + d, 1 +

2d− d0) = 1 + d− d0 > 0, so that by (2.39)

sup
θ∈Θ2(κ2,κ3)

∣∣∣∣∣∣ 1n
n∑
t=1

∆d−d0
+

t−1∑
j=0

τj(θ, t)ηt−j

∆d
+

t−1∑
j=0

τj(θ, t)ct−j

∣∣∣∣∣∣ = Op(1). (2.41)

Next, consider the first term in (2.40), for which one has by lemma 2.A.3

∆d−d0
+

t−1∑
j=0

τj(θ, t)ηt−j = ∆d−d0
+

t−1∑
j=0

τj(θ)ηt−j + ∆d−d0
+

t−1∑
j=1

( ∞∑
i=t+1

rτ,j,i(θ)

)
ηt−j

= ∆d−d0
+

∞∑
j=0

τj(θ)ηt−j + rη,t(θ), (2.42)

where

rη,t(θ) = −∆d−d0
+

∞∑
j=t

τj(θ)ηt−j + ∆d−d0
+

t−1∑
j=1

ηt−j

∞∑
i=t+1

rτ,j,i(θ)

= ∆d−d0
+

∞∑
j=1

αjηt−j ,

(2.43)

and αj =
∑∞

i=t+1 rτ,j,i(θ) for j < t and αj = −τj(θ) for j ≥ t. By lemmas

2.69 and 2.A.3, τj(θ) = O
(
(1 + log j)jmax(−d,−ζ)−1

)
and

∑∞
i=t+1 rτ,j,i(θ) = O

(
(1 +

log t)2tmax(−d,−ζ)−1
)
, so that αj = O

(
(1 + log t)2tmax(−d,−ζ)−1

)
for j < t and αj =
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O
(
(1 + log j)jmax(−d,−ζ)−1

)
for j ≥ t. Apply the Beveridge-Nelson decomposition to

rη,t(θ)

rη,t(θ) = ∆d−d0
+ ηt−1

∞∑
j=1

αj + ∆d−d0+1
+

∞∑
j=1

α∗jηt−j , α∗j = −
∞∑

i=j+1

αi, (2.44)

where
∑∞

j=1 αj = O((1+log t)2tmax(−d,−ζ)). Again, by the Beveridge-Nelson decom-

position for ∆d−d0
+

∑∞
j=0 τj(θ)ηt−j in (2.42)

∆d−d0
+

∞∑
j=0

τj(θ)ηt−j = ∆d−d0
+ ηt

∞∑
j=0

τj(θ) + ∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j , (2.45)

where τ∗j (θ) = −
∑∞

i=j+1 τi(θ), and
∑∞

j=0 τj(θ) = O(1) by lemma 2.69. By (2.42),

(2.44), and (2.45), it follows for the first term in (2.40) that

1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)2
≥ 1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2

(2.46)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0
+ ηt−1

∞∑
j=1

αj

) (2.47)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

) (2.48)

+
2

n

n∑
t=1

(∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)(

∆d−d0+1
+

∞∑
j=1

α∗jηt−j

) (2.49)

+
2

n

n∑
t=1

(∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

)(
∆d−d0

+ ηt−1

∞∑
j=1

αj

) (2.50)

+
2

n

n∑
t=1

(∆d−d0+1
+

∞∑
j=0

τ∗j (θ)ηt−j

)(
∆d−d0+1

+

∞∑
j=1

α∗jηt−j

) (2.51)

+
2

n

n∑
t=1

(∆d−d0
+ ηt−1

∞∑
j=1

αj

)(
∆d−d0+1

+

∞∑
j=1

α∗jηt−j

) . (2.52)

From (2.39), it immediately follows that (2.48) to (2.52) are Op(1), as d− d0 + 1 >

0 and d − d0 > −1 for all θ ∈ Θ2(κ2, κ3). In addition, as
∑∞

j=1 αj = O((1 +

log t)2tmax(−d,−ζ)) and as
∑∞

j=0 τj(θ) is bounded away from zero by assumption 2.3,

it follows that (2.46) asymptotically dominates (2.47), so that the rate of convergence

of (2.40) will depend solely on (2.46). The asymptotic probability limit of the first
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term (2.46) is derived analogously to Nielsen (2015, pp. 163f) by defining wt =∑N−1
i=0 πi(d− d0)ηt−i

∑∞
j=0 τj(θ) and ut =

∑t−1
i=N πi(d− d0)ηt−i

∑∞
j=0 τj(θ) for some

N ≥ 1 to be determined. Then ∆d−d0
+ ηt

∑∞
j=0 τj(θ) = wt+ut, and it holds for (2.46)

1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥ 1

n

n∑
t=N+1

(
w2
t + 2wtut

)
. (2.53)

As shown by Nielsen (2015, p. 164), for some κ satisfying max(κ2, κ3) ≤ κ < 1/2,

setting N = nα with 0 < α < min
(

1/2−κ
1/2+κ ,

1/2
1/2+2κ

)
, it holds by Nielsen (2015,

eqn. B.4 in lemma B.2) that n−1
∑n

t=nα+1wtut
p−→ 0 uniformly in θ ∈ Θ2(κ, κ) ⊇

Θ2(κ2, κ3). As also shown by Nielsen (2015, p. 164), the other term in (2.53) satisfies

sup
θ∈Θ2(κ,κ)

∣∣∣∣∣∣ 1n
n∑

t=nα+1

w2
t − σ2

η,0

( ∞∑
j=0

τj(θ)
)2

nα−1∑
j=0

π2
j (d− d0)

∣∣∣∣∣∣ p−→ 0, (2.54)

as n → ∞, and by Nielsen (2015, lemma A.3) the latter sum is bounded from

below by
∑nα−1

j=0 π2
j (d − d0) ≥ 1 + K 1−(n−1)−2ακ3

2κ3
for some K > 0. The limit of

the fraction 1−(n−1)−2ακ3

2κ3
is discussed by Nielsen (2015, p. 165): It increases in n

from zero (for n = 2) to 1/(2κ3) as n → ∞, and decreases in κ3 from α log(n − 1)

for κ3 = 0 to zero for κ3 → 1/2. Consequently 1−(n−1)−2ακ3

2κ3
→ ∞ as (n, κ3) →

(∞, 0). This, together with (2.46), (2.53), and (2.54) yields that the lower bound of
1
n

∑n
t=1(∆d−d0

+

∑t−1
j=0 τj(θ, t)ηt−j)

2 diverges in probability for θ ∈ Θ2(κ, κ) as (n, κ)→
(∞, 0). By (2.40), (2.41), and (2.42) the result of Nielsen (2015, eqn. 25) for ARFIMA

models carries over to the fractional UC model: For any K > 0, δ > 0, there exist

κ̄3 > 0 and T2 ≥ 1 such that

Pr

(
inf

d∈D2(κ2,κ̄3),ν∈Σν ,ϕ∈Φ
Q(y, θ) > K

)
≥ 1− δ, for all T ≥ T2, (2.55)

and (2.55) holds for any κ2 ∈ (0, 1/2).

Convergence on Θ1(κ1) Finally, consider the non-stationary subset Θ1(κ1) =

D1(κ1) × Σν × Φ. Starting again with (2.40) above, the second term in (2.40), by

the same argument with respect to absolute summability of the coefficients as for

(2.41), is now

1

n

n∑
t=1

(
∆d−d0

+

t−1∑
j=0

τj(θ, t)ηt−j

)(
∆d

+

t−1∑
j=0

τj(θ, t)ct−j

)
= Op

(
1 + log(n)nd0−d−1

)
,

(2.56)
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for all θ ∈ Θ1(κ1) by (2.39) with d1 = d − d0, d2 = d, and thus is Op(1) for

d − d0 > −1 and Op(log(n)nd0−d−1) otherwise. As will be shown, the first term

in (2.40) will asymptotically diverge at a faster rate compared to the second term

above. To see this, note that the decomposition of the first term in (2.40) into

∆d−d0
+

∑∞
j=0 τj(θ)ηt−j and rη,t(θ) in (2.42) and (2.43) above also applies in Θ1(κ1).

Consequently, the Beveridge-Nelson decompositions in (2.44) and (2.45) also hold

for θ ∈ Θ1(κ1). Again, the decomposition in (2.46) to (2.52) applies, however the

terms in (2.48) to (2.52) will not necessarily be Op(1), since d − d0 is no longer

bounded from above by −1 or by −2. However, as will become clear, the first term

(2.46) asymptotically dominates all other terms in (2.47) to (2.52) and thus it will

be sufficient to consider only this term.

To arrive at the desired result, consider n2(d−d0)
∑n

t=1(∆d−d0
+ ηt

∑∞
j=0 τj(θ))

2, a

scaled version of (2.46). It follows from the Cauchy-Schwarz inequality that

n2(d−d0)
n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥
(
nd−d0−1/2

n∑
t=1

∆d−d0
+ ηt

∞∑
j=0

τj(θ)
)2
, (2.57)

where the scaling by nd−d0−1/2 is required for a functional central limit theorem later

to hold.

The remaining proof for θ ∈ Θ1(κ1) follows Nielsen (2015, pp. 168f) and shows his

results for the CSS estimator for ARFIMA processes to carry over to the fractional

UC model. As also shown there, from Hosoya (2005, thm. 2) a functional central

limit theorem for

rn(θ) = nd−d0−1/2
n∑
t=1

∆d−d0
+ ηt

∞∑
j=0

τj(θ) = nd−d0−1/2∆d−d0−1
+ ηn

∞∑
j=0

τj(θ) (2.58)

follows if assumptions A(i) to A(iv) of Hosoya (2005) hold. Since 0 <
∑∞

j=0 |τj(θ)| <
∞ and E(ηj |Ft) = 0 for all j > t, as well as E(ηjηk|Ft) − E(ηjηk) = 0 for j, k > t

by assumption 2.1, it follows that assumptions A(i) and A(ii) of Hosoya (2005) are

satisfied. By Hosoya (2005, lemma 3), assumption A(iii) of Hosoya (2005) is satisfied

if ηt is a fourth-order stationary process with a bounded fourth-order cumulant

spectral density, which is satisfied by assumption 2.1. Finally, by Hosoya (2005,

thm. 3) the respective assumption A(iv) is satisfied for the fourth-order stationary

process ηt if 2 > (2(d0 − d + 1) − 1)−1 holds, which is equivalent to d0 − d > −1/4
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and is satisfied for all θ ∈ Θ1(κ1). By Hosoya (2005, thm. 2), as n→∞

nd−d0−1/2∆d−d0−1
+ ηbnrc

∞∑
j=0

τj(θ)⇒Wd0−d(r) in D[0, 1], (2.59)

for r ∈ [0, 1] and fixed d ∈ D1(κ1), where bnrc is the greatest integer smaller or

equal to nr, Wd0−d(r) = Γ(d0 − d + 1)−1
∫ r

0 (r − s)d0−ddW (s) is fractional Brown-

ian motion of type II, and W denotes Brownian motion generated by ηt
∑∞

j=0 τj(θ).

(2.59) is equivalent to Nielsen (2015, eqn. 30) for the univariate case. From (2.59)

it follows that rn(θ)
d−→ r(θ) = Wd0−d(1) for fixed d ∈ D1(κ1). Pointwise conver-

gence rn(θ) can be generalized to uniform convergence in D1(κ1) if rn(θ) is tight

(stochastically equicontinuous) as a function of θ on θ ∈ Θ1(κ1). Since the parame-

ters ϕ, ν only enter rn(θ) through
∑∞

j=0 τj(θ), it is sufficient for tightness of rn(θ)

in θ that nd−d0−1/2∆d−d0−1
+ ηn is tight in (d − d0). As in Nielsen (2015, pp. 169f),

tightness in (d− d0) can be shown using the moment condition in Billingsley (1968,

thm. 12.3) which requires to show that rn(θ) is tight for a fixed d − d0 and that

|nd1−1/2∆d1−1
+ ηn−nd2−1/2∆d2−1

+ ηn| ≤ K|d1−d2| for some constant K > 0 that does

not depend on n, d1, or d2, see Nielsen (2015, pp. 169f). As noted there, the first con-

dition is implied by pointwise convergence in probability and distribution, while the

second condition holds by Nielsen (2015, lemma B.1). Consequently, rn(θ) ⇒ r(θ)

in d ∈ D1(κ1), and thus infθ∈Θ1(κ1) rn(θ)2 d−→ infθ∈Θ1(κ1) r(θ)
2.

Coming back to the first term of the objective function (2.40), for which a lower

bound is given by the expressions (2.46) to (2.52), note that by (2.57) the first term

(2.46) is bounded from below (when scaled appropriately) by

inf
θ∈Θ1(κ1)

1

n

n∑
t=1

(
∆d−d0

+ ηt

∞∑
j=0

τj(θ)
)2
≥ n2(d0−d−1/2) inf

θ∈Θ1(κ1)
rn(θ)2. (2.60)

The probability limits of (2.48) to (2.52) can be derived by (2.39) for d1 = d−d0 and

d2 = d−d0 +1, and equal Op (1 + n−a log n), where a = min(1+d−d0, 2+2(d−d0)).

Thus, a = 1 + d − d0 if d − d0 > −1, and a = 2 + 2(d − d0) if d − d0 ≤ −1. In

the former case, a > 0, so that (2.48) to (2.52) are Op(1). In the latter case, they

are Op
(
n2(d0−d−1) log n

)
and thus diverge at a slower rate than (2.46). For (2.47),

note that
∑∞

j=1 αj = O((1 + log t)2tmax(−d,−ζ)), while
∑∞

j=0 τj(θ) is bounded away

from zero by assumption 2.3. Consequently, (2.47) will also diverge at a slower

rate than (2.46). Finally, as already shown in (2.56), the second term in (2.40) is

Op
(
1 + log(n)nd0−d−1

)
and thus is also dominated by (2.46). It follows that the rate

of divergence of the objective function is determined by the first term in (2.40) and
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is given by the divergence rate of (2.46). This, together with (2.60), yields

inf
θ∈Θ1(κ1)

Q(y, θ) ≥ n2(d0−d−1/2) inf
θ∈Θ1(κ1)

rn(θ)2 ≥ n2κ1 inf
θ∈Θ1(κ1)

rn(θ)2 (2.61)

as n → ∞. Thus, one obtains the result of Nielsen (2015, eqn. 34) that for any

K > 0 and all κ1 > 0

Pr

(
inf

d∈D1(κ1),ν∈Σν ,ϕ∈Φ

1

n
Q(y, θ) > K

)
→ 1, as T →∞. (2.62)

Together, (2.55) and (2.62) prove (2.30).

2.A.3 Proof of theorem 2.4.2

Proof of theorem 2.4.2. Since θ̂ is consistent, see theorem 2.4.1, the asymptotic dis-

tribution theory can be derived based on the Taylor series expansion of the score

function as usual

0 =
√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ̂

=
√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

+
√
n
∂2Q(y, θ)

∂θ∂θ′

∣∣∣∣∣
θ=θ̄

(
θ̂ − θ0

)
, (2.63)

where for the entries of θ̄ it holds that |θ̄(i)−θ0(i) | ≤ |θ̂(i)−θ0(i) | for all i = 1, ..., q+2.

The normalized score at θ0 is

√
n
∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

=
2√
n

n∑
t=1

vt(θ0)
∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

, (2.64)

with vt(θ) denoting the prediction error as defined in (2.14) and (2.15), and its partial

derivative as given in (2.38). Denote the normalized, untruncated score

√
n
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

=
2√
n

n∑
t=1

ṽt(θ0)
∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

, (2.65)

with ṽt(θ) as defined in (2.29). As shown in lemma 2.A.6, the difference between

truncated and untruncated score is asymptotically negligible. Therefore it is suffi-

cient to consider the distribution of the latter. By assumption 2.5, the untruncated

prediction error ṽt(θ0) is a stationary MDS when adapted to F ξ̃t = σ(ξ̃s, s ≤ t).

Thus, for (2.65) a central limit theorem can be shown to apply following Nielsen

(2015, p. 175): By the Cramér-Wold device it is sufficient to show that for any

q + 2-dimensional vector µ, µ′
√
n∂Q̃(y,θ)

∂θ

∣∣
θ=θ0

=
√
n
∑q+2

i=1 µ(i)

(
∂Q̃(y,θ)
∂θ

∣∣
θ=θ0

)
(i)

=
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2√
n

∑q+2
i=1 µ(i)

∑n
t=1 ṽt(θ0)(h̃1,t + h̃2,t)(i)

d−→ N(0, 4σ2
v,0µ

′Ω0µ) as n→∞, with h̃1,t =∑∞
j=1

∂τj(θ)
∂θ

∣∣∣
θ=θ0

ξ̃t−j(d0), as well as h̃2,t =
∑∞

j=0 τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣
θ=θ0

. As h̃1,t and h̃2,t

are F ξ̃t−1-measurable, νt =
∑q+2

i=1 µ(i)ṽt(θ0)(h̃1,t + h̃2,t)(i) together with F
ξ̃
t is a MDS.

Thus, by the law of large numbers for stationary and ergodic processes, it holds that

1

n

n∑
t=1

E
(
ν2
t |F

ξ̃
t−1

)
=

1

n

n∑
t=1

q+2∑
i,j=1

µ(i)µ(j)σ
2
v,0(h̃1,t + h̃2,t)(i)(h̃1,t + h̃2,t)(j)

=

q+2∑
i,j=1

µ(i)µ(j)σ
2
v,0

1

n

n∑
t=1

(h̃1,t + h̃2,t)(i)(h̃1,t + h̃2,t)(j)
p−→ σ2

v,0

q+2∑
i,j=1

µ(i)µ(j)Ω0(i,j) ,

with σ2
v,0 = E(ṽ2

t (θ0)|F ξ̃t−1) = E(ṽ2
t (θ0)), and Ω0(i,j) = E

[
∂ṽt(θ)
∂θ(i)

∣∣
θ=θ0

∂ṽt(θ)
∂θ(j)

∣∣
θ=θ0

]
.

Finally, the Lindeberg criterion is satisfied as ṽt(θ0) is stationary. It follows directly

that
√
n∂Q(y,θ)

∂θ

∣∣
θ=θ0

=
√
n∂Q̃(y,θ)

∂θ

∣∣
θ=θ0

+ op(1)
d−→ N(0, 4σ2

v,0Ω0).

Next, consider the second derivatives in (2.63). By Johansen and Nielsen (2010,

lemma A.3), the Hessian matrix in (2.63) can be evaluated at the true parameters θ0 if

θ̂ is consistent and if the second derivatives are tight (stochastically equicontinuous).

As also discussed by Nielsen (2015) for the CSS estimator of ARFIMA models,

tightness holds for the second derivatives if its derivatives are uniformly dominated

in d ∈ D3 as defined in the proof of theorem 2.4.1, ν ∈ Σν as defined in section

2.4, and ϕ ∈ Nδ(ϕ0) as defined in assumptions 2.2 and 2.4, by a random variable

Bn = Op(1), see Newey (1991, cor. 2.2). This holds by lemma 2.A.7. Therefore, the

second derivative in (2.63) can be evaluated at the true value θ0

∂2Q(y, θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

=
2

n

n∑
t=1

∂vt(θ)

∂θ(k)

∣∣∣∣∣
θ=θ0

∂vt(θ)

∂θ(l)

∣∣∣∣∣
θ=θ0

+
2

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

,

(2.66)

k, l = 1, 2, ..., q + 2. By lemma 2.A.8, as t→∞,

E

[(
∂ṽt(θ)

∂θ
− ∂vt(θ)

∂θ

) ∣∣∣∣∣
θ=θ0

(
∂ṽt(θ)

∂θ′
− ∂vt(θ)

∂θ′

) ∣∣∣∣∣
θ=θ0

]
p−→ 0.

From the law of large numbers for stationary and ergodic processes, it then holds

for the first term in (2.66) that 1
n

∑n
t=1

∂ṽt(θ)
∂θ

∂ṽt(θ)
∂θ′ = 1

n

∑n
t=1

∂vt(θ)
∂θ

∂vt(θ)
∂θ′ + op(1). In

addition, by lemma 2.A.9 the second term in (2.66) is 2
n

∑n
t=1 vt(θ0)∂

2vt(θ)
∂θ∂θ′

∣∣
θ=θ0

=

2
n

∑n
t=1 ṽt(θ0)∂

2ṽt(θ)
∂θ∂θ′

∣∣
θ=θ0

+op(1). As (ṽt(θ0),F ξ̃t ) is a stationary MDS, while the sec-
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ond partial derivatives are F ξ̃t−1-measurable, it holds that 2
n

∑n
t=1 ṽt(θ0)∂

2ṽt(θ)
∂θ∂θ′

∣∣
θ=θ0

=

op(1). Taken together, this implies for (2.66) that

∂2Q(y, θ)

∂θ(k)∂θ(l)

∣∣∣∣∣
θ=θ0

=
2

n

n∑
t=1

∂ṽt(θ)

∂θ(k)

∣∣∣∣∣
θ=θ0

∂ṽt(θ)

∂θ(l)

∣∣∣∣∣
θ=θ0

+ op(1). (2.67)

Finally, from the law of large numbers, it follows that ∂2Q(y,θ)
∂θ(k)∂θ(l)

∣∣
θ=θ0

p−→ 2Ω0(k,l) .

Thus, solving (2.63) for
√
n(θ̂ − θ0) yields the desired result

√
n(θ̂ − θ0) = −

[
∂2Q(y, θ)

∂θ∂θ′

]−1

θ=θ̄

√
n
∂Q(y, θ)

∂θ′

∣∣∣∣∣
θ=θ0

d−→ N(0, σ2
v,0Ω−1

0 ).

2.A.4 Additional lemmas

In what follows, let z(j) denote the j-th entry for some vector z, and let Z(i,j) denote

the (i, j)-th entry (i.e. the entry in row i and column j) for some matrix Z.

Lemma 2.A.1 (Convergence rates of πj(d), bj(ϕ), and related vector and matrix

entries). It holds that

πj(d) = O(j−d−1), (2.68)

bj(ϕ) = O(j−ζ−1), (2.69)

(B′ϕ,tBϕ,t)(i,j) =

O(|i− j|−ζ−1) for i 6= j,

O(1) for i = j,
(2.70)

(S′d,tSd,t)(i,j) =

O(|i− j|−d−1) for i 6= j,

O(1) for i = j,
(2.71)

(B′ϕ,tBϕ,t)
−1
(i,j) =

O(|i− j|−ζ−1) for i 6= j,

O(1) for i = j,
(2.72)

(Bϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,j) =

O(|i− j|max(−d,−ζ)−1) for i 6= j,

O(1) for i = j,
(2.73)

(B′ϕ,tβt)(j) = O((t− j + 1)−ζ−1), (2.74)

(S′d,tst)(j) = O((t− j + 1)−d−1), (2.75)

with πj(d) as defined in (2.3), bj(ϕ) as defined below assumption 2.3, Bϕ,t and Sd,t
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as defined in (2.5), and β′t = (bt(ϕ) · · · b1(ϕ)), s′t = (πt(d) · · ·π1(d)).

Proof of Lemma 2.A.1. (2.68) follows by Johansen and Nielsen (2010, lemma B.3)

while (2.69) follows by assumption 2.3. (2.70) follows from (2.69) by (B′ϕ,tBϕ,t)(i,j) =∑min(i,j)−1
k=0 bk(ϕ)bk+|i−j|(ϕ) = O(|i − j|−ζ−1)

∑min(i,j)−1
k=0 bk(ϕ) = O(|i − j|−ζ−1) for

i 6= j, and (B′ϕ,tBϕ,t)(i,i) =
∑i−1

k=0 b
2
k(ϕ) = O(1). The proof for (2.71) is analogous and

follows from (2.68), as (S′d,tSd,t)(i,j) =
∑min(i,j)−1

k=0 πk(d)πk+|i−j|(d) = O(|i− j|−d−1)

for i 6= j, (S′d,tSd,t)(i,i) = O(1).

To derive the convergence rates for the entries of (B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t +

νS′d,tSd,t)
−1 in (2.72) and (2.73), note that as t → ∞, B′ϕ,tBϕ,t and B′ϕ,tBϕ,t +

νS′d,tSd,t converge to the Toeplitz matrices5 Tt(f1) and Tt(f2) with symbols f1(λ) =

(2π)−1
∑∞

j=0 γ1(j)eiλj , γ1(j) =
∑∞

k=0 bk(ϕ)bk+j(ϕ), f2(λ) = (2π)−1
∑∞

j=0 γ2(j)eiλj ,

γ2(j) =
∑∞

k=0 [bk(ϕ)bk+j(ϕ) + νπk(d)πk+j(d)], where γ1(j) = O(j−ζ−1) and γ2(j) =

O(jmax(−d,−ζ)−1) as j →∞. Consequently, (B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t+νS

′
d,tSd,t)

−1

converge to the Toeplitz matrices Tt(1/f1) and Tt(1/f2) that exist by assumption

2.3. Denote the respective spectral densities as 1/f1(λ) = (2π)−1
∑∞

j=0 γ3(j)eiλj

and 1/f4(λ) = (2π)−1
∑∞

j=0 γ4(j)eiλj . Then the convergence rate of γ3(j) can be

obtained from the partial derivative (∂/∂λ)[1/f1(λ)] = (2π)−1
∑∞

j=0 ijγ3(j)eiλj =

−f1(λ)−2(2π)−1
∑∞

j=0 ijγ1(j)eiλj , where jγ1(j) = O(j−ζ), so that jγ3(j) = O(j−ζ)

as f1(λ) is bounded away from zero by assumption 2.3. It follows that γ3(j) =

O(j−ζ−1). Similarly, it can be shown that γ4(j) = O(jmax(−d,−ζ)−1). As the j-th

descending diagonals of (B′ϕ,tBϕ,t)
−1 and (B′ϕ,tBϕ,t + νS′d,tSd,t)

−1 converge to γ3(j)

and γ4(j) as t→∞, one has (2.72) and (2.73).

(2.74) follows immediately from (2.69), since (B′ϕ,tβt)(j) =
∑j−1

k=0 bk(ϕ)bt−j+k+1(ϕ) =

O((t − j + 1)−ζ−1)
∑j−1

k=0 bk(ϕ) = O((t − j + 1)−ζ−1), while (2.75) follows im-

mediately from (2.68) by (S′d,tst+1)(j) =
∑j−1

k=0 πk(d)πt−j+k+1(d) = O((t − j +

1)−d−1)
∑j−1

k=0 πk(d) = O((t− j + 1)−d−1).

Lemma 2.A.2 (Convergence rates of τj(θ, t)). For the coefficients τj(θ, t) as defined

in (2.15) and below, it holds that

τj(θ, t) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
. (2.76)

Proof of Lemma 2.A.2. To prove (2.76), consider τj(θ, t) as defined in (2.15) and

5Gray (2006) provides a good overview about the asymptotic behavior of Toeplitz matrices.
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below

τj(θ, t) = ν

t∑
k=1

[ (
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
× (B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)
Sd,t(j,k) .

(2.77)

The left term in (2.77) is[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)

= (bk(ϕ)− πk(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(k,k)

+
k−1∑
i=1

(bi(ϕ)− πi(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,k)

+
t∑

i=k+1

(bi(ϕ)− πi(d)) (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,k).

(2.78)

Note that πk(d) = O(k−d−1), bk(ϕ) = O(k−ζ−1), (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(k,k) = O(1),

and (B′ϕ,tBϕ,t + νS′d,tSd,t)
−1
(i,k) = O(|i − k|max(−d,−ζ)−1) for i 6= k by (2.68), (2.69),

and (2.73). Thus, the first term in (2.78) is O
(
kmax(−d,−ζ)−1

)
, while the second term

is
∑k−1

i=1 O
(
imax(−d,−ζ)−1(k − i)max(−d,−ζ)−1

)
= O

(
(1 + log k)kmax(−d,−ζ)−1

)
, where

the last equality follows from Johansen and Nielsen (2010, lemma B.4), who show

that
∑k−1

i=1 i
max(−d,−ζ)−1(k − i)max(−d,−ζ)−1 = O((1 + log k)kmax(−d,−ζ)−1). Again

using (2.69) and (2.73), the third term in (2.78) can be shown to be bounded by∑t
i=k+1O

(
imax(−d,−ζ)−1(i− k)max(−d,−ζ)−1

)
= O((k + 1)max(−d,−ζ)−1

∑t
i=k+1(i −

k)max(−d,−ζ)−1) = O((k + 1)max(−d,−ζ)−1). Therefore[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)

= O
(

(1 + log k)kmax(−d,−ζ)−1
)
.

(2.79)

By plugging (2.79) into (2.77) and using (2.5) together with (2.68), one obtains[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1S′d,t

]
(j)

=

t∑
k=j

[(
b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d)

)
(B′ϕ,tBϕ,t + νS′d,tSd,t)

−1
]

(k)
πk−j(d)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( t∑
k=j+1

(1 + log k)kmax(−d,−ζ)−1(k − j)−d−1
)
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= O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
(

(1 + log j)jmax(−d,−ζ)−1
t−j∑
k=1

k−d−1
)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (2.80)

since
∑t−j

k=1 k
−d−1 = O(1) for all d > 0. This proves (2.76).

Lemma 2.A.3 (Convergence of τj(θ, t) as t → ∞). For the coefficients τj(θ, t) as

defined in (2.15) and below, it holds that

τj(θ, t) = τj(θ, t+ 1) + rτ,j,t+1(θ), (2.81)

where rτ,j,t+1(θ) = O
(
(1 + log(t+ 1))2(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1−

j)max(−d,−ζ)−1
)
.

Proof of Lemma 2.A.3. To prove (2.81), I study the impact of an increase from t

to t + 1 on τj(θ, t + 1) = ν[(b1(ϕ) − π1(d) · · · bt+1(ϕ) − πt+1(d))(B′ϕ,t+1Bϕ,t+1 +

νS′d,t+1Sd,t+1)−1S′d,t+1](j). Denote

Bϕ,t+1 =

[
Bϕ,t βt

01×t 1

]
, Sd,t+1 =

[
Sd,t st

01×t 1

]
, (2.82)

with βt = (bt(ϕ) · · · b1(ϕ))′ and st = (πt(d) · · ·π1(d))′. Let Ξt+1(θ) = (B′ϕ,t+1Bϕ,t+1+

νS′d,t+1Sd,t+1)−1. Then, by the Sherman-Morrison formula

Ξt+1(θ) =

[
Ξt(θ) +R1 R2

R′2 R3

]
, (2.83)

with the block entries

R3 = [(1 + β′tβt + ν + νs′tst)− (β′tBϕ,t + νs′tSd,t)Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)]

−1,

R2 = −R3Ξt(θ)(B
′
ϕ,tβt + νS′d,tst),

R1 = R3Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)(β

′
tBϕ,t + νs′tSd,t)Ξt(θ).

Clearly R3 = O(1), since by (2.73), (2.74) and (2.75)

[(β′tBϕ,t + νs′tSd,t)Ξt(θ)](j) = O
( j−1∑
i=1

(t+ 1− i)max(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)



2.A Appendix 67

+O((t+ 1− j)max(−d,−ζ)−1) +O
( t−j∑
i=1

(t+ 1− i− j)max(−d,−ζ)−1imax(−d,−ζ)−1
)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
, (2.84)

and again by (2.74) and (2.75)

(β′tBϕ,t + νs′tSd,t)Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)

= O
( t∑
j=1

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1(t+ 1− j)max(−d,−ζ)−1
)
,

which is O(1). This, together with 1+β′tβt+ν+νs′tst =
∑t

j=0 b
2
j (ϕ)+ν

∑t
j=0 π

2
j (d) =

O(1), yields R−1
3 = O(1). Furthermore, R−1

3 is bounded away from zero, as Ξt(θ)
−1

is regular by assumption 2.3. Next, consider R2, for which by (2.84) it follows that

R2(j) = O
(
(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1

)
. Finally, for R1, by (2.84) it

follows that R1(i,j) = O
(
(1 + log(t + 1 − i))(t + 1 − i)max(−d,−ζ)−1(1 + log(t + 1 −

j))(t+ 1− j)max(−d,−ζ)−1
)
.

Next, consider the vector

(b1(ϕ)− π1(d) · · · bt+1(ϕ)− πt+1(d))(B′ϕ,t+1Bϕ,t+1 + νS′d,t+1Sd,t+1)−1

=
(

(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))[Ξt(θ) +R1] + (bt+1(ϕ)− πt+1(d))R′2 R4

)
,

where R4 = (b1(ϕ) − π1(d) · · · bt(ϕ) − πt(d))R2 + (bt+1(ϕ) − πt+1(d))R3. By (2.68)

and (2.69), it holds for the terms in R4 that [bt+1(ϕ) − πt+1(d)]R3 = O((t +

1)max(−d,−ζ)−1), and (b1(ϕ)−π1(d) · · · bt(ϕ)−πt(d))R2 = O
(∑t

j=1 j
max(−d,−ζ)−1(1+

log(t+1−j))(t+1−j)max(−d,−ζ)−1
)

= O
(
(1+log(t+1))2(t+1)max(−d,−ζ)−1

)
. Thus

R4 = O
(
(1 + log(t + 1))2(t + 1)max(−d,−ζ)−1

)
. Analogously, for the other terms in

the above vector, one has [(bt+1(ϕ) − πt+1(d))R′2](j) = O
(
(t + 1)max(−d,−ζ)−1(1 +

log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
, and [(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](j) =

O
(
(1 + log(t + 1 − j))(t + 1 − j)max(−d,−ζ)−1

∑t
i=1(1 + log(t + 1 − i))(t + 1 −

i)max(−d,−ζ)−1imax(−d,−ζ)−1
)

= O
(
(1 + log(t + 1 − j))(t + 1 − j)max(−d,−ζ)−1(1 +

log(t+ 1))2(t+ 1)max(−d,−ζ)−1
)
. Therefore, for j = 1, ..., t, the whole term τj(θ, t+ 1)

is

τj(θ, t+ 1) = ν
(

(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,t +R′5

)
(j)

= τj(θ, t) + νR5(j) ,

(2.85)

where R′5 = [bt+1(ϕ)−πt+1(d)]R′2S
′
d,t+R4s

′
t+(b1(ϕ)−π1(d) · · · bt(ϕ)−πt(d))R1S

′
d,t.
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For R5

[R′2S
′
d,t](j) =

t∑
i=j

R2(i)πi−j(d) = R2(j) +

t−j∑
i=1

R2(i+j)πi(d)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)

+O
(

(1 + log(t+ 1− j))
t−j∑
i=1

(t+ 1− i− j)max(−d,−ζ)−1i−d−1
)

= O
(

(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1
)
,

so that [(bt+1(ϕ)−πt+1(d))R′2S
′
d,t](j) = O

(
(t+1)max(−d,−ζ)−1(1+log(t+1−j))2(t+1−

j)max(−d,−ζ)−1
)
, while [R4s

′
t](j) = O

(
(1+log(t+1))2(t+1)max(−d,−ζ)−1(t+1−j)−d−1

)
.

Furthermore

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1S
′
d,t](j)

=
t∑
i=j

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](i)πi−j(d)

=[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](j)

+

t−j∑
i=1

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))R1](i+j)πi(d)

=O
(
(1 + log(t+ 1))2(t+ 1)−min(d,ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)−min(d,ζ)−1

)
.

Hence, R5(j) = O
(
(1 + log(t + 1))2(t + 1)max(−d,−ζ)−1(1 + log(t + 1 − j))2(t + 1 −

j)max(−d,−ζ)−1
)
. This completes the proof of (2.81).

Lemma 2.A.4 (Convergence rates for partial derivatives of τj(θ, t)). For the partial

derivatives of the coefficients τj(θ, t), as defined in (2.15) and below, it holds that

∂τj(θ, t)

∂d
= O

(
(1 + log j)4jmax(−d,−ζ)−1

)
, (2.86)

∂τj(θ, t)

∂ν
= O

(
(1 + log j)3jmax(−d,−ζ)−1

)
, (2.87)

∂τj(θ, t)

∂ϕ(l)
= O

(
(1 + log j)3jmax(−d,−ζ)−1

)
, (2.88)

where ϕ(l) denotes the l-th entry of ϕ, l = 1, ..., q.

Proof of Lemma 2.A.4. Denote π̇j(d) = ∂πj(d)/∂d = O((1 + log j)j−d−1), see Jo-

hansen and Nielsen (2010, lemma B.3), and ḃj(ϕ(l)) = ∂bj(ϕ)/∂ϕ(l) = O(j−ζ−1) by
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assumption 2.3. Furthermore, denote the partial derivatives of Sd,t and Bϕ,t as

Ṡd,t =
∂Sd,t
∂d

=


0 π̇1(d) · · · π̇t−1(d)

0 0 · · · π̇t−2(d)
...

...
. . .

...

0 0 · · · 0

 ,

Ḃϕ(l),t =
∂Bϕ,t
∂ϕ(l)

=


0 ḃ1(ϕ(l)) · · · ḃt−1(ϕ(l))

0 0 · · · ḃt−2(ϕ(l))
...

...
. . .

...

0 0 · · · 0

 ,

and note that [Ṡ′d,tSd,t](1,j) = 0 for all j = 1, ..., t, while for 1 < i ≤ t it holds that

[Ṡ′d,tSd,t](i,j) =


∑i−1

k=1 π̇k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1
k=0 πk(d)π̇k+i−j(d) = O((1 + log(i− j))(i− j)−d−1) if i > j.

(2.89)

Similarly, [Ḃ′ϕ(l),t
Bϕ,t](1,j) = 0 for all j = 1, ..., t, while for 1 < i ≤ t one has

[Ḃ′ϕ(l),t
Bϕ,t](i,j) =


∑i−1

k=1 ḃk(ϕ(l))bk+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
k=0 bk(ϕ)ḃk+i−j(ϕ(l)) = O((i− j)−ζ−1) if i > j.

(2.90)

In addition, denote Ξt(θ) = (B′ϕ,tBϕ,t+νS
′
d,tSd,t)

−1 to simplify the notation. Starting

with the partial derivatives ∂τj(θ, t)/∂d, one has

∂τj(θ, t)

∂d
= −ν2

[
(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))

× Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)S

′
d,t

]
(j)

+ ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)Ṡ
′
d,t](j)

− ν[(π̇1(d) · · · π̇t(d))Ξt(θ)S
′
d,t](j).

(2.91)

For the first term, note that by (2.89) [Ṡ′d,tSd,t + S′d,tṠd,t](i,j) = [Ṡ′d,tSd,t](i,j) +

[Ṡ′d,tSd,t](j,i) = O((1 + log |i− j|)|i− j|−d−1) for i 6= j, and [Ṡ′d,tSd,t + S′d,tṠd,t](i,i) =

O(1). Together with (2.79) it follows for the first terms in (2.91) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)](j)
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=O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(1 + log(j − i))(j − i)−d−1
)

+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (2.92)

where for the last equality, note that the second term satisfies
∑j−1

i=1 i
max(−d,−ζ)−1(j−

i)−d−1 = O
(
(1 + log j)jmax(−d,−ζ)−1

)
, see Johansen and Nielsen (2010, lemma B.4),

and that it dominates the first and third term above. Taking into account the next

product term for the first term in (2.91), by (2.73) and (2.92)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)](j)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)3imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)
, (2.93)

where the proof is the same as for (2.92) besides the additional log-factor. Adding

the last term, it follows by (2.68) and (2.93) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)S

′
d,t](j)

=

t∑
i=j

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ṡ
′
d,tSd,t + S′d,tṠd,t)Ξt(θ)](i)πi−j(d)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)4imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)4jmax(−d,−ζ)−1
)
, (2.94)

where the second equality uses π0(d) = 1 to obtain the first term, while the last

equality uses
∑t−j

i=1 i
−d−1 = O(1), which holds for all d > 0. Consequently, the first

term in (2.91) is bounded by O
(
(1 + log j)4jmax(−d,−ζ)−1

)
. Turning to the second
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term in (2.91), by (2.79)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)Ṡ
′
d,t](j)

=

t∑
i=j+1

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)](i)π̇i−j(d)

= O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

= O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (2.95)

where the last equality follows from
∑t−j

i=1(1 + log i)i−d−1 = O(1) for all d > 0. By

an analogous proof, the third term in (2.91) is

[(π̇1(d) · · · π̇t(d))Ξt(θ)S
′
d,t](j) =

t∑
i=j

[(π̇1(d) · · · π̇t(d))Ξt(θ)](i)πi−j(d) (2.96)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(1 + log(i− j))(i− j)−d−1
)

= O
(

(1 + log j)2jmax(−d,−ζ)−1
)
. (2.97)

Together, (2.94), (2.95), and (2.96) yield (2.86).

To prove (2.87), consider the partial derivatives ∂τj(θ, t)/∂ν, for which

∂τj(θ, t)

∂ν
= [(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S

′
d,t](j) (2.98)

− ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)S

′
d,t](j). (2.99)

By (2.80) the first term (2.98) is O
(
(1 + log j)jmax(−d,−ζ)−1

)
, while by (2.71) and

(2.79), it holds for the second term (2.99) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,t](j) = O

(
(1 + log j)jmax(−d,−ζ)−1

)
+O

( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(j − i)−d−1
)

+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(i− j)−d−1
)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)
, (2.100)
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and the proof is analogous to (2.92) besides one log-factor. Furthermore, by (2.73)

and (2.100)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)](j)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)2imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

=O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (2.101)

where again the proof is analogous to (2.93) besides one log-factor. From (2.68) and

(2.101) it then follows for (2.99) that

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)S
′
d,tSd,tΞt(θ)S

′
d,t](j)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
, (2.102)

and the proof can be carried out the same way as (2.94). Thus, (2.87) holds.

Turning to (2.88), consider the partial derivatives ∂τj(θ, t)/∂ϕ(l), where

∂τj(θ, t)

∂ϕ(l)
= ν[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)S

′
d,t](j) (2.103)

− ν[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)

× (Ḃ′ϕ(l),t
Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)S

′
d,t](j).

(2.104)

By assumption 2.3, the partial derivatives are of order ḃj(ϕ(l)) = ∂bj(ϕ)/∂ϕ(l) =

O(j−ζ−1), so that for the first term (2.103), analogously to (2.79)

[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)](j) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
,

and, analogously to (2.80)

[(ḃ1(ϕ(l)) · · · ḃt(ϕ(l)))Ξt(θ)Sd,t](j) = O
(

(1 + log j)jmax(−d,−ζ)−1
)
, (2.105)

so that (2.105) determines the rate of (2.103). Next, consider (2.104), for which one
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has by (2.79) and (2.90)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)](j)

=O
(

(1 + log j)jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)imax(−d,−ζ)−1(j − i)−ζ−1
)

+O
( t∑
i=j+1

(1 + log i)imax(−d,−ζ)−1(i− j)−ζ−1
)

= O
(

(1 + log j)2jmax(−d,−ζ)−1
)
, (2.106)

where the proof is identical to (2.92). By the same proof as for (2.93), by (2.73) and

(2.106)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)](j)

=O
(

(1 + log j)2jmax(−d,−ζ)−1
)

+O
( j−1∑
i=1

(1 + log i)2imax(−d,−ζ)−1(j − i)max(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)2imax(−d,−ζ)−1(i− j)max(−d,−ζ)−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
. (2.107)

Finally, again by using the same proof as for (2.94), by (2.68) and (2.106)

[(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))Ξt(θ)(Ḃ
′
ϕ(l),t

Bϕ,t +B′ϕ,tḂϕ(l),t)Ξt(θ)S
′
d,t](j)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)

+O
( t∑
i=j+1

(1 + log i)3imax(−d,−ζ)−1(i− j)−d−1
)

= O
(

(1 + log j)3jmax(−d,−ζ)−1
)
. (2.108)

Together, (2.105) and (2.108) yield (2.88).

Lemma 2.A.5 (Convergence of the partial derivatives of τj(θ, t) to τj(θ)). For the

partial derivatives of τj(θ, t), it holds that

∂τj(θ, t)

∂θ

∣∣∣
θ=θ0
− ∂τj(θ)

∂θ

∣∣∣
θ=θ0

=
∞∑

k=t+1

∂rτ,j,k(θ)

∂θ

∣∣∣
θ=θ0

= O
(

(1 + log t)5tmax(−d0−ζ)−1
)
,

(2.109)
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with rτ,j,k(θ) as given in lemma 2.A.3.

Proof of lemma 2.A.5. From (2.85) and below rτ,j,t+1(θ) = −νR5(j) , where

R5(j) =[(bt+1(ϕ)− πt+1(d))
(
R′2S

′
d,t +R3s

′
t

)
](j)

+ [(b1(ϕ)− π1(d) · · · bt(ϕ)− πt(d))
(
R2s

′
t +R1S

′
d,t

)
](j),

and with Bϕ,t and Sd,t as defined in (2.5), β′t = (bt(ϕ) · · · b1(ϕ)), s′t = (πt(d) · · ·π1(d))

as given in lemma 2.A.1, and R1, R2, R3 as stated below (2.83). The partial deriva-

tive of R5(j) w.r.t. the l-th entry θ(l) is thus given by

∂R5(j)

∂θ(l)
=

[
∂(bt+1(ϕ)− πt+1(d))

∂θ(l)

(
R′2S

′
d,t +R3s

′
t

)]
(j)

(2.110)

+

[(
∂(b1(ϕ)− π1(d))

∂θ(l)
· · · ∂(bt(ϕ)− πt(d))

∂θ(l)

)(
R2s

′
t +R1S

′
d,t

)]
(j)

(2.111)

+

[
(bt+1(ϕ)− πt+1(d))

(
R′2
∂S′d,t
∂θ(l)

+R3
∂s′t
∂θ(l)

)]
(j)

(2.112)

+

[
((b1(ϕ)− π1(d)) · · · (bt(ϕ)− πt(d)))

(
R2

∂s′t
∂θ(l)

+R1

∂S′d,t
∂θ(l)

)]
(j)

(2.113)

+

[
(bt+1(ϕ)− πt+1(d))

(
∂R′2
∂θ(l)

S′d,t +
∂R3

∂θ(l)
s′t

)]
(j)

(2.114)

+

[
((b1(ϕ)− π1(d)) · · · (bt(ϕ)− πt(d)))

(
∂R2

∂θ(l)
s′t +

∂R1

∂θ(l)
S′d,t

)]
(j)

. (2.115)

As noted in the proof of lemma 2.A.4, the partial derivative of πj(d) only adds a

log-factor to the convergence rate of πj(d), i.e. ∂πj(d)/∂d = O((1 + log j)j−d−1),

see Johansen and Nielsen (2010, lemma B.3), while ∂bj(ϕ)/∂ϕ(l) = O(j−ζ−1) by

assumption 2.3. Thus, the convergence rates of (2.110) and (2.111) can be derived

analogously to the proof of lemma 2.A.3. This yields that (2.110) is O((1 + log(t+

1))(t + 1)max(−d,−ζ)−1(1 + log(t + 1 − j))2(t + 1 − j)max(−d,−ζ)−1), while (2.111) is

O
(
(1+log(t+1))3(t+1)max(−d,−ζ)−1(1+log(t+1− j))2(t+1− j)max(−d,−ζ)−1

)
, and

the additional (1 + log(t+ 1)) term stems from ∂πj(d)/∂d. Analogously, the partial

derivatives of st and Sd,t only add a log-factor to the convergence rates as derived in

the proof of lemma 2.A.3. Thus, it holds that (2.112) is O((t + 1)max(−d,−ζ)−1(1 +

log(t + 1 − j))3(t + 1 − j)max(−d,−ζ)−1), while (2.113) is O
(
(1 + log(t + 1))2(t +

1)max(−d,−ζ)−1(1 + log(t + 1− j))3(t + 1− j)max(−d,−ζ)−1
)
, and the additional (1 +

log(t+ 1− j)) term stems from ∂s′t/∂d and ∂S′d,t/∂d. For the last two terms (2.114)

and (2.115), note that R3 = O(1) as shown in (2.84) and below. Since β′t(∂βt/∂θ(l)),
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s′t(∂st/∂θ(l)), s′tst, (β′tBϕ,t + νs′tSd,t)Ξt(θ)∂(β′tBϕ,t + νs′tSd,t)
′/∂θ(l), and (β′tBϕ,t +

νs′tSd,t)(∂Ξt(θ)/∂θ(l))(β
′
tBϕ,t + νs′tSd,t)

′ are O(1), it follows that

∂R3

∂θ(l)
= −(R3)2 ∂

∂θ(l)

[
(1 + β′tβt + ν + νs′tst)

− (β′tBϕ,t + νs′tSd,t)Ξt(θ)(B
′
ϕ,tβt + νS′d,tst)

]
= O(1).

For the partial derivatives of R2(j) , consider

∂R2(j)

∂θ(l)
=− ∂R3

∂θ(l)

[
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

]
(j)

(2.116)

−R3

[
(β′tBϕ,t + νs′tSd,t)

∂Ξt(θ)

∂θ(l)

]
(j)

(2.117)

−R3

[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t

+ ν
∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)
,

(2.118)

where the first term (2.116) isO
(
(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1

)
by (2.84)

and by ∂R3/∂θ(l) = O(1). For the term (2.117), one has [(β′tBϕ,t+νs
′
tSd,t)Ξt(θ)](j) =

O((1+log(t+1−j))(t+1−j)max(−d,−ζ)−1) from (2.84). Together with ∂Ξt(θ)/∂θ(l) =

−Ξt(θ)[(∂/∂θ(l))(B
′
ϕ,tBϕ,t + νS′d,tSd,t)]Ξt(θ), (2.89) and (2.90), it follows that

{
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

[
∂

∂θ(l)

(
B′ϕ,tBϕ,t + νS′d,tSd,t

)]}
(j)

=O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)

+O
( j−1∑
k=1

(1 + log(t+ 1− k))(t+ 1− k)max(−d,−ζ)−1

× (1 + log(j − k))(j − k)max(−d,−ζ)−1
)

+O
( t−j∑
k=1

(1 + log(t+ 1− j − k))(t+ 1− j − k)max(−d,−ζ)−1

× (1 + log k)kmax(−d,−ζ)−1
)

=O
(

(1 + log(t+ 1− j))3(t+ 1− j)max(−d,−ζ)−1
)
.
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Finally, using (2.73), one obtains{
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

[
∂

∂θ(l)

(
B′ϕ,tBϕ,t + νS′d,tSd,t

)]
Ξt(θ)

}
(j)

= O
(

(1 + log(t+ 1− j))4(t+ 1− j)max(−d,−ζ)−1
)
,

(2.119)

which yields the binding rate of convergence for the second term in (2.116). For

(2.118) (
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
(j)

= O
(

(1 + log(t+ 1− j))(t+ 1− j)max(−d,−ζ)−1
)
,

by lemma 2.A.1. Hence, using (2.73) yields an upper bound for (2.118)[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t + ν

∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)

= O
(

(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1
)
.

(2.120)

Together, the rates of convergence of (2.116) and (2.118) yield

∂R2(j)

∂θ(l)
= O

(
(1 + log(t+ 1− j))3(t+ 1− j)max(−d,−ζ)−1

)
. (2.121)

For the partial derivatives of R1, note that

∂R1(i,j)

∂θ(l)
= −

∂R2(i)

∂θ(l)

[
(β′tBϕ,t + νs′tSd,t)Ξt(θ)

]
(j)

(2.122)

−R2(i)

[
(β′tBϕ,t + νs′tSd,t)

∂Ξt(θ)

∂θ(l)

]
(j)

(2.123)

−R2(i)

[(
β′t
∂Bϕ,t
∂θ(l)

+
∂β′t
∂θ(l)

Bϕ,t +
∂ν

∂θ(l)
s′tSd,t

+ ν
∂s′t
∂θ(l)

Sd,t + νs′t
∂Sd,t
∂θ(l)

)
Ξt(θ)

]
(j)
.

(2.124)

From (2.84) and (2.121), the first term in (2.122) is O((1 + log(t + 1− i))4(t + 1−
i)max(−d,−ζ)−1(1 + log(t + 1 − j))(t + 1 − j)max(−d,−ζ)−1). Similarly, using (2.119)

and the convergence rate of R2(i) as derived in the proof of lemma 2.A.3, the second

term in (2.123) is O((1 + log(t+ 1− i))(t+ 1− i)max(−d,−ζ)−1(1 + log(t+ 1− j))4(t+

1− j)max(−d,−ζ)−1). By (2.120), it follows that (2.124) is O((1 + log(t+ 1− i))(t+
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1− i)max(−d,−ζ)−1(1 + log(t+ 1− j))2(t+ 1− j)max(−d,−ζ)−1). Thus

∂R1(i,j)

∂θ(l)
= O

(
(1 + log(t+ 1− i))4(t+ 1− i)max(−d,−ζ)−1

× (1 + log(t+ 1− j))4(t+ 1− j)max(−d,−ζ)−1
)
.

(2.125)

With (2.121) at hand, it follows directly for (2.114) that(
∂R′2
∂θ(l)

S′d,t +
∂R3

∂θ(l)
s′t

)
(j)

= O
(

(1 + log(t+ 1− j))5(t+ 1− j)max(−d,−ζ)−1
)
.

By (2.68) and (2.69), it follows that (2.114) is O
(
(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1−

j))5(t + 1 − j)max(−d,−ζ)−1
)
. For (2.115), it follows from (2.121) and (2.125) that(

∂R2
∂θ(l)

s′t + ∂R1
∂θ(l)

S′d,t

)
(i,j)

= O
(
(1+log(t+1− i))4(t+1− i)max(−d,−ζ)−1(1+log(t+1−

j))5(t+1−j)max(−d,−ζ)−1
)
. Again using (2.68) and (2.69), it thus follows that (2.115)

is O
(
(1 + log(t+ 1))5(t+ 1)max(−d,−ζ)−1(1 + log(t+ 1− j))5(t+ 1− j)max(−d,−ζ)−1

)
.

Together, this implies for (2.109) that

∂rτ,j,t+1(θ)

∂θ(l)
= O

(
(1 + log(t+ 1))5(t+ 1)max(−d,−ζ)−1

× (1 + log(t+ 1− j))5(t+ 1− j)max(−d,−ζ)−1
)
,

and thus ∂
∂θ

∑∞
k=t+1 rτ,j,k(θ)

∣∣
θ=θ0

= O
(
(1 + log t)5tmax(−d0−ζ)−1

)
.

Lemma 2.A.6. For the truncated score function as given in (2.64), and the untrun-

cated score function as given in (2.65), it holds for all θ ∈ Θ3(κ3) that

√
n

[
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

]
= op(1). (2.126)

Proof of lemma 2.A.6. For brevity, define h1,t =
∑t−1

j=1
∂τj(θ,t)
∂θ

∣∣∣
θ=θ0

ξt−j(d0), h̃1,t =∑∞
j=1

∂τj(θ)
∂θ

∣∣∣
θ=θ0

ξ̃t−j(d0), as well as h2,t =
∑t−1

j=0 τj(θ0, t)
∂ξt−j(d)

∂θ

∣∣∣
θ=θ0

, and h̃2,t =∑∞
j=0 τj(θ0)

∂ξ̃t−j(d)
∂θ

∣∣∣
θ=θ0

. Then plugging (2.64), (2.65) into (2.126) and using (2.38)

yields

√
n

[
∂Q̃(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂Q(y, θ)

∂θ

∣∣∣∣∣
θ=θ0

]
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=
2√
n

[
n∑
t=1

ṽt(θ0)(h̃1,t − h1,t) +
n∑
t=1

h1,t (ṽt(θ0)− vt(θ0))

]

+
2√
n

[
n∑
t=1

ṽt(θ0)(h̃2,t − h2,t) +
n∑
t=1

h2,t (ṽt(θ0)− vt(θ0))

]
,

(2.127)

so that it remains to be shown that all four terms in (2.127) are op(1).

For the proofs it will be very useful to note that ṽt(θ0) adapted to the filtration

F ξ̃t = σ(ξ̃s, s ≤ t) is a stationary martingale difference sequence (MDS), as explained

in the proof of theorem 2.4.2. Note in addition that all h̃1,t, h̃2,t are F ξ̃t−1-measurable,

as τ0 = π0 = 1 are invariant w.r.t. θ.

Starting with the first term of (2.127), by plugging in h1,t and h̃1,t

2√
n

n∑
t=1

ṽt(θ0)(h̃1,t − h1,t)

=
2√
n

n∑
t=1

ṽt(θ0)

t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

(
ξ̃t−j(d0)− ξt−j(d0)

)
(2.128)

+
2√
n

n∑
t=1

ṽt(θ0)
t−1∑
j=1

(
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

)
ξ̃t−j(d0) (2.129)

+
2√
n

n∑
t=1

ṽt(θ0)
∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0). (2.130)

As
∑∞

j=t
∂τj(θ)
∂θ

∣∣
θ=θ0

ξ̃t−j(d0) is F ξ̃t−1-measurable, ṽt(θ0)
∑∞

j=t
∂τj(θ)
∂θ

∣∣
θ=θ0

ξ̃t−j(d0) is also

a MDS. Since ∂τj(θ)
∂θ

∣∣
θ=θ0

= O((1+log j)4jmax(−d0,−ζ)−1), see lemma 2.A.4, it follows

that (2.130) is op(1). In (2.129), ṽt(θ0)
∑t−1

j=1

(
∂τj(θ)
∂θ

∣∣
θ=θ0
− ∂τj(θ,t)

∂θ

∣∣
θ=θ0

)
ξ̃t−j(d0)

adapted to F ξ̃t is a MDS, while the sum
∑t−1

j=1

(
∂τj(θ)
∂θ

∣∣∣
θ=θ0
− ∂τj(θ,t)

∂θ

∣∣∣
θ=θ0

)
ξ̃t−j(d0) =

Op((1+log t)5tmax(−d0,−ζ)) by lemma 2.A.5. Hence (2.129) is op(1). For (2.128), note
that by assumption 2.1

E

{[
n∑
t=1

ṽt(θ0)

t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

(
ξ̃t−j(d0)− ξt−j(d0)

)]2}

= E

[
n∑

s,t=1

( ∞∑
j=0

η2min(s,t)−jτj(θ0)τj+|t−s|(θ0)
)

×
∞∑
j=0

ε2−j

( t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)
)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.131)



2.A Appendix 79

+

n∑
s,t=1

E

[(
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

)

×
∞∑
j=0

ε2−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.132)

+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
.

(2.133)

For (2.131), I use
∑∞

j=0 η
2
min(s,t)−jτj(θ0)τj+|t−s|(θ0) = Op(|t − s|max(−d0,−ζ)−1) for

t 6= s, else Op(1), see lemma 2.A.2, and
∑t−1

k=0
∂τk(θ,t)
∂θ

∣∣
θ=θ0

∑j
l=0 al(ϕ0)πj+t−k−l(d0) =

O
(
(1 + log(t+ j))6(t+ j)max(−d0,−ζ)−1

)
, see (2.68) together with lemma 2.A.4. This

yields the upper bound for (2.131)

K

n∑
t=1

( ∑
s=1, s<t

(t− s)max(−d0,−ζ)−1(1 + log t)6tmax(−d0,−ζ)−1

+ (1 + log t)12t2 max(−d0,−ζ)−1

+

n∑
s=t+1

(s− t)max(−d0,−ζ)−1(1 + log t)6tmax(−d0,−ζ)−1
)

≤K
n∑
t=1

(1 + log t)6tmax(−d0,−ζ)−1 = O(1).

Similarly, for the second term (2.132), by (2.68) and lemma 2.A.2 it holds that

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

]
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≤ K
min(s,t)−1∑

j=1

(1 + log j)3j−min(d0,ζ)−1(1 + log(j + |t− s|))3(j + |t− s|)−min(d0,ζ)−1.

Furthermore, by lemma 2.A.4

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]

≤ K
∞∑
j=1

(1 + log(t+ j))6(t+ j)max(−d0,−ζ)−1(1 + log(s+ j))6(s+ j)max(−d0,−ζ)−1,

so that by the same proof as for (2.131), it holds that (2.132) is also O(1).

By (2.68) and lemmas 2.A.2 and 2.A.4, the third term (2.133) is bounded from

above by

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]

≤ K
n∑

s,t=1

(1 + log t)9t2 max(−d0,−ζ)−1(1 + log s)9s2 max(−d0,−ζ)−1 = O(1).

As all three terms (2.131) to (2.133) are O(1), it follows directly by the scaling that

(2.128) is op(1). Now, since (2.128) to (2.130) are op(1), the first term in (2.127) is

also op(1).

Next, consider the third term in (2.127). I plug in h2,t and h̃2,t which gives

2√
n

n∑
t=1

ṽt(θ0)(h̃2,t − h2,t)

=
2√
n

n∑
t=1

ṽt(θ0)

t−1∑
j=0

τj(θ0, t)

(
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂θ

∣∣∣∣∣
θ=θ0

)
(2.134)
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+
2√
n

n∑
t=1

ṽt(θ0)
t−1∑
j=0

(τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

(2.135)

+
2√
n

n∑
t=1

ṽt(θ0)

∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

. (2.136)

For (2.136), note that (ṽt(θ0),F ξ̃t ) is a stationary MDS, and
∑∞

j=t τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

is F ξ̃t−1-measurable. Since ∂ξ̃t−i(d)/∂θ is Op(1) for all d > d0 − 1/2, it follows by

lemma 2.A.2 that
∑∞

j=t τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

= Op((1 + log t)tmax(−d0,−ζ)), and thus

(2.136) is op(1).

For (2.135), note that ṽt(θ0)
∑t−1

j=0 (τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

together with

F ξ̃t is a MDS. Furthermore, by lemma 2.A.3, it holds that τj(θ0) − τj(θ0, t) =

O((1 + log t)2tmax(−d0,−ζ)−1). Since the partial derivatives of ξ̃t(d) are bounded

in probability,
∑t−1

j=0 (τj(θ0)− τj(θ0, t))
∂ξ̃t−j(d)

∂θ

∣∣
θ=θ0

= Op((1 + log t)2tmax(−d0,−ζ)).

Therefore, (2.135) is op(1).

For (2.134), I use ∂πj(d−d0)
∂d

∣∣
d=d0

= −j−1 as shown by Robinson (2006, pp. 135-

136) and Hualde and Robinson (2011, p. 3170). Thus, the partial derivative in

(2.134) w.r.t. d is

∂ξ̃t(θ)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt(θ)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=t

j−1ηt−j +
∞∑
j=0

ε−j

j∑
k=0

∂πt+j−k(d)

∂d

∣∣∣∣∣
θ=θ0

ak(ϕ0).

(2.137)

As the partial derivatives w.r.t. all other entries in θ are zero, by assumption 2.1 it
is sufficient to consider

E

{[
n∑
t=1

ṽt(θ0)

t−1∑
j=0

τj(θ0, t)

(
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

)]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

η2min(s,t)−jτj(θ0)τj+|t−s|(θ0)

]

×E

[ ∞∑
j=0

η2−j

(
t−1∑
k=0

τk(θ0, t)

t+ j − k

)(
s−1∑
k=0

τk(θ0, s)

s+ j − k

)

+

∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]
(2.138)
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+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

]

×E

[ ∞∑
j=0

η2−j

(
t−1∑
k=0

τk(θ0, t)

t+ j − k

)(
s−1∑
k=0

τk(θ0, s)

s+ j − k

)

+

∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]

(2.139)

+

n∑
s,t=1

E

{[ ∞∑
j=t

η2t−jτj(θ0)

t−1∑
k=0

−τk(θ0, t)

j − k

+

∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]
[ ∞∑
j=s

η2s−jτj(θ0)

s−1∑
k=0

−τk(θ0, s)

j − k

+

∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]}
.

(2.140)

For (2.138), note the first expectation is σ2
η,0

∑min(s,t)−1
j=0 τj(θ0)τj+|t−s|(θ0) = O(|t −

s|max(−d0,−ζ)−1) for all t 6= s, and O(1) for t = s, see lemma 2.A.2. For the other

terms it holds that E
[∑∞

j=0 η
2
−j

(∑t−1
k=0 τk(θ0, t)

1
t+j−k

)(∑s−1
k=0 τk(θ0, s)

1
s+j−k

) ]
≤

K
∑∞

j=0(1 + log(t+ j))2(t+ j)−1(1 + log(s+ j))2(s+ j)−1, together with

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)
∂πj+t−k−l(d)

∂d

∣∣
θ=θ0

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)
∂πj+s−k−l(d)

∂d

∣∣
θ=θ0

)]

≤ K
∞∑
j=0

(1 + log(t+ j))4(t+ j)max(−d0,−ζ)−1(1 + log(s+ j))4(s+ j)max(−d0,−ζ)−1,
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by lemma 2.A.2. It follows that (2.138) is bounded from above by

K

n∑
t=1

[ ∑
s=1, s<t

(t− s)max(−d0,−ζ)−1

×
∞∑
j=0

(1 + log(t+ j))2(t+ j)−1(1 + log(s+ j))2(s+ j)−1

+

∞∑
j=0

(1 + log(t+ j))4(t+ j)−2

+

n∑
s=t+1

(s− t)max(−d0,−ζ)−1

×
∞∑
j=0

(1 + log(t+ j))2(t+ j)−1(1 + log(s+ j))2(s+ j)−1

]

≤ K
n∑
t=1

[
(1 + log t)t−1+κ

]
≤ Knκ,

for 0 < κ < 1/2, since
∑∞

j=0(s+ j)−2 = O(s−1), see Chan and Palma (1998, lemma

3.2), and, as the logarithm is dominated by its powers,
∑∞

j=0(1 + log(s + j))2(s +

j)−2 = O(s−1+κ) for all 0 < κ < 1/2. For (2.139), by lemmas 2.A.1 and 2.A.2, the

first expectation is bounded by

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

j+|t−s|∑
k=0

τk(θ0)

j+|t−s|−k∑
l=0

al(ϕ0)πj+|t−s|−k−l(d0)

] = O(|t− s|max(−d0,−ζ)−1),

for all t 6= s, and is O(1) for t = s. Hence, by the same proof as for (2.138) the
second term (2.139) is also O(nκ), 0 < κ < 1/2. For the third term (2.140) one has
by lemma 2.A.2

n∑
s,t=1

E

{[ ∞∑
j=t

η2t−jτj(θ0)

t−1∑
k=0

−τk(θ0, t)

j − k
+

∞∑
j=t

ε2t−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)][ ∞∑
j=s

η2s−jτj(θ0)

s−1∑
k=0

−τk(θ0, s)

j − k

+

∞∑
j=s

ε2s−j

(
j∑

k=0

τk(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

)]}

=

n∑
s,t=1

 ∞∑
j=t

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)3jmax(−d0,−ζ)−2
)
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+

n∑
s,t=1

 ∞∑
j=t

O
(

(1 + log j)7j2max(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)7j2max(−d0,−ζ)−2
)

+

n∑
s,t=1

 ∞∑
j=t

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)7j2max(−d0,−ζ)−2
)

+

n∑
s,t=1

 ∞∑
j=t

O
(

(1 + log j)7j2max(−d0,−ζ)−2
) ∞∑

j=s

O
(

(1 + log j)3jmax(−d0,−ζ)−2
) ,

which is O(1), and thus all terms (2.138) to (2.140) are O(nκ). As (2.134) is appro-

priately scaled, it follows that (2.134) is op(1) and thus the third term in (2.127) is

op(1).

Next, consider the second term in (2.127) that can be decomposed into

2√
n

n∑
t=1

h1,t (ṽt(θ0)− vt(θ0))

=
2√
n

n∑
t=1

h1,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

+
2√
n

n∑
t=0

h1,t

t−1∑
j=1

(τj(θ0)− τj(θ0, t))ξ̃t−j(d0)

+
2√
n

n∑
t=1

h1,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0).

(2.141)

For the first term in (2.141), note that by assumption 2.1

E

{[
n∑
t=1

h1,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

η2min(s,t)−j

]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.142)
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+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

)]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.143)

+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

min(j−k,t−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×
∞∑
j=s

ε2s−j

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

min(j−k,s−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
.

(2.144)

For (2.142), one has for all t 6= s

E

[
min(s,t)−1∑

j=1

∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

η2
min(s,t)−j

]
= O(|t− s|max(−d0,−ζ)−1),

by lemma 2.A.4, and O(1) for t = s. Furthermore, for (2.143), the first term is

bounded by

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)
(
j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

)]
= O(|t− s|max(−d0,−ζ)−1),

by lemmas 2.A.1 and 2.A.4 for t 6= s, and O(1) otherwise. In addition, for both

(2.142) and (2.143), by lemmas 2.A.1 and 2.A.2 the other remaining term is bounded



86 The fractional unobserved components model

by

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
=O

(
(1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1

)
.

Consequently, both (2.142) and (2.143) are
∑n

s,t=1O
(
(1 + log t)3tmax(−d0,−ζ)(1 +

log s)3smax(−d0,−ζ)−1|t − s|max(−d0,−ζ)−1
)

= O(1). Finally, by lemmas 2.A.1, 2.A.2,

and 2.A.4, (2.144) is

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)9j2 max(−d0,−ζ)−2
)

×

 ∞∑
j=s

ε2s−jO
(

(1 + log j)9j2 max(−d0,−ζ)−2
)]

=

n∑
s,t=1

(1 + log t)9t2 max(−d0,−ζ)−1(1 + log s)9s2 max(−d0,−ζ)−1 = O(1).

Thus, the first term in (2.141) is op(1). For the second term in (2.141), note that
by lemma 2.A.3,

∑t−1
j=1(τj(θ0)− τj(θ0, t)) ≤ K

∑t−1
j=1

∑∞
k=t+1(1 + log k)2(1 + log(k−

j))2kmax(−d0,−ζ)−1(k−j)max(−d0,−ζ)−1 ≤ K
∑t−1

j=1(1+log t)2tmax(−d0,−ζ)−1(1+log(t−
j))2(t − j)max(−d0,−ζ) ≤ K(1 + log t)2t−1

∑t−1
j=1 j

max(−d0,−ζ)(t − j)max(−d0,−ζ)(1 +

log(t − j))2 ≤ K(1 + log t)5tmax(−d0,−ζ)−1, and thus 2√
n

∑n
t=1 h1,t

∑t−1
j=1(τj(θ0) −

τj(θ0, t))ξ̃t−j(d0) = op(1). For the third term in (2.141)

E


 n∑
t=1

h1,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0)

2


=

n∑
s,t=1

E

min(s,t)−1∑
j=0

η2min(s,t)−j
∂τj(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

∂τj+|t−s|(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0


× E

[ ∞∑
j=0

η2−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(2.145)



2.A Appendix 87

+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

∂τk(θ,min(s, t))

∂θ

∣∣∣∣∣
θ=θ0

j−k∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

j+|t−s|∑
k=0

∂τk(θ,max(s, t))

∂θ′

∣∣∣∣∣
θ=θ0

j+|t−s|−k∑
l=0

πl(d0)aj+|t−s|−k−l(ϕ0)

]

× E

[ ∞∑
j=0

η2−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(2.146)

+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

∂τk(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

min(j−k,t−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j−t∑
k=0

τj+k(θ0)

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

∂τk(θ, s)

∂θ′

∣∣∣∣∣
θ=θ0

min(j−k,s−1)∑
l=0

πl(d0)aj−k−l(ϕ0)

)

×

(
j−s∑
k=0

τj+k(θ0)

j−s−k∑
l=0

al(ϕ0)πj−s−k−l(d0)

))]
.

(2.147)

For (2.145) and (2.146), it holds that

E

[ ∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
=O((1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1),

and E
[∑∞

j=0 η
2
−jτt+j(θ0)τs+j(θ0)

]
= O((1 + log t)t−min(d0,ζ)(1 + log s)s−min(d0,ζ)−1).

Thus, analogously to (2.142) and (2.143), expressions (2.145) and (2.146) are O(1).
Also analogously to (2.144), by lemmas 2.A.1, 2.A.2, and 2.A.4, (2.147) is bounded
from above by

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)6jmax(−d0,−ζ)−1(1 + log(j − t))3(j − t)max(−d0,−ζ)−1
)

 ∞∑
j=s

ε2s−jO
(

(1 + log j)6jmax(−d0,−ζ)−1(1 + log(j − s))3(j − s)max(−d0,−ζ)−1
)] = O(1).

Therefore, also the third term in (2.141) is op(1). It follows that the second term in



88 The fractional unobserved components model

(2.127) is op(1). Finally, consider the last term in (2.127)

2√
n

n∑
t=1

h2,t (ṽt(θ0)− vt(θ0))

=
2√
n

n∑
t=1

h2,t

t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

+
2√
n

n∑
t=1

h2,t

t−1∑
j=1

(τj(θ0)− τj(θ0, t))ξ̃t−j(d0)

+
2√
n

n∑
t=1

h2,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0).

(2.148)

For the first term in (2.148), by assumption 2.1 it holds that

E

{[
n∑
t=1

(
t−1∑
j=0

τj(θ0, t)
∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

)
t−1∑
j=0

(ξ̃t−j(d0)− ξt−j(d0))τj(θ0, t)

]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=1

η2min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)

×

j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.149)

+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

)]

×E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
(2.150)
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+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

τk(θ0, t)

t−1−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)πj−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

τk(θ0, s)

s−1−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j−s∑
l=0

al(ϕ0)πj−k−l(d0)

))]
,

(2.151)

while all other partial derivatives of ξt−j(d) (i.e. those w.r.t. all other entries except

d) are zero. By lemma 2.A.2, the first term in (2.149) is

E

[
min(s,t)−1∑

j=1

η2
min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)

×

j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

] = O(|t− s|−1),

for t 6= s, and O(1) otherwise. In addition, by lemmas 2.A.1 and 2.A.2 it holds that

the first term of (2.150) is

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

]

= O(|t− s|max(−d0,−ζ)−1), (2.152)

for t 6= s, and O(1) otherwise. The second term in (2.149) and (2.150) is

E

[ ∞∑
j=0

ε2−j

(
t−1∑
k=0

τk(θ0, t)

j∑
l=0

al(ϕ0)πj+t−k−l(d0)

)

×

(
s−1∑
k=0

τk(θ0, s)

j∑
l=0

al(ϕ0)πj+s−k−l(d0)

)]
=O((1 + log t)3tmax(−d0,−ζ)(1 + log s)3smax(−d0,−ζ)−1)

Thus, analogously to (2.142), (2.143), (2.145) and (2.146), it holds that (2.149) and
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(2.150) are O(1). Finally, (2.151) is bounded from above by

n∑
s,t=1

E

[ ∞∑
j=t

ε2t−jO
(

(1 + log j)4jmax(−d0,−ζ)−1
)
O
(

(1 + log j)3jmax(−d0,−ζ)−1
)

×

 ∞∑
j=s

ε2s−jO
(

(1 + log j)4jmax(−d0,−ζ)−1
)
O
(

(1 + log j)3jmax(−d0,−ζ)−1
)]

=

n∑
s,t=1

O((1 + log t)7t2 max(−d0,−ζ)−1(1 + log s)7smax(−d0,−ζ)−1) = O(1).

Hence, the first term in (2.148) is op(1). For the second term in (2.148), by lemma
2.A.3,

∑t−1
j=1(τj(θ0) − τj(θ0, t)) = O((1 + log t)5tmax(−d0,−ζ)−1) as already noted for

the second term in (2.141), and thus 2√
n

∑n
t=1 h2,t

∑t−1
j=1(τj(θ0)− τj(θ0, t))ξ̃t−j(d0) =

op(1). For the third term in (2.141)

E

{[
n∑
t=1

h2,t

∞∑
j=t

τj(θ0)ξ̃t−j(d0)

]2}

=

n∑
s,t=1

E

[
min(s,t)−1∑

j=1

η2min(s,t)−j

(
j∑

k=1

1

k
τj−k(θ0,min(s, t))

)

×

j+|t−s|∑
k=1

1

k
τj+|t−s|−k(θ0,max(s, t))

]

×E

[ ∞∑
j=0

η2−jτt+j(θ0)τs+j(θ0)

+

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]

(2.153)

+

n∑
s,t=1

E

[
min(s,t)−1∑

j=0

ε2min(s,t)−j

(
j∑

k=0

τk(θ0,min(s, t))

j−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j+|t−s|∑
k=0

τk(θ0,max(s, t))

j+|t−s|−k∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj+|t−s|−k−l(ϕ0)

)

×E

[ ∞∑
j=0

η2−jτt+j(θ0)τs+j(θ0) +

∞∑
j=0

ε2−j

(
j∑

k=0

τt+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)

×

(
j∑

k=0

τs+k(θ0)

j−k∑
l=0

al(ϕ0)πj−k−l(d0)

)]
(2.154)
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+

n∑
s,t=1

E

[( ∞∑
j=t

ε2t−j

(
t−1∑
k=0

τk(θ0, t)

t−k−1∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j−t∑
k=0

τt+k(θ0)

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

))

×

( ∞∑
j=s

ε2s−j

(
s−1∑
k=0

τk(θ0, s)

s−k−1∑
l=0

∂πl(d)

∂d

∣∣∣∣∣
θ=θ0

aj−k−l(ϕ0)

)

×

(
j−s∑
k=0

τs+k(θ0)

j−s−k∑
l=0

al(ϕ0)πj−s−k−l(d0)

))]
.

(2.155)

As noted above, the first expected value in (2.153) is O(|t − s|−1) for s 6= t,

else O(1). For the second term (2.154), note that the first expectation is O(|t −
s|max(−d0,−ζ)−1) for s 6= t, else O(1), see (2.152). Furthermore, as shown below

(2.147), the second expectation in (2.153) and (2.154) is O((1+log t)3tmax(−d0,−ζ)(1+

log s)3smax(−d0,−ζ)−1), and thus (2.153) and (2.154) are O(1). Finally, the last term

(2.155) is O(1), and the proof is identical to (2.151). Thus, also the third term in

(2.148) is op(1). This shows that (2.127) is op(1) and completes the proof.

Lemma 2.A.7 (Boundedness of third partial derivatives of Q(y, θ)). For d ∈ D3

as defined in the proof of theorem 2.4.1, ν ∈ Σν as defined in section 2.4, and

ϕ ∈ Nδ(ϕ0) as defined in assumptions 2.2 and 2.4, the third partial derivatives of

the objective function (2.16) are uniformly dominated by some random variable Bn
that is Op(1),

Bn = sup
d∈D3,ν∈Σν ,ϕ∈Nδ(ϕ0)

∣∣∣∣∂3Q(y, θ)

∂θ(3)

∣∣∣∣ = Op(1).

Proof of lemma 2.A.7. The third partial derivatives are

∂3Q(y, θ)

∂θ(k)∂θ(l)∂θ(m)
=

2

n

n∑
t=1

∂2vt(θ)

∂θ(k)∂θ(l)

∂vt(θ)

∂θ(m)
+

2

n

n∑
t=1

∂vt(θ)

∂θ(k)

∂2vt(θ)

∂θ(l)∂θ(m)

+
2

n

n∑
t=1

∂2vt(θ)

∂θ(k)∂θ(m)

∂vt(θ)

∂θ(l)
+

2

n

n∑
t=1

vt(θ)
∂3vt(θ)

∂θ(k)∂θ(l)∂θ(m)
,

for k, l,m = 1, ..., q + 2, with ∂vt(θ)/(∂θ(k)) in (2.38),

∂2vt(θ)

∂θ(k)∂θ(l)
=

t−1∑
j=0

[
∂2τj(θ, t)

∂θ(k)∂θ(l)
ξt−j(d) +

∂τj(θ, t)

∂θ(k)

∂ξt−j(d)

∂θ(l)

+
∂τj(θ, t)

∂θ(l)

∂ξt−j(d)

∂θ(k)
+ τj(θ, t)

∂2ξt−j(d)

∂θ(k)∂θ(l)

]
,
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∂3vt(θ)

∂θ(k)∂θ(l)∂θ(m)
=

t−1∑
j=0

[
∂3τj(θ, t)

∂θ(k)∂θ(l)∂θ(m)
ξt−j(d) +

∂2τj(θ, t)

∂θ(k)∂θ(l)

∂ξt−j(d)

∂θ(m)

+
∂2τj(θ, t)

∂θ(k)∂θ(m)

∂ξt−j(d)

∂θ(l)
+
∂τj(θ, t)

∂θ(k)

∂2ξt−j(d)

∂θ(l)∂θ(m)

+
∂2τj(θ, t)

∂θ(l)∂θ(m)

∂ξt−j(d)

∂θ(k)
+
∂τj(θ, t)

∂θ(l)

∂2ξt−j(d)

∂θ(k)∂θ(m)

+
∂τj(θ, t)

∂θ(m)

∂2ξt−j(d)

∂θ(k)∂θ(l)
+ τj(θ, t)

∂3ξt−j(d)

∂θ(k)∂θ(l)∂θ(m)

]
.

Boundedness in probability of the third partial derivatives then follows from (2.39)
upon verification of the absolute summability condition of the partial derivatives of
τj(θ, t), as the derivatives of ξt−j(d) are zero for all entries of θ except for d, and
as those derivatives w.r.t. d are contained in (2.39). As can be seen from lemma
2.A.4 and its proof, the second and third partial derivatives of τj(θ, t) depend on
the coefficients bj(ϕ) and πj(d), the matrices Ξt(θ), Sd,t, Bϕ,t, and their partial
derivatives. While the convergence rates of the former are given in lemma 2.A.1,
those for the first partial derivatives are contained in the proof of lemma 2.A.4. In
addition, we require ∂2πj(d)

∂d2
= π̈j(d) = O((1 + log j)2j−d−1) and ∂3πj(d)

∂d3
=

...
π j(d) =

O((1 + log j)3j−d−1) (see Johansen and Nielsen; 2010, lemma B.3), ∂2bj(ϕ)
∂ϕ(k)∂ϕ(l)

=

b̈j(ϕ(k,l)) = O(j−ζ−1) and ∂3bj(ϕ)
∂ϕ(k)∂ϕ(l)∂ϕ(m)

=
...
b j(ϕ(k,l,m)) = O(j−ζ−1) for k, l,m =

1, ..., q by assumption 2.4. Based on them, the convergence rates of the following
matrices are obtained

(S̈d,t)(i,j) =

(
∂2Sd,t
∂d2

)
(i,j)

=

π̈j−i(d) = O((1 + log(j − i))2(j − i)−d−1) if i < j,

0 else,

(
...
S d,t)(i,j) =

(
∂3Sd,t
∂d3

)
(i,j)

=


...
π j−i(d) = O((1 + log(j − i))3(j − i)−d−1) if i < j,

0 else,

(S̈′d,tSd,t)(i,j) =


∑i−1
k=1 π̈k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1
k=0 πk(d)π̈k+i−j(d) = O((1 + log(i− j))2(i− j)−d−1) else,

(S̈′d,tṠd,t)(i,j) =


∑i−1
k=1 π̈k(d)π̇k+j−i(d) = O((1 + log(1 + j − i))(1 + j − i)−d−1) if i ≤ j,∑j−1
k=1 π̇k(d)π̈k+i−j(d) = O((1 + log(i− j))2(i− j)−d−1) else,

(
...
S
′
d,tSd,t)(i,j) =


∑i−1
k=1

...
π k(d)πk+j−i(d) = O((1 + j − i)−d−1) if i ≤ j,∑j−1

k=0 πk(d)
...
π k+i−j(d) = O((1 + log(i− j))3(i− j)−d−1) else,

(B̈ϕ(k,l),t)(i,j) =

(
∂2Bϕ,t

∂ϕ(k)∂ϕ(l)

)
(i,j)

=

b̈j−i(ϕ(k,l)) = O((j − i)−ζ−1) if i < j,

0 else,



2.A Appendix 93

(
...
Bϕ(k,l,m),t)(i,j) =

(
∂3Bϕ,t

∂ϕ(k)∂ϕ(l)∂ϕ(m)

)
(i,j)

=


...
b j−i(ϕ(k,l,m)) = O((j − i)−ζ−1) if i < j,

0 else,

(B̈′ϕ(k,l),t
Bϕ,t)(i,j) =


∑i−1
m=1 b̈m(ϕ(k,l))bm+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
m=0 bm(ϕ)b̈m+i−j(ϕ(k,l)) = O((i− j)−ζ−1) else,

(B̈′ϕ(k,l),t
Ḃϕ(m),t)(i,j) =


∑i−1
h=1 b̈h(ϕ(k,l))ḃh+j−i(ϕ(m)) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1
h=1 ḃh(ϕ(m))b̈h+i−j(ϕ(k,l)) = O(((i− j)−ζ−1) else,

(
...
B
′
ϕ(k,l,m),t

Bϕ,t)(i,j) =


∑i−1
h=1

...
b h(ϕ(k,l,m))bh+j−i(ϕ) = O((1 + j − i)−ζ−1) if i ≤ j,∑j−1

h=0 bh(ϕ)
...
b h+i−j(ϕ(k,l,m)) = O((i− j)−ζ−1) else,

for k, l,m = 1, 2, ..., q + 2. As becomes apparent, the partial derivatives just add a

log-term to the convergence rates that is always dominated by its powers and thus

does not affect the convergence of the partial derivatives. It follows that the first,

second and third partial derivatives of τj(θ, t) are absolutely summable in j and thus

satisfy the condition for (2.39). By (2.39), Bn = supd∈D3,ν∈Σν ,ϕ∈Nδ(ϕ0)

∣∣∣∂3Q(y,θ)

∂θ(3)

∣∣∣ =

Op(1).

Lemma 2.A.8. For the partial derivatives of vt(θ), it holds that

∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

=

∞∑
j=1

[
φ̃η,jηt−j + φ̃ε,jεt−j

]

where φ̃η,j is O((1 + log j)2j−1), while φ̃ε,j is O((1 + log t)5tmax(−d0,−ζ)−1) for j < t

and O((1 + log j)7jmax(−d0,−ζ)−1) for j ≥ t.

Proof of lemma 2.A.8. Consider

∂ṽt(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂vt(θ)

∂θ

∣∣∣∣∣
θ=θ0

=

t−1∑
j=1

∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

[
ξ̃t−j(d0)− ξt−j(d0)

]
(2.156)

+
t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ξ̃t−j(d0) +

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0) (2.157)

+

t−1∑
j=0

τj(θ0, t)

[
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂θ

∣∣∣∣∣
θ=θ0

]
(2.158)

+
t−1∑
j=1

[τj(θ0)− τj(θ0, t)]
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

+
∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂θ

∣∣∣∣∣
θ=θ0

. (2.159)

Since ξ̃t−j(d0) − ξt−j(d0) =
∑∞

k=t−j πk(d0)ct−j−k, by (2.68), lemma 2.A.4, and as-

sumption 2.2, the term (2.156) is
∑∞

j=t εt−j
∑t−1

k=0
∂τk(θ,t)
∂θ

∣∣
θ=θ0

∑j−t
l=0 al(ϕ0)πj−k−l(d0) =



94 The fractional unobserved components model

∑∞
j=tO((1+log j)6jmax(−d0,−ζ)−1)εt−j . By lemma 2.A.5, (2.68), and assumption 2.3,

the first term in (2.157) is

t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ξ̃t−j(d0) =

t−1∑
j=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
ηt−j

+
∞∑
j=1

εt−j

min(j,t−1)∑
k=1

[
∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

− ∂τj(θ, t)

∂θ

∣∣∣∣∣
θ=θ0

]
j−k∑
l=0

al(ϕ0)πj−k−l(d0)

=

t−1∑
j=1

O((1 + log t)5tmax(−d0,−ζ)−1)(ηt−j + εt−j)

+
∞∑
j=t

O((1 + log j)7jmax(−d0,−ζ)−1)εt−j .

For the second term in (2.157), by lemma 2.A.4, (2.68), and assumption 2.3

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ξ̃t−j(d0)

=

∞∑
j=t

∂τj(θ)

∂θ

∣∣∣∣∣
θ=θ0

ηt−j +

∞∑
j=t

εt−j

j−t∑
k=0

∂τt+k(θ)

∂θ

∣∣∣∣∣
θ=θ0

j−t−k∑
l=0

al(ϕ0)πj−t−k−l(d0)

=
∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)ηt−j +
∞∑
j=t

O((1 + log j)6jmax(−d0,−ζ)−1)εt−j .

Note that (2.158), (2.159) are non-zero only for the derivative w.r.t. d. For (2.158),

it holds that ∂πj(d−d0)
∂d

∣∣
d=d0

= −j−1, see Robinson (2006, pp. 135-136). Thus

t−1∑
j=0

τj(θ0, t)

[
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

− ∂ξt−j(d)

∂d

∣∣∣∣∣
θ=θ0

]
= −

∞∑
j=t

ηt−j

t−1∑
k=0

τk(θ0, t)

j − k

+
∞∑
j=t

εt−j

t−1∑
k=0

τk(θ0, t)

j−t∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

=

∞∑
j=t

O((1 + log j)2j−1)ηt−j +

∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)εt−j ,

by lemma 2.A.2, Johansen and Nielsen (2010, lemma B.3), and assumption 2.3. For

the first term in (2.159), by lemmas 2.A.2, 2.A.3, Johansen and Nielsen (2010, lemma

B.3), and assumption 2.3

t−1∑
j=1

[τj(θ0)− τj(θ0, t)]
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=1

ηt−j

min(j,t−1)∑
k=1

τk(θ0)− τk(θ0, t)

j + 1− k
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+
∞∑
j=0

εt−j

min(j,t−1)∑
k=0

(τk(θ0)− τk(θ0, t))

j−k∑
l=0

al(ϕ0)
∂πj−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

=

∞∑
j=1

O((1 + log j)2j−1)ηt−j +

t−1∑
j=1

O((1 + log t)2tmax(−d0,−ζ)−1)εt−j

+
∞∑
j=t

O((1 + log j)5jmax(−d0,−ζ)−1)εt−j ,

while for the second term in (2.159), by lemma 2.A.2, Johansen and Nielsen (2010,

lemma B.3), and assumption 2.3

∞∑
j=t

τj(θ0)
∂ξ̃t−j(d)

∂d

∣∣∣∣∣
θ=θ0

= −
∞∑
j=t

ηt−j

j∑
k=t

τk(θ0)

j + 1− k

+
∞∑
j=t

εt−j

j−t∑
k=0

τt+k(θ0)

j−t−k∑
l=0

al(ϕ0)
∂πj−t−k−l(d)

∂d

∣∣∣∣∣
θ=θ0

=

∞∑
j=t

O((1 + log j)2j−1)ηt−j +

∞∑
j=t

O((1 + log j)4jmax(−d0,−ζ)−1)εt−j .

Together, the results above prove lemma 2.A.8.

Lemma 2.A.9. For vt(θ) as defined and (2.15) and ṽt(θ) as defined in (2.29), it

holds that

1

n

n∑
t=1

ṽt(θ0)
∂2ṽt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− 1

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

= op(1),

for all i, j = 1, ..., q + 2.

Proof of lemma 2.A.9. The proof is analogous to the proof of lemma 2.A.6 and thus

is only summarized briefly. It will be helpful to note that there exists a constant

0 < K <∞ such that

∂2τk(θ, t)

∂θ(i)∂θ(j)
= O

(
(1 + log k)Kkmax(−d,−ζ)−1

)
, (2.160)

∂2τk(θ)

∂θ(i)∂θ(j)
− ∂2τk(θ, t)

∂θ(i)∂θ(j)
= O

(
(1 + log t)Ktmax(−d,−ζ)−1

)
. (2.161)

(2.160) can be seen directly from the proof of lemma 2.A.4, as the second partial

derivatives only add a log-factor to the convergence rates in lemma 2.A.4. (2.161)

can be shown analogously to the proof of lemma 2.A.5, where again the second

partial derivatives only add a log-factor to the convergence rates in lemma 2.A.5.
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To simplify the notation, define h3,t(i,j) =
∑t−1

k=1
∂2τk(θ,t)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξt−k(d0), h4,t(i,j) =∑t−1
k=1 τk(θ0, t)

∂2ξt−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

, h5,t(i,j) =
∑t−1

k=1
∂τk(θ,t)
∂θ(i)

∣∣
θ=θ0

∂ξt−k(d)
∂θ(j)

∣∣
θ=θ0

, as well as

h̃3,t(i,j) =
∑∞

k=1
∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξ̃t−k(d0), h̃4,t(i,j) =
∑∞

k=1 τk(θ0)
∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

, h̃5,t(i,j) =∑∞
k=1

∂τk(θ)
∂θ(i)

∣∣
θ=θ0

∂ξ̃t−k(d)
∂θ(j)

∣∣
θ=θ0

. The term of interest then can be written as

1

n

n∑
t=1

ṽt(θ0)
∂2ṽt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− 1

n

n∑
t=1

vt(θ0)
∂2vt(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

=
1

n

n∑
t=1

ṽt(θ0)
(
h̃3,t(i,j) − h3,t(i,j)

)
+

1

n

n∑
t=1

h3,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃4,t(i,j) − h4,t(i,j)

)
+

1

n

n∑
t=1

h4,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃5,t(i,j) − h5,t(i,j)

)
+

1

n

n∑
t=1

h5,t(i,j) (ṽt(θ0)− vt(θ0))

+
1

n

n∑
t=1

ṽt(θ0)
(
h̃5,t(j,i) − h5,t(j,i)

)
+

1

n

n∑
t=1

h5,t(j,i) (ṽt(θ0)− vt(θ0)) ,

(2.162)

and thus the different terms in (2.162) can be considered separately and will be shown

to be op(1). Note that ṽt(θ0) adapted to the filtration F ξ̃t is a MDS as explained

in the proof of theorem 2.4.2, while h̃3,t(i,j) , h̃4,t(i,j) , h̃5,t(i,j) are F ξ̃t−1-measurable.

Starting with the first term in (2.162), by plugging in h̃3,t(i,j) , h3,t(i,j)

1

n

n∑
t=1

ṽt(θ0)(h̃3,t(i,j) − h3,t(i,j))

=
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

∂2τk(θ, t)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

(
ξ̃t−k(d0)− ξt−k(d0)

)

+
1

n

n∑
t=1

ṽt(θ0)
t−1∑
k=1

(
∂2τk(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

− ∂2τk(θ, t)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

)
ξ̃t−k(d0)

+
1

n

n∑
t=1

ṽt(θ0)

∞∑
k=t

∂2τk(θ)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

ξ̃t−k(d0).

(2.163)

The latter two terms in (2.163) are MDS when adapted to F ξ̃t , as (ṽt(θ0),F ξ̃t ) is a

stationary MDS and as the other terms are F ξ̃t−1-measurable. By (2.160) and (2.161),∑∞
k=t

∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0

ξ̃t−k(d0) as well as
∑t−1

k=1

(
∂2τk(θ)
∂θ(i)∂θ(j)

∣∣
θ=θ0
− ∂2τk(θ,t)

∂θ(i)∂θ(j)

∣∣
θ=θ0

)
ξ̃t−k(d0)

are op(1). Hence, the latter two terms in (2.163) are also op(1). In contrast, the first

term in (2.163) is not a MDS. However, by the same proof as for (2.128) (replacing

the first partial derivative of τk(θ, t) by the second partial derivative and noting that
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this only adds a log-factor to the convergence rate) it can also be shown to be op(1).

Thus, (2.163) is op(1). For the third term in (2.162), by plugging in h̃4,t(i,j) , h4,t(i,j)

1

n

n∑
t=1

ṽt(θ0)(h̃4,t(i,j) − h4,t(i,j))

=
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

(τk(θ0)− τk(θ0, t))
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)
t−1∑
k=1

τk(θ0, t)

(
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)
− ∂2ξt−k(d)

∂θ(i)∂θ(j)

)∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)

∞∑
k=t

τk(θ0)
∂2ξ̃t−k(d)

∂θ(i)∂θ(j)

∣∣∣∣∣
θ=θ0

,

(2.164)

where the first and third term are MDS when adapted to F ξ̃t , as ṽt(θ0) is a MDS

and the remaining term is F ξ̃t−1-measurable. The third term is op(1), because∑∞
k=t τk(θ0)

∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

is op(1) by lemma 2.A.2, and by Hualde and Robinson

(2011, lemma 4). The first term is op(1) since (τk(θ0)− τk(θ0, t))
∂2ξ̃t−k(d)
∂θ(i)∂θ(j)

∣∣
θ=θ0

is

op(1) by lemma 2.A.3. The second term can be shown to be op(1) analogously

to (2.134) by replacing the first partial derivatives of ξ̃t(d) with the second partial

derivatives, as this only adds a log-factor to the convergence rate, see Hualde and

Robinson (2011, lemma 4). For the fifth term in (2.162), similarly to (2.163) and

(2.164)

1

n

n∑
t=1

ṽt(θ0)(h̃5,t(i,j) − h5,t(i,j))

=
1

n

n∑
t=1

ṽt(θ0)
∞∑
k=t

∂τk(θ0)

∂θ(i)

∣∣∣∣∣
θ=θ0

∂ξ̃t−k(d)

∂θ(j)

∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)
t−1∑
k=1

∂τk(θ, t)

∂θ(i)

∣∣∣∣∣
θ=θ0

(
∂ξ̃t−k(d)

∂θ(j)
− ∂ξt−k(d)

∂θ(j)

)∣∣∣∣∣
θ=θ0

+
1

n

n∑
t=1

ṽt(θ0)

t−1∑
k=1

(
∂τk(θ)

∂θ(i)
− ∂τk(θ, t)

∂θ(i)

) ∣∣∣∣∣
θ=θ0

∂ξ̃t−k(d)

∂θ(j)

∣∣∣∣∣
θ=θ0

,

(2.165)

where the first and third term are MDS as before. The first term is op(1) by lemma

2.A.4, while the third term is op(1) by lemma 2.A.5. The second term can be shown

to be op(1) analogously to (2.134) using (2.137), as the partial derivatives of τk(θ, t)

only add a log-factor to the convergence rates, see lemma 2.A.4. Thus, (2.165) is
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also op(1). The second, fourth and sixth term in (2.162) can be written as

1

n

n∑
t=1

hl,t(i,j) (ṽt(θ0)− vt(θ0))

=
1

n

n∑
t=1

hl,t(i,j)

t−1∑
k=0

(ξ̃t−k(d0)− ξt−k(d0))τk(θ0, t)

+
1

n

n∑
t=1

hl,t(i,j)

t−1∑
k=1

(τk(θ0)− τk(θ0, t))ξ̃t−k(d0)

+
1

n

n∑
t=1

hl,t(i,j)

∞∑
k=t

τk(θ0)ξ̃t−k(d0),

(2.166)

with l = 3, 4, 5. For l = 3, (2.166) only differs from (2.141) as it contains the second

partial derivatives of τk(θ, t) in h3,t(i,j) . However, they only add a log-factor to the

convergence rates of the first partial derivatives, see (2.160). For l = 4, (2.166) is

almost identical to (2.148), where the only difference is that the former considers the

second partial derivatives of ξt(d) via h4,t(i,j) . Again, the second partial derivatives

only add a log-factor to the convergence rates in (2.148) (Hualde and Robinson; 2011,

lemma 4). For l = 5, (2.166) is again almost identical to (2.148) but now includes

the first partial derivative of τk(θ, t) via h5,t(i,j) . As for the other terms, by lemma

2.A.4 the derivative again only adds a log-factor to the convergence rate of τk(θ, t).

Thus, it follows directly from (2.141) and (2.148), together with (2.160) and Hualde

and Robinson (2011, lemma 4), that (2.166) is op(1). The two remaining terms in

(2.162) are op(1) by (2.165) and (2.166), as i, j can be interchanged. This completes

the proof.



Chapter 3

Solving the unobserved

components puzzle: a fractional

approach to measuring the

business cycle

3.1 Introduction

Measuring the business cycle plays a key role in applied research, as many macroe-

conomic models make assumptions about the long- and short-run behavior of real

output. In order to verify these assumptions, appropriate methods for decomposing

time series into trend and cycle are necessary and are considered in this paper.

For log US real GDP, which is the main application of trend-cycle decompositions

(see e.g. Harvey; 1985; Morley et al.; 2003; Morley and Piger; 2012), the results in

the literature are puzzling. While empirical evidence supports a strong negative

correlation between long- and short-run innovations, both the correlated unobserved

components (UC) model as proposed by Balke and Wohar (2002) and Morley et al.

(2003), and the decomposition of Beveridge and Nelson (1981), estimate a volatile

long-run component along with a noisy cycle, thereby missing the NBER chronology

and contradicting macroeconomic common sense.

Since the above models do not provide plausible estimates of the business cycle,

some empirical researchers prefer trend-cycle models in the spirit of Hodrick and

Prescott (1997), which assume a trend component integrated of order two for log

GDP. Although this specification is at odds with both, economic theory and empir-

ical evidence, modeling the trend of log GDP as an I(2) process yields an estimated

99
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variance of the long-run innovations close to zero, making the estimated trend com-

ponent very smooth. Any dynamics of log GDP away from the smooth trend are

attributed to the cycle, yielding rich cyclical oscillations. As a similar solution but

with an I(1) specification for the trend, Kamber et al. (2018) suggest fixing the

correlated I(1) UC model by restricting the parameter space to the region where

the variance-ratio of long- and short-run innovations is small. This forces the I(1)

long-run component to be smooth, leaving additional dynamics to be captured by

the cycle. However, since the constrained parameter space is a subspace of the pa-

rameter space of the correlated I(1) UC model, the question arises as to why the

unconstrained optimization yields different parameter estimates corresponding to a

higher log likelihood. In summary, both assuming an I(2) trend for GDP, as well as

restricting the parameter space of the correlated I(1) UC model to the region where

the variance-ratio of long- and short-run innovations is small, clearly yields a mis-

specified model for log US real GDP, but at the same time provides an economically

plausible estimate of the business cycle.

We argue that the puzzling business cycle estimate of the correlated I(1) UC

model is an artifact generated by the presence of a smooth fractionally integrated

long-run component in log US real GDP with an integration order greater than

one but less than two. Misspecifying the integration order upward-biases the vari-

ance estimate for the long-run innovations in the correlated I(1) UC model, as the

additional memory that is not captured by the I(1) trend feeds directly into the

estimated long-run innovations. As a glance at figure 3.2 shows, the periodogram

of the long-run innovations has a peak at the origin, indicating that the estimated

innovations have long memory. The upwardly biased variance estimate leads to an

erratic estimate of the trend component, along with a noisy cycle that adjusts for

the fluctuations in the trend. Conversely, misspecifying the trend as an I(2) process

produces estimates of the long-run innovations that are anti-persistent, a trend that

is too smooth, and attributes too much of the variation in GDP to the cycle.

We contribute to the literature by revisiting the puzzling estimates for the busi-

ness cycle using the fractional UC model that was derived in chapter 2 of this thesis.

Like traditional models, the fractional UC model allows to decompose an observable

variable into trend and cycle, but the stochastic part of the trend is modeled as a

fractionally integrated process of order d ∈ R+, denoted as xt ∼ I(d). It encompasses

the above I(1) and I(2) UC models as special cases. Since d can take any value on

the real line, the model seamlessly links integer-integrated UC models and allows for

intermediate solutions. Parameter estimation is performed by the quasi-maximum
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likelihood (QML) estimator, where the integration order is estimated jointly with the

other model parameters. This provides a data-driven solution to the specification

of the memory of the trend. In addition, the model allows inference about the ap-

propriate specification of the long-run component, and in particular the hypotheses

that d equals one or two can be tested. For the cyclical component ct, we consider

several specifications, including both rich and parsimonious ARMA models as well

as replacing the traditional lag operator with the fractional lag operator of Granger

(1986). Furthermore, we include a deterministic trend component that is a polyno-

mial of order b, b ∈ R+, as a generalization of the traditional linear trend. Estimates

for trend and cycle are obtained from the analytical solution of the Kalman filter

and smoother that was derived in chapter 2 of this thesis.

For empirical researchers, we provide guidance on the appropriate specification of

UC models for arguably their most important use case: For log US real GDP, we in-

vestigate whether an integer-integrated trend component is appropriate, or whether

a generalization to fractionally integrated processes better captures the long-run dy-

namics. We consider several different specifications for the cyclical component and

select the most appropriate specification by minimizing the Bayesian information

criterion (BIC). And we comment on whether a deterministic polynomial trend im-

proves the fit as compared to the traditional linear deterministic specification. For

the preferred specification in terms of the BIC, we estimate an integration order of

about 1.30 for log US real GDP, while rejecting both the d = 1 and d = 2 hypotheses.

This is consistent with the finding that smoothed long-run innovations from I(1) UC

models exhibit long memory, while those of I(2) UC models are anti-persistent. Our

results suggest a very parsimonious parameterization of the cycle for GDP, and the

fractional lag operator improves the fit relative to the traditional lag operator. For

the deterministic trend component, our results show that a general polynomial trend

has little to no advantage over a linear trend.

The resulting estimate of the business cycle from the selected fractional UC model

is well in line with economic common sense: As a glance at figure 3.3 reveals, the

estimated cyclical component exhibits the same turning points as the theory-based

output gap measure of the US Congressional Budget Office (CBO). It rises gradually

in periods of economic recovery and prosperity, and falls sharply during the NBER

recession periods. Moreover, we obtain new insights about the business cycle in

addition to those of the CBO, most notably an overheating economy in the run-up

to the Great Recession as also found by Barigozzi and Luciani (2021) using a high-

dimensional dynamic factor model with many macroeconomic indicators as inputs.
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Thus, our specification of the fractional UC model can serve as a complement to the

theory-based CBO model. Finally, despite the generality of the fractional UC model,

we find that long- and short-run innovations are (almost) perfectly correlated. While

this aligns well to the empirical results from integer-integrated UC models (Morley

et al.; 2003; Iwata and Li; 2015), it implies that long- and short-run innovations

cannot be identified separately for US GDP.

The paper is organized as follows. Section 3.2 details the unobserved components

puzzle and motivates the need for a fractional UC model, which is introduced in

section 3.3. Section 3.4 outlines parameter estimation via the QML estimator, and

details the estimation of trend and cycle via the Kalman filter and smoother. Section

3.5 applies the model to log US real GDP, while section 3.6 concludes. Robustness

checks and additional figures and tables are included in the appendix.

3.2 The unobserved components puzzle

The UC literature builds on a simple model that decomposes an observable time

series {yt}nt=1 into unobserved trend τt and cycle ct

yt = τt + ct. (3.1)

Trend and cycle are disentangled by their different spectra: The cyclical component

ct is a mean zero stationary process that is expected to capture the transitory fluc-

tuations of yt and is interpreted as the business cycle for yt being log GDP. The

long-run component τt, on the other hand, has an autocovariance function that de-

cays more slowly than with an exponential rate, is allowed to be non-stationary, and

is expected to capture the long-run dynamics of GDP. The UC literature specifies τt
as the sum of a stochastic trend component and some deterministic terms, usually

a constant plus a linear deterministic trend

τt = µ0 + µ1t+ xt, ∆dxt = ηt.

The difference operator is defined as ∆d = (1−L)d, where L is the lag operator, and

d ∈ N. It takes the d-th difference of xt, and thus xt ∼ I(d) is a stochastic trend

with memory d.

The cyclical component is modeled as a mean zero stationary autoregressive

process

b(L)ct = εt,
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and long- and short-run innovations are assumed to be Gaussian white noise with

covariance matrix Q (
ηt

εt

)
∼ NID(0, Q), Q =

[
σ2
η σηε

σηε σ2
ε

]
.

To date, the literature has come up with a variety of different specifications

for log GDP that are encompassed by the above UC model. Key differences are the

specification of the trend memory d, and whether long- and short-run innovations are

allowed to be correlated. The first generation of UC models builds on the seminal

work of Harvey (1985) and Clark (1987): Models in the spirit of Harvey (1985)

assume that the stochastic trend is a random walk and thus set d = 1. They will be

called UC-I(1) models. In contrast, the double-drift model of Clark (1987) assumes

that xt is a quadratic stochastic trend, setting d = 2. Models in the spirit of Clark

(1987) will be referred to as UC-I(2) models. Both classes of models specify ct as

a stationary, finite, zero mean autoregressive process and force Q to be diagonal.

The second generation of UC models was introduced by Balke and Wohar (2002)

and Morley et al. (2003), and modifies the first generation models to allow for con-

temporaneously correlated long- and short-run innovations. For log US real GDP,

Morley et al. (2003) provide extensive evidence that long- and short-run innova-

tions are strongly negatively correlated. Since both Balke and Wohar (2002) and

Morley et al. (2003) specify xt to be a random walk, their models will be called

UC-I(1)-corr models. Analogously, Oh et al. (2008) generalize the UC-I(2) model

to non-diagonal Q. Their model will be referred to as the UC-I(2)-corr model.

Besides the first and second generation of UC models, less structural frameworks

are proposed by Hodrick and Prescott (1997) and Kamber et al. (2018): The filter of

Hodrick and Prescott (1997) assumes xt ∼ I(2), implicitly treats ct as white noise,

and assumes a constant signal-to-noise ratio between long- and short-run innovations

that is determined by the tuning parameter of the filter, see the discussion in chapter

2 of this thesis. It is hereafter referred to as theHP-filter, and is a special case of the

Clark (1987) model, where the parameter space for Q is constrained by setting the

variance-ratio of long- and short-run innovations to a certain value. The counterpart

for xt ∼ I(1) is derived by Kamber et al. (2018) and is called the BN-filter in what

follows. Like the HP-filter, it also restricts the parameter space for Q by forcing the

variance-ratio of long- and short-run innovations into a certain region. Both HP- and

BN-filter are popular among empirical researchers, because the restricted parameter

space typically forces the variance of long-run innovations to be small, yielding a
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smooth stochastic trend xt, while at the same time forcing the variance of short-run

innovations to be comparatively large, thus attributing rich dynamics to the cyclical

component ct. A summary of all models and their underlying restrictions in terms

of (3.1) is given in table 3.1.

xt ct Q

UC-I(1) ∆xt = ηt b(L)ct = εt Q diagonal
UC-I(2) ∆2xt = ηt b(L)ct = εt Q diagonal
UC-I(1)-corr ∆xt = ηt b(L)ct = εt Q non-diagonal
UC-I(2)-corr ∆2xt = ηt b(L)ct = εt Q non-diagonal
BN-filter ∆xt = ηt b(L)ct = εt σ2

η/σ
2
ε small

HP-filter ∆2xt = ηt ct = εt σ2
η/σ

2
ε small

Table 3.1: Restrictions from the different UC models on trend, cycle, and innovations
covariance matrix.

As becomes clear from table 3.1, the parameter spaces of the UC-I(1) model and

the BN-filter are subspaces of the parameter space of the UC-I(1)-corr model, while

the parameter spaces of the UC-I(2) model and the HP-filter are subspaces of the

parameter space of the UC-I(2)-corr model. Thus, for the restricted models to be

correctly specified for log US real GDP, it is necessary that the globally optimal

parameter combinations within the encompassing parameter spaces of the UC-I(1)-

corr and the UC-I(2)-corr model are contained in the respective restricted parameter

spaces. If that holds, the maximum likelihood estimator for the underlying model

parameters has the same optimum for the restricted and the encompassing models.

Consequently, also the decomposition into trend and cycle is identical. However,

as will be shown below, for log US real GDP, this is neither the case for models

with d = 1, nor for models with d = 2. It is noteworthy that while the restricted

models have a smaller log likelihood than their unrestricted counterparts, they yield a

decomposition into trend and cycle that is more in line with economic common sense

and, in particular, with the NBER chronology. This is what we call the unobserved

components puzzle.

To learn more about an appropriate UC model for log US real GDP, we compare

the trend-cycle decompositions and the corresponding parameter estimates for the

UC models in table 3.1. The data on seasonally adjusted US real GDP come from

the Federal Reserve Bank of St. Louis1, are in quarterly frequency, cover the period

from 1947Q1 to 2022Q4 (except for the BN-filter, as explained below), and are log

transformed. Parameter estimates and filtered trend and cyclical components for the

UC-I(1), the UC-I(2), the UC-I(1)-corr, and the UC-I(2)-corr models are obtained
1The series can be downloaded here: https://fred.stlouisfed.org/series/GDPC1
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as described in the aforementioned literature: First, Q and b(L) are estimated by

maximum likelihood (ML), where the likelihood is based on the prediction error of

the Kalman filter (see Harvey; 1989, ch. 3 and 4). The order of the AR polynomials is

determined by the Bayesian information criterion, is equal to two for all models, and

the chosen lag length is consistent with the literature. Estimates for xt and ct are

obtained from the Kalman smoother, see Harvey (1989, ch. 3.6). Results for the HP-

filter are obtained by setting the tuning parameter to 1600, as usual for quarterly

data. Results for the BN-filter are those of Kamber et al. (2018), and thus only

consider data up to 2016Q4. We have attempted to update their results with the

most recent data, but were unable to reproduce as pronounced cyclical behavior as

in Kamber et al. (2018), instead obtaining results very close to those of Morley et al.

(2003). Figure 3.1 plots the estimated cyclical component of log US real GDP for

the six models, while table 3.3 presents the parameter estimates for the parametric

UC models.

Starting with the I(1) models, note that all three decompositions are consis-

tent with the estimates in Harvey and Jäger (1993, fig. 2), Morley et al. (2003, fig.

3), and Kamber et al. (2018, fig. 3). The UC-I(1) model provides an estimate for

the business cycle that takes the form of an asymmetric sine curve: It falls sharply

during the recession periods and gradually recovers in the aftermath. Surprisingly,

the estimated cycle becomes less pronounced when correlation between long- and

short-run innovations is allowed for: The UC-I(1)-corr model estimates a rather

noisy cycle with no clear pro-cyclical pattern during the economic recovery periods.

Instead, the estimated business cycle is characterized by sharp increases just before

the recessionary periods, followed by a sharp downturn at the recessions. When the

variance-ratio between long- and short-run shocks is restricted to be small, as for

the BN-filter, the resulting business cycle estimate again exhibits a more pronounced

cyclical behavior than in the UC-I(1) model, but it retains some of the noisy fluctu-

ations of the correlated model. Results from multivariate UC models, such as those

of Harvey and Trimbur (2003), Basistha and Nelson (2007), Harvey et al. (2007),

and Barigozzi and Luciani (2021), support the pronounced cyclical behavior of the

two restricted models rather than the noisy dynamics of the UC-I(1)-corr model.

Turning to the I(2) models, note that the decompositions are again consistent

with the literature, see Clark (1987, fig. IVb), Hodrick and Prescott (1997, fig.

1). The UC-I(2) and the UC-I(2)-corr models yield a similar log likelihood and

produce almost identical estimates for the cyclical component, although the corre-

lation coefficient is strongly negative whenever it is allowed to deviate from zero. In
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Figure 3.1: Estimated cyclical components ĉt for the UC-I(1), the UC-I(2), the UC-
I(1)-corr, and the UC-I(2)-corr model, as well as for the BN- and HP-filter. The
first four models specify ct as an AR(2) process as suggested by the literature and
by the Bayesian information criterion. Estimates for the cyclical components there
are obtained from the Kalman smoother. Results for the BN-filter are taken from
Kamber et al. (2018). For the HP-filter the tuning parameter is set to 1600, as
suggested by the literature. Shaded areas correspond to US recession periods as
reported by the NBER.

contrast, the HP-filter attributes comparatively less variation to the cyclical compo-

nent. Compared to the I(1) models, the cyclical patterns appear to be much more

path-dependent, taking longer to return to their mean. This is clearly due to the

I(2)-specification of the trend, which forces a smaller parameter estimate for σ2
η to

capture the long-run dynamics of GDP. As a result, the estimated trend becomes

smoother, leaving more variation to be captured by the cycle compared to the I(1)
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models.

Figure 3.1 immediately raises the question of which specification, if any, is ap-

propriate for log US real GDP. The obvious first step in narrowing down the model

choice is to look at the long-run component, which is the core difference between the

I(1) and I(2) models. If log US real GDP is indeed I(2), the Kalman filter under-

differences the observable variable in the I(1) models, and the remaining memory

goes into the smoothed long-run shocks. The latter become long-range dependent,

and the corresponding estimates for σ2
η in the I(1) models are upward-biased to

capture the additional variation that is caused by under-differencing of yt. Con-

versely, if log US real GDP is I(1), then the I(2) models over-difference yt, and the

smoothed long-run shocks become anti-persistent, while the estimates for σ2
η in the

I(2) models are downward-biased. A simple way to detect both long-range depen-

dence and anti-persistence is to look at the periodogram of the smoothed long-run

innovations: Long-range dependent processes allocate much spectral density at the

low frequencies, while anti-persistent processes have little or no spectral mass at the

origin. The smoothed periodograms for the smoothed long-run innovations ηt of the

different models considered are sketched in figure 3.2.

As can be seen in figure 3.2, the periodogram for the long-run innovations of

both I(1) and I(2) trend specifications is anything but flat. For the I(1) models,

the innovations appear to be long-range dependent, as the periodograms peak at the

origin. This suggests that there is memory left in the smoothed long-run innovations,

resulting in a trend that is integrated of order d > 1 for log US real GDP. The

opposite holds for the UC-I(2) and the UC-I(2)-corr models, where the corresponding

periodograms show little or no spectral mass at the origin, indicating that the long-

run innovations are anti-persistent. This suggests that log US real GDP is integrated

of order d < 2. Therefore, figure 3.2 indicates that a fractionally integrated trend of

order 1 < d < 2 may be more appropriate for log US real GDP.2

We can further examine this hypothesis by estimating the integration order of

the smoothed long-run innovations. Table 3.4 summarizes the integration order esti-

mates from the exact local Whittle estimator of Shimotsu and Phillips (2005) as well

as from the estimator of Geweke and Porter-Hudak (1983) for different bandwidth

choices. For the two parametric I(1) UC models, the estimates for the integration

order of the long-run innovations fall into the interval [0.09; 0.70], while for the two

parametric I(2) UC models they fall into [−1;−0.05]. Taken together, the integra-

tion order estimates support the hypothesis that trend GDP is integrated of order
2For readers unfamiliar with fractionally integrated processes, Hassler (2019) provides a good

introduction.
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Figure 3.2: Smoothed periodogram for the smoothed long-run innovations for the
UC-I(1), the UC-I(2), the UC-I(1)-corr, and the UC-I(2)-corr model, as well as for
the BN- and HP-filter.

somewhere between one and two.

The fractional hypothesis also explains the puzzling results in figure 3.1: If the

stochastic trend of GDP is integrated of order greater than one, the UC-I(1) and

the UC-I(1)-corr model attribute the additional persistence, that is not captured by

the I(1) specification, to the long-run shocks ηt, resulting in an upwardly biased

estimate of σ2
η. This bias forces the Kalman filter to attribute additional short-run

fluctuations to the trend, resulting in a rather noisy estimate. While the UC-I(1)

model prohibits correlation between the long- and short-run innovations, the UC-

I(1)-corr model allows the cyclical shocks to adjust for noisy long-run innovations.

Therefore, the noisy behavior of the estimated trend innovations spills over directly
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into the estimated cyclical innovations, producing an erratic cyclical estimate as

shown in figure 3.1. By excluding the region of the parameter space where the

variance-ratio between long- and short-run innovations becomes large, the BN-filter

appears robust to under-differencing, as the constrained parameter space prohibits

a large variance estimate for the trend innovations. However, strong long-range

dependence in the long-run innovations lowers the likelihood of the BN-filter that

is constructed under the assumption that long- and short-run innovations are white

noise.

To finally assess the question on whether log US real GDP is indeed integrated

of order between one and two, the next section develops a fractional UC model in

which the integration order d of the stochastic trend is no longer restricted to positive

integers. Instead, allowing for d ∈ R+ seamlessly links I(1) and I(2) UC models and

allows for intermediate solutions. The memory parameter d enters the model as an

unknown parameter to be estimated, allowing the specification of the trend to be

chosen in a data-driven manner.

3.3 The fractional unobserved components model

In order for the trend-cycle decomposition (3.1) to be suitable for fractionally inte-

grated processes, we specify the trend τt as the sum of a type II fractionally integrated

process of order d, and a deterministic trend µt to be determined later

τt = µt + xt, ∆d
+xt = ηt. (3.2)

The integration order d ∈ D = {d ∈ R|1/2 < dmin ≤ d ≤ dmax < ∞} determines

the memory of the trend, while ηt are the long-run shocks to be defined in (3.6)

below. The lower bound dmin > 1/2 is to ensure that xt is a long-run component,

while dmax can be arbitrarily large and is required to keep the parameter space

bounded. The fractional difference operator ∆d
+ depends only on the integration

order d and controls the memory of xt. Without the +-subscript, it exhibits a

polynomial expansion of order infinite in the lag operator L

∆d = (1− L)d =

∞∑
j=0

πj(d)Lj , πj(d) =


j−d−1
j πj−1(d) j = 1, 2, ...,

1 j = 0.
(3.3)

The +-subscript denotes the truncation of an operator at t ≤ 0, ∆d
+xt = ∆dxt1(t ≥

1) =
∑t−1

j=0 πj(d)xt−j , where 1(t ≥ 1) is the indicator function taking the value one
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for positive subscripts of xt−j , otherwise zero. The use of the truncated fractional

difference operator reflects the type II definition of fractionally integrated processes

(Marinucci and Robinson; 1999), and is required for non-stationary trends (d > 1/2).

The stochastic trend specification in (3.2) encompasses the integer-integrated

specifications in the UC literature as considered in the previous section: Setting d = 1

makes xt a random walk as considered by Harvey (1985), Balke and Wohar (2002),

Morley et al. (2003), and Kamber et al. (2018). For d = 2 one obtains the quadratic

stochastic trend specification of Clark (1987), Hodrick and Prescott (1997), and Oh

et al. (2008). Furthermore, general integer-integrated trends as studied by Burman

and Shumway (2009) are contained for d ∈ N. Allowing for non-integer d seamlessly

links the integer-integrated models and allows for more general patterns of long-run

dynamics with memory between the integer-integrated cases: An integration order

1/2 < d < 1 yields a trend that is asymptotically non-stationary but (conditionally)

mean-reverting, while 1 < d < 2 yields a trend with more memory than the random

walk but less than the quadratic stochastic trend. Since the model treats d as an

unknown parameter to be estimated, it allows d to be determined in a data-driven

manner and does not rely on strong prior assumptions about d. While the empirical

macroeconomic literature has, to the best of our knowledge, so far only considered

UC models with integer integration orders, stationary long memory models (i.e.

d < 1/2) are popular in the field of realized volatility modeling, see Ray and Tsay

(2000), Chen and Hurvich (2006), and Varneskov and Perron (2018). In chapter 2

of this thesis, the asymptotic estimation theory for the general class of fractional

unobserved components models was derived, also allowing for d ≥ 1/2. We build on

this work by studying explicit specifications for trend and cycle, and tailor them to

be suitable for log GDP.

For the deterministic term µt, we consider a polynomial trend of order b together

with an intercept

µt = µ0 + µ1t
b. (3.4)

The exponent b ∈ B = {b ∈ R|0 < bmin ≤ b ≤ bmax < ∞} determines the shape of

the deterministic component. While b = 1 yields a linear trend as typically assumed

in the UC literature for log GDP, setting b = d yields a deterministic trend of

the same order as the stochastic long-run component. The latter is equivalent to

including a non-zero constant in ∆d
+xt. Alternatively, b can also be treated as an

additional parameter to be estimated, allowing the order of the deterministic trend

to be determined by the data.
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Turning to the transitory component, we allow for an ARMA(p, q) process in

the fractional lag operator Lδ

φ(Lδ, ϕ)ct =
a(Lδ)

m(Lδ)
ct = εt, (3.5)

where a(Lδ) = 1−
∑p

j=1 ajL
j
δ is a stable AR polynomial in the fractional lag operator

Lδ as introduced by Granger (1986), b(Lδ) = 1 +
∑q

j=1mjL
j
δ is an invertible MA

polynomial in the fractional lag operator Lδ, φ(Lδ, ϕ) = 1−
∑∞

j=1 φj(ϕ)Ljδ, Lδ = 1−
∆δ

+ is the fractional lag operator with δ ∈ C = {δ ∈ R|0 < δmin ≤ δ ≤ δmax <∞},
and ϕ = (δ, a1, ..., ap,m1, ...,mq) holds the relevant parameters governing φ(Lδ, ϕ).

εt are the short-run innovations to be defined in (3.6) below. For stability of the

fractional lag polynomials a(Lδ) and m(Lδ), the condition of Johansen (2008, cor.

6) is required to hold and is imposed in what follows. It implies that the roots of

|a(z)| = 0 and |m(z)| = 0 lie outside the image Cδ of the unit disk under the mapping

z 7→ 1− (1− z)δ. It follows immediately that φ(Lδ, ϕ)ct is stationary for all feasible

ϕ. In fractional models Lδ plays the role of the standard lag operator L1 = L, since

(1 − Lδ) = ∆δ
+. While, for an arbitrary I(0) process zt, the standard lag operator

Lzt = (1− (1− L))zt = zt −∆zt subtracts an I(−1) process from zt, the fractional

lag operator Lδzt = (1 − (1 − Lδ))zt = zt −∆δ
+zt subtracts an I(−δ) process from

zt. In addition, Lδzt = −
∑t−1

j=1 πj(δ)zt−j is a weighted sum of past zt, and thus

Lδ qualifies as a lag operator. By definition, the polynomial φ(Lδ, ϕ) preserves the

integration order of a series since δ > 0.

Turning to the long- and short-run shocks ηt, εt, we assume that they are mean-

zero stationary and ergodic martingale difference sequences when adapted to their

joint natural filtration Ft = σ ((ηs, εs), s ≤ t), and their autocovariance functions

are assumed to be absolutely summable. Conditional of Ft−1, their third and fourth

moments are assumed to be finite and equal to their unconditional moments. (ηt, εt)

may exhibit a non-diagonal covariance matrix Q, which implies that

E

(
ηt

εt

)
= 0, Var

(
ηt

εt

)
= Q =

[
σ2
η σηε

σηε σ2
ε

]
,

Cov

[(
ηt

εt

)
,

(
ηt−s

εt−s

)]
= 02,2 ∀s 6= 0.

(3.6)

The assumptions about (ηt, εt) are identical to those in chapter 2 of this thesis, and

are necessary for consistency and asymptotic normality of the parameter estimates as

discussed in section 3.4. They are somewhat more general than most of the literature
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on UC models, which assumes the shocks to be Gaussian white noise (e.g. Clark;

1987; Morley et al.; 2003).

Since different parameterizations of the model will be considered later in the

application, it will be helpful to refer to the model in (3.1), (3.2), (3.4), (3.5), and

(3.6) as a UC(d, b, δ, ρ) model. It follows immediately from this convention that the

model nests the different UC models in the previous section: The model of Harvey

(1985) is a UC(1, 1, 1, 0) model, while allowing for correlated shocks as in Balke

and Wohar (2002), Morley et al. (2003), and Weber (2011) yields a UC(1, 1, 1, ρ)

model. The double-drift model of Clark (1987) is a UC(2, 1, 1, 0) model, which is

generalized to allow for correlated innovations by Oh et al. (2008).

A key property of integer-integrated UC models is that they encompass the de-

composition of Beveridge and Nelson (1981) for ρ = −1, see Proietti (2004, 2006),

and Oh et al. (2008). This carries over to the fractional UC(d, b, d, −1) model,

which can be interpreted as a generalization of the Beveridge-Nelson decomposition

to the fractional domain. To see this, assume ρ = −1, substitute (3.2), (3.4), and

(3.5) into (3.1), replace εt = −(σε/ση)ηt, and take fractional differences. Then

∆d
+(yt − µt) = ηt −∆d

+φ(Ld, ϕ)−1 σε
ση
ηt = ηt − (1− Ld)ψ(Ld, ϕ)

σε
ση
εt, (3.7)

where φ(Ld, ϕ)−1 = ψ(Ld, ϕ) = 1 +ψ1Ld +ψ2L
2
d + ..., with ψ1(ϕ) = φ1(ϕ), ψj(ϕ) =

φj(ϕ) +
∑j−1

k=1 ψk(ϕ)φj−k(ϕ), j ≥ 2. ψ(Ld, ϕ) exists since φ(Ld, ϕ) is stable. By the

aggregation properties of white noise processes (Granger and Morris; 1976, p. 248f),

(3.7) is an ARFIMA model in the fractional lag operator Ld

∆d
+(yt − µt) = ψ̃(Ld, ϕ)ut, ut ∼WN

(
0, (ση − σε)2

)
, (3.8)

where ψ̃(Ld, ϕ) = 1 + ψ̃1(ϕ)Ld+ ψ̃2(ϕ)L2
d+ ..., ψ̃0 = 1, ψ̃1(ϕ) = σε(1−ψ1(ϕ))/(ση−

σε), ψ̃j(ϕ) = σε(ψj−1(ϕ) − ψj(ϕ))/(ση − σε) for all j ≥ 2, and ut = ηt(1 − σε/ση).
The Beveridge-Nelson decomposition of (3.8) follows from noting that

ψ̃(Ld, ϕ)ut = ψ̃(1, ϕ)ut − (1− Ld)
∑
k=0

Lkdut
∑
j=k+1

ψ̃j(ϕ), (3.9)
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where

ψ̃(1, ϕ)ut =

1 +
σε

ση − σε
(1− ψ1(ϕ)) +

σε
ση − σε

∑
j=2

(ψj−1(ϕ)− ψj(ϕ))

ut
=

(
1 +

σε
ση − σε

)
ut = ηt.

Consequently, ψ̃(1, ϕ)ut in (3.9) is the fractionally differenced trend from the Beve-

ridge-Nelson decomposition and equals the long-run innovations from the UC(d, b, d,

−1) model, while −(1− Ld)
∑

k=0 L
k
dut
∑

j=k+1 ψ̃j(ϕ) is the fractionally differenced

cycle from the Beveridge-Nelson decomposition and equals ∆d
+ct of the UC(d, b, d,

−1) model. Un-taking fractional differences then generalizes the Beveridge-Nelson

decomposition to fractionally integrated processes, where

xBNt = ∆−d+ ψ̃(1, ϕ)ut = ∆−d+ ηt = xt, cBNt = −
∑
k=0

Lkdut
∑
j=k+1

ψ̃j(ϕ) = ct.

3.4 Estimation

Having introduced the fractional UC model, we now turn to the estimation of the

model parameters and the latent components. For this, let θ = (d, b, δ, ϕ′, σ2
η, σηε, σ

2
ε)
′

denote the vector collecting all model parameters of the fractional UC model, and let

θ0 = (d0, b0, δ0, ϕ
′
0, σ

2
η,0, σηε,0, σ

2
ε,0)′ denote the true parameters of the data-generating

mechanism to be estimated. The parameters of the fractional UC model are esti-

mated by the quasi-maximum likelihood (QML) estimator as derived in section 2

of this thesis. Trend and cycle are estimated by the Kalman filter and smoother,

for which an analytical solution was derived in chapter 2 that is computationally

superior to the Kalman recursions for fractional UC models. In the following, we

summarize the main results of chapter 2 about the estimation of fractional UC mod-

els and discuss identification.

In subsection 3.4.1, we first show that our fractional UC model in (3.1), (3.2),

(3.4), and (3.5) is a state space model. Therefore, the Kalman recursions can be

applied and allow to filter, predict, and smooth the unobserved xt and ct, which is

the core of subsection 3.4.2. The filtered values are the projections of xt and ct onto

the space of y1, ..., yt, i.e. the data observable at period t, again conditional on some

realization of the parameter vector θ. Based on (3.2) and (3.5), the one-step ahead

predictions for xt+1 and ct+1 (given y1, ..., yt, θ) can be obtained, which is referred

to as the prediction step of the Kalman filter in the state space literature. Estimates
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for xt and ct conditional on the full sample information y1, ..., yn are referred to as

smoothed values and are obtained by projecting xt and ct onto the space of y1, ..., yn,

conditional on some realization of the parameter vector θ. Subtracting the one-step-

ahead predictions for xt+1 and ct+1 from yt+1 yields the prediction error, based

on which the quasi-likelihood function for parameter estimation can be set up, as

done in subsection 3.4.3. There, we also discuss the asymptotic theory for the QML

estimator of fractional UC models as derived in chapter 2 of this thesis, as well as

the identification of the fractional UC model.

In the following, collect xt:1 = (xt, ..., x1)′, ct:1 = (ct, ..., c1)′, µt:1 = (µt, ..., µ1)′,

and yt:1 = (yt, ..., y1)′ in the respective t-vectors.

3.4.1 State space form

The state space form is a special case of the more general model considered in chap-

ter 2 of this thesis, and is set up analogously. Define φ̃(L,ϕ) = 1−
∑∞

j=1 φ̃j(ϕ)Lj =

1 −
∑p

j=1 φjL
j
d as the representation of φ(Lδ, ϕ) in the standard lag operator L,

and denote φ̃+(L,ϕ)ct = φ̃(L,ϕ)ct1(t ≥ 1) = ct −
∑t−1

j=1 φ̃j(ϕ)ct−j as the truncated

φ̃(L,ϕ) polynomial, where 1(t ≥ 1) is the indicator function, which takes the value

one for positive subscripts of ct−j , otherwise zero. The truncation takes into account

that yt is only observable for positive t, and thus parameter and unobserved compo-

nents estimation can only be carried out for the observable {yt}nt=1. The state space

representation of the fractional UC model is

yt = µt + Zαt, (3.10)

αt = Tαt−1 +Rζt, (3.11)

where the state vector can be partitioned into αt = (α
(x)′

t , α
(c)′

t )′, with (n−1)-vectors

α
(x)
t = (xt, xt−1, ..., xt−n+2)′ for the stochastic trend, and α(c)

t = (ct, ct−1, ..., ct−n+2)′

for the cycle. The observation matrix Z = (Z(x), Z(c)) consists of the (n − 1)-

dimensional row vectors Z(x) = (1, 0, ..., 0) and Z(c) = (1, 0, ..., 0), which pick the

first entry of α(x)
t and α

(c)
t . The transition equation (3.11) is specified via T =

diag(T (x), T (c)), R = diag(R(x), R(c)), where

T (x) =


−π1(d) −π2(d) · · · −πn−1(d)

1 0
...

. . .
...

0 · · · 1 0

 , T (c) =


φ̃1(ϕ) φ̃2(ϕ) · · · φ̃n−1(ϕ)

1 0
...

. . .
...

0 · · · 1 0

 ,



3.4 Estimation 115

and R(x) = (1, 0, ..., 0)′, R(c) = (1, 0, ..., 0)′ are (n− 1)-vectors picking the respective

entries of ζt = (ηt, εt)
′, and Var(ζt) = Q. Note that whenever φ̃(L,ϕ) is a polynomial

of order r < n− 1 (e.g. for δ = 1, p < n, q = 0), there exists a minimal state space

representation where α(c)
t , Z(c), R(c) are vectors of dimension r, and T (c) is r × r.

The same holds whenever d is an integer, since xt then admits a d-dimensional state

space representation. The system is initialized deterministically with xj , cj = 0 for

all j ≤ 0, and the deterministic terms are placed directly in the observations equation

(3.10), as this ensures stabilisability of the model (see Harvey; 1989, ch. 4.2.5). They

are estimated using the GLS estimator as discussed at the end of subsection 3.4.2.

3.4.2 Filtering and smoothing

By the state space representation of the fractional UC model in (3.10) and (3.11),

the Kalman recursions can be used to filter, predict, and smooth the latent xt and

ct (see e.g. Harvey; 1989, ch. 3). However, as argued in chapter 2 of this thesis,

instead of computing the filtered states recursively via the Kalman filter, one can

also derive an analytical solution to the optimization problem of the Kalman filter.

Both approaches yield the identical filtered components, however for the fractional

UC model the analytical solution is computationally much simpler, see the discussion

in chapter 2 of this thesis. Given the high dimension of the state vector when xt

is a fractionally integrated trend (see subsection 3.4.1), reducing the computational

complexity is an important issue for fractional UC models, and thus we briefly outline

the analytical solution to the Kalman filter optimization problem below. To arrive at

the analytical solution, consider the optimization problem of the Kalman filter, which

is obtained by minimizing the concentrated joint quasi-log likelihood of {(ηj , εj)′}tj=1

x̂t:1(yt:1, θ) = arg min
xt:1

1

t

t∑
j=1

[(
ηj εj

)
Q−1

(
ηj

εj

)]
= arg min

xt:1

1

t

1

σ2
ησ

2
ε − σ2

ηε

×
t∑

j=1

[
σ2
ε(∆

d
+xj)

2 − 2σηε∆
d
+xjφ̃+(L,ϕ)(yj − µj − xj)

+ σ2
η(φ̃+(L,ϕ)(yj − µj − xj))2

]
,

where the second equality follows from inserting ηj = ∆d
+xj via (3.2), as well as

εj = φ̃+(L,ϕ)(yj − µj − xj) via (3.1) and (3.5). For a matrix representation of

the optimization problem, introduce the t × t difference matrix Sd,t, and the t × t
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coefficient matrix Bϕ,t analogously to (2.5) in chapter 2

Sd,t =


π0(d) π1(d) · · · πt−1(d)

0 π0(d) · · · πt−2(d)
...

...
. . .

...

0 0 · · · π0(d)

 ,

Bϕ,t =


1 −φ̃1(ϕ) · · · −φ̃t−1(ϕ)

0 1 · · · −φ̃t−2(ϕ)
...

...
. . .

...

0 0 · · · 1

 .
(3.12)

Then Sd,txt:1 = (∆d
+xt, ...,∆

d
+x1)′, andBϕ,tct:1 = (φ̃+(L,ϕ)ct, ..., φ̃+(L,ϕ)c1)′. Omit-

ting the constant fraction, the optimization problem for xt:1 becomes

x̂t:1(yt:1, θ) = arg min
xt:1

1

t

[
σ2
εx
′
t:1S

′
d,tSd,txt:1 − 2σηε(yt:1 − xt:1 − µt:1)′B′ϕ,tSd,txt:1

+ σ2
η(yt:1 − xt:1 − µt:1)′B′ϕ,tBϕ,t(yt:1 − xt:1 − µt:1)

]
,

which yields the analytical solution to the optimization problem of the Kalman filter

as derived in chapter 2 of this thesis

x̂t:1(yt:1, θ) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
ηB
′
ϕ,tBϕ,t + σηεS

′
d,tBϕ,t

)
(yt:1 − µt:1).

(3.13)

Either analogously, or by using ĉt:1(yt:1, θ) = yt:1 − µt:1 − x̂t:1(yt:1, θ), the filtered

cycle is

ĉt:1(yt:1, θ) =
[
σ2
ηB
′
ϕ,tBϕ,t + σηε(S

′
d,tBϕ,t +B′ϕ,tSd,t) + σ2

εS
′
d,tSd,t

]−1

×
(
σ2
εS
′
d,tSd,t + σηεB

′
ϕ,tSd,t

)
(yt:1 − µt:1).

(3.14)

The one-step ahead predictions for trend and cycle are then obtained by rolling the

transition equations for trend and cycle (3.2) and (3.5) one period ahead, i.e.

x̂t+1(yt:1, θ) = −
(
π1(d) · · · πt(d)

)
x̂t:1(yt:1, θ), (3.15)

ĉt+1(yt:1, θ) =
(
φ̃1(ϕ) · · · φ̃t(ϕ)

)
ĉt:1(yt:1, θ). (3.16)
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Finally, the prediction error is obtained by subtracting the one-step ahead predictions

vt+1(θ) = yt+1 − µt+1 − x̂t+1(yt:1, θ)− ĉt+1(yt:1, θ). (3.17)

In practice, computing (3.17) as well as the x̂t+1(yt:1, θ) and ĉt+1(yt:1, θ) requires

knowledge about µ(t+1):1, which is unobservable. However, since the Kalman filter

is a linear operation, we can write (3.17) as vt+1(θ) = F (θ, t+ 1)(y(t+1):1−µ(t+1):1),

where F (θ, t+ 1)y(t+1):1 would be the prediction error of the Kalman filter if the de-

terministic terms were zero. Since vt+1(θ) = F (θ, t+1)y(t+1):1−F (θ, t+1)µ(t+1):1, the

same filter can be applied separately to the observations y(t+1):1 and the determin-

istic terms µ(t+1):1, see Harvey (1989, ch. 3.4.2). An estimate for the coefficients µ0

and µ1 in (3.4) is then obtained by regressing F (θ, t+1)y(t+1):1 on F (θ, t+1)M(t+1):1,

where M(t+1):1 is the (t+ 1)× 2 regressor matrix of µ(t+1):1 = M(t+1):1(µ0, µ1)′, and

the resulting estimator for µ0, µ1 is the GLS estimator.

3.4.3 Parameter estimation and identification

To estimate θ0, the QML estimator is set up based on the prediction error vt+1(θ)

as defined in the previous subsection. Let σ2
vt(θ) denote the (hypothetical) variance

of the prediction error vt(θ) for a given parameter vector θ. σ2
vt(θ) depends only

on θ, is independent of y1, ..., yn, and can be calculated recursively via the Kalman

recursions for the prediction error variance as given in Harvey (1989, ch. 3.2). Since

the state space model in (3.10) and (3.11) is both detectable and stabilizable, it

follows that the Kalman recursions for σ2
vt(θ) converge to the steady state value

σ2
v(θ) at an exponential rate. Typically, only a few iterations are required until

σ2
vt(θ) is sufficiently close to its steady state, where the Kalman recursions can be

terminated and σ2
vt(θ) can be assumed to be constant from then on. The QML

estimator for θ0 is then constructed based on the prediction error vt(θ) and is given

by

θ̂ = arg max
θ

logL(θ),

logL(θ) = −n
2

log(2π)− 1

2

n∑
t=1

log σ2
vt −

1

2

n∑
t=1

v2
t (θ)

σ2
vt

.
(3.18)

The asymptotic theory for the QML estimator of fractional UC models was de-

rived in chapter 2 of this thesis and carries over to (3.18) upon verification of assump-

tions 1 to 5 of chapter 2. The assumptions we make in section 3.3 about the long-

and short-run innovations as well as about the parameters are identical to assump-
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tions 1 and 2 of chapter 2 and are thus satisfied. Assumption 3 requires that the

cyclical polynomial φ(Lδ, ϕ) in (3.5) is stable with stable partial derivatives and is

satisfied for any stationary and invertible ARMA polynomial, both in the standard

lag operator L, as well as in the fractional lag operator Lδ (under the additional

condition of Johansen (2008, cor. 6) as imposed below (3.5)). Thus, assumptions 1

to 3 of chapter 2 hold, so that the QML estimator for θ0 is consistent. Furthermore,

(3.18) is asymptotically normally distributed under the additional assumptions 4

and 5 of chapter 2: Assumption 4 strengthens the smoothness assumption on φ(Lδ)

and is again satisfied for all stationary and invertible ARMA polynomials. Assump-

tion 5 essentially requires that the Kalman filter asymptotically becomes the best

predictor for yt given Ft−1 as t → ∞, forcing the prediction error to converge to a

martingale difference sequence when adapted to the filtration of all past ys, s < t.

While assumption 5 follows immediately when long- and short-run innovations are

assumed to be Gaussian, it cannot be verified for non-Gaussian shocks. Therefore,

when interpreting the standard errors in our application, we assume assumption 5

of chapter 2 to be satisfied.

Finally, it should be noted that the results on consistency and asymptotic nor-

mality as derived in chapter 2 are conditional on the model being identified. While

identification is a crucial problem in the traditional UC literature that is discussed

among others by Morley et al. (2003), Oh et al. (2008), and Trenkler and Weber

(2016), it is less of an issue for the fractional UC model as will become clear.

To illustrate that the fractional UC model is identified under comparatively weak

conditions as compared to traditional UC models, let ã(L,ϕ) = 1−
∑∞

j=1 ãj(ϕ)Lj =

a(Lδ) = 1−
∑∞

j=1 ajL
j
δ and m̃(L,ϕ) = 1+

∑∞
j=1 m̃j(ϕ)Lj = m(Lδ) = 1−

∑∞
j=1mjL

j
δ

denote the cyclical AR and MA polynomials of (3.5) in the standard lag operator L,

and note that ãj(ϕ) = aj as well as m̃j(ϕ) = mj for all j = 1, 2, ... whenever δ = 1.

Moreover, let ã+(L,ϕ) = ã(L,ϕ)1(t ≥ 1) and b̃+(L,ϕ) = b̃(L,ϕ)1(t ≥ 1) denote the

truncated polynomials that take into account that yt is only observable for t ≥ 1.

Then the (truncated) reduced form of the fractional UC model is

ã+(L,ϕ)∆d
+(yt − µt) = ã+(L,ϕ)ηt + m̃+(L,ϕ)∆d

+εt = b+(L, θ)εt, (3.19)

which is obtained by plugging (3.2) and (3.5) into (3.1), taking fractional differences,

and multiplying both sides by ã+(L,ϕ). By the aggregation properties of moving

average processes (see Granger and Morris; 1976, p. 248f), (3.19) equals the moving

average process b+(L, θ)εt =
∑t−1

j=0 bj(L, θ)εt−j , Var(εt) = σ2
ε , whose order depends

on d, as well as on ϕ. Obviously, d, δ, a1, ..., ap are identified based on the observ-
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able left-hand side of (3.19), and thus identifiability crucially depends on whether

m1, ...,mq, and σ2
η, σηε, σ2

ε can be recovered from the right-hand side of (3.19). For

this purpose, let γj(θ) = Cov(ã+(L,ϕ)∆d
+(yt−µt), ã+(L,ϕ)∆d

+(yt−j−µt−j)) denote
the j-th autocovariance of (3.19), so that for all j < t

γj(θ) = σ2
η

t−j−1∑
k=0

ãk(ϕ)ãk+j(ϕ)

+σ2
ε

t−j−1∑
k=0

(
j+k∑
l=0

m̃j+k−l(ϕ)πl(d)

)(
k∑
l=0

m̃k−l(ϕ)πl(d)

)

+σηε

[
t−j−1∑
k=0

ãk(ϕ)

j+k∑
l=0

m̃j+k−l(ϕ)πl(d)

+

t−j−1∑
k=0

ãj+k(ϕ)
k∑
l=0

m̃k−l(ϕ)πl(d)

]

= σ2
ε

t−j−1∑
k=0

bk(θ)bk+j(θ).

(3.20)

Obviously, for d /∈ N, the autocovariance γj(θ) 6= 0 for all j = 0, 1, ..., t − 1. Since

t = 1, ..., n, indexes the observable yt, we have n + 1 equations to identify the

(q+3) parameters (m1, ...,mq, σ
2
η, σηε, σ

2
ε). It only remains to be checked whether the

contribution of the different parameters (m1, ...,mq, σ
2
η, σηε, σ

2
ε) to γj(θ) is nonzero

for j = 0, 1, ..., q + 3.

Let d /∈ N. Then σ2
ε enters (3.20) only via the term in the second row of (3.20),

which is non-zero for all j < t. Moreover, σηε enters (3.20) via the term in the third

and fourth row of (3.20), which is again non-zero for all j < t. σ2
η enters (3.20) via the

term in the first row of (3.20), which is non-zero for j = 0, and for all j = 1, ..., p̃,

where p̃ is the number of non-zero ã1(ϕ), ..., ãp̃(ϕ) 6= 0. Finally, m1, ...,mq enter

(3.20) via the term in the second row and the term in the third and fourth row of

(3.20), both of which are non-zero for all j < t. Consequently, for non-integer d,

the contribution of m1, ...,mq and σ2
ε , σηε to γj(θ) is non-zero for all j < t, while

the contribution of σ2
η to γj(θ) is non-zero at least for j = 0. It follows that for

non-integer d, the fractional UC model is identified for any reasonable choice of the

lag orders of the cyclical ARMA polynomials p ≥ 0, q ≥ 0. However, for high q,

the identification of the MA parameters becomes weak because πl(d) = O(l−d−1)

converges to zero quickly.

In contrast, integer-integrated UC models cannot identify such parsimoniously

parameterized models, nor models with rich moving average dynamics. To see this,
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note that for δ = 1, d ∈ N, it holds that aj = ãj(ϕ), aj = 0 for all j > p, and

mj = m̃j(ϕ), mj = 0 for all j > q. Thus, in (3.19) the polynomial ã+(L,ϕ) is of

order p, while m̃+(L,ϕ)(1 − L)d+ is of order q + d, and thus b+(L,ϕ, θ) is of order

max(p, q + d). Consequently, γj(θ) = 0 for all j > max(p, q + d), which allows to

identify max(p, q + d) + 1 parameters. On the other hand, the structural model has

q+3 parameters still to be identified, and so identification requires max(p, q+d)+1 ≥
q + 3. For d = 1, it immediately follows that the correlated UC model is neither

identified for p < 2, nor for p < q + 2.

3.5 Fractional trends and cycles in US GDP

With the fractional UC model at hand, we revisit the puzzling results for the trend-

cycle decomposition of US GDP from traditional UC models as summarized in section

3.2. As will become clear, our new model provides additional insights regarding the

specification of trend and cycle, and explains the puzzling estimates for the business

cycle in the literature:

First, while traditional UC models require to specify the integration order d prior

to estimation, d enters the fractional UC model as a parameter to be estimated.

Therefore, we provide evidence on the memory of log GDP and draw inference on

the appropriate specification of the trend. Specifically, we test the hypotheses that

d0 = 1 or d0 = 2. If both hypotheses are rejected, an intermediate solution may

better explain the long-run dynamics of US GDP.

Second, besides the stochastic long-run dynamics, we also investigate the speci-

fication of the deterministic long-run component µt for log GDP. In addition to the

traditional linear trend component, we check whether the explanatory power of the

model is improved when the constant is placed in the state equation for xt, yielding

a deterministic polynomial trend of order d. Moreover, we check whether allowing

for a polynomial trend of order b ∈ R+ improves the explanatory power of the frac-

tional UC model for log GDP. This is related to Perron and Wada (2009), who argue

that the long-run component of log GDP evolves as a deterministic, nonlinear trend

rather than a non-stationary stochastic trend. By letting a deterministic polyno-

mial trend compete against a fractional stochastic trend, we investigate empirically

whether the long-run component of log GDP is rather deterministic, or stochastic,

or a combination of both.

Third, we shed light on the appropriate specification of the cyclical component.

As shown in subsection 3.4.3, the fractional UC model is identified under much

weaker conditions than traditional UC models. Therefore, both richer and more
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parsimonious parametrizations of ct can be considered. In particular, we allow for

a cyclical ARMA(p,q) polynomial up to orders p, q ≤ 4, and investigate whether

richer cyclical dynamics provide an economically plausible estimate for the cycle.

We also examine the fit of the fractional UC model when the standard lag operator

is replaced by a fractional lag operator.

Fourth, our results allow to draw inference on the correlation between long- and

short-run innovations. While the literature typically finds a correlation coefficient

close to −1 once correlated trend and cycle innovations are allowed for, we investigate

whether this still holds when the integration order is allowed to deviate from one or

two.

In the following, we treat the observable yt as log seasonally adjusted real US

GDP. As in section 3.2, the data for yt come from the Federal Reserve Bank of St.

Louis,3 are in quarterly frequency, cover the period from 1947Q1 to 2022Q4, and are

log-transformed.

3.5.1 Model specification and estimation

We consider several specifications for the different components of the fractional UC

model: The deterministic component µt in (3.4) either consists of an intercept plus a

linear time trend (b = 1), as is common in the UC literature for GDP, or it assumes

an intercept plus a polynomial trend of order d (i.e. b = d), which is equivalent

to allowing for a non-zero intercept in the second equation of (3.2) and thus for

a drift in xt. Yet another specification allows for an intercept plus a polynomial

trend of order b ∈ R+, where b is estimated jointly with the other parameters, thus

adding additional flexibility to the deterministic trend component. With respect to

the cycle, we parameterize (3.5) either as an ARMA(p, q) process in the standard

lag operator L (i.e. δ = 1), where p = 1, ..., 4, q = 0, ..., 4 orders are considered. As

an alternative, we replace L by the fractional lag operator Ld, where the memory

parameter takes the integration order of xt as its value (i.e. δ = d). For the latter

specification, we consider lag orders p = 1, ..., 4 for the cyclical AR polynomial.

Moreover, all specifications include a dummy variable as an additional regressor

that takes the value one in the second quarter of 2020, and zero otherwise: Due to

the COVID pandemic, US GDP fell by 8.9 percent in the second quarter of 2020,

the largest single-quarter contraction in more than 70 years. As a glimpse on figure

3.4 reveals, not controlling for the sudden drop of GDP would result in two large

outliers for the prediction errors in quarters two and three of 2020, with the sum

3The series can be downloaded here: https://fred.stlouisfed.org/series/GDPC1
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of squared prediction errors for these two quarters almost leveling that of all other

quarters. In all trend-cycle decompositions, the regression coefficient of the dummy

is attributed to the cyclical component.

Parameter estimation of θ0 via the QML estimator as described in subsection

3.4.3 is carried out as follows: First, for each specification 100 combinations of

starting values are drawn from uniform distributions with appropriate support.4 For

each vector of starting values, the quasi-log likelihood is maximized by the BFGS

algorithm, and the estimate with the highest likelihood value is selected as the final

estimate for θ0. Note also that by the type II definition of the fractional trend,

pre-sample observations are treated as zero, and thus the prediction errors at the

beginning of the sample should be treated with caution. The UC literature typically

deals with the estimation uncertainty at the beginning of the sample by diffusely

initializing the state vector, i.e. setting the initial variance of the state vector to

an arbitrarily high value. This reduces the contribution of the first few prediction

errors to the objective function to nearly zero, so that they have little effect on the

estimates (see e.g. Harvey; 1989, ch. 3.3.4). We take a similar approach by simply

excluding the first 40 prediction errors when calculating the quasi-log likelihood. In

this way, we eliminate the estimation uncertainty at the beginning of the sample,

but at the same time avoid the computationally intensive Kalman recursions for the

diffuse initialization of the state covariance.5

3.5.2 Estimation results

Tables 3.5 to 3.8 present the estimation results for the different parameterizations of

the fractional UC model, along with the model selection criteria and the estimated

correlations between ηt and εt. Table 3.5 reports the results for fractional UC(d, b,

d, ρ) models, where ct is an autoregressive process in the fractional lag operator Ld,

a(Ld)ct = εt. In contrast, tables 3.6 to 3.8 present the estimation results for UC

models where the cyclical component is modeled as an ARMA(p, q) process, with

p = 1, ..., 4, q = 0, ..., 4. Specifically, table 3.6 considers the UC(d, 1, 1, ρ) model

where the deterministic trend is assumed to be linear, µt = µ0 + µ1t, while table

3.7 displays the results for the UC(d, d, 1, ρ) model with a polynomial deterministic

trend of order d, µt = µ0 + µ1t
d. Table 3.8 shows the results for the UC(d, b, 1, ρ)

model that allows for a polynomial deterministic trend of order b, µt = µ0 + µ1t
b,

where b is estimated jointly with the other parameters via the QML estimator.
4In particular, we draw from d, b ∈ [1/2; 2].
5However, the estimation results are robust to diffuse initialization of the state vector instead of

dropping the first 40 observations (= observations from 1947Q1 to 1956Q4).
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Estimation results for the UC(d, 1, d, ρ) model in table 3.5, which includes a

linear trend in µt and the fractional lag operator for ct, indicate an integration order

of about 1.30 for log US real GDP. Once the linear deterministic trend is replaced by

the polynomial µt = µ0 + µ1t
d, the estimate for d0 becomes less than one whenever

p ≥ 2. As a glimpse on figure 3.3 shows, log GDP evolves slightly concave in the

long run, which is well approximated by µ1t
d for d < 1. Consequently, the QML

estimator produces a smaller estimate for d0 to account for the concave evolution

of log GDP via the deterministic component. Note, however, that the likelihood of

the UC(d, 1, d, ρ) model is always greater than the likelihood of the UC(d, d, d, ρ)

model, suggesting that a linear deterministic trend is more appropriate for log US

GDP. Further evidence comes from the UC(d, b, d, ρ) model in table 3.5: Once b is

allowed to deviate from d, the deterministic component becomes concave, while the

stochastic trend is estimated to be integrated of order greater than one, supporting

the results of the UC(d, 1, d, ρ) model. All three models find a small variance-ratio

of long- and short-run innovations, which is in contrast to the results from integer-

integrated UC models, see section 3.2 and table 3.3. Furthermore, within the set

of models with fractional lag operator Ld, the information criteria favor the UC(d,

1, d, ρ) specification. Obviously, placing the constant into the second equation

of (3.2) downward-biases the estimate of the memory of log GDP, thus reducing

the likelihood. Allowing for d 6= b 6= 1 again yields an estimated integration order

greater than one, along with an estimate for b0 slightly below one, but the additional

parameter increases the information criteria. Moreover, table 3.5 provides evidence

against the narrative of Perron and Wada (2009) that the long-run dynamics of GDP

are purely deterministic and driven by a nonlinear trend: If there were no stochastic

long-run dynamics in log US GDP, the UC(d, b, d, ρ) estimate for the variance of the

long-run innovations should either be indistinguishable from zero, or the estimate for

d0 should go to its lower bound of 1/2, such that the trend component captures at

least the very persistent cyclical dynamics. However, the estimates for the UC(d, b,

d, ρ) model indicate an integration order greater than one, together with a non-zero

variance of the long-run innovations.

Turning to the estimates for UC models with the standard lag operator L for ct
in tables 3.6 to 3.8, it is striking that for all three specifications of the deterministic

component, the BIC always favors the most parsimonious model, i.e. where ct is

an ARMA(1, 0). As discussed at the end of subsection 3.4.3, an advantage of the

fractional UC model is that it remains identified for all d 6= 1 even when ct is an

ARMA(1, 0), whereas the I(1) correlated UC model requires at least two autoregres-
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sive lags to identify all parameters. On the other hand, results from the BIC show

that additional AR and MA lags do not improve the fit on a large scale. Thus, while

in principle the fractional UC model allows for rich parameterizations of the cycle,

such specifications are not supported by the data. Iwata and Li (2015) argue that

even an AR(2) specification for the cyclical component is likely to be overparame-

terized for I(1) UC models of US GDP, and this seems to hold for fractional UC

models as well. Another notable result from tables 3.6 to 3.8 is that all three models

yield an estimate of d0 that is less than unity for almost all parameterizations of the

cycle, along with comparatively high estimates of σ2
η,0. Consequently, they produce

a rather volatile estimate for the trend component. Of all the specifications, the BIC

favors the UC(d, d, 1, ρ) model with a single autoregressive lag for the cycle. Since

the more general UC(d, b, 1, ρ) model yields estimates for b0 that are close to those

for d0, the additional parameter does not improve the fit of the model by much,

which explains the higher BIC. However, all models with ARMA cycles are clearly

outperformed in terms of the BIC by the UC(d, 1, d, ρ) model with fractional lag

operator Ld .

Regardless of the specification of the deterministic component µt or the use of

the fractional lag operator for the cycle, all estimates in tables 3.5 to 3.8 converge

to the corner solution where ρ̂ = Ĉorr(ηt, εt) = −1. Therefore, the Hessian matrix

of the QML estimator is nearly singular, making the estimated standard errors in

tables 3.5 to 3.8 unreliable. While an estimate ρ̂ close to −1 is frequently obtained in

the empirical literature once correlation between long- and short-run innovations is

accounted for (see e.g. Morley et al.; 2003; Iwata and Li; 2015), the result ultimately

implies that long- and short-run shocks cannot be identified separately for log US

real GDP, even when rich cyclical ARMA dynamics are considered. This raises

the question whether UC models in general are able to distinguish between long-

and short-run innovations, or whether the estimated correlation coefficient is an

artifact generated by the model and estimation procedure, rather than the data.

We address this question in appendix 3.A.1, where we provide evidence that the

estimated correlation coefficient of (almost) -1 is a feature of the data, not of the

model or the estimation procedure.

Among all fractional UC models, the UC(d, 1, d, ρ) model with a single autore-

gressive lag for ct in the fractional lag operator (i.e. p = 1) minimizes the Bayesian

information criterion. Therefore, it is treated as the preferred fractional UC speci-

fication in the following. The stochastic long-run component of GDP is estimated

to be integrated of order around 1.30, which is quite far from the integer-integrated
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specifications as considered in section 3.2. However, testing the hypotheses that

d0 = 1 and d0 = 2 using the t-test is problematic, because the standard errors re-

ported in table 3.5 are likely to suffer from the corner solution of the QML estimator.

Fortunately, the likelihood ratio test provides a solution.

The right columns of table 3.3 show the estimation results when the integration

order is fixed to one or two. They were estimated analogously to the fractional

UC models by excluding the first 40 prediction errors from the quasi-likelihood and

by including a dummy for the second quarter of 2020 to account for the outlier

generated by the COVID pandemic. Both the correlated I(1) and the correlated

I(2) UC models exhibit a log likelihood of about −316, while the log likelihood of

the UC(d, 1, d, ρ) model with two autoregressive lags (as for the models under

the null hypothesis) is about −301. The latter includes only the single additional

parameter d, which is set to either one or two in the integer-integrated models. The

test statistic of the likelihood ratio test is about 30 for both models. Consequently,

the test rejects both the hypotheses that d0 = 1 and d0 = 2 at any conventional level

of significance.

3.5.3 Trend-cycle decomposition

The estimated integration order d̂ = 1.30 implies that a long-run shock on GDP

growth (i.e. the first difference of log GDP) not only has a contemporaneous effect,

as imposed in the I(1) model, but evolves as a mean-reverting fractionally integrated

process of order around 0.3. A long-run shock then retains 30% of its initial impact

after one quarter, 20% after two quarters, and 12% after one year. It converges to

zero at a hyperbolic rate, leaving 5% of its initial impact after four years and 3%

after ten years. A possible economic interpretation is that long-run shocks, such as

technological innovations, are not adapted by the whole economy at a fixed point in

time, but rather successively.

Turning to the cycle, we find that a parsimonious parameterization of ct is sug-

gested by the BIC, which is in line with the findings of Morley et al. (2003). Addi-

tional lags do not significantly improve the overall fit, as their coefficients are small

and insignificant at the 5% level (to see this, compare the likelihood ratios of table

3.5). As argued by Iwata and Li (2015), a small p in the data-generating mechanism

of log GDP complicates the separation of long- and short-run innovations, which

may also explain the estimated correlation coefficient. From the results in table 3.5,



126 Solving the unobserved components puzzle

it follows for ct that

ĉt = 0.91L1.30ĉt = 1.18ĉt−1 − 0.18ĉt−2 − 0.04ĉt−3 − 0.02ĉt−4 − ...,

where the sign-change after the first coefficient illustrates that the fractional lag

operator is able to generate oscillatory behavior, for which standard AR models

require at least two lags. The parameter estimates for the cycle indicate strong

persistence, which is intuitive for the business cycle. However, the roots of the au-

toregressive polynomial are all outside the unit circle, with the smallest root being

1.03. Moreover, the estimated variance-ratio between long- and short-run innova-

tions is σ̂2
η/σ̂

2
ε = 0.11, indicating that much of the variation in log GDP is due to

the cycle, while the stochastic trend is comparatively smooth. This is in contrast to

the results for the correlated I(1) UC model, see section 3.2.

Figure 3.3: Trend-cycle decomposition for log US real GDP from the UC(d, 1, d,
ρ) model with p = 1 lags for ct. The left plot (a) sketches the smoothed trend
component τt = µt + xt from the fractional UC model in red, dashed, together with
log US real GDP in black, solid. The right plot (b) shows the smoothed cyclical
component ct (black, solid) from the same fractional UC model, where ct is an
autoregressive process in the fractional lag operator Ld, together with the output
gap estimate from the US Congressional Budget Office (blue, dashed). Shaded areas
correspond to NBER recession periods.

Figure 3.3 plots the trend-cycle decomposition for the fractional UC(d, 1, d,

ρ) model, where the estimates for xt, ct are obtained from the single-step Kalman

smoother as discussed in subsection 3.4.2. Due to the small σ̂2
η, the decomposition

yields a smooth trend with little short-run variation. Furthermore, the Kalman

smoother attributes much of the variation in log GDP to the cyclical component due

to the relatively high σ̂2
ε . The smoothed cyclical component exhibits a persistent be-



3.5 Fractional trends and cycles in US GDP 127

havior and has the shape of an asymmetric sine curve. It rises gradually in periods

of economic recovery and upswing, and falls sharply during recession periods. Sim-

ilar estimates are obtained from the nonlinear regime-switching UC-FP-UR model

of Morley and Piger (2012), which promotes the generality of the parsimonious frac-

tional UC model. Moreover, the estimate for ct shows similar pro-cyclical dynamics

as the US Congressional Budget Office (CBO)6 estimate for the output gap that is

sketched in blue. This is striking, because the CBO estimate is based on macroe-

conomic theory: It models potential GDP by a Cobb-Douglas production function

with labor, capital, and total factor productivity as inputs, and ties changes in out-

put to changes in unemployment using Okun’s law. In contrast, our results are fully

data-driven and thus complement the CBO’s theory-based results. While our esti-

mate of the cycle coincides with the output gap estimate of the CBO in terms of the

general patterns as well as the key turning points, there are some interesting differ-

ences: The fractional UC model reveals a persistent overheating of the US economy

in the run-up to the Great Recession, which is a feature not detected by the CBO

estimate. However, our finding aligns well to the output gap measure of Barigozzi

and Luciani (2021), which is based on a dynamic factor model with macroeconomic

indicators as inputs, as well as to Borio et al. (2017), who argue that credit growth

was a key driver of the overheating of the US economy in the run-up to the Great

Recession. Another striking result concerns the COVID-19 recession, where neither

our estimate nor the CBO’s output gap shows any signs of overheating.

From figure 3.3 it becomes clear that the fractional UC model solves the problem

of obtaining implausible cycle estimates in the integer-integrated UC literature. The

solution to the UC puzzle is that, given that log GDP is integrated of order around

1.3, forcing the long-run component to be I(1) upward-biases the estimate σ̂2
η, as

the additional memory that is not captured by the I(1) specification goes into the

estimates for the long-run innovations ηt. To adjust for the erratic behavior of

the long-run innovations, the estimate for the cycle becomes noisy. In contrast,

the fractional UC model fully captures the memory of log US GDP, which allows

σ̂2
η to be small, and thus yields a smooth trend estimate along with a persistent

cyclical component that hits all NBER recession periods. These results are consistent

with the work of Kamber et al. (2018), who obtain plausible cycle estimates when

restricting the variance-ratio of long- and short-run innovations to be small.

6The series can be downloaded here: https://fred.stlouisfed.org/graph/?g=f1cZ
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3.5.4 Model diagnostics

A few diagnostic checks for the UC(d, 1, d, ρ) model are in order: Figure 3.4 plots

the estimated autocorrelation function of the prediction error of the Kalman filter

vt(θ̂) as given in (3.17), the smoothed periodogram for the smoothed long-run inno-

vations ηt, the prediction error vt(θ̂) itself, and the prediction error for the UC(d,

1, d, ρ) model without a dummy variable for the second quarter of 2020. The esti-

mated autocorrelation function shows that there is little autocorrelation left in the

prediction errors, with only slightly significant autocorrelation at lag five. As the

cyclical dynamics of log GDP are well captured by the parsimonious UC(d, 1, d,

ρ) model with only a single lag for the cyclical component, little to no additional

benefit can be expected from models with richer parameterizations for the cyclical

component. This is consistent with the estimation results in tables 3.5 to 3.8, where

richer models yield only small improvements in terms of the likelihood. Moreover,

the estimated (almost) perfect correlation between long- and short-run innovations

can be expected to persist even in richer models.

For the smoothed long-run innovations ηt, the periodogram in figure 3.4 reveals

a spike at frequency 0.1, which refers to a period of ten quarters and is due to the

slightly significant autocorrelation at lag 5. However, neither a peak, nor a zero at

the origin of the periodogram can be spotted. Thus, contrary to the I(1) UC models

in figure 3.2, allowing for a fractionally integrated trend removes the long memory

from the smoothed long-run innovations, and at the same time ensures them not to

exhibit intermediate memory as for I(2) UC models.

For the prediction errors of the UC(d, 1, d, ρ) model with a dummy for the first

quarter of the COVID pandemic (i.e. 2020Q2), the bottom-left panel of figure 3.4

shows no large outliers. However, starting in the mid 1980s, the prediction errors

appear to have a lower variance compared to the first half of the sample. For UC

models with an I(1) specification for the trend, a generalization that accounts for

the structural break in the mid 1980s is proposed by Weber (2011). It would be in-

teresting to see whether controlling for a structural break in the fractional UC model

can reveal additional details about the parameters, in particular the correlation of

the innovations, as well as about the dynamics of the trend and the cycle.

To illustrate the importance of the COVID-19 dummy, the bottom-right panel

shows the prediction error of the UC(d, 1, d, ρ) model without the dummy in the

second quarter of 2020. When the dummy is omitted from the model, the prediction

errors show a strong negative outlier in 2020Q2, followed by a spike in the next

quarter. Since the objective function of the QML estimator minimizes the sum
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Figure 3.4: Diagnostic checks: For the UC(d, 1, d, ρ) model with p = 1 autore-
gressive lags, the upper-left panel displays the estimated autocorrelation function of
the prediction errors, together with 5% (red) and 1% (blue) confidence bands, the
upper-right panel shows the smoothed periodogram for the smoothed long-run inno-
vations ηt, the bottom-left panel plots the prediction errors, while the bottom-right
panel shows the respective prediction errors of the UC(d, 1, d, ρ) without a dummy
in the second quarter of 2020. Shaded areas highlight NBER recession periods.

of squared prediction errors, omitting the dummy would assign a strong weight

to the two respective quarters, which is likely to deteriorate the estimation of the

parameters and the latent components. Therefore, any UC model that includes the

period of the COVID pandemic needs to somehow adjust for the strong outliers, and

including a single dummy in 2020Q2 obviously does a good job.

Finally, we take a closer look at the corner solution of the QML estimator: If

long- and short-run innovations are perfectly correlated, we can write εt = βηt, where

β = σηε/σ
2
η is the regression coefficient from regressing εt on ηt. The UC(d, 1, d,

ρ = −1) model can then be written as

a(Ld)∆
d
+(yt − µt) = a(Ld)ηt + (1− Ld)βηt = c(Ld)vt, (3.21)

where vt = (1+β)ηt with Var(vt) = (1+β)2σ2
η, and c(Ld) =

∑p
j=0 cjL

j
d, with c0 = 1,

c1 = −(a1 + β)/(1 + β), and cj = −aj/(1 + β) for all 2 ≤ j ≤ p. (3.21) is a single-

source-of-error model that admits an ARFIMA representation in the fractional lag
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operator Ld. For the parameter estimates of the chosen UC(d, 1, d, ρ) model with

p = 1, the corresponding coefficients in (3.21) can be calculated from the results in

table 3.5. These are β̂ = −2.99, ĉ1 = −1.04, and V̂ar(vt) = 0.57. However, (3.21)

can also be estimated directly via the QML estimator by solving (3.21) for vt and

optimizing over θSSE = (d, a1, σ
2
η, β)′, which yields θ̂SSE = (1.32, 0.90, 0.16,−3.00)′.

The estimates are almost identical to the results from the fractional UC model. In

addition, the log likelihood is −303.69 and thus is very close to the likelihood of the

fractional UC model.

3.6 Conclusion

In this paper, we revisited the puzzling estimates for the business cycle generated

by traditional, integer-integrated unobserved components models. Our hypothesis

was that the long-run dynamics of log GDP are captured neither by UC models

with an I(1) trend component, nor by those with an I(2) component. Instead,

the periodograms of the smoothed long-run innovations for integer-integrated UC

models suggested an integration order somewhere between the I(1) and the I(2)

specifications.

To test whether an intermediate solution for the memory of the trend solves the

unobserved components puzzle, we revisited the puzzling results using the fractional

UC model that was derived in chapter 2 of this thesis, which models the trend as a

fractionally integrated process of order d, nesting the traditional, integer-integrated

specifications. Since d is estimated jointly with the other model parameters, the

fractional UC model provides a data-driven solution to the specification of the long-

run dynamics in UC models.

Our estimation results indicate an integration order of about 1.3, implying that

the trend of log GDP is more persistent than assumed by I(1) UC models, but less

persistent than assumed by I(2) UC models. The likelihood ratio test rejects both,

an I(1) trend and an I(2) trend in log GDP, indicating that integer-integrated UC

models are misspecified. In contrast to integer-integrated UC models, the trend-

cycle decomposition from the fractional UC model hits all NBER recession periods,

identifies the same turning points as the output gap reported by the US Congressional

Budget Office, and reveals some additional details, e.g. an overheating economy in

the run-up to the Great Recession.

While the estimates for trend and cycle are very different from the traditional

literature, our estimates for the correlation between long- and short-run innovations

are well in line with the literature: For almost all parameterizations considered, we



3.6 Conclusion 131

estimate an (almost) perfect correlation between long- and short-run innovations.

Thus, for GDP, long- and short-run innovations cannot be structurally identified by

the fractional UC model.

The model offers a variety of opportunities for future research. First, to sepa-

rately identify long- and short-run innovations, a multivariate generalization of the

fractional UC model could be considered. This would allow to model GDP jointly

with other economic variables that may exhibit a more pronounced cyclical behavior.

Second, fractional trends of different persistence could be incorporated, which would

allow to decompose time series into components of different memory.

For applied researchers, the model provides a flexible, data-driven method for

treating permanent and transitory components in macroeconomic and financial ap-

plications. It provides a solution to many model specification issues that have caused

uncertainty and debate about realistic trend-cycle decompositions and the estimation

of recessions.
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3.A Appendix

3.A.1 The corner solution of the QML estimator

In this appendix, we investigate the corner solution of the QML estimator as found in

section 3.5, i.e. the estimated correlation of −1 between long- and short-run innova-

tions. We want to ensure that the estimated (almost) perfect correlation is a feature

of the data on log US real GDP, and not a result of weak identification or an artifact

generated by the fractional UC model. First, to rule out weak identification, we ana-

lyze the log likelihood graphically, and check whether it is flat around the optimum.

If so, then the QML estimator is likely to suffer from weak identification, and nu-

merical optimization routines may converge to the boundary of the parameter space

where they are terminated. Second, we screen out corner solutions by considering

a constrained optimization problem that penalizes strong correlation between long-

and short-run innovations. If the constrained optimization yields a similar value for

the log likelihood, this would also indicate weak identification. Conversely, a much

smaller likelihood would indicate that the (almost) perfect correlation is a feature

of the data. Third, to see whether fractional UC models can in principle identify a

correlation coefficient other than ±1, we perform a small Monte Carlo study, where

all parameters are equal to the estimates for the preferred UC(d, 1, d, ρ) model

in section 3.5 with a single lag for the cyclical component, except the correlation

coefficient that is set to −0.8 to mimic strong, but not perfect, correlation. We then

examine whether the QML estimator is able to find the true correlation coefficient,

or whether it also converges to the corner solution.

Figure 3.5 plots the negative log likelihood of the UC(d, 1, d, ρ) model with a

single autoregressive lag for the cyclical component around its optimum in table 3.5:

Each plot shows the negative log likelihood for a two-dimensional grid of two param-

eter combinations in θ, with all other parameters held fixed at their estimated values.

Thus, each plot shows how the likelihood changes if we vary over two parameters in

θ, holding all other parameters fixed. As can be seen, the likelihood is hump-shaped

for the combinations (d, a1), (d, σ2
η), (d, σ2

ε), (a1, σ
2
η), and (a1, σ

2
ε), indicating that

these parameters are well identified. As to be expected, the plot for (σ2
η, σ

2
ε) shows

a ridge under perfect correlation. Most interestingly, the likelihood is steep in the

direction of ρ around −1: For ρ > −.995, the negative log likelihood is greater than

315, while at the optimum it is about 301. Thus, the objective function is anything

but flat in the direction ρ→ −1, which rules out that the estimated (almost) perfect

correlation is an artifact generated by the numerical optimization procedure.
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Figure 3.5: Contour plot of the negative log likelihood for the UC(d, 1, d, ρ) model
with a single autoregressive lag for the cyclical component. The black dot visualizes
the parameter estimate of the QML estimator as also reported in table 3.5. All
parameters except those on the (x, y)-axis are held fixed at their point estimates as
reported in table 3.5.

Next, we reconsider the optimization problem of section 3.5, but constrain the pa-

rameter space: We penalize corner solutions for the correlation coefficient by adding

a penalty term to the log likelihood once |ρ| > 0.99 that is

Penalty(θ) =

log 1−|ρ|
0.01 if |ρ| > 0.99,

0 else.

By design, the penalty term is zero for |ρ| = 0.99, and goes to −∞ for |ρ| → 1.

Thus,the region of the parameter space for Θ is reduced by excluding (almost) perfect
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correlation of long- and short-run innovations.

Estimation results for the constrained optimization are contained in tables 3.9

to 3.12 for the same parameterizations of fractional UC models as for the uncon-

strained optimization in section 3.5. As can be seen from the four tables, numerical

optimization of the constrained likelihood now yields an estimated correlation of

−0.99 for almost all parameterizations. Thus, constraining the optimization prob-

lem does not yield an optimum where the correlation is significantly less pronounced.

For the preferred UC(d, 1, d, ρ) model with a single autoregressive lag for the cycle,

the parameter estimates are similar to the unconstrained results, however the log

likelihood is much smaller. This is well illustrated by the plots in figure 3.5 with ρ

on the ordinate, where the new optimum of the constrained optimization problem

now falls into the green region. In addition, the constrained results often show a

comparatively high estimate for σ2
η,0, together with a variance-ratio of trend and

cycle innovations that is estimated to be greater than one. Consequently, a lot of

variation is attributed to the trend, making it erratic, while little variation is left to

be captured by the cycle. Thus, constraining the optimization problem to exclude

(almost) perfectly correlated innovations not only reduces the likelihood, but also

yields economically implausible estimates for trend and cycle.

Finally, we check whether the estimated (almost) perfect correlation is an artifact

generated by the QML estimator for fractional UC models. For this purpose, we

conduct a Monte Carlo study, where we simulate yt by drawing 1000 replications

from the distribution that is generated under θ0 = (1.30, 0.14,−0.34, 1.28, 0.91)′

for the selected UC(d, 1, d, ρ) model. θ0 is equal to the QML estimates for the

UC(d, 1, d, ρ) model with a single autoregressive lag for the cyclical component as

reported in table 3.5, with the only exception that the covariance parameter is set

such that ρ0 = −0.80. Thus, we study a data-generating mechanism in which the

innovations are highly, but not perfectly, correlated. We then examine whether the

QML estimator is able to reliably estimate the covariance parameter, or whether it

again converges to the corner solution where the correlation is perfectly negative.

The latter would imply that the corner solution for US GDP is not a property of

the data, but rather an artifact that is generated by the model and the estimation

procedure.

Table 3.2 illustrates the results from the Monte Carlo study. The correlation

coefficient itself is not estimated directly (since the optimization is conducted over

σηε), however it can be computed for each estimate. As table 3.2 shows, the mean

estimate for ρ0 is slightly upward-biased. Since ρ0 is close to the lower bound of the
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θ0 mean q.1 q.2 q.25 q.5 q.75 q.8 q.9 rMSE bias median bias
d 1.30 1.26 1.15 1.20 1.21 1.26 1.32 1.33 1.37 0.11 -0.04 -0.04
σ2
η 0.14 0.20 0.01 0.02 0.03 0.08 0.14 0.16 0.25 0.76 0.06 -0.06
σηε -0.34 -0.28 -0.45 -0.33 -0.31 -0.17 -0.06 -0.04 0.03 0.77 0.06 0.17
σ2
ε 1.28 0.87 0.45 0.55 0.59 0.74 0.95 1.06 1.20 0.87 -0.41 -0.54
a1 0.91 0.88 0.77 0.82 0.84 0.90 0.94 0.95 0.98 0.10 -0.03 -0.01
ρ -0.80 -0.59 -1.00 -0.94 -0.91 -0.80 -0.51 -0.39 0.29 0.56 0.21 -0.00

Table 3.2: Simulation results for the UC(d, 1, d, ρ) model. The table shows the
mean estimate (mean), the respective quantiles (q·), the root mean squared error
(rMSE), the mean bias (bias) and the median bias (bias) for the QML estimator of
θ0 in a Monte Carlo study with 1000 replications.

support for ρ, this is not surprising. As can be seen from the quantiles reported in

table 3.2, at least 10% of all estimates are at the boundary of the parameter space,

where ρ̂ = −1 is estimated. However, the 20%-quantile is already away from the

corner solution. The median estimate equals ρ0 itself, so that the QML estimator

appears to be median-unbiased, which is reassuring. In sum, the simulation shows

that the QML estimator can identify correlations that differ from the corner solution

in section 3.5, and thus the (almost) perfect correlation for log US real GDP appears

to be generated by the data, and not by the estimation procedure or the fractional

UC model.
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3.A.2 Additional figures and tables

(a) (b)
I(1) I(1)-corr I(2) I(2)-cor I(1) I(1)-corr I(2) I(2)-cor

σ2
η 1.06 1.73 0.00 0.00 0.33 1.60 0.00 0.00

(0.15) (0.42) (0.00) (0.00) (0.10) (0.31) (0.00) (0.00)
σηε -0.53 0.03 -0.89 -0.02

(0.32) (0.03) (0.27) (0.00)
σ2
ε 0.14 0.32 1.23 1.23 0.25 0.67 0.63 0.65

(0.12) (0.27) (0.10) (0.10) (0.12) (0.22) (0.04) (0.05)
b1 1.51 1.15 1.07 1.09 1.61 0.67 1.29 1.30

(0.16) (0.29) (0.06) (0.06) (0.12) (0.07) (0.05) (0.06)
b2 -0.64 -0.65 -0.12 -0.12 -0.61 -0.23 -0.32 -0.30

(0.17) (0.20) (0.06) (0.06) (0.12) (0.02) (0.05) (0.05)
− logL(θ) 469.60 467.56 468.98 468.58 317.88 316.81 319.13 316.23
ρ -0.71 1.00 -0.86 -1.00
AIC 947.19 945.11 945.96 947.16 643.77 643.62 646.25 642.46
BIC 962.06 963.70 960.83 965.75 658.63 662.20 661.12 661.05

Table 3.3: Parameter estimates for the integer-integrated UC models. Standard er-
rors are denoted in parentheses and are obtained from the numerical Hessian matrix.
Columns (a) contain the quasi-maximum likelihood estimates for the diffusely ini-
tialized state vector, while columns (b) omit the first 40 prediction errors from the
likelihood, avoid the diffuse initialization of the objective function, and allow for a
dummy in the second quarter of 2020.
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I(1) I(1) corr. I(2) I(2) corr. I(1) BN filter I(2) HP filter
d̂EW.5 0.53 0.09 -1.00 -1.00 -0.10 0.29
d̂GPH.5 0.70 0.17 -0.58 -0.58 0.34 -0.03
d̂EW.55 0.56 0.09 -0.76 -0.77 0.48 0.97
d̂GPH.55 0.65 0.13 -0.63 -0.63 0.41 0.43
d̂EW.6 0.44 0.17 -0.65 -0.66 0.60 1.55
d̂GPH.6 0.53 0.19 -0.60 -0.61 0.49 0.85
d̂EW.65 0.30 0.35 -0.52 -0.54 0.66 1.98
d̂GPH.65 0.36 0.43 -0.47 -0.48 0.54 1.29
d̂EW.7 0.22 0.55 -0.31 -0.33 0.65 2.00
d̂GPH.7 0.22 0.53 -0.32 -0.34 0.56 1.61
d̂EW.75 0.14 0.32 -0.05 -0.08 0.61 2.00
d̂GPH.75 0.10 0.37 -0.18 -0.20 0.53 1.89

Table 3.4: Estimates for the memory parameter of the smoothed long-run innovations
for the UC-I(1)-, the UC-I(2)-, the UC-I(1)-corr, and the UC-I(2)-corr model, as
well as for the BN- and HP-filter. Memory parameter estimates stem from the exact
local Whittle estimator of Shimotsu and Phillips (2005), denoted as d̂EW· , and the
estimator of Geweke and Porter-Hudak (1983), denoted as d̂GPH· , and the subscript
indexes the bandwidth α ∈ {.5, ..., .75}.
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are
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ericalH
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Chapter 4

Macroeconomic forecasting with

fractional factor models

4.1 Introduction

At least since the seminal work of Chamberlain and Rothschild (1983), Forni et al.

(2000), and Stock and Watson (2002), factor models have become an important

tool for economic analysis and forecasting. They are particularly popular in fields

where strong cross sectional dependencies and large data sets are present, such as

macroeconomics and finance, because they handle covariation in the cross section

efficiently by condensing it into a typically small number of common latent factors.

In contrast to the cross section, little attention has been paid to strong dependence

of the factors in the time domain: While economic data are frequently found to be

highly persistent, often non-stationary, and to exhibit long memory, the vast majority

of factor models assume the factors to be stationary. By allowing for factors with

different memory, this paper investigates whether combining fractional integration

techniques and factor models improves the forecast performance for macroeconomic

data.

A major drawback of most factor models is the inefficient use of longitudinal

information. As a simple example, consider a macroeconomic panel in which some

variables are found to have high integration orders around two (e.g. prices, money,

and credit), others have integration orders close to one (e.g. economic output, income,

and employment), and still others are stationary (e.g. interest rates). Suppose the

panel is driven by a set of common factors with heterogeneous integration orders,

where the factors with high memory affect only the non-stationary variables and

impose cointegration relations, while the factors with low memory may affect the

147
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entire panel. In order to apply traditional factor models, which require stationary

data, to such data, the data are typically first tested for unit roots and differenced if

necessary. However, since the integration order of an observable variable equals the

highest integration order of all factors with non-zero loadings, all factors with lower

memory are likely to be over-differenced when the data are pre-processed. Model

selection criteria and model specification tests for the number of factors may then

miss the over-differenced additional factors, as their corresponding eigenvalues tend

to zero.

The problem of potentially non-stationary factors has been addressed by allow-

ing for unit roots in the factors (see, e.g., Bai; 2004; Banerjee and Marcellino; 2009;

Eickmeier; 2009; Chang et al.; 2009; Banerjee et al.; 2014, 2016; Barigozzi et al.;

2021). While this clearly improves the suitability of factor models for various appli-

cations in macroeconomics and finance, these models come at the cost of requiring

prior assumptions about the integration orders of the factors, and typically all fac-

tors (and thus all observable variables) are assumed to be either I(1) or I(0). This,

in turn, limits the model to factors (and data) with either perfect or short memory,

reduces statistical inference about the integration orders of data and factors to prior

unit root testing, and hinders a data-driven estimation of the integration orders to-

gether with the other model parameters. Misspecifying the integration orders of the

observable variables and factors may bias factor estimates, lead to incorrect infer-

ence about the number of common factors, and is likely to deteriorate the forecast

performance. Moreover, treating integration orders as (known) integers ignores the

non-standard behavior of many economic series that are fractionally integrated, as

well as the uncertainty about the true integration orders. The latter points are par-

ticularly important in macroeconomics, where the literature has provided extensive

evidence for long memory and fractional cointegration in the data (see e.g. Hassler

and Wolters; 1995; Baillie; 1996; Gil-Alaña and Robinson; 1997; Tschernig et al.;

2013).

While some generalizations of factor models to fractionally integrated processes

exist, the literature has so far mostly considered semiparametric models. Morana

(2004) suggests a frequency domain principal components estimator that allows for

long memory, while Luciani and Veredas (2015), Cheung (2022), and Ergemen (2023)

estimate fractionally integrated factors by a principal components estimator based

on a data set in first differences. Recent parametric models have been designed with

a different focus, or are much more restrictive: Ergemen and Velasco (2017) and

Ergemen (2019) focus on eliminating common fractional factors, while Mesters et al.
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(2016) restrict the memory of the common factors to the stationary region. In a setup

closest to the one considered in this paper, Hartl and Jucknewitz (2021) introduce

a parametric fractionally integrated factor model that allows for both, stationary

and non-stationary factors. They decompose a panel of observable data into groups

of purely fractionally integrated factors with different integration orders, plus some

stationary factors that exhibit an ARMA structure. The model is then applied to

analyze and forecast realized covariance matrices.

Building on the model of Hartl and Jucknewitz (2021), this paper aims to pro-

vide insights on whether fractional integration techniques have merit for at least a

relevant fraction of the numerous and heterogeneous macroeconomic variables typi-

cally under study. To this end, I search for a suitable factor model formulation that

decomposes a panel of macroeconomic data with heterogeneous integration orders

into common factors and idiosyncratic errors. The factors may exhibit long mem-

ory and thus generate cointegration relations among the observable variables, and

the memory may differ across the factors. Specifically, I study three different mod-

els that incorporate long memory into a parametric factor model setup: The first

model introduces ARFIMA processes to the non-stationary factor model setup of

Barigozzi et al. (2021), thus allowing for more general patterns of persistence than

the usual integer-integrated specifications. Building on the work of Hartl and Juck-

newitz (2021), the second model distinguishes between purely fractionally integrated

factors, which determine the long-run behavior, and I(0) factors, which model com-

mon cyclical dynamics of the data. The third model generalizes the pre-differencing

of the data: Instead of taking first or second differences, the data enter the model

in fractional differences, with the exact level of differencing determined within the

model. Factors are then estimated based on the fractionally differenced series.

All models are cast in state space form so that factors, loadings, and integra-

tion orders can be estimated jointly by a combination of the Kalman recursions

and maximum likelihood. To arrive at a computationally feasible formulation of

the state space model that keeps the dimension of the state vector manageable, I

approximate the fractional differencing polynomial by small ARMA polynomials as

suggested by Hartl and Jucknewitz (2022). For a given integration order, the ARMA

coefficients are fitted beforehand and are smoothed over a sequence of integration

orders to obtain a continuous function that maps from the integration order to the

ARMA coefficients. Thus, optimization can be carried out over the integration order

parameters. The model parameters are then estimated by means of the maximum

likelihood estimator, where the expectation-maximization algorithm as derived by
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Hartl and Jucknewitz (2022) is used within the numerical optimization procedure.

The factors are estimated using the Kalman filter and smoother. Starting values for

the parametric optimization are obtained via principal components.

Just like the usual factor models, the fractional factor models are applicable to

high-dimensional data, but bear several advantages: They allow joint modeling of

data of different memory, and do not rely on prior assumptions about the memory

of the data. Moreover, they allow for joint estimation of factors, loadings, and

integration orders instead of the multi-step estimation procedure of semiparametric

models. They capture cointegration through the common fractionally integrated

factors, and are more robust to over-differencing.

The forecast performance of the fractional factor models is studied in a pseudo

out-of-sample forecast experiment for the high-dimensional US macroeconomic data

set of McCracken and Ng (2016). I provide a guided choice among the different

models by considering the forecast performance for 112 macroeconomic variables.

Ultimately, I find comprehensive evidence that an adequate combination of fractional

integration techniques and factor models can significantly improve forecasts relative

to standard factor models and other benchmarks.

The remainder of the paper is organized as follows. Section 4.2 details the con-

struction of fractional factor models. Parameter optimization and factor estimation

are discussed in section 4.3. Section 4.4 compares the forecast performance of the

fractional factor models with various benchmarks in a pseudo out-of-sample forecast

experiment, and section 4.5 concludes.

4.2 Fractional factor models

To begin with, consider the following factor model for possibly fractionally integrated

data

yt = f(χt) + ut, t = 1, ..., T, (4.1)

where yt = (y1,t, ..., yN,t)
′ holds the observable data, f(χt) is the common component,

and ut = (u1,t, ..., uN,t)
′ are the idiosyncratic disturbances. The common component

f(χt) is driven by r common factors χt = (χ1,t, ..., χr,t)
′ that account for common

short- and long-run dynamics among the yt, while ut is purely idiosyncratic and has

a diagonal covariance matrix.

The observable yi,t ∼ I(d∗i ) are fractionally integrated of type II with integration

orders d∗i , d
∗
i ∈ D = {b ∈ R|0 ≤ b ≤ dmax <∞}, for all i = 1, ..., N , and d∗i may vary
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across i = 1, ..., N . D rules out anti-persistence by ensuring the integration orders

to be non-negative, while the upper bound dmax may be arbitrarily large, however it

forces the parameter space for the integration orders to be bounded. An integration

order d∗i implies that the fractional difference of a series is I(0), i.e. ∆
d∗i
+ yi,t ∼ I(0),

i = 1, ..., N .

The fractional difference operator ∆b
+ depends only on the integration order b.

Without subscript, it exhibits a polynomial expansion in the lag operator L of order

infinite

∆b = (1− L)b =

∞∑
j=0

πj(b)L
j , πj(b) =


j−b−1
j πj−1(b) j = 1, 2, ...,

1 j = 0,
(4.2)

where the πj(b) are defined recursively. The +-subscript of ∆b
+ denotes the trunca-

tion of an operator at t ≤ 0, e.g. for an arbitrary process zt, ∆b
+zt = ∆bzt1(t ≥ 1) =∑t−1

j=0 πj(b)zt−j , where 1(t ≥ 1) is the indicator function that takes the value one

for positive subscripts of zt−j , else zero. The use of the truncated fractional differ-

ence operator reflects the type II definition of fractional integration (Marinucci and

Robinson; 1999). It is required to treat the asymptotically stationary case (b < 1/2)

alongside the non-stationary case (b > 1/2).

Note that traditional factor models as considered by Forni et al. (2000), Bai

and Ng (2002), and Stock and Watson (2002) among others assume d∗i = 0 for all

i = 1, ..., N , while the non-stationary factor models of Bai (2004), Banerjee and

Marcellino (2009), Eickmeier (2009), Banerjee et al. (2014), Banerjee et al. (2016),

and Barigozzi et al. (2021) allow for d∗i ∈ {0; 1} for all i = 1, ..., N . Allowing

for integration orders d∗i ∈ D includes intermediate solutions between the integer-

integrated factor models, such as long-range dependent but mean-reverting processes

for 0 < d∗i < 1, and processes that are more persistent than random walks but less

persistent than quadratic stochastic trends for 1 < d∗i < 2. Thus, extending the

parameter space for the integration orders to the real line links the integer-integra-

ted specifications seamlessly. Due to the type II definition, the inverse fractional

difference ∆−b+ zt is well defined for all b ∈ D.

The key question addressed in the remainder of this section is how to specify a

factor model of the form (4.1) when the yt are allowed to be fractionally integrated.

The dynamic specification of χt is crucial, as it must take into account the strong per-

sistence and possibly non-stationarity of the yt. In addition, the functional relation

between χt and yt has so far been left open, and is of key importance as it determines

the cointegrating properties of the model. In the search for an appropriate specifica-
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tion of the general factor model in (4.1), the next three subsections introduce three

different candidate models that allow for fractionally integrated yt. Subsection 4.2.1

generalizes I(1) factor models (cf. e.g. Barigozzi et al.; 2021) to non-integer integra-

tion orders by allowing for autoregressive fractionally integrated factors. Subsection

4.2.2 decomposes the factors into purely fractionally integrated components that de-

termine the long-run behavior of the yt, and short memory components that reflect

the short-run behavior of the yt, and builds on the model of Hartl and Jucknewitz

(2021). Furthermore, subsection 4.2.3 generalizes the pre-differencing of standard

factor models to fractional differencing.

4.2.1 Dynamic fractional factor models

Consider a simple multivariate unobserved components model

yt = Λft + ut, t = 1, ..., T, (4.3)

where f(χt) = Λft in (4.1), ft = (f1,t, ..., fr,t)
′ holds the r common factors, Λ is

a N × r matrix of factor loadings that is assumed to have full column rank, and

the errors ut account for idiosyncratic dynamics. The latent factors are assumed to

follow r fractionally integrated autoregressive processes

Bj(L)∆
dj
+ fj,t = ζj,t, j = 1, ..., r, (4.4)

where Bj(L) = 1−
∑p

k=1Bj,kL
k is a stable lag polynomial. For the pervasive shocks

that drive ft, it is assumed that (ζ1,t, ..., ζr,t)
′ = ζt ∼ NID(0, Q), where Q is diagonal.

A matrix formulation of (4.4) follows directly by defining d = (d1, ..., dr)
′, the matrix

polynomials D(d) = diag(∆d1
+ , ...,∆

dr
+ ) and B(L) = diag(B1(L), ..., Br(L)), such

that B(L)D(d)ft = ζt.

The errors ui,t are assumed to be mutually independent and are allowed to be

autocorrelated

ρi(L)ui,t = ξi,t, ξi,t ∼ NID(0, σ2
ξi

), i = 1, ..., N, (4.5)

where ρi(L) = 1−
∑pi

k=1 ρi,kL
k is a stable lag polynomial.

The model may explain various degrees of common persistence that characterize

the data by common components with long memory. For d1 = ... = dr = 0, the

model nests the approximate dynamic factor model of Stock and Watson (2002),

while dj ∈ {0, 1}, j = 1, ..., r, yields a nonstationary dynamic factor model with
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I(1) factors as considered by Barigozzi et al. (2021). Therefore, the model can be

interpreted as a fractional generalization that neither requires prior differencing of

the data, nor prior assumptions about the integration orders.

4.2.2 Dynamic orthogonal fractional components

A more parsimonious factor model is proposed by Hartl and Jucknewitz (2021).

Their model distinguishes between r1 purely fractionally integrated factors f (1)
t =

(f
(1)
1,t , ..., f

(1)
r1,t

)′, that establish cointegration relations among the yt, and r2 stationary

autoregressive components f (2)
t = (f

(2)
1,t , ..., f

(2)
r2,t

)′, that account for common short-run

behavior. I consider a slight modification that allows for autocorrelated idiosyncratic

errors. The general framework for the dynamic orthogonal fractional components

model is then given by

yt =
[
Λ(1) Λ(2)

](f (1)
t

f
(2)
t

)
+ ut, t = 1, ..., T, (4.6)

∆
dj
+ f

(1)
j,t = ζ

(1)
j,t , j = 1, ..., r1, (4.7)

B
(2)
j (L)f

(2)
j,t = ζ

(2)
j,t , j = 1, ..., r2, (4.8)

ρi(L)ui,t = ξi,t, i = 1, ..., N, (4.9)

for all t = 1, ..., T and r = r1 + r2 ≤ N . As before, ρi(L) = 1 −
∑pi

k=1 ρi,kL
k is a

stable polynomial, and the N idiosyncratic shocks ξt = (ξ1,t, ..., ξN,t)
′ are assumed

to be independent Gaussian white noise processes ξi,t ∼ NID(0, σ2
ξi

), i = 1, ..., N .

For the pervasive shocks ζ(1)
t = (ζ

(1)
1,t , ..., ζ

(1)
r1,t

)′, ζ(2)
t = (ζ

(2)
1,t , ..., ζ

(2)
r2,t

)′, it is assumed

that vec(ζ
(1)
t , ζ

(2)
t ) ∼ NID(0, Q) where Q is diagonal. In addition, the errors ut are

assumed to be independent of the factors ft.

DefineB(2)(L) = diag(B
(2)
1 (L), ..., B

(2)
r2 (L)),D(1)(d) = diag(∆d1

+ , ...,∆
dr1
+ ). Then,

it follows immediately that the model is nested in the setup of subsection 4.2.1 for

ft = vec(f
(1)
t , f

(2)
t ), B(L) = diag(I,B(2)(L)), and D(d) = diag(D(1)(d), I). In terms

of (4.1) the model specifies f(χt) = Λ(1)f
(1)
t + Λ(2)f

(2)
t .

Note that the Gaussian white noise assumption on ζt together with Q being

diagonal yields r orthogonal factors ft. Moreover, since ut, ζt are assumed to be

independent, any correlation among the variables in yt stems from the common

long- and short-run components f (1)
t and f (2)

t .
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4.2.3 Dynamic factor models in fractional differences

The third model takes fractional differences of the observable variables to arrive at

a short memory model, where all components are at most I(0). The model differs

from those in subsections 4.2.1 and 4.2.2 in that it eliminates fractional integration

from the factors. Define

∆
d∗i
+ yi,t = Λift + ξi,t, t = 1, ...., T, i = 1, ..., N, (4.10)

Bj(L)fj,t = ζj,t, j = 1, ..., r, (4.11)

where Λi is a r-dimensional row vector holding the loadings for yi,t. As before,

letting yt = (y1,t, ..., yN,t)
′ denote the observable variables, Λ = [Λ′1, ..., Λ

′
N ]′ the

factor loadings, ft = (f1,t, ..., fr,t)
′ the r latent factors, and ξt = (ξ1,t, ..., ξN,t)

′ the

idiosyncratic disturbances, (4.10) can be written as

D(d∗)yt = Λft + ξt, (4.12)

whereD(d∗) = diag(∆
d∗1
+ , ...,∆

d∗N
+ ) is theN×N differencing matrix for the integration

orders d∗ = (d∗1, ..., d
∗
N )′. Contrary to the models of subsections 4.2.1 and 4.2.2, the

factor model is now set up based on the pre-differenced yt. In the notation of (4.1),

the dynamic factor model in fractional differences specifies f(χt) = D(−d∗)Λft and
ut = D(−d∗)ξt. Thus, the common component can be obtained by taking inverse

fractional differences, that is by multiplying Λft with D(−d∗).
By defining B(L) = diag(B1(L), ..., Br(L)) as in subsections 4.2.1 and 4.2.2, the

factors ft can be written as a diagonal VAR, B(L)ft = ζt, where ζt = (ζ1,t, ..., ζr,t)
′.

The idiosyncratic and pervasive shocks are assumed to be orthogonal and to follow

independent Gaussian white noise processes ξt ∼ NID(0, H) and ζt ∼ NID(0, Q).

Taking fractional differences prior to estimating a factor model generalizes the

pre-differencing of standard factor models to the fractional domain. In fractional

differences, the model is an approximate dynamic factor model.

4.3 Estimation

This section discusses both, the estimation of the latent factors and of the model

parameters for the fractional factor models as introduced in section 4.2. The factors

are estimated by the means of the Kalman recursions, which requires to cast the frac-

tional factor models in state space form. One particular challenge is to arrive at a

computationally feasible state space representation of the fractional components: As
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(4.2) illustrates, the fractional differencing polynomial admits a polynomial expan-

sion of order infinite that is truncated at lag T by the type II definition of fractional

integration. Thus, an exact state space representation of a single fractionally inte-

grated factor requires a state vector of dimension T − 1, which makes the Kalman

recursions computationally infeasible even for moderate T . Therefore, subsection

4.3.1 introduces an approximation to the fractional differencing polynomial by us-

ing small ARMA polynomials. As noted by Hartl and Jucknewitz (2022), small

ARMA polynomials are able to resemble the dynamics of the fractional differencing

polynomial well for both integration orders b < 1/2 and b > 1/2, and keep the

dimension of the state vector manageable. Subsection 4.3.2 then details the state

space representation of the three fractional factor models.

Estimates for the factors via the Kalman recursions are obtained conditional on

a parameter vector that contains the model parameters, i.e. the integration orders,

the factor loadings, the autoregressive coefficients, and the variances of pervasive

and idiosyncratic shocks. Since the true parameter vector is unobservable, it is

estimated by maximum likelihood. To maximize the likelihood, I use the expectation-

maximization (EM) algorithm, which was derived for fractional factor models by

Hartl and Jucknewitz (2022), and is briefly described in subsection 4.3.3

Finally, as starting values are required for maximum likelihood estimation, sub-

section 4.3.4 discusses how to determine a suitable initial estimate for the parameter

vector.

4.3.1 Approximations for the fractional differencing polynomial

The literature has considered a variety of approximations for long memory processes:

For an arbitrary process ∆b
+zt = et with et white noise, Palma (2007, section 4.2)

suggests to truncate the autoregressive representation of the fractional differencing

polynomial after a certain lag m, i.e.
∑m

j=0 πj(b)zt−j ≈ et, whereas Chan and Palma

(1998) suggest to truncate the MA representation, i.e. zt ≈
∑m

j=0 πj(−b)et−j . In a

simulation study, Hartl and Jucknewitz (2022) show that fitting small ARMA(v, w)

models with v, w ∈ {3, 4} to approximate the fractional differencing polynomial ∆−b+

clearly outperforms AR and MA approximations, and yields an approximation error

that is hardly visible even for large T and non-stationary integration orders.

To illustrate the idea of approximating the fractional differencing polynomial by

an ARMA polynomial, consider again the generic process zt = ∆−b+ et where et is
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standardized white noise. An ARMA approximation for zt is then given by

z̃t =

[
1 +m1L+ ...+mwL

w

1− a1L− ...− avLv

]
+

et =
t−1∑
j=0

π̃j(ϕ)et−j ,

for finite v, w, where ϕ = (a1, ..., av,m1, ...,mw)′, and all coefficients in ϕ must be

made functionally dependent on b to approximate zt by z̃t. To achieve the latter, note

that the approximation error is z̃t−zt =
∑t−1

j=0 [π̃j(ϕ)− πj(−b)] et−j , for given t, b, ϕ,
so that the mean squared error (MSE) is E

[
(z̃t − zt)2

]
=
∑t−1

j=0 [π̃j(ϕ)− πj(−b)]2 .
Averaging over all t = 1, ..., T yields the objective function for a given b that is

minimized to obtain an estimate for ϕ

ϕ̂T (b) = arg min
ϕ

MSEbT (ϕ), MSEbT (ϕ) =
1

T

T∑
t=1

t−1∑
j=0

[π̃j(ϕ)− πj(−b)]2 . (4.13)

Consequently, for a given b and the sample size T , (4.13) yields the optimal ARMA

coefficients to approximate the fractional differencing polynomial in terms of the

MSE. To obtain a smooth function that maps from b to the respective ARMA coef-

ficients, the optimization (4.13) is carried out over a reasonable grid of b.1 Next, the

ARMA coefficients are smoothed over the grid for b using cubic regression splines.

This yields a continuous, differentiable function ϕT (b) that maps from b to the re-

spective ARMA coefficients. Thus, optimization can be carried out over the inte-

gration order parameters. Further technical details and several simulation studies

are contained in Hartl and Jucknewitz (2022). For the purely fractional factors of

subsection 4.2.2 I use ARMA(4, 4) polynomials to approximate the fractional differ-

encing polynomials, as suggested by Hartl and Jucknewitz (2022). For the autore-

gressive fractionally integrated factors of subsection 4.2.1, the approximation quality

of ARMA polynomials is not clear, and using ARMA(4, 4) polynomials was found

to deteriorate the estimates for the autoregressive coefficients. Therefore, I choose

pure AR(5) polynomials to approximate the fractional differencing polynomial for

the model in subsection 4.2.1.

Note that the main reason for using ARMA polynomials as approximations to

the fractional differencing polynomial is to reduce the computational burdens of the

Kalman recursions: While the exact state space representation of a single fraction-

ally integrated process zT = ∆−b+ eT requires a state vector of dimension T − 1,

ARMA(4, 4) approximations can be represented by a state vector of dimension five,

as will become clear in what follows.
1I use b ∈ [−0.5, 2.2]
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4.3.2 State space representation of fractional factor models

With a computationally feasible approximation of the fractional differencing poly-

nomial at hand, the fractional factor models can be cast in state space form. The

general form of a state space model for an N -dimensional vector of observable vari-

ables ỹt is

ỹt = Zαt + ξt, αt+1 = Fαt +Rζt+1, (4.14)

where the first equation is termed the measurement equation. It maps the state

vector αt to the observable variables ỹt by the system matrix Z, while ξt accounts

for serially uncorrelated disturbances with mean zero and diagonal covariance matrix

H = Var(ξt). The second equation is a first-order Markov process and is called the

transition equation. It determines the development of the system via the transition

matrix F . ζt are the systematic shocks that feed into the transition equation and

equal the innovations of the factors. To uniquely identify the factor loadings, the

variance of the factor innovations is set to unity, i.e. Q = Var(ζt) = I. The system

matrices Z, F , R, as well as the states αt differ for the three fractional factor models

and are derived separately in what follows.

Dynamic fractional factor models To begin with, consider the autoregressive

fractionally integrated factors of subsection 4.2.1. As discussed in the previous sub-

section, the fractional differencing polynomial there is approximated by an AR poly-

nomial, where the coefficients are made functionally dependent on the integration

order. Letting a(L,−b) ≈ ∆b
+ denote the respective AR polynomial for integration

order b and fixed T . Then, the factors of subsection 4.2.1 are approximated by

ζj,t = Bj(L)∆
dj
+ fj,t ≈ Bj(L)a(L,−dj)+f̃j,t, j = 1, ..., r, t = 1, ..., T.

To arrive at a matrix representation, define the matrix polynomial A(L,−d) = I −∑v
j=1Aj(−d)Lj , Aj(−d) = diag(aj(−d1), ..., aj(−dr)), j = 1, ..., v. Then, one has

B(L)A(L,−d) =
∑p+v

k=0

∑k
l=0BlAk−l(−d)Lk where A0(−d) = B0 = −I, Al(−d) =

0 ∀l > v, and Bl = 0 ∀l > p.

Next, note that by (4.5) the idiosyncratic errors ut are allowed to be autocorre-

lated. As suggested by Jungbacker and Koopman (2015), the model can be adjusted

for idiosyncratic autocorrelation by manipulating the measurement equation, i.e. by
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defining

ỹi,t = yi,t −
pi∑
j=1

ρi,jyi,t−j , ∀i = 1, ..., N. (4.15)

Again, for a matrix representation of (4.15), collect ỹt = (ỹ1,t, ..., ỹN,t)
′ and define

Ψj = diag(ρ1,j , ..., ρN,j) with ρi,j = 0 for all j > pi. Then ỹt = yt −
∑max(pi)

j=1 Ψjyt−j .

With an appropriate matrix representation for the idiosyncratic and systematic

terms at hand, the system matrices for the model in (4.3), (4.4), and (4.5) can be

defined: For the transition matrix, let s = max(p+ v,max(pi) + 1), such that

F =


B1 +A1(−d) · · · −

∑s−1
l=0 BlAs−1−l(−d) −

∑s
l=0BlAs−l(−d)

I · · · 0 0
...

. . .
...

...

0 · · · I 0

 ,

where F is (sr × sr) and depends on the parameters in d and B(L). For the mea-

surement equation, let

Z =
[
Λ −Ψ1Λ · · · −Ψs−1Λ

]
,

and thus Z is (N × sr) and depends on the parameters in Λ and ρi(L), i = 1, ..., N .

Furthermore, let R = [Ir, 0]′ be a (sr×r) matrix that allows for non-zero innovations

in the first r rows of the transition equation, while αt = (f̃ ′t , ..., f̃
′
t−s+1)′ is a vector

of dimension sr that holds the factors. To identify the r factors, the first r rows of

Λ are restricted to be lower triangular.

Dynamic orthogonal fractional components Next, consider the model in sub-

section 4.2.2. Again as discussed in subsection 4.3.1, the fractional differencing poly-

nomial is approximated by an ARMA polynomial, where the respective approxima-

tion is given by f (1)
t ≈ [M(L, d)A(L, d)−1]+ζ

(1)
t = f̃

(1)
t . The matrix ARMA polyno-

mials areM(L, d) = I+M1(d)L+ ...+Mw(d)Lw,Mj(d) = diag(mj(d1), ...,mj(dr1)),

A(L, d) = I−A1(d)L−...−Av(d)Lv, Aj(d) = diag(aj(d1), ..., aj(dr1)), andMj(d) = 0

∀j > w, Aj(d) = 0 ∀j > v.

As before, autocorrelation in the idiosyncratic errors ut is eliminated by trans-

forming ỹt = yt −
∑max(pi)

j=1 Ψjyt−j = Ψ(L)yt, with coefficients Ψj as defined below
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(4.15). Multiplication of (4.6) by Ψ(L) yields

Ψ(L)yt = ỹt = Ψ(L)
[
Λ(1) Λ(2)

](f (1)
t

f
(2)
t ,

)
+ ξt, (4.16)

where Ψ(L)Λ(1)f
(1)
t ≈ Ψ(L)Λ(1)[M(L, d)A(L, d)−1]+ζ

(1)
t = Ψ(L)Λ(1)f̃

(1)
t .

To arrive at the state space representation (4.14), partition the system matrices

into F = diag(F (1), F (2)), Z =
[
Z(1) Z(2)

]
, and R = diag(R(1), R(2)), where the

superscript (1) refers to f (1)
t , while the superscript (2) refers to f (2)

t . Starting with the

approximate fractionally integrated factors, for a minimal representation define the

r vector µ̃t = M(L, d)−1
+ f̃

(1)
t , such that A(L, d)+µ̃t = ζ

(1)
t , and let s1 = max(v, w +

max(pi) + 1). Next, place µ̃t in the state vector α(1)
t = (µ̃′t, ..., µ̃

′
t−s1+1)′, such that

multiplication with the MA polynomial yields
[
I M1(d) · · · Ms1−1(d)

]
α

(1)
t =

f̃
(1)
t . Moreover, µ̃t+1 =

[
A1(d) · · · As1(d)

]
α

(1)
t + ζ

(1)
t , which defines the (s1r1 ×

s1r1) dimensional transition matrix

F (1) =


A1(d) · · · As1−1(d) As1(d)

I · · · 0 0
...

. . .
...

...

0 · · · I 0

 .

In the measurement equation, (4.16) needs to be taken into account, which yields

Ψ(L)Λ(1)f̃
(1)
t = Ψ(L)Λ(1)

[
I M1(d) · · · Mu1−1(d)

]
α

(1)
t , and thus defines the (N×

s1r1) matrix

Z(1) =
[
Λ(1) −

∑1
k=0 ΨkΛ

(1)M1−k(d) · · · −
∑s1−1

k=0 ΨkΛ
(1)Ms1−1−k(d)

]
,

where Ψ0 = −I, and Z(1) solely depends on Λ(1), d, and the ρi,j . As before, R(1) =

[Ir1 , 0]′ is a (s1r1× r1) matrix allowing the first r1 rows of the transition equation to

be influenced by ζ(1)
t .

Turning to the stationary autoregressive factors, it follows directly from (4.8)

that for α(2)
t = (f

(2)′

t , ..., f
(2)′

t−s2+1)′ and s2 = max(p,max(pi) + 1)

F (2) =


B

(2)
1 · · · B

(2)
s2−1 B

(2)
s2

I · · · 0 0
...

. . .
...

...

0 · · · I 0

 ,
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where F (2) is (s2r2 × s2r2) dimensional, and B(2)
j = 0 ∀j > p. For the measurement

equation, one has the (N × s2r2) matrix

Z(2) =
[
Λ(2) −Ψ1Λ

(2) · · · −Ψs2−1Λ
(2)
]
,

and R(2) = [Ir2 , 0]′ is (s2r2 × r2). Finally, αt = (α
(1)′

t , α
(2)′

t )′.

To identify the stationary autoregressive factors, a lower triangular structure is

imposed on the first r2 rows of Λ(2). The purely fractionally integrated factors

are identified by their spectrum whenever d1 6= d2 6= ... 6= dr1 . For blocks of

identical memory within f
(1)
t , similar identifying restrictions have to be imposed

on the respective loadings.

Dynamic factor models in fractional differences Since the factors of the third

model (4.10) are stationary autoregressive processes, a state space representation as

in (4.14) follows immediately by defining ỹt = (∆
d∗1
+ y1,t, ...,∆

d∗N
+ yN,t)

′. The factors

enter the state vector directly, whereas their AR coefficients in (4.11) are contained

in F . Furthermore, the factor loadings enter the (N × rp) matrix Z, and R is again

a (rp× r) selection matrix

αt =


ft

ft−1

...

ft−p+1

 , F =


B1 · · · Bp−1 Bp

I · · · 0 0
...

. . .
...

...

0 · · · I 0

 , Z =


Λ′

0
...

0


′

, R =

[
Ir

0

]
.

For identification of the factors, the first r rows of Λ are again restricted to be lower

triangular.

4.3.3 Parameter estimation

Turning to the estimation of the model parameters, collect the unknown parameters

in d, Λ, B1, ..., Bp, ρ1,1, ..., ρN,pN , and H, that enter the system matrices of the

state space model F , Z, and H, in a parameter vector θ. θ is estimated following

the suggestions of Hartl and Jucknewitz (2022), who derive an EM algorithm for

maximum likelihood estimation of fractional factor models. The EM algorithm bears

the advantage of being relatively robust to starting values and converges rapidly

towards the neighborhood of the optimum of the likelihood (Quah and Sargent; 1993;

Doz et al.; 2012; Jungbacker and Koopman; 2015). However, the EM algorithm is

found to be relatively slow around the optimum. Therefore, I switch to gradient-
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based optimization routines with an analytical solution to the score function of the

likelihood after a certain number of iterations. The whole parameter estimation

procedure adopts the approach of Hartl and Jucknewitz (2022) and thus is only

summarized briefly in what follows.

The EM algorithm is based on the expected complete data likelihood as given in

Hartl and Jucknewitz (2022, eqn. (9)), and consists of product moments of the state

vector, the observable yt, and the measurement and transition disturbances ξt and ζt,

as well as of the system matrices Q = I, H, R, F , and Z. In the expectation step, the

product moments of αt, yt, ξt and ζt are computed via the Kalman filter and smoother

given some realization of the parameter vector θ{j}. Next, the maximization step

maximizes the expected complete data likelihood given the product moments from

the expectation step and yields an updated estimate θ{j+1}. The procedure repeats

until a certain level of convergence or a certain number of iterations is reached. Next,

the resulting parameter estimates from the EM algorithm are used as starting values

for gradient-based likelihood maximization via the BFGS algorithm, which uses the

analytical solution for the score vector of Hartl and Jucknewitz (2022).

However, the EM algorithm requires an initial vector θ{0} as starting value for

the first run of the expectation step. Therefore, the next subsection details how to

determine an initial guess for θ{0} via the principal components estimator.

4.3.4 Starting values for parameter optimization

As shown by Zhang et al. (2019), fractionally integrated factors can be estimated

consistently by the non-parametric method of principal components (PC) given that

the idiosyncratic disturbances are stationary.2 Therefore, initial estimates for the

factors are obtained via principal components. Based on them, the model parameters

can be obtained, which is discussed separately for the three different fractional factor

models in section 4.2.

Dynamic fractional factor models The common components of the model in

section 4.2.1 are assumed to follow r independent autoregressive fractionally inte-

grated processes, and their correlation is zero for all leads and lags. To ensure the

2Note that, although stationarity of the idiosyncratic terms is assumed for all three models
considered in this paper, this assumption is a very strong one and is likely to be violated for
various applications. Whenever the idiosyncratic terms are non-stationary, PC are inconsistent.
However, under a violation of the stationarity assumption the factor loadings can still be estimated
consistently via PC when the data is pre-differenced such that the differenced idiosyncratic terms
are stationary. The factors are then obtained by projecting the data onto the space spanned by the
loadings, see Barigozzi et al. (2021) and Cheung (2022).
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latter, the PC estimates are rotated via the method of Matteson and Tsay (2011) to

obtain dynamic orthogonal components. The parameters in (4.4) are estimated by

maximizing the likelihood function for a fractionally integrated VAR (see Nielsen;

2004) which yields estimates for d1, ..., dr, B1, ..., Bp.3 For some data sets the as-

sumption of orthogonal factors may be violated. Then, the diagonal assumption on

B(L) can be dropped, which does not affect the identification of the fractional factor

VAR but increases the number of parameters to be estimated. Factor loadings Λ in

(4.3) are estimated by ordinary least squares (OLS).

Dynamic orthogonal fractional components To derive an estimator for the

dynamic parameters of the model in section 4.2.2, one first needs to distinguish

between the space spanned by the purely fractional factors and the stationary au-

toregressive components. The two factor subspaces of f (1)
t and f (2)

t are identified up

to a rotation by estimating the fractional cointegration subspace and its orthogonal

complement via the semiparametric method of Chen and Hurvich (2006), who use

eigenvectors of an averaged periodogram matrix of the first m Fourier frequencies

to estimate the fractional cointegration subspace. Orthogonal series within the frac-

tional and non-fractional factors are then obtained by applying the decorrelation

method of Matteson and Tsay (2011). The resulting fractional and non-fractional

factor estimates are denoted as f̂ (1)
t and f̂ (2)

t respectively.

Factor loadings Λ in (4.6) and AR coefficients in (4.8) are estimated by OLS.

Estimates for the integration orders of the common components in (4.7) are obtained

by maximizing the likelihood of the r1 ARFIMA(0, dj , 0) processes, j = 1, ..., r1.

Dynamic factor models in fractional differences Due to the stationary rep-

resentation of the model in section 4.2.3 the PC estimator of Bai and Ng (2002)

is directly applicable. The factors are again decorrelated by the means of dynamic

orthogonal components of Matteson and Tsay (2011). As before, if the factors do not

admit a dynamically orthogonal representation, the assumption of a diagonal factor

VAR can be dropped and replaced by a non-diagonal VAR. The autoregressive co-

efficients for the r common factors in (4.11) together with their factor loadings in

(4.10) are estimated by OLS.

Autocorrelated idiosyncratic terms An estimate for the idiosyncratic errors

is obtained via ût = yt − Λ̂f̂t. Since the errors are assumed to follow N indepen-

3Note that this is the same as fitting an autoregressive fractionally integrated model to each of
the r factors separately.
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dent autoregressive processes, the AR parameters are estimated via OLS. From the

residuals, an estimate for σ2
ξi

is obtained via σ̂2
ξi

= T−1
∑T

t=1 ξ̂
2
i,t, i = 1, ..., N .

4.4 Macroeconomic forecasting

Having discussed the estimation of the common factors together with the unknown

parameters for the three fractionally integrated factor models in subsections 4.2.1–

4.2.3, I next investigate their forecast performance when neither the DGP, nor the

starting values, nor the number of factors, are known to the researcher. The under-

lying data set is the so-called FRED-MD by McCracken and Ng (2016). It consists

of 112 macroeconomic variables, spans from January 1960 to December 2016, and is

in monthly frequency. Subsection 4.4.1 outlines the forecast design and the model

specifications, while empirical results are presented in subsection 4.4.2.

4.4.1 Forecast design and model specification

Starting with the forecast design, the forecast performance of the three different

factor models is evaluated in a pseudo out-of-sample forecast experiment using a

recursive window scheme. Forecasts are made for horizons h = 1, ..., 12, where the

first forecast period is January 2000, whereas the last is December 2016, leading

to 204 forecasts for 112 variables and 12 horizons. Forecast performance is then

evaluated based on the mean squared prediction error (MSPE).

For the first forecast (January 2000), starting values for parameter estimation are

obtained as described in subsection 4.3.4, while all subsequent periods use the opti-

mized parameters from the preceding step as starting values. However, I also report

estimates via the semiparametric approach as described in subsection 4.3.4 for all

periods to evaluate the relative performance of the parametric models in comparison

to the semiparametric counterparts. To distinguish between the parametric and the

semiparametric models, the former are denoted as KF for Kalman filter, while the

latter are denoted as PC for principal components. Abbreviations for the three frac-

tional factor models are: Dynamic fractional factor model (DFFM) in subsection

4.2.1, dynamic orthogonal fractional components (DOFC) in subsection 4.2.2, and

dynamic factor model in fractional differences (DFFD) in subsection 4.2.3.

To also compare the forecast performance with competing, non-fractional mod-

els, I include forecasts for four different benchmark models: The first benchmark

is an autoregressive model (AR) where the AR lag order is chosen via the Akaike

Information Criterion for each yi,t. Moreover, two approximate dynamic factor mod-
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els in the spirit of Stock and Watson (2002) are considered as further benchmarks.

Both are estimated via principal components based on a pre-differenced data set.

The second benchmark is denoted as (PC) and has the factor model representation

∆kiyi,t+h = Λift+h+ξi,t+h, φ(L)ft+h = ζt+h, where ξi,t, ζt are mutually independent

and white noise, and ki is an integer that is taken from McCracken and Ng (2016).

The third model adds lagged dependent variables to the approximate dynamic fac-

tor model. It is given by φ(L)ft+h = ζt+h, ci(L)∆kiyi,t+h = Λift+h + ξi,t+h, where

ξi,t, ζj,t are again mutually independent and white noise. It is denote it as PCAR.

Finally, the last benchmark is the so-called factor-augmented error-correction model

(FECM) of Banerjee and Marcellino (2009), which separates the observable vari-

ables into two groups y = (y(1)′ , y(2)′)′ and shrinks the latter group via principal

components to seven factors f̂ , where the number of factors was chosen by the

PC(p3) criterion of Bai and Ng (2002).4 A vector error-correction model is then

estimated for (y(1)′ , f̂ ′)′. Details on the forecast properties are found in Banerjee

et al. (2014). Since we only obtain predictions for y(1), the FECM results are only

reported in tables 4.2 and 4.3.

Model specification is chosen based on the data set from January 1960 to Decem-

ber 1999. To draw inference on an appropriate specification of the three different

fractional factor models semiparametric methods are used: As no information crite-

rion on the number of factors in a fractionally integrated setup is available, I first

estimate the fractional integration orders of all observable variables via the exact

local Whittle estimator of Shimotsu (2010), where I account for an intercept and a

linear time trend, and the bandwidth is set to 1/2.5 Next, the data are fractionally

differenced according to their estimated integration orders, and the number of fac-

tors is determined by the PC(p3) criterion of Bai and Ng (2002), which suggests to

include seven common factors.6

For the dynamic orthogonal fractional components model of subsection 4.2.2, the

numbers of long and short memory factors r1 and r2 remain to be determined. A pos-

sible grouping of factors with equal integration orders is carried out as follows: First,

I estimate the factor loadings for seven factors based on the data set in fractional

differences as before. Next, I project the data in levels onto the space spanned by

the factor loadings, which yields estimates for the seven factors in levels. Using the

method of Matteson and Tsay (2011), I rotate the factors such that they are dynami-

4The criteria of Bai and Ng (2002) were evaluated for the data from January 1960 to December
1999.

5Using a higher bandwidth increases the risk of over-differencing and thus makes it more likely
to underestimate the number of factors. Therefore, a comparably small bandwidth is selected.

6The other criteria of Bai and Ng (2002) either also find seven common factors, or slightly fewer.
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cally orthogonal, i.e. uncorrelated for all leads and lags. To determine whether some

factors exhibit the same integration order, the methods derived by Robinson and

Yajima (2002) with the modification to possibly non-stationary integration orders

by Nielsen and Shimotsu (2007) are applied: After estimating the integration order

of each factor by the exact local Whittle estimator, they allow to sequentially test for

the existence of j = 1, 2, ..., 7 groups of identical integration orders within the seven

factor estimates. The sequential test terminates if for some j∗ the null hypothesis of

within-group equality of the integration order is not rejected. To jointly test within-

group equality of the integration orders for a given grouping (i.e. not only testing for

equal integration orders within one group, but within all groups together), I use the

Wald test as proposed by Nielsen and Shimotsu (2007). For the exact local Whittle

estimator, I again set the bandwidth to 1/2. The procedure suggests four different

groups of factors, where the first three all contain a single factor whose integration

order significantly differs from zero. The fourth group consists of four factors whose

integration order cannot be significantly distinguished from zero. Hence, the latter

are treated as short-range dependent and are assumed to belong to f (2)
t , which yields

r1 = 3 and r2 = 4.

For the factor model of subsection 4.2.1, I determine the AR lag order by the

Bayesian information criterion (BIC): As before, factor estimates are obtained by

estimating the factor loadings based on the fractionally differenced data and pro-

jecting the data in levels on the space spanned by the factor loadings. Next, they

are rotated to become dynamically orthogonal by the method of Matteson and Tsay

(2011). The lag order of the AR polynomials is then determined by estimating a

diagonal VAR for the seven factors and choosing the lag order that minimizes the

BIC. The procedure for the model in subsection 4.2.2 is identical, except that only

the four short memory factors are used. For the model in subsection 4.2.3, the same

procedure applies, except that the factors are directly estimated based on the data

in fractional differences. For the dynamic fractional factor model in subsection 4.2.1

and the dynamic factor model in fractional differences in subsection 4.2.3, the BIC

suggests a single lag for the AR polynomial of the factors, while for the dynamic

orthogonal fractional components model in subsection 4.2.2, two lags minimize the

BIC. Finally, for the models in subsections 4.2.1 and 4.2.2, I allow for a single au-

toregressive lag in the lag polynomial of the idiosyncratic term ut. This, on the

one hand, allows for autocorrelation in the idiosyncratic component, but keeps the

dimension of the parameter space somewhat manageable on the other.

Besides the factors and autoregressive idiosyncratic components, the fractional
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factor models as well as the benchmarks include deterministic components: All

models allow for an intercept and a linear time trend for each observable variable.

Furthermore, an observable variable is log-transformed whenever suggested by Mc-

Cracken and Ng (2016).

A few caveats in terms of model specification are of order: First, note that the

number of factors is determined based on the model selection criteria of Bai and

Ng (2002) for the data set in fractional differences. If now an observable variable is

driven by factors of different memory, then its integration order equals the highest

integration order of all factors that load on the variable. Taking fractional differences

thus over-differences those factors with a comparably low memory, which makes it

difficult to identify them via the criteria of Bai and Ng (2002). Therefore, it is very

likely that the number of overall factors is underestimated. As an alternative to the

criteria of Bai and Ng (2002), one could also estimate the different factor models for

several numbers of factors and use a likelihood-based information criterion like the

BIC to determine the number of factors. Second, while the factors are grouped into

different groups of equal memory, the observable variables are not. The number of

non-zero factor loadings could be reduced by also grouping the observable variables

into blocks of equal memory, and imposing a block-triangular structure on the fac-

tor loadings. This would restrict the more persistent factors to only load on those

observable variables with high memory, and would reduce the number of loadings to

be estimated. Third, allowing for different lag lengths among the factors with AR

dynamics is likely to further increase the forecast performance. And last, allowing

for only a single lag in the polynomials of the idiosyncratic terms is very restrictive.

Addressing these caveats may further improve the forecast performance of the frac-

tional factor model and is necessary whenever one aims for a structural analysis of

the data. However, as will become clear in the next subsection, the fractional factor

models are able to significantly improve the forecast accuracy compared to the four

benchmarks, although there is room for improvement in terms of model specification.

4.4.2 Forecast results

For a given forecast horizon h = 1, ..., 12, table 4.1 shows how often each specification

leads to the smallest MSPE for all 112 variables. Hence, it illustrates how frequently

fractional factor models are able to outperform the benchmarks, i.e. autoregressive

models and principal components of integer differences. To draw inference on the ex-

tent of forecast improvement, tables 4.2 and 4.3 report the relative MSPE (in relation

to the AR benchmark) for twelve selected variables and for h = 1, 2, 3, 6, 9, and 12.
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Consequently, they also show how large the forecast accuracy fluctuates for each

specification and highlight the robustness of the forecast results when a model is not

chosen to be the best one.

Benchmarks DFFM DOFC DFFD
Horizon AR PC PCAR PC KF PC KF PC KF
1 14 10 16 7 0 3 26 20 16
2 14 12 11 8 0 1 26 24 16
3 14 10 6 6 1 5 28 23 19
4 17 9 7 11 2 4 25 20 17
5 15 11 7 10 1 5 27 22 14
6 17 8 5 10 6 6 23 19 18
7 15 9 3 10 4 7 26 18 20
8 14 8 3 10 12 7 20 19 19
9 15 8 3 10 10 7 22 17 20
10 15 8 3 11 14 7 16 15 23
11 15 8 3 13 15 7 13 15 23
12 14 7 3 10 17 9 13 16 23

Table 4.1: Frequency of smallest MSPE: The table shows how often, for a given
forecast horizon h, a specification led to the smallest mean squared prediction error
of all models.

As can be seen from table 4.1, fractional factor models tend to outperform au-

toregressive models, pre-differenced principal components models and mixtures of

these two model classes. Over all 1344 forecasts, the benchmarks only exhibit a

smaller MSPE than the fractional factor models in 357 cases (26.6%). Hence, for the

remaining 987 forecasts (73.4 %) the smallest MSPE is achieved by one of the six

fractional factor models. Among the fractional factor models, the dynamic orthog-

onal fractional components model in state space form produces the best predictions

in terms of the MSPE for forecast horizons up to 9 months most frequently.

The DFFD models complement the predictive power of fractional factor models.

They frequently yield the smallest MSPE whenever the DOFC-KF specification is

not the best predictor in terms of the MSPE. Furthermore, principal components

are found to yield a small MSPE at least for smaller forecast horizons when the

data is in fractional differences, however they are frequently beaten by the state

space formulation of the DOFC model. For higher forecast horizons, the forecast

performance of the DFFD-KF model improves, leading to the highest number of

best predictions in terms of the MSPE for h = 10, 11, 12.

The DFFM specification performs comparably poor in terms of the MSPE: While

principal components are beaten by the DFFD model in terms of the frequencies of

smallest MSPEs, the Kalman filter-based estimates appear particularly weak for
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small h, where they only yield the smallest MSPE for a handful of forecasts. For

higher horizons the DFFM-KF improves, however it is again outperformed by the

DFFD-KF in terms of the frequency of smallest MSPEs.

More details about the forecast performance of fractional factor models can be

identified by having a closer look at tables 4.2 and 4.3 that visualize the relative

MSPEs for selected forecast horizons h and selected variables. The latter were chosen

because they represent the full breadth of the macroeconomic data set as well as the

full spectrum of integration orders (according to the exact local Whittle estimator

with a constant and a linear time trend): With an estimated integration order smaller

unity, average weekly overtime hours in the manufacturing businesses, the federal

funds rate, and the US / UK foreign exchange rate have comparatively low memory,

while the consumer price index, personal consumption index, and average hourly

earnings have comparably high memory with an estimated integration order greater

3/2. The remaining variables exhibit an estimated integration order somewhere

between the high and low cases.

As can be seen from tables 4.2 and 4.3, relative gains in forecast performance

from the fractional factor models can be substantial: In many cases, fractional factor

models can reduce the MSPE by more than 25% relative to the AR benchmark. For

some variables, the MSPE is cut by half when fractional factor models are used, and

reductions of more than 80% are possible. Within the class of fractional factor mod-

els, the DOFC-KF specification often results in the smallest MSPE, and at the same

time does not show any large outliers in terms of a very high MSPE: For h = 1, 2, 3,

the most accurate predictions for the consumer price index, personal consumption

index and average hourly earnings stem from the DOFC-KF specification, which

reduces the MSPE relative to the AR benchmark by more than 50%. In addition,

the DOFC-KF specification exhibits the smallest MSPE for the St. Louis adjusted

monetary base, for total reserves of depository institutions, and for the S&P500 fre-

quently. The stable forecast performance of the DOFC-KF model is illustrated by

the fact that its largest relative MSPE is 1.29, whereas its smallest relative MSPE

is 0.17.

Another model that frequently produces a comparatively small MSPE is the

DFFD model. For the industrial production index, the DFFD-PC specification ex-

hibits the smallest MSPE for any forecast horizon. In addition, the DFFD-KF

specification produces accurate predictions for the S&P500, average hourly earnings

and the US / UK foreign exchange rate. Furthermore, its forecast performance is

almost as stable as the DOFC-KF.
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Benchmarks DFFM DOFC DFFD
AR PC PCAR FECM PC KF PC KF PC KF

Horizon h = 1
INDPRO 1.00 0.92 0.92 1.22 1.60 3.26 1.96 1.06 0.90 0.99
UNRATE 1.00 0.96 0.95 0.88 1.06 2.67 1.32 0.91 0.89 0.88
AWOTMAN 1.00 0.85 0.90 0.92 1.25 2.02 1.40 0.91 0.93 0.96
HOUST 1.00 0.71 0.70 0.99 0.98 1.36 0.94 0.87 1.09 1.07
AMBSL 1.00 0.86 1.17 0.69 0.77 2.62 0.77 0.81 2.78 3.15
TOTRESNS 1.00 0.71 1.45 0.69 0.66 2.28 0.70 0.69 4.84 5.14
S.P.500 1.00 1.08 1.08 1.01 1.04 2.67 1.24 1.02 1.06 0.99
FEDFUNDS 1.00 2.51 2.36 2.64 1.15 4.43 1.17 1.21 3.53 1.25
EXUSUKx 1.00 1.18 1.08 1.08 1.11 2.75 1.17 1.06 1.12 1.10
CPIAUCSL 1.00 0.64 0.96 0.45 1.77 2.01 1.58 0.41 0.49 0.49
PCEPI 1.00 0.69 0.98 0.50 3.32 1.98 2.70 0.41 0.47 0.47
CES0600000008 1.00 0.88 1.14 0.48 2.50 1.00 3.06 0.30 0.48 0.41

Horizon h = 2
INDPRO 1.00 0.90 0.90 1.35 2.10 2.38 2.63 1.15 0.81 0.99
UNRATE 1.00 1.03 0.98 0.79 1.06 2.10 1.62 0.96 0.83 0.86
AWOTMAN 1.00 0.81 0.92 0.80 1.22 1.69 1.50 0.86 0.96 1.02
HOUST 1.00 0.71 0.71 1.01 0.99 1.18 0.95 0.99 1.02 1.00
AMBSL 1.00 0.79 1.27 0.86 0.76 1.25 0.80 0.72 1.52 1.65
TOTRESNS 1.00 0.69 1.56 0.75 0.67 1.17 0.75 0.65 2.45 2.51
S.P.500 1.00 1.14 1.16 1.18 1.05 1.55 1.30 1.02 1.11 0.98
FEDFUNDS 1.00 1.66 1.79 2.66 0.91 2.08 0.92 0.95 2.40 1.07
EXUSUKx 1.00 1.20 1.13 1.15 1.18 1.71 1.22 1.05 1.11 1.08
CPIAUCSL 1.00 0.61 0.98 0.54 1.76 0.50 1.62 0.42 0.60 0.55
PCEPI 1.00 0.62 0.99 0.56 3.24 0.45 2.66 0.39 0.52 0.48
CES0600000008 1.00 0.99 1.16 0.37 2.16 0.64 3.26 0.21 0.34 0.28

Horizon h = 3
INDPRO 1.00 1.04 1.04 1.50 2.41 2.47 2.93 1.28 0.81 1.00
UNRATE 1.00 1.15 1.08 0.82 1.11 2.21 1.76 1.04 0.82 0.88
AWOTMAN 1.00 0.79 0.95 0.76 1.10 1.56 1.47 0.84 1.03 1.02
HOUST 1.00 0.70 0.70 1.01 0.88 1.11 0.85 0.95 1.09 0.99
AMBSL 1.00 0.77 1.41 0.97 0.74 0.95 0.81 0.66 1.16 1.22
TOTRESNS 1.00 0.73 1.62 0.81 0.69 0.94 0.78 0.64 1.81 1.81
S.P.500 1.00 1.25 1.27 1.30 1.08 1.45 1.35 1.02 1.18 1.00
FEDFUNDS 1.00 1.31 1.41 2.66 0.85 1.54 0.82 0.91 1.92 1.03
EXUSUKx 1.00 1.26 1.18 1.21 1.22 1.55 1.29 1.07 1.12 1.08
CPIAUCSL 1.00 0.57 1.01 0.54 1.71 0.47 1.63 0.38 0.63 0.56
PCEPI 1.00 0.60 1.01 0.58 3.12 0.43 2.72 0.36 0.53 0.47
CES0600000008 1.00 1.13 1.18 0.40 1.79 0.56 2.95 0.18 0.27 0.22

Table 4.2: Selected relative mean squared prediction errors for h=1, 2, and 3. Vari-
able codes are INDPRO: industrial production index; UNRATE: unemployment rate;
AWOTMAN: average weekly overtime hours in the manufacturing business; HOUST:
housing starts; AMBSL: St. Louis adjusted monetary base; TOTRESNS: total re-
serves of depository institutions; S.P.500: S&P500 index; FEDFUNDS: effective
federal funds rate; EXUSUKx: US / UK foreign exchange rate; CPIAUCSL: con-
sumer price index; PCEPI: personal consumption index; CES0600000008: average
hourly earnings
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Benchmarks DFFM DOFC DFFD
AR PC PCAR FECM PC KF PC KF PC KF

Horizon h = 6
INDPRO 1.00 1.27 1.27 1.59 2.10 1.82 2.55 1.29 0.95 1.08
UNRATE 1.00 1.58 1.46 1.11 1.25 2.04 1.86 1.25 1.05 1.06
AWOTMAN 1.00 0.92 1.12 0.76 1.03 1.33 1.40 0.87 1.17 1.13
HOUST 1.00 0.63 0.63 1.02 0.77 0.88 0.78 0.82 0.98 0.87
AMBSL 1.00 0.89 1.87 0.87 0.62 0.68 0.76 0.55 0.89 0.90
TOTRESNS 1.00 0.95 1.62 0.75 0.63 0.68 0.76 0.57 1.18 1.16
S.P.500 1.00 1.50 1.53 1.40 1.09 1.21 1.47 1.00 1.19 1.01
FEDFUNDS 1.00 1.28 1.33 2.70 0.90 1.21 0.76 0.91 1.36 1.06
EXUSUKx 1.00 1.31 1.30 1.46 1.23 1.18 1.35 1.03 1.06 1.00
CPIAUCSL 1.00 0.57 1.09 0.46 1.49 0.26 1.65 0.31 0.63 0.54
PCEPI 1.00 0.59 1.06 0.54 2.69 0.25 2.85 0.34 0.52 0.44
CES0600000008 1.00 1.82 1.27 0.54 0.86 0.50 2.38 0.17 0.21 0.16

Horizon h = 9
INDPRO 1.00 1.43 1.43 1.85 1.83 1.48 2.30 1.25 1.00 1.12
UNRATE 1.00 1.88 1.77 1.48 1.23 1.76 1.65 1.26 1.17 1.12
AWOTMAN 1.00 1.11 1.33 0.74 1.01 1.20 1.34 0.91 1.21 1.14
HOUST 1.00 0.60 0.61 1.02 0.72 0.78 0.73 0.76 0.94 0.85
AMBSL 1.00 1.31 3.30 0.91 0.59 0.59 0.79 0.51 0.81 0.80
TOTRESNS 1.00 1.54 1.74 0.73 0.61 0.60 0.76 0.53 0.97 0.94
S.P.500 1.00 1.76 1.79 1.50 1.09 1.13 1.54 0.99 1.19 1.01
FEDFUNDS 1.00 1.41 1.50 2.55 0.93 1.16 0.79 0.96 1.18 1.07
EXUSUKx 1.00 1.40 1.41 1.78 1.29 1.08 1.42 1.01 1.05 0.98
CPIAUCSL 1.00 0.64 1.13 0.43 1.32 0.21 1.56 0.31 0.60 0.51
PCEPI 1.00 0.65 1.10 0.53 2.40 0.21 2.70 0.37 0.50 0.42
CES0600000008 1.00 2.65 1.36 0.60 0.49 0.46 1.81 0.19 0.16 0.12

Horizon h = 12
INDPRO 1.00 1.57 1.58 2.00 1.70 1.28 2.20 1.20 0.99 1.11
UNRATE 1.00 2.20 2.09 1.68 1.16 1.50 1.45 1.22 1.18 1.12
AWOTMAN 1.00 1.26 1.50 0.78 0.99 1.12 1.27 0.94 1.17 1.10
HOUST 1.00 0.61 0.61 1.11 0.72 0.74 0.71 0.74 0.94 0.86
AMBSL 1.00 1.84 6.01 0.77 0.52 0.52 0.75 0.45 0.70 0.69
TOTRESNS 1.00 2.36 1.93 0.63 0.55 0.53 0.70 0.48 0.80 0.77
S.P.500 1.00 2.00 2.03 1.57 1.07 1.09 1.59 0.98 1.20 1.00
FEDFUNDS 1.00 1.54 1.65 2.39 0.95 1.11 0.83 1.00 1.10 1.06
EXUSUKx 1.00 1.53 1.58 2.01 1.36 1.05 1.48 0.99 1.05 0.98
CPIAUCSL 1.00 0.79 1.18 0.40 1.14 0.15 1.43 0.34 0.54 0.46
PCEPI 1.00 0.76 1.14 0.51 2.08 0.16 2.47 0.42 0.46 0.39
CES0600000008 1.00 4.01 1.47 0.65 0.36 0.45 1.52 0.23 0.15 0.11

Table 4.3: Selected relative mean squared prediction errors for h=6, 9, and 12.
Variable codes are INDPRO: industrial production index; UNRATE: unemployment
rate; AWOTMAN: average weekly overtime hours in the manufacturing business;
HOUST: housing starts; AMBSL: St. Louis adjusted monetary base; TOTRESNS:
total reserves of depository institutions; S.P.500: S&P500 index; FEDFUNDS: ef-
fective federal funds rate; EXUSUKx: US / UK foreign exchange rate; CPIAUCSL:
consumer price index; PCEPI: personal consumption index; CES0600000008: aver-
age hourly earnings
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Finally, predictions from the DFFM model, which serves as the most general

framework (as it nests the two other fractional factor models), exhibit large fluctua-

tions in terms of the MSPE. Nonetheless, for higher forecast horizons, the DFFM-KF

model produces accurate forecasts for the consumer price and personal consumption

index. Interestingly, for the variables with highest memory, i.e. the consumer price

index, the personal consumption index, and the average hourly earnings index, the

DFFM-KF model and the DOFC-KF model exhibit the smallest MSPE for almost

any horizon. A possible explanation is that these are the only models where the

fractional factors enter in levels.

Note that the difference between the benchmark PC model and the DFFD-PC

specification is the pre-differencing. The two models coincide in terms of their per-

formance relative to the AR benchmark. The advantages over the AR model are

therefore likely to result from cross-sectional dependencies that are detected by the

common factors. In addition, the smaller MSPEs of the DFFD-PC model can be ex-

plained by the sensitivity of standard PC methods to spurious coefficients whenever

there is autocorrelation left in the data (e.g. due to over- or under-differencing), as

Franses and Janssens (2019) argue.

Note further that the forecast performance of the DOFC-KF model is similar to

the DFFD model for many variables and horizons. Both models have in common

that they allow the data to be fractionally integrated, however the former explicitly

models fractional cointegration relations by common fractional factors, whereas the

latter eliminates the memory by pre-differencing the data. However, there are cases

where gains from the DOFC-KF specification relative to the DFFD model can be

substantial, especially in situations where the latter produces a relative MSPE > 1.

Consider e.g. the forecasts for the adjusted monetary base (AMBSL) and the total

reserves of depository institutions (TOTRESNS) in tables 4.2 and 4.3, where the

DOFC-KF and the FECM model perform well, wheres the DFFD-KF model yields

large MSPEs. While the former two models take cointegration into account, the

DFFD-KF model eliminates long-run components by prior differencing and is likely

to produce over-differenced short-run components. Hence, the DOFC-KF model

may exhibit an advantage over the DFFD-KF model whenever strong cointegration

relations among the variables are apparent, and whenever additive short-run factors

are present that are over-differenced by the DFFD-KF model.

Finally, to examine the forecast behavior when the economy is hit by a large

shock, I take a closer look at the performance of the fractional factor models during

the Great Recession. Figure 4.1 sketches the three-step ahead predictions for the
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Figure 4.1: Forecast performance of the DOFC-KF, DFFD-KF and AR model dur-
ing the Great Recession for h = 3. Variable codes are INDPRO: industrial pro-
duction index; UNRATE: unemployment rate; AWOTMAN: average weekly over-
time hours in the manufacturing business; HOUST: housing starts; AMBSL: St.
Louis adjusted monetary base; TOTRESNS: total reserves of depository institu-
tions; S.P.500: S&P500 index; FEDFUNDS: effective federal funds rate; EXUSUKx:
US / UK foreign exchange rate; CPIAUCSL: consumer price index; PCEPI: personal
consumption index; CES0600000008: average hourly earnings
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twelve selected variables and the two best performing fractional factor models to-

gether with the AR benchmark from January 2007 to December 2011. As the graphs

show, the forecast performance of the fractional factor models is not systematically

disrupted by the Great Recession in comparison to the AR benchmark. Instead,

the forecasts converge towards the realizations of the observable variables rapidly

after the crisis. The DOFC-KF forecasts seem to be the least affected by the large

shock, as they converge faster towards the actual realizations of the predicted vari-

ables than the other forecasts. Furthermore, the AR and DFFD-KF predictions for

the adjusted monetary base and total reserves of depository institutions seem to be

biased by the crisis until the end of 2009, which substantiates the relative robustness

of the DOFC-KF specification.

4.5 Conclusion

This paper considered three different fractional factor models for macroeconomic

forecasting. In a pseudo out-of-sample forecast experiment for the high-dimensional

data set of McCracken and Ng (2016), it was shown that the fractional factor models

are able to improve the forecast accuracy substantially, even when there is room for

improvement in terms of model specification (see the discussion at the end of section

4.4.1). Especially the dynamic orthogonal fractional components model of Hartl and

Jucknewitz (2021) and a dynamic factor model for the data in fractional differences

are promising, as they showed significant forecast improvements in comparison to

standard approximate dynamic factor models for a variety of macroeconomic vari-

ables.

Building on the results, future research could improve the model specification by

carrying out a structural analysis of the FRED-MD data set: Determining the num-

ber of factors in a fractionally integrated panel is challenging, and may be addressed

by means of likelihood-based information criteria, by (fractional) cointegration tests,

or by a new information criterion that is robust to fractional integration in the data.

Moreover, future research could examine whether a combination of the DOFC model

in state space form and a factor model in fractional differences can further improve

the predictive power of fractional factor models. In addition, one could combine

principal components and the Kalman filter analogously to Bräuning and Koopman

(2014): By partitioning the data set into two groups, where the former contains the

variables to be predicted, while the latter is shrunk via principal components, one

would greatly reduce the number of parameters and speed up the estimation. More-

over, fractional factor models could be used to explore common trends and cycles
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in macroeconomic data, thus generalizing the work of Barigozzi and Luciani (2021)

to fractionally integrated processes. Finally, the forecast performance of fractional

factor models should also be examined for data other than the FRED-MD.



Chapter 5

Conclusion

The present thesis contributes to the methodological literature on unobserved compo-

nents and factor models by generalizing either a single or multiple common stochastic

trends to account for long memory. The practical benefits of fractional unobserved

components and factor models are demonstrated in empirical applications to climate

and macroeconomic data.

In chapter 2, long memory is incorporated into unobserved components models

by modeling the stochastic trend component as a fractionally integrated process. To

deal with the computational burden imposed by the high-dimensional state vector

associated with the state space representation of fractional unobserved components

models, an analytical solution to the optimization problem of the Kalman filter is

derived. Furthermore, for a prototypical fractional unobserved components model,

the asymptotic estimation theory for the conditional sum-of-squares estimator is de-

rived under relatively mild assumptions as compared to the unobserved components

literature. The results are then shown to carry over to more complex models with

deterministic components and correlated long- and short-run innovations, as well as

to the quasi-maximum likelihood estimator. For US carbon emissions, the fractional

unobserved components model provides new insights on the memory of trend emis-

sions, on the relationship between cyclical carbon emissions and the business cycle,

and on the interaction between long- and short-run innovations.

Building on the methodological results for univariate fractional unobserved com-

ponents models in chapter 2, future research could consider multivariate fractional

unobserved components models, where multiple observable variables are driven by

common, fractionally integrated components. The results in chapter 2 may provide

a starting point for assessing the asymptotic theory, however additional difficulties

can be expected when cointegration is allowed for. For empirical researchers, the

fractional unobserved components model offers a flexible, data-driven solution to

the specification of the trend component in unobserved components models.
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Chapter 3 applies the fractional unobserved components model to revisit the

puzzling estimates for the business cycle obtained from traditional, integer-integrated

unobserved components models. It provides evidence that the puzzling results in

the literature are an artifact generated by the presence of a smooth fractionally

integrated trend in log US real GDP with an integration order greater than one but

less than two. The long-run component of log GDP is found to be well captured

by a fractionally integrated trend with an integration order of 1.30, suggesting that

integer-integrated models for log GDP are misspecified. The resulting trend-cycle

decomposition of log GDP yields a trend estimate that is smooth, along with a

cyclical component that is consistent with the NBER chronology.

While the estimates for trend and cycle are very different from those of tradi-

tional unobserved components models, the estimated correlation between long- and

short-run innovations is (almost) −1, which is also often found for integer-integrated

correlated unobserved components models. Consequently, long- and short-run in-

novations cannot be structurally identified by the fractional model. This calls for

further investigation, e.g. by a bivariate fractional unobserved components model

that adds an additional variable with a more pronounced cyclical behavior to the

setup. In addition, models that allow for a break in the covariance matrix of long-

and short-run innovations to account for the Great Moderation could be considered.

In chapter 4, three different parametric factor models are considered that allow

the factors to exhibit long memory. The forecast performance of the different frac-

tional factor models is studied and compared to a variety of benchmarks in a pseudo

out-of-sample forecast experiment using the macroeconomic data set of McCracken

and Ng (2016). Among the three fractional factor models, it is found that the frac-

tional components model of Hartl and Jucknewitz (2021) can significantly improve

the forecast accuracy relative to traditional approximate dynamic factor models,

with reductions of the mean squared prediction error of more than 50% possible.

Moreover, instead of taking first or second differences of the observable data, factor

models in which the observable data is fractionally pre-differenced are also shown to

often yield a smaller mean squared prediction error.

However, there is still room for improvement in terms of model specification:

Determining the number of factors in a fractionally integrated panel is challenging,

and is done based on the criteria of Bai and Ng (2002) for the data set in fractional

differences. A more structural analysis of the data set of McCracken and Ng (2016)

may identify additional factors that can further improve the forecast performance.

Moreover, the number of factor loadings may be reduced by shrinking small loadings
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to zero. Finally, the data set of McCracken and Ng (2016) is one out of many high-

dimensional panels with strong dependencies in the cross sections, and examining the

forecast performance of fractional factor models for different data sets may provide

additional insights.
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