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Summary 

Immunotherapy with immune checkpoint inhibitors has largely improved survival of melanoma 

patients. However, many patients still do not benefit from so far developed strategies due to primary 

or acquired resistance. In malignant melanoma, increased immune resistance is associated with the 

downregulation of Microphtalmia-associated transcription factor (MITF). MITF is a key regulator of 

melanocyte proliferation and survival. In melanoma cells its decrease results in a dedifferentiated 

phenotype which is concomitant with invasiveness and therapy resistance.  

The aim of this work was to identify mechanisms of immune resistance in MITFlow human melanoma 

cells. In order to discover genes that confer immune resistance in MITFlow melanomas, I performed a 

functional high-throughput (HTP) RNAi screen targeting 5202 genes in two melanoma cell lines derived 

from one immunotherapy refractory melanoma patient. One of these cell lines, Ma-Mel-86a expressed 

low levels of MITF while the other, Ma-Mel-86c expressed high MITF levels. The use of both cell lines 

allowed for the discrimination of common and differential effects of the genes in the MITFlow and 

MITFhigh melanoma cell lines. 91 genes that caused a tumor cell intrinsic resistance against the attack 

by cytotoxic T cells were identified by this screen and confirmed in secondary validation experiments. 

The in vitro work was paralleled by extensive bioinformatic analyses using public bulk and single cell 

RNA-Seq data sets of melanoma samples or patient-derived melanoma cell lines. Immune resistance 

(IR) genes were shown to be co-expressed in gene expression clusters. IR genes and gene clusters 

showed heterogeneous expression patterns between patients but homogeneous expression within 

individual patients and certain genes and clusters could be correlated to a low MITF expression. 

Furthermore, IR genes were differentially expressed between melanoma cells and healthy cells within 

the melanoma stroma, and between MITFlow and MITFhigh melanoma cells. Interestingly, MITFlow cells 

still shared features with MITFhigh cells, but additionally with immunosuppressive cancer-associated 

fibroblasts. 

Several IR genes (TMCC3, SLC39A13, MOK and ZNF443) with a particular strong immune resistance 

potential that were mostly differentially expressed in MITFlow melanomas were selected for further 

functional assessment. These analyses revealed a protective role of these genes against apoptosis 

induction through stimulation by T cell derived cytotoxic ligands such as TRAIL, TNFα or IFNγ. I 

performed extensive mode of action analyses for two IR genes, Transmembrane and coiled-coil domain 

family 3 (TMCC3) and Solute carrier family 39 member 13 (SLC39A13) to uncover their mechanisms to 

convey resistance in the MITFlow cell line Ma-Mel-86a. TMCC3 which is located in the membrane of the 

endoplasmic reticulum (ER) protects MITFlow melanoma cells against ER stress and ensures apoptosis 

resistance by increasing the expression of anti-apoptotic molecules, especially of those involved in 

death receptor signaling such as CFLAR and BCL-2. Upon treatment with death receptor ligand TRAIL 
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to which Ma-Mel-86a showed primary resistance, apoptosis is executed in TMCC3 deficient cells. 

SLC39A13/ZIP13 is a zinc transporter located in the Golgi apparatus that protects MITFlow cells against 

IFNγ-mediated apoptosis. SLC39A13/ZIP13 controls STAT1 and IFNγR1 expression and induces the 

expression of anti-apoptotic BCL-2, making the cells resistant against IFNγ-mediated lysis.  

In conclusion, I identified a variety of so far unknown immune resistance genes in immunotherapy 

refractory MITFlow melanoma cells that regulate T cell and cytotoxic ligand-mediated rejection which 

may represent novel targets for future immunotherapeutic interventions in malignant melanoma. 
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Zusammenfassung 

Der Einsatz von Immuncheckpoint-Inhibitoren in Immuntherapien hat das Überleben von Hautkrebs-

patient:innen stark verbessert. Viele Patient:innen profitieren allerdings nicht von bisher entwickelten 

Strategien aufgrund von primären oder erworbenen Resistenzmechanismen. Im malignen Melanom 

steht eine erhöhte Resistenz im Zusammenhang mit der verminderten Expression von Microphtalmia-

associated transcription factor (MITF). MITF ist der Haupttranskriptionsfaktor in Melanozyten und 

wichtig für die Proliferation und das Überleben der Zellen. In Melanomzellen ist eine Abnahme von 

MITF mit einem de-differenzierten Phänotyp verbunden, einhergehend mit erhöhter Zellinvasion und 

Therapieresistenz. 

Das Ziel dieser Arbeit war die Identifizierung von Immunresistenzmechanismen in humanen Melanom-

zellen mit geringer MITF-Expression (MITFlow). Um Gene zu identifizieren, welche Immunresistenz in 

MITFlow-Melanomen vermitteln, habe ich ein funktionelles Hochdurchsatzscreening auf Basis von RNA-

Interferenz durchgeführt, bei dem 5202 Gene in zwei Melanomzelllinien getestet wurden, welche aus 

einem Immuntherapie-refraktären Patienten generiert wurden. Eine der Zelllinien, Ma-Mel-86a, 

exprimierte geringe Level von MITF (MITFlow), während die andere, Ma-Mel-86c, hohe Level von MITF 

exprimierte (MITFhigh). Durch die Verwendung beider Zelllinien konnten gemeinsame und differenzielle 

Effekte der getesteten Gene zwischen den MITFlow- und MITFhigh-Melanomzelllinien unterschieden 

werden. 91 Gene, welche intrinsische Resistenz gegenüber der Attacke zytotoxischer T-Zellen 

verursachten, konnten in diesem Screening identifiziert und in weiteren Validierungsexperimenten 

bestätigt werden. 

Parallel wurden umfassende bioinformatische Analysen mithilfe von öffentlichen Bulk- und Einzelzell-

RNA-Seq-Datensätzen von Melanomproben oder Melanomzelllinien, welche aus Patient:innen-

material gewonnen werden konnten, durchgeführt. Es konnte gezeigt werden, dass Immunresistenz 

(IR)-Gene in Genexpressionsclustern ko-exprimiert sind. IR-Gene und -Cluster zeigten heterogene 

Expressionsmuster zwischen Patient:innen, jedoch homogene Expressionen innerhalb individueller 

Patient:innen. Zusätzlich konnten bestimmte Gene und Cluster mit geringer MITF-Expression korreliert 

werden. IR-Gene waren außerdem sowohl zwischen Melanomzellen und gesunden Zellen innerhalb 

des Melanomstromas als auch zwischen MITFlow- und MITFhigh-Melanomzellen differenziell exprimiert. 

Interessanterweise zeigten MITFlow-Zellen einige Merkmale von MITFhigh-Zellen, jedoch zusätzlich 

welche von immunsuppressiven Krebs-assoziierten Fibroblasten. 

Mehrere Gene (TMCC3, SLC39A13, MOK und ZNF443) mit ausgeprägtem IR-Potential, welche zumeist 

differenziell in MITFlow-Zellen exprimiert waren, wurden für weitere funktionelle Analysen ausgewählt. 

Hier zeigte sich eine protektive Rolle der Gene gegenüber der Induktion von Apoptose durch die 

Stimulation mit zytotoxischen T-Zell-Liganden wie TRAIL, TNFα oder IFNγ. Umfassendere Analysen zur 
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Wirkungsweise der beiden Gene Transmembrane and coiled-coil domain family 3 (TMCC3) und Solute 

carrier family 39 member 13 (SLC39A13) wurden durchgeführt, um die genauen Mechanismen des 

Resistenzcharakters der MITFlow-Zelllinie Ma-Mel-86a aufzuschlüsseln. TMCC3 ist in der Membran des 

Endoplasmatischen Retikulums (ER) lokalisiert und schützt MITFlow-Zellen vor ER-Stress. Es stellt die 

Resistenz gegenüber Apoptose sicher, indem anti-apoptotische Moleküle induziert werden - vor allem 

jene, welche in Todesrezeptorsignalwegen involviert sind wie CFLAR und BCL-2. Bei Behandlung mit 

dem Todesrezeptorliganden TRAIL, gegenüber welchem Ma-Mel-86a eine primäre Resistenz zeigt, 

wird die Apoptose in TMCC3-defizienten Zellen ausgelöst. SLC39A13/ZIP13 ist ein Zinktransporter, 

welcher im Golgi-Apparat lokalisiert ist, und schützt MITFlow-Zellen vor IFNγ-vermittelter Apoptose. 

SLC39A13/ZIP13 kontrolliert die Expression von STAT1 und IFNγR1 und induziert die Expression von 

anti-apoptotischem BCL-2, wodurch die Zellen resistent gegenüber IFNγ-vermittelter Lyse werden. 

Zusammenfassend habe ich eine Auswahl bisher unbekannter Immunresistenzgene in Immuntherapie-

refraktären MITFlow-Melanomzellen identifiziert, welche den Zelltod durch T-Zellen und zytotoxische 

Liganden regulieren und welche als neue Angriffspunkte in künftigen immuntherapeutischen 

Interventionen im malignen Melanom dienen könnten. 
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1 Introduction 

 

1.1 Cancer immunoediting 

1.1.1 The Hallmarks of Cancer 

In 2000, Douglas Hanahan and Robert A. Weinberg published their landmark review ‘The Hallmarks of 

Cancer’. They looked back at a quarter of a century of cancer research and delineated that healthy 

cells acquire different genetic capabilities in a multistep process to convert into malignant cells [1]. Six 

alterations or hallmarks were declared that cells can exploit to circumvent defense mechanisms: self-

sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion & metastasis, limitless 

replicative potential, sustained angiogenesis and evasion of apoptosis. As almost another quarter of a 

century has passed since and research has progressed remarkably, new common features of cancer 

were discovered. In 2011, two emerging hallmarks as well as two enabling characteristics of malignant 

cells were added to the previous six hallmarks [2]. Among them, ‘evading immune destruction’ 

described the ability of cancer cells to disable immune cell function. In 2022, that list was 

complemented by another four proposed features that are commonly existent in cancer, resulting in 

the current 14 hallmarks [3].  
 

 

                                                                      Figure 1: The Hallmarks of Cancer. 
Adapted from Hanahan, Cancer Discov. 2022 [3]. 

 

Figure 1 illustrates an overview of all hallmarks and characteristics that are so far described to be 

established by cancer cells for successful tumor development. Since the original six hallmarks in 2000, 

it is now clearer that not only genetic alterations contribute to the formation of cancer but also 
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epigenetic and immunoreactive mechanisms as well as non-malignant cells [2, 3]. The tumor 

microenvironment plays an essential part in which inflammatory immune cells, cancer-associated 

fibroblasts, endothelial cells and other cell types along with microbes induce heterotypic signaling 

within the tumor and to malignant cells. Hence, tumor cells can establish phenotypic plasticity and 

effector immune cell function is impaired, adding complexity to cancer pathogenesis. 

 

1.1.2 The three Es of cancer 

A few years after declaration of the first six hallmarks of cancer, another landmark review proposed: 

‘The Three Es of Cancer Immunoediting’ [4]. These were termed elimination, equilibrium and escape, 

describing the conflicting effects that emerge from the interaction between tumor and immune cells. 

Paul Ehrlich described in 1909 that immune cells keep the development of tumors in check, assuming 

the immune system’s role in cancer was solely the elimination of malignant cells [5]. In 1957, Sir 

Macfarlane Burnet introduced the concept of cancer immunosurveillance for the first time by which 

cancer cells are eliminated by immune cell recognition of neoantigens [6, 7]. Over the 20th century, not 

only did in vivo cancer models improve, but also research conducted on cellular and molecular levels 

has advanced the field of cancer immunology further [4]. Thus, it was finally demonstrated that the 

immune system doesn’t only eliminate tumor cells but could even promote their growth. Indeed, the 

term ‘immunoediting’ was introduced comprising two additional phases: equilibrium and escape.  

When cells acquire hallmarks of cancer and tumors evolve, the surrounding tissue is remodeled, and 

the innate immune system is activated [4]. As a result, a primary antitumor response is initiated and 

amplified while the cells of the adaptive immune system recognizing tumor antigens are stimulated [4, 

8]. The occurring tumor-specific immune response is mainly responsible for the successful rejection of 

the cancer. When eradication mechanisms fail to reject malignant cells, the elimination phase 

transitions into the equilibrium phase [4, 9]. Here, the immune system continues to target tumor cells, 

but mutated and resistant cell variants emerge with reduced immunogenicity. The authors of the initial 

review consider the equilibrium phase to be probably the longest of the three phases [4]. Finally, tumor 

cell variants acquire enough immunoevasive capacities enabling their expansion in an immunologically 

intact environment and the tumor becomes clinically relevant [4, 9]. In the escape phase, malignant 

cells are either undetectable for immune cells or they establish an immunosuppressive 

microenvironment that involves different mediators or other cell types. The following chapters will 

give a deeper insight into how immune cells can fight cancer cells and which resistance mechanisms 

are established to prevent tumor cell death. 
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1.1.3 Strategies of tumor elimination 

Successful elimination of cancer cells by the immune system is termed antitumor immunity. Innate and 

adaptive immune responses work mutually and efficiently together in order to eradicate malignant 

cells [10]. When a tumor emerges, immune cells are able to sense modifications in tissue anatomy and 

tissue and cell metabolism [11]. Cells of the innate immune system such as natural killer (NK) or γδ T 

cells use receptors like NKG2D to recognize ligands that are induced and presented by cancerous cells 

[4]. In the onset of antitumor immunity, mediators for example Interferon-γ (IFNγ) are produced that 

have a first antiproliferative, proapoptotic and angiostatic effect on the tumor cells [4, 12]. 

Furthermore, the production of chemokines amplifies immune cell recruitment. Activated NK cells can 

kill tumor cells via TNF-related apoptosis-inducing ligand (TRAIL) or perforin-dependent mechanisms 

leading to the release of cancer cell antigens. The released tumor-associated antigens are collected 

and processed by dendritic cells (DCs) and finally presented on major histocompatibility complex 

(MHC) classes I and II to T lymphocytes [8]. In lymph nodes, T cells are primed, activated and they 

finally infiltrate into the tumor. Here, T cells tap their full potential to recognize and kill tumor cells by 

a variety of mechanisms [8]. 

Cytotoxic CD8+ T lymphocytes (CTLs) are powerful effector cells that induce apoptosis in their target 

cells by direct cell-cell interactions [13]. Their T cell receptor (TCR) recognizes the antigenic peptide 

presented on MHC class I proteins on the tumor cells. Subsequently, an immunological synapse 

between the tumor cell and T cell is formed and stabilized by intercellular adhesion molecules [14]. 

Apart from the TCR complex, co-receptor CD8 binds to the MHC-α subunit and the T cell and its killing 

machinery are activated. As a result, prosurvival pathways and proteins within the CTL enhance 

persistence of the immune cell. Furthermore, death-inducing ligands are expressed, and cytotoxic 

granules are released via exocytosis into the synapse in order to kill the cancer cells [13, 14]. 

Vesicles that are released contain among other proteins perforin and granzymes [13]. Perforins are 

responsible to create pores in the cell membrane of the target cells to facilitate the entry of granzymes 

[15, 16]. Alternatively, a cocktail of cytotoxic molecules is endocytosed into the tumor cell and perforin 

and granulysin perforate the endosomal membrane [16, 17]. Granzymes are serine proteases that, 

upon entry or release into the cytoplasm of the tumor cells target proteins such as lamin B, α-tubulin 

and caspases [15]. Granzyme B is the best studied member and doesn’t only activate executioner 

caspases like caspase-3 and -7 but as well their direct substrates in order to induce apoptosis [18]. Of 

note, the T cell protects itself from damage by production of granzyme inhibitors called serpins or by 

surface expression of cathepsin B that disables perforin by proteolysis [15]. On the other hand, 

granzyme B targets extracellular proteins such as fibronectin and laminin in order to restrict cancer 

cell invasion and enhance lymphocyte infiltration [19]. 
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As mentioned previously, IFNγ is a cytokine that is secreted by NK cells. CTLs are also capable to 

produce large amounts of IFNγ after activation [12, 20]. It binds as dimer to the interferon-gamma 

receptor (IFNGR) on the target cell that consists of two monomers IFNGR1 and IFNGR2 [21, 22]. Binding 

induces janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling, in which 

mainly STAT1 activation induces Interferon Signature Genes (ISG) such as interferon regulatory factor-

1 (IRF-1). IRF-1 activation can further induce apoptosis and tumor suppression and furthermore, 

upregulation of MHC class I [21, 23]. Hence, tumor cells increase their presentation of tumor-

associated antigens and can therefore be targeted more efficiently by CTLs. 

Another group of ligands that are expressed by cytotoxic T cells belongs to the tumor necrosis factor 

(TNF) ligand superfamily that bind to respective members of the TNF receptor (TNFR) superfamily. 

Overall, both superfamilies include 19 ligands and 29 receptors that regulate diverse events in target 

cells such as survival and apoptosis as well as differentiation [24]. Not all ligands are expressed by CTLs 

and not all receptors are expressed by tumor cells, that being the case, I here focus on the most 

relevant ones for this project.  

The ligands TNFα (TNFSF2), FasL (TNFSF6), TRAIL (TNFSF10) and LIGHT (TNFSF14) are expressed on the 

surface of the T cells and can be proteolytically cleaved and released into the extracellular space, all as 

homotrimers [25, 26]. While Lymphotoxin-α (LTα/TNFSF1) doesn’t possess transmembrane domains 

and is directly secreted and builds trimers, LTβ (TNFSF3) remains bound to the cell membrane via its 

transmembrane domain and forms homotrimers or heterotrimers with LTα [25, 27]. Several ligands 

can bind to multiple trimeric receptors, namely TNFR1 (TNFRSF1A), TNFR2 (TNFRSF1B), FAS (TNFRSF6), 

Death receptor 4 (DR4/TNFRSF10A), DR5 (TNFRSF10B), Herpesvirus entry mediator (HVEM/TNFRSF14) 

and Lymphotoxin beta receptor (LTβR/TNFRSF3) [25]. Figure 2 illustrates the different ligand-receptor 

interaction possibilities. Of note, membrane-bound and soluble forms of TNFR ligands can induce 

downstream signaling with varying degree, always depending on the ligand-receptor pair. After 

receptor ligation, different pathways are activated in the target cell that can lead to apoptosis and 

necroptosis or alternatively, to proliferation [28]. FAS, TNFR1, DR4 and DR5 possess intracellular so-

called death domains (DD) that are crucial for apoptosis and necroptosis induction. In case of 

insufficient pro-survival and anti-apoptotic signaling, ligand-receptor complexes recruit Fas-associated 

death domain protein (FADD) as well as procaspase-8 [25, 29]. The resulting death-inducing signaling 

complex (DISC) finally induces tumor cell apoptosis. Alternatively, low caspase-8 activity results in 

induction of necroptosis by receptor-interacting protein 3 (RIP3) binding to RIP1 [28]. TNFR2, HVEM 

and LTβR don’t possess death domains but rather induce nuclear factor kappa-light-chain-enhancer of 

activated B-cells (NF-κB) and Activator protein 1 (AP-1) signaling by recruitment of TNF Receptor 

Associated Factor (TRAF) proteins [25]. While this is more associated with pro-survival functions, LTβR 
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is able to induce tumor cell death in a reactive oxygen species (ROS) dependent way. This mechanism 

was shown to activate caspase signaling or to induce apoptosis in a caspase-independent way [30, 31]. 

 

Figure 2: Members of the TNF and TNFR superfamilies as well as IFNγ and IFNγR.  
Ligands on top are expressed and mostly released by immune cells and bind to their respective receptors on the 
target cells to regulate diverse cell functions or, as in tumor cells, to induce apoptosis. Adapted from Suo et al., 
Pharmaceutics. 2022 [25]. Created with BioRender.com [32]. 
 

1.1.4 Tumor escapes mechanisms 

When cancer cells develop features in order to grow in an intact immune environment, the third phase 

of immunoediting begins termed the ‘escape phase’ [4]. Here, strategies of tumor elimination by the 

immune system fail as the cancer cells developed various resistance mechanisms to avoid immune cell-

mediated cytotoxicity or to suppress immune cell functions. Some tumors are infiltrated with immune 

cells such as NK and T cells and referred to as ‘hot’ tumors, but tumor can also be ‘cold’, characterized 

by immune non-infiltration [33]. 

Cold tumors show reduced levels of attractants such as C-X-C motif chemokine ligand 9 (CXCL9) or 

CXCL10 which results in decreased T cell infiltration [34]. This is enhanced by expression of Vascular 

Endothelial Growth Factor (VEGF) resulting in the downregulation of adhesion molecules for T cells on 

endothelial cells of the blood vessels [35]. At the same time, production of Interleukin 10 (IL-10) and 

prostaglandin E2 by the malignant cells induces expression of FasL on the endothelial cells that 

stimulates apoptosis of emerging effector T cells. Within the tumor, an immunosuppressive 

microenvironment is promoted by the presence of immunosuppressive cells such as regulatory T cells 

(Treg) or cancer-associated fibroblasts (CAF) that produce extracellular matrix (ECM) proteins like 

collagen and laminin [36]. Also, factors such as IL-10 and Transforming growth factor β (TGFβ) inhibit 

the function and maturation of dendritic cells [37]. Hence, DCs downregulate co-stimulatory molecules 

like CD80/CD86 and MHC preventing T cell activation and proliferation. If the TCR complex is formed 

but co-stimulation is missing, the T cells become unresponsive, commonly termed T cell anergy [38]. 
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In hot tumors, partially similar mechanisms are exploited by tumor cells. Downregulation of MHC class 

I molecules on the surface and decreased antigen presentation on tumor cells leads to reduced 

recognition by CTLs [33]. This is achieved through various mechanisms such as antigen depletion or 

genetic or transcriptional alterations for MHC I [39]. Besides, immunosuppressive cells and molecules 

in the tumor microenvironment are part of the tumor escape mechanisms. M2 tumor-associated 

Macrophages (TAM) express IL-10, VEGF and matrix metalloproteinases (MMP) promoting tissue 

remodeling, angiogenesis and tumor progression [40]. Myeloid-derived suppressor cells (MDSCs) 

increase the suppression of immune cells by production of arginase 1, prostaglandin E2, IL-10 and TGFβ 

[41]. TGFβ has a broad range of functions from tissue regeneration to proliferation and apoptosis. In 

the context of immunosuppression in the tumor, TGFβ inhibits effector T and NK cells and at the same 

time promotes the generation of Treg cells [42]. Treg cells themselves show immunosuppressive features 

as they are able to produce IL-10 and TGFβ thereby impairing DC and T cell function [43]. Additionally, 

Treg cells express cytotoxic T lymphocyte antigen-4 (CTLA-4) which binds like CD28 to CD80/CD86 on 

antigen-presenting cells (APC) therefore reducing co-stimulatory signals to effector T cells. 

CTLA-4 belongs to a group of proteins called immune checkpoint molecules (ICM). When immune cells 

are activated due to infections or by transformed cells, ICM are important to limit effector functions 

in order to protect healthy tissue from damage [44]. As previously described, CD8+ T cells are fully 

activated when T cells receive multiple signals through the TCR, CD8 and co-stimulatory receptor CD28 

[14]. Upon binding of CD8 to MHC I on APCs, tyrosine kinase Lck phosphorylates immunoreceptor 

tyrosine‑based activation motifs (ITAMs) of the intracellular CD3 domains of the TCR. Recruitment, 

phosphorylation, and activation of downstream signaling proteins such as ZAP-70 and LAT are 

important for TCR signaling [14, 45]. Activation of CD28 follows TCR/CD8 activation by binding to its 

ligands CD80 or CD86 expressed by the APC leading to intracellular phosphorylation events that 

promote survival signaling through PI3K/AKT and NF-κB [14]. Without CD28 activation, the killing 

machinery cannot be activated, and T cells get anergic. Activation of T cells involves the upregulation 

of co-inhibitory ICM as a feedback mechanism [46]. Most prominent members are CTLA-4, 

programmed cell death 1 (PD-1), Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and 

mucin domain 3 (TIM-3) and T cell immunoglobulin and ITIM domain (TIGIT). For example, CTLA-4 binds 

to CD80/86 with higher affinity and avidity than CD28 [47, 48]. The intracellular domain of CTLA-4 is 

subsequently phosphorylated, resulting in activation of phosphatases SHP2 an PP2A that abrogate 

PI3K/AKT and TCR signaling [49]. Similarly, PD-1 has inhibitory intracellular domains that are 

phosphorylated after binding of PD-1 to its ligands Programmed Cell Death 1 Ligand 1 (PD-L1) and PD-

L2. Phosphatases SHP1/SHP2 are recruited resulting in inhibition of PI3K/AKT and ZAP-70 signaling 

[49]. 
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Classically, ligands of inhibitory signaling are expressed by APCs, but tumor cells exploit this mechanism 

to impair immune cell activity [50]. Ligands such as PD-L1, PD-L2 and Galectin-9 are upregulated on 

the surface of malignant cells in order to suppress CTL activity resulting in increased tumor cell survival 

[51]. PD-L1 expression for example is hereby induced by IFNγ that is secreted by infiltrating T cells as 

an adaptive resistance mechanism [52]. Figure 3 illustrates ICM and their ligands and how their 

interactions impair TCR signaling and T cell function. 

 

Figure 3: Immune checkpoint molecules expressed by T cells. 
Their ligands are expressed on antigen presenting cells (APC) or can be exploited by tumor cells to abrogate TCR 
signaling and immune cell function. Original figure was modified from Köhler et al., Front Immunol. 2021 [50]. 

 

Another way of tumor escape is increased resistance to cell death of the malignant cell. This can be 

achieved by different ways such as the regulation of apoptosis, autophagy and necroptosis and of 

signaling of heat shock and proteasomal proteins as well as by epigenetic mechanisms [53]. Next, I will 

focus on mechanisms of three important groups of proteins: receptors that regulate apoptosis upon 

binding of cognate ligands, the enzyme family of caspases and apoptosis regulating proteins like the 

Bcl-2 family. 

As mentioned before, death receptors such as TNFR1, DR4 and DR5 don’t only activate apoptosis by 

recruitment of FADD upon binding of TNF ligands. Additionally, TNFR1-associated death domain 

protein (TRADD) and inhibitor of apoptosis (IAP) proteins are recruited which activate NF-κB and AP-1 

signaling that are important for survival of the tumor cell, thus counteracting apoptosis induction [25, 

54]. Also, the expression of death receptors itself can be regulated. The main mechanism of 

downregulation of FAS, DR4 and DR5 is by methylation of the gene and/or promotor [28]. Another 

mechanism that can reduce or prevent TNFR family induced apoptosis is the simultaneous expression 

of decoy receptors (DcR). While TRAIL is bound by DcR1, DcR2 and osteoprotegerin (OPG), FasL and 

LIGHT bind to DcR3. These receptors are either expressed on the cell surface but lack intracellular 
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domains important for the induction of apoptosis or are secreted into the extracellular milieu. Decoy 

receptors expressed by tumor cells bind to the ligands in order for the tumor cells to escape 

immunosurveillance and promote tumor growth [55, 56]. Finally, tumor cells can secrete proteins like 

matrix metalloproteinases (MMP) into the tumor environment that cleave FasL and TRAIL off the 

surface of effector cells, thereby reducing their cytotoxic potential [28]. 

Furthermore, apoptosis of tumor cells is prevented by dysregulation of caspases [57]. Most of the 

members of this enzyme family of endoproteases is involved in apoptosis induction. Caspases-8 and -

9 are so-called initiator caspases which are activated by dimerization and subsequently cleaved 

autocatalytically [57, 58]. Dimers of the executioner caspases-3, -6 and -7 are activated by cleavage by 

the initiator caspases. Cleaved subunits build mature proteases that finally induce apoptosis by 

destroying important structural proteins and enzymes [57]. Caspase-9 is activated during the intrinsic 

pathway of apoptosis, in which different cellular stresses lead to the release of mediators such as 

cytochrome c from the mitochondria. Caspase-8 is activated during the extrinsic pathway mediated by 

extracellular ligands that bind to death receptors such as TNFR1 or DR5 resulting in recruitment to the 

receptor complex and dimerization of caspase-8. Active caspase-8 is also able to induce the intrinsic 

pathway of apoptosis by cleaving BH3 Interacting Domain Death Agonist (BID) [59]. In tumor cells, 

these pathways can be dysregulated to prevent apoptosis [57]. The gene of caspase-8 can be silenced 

by CpG methylation or deleted [28]. Furthermore, both Caspase-8 and FADD can be M1 ubiquitinylated 

to inhibit their function [60]. 

However, most of the regulation of the extrinsic and intrinsic apoptosis pathway is caused by other 

pro- and anti-apoptotic proteins. Due to high homology, cellular FLICE-inhibitory protein (cFLIP/CFLAR) 

competes with caspase-8 in building the DISC [28]. cFLIP has three different splice variants and all 

inhibit initiation of the apoptosis signaling cascade by different mechanisms. Large cFLIPL is cleaved by 

caspase-8 and can subsequently induce additional pro-survival NF-κB signaling. The previously 

mentioned inhibitor of apoptosis proteins (IAPs) is another group that regulate programmed cell death 

[61]. While XIAP prevents apoptosis signaling by binding to caspase-3, -7 and -9, cIAP1 and cIAP2 

mediate resistance differently. Both proteins are recruited by death receptors like TNFR1 upon binding 

of its ligand in order to ubiquitinylate proteins, thus preventing formation of the DISC and promoting 

NF-κB signaling. Finally, the B-cell lymphoma 2 (Bcl-2) family of pro- and anti-apoptotic proteins 

regulate the intrinsic apoptosis pathway [62]. The amount of different Bcl-2 Homology (BH) motifs 

divides the members into three subfamilies that characterize their function. Pro-apoptotic members 

BAX, BAK and BOK promote mitochondrial outer membrane permeabilization (MOMP), thereby 

initiating apoptosis [63]. To counteract induction of cell death, pro-survival genes such as BCL-2, BCL-

XL and MCL-1 are expressed. BCL-2 for instance, prevents apoptosis by either binding to BAX or by 
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inhibiting caspase activity [64]. BH3-only subfamily members like BID, BAD or PUMA can either 

antagonize pro-survival genes or activate BAX and BAK. Tumor cells enhance escape mechanisms by 

dysregulating the expression of pro- and anti-apoptotic proteins. Here, expression of pro-survival 

members like BCL-2 and BCL-XL are frequently increased. Alternatively, tumor cells can downregulate 

the expression of pro-apoptotic proteins, for example, the lack of expression of BAK and BH3-only 

members is observed regularly in human cancers [62, 64].   

 

1.2 Melanoma 

Skin cancer is a worldwide public health concern, and the prevalence is on the rise [65]. In Germany, 

more than 300.000 people are diagnosed with skin cancer every year, hence being the most frequent 

cancer type [66]. Skin cancer is divided into two subgroups: non-melanoma skin cancer (NMSC) and 

melanoma. NMSC represent about 95 % of skin cancers with cutaneous squamous cell carcinoma (SCC) 

and basal cell carcinoma (BCC) being the most frequent types [65]. Although melanoma represents 

only the remaining 5 % of skin cancers, it is responsible for almost two thirds of all skin cancer-related 

fatalities [67]. The four main subtypes of melanoma are acral lentiginous melanoma, lentigo 

melanoma, nodular melanoma and superficial spreading melanoma, the latter being responsible for 

about 70 % of all melanomas [68]. 

Malignant melanoma is derived from melanocytes. These cells originate from the neural crest and are 

finally distributed in the basal layer of the epidermis and produce melanin, the pigment that is 

responsible for the coloring of the skin [65, 67]. As the most abundant cell type of the epidermis are 

keratinocytes, melanin produced by the melanocytes are transferred to the keratinocytes via 

organelles called melanosomes [68]. Multiple factors are involved in melanocyte and melanoma 

development that play important roles in skin homeostasis as well as the pathophysiology of 

melanoma, one of them being MITF [69]. 

 

1.2.1 Microphthalmia-associated transcription factor (MITF) 

Microphthalmia-associated transcription factor (MITF) is the key transcriptional regulator in 

melanocytes regulating cell metabolism, proliferation and differentiation but also DNA damage repair, 

cell survival and invasion [70, 71]. It belongs to the MiT subfamily together with TFEB, TFE3 and TFEC 

as well as to the basic domain helix–loop–helix leucine zipper (bHLH-LZ) class of transcription factors 

that are able to bind DNA as dimers at so-called E-box sequences [71]. The MITF gene contains many 

exons with several transcriptional start sites, resulting in different isoforms, of which MITF-M is the 

one specific for melanocytes. Directly upstream of this isoforms promotor, different transcription 
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factors can regulate the expression of MITF such as SRY-related high-mobility group box 10 (SOX10), 

cAMP Responsive Element Binding Protein 1 (CREB) and Activating Transcription Factor 4 (ATF4) [72, 

73]. These can promote or repress transcription of MITF and are regulated by different signaling 

pathways which is represented in more detail in Figure 4 [71]. The synthesized MITF protein undergoes 

posttranslational modifications such as phosphorylation, ubiquitylation and SUMOylation that 

regulate its cellular localization, activity as well as its stability and degradation. MITF is able to bind to 

tens of thousands of sites in the genome. However, in a study from Strub et al. it was reported that 

MITF positively or negatively regulates 465 target genes effectively [74]. As mentioned before, it 

regulates a diverse set of cell functions [71]. One typical function of differentiated melanocytes 

induced by MITF is pigment biogenesis by upregulation of Tyrosinase (TYR) and Melan-A (MLANA), but 

it also regulates the cell cycle by enhancing Cyclin Dependent Kinase 2 (CDK2) [75]. Additionally, MITF 

can induce expression of BCL-2, therefore contributing to cell survival by inhibition of apoptosis. As an 

example of MITF in a biological context, it mediates a skin protection mechanism as a response to UV 

radiation [76]. UV radiation stimulates keratinocytes to secrete melanocyte-stimulating hormone 

(αMSH), a ligand of the melanocortin 1 receptor (MC1R) on melanocytes. Downstream, cAMP levels 

are increased and CREB induces MITF expression that itself drives cell survival and pigmentation 

processes to protect cells of the skin from damage caused by the UV radiation [76]. 

 

 

Figure 4: Regulation of the MITF-M promotor. 
Pathways and downstream transcription factors positively and negatively regulate the transcription of the MITF-
M isoform of Microphthalmia-associated transcription factor. Adapted from Goding et al., Genes Dev. 2019 [71]. 

 

1.2.2 Melanoma biology 

Different genetic, biological and environmental factors are contributing to melanomagenesis, in which 

melanocytes are characterized by abnormal proliferation [65]. UV radiation is the main trigger for 

melanoma development as it can cause genetic damage and induce or repress several signaling 

programs in the cell. Upon transformation, oncogenes are activated, tumor suppressor genes are 
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repressed, and genetic and epigenetic processes finally trigger cell proliferation, prevention of 

apoptosis, angiogenesis, tissue invasion and metastasis, making melanoma the most aggressive type 

of skin cancer [65]. 

Some mutations are very common between most melanomas. The kinase BRAF is in about half of all 

melanomas hyperactivated usually due to a point mutation at codon 600 (mainly BRAFV600E) [68]. BRAF 

is a member of the rapidly accelerated fibrosarcoma (RAF) family of serine/threonine kinases [77]. It is 

part of the Mitogen-activated pathway (MAP) kinase/ERK signaling pathway that is induced upon 

activation of receptor tyrosine kinases (RTKs) due to binding of respective ligands like epidermal 

growth factor (EGF). Phosphorylation of RTK activates GTPases of the RAS-family resulting in 

dimerization of RAF family proteins and further activation of the kinases MEK1/2 and ERK1/2 [78]. 

Finally, cell survival and proliferation are induced due to transcriptional regulation by the kinases. 

Hence, BRAF mutations in melanoma cells drive cell growth, but they are also associated to tumor cell 

escape and metastasis [68, 78]. The GTPase NRAS is mutated in approximately 20 % of all melanomas, 

usually at codon 61 (NRASQ61K/R/L) [68]. Here, GTPase activity is compromised leading to accumulation 

of RAS-GTP that promotes the MAPK/ERK signaling pathway as well as pro-survival phosphoinositol-3-

kinase (PI3K) pathways. Neurofibromin 1 (NF-1) is a protein that controls RAS activity by RAS-GTP 

inhibition [67]. However, NF-1 is frequently mutated in malignant melanoma which again promotes 

MAPK and PI3K pathways. The PI3K/AKT pathway can further be constitutively enhanced by 

inactivation of the tumor suppressor Phosphatase and Tensin Homolog (PTEN) due to genetic 

mutations or epigenetic changes [68]. In 70 % of all melanomas, mutations in the promotor gene of 

Telomerase Reverse Transcriptase (TERT) can be found. Activation of the TERT accordingly increases 

telomerase production causing melanoma cell immortality [68]. 

Melanoma has a high metastatic potential and distant metastases are the main cause of melanoma 

patient deaths. Genetic alterations and induction of osteopontin (OPN) results in upregulation of NF-

κB-mediated activation of matrix metalloproteinases (MMPs) [67, 79, 80]. MMPs like MMP-9 remodel 

the extracellular matrix facilitating the invasion of melanoma cells and finally leading to infiltration into 

the blood stream. The expression of Wnt-inducible signaling protein 1 (WISP1) contributes to 

remodeling of the microenvironment [68]. WISP1 enables melanoma invasion by inhibiting E-cadherin 

and MITF promoting epithelial-mesenchymal transition (EMT) [81]. The following chapter will give a 

deeper insight into EMT and phenotype switching in dependence of MITF. 

 

1.2.3 Melanoma plasticity and phenotype switching 

The expression of MITF can be used to measure the degree of differentiation in melanoma cells. MITF 

is important for the differentiation from neural crest precursors to melanocytes, thus showing high 
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expression in differentiated melanocytes as well as melanoma cells [70]. Dedifferentiated melanoma 

occurs when melanoma cells lose their typical morphological phenotype in which MITF and 

immunohistochemical markers are downregulated [82]. Accordingly, different transcriptional 

programs are driving the differentiated and dedifferentiated along with intermediate melanoma 

subtypes [70, 83]. Different cell states co-exist within the same tumor and the phenotype of one cell 

is not static [70]. These dynamics of the high plasticity in melanoma is often termed as phenotype 

switching.  

In recent years, states of melanoma cells were defined and characterized by their transcriptional 

landscapes and expression of cell markers and by their features concerning proliferation, invasion, and 

therapy resistance. This was mainly achieved by experimental data and bioinformatic analyses of 

patient-derived melanoma cell lines or melanoma patient material [83-86]. So far, six states were 

described: hyperdifferentiated (pigmented), melanocytic (differentiated), intermediate (transitory), 

starved (SMC), dedifferentiated (undifferentiated) and neural crest stem cell (NCSC)-like [87, 88]. 

Figure 5 illustrates the characteristics of the different states of melanoma plasticity. As 

aforementioned, features of dedifferentiation are especially present in melanoma cells that are 

becoming invasive and metastatic, and these are characterized by reduced proliferation [70]. While 

MITF is downregulated, other marker genes such as Nerve Growth Factor Receptor (NGFR) or AXL 

Receptor Tyrosine Kinase are upregulated. 

 

Figure 5: The six cell states of melanoma plasticity. 
Each melanoma cell state is characterized by the expression of distinctive markers as well as by MITF activity and 
features concerning proliferation, invasion, and therapy tolerance. Original figure was modified from Huang et 
al., Front Oncol. 2021 [88]. 
 

Epithelial to mesenchymal transition (EMT) is an important process in embryonic development that is 

hijacked by cancer cells to dissociate and metastasize [89]. Microenvironmental conditions such as 

inflammation or metabolic stress activate pathways in melanoma cells and induce reprogramming to 

a dedifferentiated and mesenchymal-like cell state independent of genetic alterations [88]. General 

transcriptional drivers of EMT in melanoma are POU Class 3 Homeobox 2 (POU3F2/BRN2), Activator 



13 
 

protein 1 (AP-1) and the family of Transcriptional enhanced associate domain (TEAD) transcription 

factors. BRN2 can be induced by high MAPK and PI3K signaling and binds to the MITF promotor 

repressing its expression [88, 90]. These signaling pathways and regulators can be activated by 

cytokines such as TNFα, IL-1 or TGFβ [88]. TGFβ is generally expressed by melanocytes to downregulate 

proliferation and is often involved in phenotype switching. In EMT, it is associated to BRN2 and AP-1 

but is also able to induce ATF4 and HIF1α, two regulators that are usually induced by metabolic stress 

and finally suppress MITF while promoting dedifferentiation and the expression of marker genes like 

AXL and Receptor Tyrosine Kinase Like Orphan Receptor 2 (ROR2) [73, 88, 91]. The upcoming chapters 

offer closer reviews on how the high plasticity and EMT in melanoma contribute to therapy resistance. 

 

1.2.4 Targeted therapies in malignant melanoma 

Due to frequent genetic alterations such as BRAF and NRAS mutations, targeted therapies for 

melanoma have been developed aiming to downregulate hyperactivated MAPK signaling [68, 70]. 

BRAF and MEK inhibitors like vemurafenib and trametinib, respectively, are widely used in combination 

in BRAFV600-mutated melanoma patients [70]. Despite clinical benefit of targeted therapy, most tumors 

acquire resistance within a few months to years. Initially, loss of MAPK signaling consequently 

downregulates ERK activity and reprograms tumor cell signaling [92]. Alternative transcription factors 

enhance and stabilize RTKs like Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3), inducing pro-survival 

pathways such as PI3K/AKT. Melanoma cells that upregulate ERBB3 as well as AXL and other RTKs are 

able to generate dedifferentiated and invasive signatures with low MITF expression and a resistant 

phenotype [70]. On the other hand, MAPK pathway inhibition can also increase MITF expression, 

resulting in transcription of PPARG Coactivator 1 Alpha (PGC1α) that drives oxidative phosphorylation 

(OXPHOS) [93]. Cancer cells which upregulate OXPHOS increase ATP synthesis in order to maintain cell 

proliferation [94, 95]. Apart from intrinsic signaling, alterations in the microenvironment of the tumor 

contributes to melanoma plasticity and resistance to BRAF and MEK inhibition. Finally, resistance can 

be further achieved by reactivation of MAPK signaling due to additional mutations like gene 

amplification of BRAF [70]. Figure 6 in chapter 1.3.2 illustrates phenotype switching and acquired 

resistance during MAPK-targeted therapy. 

 

1.3 Immunotherapy 

Immunotherapy is regarded as the fifth pillar of cancer therapy alongside surgery, chemotherapy, 

radiation and targeted therapy [96]. It utilizes and enhances the immune system’s ability to fight tumor 

cells in order to eradicate cancer and has prolonged survival of cancer patients [7]. Immunotherapy 
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dates back to the 19th century when Wilhelm Busch and Friedrich Fehleisen observed regression of 

tumors after accidental infections with Streptococcus pyogenes. Discoveries in immunological research 

such as the TCR, CTLA-4 or monoclonal antibodies led to clinical applications of engineered T cells or 

inhibitory checkpoint inhibitors in 2010 and 2011, respectively [96]. 

Cancer immunotherapy is diverse as it comprises the application of oncolytic viruses that selectively 

lyse tumor cells or cytokines and vaccines promoting immune cell function [96-98]. In adoptive cell 

transfer, autologous or allogenic T cell, NK cell or dendritic cell numbers and/or functions are improved 

and administered to cancer patients to eradicate tumor cells [97]. Here, T cells as strong effector cells 

play a major role in cancer immunotherapy. In adoptive T cell therapies, tumor-infiltrating lymphocytes 

(TILs) recognizing tumor-associated antigens (TAAs) are expanded from biopsies by using Interleukin-

2 (IL-2) to effectively kill cancer cells after re-infusion into the patient [7]. Alternatively, the TCR can be 

genetically modified to increase specificity to tumor neoantigens. Finally, chimeric antigen receptors 

(CARs) are engineered to express a specific set of extracellular and intracellular domains. These are 

designed to maintain T cell viability and antitumor efficacy and are not restricted to antigen recognition 

on MHC molecules. CAR T cell therapy shows severe toxicities as well as limited persistence of CAR T 

cells and it is restricted to B cell leukemia or lymphoma due to reduced antigen variety and limited 

tumor infiltration [7, 99, 100]. Immune checkpoint blockade therapy (ICBT) represents another 

approach in cancer immunotherapy that enhances T cell function to fight tumor cells. As described in 

1.1.4 immune checkpoint signaling is an important mechanism of the immune system to limit immune 

responses and prevent autoimmunity [101]. Tumor cells upregulate molecules such as PD-L1 in order 

to abrogate TCR signaling and T cell activation by ligation of their cognate receptor PD-1. Immune 

checkpoint inhibitors (ICI) represent a group of antibodies or small molecules that prevent inhibitory 

interactions of T cells [97, 101]. ICIs boost immune cell function and have demonstrated strong 

antitumor effects in solid tumors like NSCLC and melanoma [97, 102, 103]. However, ICBT show 

immune-related adverse effects as well as limited response rates, especially treatment with single ICIs 

[101]. 

 

1.3.1 Immunotherapies in malignant melanoma 

Due to high mutational burden in melanoma, the disease is well eligible for immunotherapy [104]. The 

treatment of advanced melanoma with immunotherapies has improved median survival of patients 

from six months to six years in stage IV disease in the past decade [105, 106]. IL-2 was the first 

immunotherapy agent in clinical use from 1998 but showed strong toxicity in patients [105]. Since 

then, adoptive cell therapy (ACT), melanoma vaccines and oncolytic virus therapy like talimogene 
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laherparepvec (T-VEC) were developed until in 2011, the first ICI was approved for metastatic 

melanoma. 

Ipilimumab is a human IgG1 monoclonal antibody inhibiting CTLA-4 which improved overall patient 

survival [103, 107]. Another immune checkpoint mechanism that is targeted by ICIs is the PD-1/PD-L1 

axis. Melanoma cells overexpress PD-L1 to circumvent immune responses by abrogating TCR signaling 

in order to prevent effector T cell function [105]. Pembrolizumab and Nivolumab are IgG4 monoclonal 

antibodies both targeting PD-1 expressed on T cells. Treatment with these antibodies improved patient 

survival and showed less adverse events compared to chemotherapy as well as ipilimumab [108-112]. 

Combination of anti-CTLA-4 and anti-PD-1 with ipilimumab and nivolumab showed synergistic effects 

in the treatment of advanced melanoma and finally pushed response rates and median overall survival 

to more than six years, in spite of increasing high-grade adverse events [106, 113]. Since then, other 

combination therapies have been investigated and further proposed. Nivolumab was administered in 

melanoma patients together with relatimab, an IgG4 LAG-3 blocking antibody [105]. LAG-3 is related 

to CD4 and is expressed by activated T cells binding with high affinity to MHC II [114]. Melanoma cells 

that express MHC II therefore downregulate T cell function and promote tumor cell survival [115]. Toll-

like receptor 9 (TLR-9) agonists have been administered intra-lesionally or subcutaneously to drive the 

expression of cytokines in order to increase recruitment and activation of effector T cells, turning cold 

tumors into hot tumors [105]. So far, anti-CTLA-4 and anti-PD-1 antibodies are part of combination 

therapies with TLR-9 agonists, T-VEC or ACT, but also fecal microbiota transplantation (FMT) from anti-

PD-1 responder patients is tested to have an effect on response rates as the microbiome can influence 

adaptive immune responses [105, 116-120]. 

Besides partially severe adverse events, the success of ICBT is limited by the expression of inhibitory 

ligands on the tumor cells. Low expression of PD-L1 or LAG-3 consequently reduced progression-free 

survival in melanoma patients [121]. In general, still many patients do not benefit from 

immunotherapy due to primary or acquired resistance mechanisms of melanoma in most cases [105]. 

 

1.3.2 Resistance mechanisms in malignant melanoma 

Despite a plethora of strategies of tumor elimination by effector cells and various targeted therapies 

and immunotherapies improving median overall survival, primary and acquired resistance mechanisms 

in melanoma allow malignant cells to escape immune responses finally preventing tumor eradication 

[105, 106]. Broadly, resistance in melanoma as in other tumor types can be divided into two categories: 

either, resistant clones exist prior to immunotherapy and outgrow, or adaptive changes are initiated 

during the immunotherapy [122]. 
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Cell plasticity plays a critical role in the resistance of melanoma cells [88]. A transcriptional innate anti-

PD-1 resistance gene signature (IPRES) was proposed by Hugo et al. in which markers of 

dedifferentiated melanoma such as AXL and ROR2 together with immunosuppressive genes like IL-10 

and VEGF were higher expressed in non-responder patients [123]. Phenotype switching also occurs 

during immunotherapy leading to acquired resistance of melanoma [70, 88]. ACT or ICIs that promote 

immune function drive inflammation in the tumor which induces dedifferentiation of melanoma cells 

[85, 124]. Melanocytic antigens like Melan-A are downregulated, resulting in decreased recognition 

and elimination by T cells. Phenotype switching facilitates the infiltration of MDSCs that enhance 

inflammation-induced dedifferentiation through the expression of WNT5A and TGFβ and the 

development of an immunosuppressive microenvironment [125]. Dedifferentiated and invasive 

MITFlow/AXLhigh cells further express CD73 through c-Jun/AP-1 signaling. CD73 increases the 

immunosuppressive characteristics of the tumor microenvironment by generation of adenosine [88, 

126]. Dedifferentiated neural crest stem cell (NCSC)-like MITFlow/NGFRhigh cells show increased 

expression of PD-L1 that drives T cell exhaustion through ICM signaling [127].  Figure 6 illustrates 

phenotype switching and acquired resistance during immunotherapy in malignant melanoma. 

 
Figure 6: Phenotype switching and therapy resistance in melanoma. 
Melanoma cells convert from a melanocytic MITFhigh to a dedifferentiated MITFlow phenotype. Despite initial 
response to MAPK-targeted therapy (top) and immunotherapy (bottom), some melanoma cells acquire 
resistance mechanisms that helps the tumor cells to survive and the cancer to progress. Adapted from Huang et 
al., Front Oncol. 2021 [88]. 

 

Like PD-L1, expression of NGFR can be induced by IFNγ that is primarily released by cytotoxic T cells to 

stimulate tumor cell death through JAK/STAT signaling [127, 128]. IFNγ also drives expression of MHC 

I in order to increase antigen presentation to effector T cells. During immunotherapy, subclones with 
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mutations in JAK1/JAK2 develop in melanoma that are resistant to IFNγ [128, 129]. These clones 

develop resistance to IFNγ-induced apoptosis but are further unable to upregulate MHC I. However, 

loss of HLA or B2M is another reason why tumor cells acquire resistance to T cell-mediated rejection 

and hence T cell-based immunotherapy [130-133]. 

Resistance to ICBT can additionally be achieved in tumors by T cell upregulation of alternative immune 

checkpoints not targeted by the therapy such as TIM-3, LAG-3, TIGIT and V-domain Ig suppressor of T 

cell activation (VISTA) [105, 122]. In a lung adenocarcinoma mouse model, Koyama et al. interestingly 

showed that in anti-PD-1 resistant tumors, binding of the antibodies to PD-1 induced upregulation of 

LAG-3, CTLA-4 and especially TIM-3 causing T cell exhaustion and acquired resistance [134]. Even in 

matched samples from human melanoma patients anti-PD-1 treatment induced the expression of 

alternative immune checkpoints such as LAG-3 and VISTA on T cells [135, 136]. 

Despite improved patient survival since the advent of immunotherapy, many patients do not benefit 

from therapy on a long-term basis as innate and acquired resistance mechanisms help melanoma cells 

to efficiently evade immune responses. It is therefore inevitable that current therapies are improved, 

and novel targets are identified to further improve therapy success. 

 

1.4 High-throughput RNAi screens to identify novel immune resistance genes and 

pathways in human cancers 

High-throughput (HTP) genetic screening approaches are effective tools to discover novel genes and 

mechanisms by disrupting the expression of target genes and studying their phenotypic consequences 

[137, 138]. Fire et al. showed in 1998 in Caenorhabditis elegans that double-stranded RNA (dsRNA) 

caused interference stronger than single strands [139]. Shortly afterwards, RNA interference was 

introduced to human cell lines using 21-nucleotide small interfering RNA (siRNA) duplexes homologous 

to the sequence of a target gene to downregulate gene expression [140]. As genetic mutations often 

lead to complete loss-of-function, other tools were developed such as zinc-finger nucleases (ZFNs) and 

later, transcription activator-like effector nucleases (TALENs) inserting mutations through double-

stand breaks (DSBs) [137]. More recently, the advent of the clustered regularly interspaced 

palindromic repeat (CRISPR)-Cas9 system transformed the landscape of genomic manipulations [141]. 

Originally discovered as an adaptive immune mechanism against viruses, a guide RNA directs the 

endonuclease Cas9 to specific regions of the human DNA introducing DSBs. HTP genome-wide screens 

enable simultaneous investigation of many phenotypes upon loss-of function of genes. Accordingly, 

this was first introduced with RNAi screens, although CRISPR screens became quite popular in recent 

years [138, 142]. 
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Within this context, our group has developed a luciferase-based RNAi screening approach to discover 

novel immune resistance genes that cancer cells employ to prevent elimination by T cells [143-145]. 

Upon transfection of cells, 21-23 nucleotide siRNA duplexes are incorporated into the RNA-induced 

silencing complex (RISC) [142, 146]. The siRNA is unwound within the RISC and guides it to the target 

mRNA. siRNA-mRNA base pairing activates the ribonuclease of the RISC effector complex to degrade 

the mRNA, resulting in silencing of gene expression [146]. In our HTP assay system, luciferase-

expressing cancer cell lines were transfected with siRNA libraries targeting hundreds to thousands of 

genes in a multi-well format [143-145]. Tumor cells were subsequently co-cultured with cytotoxic T 

cells in order to investigate if the knockdown of single genes increase T cell-mediated lysis of tumor 

cells which is measured by the remaining luciferase activity during the readout. In order to increase 

the confidence in HTP RNAi screening approaches, positive and negative controls have to be included 

and effects in large-scale primary screens need to be validated in secondary screens [142]. Overall, 

RNAi provides a straightforward and fast method for HTP screens and so far several immune resistance 

genes in different tumor entities were identified by our group and successfully characterized [143-

145]. 

 

1.5 Transcriptomics in melanoma 

Multiomics analyzes multiple ‘omes’ such as the genome, epigenome, proteome, or transcriptome 

[147]. Hereby, the insight into a biological system and associations is facilitated to finally be able to 

better understand mechanisms of different phenotypes and diseases. While bulk multiomics mainly 

measured the average signal of many cells in one sample, single cell multiomics increased the 

resolution and gave insight into the cellular heterogeneity of a bulk sample. Due to the relevance in 

this project, I will focus here on transcriptomic data. 

With Sanger sequencing as the first-generation sequencing technology in 1977, RNA sequencing has 

enormously progressed over the past decades and has become the method primarily used in 

transcriptome profiling [148]. Next generation sequencing (NGS) sped up RNA-Seq at low cost and high 

accuracy and is nowadays widely used in cancer research. Especially the advent of single cell RNA-

sequencing delineated intratumoral heterogeneity, therefore contributing to the understanding of 

cancer evolution, the interplay of cells in the tumor microenvironment and drug resistance [104, 148].  

As with other tumors, patient-derived melanomas as well as melanoma cell lines were subjected to 

RNA-sequencing. In 2015, The Cancer Genome Atlas (TGCA) Network presented work on primary and 

metastatic melanomas with bulk RNA-Seq data of 329 samples [149]. Hierarchical clustering revealed 

the three clusters ‘immune’, ‘keratin’ and ‘MITF-low’. Genes higher expressed in the MITF-low cluster 



19 
 

were more associated with the nervous system and embryonic development. Others performed bulk 

RNA-Seq on melanoma samples of patients undergoing targeted or immunotherapies in order to 

identify gene expression patterns that can predict therapy outcome [123, 150, 151]. Here, matched 

patient samples before and after immunotherapy were useful to elucidate tumor evolution or the 

development of resistance during therapy [135]. RNA-Seq data on patient-derived melanoma cell lines 

enabled interpretation of melanoma plasticity and categorization into different phenotypes e.g., 

melanocytic, mesenchymal, and NCSC-like [83, 85]. Plasticity marker genes such as MITF, AXL and 

NGFR and gene regulatory networks were identified increasing the complexity as well as understanding 

of melanoma biology. Single-cell RNA-Seq data finally pushed the molecular resolution to the next 

level, giving insight into the cellular heterogeneity of one melanoma tumor. While on the bulk level, 

tumors were classified as MITFhigh or AXLhigh, it was now shown that both phenotypes coexist in the 

same tumor [70, 86]. Transcriptional heterogeneity separated malignant cells from the tumor 

microenvironment, revealing T cell exhaustion and drug resistance programs [86, 152, 153]. Jerby-

Arnon et al. showed that a resistance program is expressed before the application of immunotherapy 

as it is present in cold niches of the tumor [152]. In this context, CDK4/6 inhibition seemed to have 

beneficial effects on melanoma progression and therapy outcome. 

 
Figure 7: Bulk vs. scRNA-Seq. 
While for bulk RNA-Seq (B) approaches one sample provides averaged gene expression levels, scRNA-Seq (A) 
delineates cellular heterogeneity with cell type specific expression patterns. Adapted from Guruprasad et al., J 
Exp Med. 2021 [104]. 

 

Single-cell transcriptomics have highly improved the resolution of tumors uncovering transcriptional 

programs of cancer cells and the microenvironment [104]. Despite better understanding of T cell 

exhaustion and cancer cell heterogeneity and resistance, much remains to be unknown. Increased 

number of therapy-matched samples as well as new technologies in multiomics will further facilitate 

the interpretation of the complexity of cancer and treatment response. 
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2 Objectives of this project 

Despite the successful application of immune checkpoint inhibitors such as monoclonal antibodies 

against CTLA-4 or PD-1 in malignant melanoma, many patients still do not benefit from this therapy on 

the long term due to primary and acquired cancer resistance mechanisms [105]. In melanoma, 

resistance to immunotherapies is associated with the downregulation of the master regulator of 

melanocytes MITF which is concomitant with a dedifferentiated and invasive phenotype of melanoma 

cells [88]. 

I hypothesized that melanoma cells, especially those with a low MITF expression use so far unknown 

immune resistance mechanisms to circumvent immune responses. Furthermore, genes that convey 

immune resistance are co-expressed in clusters working in tandem and can be correlated to low MITF 

expression. In this project, I therefore aimed to identify complementary immune resistance genes and 

pathways that are responsible for the unresponsiveness to immunotherapies, especially in MITFlow 

melanoma. I combined in vitro and in silico approaches to finally achieve the following objectives: 

1. Implementation of a high-throughput RNAi screen for the identification of novel immune 

resistance genes in melanoma using MITFhigh and MITFlow cell lines derived from the same 

immunotherapy non-responder patient. 

2. In silico analyses for the identification of expression and co-expression patterns of immune 

resistance genes that are associated to a MITFlow phenotype in melanoma. 

3. In vitro mode of action analyses of selected immune resistance genes for the discovery of the 

mechanisms that MITFlow melanoma cells use to evade immune responses. 

4. Evaluation on the applicability of selected immune resistance genes as novel therapeutic 

interventions for malignant melanoma. 
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3 Materials 
 

3.1 Instruments and devices 
 

Table 1: Instruments and devices 

Instrument Company 
  

3D shaker SU1030 Sunlab Instruments 

ASSIST PLUS Pipetting robot Integra Biosciences 

Axio Vert.A1 Microscope ZEISS 

Bolt® Mini Gel Tank Life Technologies 

ChemiDoc Imaging System Bio-Rad 

Cold Plate Air Cooled Heater/Cooler (CPAC) Inheco 

CoolCell LX Freezing container BioCision 

CryoCube® F740hi Eppendorf 

DNA/RNA UV-cleaver box UVC/T-M-AR Biosan 

E1-ClipTip™ Electronic Adjustable Tip Spacing Multichannel 
Equalizer Pipettes 

Thermo Scientific 

F1-ClipTip™ Multichannel Pipettes Thermo Scientific 

F1-ClipTip™ Variable Volume Single Channel Pipettes Thermo Scientific 

FACSAria™ II Cell sorter BD Biosciences 

FACSLyric™ BD Biosciences 

HEco™ 818P-190 freezer MVE 

Heracell™ 240i CO2 Incubator Thermo Scientific 

Herasafe™ 2030i Biosafety Cabinet Thermo Scientific 

Heraeus Fresco™ 17 Centrifuge Thermo Scientific 

Heraeus Multifuge™ X3FR Thermo Scientific 

IBL 437C Blood Irradiator CIS Bio International 

Incucyte® SX5 Live-Cell Analysis Instrument Sartorius 

KS 4000 i control shaker IKA 

LGex 3410 MediLine freezer LIEBHERR 

LKv 3910 MediLine fridge LIEBHERR 

MIX 6 Magnetic stirrer 2mag 

Multidrop™ Combi Reagent Dispenser Thermo Scientific 

NanoDrop™ 2000c Spectrophotometer Thermo Scientific 

Neubauer improved Hemacytometer Assistent 

Owl™ EasyCast™ B2 Mini Gel Electrophoresis Systems Thermo Scientific 

PIPETBOY acu 2 Pipette controller Integra Biosciences 

PowerEase™ 300W Power Supply Thermo Scientific 

QuantStudio™ 3 Real-Time PCR System Applied Biosystems 

Rotating mixer RM5 Hecht Assistent 

SCALA XPRESS fume hood Waldner 
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Single TEC Control (STC) with Blue Slot Module Inheco 

SimpliAmp™ Thermocycler Applied Biosystems 

Tecan Spark 10M Microplate Reader TECAN 

ThermoMixer C Eppendorf 

Trans-Blot Turbo Transfer System Bio-Rad 

VOYAGER Electronic Pipette 8 Channels Integra Biosciences 

Vortex-Genie 2 Mixer Scientific Industries 

TW12 Water Bath Julabo 

 
 

3.2 Consumables 
 

Table 2: Consumables 

Material Company Catalog# 
   

Cap for PCR microcentrifuge tubes  nerbe plus 04-042-0500 

Cell Culture Flask, 25 cm2 Greiner Bio-One 690175 

Cell Culture Flask, 75 cm2 Greiner Bio-One 658175 

Cell Culture Flask, 175 cm2 Greiner Bio-One 660175 

CELLSTAR® serological pipette 5 ml Greiner Bio-One 606180 

CELLSTAR® serological pipette 10 ml Greiner Bio-One 607180 

CELLSTAR® serological pipette 25 ml Greiner Bio-One 760180 

ClipTip™ Pipette tips, 20 µl Thermo Scientific 94410213 

ClipTip™ Pipette tips, 200 µl Thermo Scientific 94410313 

ClipTip™ Pipette tips, 1250 µl Thermo Scientific 94410813 

ClipTip™ Pipette tips with filter, 20 µl Thermo Scientific 94420213 

ClipTip™ Pipette tips with filter, 125 µl Thermo Scientific 94420153 

ClipTip™ Pipette tips with filter, 200 µl Thermo Scientific 94420313 

ClipTip™ Pipette tips with filter, 1250 µl Thermo Scientific 94420813 

CRYO.S, 2 ML Greiner Bio-One 122278 

CulturPlate, white 96-well Perkin Elmer 6005680 

CulturPlate, white 384-well  Perkin Elmer 6007680 

FACS tubes - Falcon® 5 mL Round Bottom Corning 352008 

FACS tubes - Falcon® 5 mL with Cell Strainer Corning 352235 

Falcon® 6-well clear flat Microplates Corning 351146 

Falcon® 24-well clear flat Microplates Corning 353047 

Falcon® 96-well clear round Microplates Corning 351177 

GRIPTIP 12,5 µl Filter Tips, Low Retention Integra Biosciences 6505 

GRIPTIP 300 µl Filter Tips, Low Retention Integra Biosciences 6535 

MaxiSorp ™ Clear Flat-Bottom Plate, 96-well Thermo Scientific 439454 

MicroAmp™ Clear Adhesive Film Applied Biosystems 4306311 

MicroAmp® Optical 96-Well Reaction Plate Applied Biosystems N8010560 
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Microcentrifuge tube PP, 5ml nerbe plus 04-252-1000 

Microplate, 96-well, V-bottom clear Greiner Bio-One 651101 

Multichannel Reagent Reservoirs, 10 ml Integra Biosciences 4332 

Multichannel Reagent Reservoirs, 25 ml Integra Biosciences 4312 

Parafilm® M VWR 291-1212 

PCR microcentrifuge tube PP, 0.2ml nerbe plus 04-032-0500 

Safelock-Cap microcentrifuge tube PP, 1.5ml nerbe plus 04-212-1206 

SafeSeal reaction tube, 0.5 ml, PP Eppendorf 72.704 

SafeSeal reaction tube, 1.5 ml, PP Eppendorf 72.706 

SafeSeal reaction tube, 2 ml, PP Eppendorf 72.695.500 

Screw cap tube, 15 ml Sarstedt 62.554.001 

Screw cap tube, 15 ml Greiner Bio-One 188271 

Screw cap tube, 50 ml Sarstedt 62.547.254 

Screw cap tube, 50 ml Greiner Bio-One 227261 

Tissue Culture Test Plates, 6-well TPP 92006 

Tissue Culture Test Plates, 96-well TPP 92096 

 
 

3.3 Chemicals, reagents and supplements 
 

Table 3: Chemicals, reagents and supplements 

Material Company Catalog# 
   

2-Mercaptoethanol ≥99.0% Sigma-Aldrich M6250 

Adenosine 5′-monophosphate disodium salt (AMP) Sigma-Aldrich 01930 

Adenosine 5′-triphosphate disodium salt hydrate 
(ATP) 

Sigma-Aldrich A2383 

Agarose NEEO ultra-quality Roth 2267.4 

AIM V™ Medium Gibco 12055091 

Ampicillin ratiopharm 6613441.00.00 

Animal-Free Blocking Solution (5X) Cell Signaling 15019 

BD® Assay Diluent BD Biosciences 555213 

BD® Clean Solution BD Biosciences 340345 

BD® CS&T BD Biosciences 656505 

BD FACSFlow™ Sheath Fluid BD Biosciences 342003 

Bio-Safe™ Coomassie Stain Bio-Rad 1610786 

CD3 Monoclonal Antibody (OKT3), eBioscience™ Invitrogen 16-0037-81 

D-Luciferin Firefly Biosynth L-8200 

Dimethylsulfoxid (DMSO) Sigma-Aldrich D2650 

DNA Gel Loading Dye (6X) Thermo Scientific R0611 

Dulbecco's Balanced Salt Solution (DPBS) Gibco 14190250 

Dulbecco′s Phosphate Buffered Saline (10x) Sigma-Aldrich D1408 

DTT BioChemica AppliChem A1101 
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Ethanol ROTIPURAN® ≥99,8 %, p.a. Roth 9065.3 

Fetal Bovine Serum (FBS) Sigma-Aldrich F7524 

GelRed® Nucleic Acid Gel Stain Biotium 41003 

Geneticin™ Selective Antibiotic (G418 Sulfate) Gibco 11811031 

GeneRuler 50 bp DNA Ladder Thermo Scientific SM0371 

HEPES solution Sigma-Aldrich H0887 

Human AB Serum Heat-Inactivated Valley Biomedical HP1022 HI 

Hygromycin B Gibco 10687010 

IL-2 Proleukin® S Novartis 1003780 

Incucyte® Cytotox Red Dye Sartorius 4632 

KIOVIG Human normal immunoglobulin (IVIg) Baxter EU/1/05/329 

LB Broth (Luria/Miller) Roth X968 

LB Agar (Luria/Miller) Roth X969 

Lipofectamine™ 3000 Transfection Reagent Invitrogen L3000008 

Lipofectamine™ RNAiMAX Transfection Reagent Invitrogen 13778150 

Magnesium sulfate (MgSO4) Sigma-Aldrich M2643 

MILLIPLEX MAP Lysis buffer for Multiplexing Merck Millipore 43-040 

Nonfat dried milk powder AppliChem A0830 

Nuclease-Free Water (not DEPC-Treated) Ambion AM9937 

NuPAGE™ 4 bis 12 %, Bis-Tris Invitrogen NP0335BOX 

NuPAGE™ LDS Sample Buffer (4X) Invitrogen NP0007 

NuPAGE™ MOPS SDS Running Buffer (20X) Invitrogen NP0001 

Opti-MEM™ Reduced Serum Medium Gibco 31985062 

Oxalic acid, ReagentPlus Sigma-Aldrich 241172 

PageRuler™ Prestained Protein Ladder Thermo Scientific 26616 

Penicillin-Streptomycin Sigma-Aldrich P4333 

Phenylacetic acid Sigma-Aldrich P16621 

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich P0044 

Ponceau S solution Sigma-Aldrich P7170 

Protease Inhibitor Cocktail Set III, EDTA-Free Calbiochem 539134 

Puromycin Dihydrochloride Gibco A1113803 

Recombinant BenzNuclease / Benzonase Protein SPEED Biosystems YCP1200 

RPMI 1640 Medium Gibco 21875091 

RPMI-1640 Medium Sigma-Aldrich R8758 

S.O.C. Medium Invitrogen 15544034 

Sodium carbonate (Na2CO3) Roth 8563 

Sodium chloride (NaCl) VWR 27810 

Sodium hydrogen carbonate (NaHCO₃) Merck Millipore 106329 

Sulfuric acid (H2SO4) Sigma Aldrich 30743 

TAE Buffer (Tris-acetate-EDTA) (50x) Thermo Scientific B49 
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Tris(hydroxymethyl)aminomethane (Tris) Merck Millipore 108382 

Triton™ X-100 solution 10 % Sigma-Aldrich 93443 

Trypan Blue solution Sigma-Aldrich T8154 

Trypsin-EDTA solution 10x Sigma-Aldrich T4174 

Tween® 20 for molecular biology AppliChem A4974 

UltraPure™ 0,5 M EDTA, pH 8,0 Invitrogen 15575020 

Zombie Aqua™ Fixable Viability Kit BioLegend 423102 

Zombie NIR™ Fixable Viability Kit BioLegend 423106 

 

 

3.4 Recombinant proteins and peptides 
 

Table 4: Recombinant proteins and peptides 

Protein/Peptide Company Catalog# 
   

Matched peptide A*02:01-GILGFVFTL (Flu) ProImmune P007-0A-E 

Matched peptide A*02:01- ELAGIGILTV (MART-1) ProImmune P082-0A-E 

Recombinant Human FASL (TNFSF6) BioLegend 589404 

Recombinant Human IFN-γ PeproTech 300-02 

Recombinant Human Light (TNFSF14) BioLegend 762304 

Recombinant Human LT-α (TNF-β) BioLegend 562604 

Recombinant Human TRAIL (TNFSF10) BioLegend 752904 

Recombinant Human TNF-α Kindly provided by 
Daniela Männel, 
University of Regensburg 

- 

 

 

3.5 Assay kits 
 

Table 5: Assay kits 

Material Company Catalog# 
   

BD OptEIA™ Human IFN-γ ELISA Set  BD Biosciences 555142 

BD OptEIA™ Human TNF ELISA Set BD Biosciences 555212 

BD OptEIA™ TMB Substrate Reagent Set BD Biosciences 555214 

MyTaq™ HS Red Mix Bioline BIO-25047 

Pierce™ BCA Protein Assay Kit Thermo Scientific 23225 

Pierce™ ECL Western Blotting Substrate Thermo Scientific 32209 

PureLink™ HiPure Plasmid Midiprep Kit Invitrogen K210005 

QuantiFast SYBR Green PCR Kit Qiagen 204056 

QuantiNova SYBR Green PCR Kit Qiagen 208056 

QuantiTect Rev. Transcription Kit Qiagen 205313 

RNeasy Mini Kit Qiagen 74106 

Trans-Blot Turbo RTA Mini 0.2 µm Nitrocellulose 
Transfer Kit 

Bio-Rad 1704270 



26 
 

Trident femto Western HRP Substrate GeneTex GTX14698 

 
 

3.6 Cell culture media 

Fetal Bovine Serum (FBS) was heat-inactivated by an incubation of 30 min at 56 °C before application 
in the cell culture media. 
 

Table 6: Cell culture media 

Medium Ingredient Amount 
   

Complete Lymphocyte Medium (CLM) RPMI (Gibco) 
Human AB Serum  
Penicillin-Streptomycin 
HEPES 
2-Mercaptoethanol 

500 ml 
50 ml 

5 ml 
5 ml 
50 μl 

Complete RPMI RPMI (Sigma-Aldrich) 
FBS 
Penicillin-Streptomycin 

500 ml 
  50 ml 
    5 ml 

FluT cell expansion medium CLM 
AIM-V 

50 % 
50 % 

Freezing medium A for FluT cells Fetal Bovine Serum (FBS) 
RPMI 

60 % 
40 % 

Freezing medium B for FluT cells Fetal Bovine Serum (FBS) 
DMSO 

80 % 
20 % 

Freezing medium A for TIL412/MART-1 T cells Human AB Serum  
RPMI 

60 % 
40 % 

Freezing medium B for TIL412/MART-1 T cells Human AB Serum  
DMSO 

80 % 
20 % 

Freezing medium for tumor cells Fetal Bovine Serum (FBS) 
DMSO  

90 % 
10 % 

 
 

3.7 Buffers 
 

Table 7: Buffers 

Buffer Ingredient Amount/ 
Concentration 

   

1 % milk in TBS-T 
(Staining/washing solution for western blot) 

TBS-T 
Nonfat dried milk powder 

 
1 % (w/v) 

10 % milk in TBS-T 
(Blocking solution for western blot) 

TBS-T 
Nonfat dried milk powder 

 
10 % (w/v) 

Animal-Free Blocking Solution 
(Blocking/staining solution for western blot) 

ddH2O 
Animal-Free Blocking Solution 
(5X) 

 
20 % (v/v) 

B2 Buffer ddH2O 
AMP 
ATP 
DTT 

 
1 mM 

35 mM 
415 mM 

BL Buffer (pH 7,6) ddH2O 
EDTA 
HEPES 

 
0,5 mM 
50 mM 
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Oxalic acid 
Phenylacetic acid 

0,07 mM 
0,033 mM 

Coating buffer (pH 9,5) 
(ELISA) 

ddH2O 
NaHCO3 
Na2CO3 

 
100,0 mM 

33,6 mM 

FACS buffer PBS 
FBS 

 
2 % (v/v) 

Luciferin solution ddH2O 
D-Luciferin Firefly 

 
45 mM 

Luciferase buffer 
(Luciferase-based cytotoxicity assay) 

BL Buffer 
B2 Buffer 
Luciferin solution 
1 M MgSO4 

 
2,2 % (v/v) 
0,4 % (v/v) 
2,8 % (v/v) 

Lysis buffer 
(Luciferase-based cytotoxicity assay) 

BL Buffer 
Triton™ X-100 solution 10 % 

 
3 % (v/v) 

MOPS SDS running buffer 1x 
(Western blot) 

ddH2O 
MOPS SDS Running Buffer 
(20X) 

 
5 % (v/v) 

PBS-T 
(ELISA washing buffer) 

ddH2O 
PBS (10x) 
Tween 20 

 
10,00 % (v/v) 

0,05 % (v/v) 

TAE Buffer 0,5x 
(Agarose gel electrophoresis) 

ddH2O 
TAE Buffer (50x) 

 
1 % (v/v) 

TBS-T 
(Western blot washing solution) 

TBS 
Tween 20 

 
0,05 % (v/v) 

Tris-buffered saline (TBS) 1x ddH2O 
TBS (10x) 

 
10 % (v/v) 

Tris-buffered saline (TBS) 10x ddH2O 
Tris 
NaCl 

 
150 mM 
100 mM 

Trans-Blot Turbo Transfer buffer 1x 
(Western blot) 

ddH2O 
Ethanol ≥99,8 % 
Trans-Blot Turbo Transfer 
buffer (5X) 

 
20 % (v/v) 
20 % (v/v) 

 
 

3.8 Cells and cell lines 

3.8.1 Eukaryotic cells and cell lines 
 

Table 8: Eukaryotic cells and cell lines 

Cells/Cell line Origin Culture medium 
   

FluT cells Healthy donor PBMCs CLM 

Ma-Mal-86 Human metastatic melanoma 
(University Hospital Essen,  
Department of Dermatology) 

Complete RPMI 

Ma-Mal-86 HLA-A2+ Human metastatic melanoma 
(University Hospital Essen,  
Department of Dermatology) 

Complete RPMI + 0,9 
mg/ml G418 

Ma-Mal-86 HLA-A2+ Luc+ Human metastatic melanoma 
(University Hospital Essen,  
Department of Dermatology) 

Complete RPMI + 0,9 
mg/ml G418 + 0,6 µg/ml 
Puromycin 
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Ma-Mal-86a HLA-A2+ Luc+ 
transfected with an 
overexpression plasmid  

Human metastatic melanoma 
(University Hospital Essen,  
Department of Dermatology) 

Complete RPMI + 0,9 
mg/ml G418 + 0,6 µg/ml 
Puromycin + 0,2 mg/ml 
Hygromycin 

MART-1 T cells Human primary tumor tissue CLM 

TIL412 Human primary tumor tissue CLM 

 

3.8.2 Bacteria 
 

Table 9: Bacteria 

Bacteria Origin 
  

DH5α competent Escherichia coli Kindly provided by the Division of Genetic Immunotherapy, 
Leibniz Institute for Immunotherapy (LIT), Regensburg 

 
 

3.9 Plasmids and lentiviral particles 
 

Table 10: Plasmids and lentiviral particles 

Product Company Catalog# /  
Clone ID 

   

HLAA2_pcDNA3.1/G418(+) plasmid GenScript Customized 

Luciferase (firefly)-2A-GFP (CMV, Puro) Lentivirus GenTarget Inc LVP020 

SLC39A13_pcDNA3.1/Hygro(+) plasmid GenScript OHu74313C 

TMCC3_pcDNA3.1/Hygro(+) plasmid GenScript OHu107341C 

 
 

3.10 Oligonucleotides 
 

3.10.1 Pre-designed primers 
 

Table 11: Pre-designed primers 

Primers Company Catalog# 
   

RT² qPCR Primer Assay for Human AXL Qiagen PPH00248E 

RT² qPCR Primer Assay for Human CD274 Qiagen PPH21094A 

RT² qPCR Primer Assay for Human CDH24 Qiagen PPH12992A 

RT² qPCR Primer Assay for Human CFLAR Qiagen PPH00333B 

RT² qPCR Primer Assay for Human DLL1 Qiagen PPH06024E 

RT² qPCR Primer Assay for Human ELN Qiagen PPH06895F 

RT² qPCR Primer Assay for Human GCK Qiagen PPH02294B 

RT² qPCR Primer Assay for Human GJC2 Qiagen PPH10823B 

RT² qPCR Primer Assay for Human GRM6 Qiagen PPH02353B 

RT² qPCR Primer Assay for Human ITGAX Qiagen PPH00661F 

RT² qPCR Primer Assay for Human LRRN1 Qiagen PPH11746A 

RT² qPCR Primer Assay for Human MOK Qiagen PPH10931A 

RT² qPCR Primer Assay for Human NGFR Qiagen PPH00821A 

RT² qPCR Primer Assay for Human PLXNA3 Qiagen PPH08323A 
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RT² qPCR Primer Assay for Human S1PR1 Qiagen PPH01350F 

RT² qPCR Primer Assay for Human SIK3 Qiagen PPH21242A 

RT² qPCR Primer Assay for Human SLC13A2 Qiagen PPH10865A 

RT² qPCR Primer Assay for Human SLC39A13 Qiagen PPH06304A 

RT² qPCR Primer Assay for Human SPNS3 Qiagen PPH22972A 

RT² qPCR Primer Assay for Human TMCC3 Qiagen PPH13586A 

RT² qPCR Primer Assay for Human TMEM132E Qiagen PPH13922A 

RT² qPCR Primer Assay for Human ZNF443 Qiagen PPH12425A 

 

3.10.2 Individually designed primers 
 

All primer sequences were synthesized by Sigma-Aldrich/Merck and reconstituted in nuclease-free 

water. 

Table 12: Individually designed primers 

Primers Sequence 
  

Human β-Actin Forward: TGGAGCGAGCATCCCCCAAA 
Reverse: TGGAGCGAGCATCCCCCAAA 

Human HDGF Forward: CCAAAGACCTCTTCCCTTACGAG 
Reverse: TGGTTCAGGCTCTTCCACACAG 

Human MITF Forward: GAAATCTTGGGCTTGATGGA 
Reverse: AGGAGTTGCTGATGGTGAGG 

Human MOK Forward: TGTCCCCACAATGCCTCTCC 
Reverse: GCCCGCTTCTCTGTTTTCCTC 

Human SLC39A13 Forward: TTCCCGTTGCTTGTCATTCCC 
Reverse: AAACACATTGCCCAAGAGTCCC 

Human TMCC3 Forward: CATCAGACTCAGCGTGGGCT 
Reverse: AATGGTGTGGGCTGGTGTGA 

Human TMCC3 - ORF Forward: GCTGCAAGAGCCGGGTAGAA 
Reverse: GGCTGTCTGCAGTGAGTTTGAC 

Human ZNF443 Forward: CTGGCTGGAACACGCATTGG 
Reverse: AAGCCCACTCTTCTCGGGTG 

Human ZNF443 - ORF Forward: TGCAAACTTGGGAAAGCCTG 
Reverse: GTCGTAGAAAGCAAGTGAGCCA 

 
 

3.11 siRNAs 
 

3.11.1 siRNA libraries 
 

Table 13: siRNA libraries 

Library Company 
  

Custom Cherry-Pick siRNA Library, siGENOME SMARTpools, 5202 
target genes, 384 well format, vertical 

Horizon Discovery 

RNAi Cherry-pick Library 0.1 nmol, 174 wells, 3 plates, plate type 
96, Vertical (siGENOME SMARTpools) 

Horizon Discovery 

RNAi Cherry-pick Library 0.1 nmol, 696 wells, 9 plates, plate type 
96, Vertical (siGENOME individual siRNAs) 

Horizon Discovery 
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3.11.2 siRNAs 
 

Table 14: siRNAs 

siRNA Company Catalog# 
   

AllStars Hs Cell Death siRNA Qiagen 1027299 

ON-TARGETplus Human MITF siRNA, Set of 4 Horizon Discovery LQ-008674-00 

ON-TARGETplus Human OR10H1 siRNA, s5 Horizon Discovery J-020479-05 

ON-TARGETplus Human SIK3 siRNA, s11 Horizon Discovery J-004779-11 

ON-TARGETplus Non-targeting siRNA #2 Horizon Discovery D-001810-02 

ON-TARGETplus Non-targeting siRNA #3 Horizon Discovery D-001810-03 

ON-TARGETplus Non-targeting siRNA #4 Horizon Discovery D-001810-04 

siGENOME Human AXL siRNA, set of 4 Horizon Discovery MQ-003104-03 

siGENOME Human CAMK1D siRNA, set of 4 Horizon Discovery MQ-004946-01 

siGENOME Human CD274 siRNA, set of 4 Horizon Discovery MQ-015836-01 

siGENOME Human CDH24 siRNA, set of 4 Horizon Discovery MQ-018985-00 

siGENOME Human CFLAR siRNA, set of 4 Horizon Discovery MQ-003772-06 

siGENOME Human DLL1 siRNA, set of 4 Horizon Discovery MQ-013302-02 

siGENOME Human ELN siRNA, set of 4 Horizon Discovery MQ-009306-01 

siGENOME Human GCK siRNA, set of 4 Horizon Discovery MQ-010819-01 

siGENOME Human GJC2 siRNA, set of 4 Horizon Discovery MQ-020380-02 

siGENOME Human GRM6 siRNA, set of 4 Horizon Discovery MQ-005621-02 

siGENOME Human HDGF siRNA, set of 4 Horizon Discovery MQ-019782-00 

siGENOME Human ITGAX siRNA, set of 4 Horizon Discovery MQ-008009-02 

siGENOME Human LGALS3 siRNA, SMARTPool Horizon Discovery M-010606-02 

siGENOME Human LRRN1 siRNA, set of 4 Horizon Discovery MQ-019481-02 

siGENOME Human MOK siRNA, set of 4 Horizon Discovery MQ-004838-01 

siGENOME Human NGFR siRNA, set of 4 Horizon Discovery MQ-009340-02 

siGENOME Human OR10H1 siRNA, s1 Horizon Discovery D-020479-01 

siGENOME Human PLXNA3 siRNA, set of 4 Horizon Discovery MQ-020933-01 

siGENOME Human S1PR1 siRNA, set of 4 Horizon Discovery MQ-003655-02 

siGENOME Human SIK3 siRNA, s1 Horizon Discovery D-004779-01 

siGENOME Human SLC13A2 siRNA, set of 4 Horizon Discovery MQ-007392-01 

siGENOME Human SLC39A13 siRNA, set of 4 Horizon Discovery MQ-007568-00 

siGENOME Human SPNS3 siRNA, set of 4 Horizon Discovery MQ-018953-00 

siGENOME Human TMCC3 siRNA, set of 4 Horizon Discovery MQ-013877-01 

siGENOME Human TMEM132E siRNA, set of 4 Horizon Discovery MQ-023299-00 

siGENOME Human TNFRSF14 siRNA, set of 4 Horizon Discovery MQ-008096-00 

siGENOME Human UBC siRNA, SMARTPool Horizon Discovery M-019408-01 

siGENOME Human ZNF443 siRNA, set of 4 Horizon Discovery MQ-018335-01 
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3.12 Antibodies 
 

3.12.1 FACS antibodies 
 

Table 15: FACS antibodies 

Antibody Company Catalog# Dilution 
    

Alexa Fluor® 700 anti-human CD3 Antibody BioLegend 300424 1:50 

APC anti-human CD120a Antibody BioLegend 369906 1:20 

APC anti-human CD253 (TRAIL) Antibody BioLegend 308210 1:20 

APC anti-human CD258 (LIGHT) Antibody BioLegend 318709 1:20 

APC anti-human CD261 (DR4, TRAIL-R1) Antibody BioLegend 307208 1:20 

APC anti-human CD270 (HVEM, TR2) Antibody BioLegend 318808 1:20 

APC anti-human CD274 (B7-H1, PD-L1) Antibody BioLegend 329708 1:20 

APC Flu Pentamer (A*02:01 - GILGFVFTL) ProImmune F007-4A-E 1:10 

APC Mouse Anti-Human HLA-A2 BD Biosciences 561341 1:20 

Brilliant Violet 421™ anti-human CD95 (Fas) 
Antibody 

BioLegend 305624 1:20 

PE anti-human CD119 (IFN-γ R α chain) Antibody BioLegend 308606 1:20 

PE anti-human CD120b Antibody BioLegend 358404 1:20 

PE anti-human CD178 (Fas-L) Antibody BioLegend 306407 1:20 

PE anti-human CD262 (DR5, TRAIL-R2) Antibody BioLegend 307406 1:20 

PE anti-human LT-α (TNF-β) Antibody BioLegend 503105 1:80 

PE anti-human Lymphotoxin beta receptor (LT-βR) 
Antibody 

BioLegend 322008 1:20 

V450 Mouse Anti-Human CD8 BD Biosciences 560347 1:200 

 

Isotype antibody Company Catalog# 
   

APC Mouse IgG1, κ Isotype Ctrl (FC) Antibody BioLegend 400122* 

APC Mouse IgG2a, κ Isotype Ctrl (FC) Antibody BioLegend 400222* 

APC Mouse IgG2b κ Isotype Control BD Biosciences 555745* 

APC Mouse IgG2b, κ Isotype Ctrl Antibody BioLegend 400322* 

Brilliant Violet 421™ Mouse IgG1, κ Isotype Ctrl 
Antibody 

BioLegend 400158* 

PE Mouse IgG1, κ Isotype Ctrl Antibody BioLegend 400112* 

PE Mouse IgG2b, κ Isotype Ctrl Antibody BioLegend 400314* 

PE Rat IgG2a, κ Isotype Ctrl Antibody BioLegend 400508* 

*Concentration of the isotype antibody was adjusted to the respective antigen-specific antibody. 

 

3.12.2 Western blot antibodies 
 

Table 16: Western blot antibodies 

Antibody Company Catalog# Dilution 
    

Akt (pan) (40D4) Mouse mAb Cell Signaling 2920 1:2000 

Anti-TMCC3 antibody produced in rabbit Sigma-Aldrich HPA014272 1:500 
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Anti-mouse IgG, HRP-linked Antibody Cell Signaling 7076 1:2000 

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling 7074 1:2000 

Bcl-2 (124) Mouse mAb Cell Signaling 15071 1:1000 

BiP (C50B12) Rabbit mAb Cell Signaling 3177 1:1000 

Caspase-3 (D3R6Y) Rabbit mAb Cell Signaling 14220 1:1000 

Caspase-8 (1C12) Mouse mAb Cell Signaling 9746 1:1000 

Caspase-9 Antibody (Human Specific) Cell Signaling 9502 1:1000 

CHOP (L63F7) Mouse mAb Cell Signaling 2895 1:1000 

FLIP (D5J1E) Rabbit mAb Cell Signaling 56343 1:1000 

GAPDH Antibody (0411) Santa Cruz sc-47724 1:2000 

IRE1α (14C10) Rabbit mAb Cell Signaling 3294 1:1000 

Monoclonal Anti-Microphthalmia (MITF) antibody 
produced in mouse 

Sigma-Aldrich M6065 1:1667 

MOK Antibody Aviva OAAN03251 1:500 

p53 (7F5) Rabbit mAb Cell Signaling 2527 1:1000 

Phospho-Akt (Ser473) Antibody Cell Signaling 9271 1:1000 

Phospho-Bad (Ser136) (D25H8) Rabbit mAb Cell Signaling 4366 1:1000 

Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb Cell Signaling 3033 1:1000 

Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit 
mAb 

Cell Signaling 4668 1:1000 

Phospho-Stat1 (Tyr701) (D4A7) Rabbit mAb Cell Signaling 7649 1:1000 

Phospho-Stat3 (Ser727) Antibody Cell Signaling 9134 1:1000 

SLC39A13 Antibody - middle region Aviva ARP78987 1:500 

Stat1 (D1K9Y) Rabbit mAb Cell Signaling 14994 1:1000 

Stat3 (124H6) Mouse mAb Cell Signaling 9139 1:1000 

XIAP (3B6) Rabbit mAb Cell Signaling 2045 1:1000 

ZNF443 antibody [N1N2], N-term GeneTex GTX115372 1:500 

 
 

3.13 Software 
 

Table 17: Software 

Software Developer 
  

EndNote X7.8 Clarivate Analytics 

FlowJo 10.8.1 Becton Dickinson & Company (BD) 

GraphPad Prism 9.4.1 GraphPad Software, Inc. 

ImageJ 1.53t Wayne Rasband (NIH) 

Incucyte 2021C Essen BioScience Inc. 

Microsoft 365 Apps for Business Microsoft 

R 4.1.1 R Core Team 

Vialab Integra Biosciences 

Vialink Integra Biosciences 
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3.14 Additional R packages and software 
 

Apart from the base packages, additional packages were installed and used to conduct bioinformatic 
analyses with the programming language R for statistical computing. 

Table 18: Additional R packages and software 

R package/software Publication 
  

Bioconductor Gentleman et al., Genome Biol. 2004 [154] 

cellHTS2 Boutros et al., Genome Biol. 2006 [155] 

ComBat-seq Zhang et al., NAR Genom Bioinform. 2020 [156] 

ggfortify Tang et al., R J. 2016 [157] 

harmony Korsunsky et al., Nat Methods. 2019 [158] 

network Butts, J. Stat. Softw. 2008 [159] 

Seurat Stuart et al., Cell. 2019 [160] 

tidyverse Wickham et al., J. Open Source Softw. 2019 [161] 

WGCNA Langfelder et al., BMC Bioinformatics. 2008 [162] 
 

R package Author 
  

aroma.light Bengtsson [163] 

data.table Dowle et al. [164] 

dynamicTreeCut Langfelder et al. [165] 

dplyr Wickham et al. [166] 

ggplot2 Wickham et al. [167] 

gplots Warnes et al. [168] 

gprofiler2 Kolberg et al. [169] 

hwriter Pau [170] 

pheatmap Kolde [171] 

splots Huber et al. [172] 

sva Leek et al. [173] 

xlsx Dragulescu et al. [174] 

 
 

3.15 Data sets 
 

Table 19: Data sets 

Data set Publication 
  

GSE115978 Jerby-Arnon et al., Cell 2018 [152] 

GSE134432 Wouters et al., Nat Cell Biol. 2020 [83] 

SRP068803 Zhao et al., Cancer Res. 2016 [130] 

TCGA TARGET GTEx Vivian et al., Nat Biotechnol. 2017 [175-177] 
https://gtexportal.org/home/ 

 

  



34 
 

4 Methods 
 

4.1 Cell culture methods 

4.1.1 Culture of tumor cell lines and T cells 

Wildtype and genetically modified Ma-Mel-86 were cultured in complete RPMI supplemented with the 

required antibiotics as described in 3.8.1. When cells reached more than 80-90% confluency, cells were 

washed once with DPBS and treated with 1x trypsin/EDTA for several minutes at 37 °C to detach from 

the culture flask. Detachment was stopped by adding complete medium and cells were centrifuged for 

10 min at 500 g and room temperature (RT). Cells were subcultured twice a week.  

FluT cells were thawed 6 h prior to each experiment and cultured in plain CLM at a concentration of 1 

x 106 cells per ml. MART-1 T cells and TIL412 were thawed 3 days prior to each experiment and cultured 

in CLM supplemented with 6000 U/ml of IL-2 at a concentration of 0,6 x 106 cells per ml. 24 h before 

the experiment, they were IL-2 depleted and cultured in plain CLM at a concentration of 0,6 x 106 cells 

per ml.  

All cells were cultured at 37 °C and 5 % CO2. 

 

4.1.2 Thawing and freezing of tumor cell lines and T cells 

Tumor cell lines and T cells were thawed using their respective medium as described in 3.8.1. Culture 

medium was supplemented with 75 U/ml Benzonase. Cryovials with frozen cells were thawed at 37 °C. 

When defrosting was almost completed, prewarmed thawing medium was added dropwise to the cells 

and cells were transferred to 10 ml of thawing medium in a Falcon® tube. Cells were centrifuged for 

10 min at 500 g and RT and were subsequently taken into culture as described in 4.1.1. 

Before freezing, cells were collected and counted using a hemocytometer. Cells were pelleted for 10 

min at 500 g and RT, tumor cell pellets were then directly resuspended in freezing medium. 

Lymphocyte pellets were resuspended in freezing medium A and freezing medium B was added 

dropwise in a ratio of 1:1. Cells were pipetted into cryovials which were immediately transferred to a 

CoolCell LX Freezing container and stored at -80 °C for at least 2 h. Afterwards, vials were moved to 

the liquid nitrogen tank. 

 

4.1.3 Stable plasmid transfection of Ma-Mel-86 

To stably express HLA-A2 in Ma-Mel-86 wildtype cells, a customized pcDNA3.1 plasmid was used 

containing the ORF encoding for HLA-A2 as well as for a geneticin (G418) resistance. Plasmid 
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transfection was conducted using Lipofectamine P3000 according to the manufacturer’s instructions. 

Briefly, 2,5 x 105 cells per well were seeded into a treated 6-well plate one day before the transfection. 

Per well, 5 µg of plasmid DNA, 10 µl of P3000 reagent and 7,5 µl of Lipofectamine 3000 were combined 

in a total of 250 µl Opti-MEM™. Upon transfection, cells were incubated in RPMI supplemented with 

10 % FBS in the absence of antibiotics for 20 h at 37 °C and 5 % CO2. Then, medium was changed to 

complete RPMI for 24 h and finally to complete RPMI supplemented with G418 in order to restrict cell 

growth only to transfected cells. The correct concentration of the selection antibiotic was determined 

previously in a titration experiment. Transfected Ma-Mel-86a and Ma-Mel-86c were cultured in 0,4 

mg/ml and 0,8 mg/ml G418, respectively, as these concentrations showed high toxicity in wildtype 

cells. Approximately two weeks after transfection, HLA-A2 expression was measured by flow 

cytometry and Ma-Mel-86 HLA-A2+ were continuously cultured in 0,9 mg/ml G418 containing culture 

medium to keep HLA-A2 expression stable.  

The protocol for stable overexpression of immune resistance genes in Ma-Mel-86a HLA-A2+ Luc+ was 

similar. Here, customized pcDNA3.1 plasmids contained a gene for a hygromycin resistance and either 

an ORF encoding for the respective immune resistance gene or no additional gene (empty vector). 2,5 

µg of plasmid DNA, 5 µl of P3000 reagent and 3,75 µl of Lipofectamine 3000 per well were used and 

the final culture medium contained 0,9 mg/ml G418, 0,6 µg/ml puromycin and 0,2 mg/ml hygromycin. 

Gene expression was measured by quantitative PCR, cells transfected with an empty vector served as 

a negative control. 

 

4.1.4 Lentiviral transduction of Ma-Mel-86 

For stable expression of luciferase, pre-made lentiviral transducing particles were used that expressed 

firefly luciferase 3 as well as green fluorescent protein (GFP) under the same CMV promotor. 

Additionally, the vector encodes for a puromycin resistance gene under an RSV promotor. One day 

before transduction 2,5 x 105 Ma-Mel-86 HLA-A2+ per well were seeded into a treated 6-well plate. On 

the day of transduction, medium was replaced with plain RPMI supplemented with 10 % FBS without 

antibiotics and tumor cells were transduced with lentivirus at a multiplicity of infection (MOI) of 1. 

Cells were incubated for 20 h at 37 °C and 5 % CO2. Afterwards, medium was changed to complete 

RPMI supplemented with 0,9 mg/ml G418 for 24 h. Finally, medium was replaced again, and cells were 

continuously cultured in complete RPMI containing 0,9 mg/ml G418 and puromycin. As previously, the 

appropriate concentration of the selection antibiotic was determined in a titration experiment. Ma-

Mel-86a and Ma-Mel-86c required a concentration of 0,6 µg/ml and 0,4 µg/ml of puromycin, 

respectively. Approximately two weeks after transduction, transduction efficiency and GFP expression 
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was measured by flow cytometry. Ma-Mel-86 HLA-A2+ Luc+ were then cultured in complete RPMI 

supplemented with 0,9 mg/ml G418 and 0,6 µg/ml puromycin. 

 

4.1.5 Reverse siRNA transfection 

In order to silence the gene expression of different target genes, cells were transfected with the 

respective siRNA. siRNA stocks were diluted with nuclease-free water to 250 nM. 200 µl of siRNA 

solution were pipetted into a 6-well plate. For successful transfer of siRNA into the target cells, the 

RNAiMAX transfection reagent was used. Per well, 4 µl RNAiMAX were added to 196 µl RPMI and the 

mix was incubated for 10 min at RT. Subsequently, 400 µl RPMI were added to the mix and the total 

volume was added to the siRNA in the 6-well plate. RNAiMAX-siRNA mix was incubated for 25 min at 

RT allowing for formation of siRNA-lipid complexes. Meanwhile, wildtype or genetically modified Ma-

Mel-86 were collected from culture flasks. Per well, 2,5 x 105 tumor cells were diluted in 1,2 ml of 

complete RPMI to be added to the RNAiMAX-siRNA mix, resulting in a final siRNA concentration of 25 

nM. Cells were transfected for 48 h at 37 °C and 5 % CO2. For transfection experiments in 96-well and 

384-well plates, the described protocol was adapted proportionally, maintaining a final siRNA 

concentration of 25 nM. In 96-well plates, 5000 Ma-Mel-86a and 10000 Ma-Mel-86c cells were seeded 

per well and in 384-well plates, 2000 Ma-Mel-86a and 4000 Ma-Mel-86c cells were seeded. 

 

4.1.6 Expansion of FluT cells 

Flu peptide specific T (FluT) cells were previously generated by Dr. Ayşe Nur Menevşe and frozen in 

aliquots for later expansion experiments [178]. Briefly, CD8+ T cells were isolated from peripheral 

blood mononuclear cells (PBMCs) from healthy donors. Flu peptide specific CD8+ T cells were 

expanded by antigen-specific expansion (ASE) in the presence of HLA-A2 matched flu peptide 

(GILGFVFTL), IL-2 and IL-15 as well as irradiated feeder cells [144, 178]. 

For efficient expansion, the rapid expansion protocol introduced by Rosenberg et al. was used [179]. T 

cells that were generated by the ASE were thawed in CLM and stained with Flu Pentamer (A*02:01 - 

GILGFVFTL) as described in 4.3.3 in order to identify flu peptide specific T (FluT) cells which were sorted 

by FACS. During the sorting, previously isolated PBMCs from three different donors were irradiated 

with 60 Gray and used as feeder cells for the expansion. Expansion medium (described in 3.6) was 

prepared and supplemented with 3000 U/ml IL-2 and 30 ng/ml anti-CD3 antibody (clone: OKT3). 1 x 

106 sorted FluT cells were co-cultured with 200 x 106 irradiated PBMCs (ratio 1:200) in 150 ml of 

supplemented expansion medium in an upright T175 cell culture flask. Cells were incubated at 37 °C 

and 5 % CO2 for 4 days. On day 5 after start of the REP, 100 ml of the medium was discarded and 
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replenished with fresh expansion medium supplemented with 3000 U/ml IL-2. On days 7 and 11 after 

start of the REP, 2/3 of the culture medium was discarded, cells were counted using a hemocytometer, 

and remaining medium was replenished with fresh expansion medium supplemented with 3000 U/ml 

to adjust the cell number to 0,6 x 106 cells per ml. REP was completed after 14 days. 0,3 x 106 FluT cells 

were used for a staining with Flu Pentamer to conduct flow cytometry in order to measure the 

proportion of flu peptide specific CD8+ T cells. Subsequently, expanded FluT cells were frozen as 

described in 4.1.2. 

 

4.1.7 Polyclonal activation of T cells 

Activation was performed in an untreated 6-well plate. Wells were coated with 4 µg/ml anti-CD3 

antibody in 2 ml of DPBS overnight at 4°C. The plate was then washed twice with DPBS. T cells were 

seeded in CLM supplemented with 1 µg/ml anti-CD28 antibody at a concentration of 1 x 106 cells per 

ml. 1,5-4 ml of cell suspension were used per well. Cells were stimulated for 20-24 h at 37 °C and 5 % 

CO2. Afterwards, T cell suspension was transferred to a Falcon® tube and centrifuged for 10 min at 500 

g and RT. The supernatant was collected in a fresh tube and used directly in experiments or 

alternatively stored at -20 °C for future use. 

 

4.2 Molecular biology techniques 

4.2.1 Transformation of plasmids into competent bacteria 

Chemically competent DH5α E. coli were used for transformation and amplification of overexpression 

plasmids encoding TMCC3 or SLC39A13 as well as an empty vector. 1 µg of plasmid was added to one 

vial of 50 µl competent bacteria suspension and the mix was incubated for 10 min on ice. After a heat-

shock of 45 s at 42 °C, cells were incubated for another 2 min on ice. 200 µl of S.O.C. medium was 

added, and suspension was incubated for 1 h at 37 °C, shaking at 300-500 rpm. 50 µl of the bacteria 

suspension was transferred to an agar plate containing 100 µg/ml ampicillin and distributed by the 

quadrant streaking method. The plate was incubated overnight at 37 °C. The next day, a single colony 

was picked and inoculated in 10 ml of LB medium supplemented with 100 µg/ml ampicillin. The culture 

was incubated for 8 h shaking at 37 °C and 300 rpm. 100 µl of the culture was subsequently transferred 

to 200 ml LB medium supplemented with 100 µg/ml ampicillin and incubated overnight shaking at 37 

°C and 300 rpm. Finally, bacteria from the overnight culture were harvested by centrifugation for 15 

min at 4000 g. Plasmid DNA was purified using the PureLink™ HiPure Plasmid Midiprep Kit following 

the manufacturer’s instructions. DNA was eluted in 100 µl of nuclease-free water. Concentration was 

determined using the NanoDrop™ 2000c Spectrophotometer. DNA was stored at -20 °C. 
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4.2.2 RNA isolation and reverse transcription 

RNA was isolated from cell pellets of tumor cells. For pellet collection, cells were washed once with 

DPBS and detached with trypsin/EDTA. Complete RPMI was added, and cell suspension was 

centrifuged for 5 min at 500 g and 4 °C. Pellets were washed once with cold DPBS. Supernatant was 

discarded and pellets were stored at -20 °C or used immediately for RNA isolation. 

RNA isolation was conducted using the RNeasy Mini Kit from Qiagen according to the manufacturer’s 

instructions. RNA purity and concentration was measured using the NanoDrop™ 2000c 

Spectrophotometer. RNA was stored at -80 °C. Measurement of the concentration was repeated after 

each freeze-thaw cycle. Reverse transcription was conducted using the QuantiTect Rev. Transcription 

Kit from Qiagen following the manufacturer’s instructions. 1 µg of previously isolated RNA was used 

per reaction. 

 

4.2.3 End-point PCR 

In order to determine gene expression at mRNA level, PCR was performed using the 2x MyTaq™ HS 

Red Mix in a reaction volume of 25µl. Per reaction, 1 µl of pre-designed primers or 500 nM self-

designed primers were used. 100 ng of cDNA was used as template and water was used to reach final 

reaction volume. Water additionally served as contamination control in a sample without cDNA. 

Default PCR program was initiated for 3 min at 95 °C, followed by 35 cycles of the following three steps: 

denaturation for 30 s at 95 °C, primer annealing for 30 s at 60 °C and elongation for 30 s at 72 °C. PCR 

was completed by a final stap at 72 °C for 5 min. 

A 2 % agarose gel was prepared with agarose in 0,5x TAE buffer and GelRed® Nucleic Acid Gel Stain 

(1:12.000). 23 µl of PCR samples were loaded on the agarose gel and run at a constant voltage of 120 

V. Finally, DNA bands were visualized using the ChemiDoc Imaging System. 

 

4.2.4 Real-time quantitative PCR (qPCR) 

In order to quantify mRNA expression, real-time quantitative PCR (qPCR) was performed. The 

QuantiFast and QuantiNova SYBR Green PCR Kits were used in a total reaction volume of 20 µl. Per 

reaction, 10 µl of 2x SYBR Green mix and 10 ng of cDNA were applied as a template. When pre-designed 

primers were used in the PCR, 1 µl was used per reaction. Self-designed primers were applied at 300 

nM end concentration for each primer. Water was used to reach final reaction volume and as 

contamination control in a sample without cDNA. Each sample was run in triplicates and qPCR was 

performed using the QuantStudio™ 3 Real-Time PCR System. In subsequent analysis, expression (Ct 

value) of target gene was subtracted by the expression (Ct value) of the housekeeper gene β-Actin as 
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a normalization step. In order to calculate relative fold gene expression between different conditions, 

analysis was performed using the 2-ΔΔCt method [180]. 

 

4.2.5 Protein isolation 

Whole protein lysates were extracted from cell pellets of tumor cells. Pellet collection was performed 

in the same manner as described in 4.2.2. Pellets were resuspended in MILLIPLEX MAP Lysis buffer 

supplemented with protease and phosphatase inhibitors (each 1:100). The resulting cell lysis was 

performed at 4°C for 15 min under constant rotation. Afterwards, samples were centrifuged for 15 min 

at 17.000 g and 4 °C. Supernatant containing the proteins was collected in fresh reaction tubes. For 

measurement of protein concentration, the Pierce™ BCA Protein Assay Kit was used according to the 

manufacturer's instructions. Absorbance at a wavelength of 562 nm was measured using the Tecan 

Spark 10M Microplate Reader. Protein concentration was determined using a regression model of the 

standards provided by the kit. 

 

4.3 Immunological techniques 

4.3.1 Western blot  

To determine the expression of target genes at protein level, western blot was performed. 30 µg of 

protein extracted in 4.2.5 were diluted in water to a total volume of 18,75 µl. 6,25 µl of NuPAGE™ LDS 

Sample Buffer (4X) supplemented with 10 % 2-Mercaptoethanol were added, and samples were 

incubated for 10 min at 70 °C. NuPAGE™ 4 - 12 %, Bis-Tris gel and 1X MOPS SDS Running Buffer were 

prepared in the electrophoresis chamber and 23 µl of each sample were loaded onto the gel. 

Electrophoresis was performed for 15 min at 80 V, then for 90 min at 120 V. 

For transfer of proteins onto a nitrocellulose membrane, the Trans-Blot Turbo RTA Mini 0.2 µm 

Nitrocellulose Transfer Kit was used. Transfer buffer was prepared according to the manufacturer’s 

instructions and membrane and two transfer stacks were equilibrated for 10 min in transfer buffer. 

After gel electrophoresis was completed, the gel was removed from the chamber and transferred to 

transfer buffer. One transfer stack was placed on the anode of the Trans-Blot Turbo Transfer System, 

followed by the membrane, the gel and the second transfer stack. A blot roller was used after each 

step to remove air bubbles between the components, excessive transfer buffer was removed, and the 

cathode was used to seal the system. Protein transfer was performed with the preprogrammed 

protocol “High MW” with a prolonged duration of 30 min. 
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After completion of the protocol, successful transfer of protein from gel onto membrane was verified 

by staining the nitrocellulose membrane with Ponceau S solution according to the manufacturer's 

instructions. Solution was removed by washing the membrane several times in TBS-T. The remaining 

protein in the gel was stained using Bio-Safe™ Coomassie Stain according to the manufacturer’s 

instructions. 

For the development of the membrane, it was blocked for 1,5 h at RT in 10 % milk in TBS-T or Animal-

Free Blocking Solution (AFBS) for detection of total or phospho-proteins, respectively. After a washing 

step for 5 min in TBS-T, membrane was stained with the primary antibody (see 3.12.2) in 1 % milk in 

TBS-T or AFBS overnight at 4 °C. On the next day, the membrane was washed thrice for 10 min at RT 

in 1 % milk in TBS-T or in case phospho-protein specific antibodies were used previously, in plain TBS-

T. Subsequently, the membrane was incubated for 1 h at RT with the appropriate secondary HRP-

conjugated antibody diluted in 1 % milk in TBS-T or AFBS. Antibodies were diluted as described in 

3.12.2. Afterwards, membrane was washed once with 1 % milk in TBS-T or plain TBS-T (phospho-

proteins) for 10 min at RT. This was followed by a washing step in TBS-T and finally in TBS, each for 10 

min at RT. Lastly, membrane was dried and Trident femto Western HRP Substrate was added onto the 

membrane and incubated for 5 min in the dark for detection of proteins. For detection of the 

housekeeper gene GAPDH, Pierce™ ECL Western Blotting Substrate was applied for 1 min due to high 

protein expression of the gene. Membrane was dried and protein bands were visualized using the 

ChemiDoc Imaging System. 

 

4.3.2 Enzyme-linked immunosorbent assay (ELISA)  

In order to measure secreted cytokines TNFα or IFNγ, cell supernatant was collected and centrifuged 

for 5 min at 500 g to deposit cell debris. Supernatant was transferred to an untreated microplate or 

reaction tubes and stored at -20 °C until the ELISA was performed. For conducting a sandwich ELISA, 

BD OptEIA™ ELISA kits were used according to the manufacturer’s instructions. Using the Tecan Spark 

10M, absorbance at a wavelength of 450 nm was measured with a reference wavelength of 570 nm. 

Cytokine concentration was determined by subtraction of the reference absorbance and a regression 

model of the standards. 

 

4.3.3 Flow cytometry 

Surface protein expression was measured by flow cytometry. Adherent tumor cells were detached 

with 0,02 % EDTA in DPBS. During the staining, cold buffers were used, and all steps were followed by 

washing steps, centrifugation for 5 min at 600 g and 4 °C and disposal of the supernatant. Up to 3 x 105 
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tumor or T cells were transferred to one well of a V bottom microplate and washed with FACS buffer. 

After centrifugation, Kiovig solution (1:20 in FACS buffer) was added and cells were incubated for 20 

min on ice. Cells were washed with DPBS and stained with Zombie Aqua™/NIR™ (1:1000 in PBS) for 15 

min at RT in the dark. Staining was followed by a washing step with FACS buffer. Flu Pentamer was 

centrifuged for 5 min at 14000 g and 4 °C to dispose protein aggregates prior to use for staining. FluT 

cells were stained with Flu Pentamer (1:10 in FACS buffer) for 10 min at RT in the dark and washed 

afterwards with FACS buffer. For the following surface protein staining, monoclonal fluorophore-

conjugated antibodies were diluted in FACS buffer at a suitable concentration (see 3.12.1) and applied 

to the cells for 30 min on ice in the dark. Appropriate isotype antibodies with the same Ig subclass and 

fluorophore as the target antibody were applied in the same concentration as staining controls. After 

the surface staining, cells were washed twice and afterwards resuspended in FACS buffer and 

transferred to a FACS tube through a cell strainer. Samples were acquired with the FACSLyric™ and 

FluT cells were sorted using the FACSAria™ II. Appropriate laser voltages and fluorophore signal 

compensation was applied by using unstained and single stain controls. Flow cytometry was 

subsequently analyzed using the software FlowJo. Compensation was re-applied and, if required, 

geometric mean was used for measurement of mean fluorescence intensity (MFI) values.  

 

4.4 Cytotoxicity assays 

4.4.1 General setup of cytotoxicity assays  

Genetically modified Ma-Mel-86 were seeded to 6-well, 96-well or 384-well plates without treatment 

or transfected with siRNAs as described in 4.1.5. In luciferase-based cytotoxicity assays, cells were 

seeded into white microplates, otherwise transparent plates were used. If not stated otherwise, cells 

were cultured for 48h until further treatment. In cytotoxicity assays with FluT or MART-1 T cells, Ma-

Mel-86 were pulsed for 1 h at 37 °C and 5 % CO2 with 0,01 µg/ml flu peptide GILGFVFTL and 10 µg/ml 

MART-1 peptide ELAGIGILTV, respectively. Medium of untreated or pulsed cells was removed and 

melanoma cells were co-cultured with FluT, MART-1 T cells or TIL412. Alternatively, cells were treated 

with supernatant of polyclonally activated FluT cells or with 100 ng/ml of recombinant human TNFα, 

TRAIL, FasL, LTα, LIGHT or IFNγ. Cells were subsequently cultured at 37 °C and 5 % CO2. 

 

4.4.2 Luciferase-based readout 

In luciferase-based cytotoxicity assays, Ma-Mel-86 HLA-A2+ Luc+ were treated for 20 h. Subsequently, 

cell supernatant was discarded, and cells were lysed with 40 µl or 20 µl of lysis buffer per well in 96-

well and 384-well plates, respectively. After an incubation of 10 min at RT, equal amount of luciferase 
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buffer was added per well and readout was performed immediately by measuring raw luciferase units 

by luminescence with the Tecan Spark 10M.  

 

4.4.3 Real-time live cell imaging  

In real-time cytotoxicity assays, Incucyte® Cytotox Red Dye was added to Ma-Mel-86 HLA-A2+ Luc+ at 

start of treatment at a final dilution of 1:4000. Microplates were transferred into the Incucyte SX5® 

device for at least 20 h at 37 °C and 5 % CO2. Every two hours, the device acquired the red signal of 

dying cells indicated by Cytotox Red binding to DNA due to disrupted cell membrane integrity. 

Additionally, GFP expression of cells was acquired. In the subsequent analysis with the Incucyte 2021C 

software, the area per well of the red signal was normalized to the green signal for determination of 

cytotoxicity. 

 

4.5 High-throughput RNAi screens 

4.5.1 Pipetting of siRNA libraries 

For conduction of the high-throughput (HTP) RNAi screens, customized siRNA libraries were delivered 

in 384-well or 96-well microplates as stocks from Horizon Discovery. The library was designed with the 

first four or two columns to be empty for later addition of control siRNAs. To conduct the screens in 

technical duplicates with viability and cytotoxicity setting, siRNAs were diluted and distributed to white 

microplates using the ASSIST PLUS pipetting robot and electronic pipettes. Pipettes were programmed 

using the Vialab software. Nuclease-free water was used to dilute the siRNAs to a concentration of 250 

nM. Microplates were kept continuously on ice or during pipetting at 4 °C using a cooling unit on the 

robot to prevent siRNA degradation. Until implementation of the screen, plates were stored at -20 °C. 

 

4.5.2 Primary high-throughput RNAi screens 

In the primary HTP screens, a siRNA library was used comprising 5202 genes encoding for the whole 

surfaceome as well as kinases and cell metabolism-related genes. Each gene was targeted by a 

SMARTpool of four non-overlapping siRNAs targeting the mRNA of the respective gene. The setup of 

the screen was adapted from Khandelwal et al. [143] and was conducted in 384-well microplates. The 

library stocks were diluted and distributed as described in 4.5.1 with the first four columns left empty. 

Control siRNAs were diluted with nuclease-free water to 250 nM on the day of the screen and pipetted 

to the first four columns of the microplate. The read-out was conducted similar to the reverse siRNA 

transfection and luciferase-based cytotoxicity assay as described in 4.1.5 and 4.4, respectively. Per 

well, 0,05 µl of RNAiMAX transfection reagent was used and 2000 Ma-Mel-86a HLA-A2+ Luc+ and 4000 
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Ma-Mel-86c HLA-A2+ Luc+ were seeded, respectively. Final siRNA concentration was 25 nM in a final 

volume of 50 µl. After 48 h of transfection, melanoma cells were pulsed with 0,01 µg/ml flu peptide 

for 1 h at 37 °C and 5 % CO2. Subsequently, peptide containing medium was removed and Ma-Mel-86 

were cultured in plain medium in the viability setting or co-cultured with FluT cells in the cytotoxicity 

setting. Ma-Mel-86a were co-cultured at an E:T ratio of 1:1 while Ma-Mel-86c were co-cultured at an 

E:T ratio of 0,5:1. After 20 h, tumor cells were lysed, and remaining luciferase activity was measured 

as described in 4.4.2. 

 

4.5.3 Secondary validation high-throughput RNAi screens 

The secondary validation screens were conducted similarly to the primary HTP screens described in 

4.5.2. The library of the validation screen comprised 174 genes encoding for strong immunoregulatory 

genes identified in the primary HTP screens as well as MITF and PD-L1. As in the primary screens, each 

gene was targeted by a pool of four siRNAs. Additionally, each of the four siRNAs was used individually 

to investigate off-target effects and different effect sizes of the single siRNAs. The secondary screen 

was conducted in 96-well plates with the first two columns used for control siRNAs. Per well, 5000 Ma-

Mel-86a HLA-A2+ Luc+ and 10000 Ma-Mel-86c HLA-A2+ Luc+ were seeded, respectively.  

 

4.6 Bioinformatic analyses 

Bioinformatic analyses were conducted using the programming language R for statistical computing. 

Default R packages were complemented by specific packages important for the respective analysis. If 

not stated otherwise, default arguments of functions were applied. 

 

4.6.1 Analysis of high-throughput RNAi screens 

The HTP RNAi screens were analyzed using the package ‘CellHTS2’. Analysis was performed on viability 

and cytotoxicity settings of the screens in Ma-Mel-86a and Ma-Mel-86c. The function 

normalizePlates(scale=”multiplicative”, log=TRUE) was used in order to eliminate inter-plate variability 

of raw luciferase units (RLU). This was followed by assigning a z-score to each gene, estimating its effect 

on the viability of cells compared to all other genes. Here, the function scoreReplicates() was used with 

sign=”-“ as increased melanoma cell death mediated by FluT cells should result in positive scores, 

followed by summarizeReplicates(summary=”mean”). The script of the downstream analysis was 

adapted from my former colleague Tillmann Michels [181]. The z-scores of viability and cytotoxicity 

setting were first quantile normalized using the normalizeQuantileRank() function of the ‘aroma.light’ 
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package. In order to identify each gene’s immunomodulatory potential on FluT cell-mediated tumor 

cell rejection, a regression model was applied to predict the cytotoxicity score from the viability score 

using locally estimated scatterplot smoothing (LOESS). LOESS scores were calculated as difference 

between the cytotoxicity z-score and the prediction model, and all genes were ranked by their LOESS 

score with positive scores for genes that increased tumor cell death upon knockdown. 

 

4.6.2 ComBat-seq 

To combine different transcriptomic data sets and correct batch effects that were introduced due to 

varying origins of the data sets, ComBat-seq from the package ‘sva’ was used to adjust the data 

resulting in high statistical power while maintaining integer values of the raw count data. RNA-Seq data 

from melanoma cell lines Ma-Mel-86a and Ma-Mel-86c were publicly available via NCBI SRA (project 

ID SRP068803). Raw transcriptome data (FASTQ) was processed to a raw count matrix by our institute’s 

Next-Generation Sequencing (NGS) core facility. Wouters et al. published RNA-Seq data on patient-

derived melanoma cell lines accessible via the Gene Expression Omnibus (GSE134432). Gene names of 

the Wouters et al. data sets were converted to Ensembl IDs using the R package ‘gprofiler2’ in order 

to merge the raw count data with the Ma-Mel-86 cell lines’ data set. Principle component analysis 

(PCA) was conducted on log2-transformed raw count data using the prcomp() function before and 

after the ComBat-seq batch effect correction to investigate similarities of the different melanoma cell 

lines according to dataset and melanoma phenotype as well as efficiency of batch effect correction. 

PCA was visualized with the autoplot() function of the ‘ggfortify’ package. 

 

4.6.3 Weighted gene co-expression network analysis (WGCNA) 

To identify co-expression modules from a correlation matrix of RNA-Seq data, the package ‘WGCNA’ 

was used together with ‘dynamicTreeCut’. As genes with a positive correlation to each other should 

be assigned to a cluster, signed networks were generated. If required, the analysis was conducted on 

a specific sample subset like malignant cells in the Jerby-Arnon et al. single cell RNA-Seq data set. The 

total list of genes in the data set was reduced to a list of 265 validated immune resistance genes and 

controls. Normalized count or TPM expression data was log2-transformed and genes that didn’t show 

expression in any sample were excluded. In WGCNA, a correlation matrix is transformed into a 

weighted adjacency matrix by applying soft thresholding. A power value is applied to the correlation 

matrix to emphasize on strong correlations. The function pickSoftThreshold(verbose = 5, 

networkType="signed") was used to determine the appropriate power value to obtain high similarity 

and scale-free topology. If a network is scale-free, a few genes interact with a large number of other 

genes while the majority wouldn’t have high connectivity, which is usually the case in biological 
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networks. Taking the power value into account, the adjacency matrix was generated with the function 

adjacency(type = "signed"). To cluster the genes from the adjacency matrix, a proximity measure was 

applied, resulting in a topological overlap matrix (TOM) to minimize noise and spurious associations. 

The dissimilarity TOM was then used for hierarchical clustering with the function 

hclust(method=”average”) to finally create a dendrogram. With the function cutreeDynamic(method 

= "hybrid", deepSplit = 2,  pamStage = FALSE, minClusterSize = 3), genes were assigned to modules of 

at least three genes. Resulting clusters with module eigengenes, representing the general expression 

of the majority of a cluster, were correlated to each other and to marker genes as well as external 

traits. Clusters with a module eigengene correlation coefficient of 0,75 were merged. The cluster 

dendrogram was visualized with the function plotDendroAndColors() while the correlation heatmaps 

were generated using the function plotEigengeneNetworks(plotAdjacency = F). 

 

4.6.4 Generation of heatmaps 

Apart from the WGCNA and Seurat analysis, heatmaps were generated with the package ‘pheatmap’. 

Data matrices were log2-transformed with samples as rows and genes as columns. If required, genes 

were ordered from previous WGCNA by using setcolorder() from the package ‘data.table’. Samples 

were either ordered manually or by hierarchical clustering by setting cluster_rows=T in the pheatmap() 

function. In analyses comparing the expression of immune resistance genes with statistical tests, 

sample groups were defined and wilcox.test() was applied to implement a Mann–Whitney U test in a 

gene-wise manner. Mann-Whitney U test was chosen due to the assumption that gene expression did 

not follow normal distribution as some genes showed expression only in a subset of samples. The p-

values were adjusted for multiple testing using p.adjust(method=”fdr”) and genes were ordered by 

their adjusted p-value. 

 

4.6.5 Seurat 

Single cell RNA-Seq analysis was performed with the specialized package ‘Seurat’ to identify cell types 

and different subsets of malignant cells in patient melanomas. Raw count data from the Jerby-Arnon 

et al. data set was used to create a Seurat object with CreateSeuratObject(min.cells = 3, min.features 

= 100). Quality control was performed and cells were filtered with subset(subset = nFeature_RNA > 

200 & nFeature_RNA < 10000 & nCount_RNA < 2e6). Data was subsequently normalized and scaled 

and the top 2000 variable features were integrated to perform PCA. The function RunHarmony() from 

the package ‘harmony’ was used to remove patient-specific batch effects. Subsequently, cells were 

clustered with the functions FindNeighbors(reduction = "harmony", dims = 1:30) and 

FindClusters(resolution = 0.5) followed by RunUMAP(reduction = "harmony", dims = 1:30) to perform 
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Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP). UMAP plots were 

visualized using the function DimPlot(reduction = "umap"). In order to assign cell type identities to the 

clusters, the expression of marker genes in the different clusters was visually investigated with the 

DotPlot() function. According to marker gene expression, clusters were relabeled, merged or excluded. 

To identify immune resistance genes as cluster marker genes the function FindAllMarkers(only.pos = 

TRUE, min.pct = 0.25, logfc.threshold = 0.25) was applied and the resulting list of marker genes was 

intersected with the list of immune resistance genes. Expression of genes was visualized with the 

functions DotPlot() or with averaged expression levels by DoHeatmap(). 

 

4.7 Statistical evaluation 

To measure statistical significances between different conditions in the experiments, the software 

GraphPad Prism 9 was used. The choice of the statistical test was dependent on the data that was 

compared in the test. In single experiments or representative data an unpaired two-tailed t-test was 

chosen. For compiled data, a two-tailed paired t-test between conditions that were not normalized to 

each other, and a two-tailed ratio paired t-test for normalized conditions were used. In case the 

hypothesis implied a clear reduction in measured values, the tests were changed from two-tailed to 

one-tailed t-tests. In all cases, p-values below 0,05 were considered significant with *p < 0,05, **p < 

0,01, ***p < 0,001 and ****p < 0,0001. 
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5 Results 

 

5.1 Characterization of melanoma cell lines 

5.1.1 Selection of melanoma cell lines 

MITF, as the master regulator in melanocytes, plays an important role in cell plasticity and 

melanomagenesis [70]. In order to identify novel immune resistance genes two melanoma cell lines 

with different MITF expression levels were selected. In collaboration with the Department of 

Dermatology from the University Hospital in Essen, the previously characterized melanoma cell lines 

Ma-Mel-86a (MITFlow) and Ma-Mel-86c (MITFhigh) were chosen [130]. Ma-Mel-86a and -86c are cell 

lines that were derived from the same melanoma patient originating from different lymph node lesions 

two months (Ma-Mel-86a) and three years (Ma-Mel-86c) after diagnosis, respectively. The melanoma 

patient received several immunotherapies including different peptide-based vaccines as well as IFNα 

and tumor lysate loaded dendritic cell vaccine. Immunotherapies and surgery led to a 3-year disease-

free period, yet the patient deceased rapidly after melanoma recurrence [130]. 

In order to validate differences in MITF expression, cDNA and protein lysates of the Ma-Mel-86 pair 

were generated and MITF mRNA and protein expression was measured by PCR and western blot 

(Figure 8). Quantitative PCR confirmed that MITF expression on the mRNA level was reduced in Ma-

Mel-86a by more than 95 % compared to Ma-Mel-86c (Figure 8B). Western blot results showed that 

MITF protein expression was only detected in Ma-Mel-86c (Figure 8C).  

 

Figure 8: Differential expression of MITF between Ma-Mel-86a and Ma-Mel-86c cells. 
PCR and western blot analysis to measure the expression of MITF in Ma-Mel-86a and Ma-Mel-86c. Ma-Mel-86 

were lysed for RNA and protein isolation. (A-B) RNA was reversely transcribed into cDNA and gene expression of 

MITF was measured by (A) conventional or (B) quantitative real-time PCR (qPCR). Expression of Actin-beta was 

measured as reference gene and used for normalization of MITF expression in the qPCR. MITF expression in Ma-

Mel-86a is normalized to the MITF expression in Ma-Mel-86c. Bars represent the mean of technical replicates 

and error bars indicate standard deviation. Significance between both cell lines was calculated by applying an 

unpaired two-tailed t-test (**p<0,01). (C) Western Blot was performed to analyze MITF protein expression. 

GAPDH expression was acquired as reference gene. (B-C) Representative data of three independent experiments. 

Verena Babl contributed to the generation of the data as a Master`s student under my co-supervision. 
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Ma-Mel-86 were characterized to be negative for HLA-A2 (Figure 9, left panel). To make both cell lines 

eligible for various co-culture and cytotoxicity experiments, cells were stably transfected with HLA-A2 

on which selected peptides could be presented to cytotoxic T cells. After transfection, flow cytometry 

analysis showed HLA-A2 expression in 98 % and 78 % of cells in Ma-Mel-86a and -86c, respectively 

(Figure 9). For luciferase-based cytotoxicity assays, Ma-Mel-86 HLA-A2+ cells were transduced with a 

lentivirus expressing firefly luciferase. Under the same CMV promotor GFP was co-expressed to 

determine the transduction efficiency by flow cytometry. After transduction, GFP and therefore 

luciferase was expressed by 100 % of Ma-Mel-86a HLA-A2+ cells and 91 % of Ma-Mel-86c HLA-A2+ cells 

(Figure 9). Furthermore, HLA-A2 expression increased in Ma-Mel-86c to 92 %, making both Ma-Mel-86 

HLA-A2+ Luc+ cell lines positive for both HLA-A2 and luciferase more than 90 %. 

 

Figure 9: Expression of HLA-A2 and GFP on Ma-Mel-86a and Ma-Mel-86c before and after transfection and 
transduction of cells. 
Flow cytometry analysis to measure the expression of HLA-A2 and GFP in wild-type Ma-Mel-86, HLA-A2 

transfected Ma-Mel-86 and luciferase/GFP transduced Ma-Mel-86 HLA-A2+ cells. Melanoma cells were stained 

with isotype or HLA-A2 specific antibodies. GFP expression was acquired simultaneously. Isotype control for GFP 

were Ma-Mel-86 HLA-A2+ GFP negative cells. The blue histogram represents the isotype and the red one the 

expression of HLA-A2 and GFP, respectively. Gates indicate the percentage of cells expressing HLA-A2 and GFP, 

respectively. 

 

5.1.2 Level of resistance of MITFlow and MITFhigh melanoma cells 

A decrease of MITF activity is associated with a more immune resistant phenotype in melanoma 

patients [88]. Furthermore, MITFlow cells show reduced expression of melanoma-associated antigens 

Figure 8
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such as MART-1 and gp100. To investigate whether Ma-Mel-86 shows a different level of resistance to 

T cell-mediated melanoma cell killing, the cell line pair was first co-cultured with CD8+ melanoma 

specific tumor infiltrating lymphocytes (Figure 10). TIL412 which show specificity against MART-1 and 

gp100 as well as MART-1 specific TILs were used for the experiment (Figure 10A&B). The cytotoxicity 

assays showed that Ma-Mel-86c (MITFhigh) were strongly killed upon T cell encounter with increasing 

tumor cell death in higher E:T ratios. Here, almost 70 % of tumor cells could be lysed by MART-1 T cells. 

Ma-Mel-86a (MITFlow) were neither killed by TIL412 nor MART-1 T cells. 

Additionally, MART-1 T cells and flu peptide specific CD8+ T (FluT) cells in the presence of their 

respective antigenic peptide as well as supernatant of polyclonally activated FluT cells were used to 

induce cell death (Figure 10C). Altogether, the results showed a higher tumor cell death of the MITFhigh 

cell line Ma-Mel-86c (up to 90 %) compared to Ma-Mel-86a (55%). PD-L1 is a well characterized 

immune checkpoint molecule (ICM), expressed on cancer cells to abrogate T cell receptor signaling and 

decrease T cell function [51]. Flow cytometry analyses showed expression of PD-L1 in both cell lines 

with higher expression in Ma-Mel-86a (Figure 10D, left panel). To determine whether PD-L1 protects 

Ma-Mel-86 with different MITF status, melanoma cells were co-cultured with FluT cells upon PD-L1 

silencing. Downregulation of PD-L1 increased tumor cell rejection by FluT cells in MITFhigh Ma-Mel-86c, 

but not in MITFlow Ma-Mel-86a cells (Figure 10D, right panel). Taken together, Ma-Mel-86c showed 

increased susceptibility to T cell-mediated tumor cell lysis and increased cell death upon knockdown 

of classical ICM PD-L1 in contrast to Ma-Mel-86a. 
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Figure 10: Differential apoptosis sensitivity of Ma-Mel-86a and Ma-Mel-86c and impact of PD-L1 knockdown. 
(A-C) Luciferase-based cytotoxicity assay to measure the susceptibility of Ma-Mel-86 to CD8+ T cells and 

supernatant of polyclonally activated T cells. Ma-Mel-86 HLA-A2+ Luc+ were cultured in plain medium, co-

cultured with different T cell sources or treated with supernatant. After 20 h of (co-)culture/treatment, cells were 

lysed, and remaining luciferase activity was measured by luminescence. Raw luciferase units (RLU) were 

normalized to RLU of cells cultured in plain medium. (A-B) Melanoma cells were co-cultured with melanoma 

specific T cell sources (A) TIL412 or (B) MART-1 specific T cells in different effector to target (E:T) ratios. (C) Ma-

Mel-86 were pulsed with MART-1 or flu peptide for 1 h and subsequently co-cultured with MART-1 specific T 

cells or flu peptide specific T cells in different E:T ratios or treated with supernatant of FluT cells that were 

polyclonally activated for 24 h. (D) (Left panel) Flow cytometry analysis to measure the expression of PD-L1 

expression on Ma-Mel-86. Cells were stained with isotype or antigen-specific antibodies. Grey histogram 

represents PD-L1 expression on Ma-Mel-86c and the black one the PD-L1 expression on Ma-Mel-86a while the 

isotype control is represented by the dashed line. (Right panel) Luciferase-based cytotoxicity. Ma-Mel-86 HLA-

A2+ Luc+ were reversely transfected with a non-targeting Scr or PD-L1 targeting siRNA for 48 h. Cells were pulsed 

with flu peptide for 1 h and subsequently, melanoma cells were either cultured in plain medium or co-cultured 

with FluT cells for 20 h. RLU were normalized to the Scr control. (C-D) Representative data of n ≥ 2. Bars represent 

the mean of technical replicates + standard deviation. Significances between both cell lines were calculated by 

applying an unpaired two-tailed t-test (*p<0,05, **p<0,01, ***p<0,001, ****p<0,0001, ns = not significant). 

 

5.1.3 Expression of apoptosis inducing ligands by CD8+ T cells and their corresponding 

receptors on the tumor cells 

Upon target cell encounter, CD8+ T cells secrete multiple mediators such as TNFα, TRAIL and IFNγ to 

induce apoptosis in the tumor cells [20, 25]. As Ma-Mel-86 were killed upon co-culture with cytotoxic 

T cells or treatment with supernatant of polyclonally activated T cells, expression of apoptosis inducing 
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ligands by T cells as well as the expression of their corresponding receptors on the tumor cells were 

investigated by flow cytometry (Figure 11-13). Figure 2 in chapter 1.1.3 illustrates ligands and their 

cognate receptors. As those death ligands are mainly induced after activation of T cells [20, 25], ligand 

expression was compared between non-activated and polyclonally activated T cells. Flow cytometry 

analysis showed that non-activated T cells did not show expression of cytotoxic ligands (data not 

shown). However, polyclonally activated FluT cells, MART-1 T cells and TIL412 expressed all tested 

death inducing ligands TRAIL, FasL, Lymphotoxin-α (LTα) and LIGHT (Figure 11). FluT cells showed the 

highest surface expression of all four ligands (≥ 50 %). Additionally, ELISA was performed to determine 

secreted levels of TNFα and IFNγ in the T cell supernatant. Both TNFα and IFNγ were secreted only 

upon activation by all tested polyclonally activated T cell sources (Figure 12). 
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Figure 11: Expression of cell death inducing ligands on different T cell sources. 
Flow cytometry analysis to measure the expression of TRAIL, FasL, LTα and LIGHT on polyclonally activated FluT 

cells (left panel), MART-1 T cells (middle panel) and TIL412 (right panel). T cells were stained with isotype or 

antigen-specific antibodies. The blue histogram represents the isotype and the red one the surface expression of 

the ligand. Indicated gates describe the percentage of cells expressing the respective ligand. 
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Figure 12: Secretion of TNFα and IFNγ by different T cell sources.   
Sandwich ELISA to detect secreted TNFα and IFNγ in the supernatant of FluT cells, MART-1 T cells and TIL412 that 

were either unstimulated or polyclonally activated for 24 h. Concentration of cytokines was measured by 

absorbance. Bars represent the mean of technical replicates + standard deviation.  

 

Flow cytometry analysis of the tumor cells to investigate death receptor expression showed expression 

of DR5/TRAILR2, TNFR1, FAS, IFNγR1, LT-βR and HVEM in both melanoma cell lines, Ma-Mel-86a and -

86c (Figure 13). Both cell lines were negative for DR4/TRAILR1 as well as TNFR2. IFNγR1 was expressed 

at similar levels while HVEM was higher expressed in the MITFhigh cell line Ma-Mel-86c. The remaining 

receptors showed higher expression on the MITFlow cell line Ma-Mel-86a.  

In summary, all tested activated T cells were able to express or secrete cytotoxic ligands while both 

melanoma cell lines expressed most apoptosis-related receptors to a high degree which did not 

correlate to the susceptibility to T cell-mediated tumor cell rejection. 
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Figure 13: Expression of death receptors on Ma-Mel-86a and Ma-Mel-86c. 
Flow cytometry analysis to measure the expression of DR4/TRAILR1, DR5/TRAILR2, TNFR1, TNFR2, FAS, IFNγR1, 

LT-βR and HVEM on Ma-Mel-86 cells. Cells were stained with isotype or antigen-specific antibodies. The blue 

histogram represents the isotype and the red one the expression of the receptor. Gates indicate the percentage 

of cells expressing the respective receptor. 

 

5.1.4 Primary resistance of Ma-Mel-86 to death receptor ligands 

To investigate to which extent single agents of the supernatant can induce apoptosis in the tumor cells 

and to determine if there are differences in the capacities between the ligands to induce tumor cell 

death, Ma-Mel-86a and -86c were treated with TRAIL, TNFα, FasL, LTα, LIGHT as well as IFNγ 

Figure 5
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individually (Figure 14). The results showed that neither TRAIL, TNFα, FasL, LTα nor LIGHT could induce 

apoptosis in the tumor cells. Only when the cells were treated with IFNγ, tumor cell death was 

observed in both cell lines. MITFhigh melanoma cell line Ma-Mel-86c showed 38 % viability reduction 

while 25 % of Ma-Mel-86a died, similar to previous results in which co-culture with T cells and 

treatment with supernatant showed higher impact in Ma-Mel-86c (Figure 14). In summary, Ma-Mel-

86 showed primary resistance to death receptor ligands but not to IFNγ. 

 

Figure 14: Susceptibility of Ma-Mel-86 to T cell-derived cytotoxic agents. 
Luciferase-based cytotoxicity assay to measure the susceptibility of Ma-Mel-86 HLA-A2+ Luc+ to supernatant of 

FluT cells that were polyclonally activated for 24 h or single ligands expressed by T cells. After 20 h of treatment, 

cells were lysed, and remaining luciferase activity was measured by luminescence. Raw luciferase units (RLU) 

were normalized to RLU of untreated cells cultured in plain medium. Bars represent the mean + standard 

deviation of three independent experiments. Significances between individual treatment to medium were 

calculated by applying a two-tailed ratio paired t-test (*p<0,05, **p<0,01, ns = not significant). 

 

5.2 Setup of a high-throughput RNAi screen 

In order to identify novel immune resistance genes in Ma-Mel-86, small interfering RNA (siRNA)-based 

high-throughput (HTP) RNA interference (RNAi) screens were performed. The original method of the 

screen was established in our group by Dr. Nisit Khandelwal [143]. Dr. Ayşe Nur Menevşe established 

a protocol in our group to generate and expand efficiently flu antigen specific T cells (FluT cells) as 

effector T cells from peripheral blood mononuclear cells (PBMCs) of HLA-A2+ healthy donors [144]. To 

successfully conduct the HTP RNAi screen, tumor cells stably expressed HLA-A2 for HLA-A2-matched 

flu peptide antigen presentation to FluT cells as well as luciferase to perform a reporter gene-based 

readout after co-culture of tumor and T cells. 

Figure 15 shows a sketch of the HTP screen set-up. Briefly, Ma-Mel-86 HLA-A2+ Luc+ were reversely 

transfected with siRNAs. After 48 h of transfection, cells were pulsed for 1 h with the flu peptide 

GILGFVFTL that originates from the Influenza M1 protein. Subsequently, Ma-Mel-86a were co-cultured 

with flu specific T cells (FluT). Apart from this co-culture setting called the cytotoxicity setting, there is 

also a viability setting of tumor cell culture in plain medium without FluT cells to determine the effect 
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on the tumor cell viability by the siRNA transfection and/or downregulation of the target gene per se. 

The immunomodulatory effect of a gene is therefore apparent if there is a higher tumor cell death in 

the cytotoxicity setting compared to the viability setting, each compared to a non-targeting siRNA 

control. After 20 h of co-culture, the remaining tumor cells were lysed, and luciferase activity was 

measured which is proportional to the remaining number of Ma-Mel-86. Immunomodulatory genes 

would ideally not show an impact on the viability of the cells but increase tumor cells lysis upon co-

culture with FluT cells represented by lower luciferase activity.  

 

Figure 15: Experimental set-up of the high-throughput RNAi screens and luciferase-based cytotoxicity assays. 

 

Figure 7
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Ma-Mel-86 HLA-A2+ Luc+ cells were reversely transfected with siRNAs for 48 h. Tumor cells were pulsed with 

HLA-A2-matched flu peptide for 1 h and subsequently either cultured in plain medium (viability setting) or co-

cultured with flu specific T (FluT) cells (cytotoxicity setting) for 20 h. Finally, remaining Ma-Mel-86 HLA-A2+ Luc+ 

were lysed and remaining luciferase activity was measured by luminescence. Created with BioRender.com [32]. 

 

5.2.1 Rapid expansion of flu specific T cells 

As mentioned before, Dr. Ayşe Nur Menevşe established an antigen-specific expansion protocol in our 

group to generate flu specific T cells and subsequently expand them using the rapid expansion protocol 

(REP) previously introduced by Rosenberg et al. [179]. Briefly, CD8+ T cells were isolated from 

peripheral blood mononuclear cells (PBMCs) of HLA-A2+ healthy donors and antigen-specifically 

expanded in the presence of flu peptide for two weeks (Data not shown). In order to increase the 

specific population and the number of CD8+ flu antigen specific T cells, antigen specifically expanded 

FluT were FACS-sorted by pentamer staining. Sorted cells (1 x 106) were expanded using the REP in 

which cells were cultured in the presence of high IL-2, anti-CD3 antibody and irradiated feeder cells 

from three different healthy donors. After 14 days, cells were expanded 120-fold and flow cytometry 

analysis showed a proportion of 82 % of FluT cells (Figure 16). 

 

Figure 16: Specificity of FluT cells after rapid expansion. 
Flow cytometry analysis to measure the proportion of flu specific CD8+ T cells after 14 days of expansion with 

the rapid expansion protocol. Cells were stained with anti-CD8 antibody and Flu pentamer. All acquired events 

were gated on lymphocytes and live cells to determine the proportion of CD8+ flu specific T cells. 

 

5.2.2 Optimization of siRNA transfection, flu peptide concentration and effector to target ratio 

for Ma-Mel-86 

To investigate the optimal duration of siRNA-mediated knockdown of target genes in Ma-Mel-86, 

melanoma cells were transfected with siRNAs targeting Programmed Cell Death 1 Ligand 1 (PD-

L1/CD274) and Salt-Inducible Kinase (SIK3) for 48 h and 72 h. Non-targeting siRNA controls (Scr 2-4) 

were used additionally in which no alteration of gene expression was expected. Gene expression of 

PD-L1 and SIK3 was evaluated by quantitative PCR after the described time points. Normalization to 

non-transfected cells (Mock) showed a stronger downregulation of PD-L1 and SIK3 after 48 h (85-94 
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%) compared to 72 h (24-76 %) (Figure 17A). Also the Scr controls had less impact on the expression of 

PD-L1 and SIK3 after a transfection period of 48 h. 

Co-culture of Ma-Mel-86 HLA-A2+ Luc+ with FluT require pulsing of melanoma cells with flu peptide 

for recognition of tumor cells by FluT. In order to investigate the optimal co-culture settings, a 

cytotoxicity assay was performed in which tumor cells were pulsed with different flu peptide 

concentrations (Figure 17B). The peptide concentrations 0.01, 0.001 and 0.0001 µg/ml were tested for 

both melanoma cell lines Ma-Mel-86a HLA-A2+ Luc+ and -86c HLA-A2+ Luc+ at an E:T ratio of 2:1. The 

results of the luciferase-based readout confirmed that tumor cells were only effectively killed when 

peptide was present (Figure 17B). The peptide concentration 0.0001 µg/ml didn’t induce a strong 

tumor cell rejection by FluT cells while 0.01 and 0.001 µg/ml both led to tumor cell lysis. I decided to 

use the higher concentration of 0.01 µg/ml for future experiments and rather adapt the E:T ratios for 

determination of the degree of the tumor cell death. 

Consequently, I aimed to find an appropriate effector to target (E:T) ratio for both melanoma cell lines. 

The E:T ratios 2:1, 1:1 and 0.5:1 for Ma-Mel-86a HLA-A2+ Luc+ and 1:1, 0.5:1 and 0.25:1 for Ma-Mel-

86c HLA-A2+ Luc+ were used in a cytotoxicity assay. The results indicated that increasing E:T ratios 

have higher impact in the MITFhigh melanoma cell line Ma-Mel-86c (Figure 17C). While all E:T ratios 

resulted in a tumor cell death of approximately 50 % in Ma-Mel-86a, tumor cell lysis was increased 

from 65 to 90 % in Ma-Mel-86c with growing E:T ratios. The ratios 0.5:1 and 1:1 were chosen for Ma-

Mel-86c and Ma-Mel-86a, respectively. 
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Figure 17: Optimization of transfection and co-culture settings for the high-throughput RNAi screens and 
cytotoxicity assays. 
(A) Ma-Mel-86 were transfected with Scr2/3/4 or a pool of four PD-L1 or single s1 SIK3 siRNAs for 48 or 72 h. 

Additionally, melanoma cells were cultured without transfection (mock control). Cells were lysed for RNA 

isolation and RNA was reversely transcribed to cDNA. Quantitative real-time PCR was performed to measure 

gene expression of PD-L1 and SIK3. Expression of Actin-beta was measured as reference gene and used for 

normalization of PD-L1 and SIK3. Gene expression was normalized to expression levels of the mock control. Bars 

represent the mean of technical replicates + standard deviation. (B) Ma-Mel-86 HLA-A2+ Luc+ were pulsed with 

different concentrations of flu peptide for 1 h or cultured in the absence of flu peptide. Subsequently, melanoma 

cells were either cultured in plain medium or co-cultured with FluT cells in a 2:1 effector to target (E:T) ratio for 

20 h. Cells were lysed, and remaining luciferase activity was measured by luminescence. Bars represent the mean 

of technical replicates + standard deviation. (C) Ma-Mel-86 HLA-A2+ Luc+ were pulsed with flu peptide for 1 h 

and subsequently, melanoma cells were either cultured in plain medium or co-cultured with FluT cells in different 

E:T ratios for 20 h. Cells were lysed, and remaining luciferase activity was measured by luminescence. Bars 

represent the mean of technical replicates + standard deviation. 
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5.2.3 Selection of controls for Ma-Mel-86 

The surface molecule PD-L1 is expressed by tumor cells to shift T cells expressing Programmed Cell 

Death 1 (PD-1) into an exhausted cell state. Both molecules are used as targets in antibody-based 

immunotherapies [105]. In the HTP screens, I aimed to identify novel immune resistance genes that 

exert stronger immune resistance compared to already established immune checkpoint genes like PD-

L1. Immunoregulatory genes identified by our group or described in literature that increase T cell-

mediated rejection upon downregulation are used as positive controls and help to interpret the 

outcome of the screen and the impact of novel genes (Figure 18). 

Scrambled siRNA controls (Scr2-4) do not target any gene and were used as negative controls in the 

kill assays and the HTP screens showing a similar phenotype as non-transfected wild-type cells (Mock). 

The Scr controls represent the condition to which the impacts of the gene knockdowns will be 

normalized to. Finally, siRNAs targeting survival genes such as Ubiquitin C (UBC), or the commercially 

available ‘Cell Death’ siRNA cocktail were used. These indicated on the one hand the transfection 

efficiency but also helped to better assess the viability impact of the siRNA transfection or gene 

knockdown. 

The results of the viability setting in the assay without FluT cell co-culture showed that the MITFlow 

melanoma cell line Ma-Mel-86a was more susceptible to cell death after siRNA transfection compared 

to Ma-Mel-86c (Figure 18). Reduced cell viability was measured when SIK3 s1 siRNA or a pool of four 

individual PD-L1 or Calcium/Calmodulin Dependent Protein Kinase ID (CAMK1D) siRNAs was used. In 

agreement to that, using siRNA for UBC or Cell Death resulted almost in a complete eradication of Ma-

Mel-86a but only a fraction of around 35-50 % of Ma-Mel-86c. 

With regard to the immunomodulatory effects the results showed that there were differences for the 

MITFlow and MITFhigh melanoma cell lines of Ma-Mel-86 in the selection of positive controls. For Ma-

Mel-86a downregulation of SIK3 and also CAMK1D improved T cell-mediated killing, whereas for Ma-

Mel-86c downregulation of Olfactory Receptor Family 10 Subfamily H Member 1 (OR10H1), Galectin 3 

(LGALS3/Gal-3) as well as SIK3 sensitized tumor cells to T cell attack (Figure 18). As observed previously, 

knockdown of the well-established molecule PD-L1 did not result in an increased tumor cell rejection 

in Ma-Mel-86a and demonstrated a weak effect in Ma-Mel-86c. The Scr controls showed similar 

phenotypes as the mock condition in both, the viability and cytotoxicity settings. All mentioned 

positive and negative controls were included in the primary HTP screens. 

Taken together, for both cell lines suitable control siRNAs were identified with differences between 

MITFlow and MITFhigh cell lines Ma-Mel-86a and Ma-Mel-86c, respectively. 
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Figure 18: Performance of controls for the high-throughput RNAi screens in Ma-Mel-86a and Ma-Mel-86c. 
Luciferase-based cytotoxicity assay to measure the impact of different controls on the viability of the melanoma 

cells and the T cell-mediated rejection. Ma-Mel-86 HLA-A2+ Luc+ were transfected with the indicated siRNAs for 

48 h or not transfected (mock control). If not stated with single numbers, a pool of four individual siRNAs for the 

respective gene was used. Melanoma cells were pulsed for 1 h with flu peptide and subsequently cultured in 

plain medium (viability setting) or co-cultured with FluT cells with an E:T ratio of 1:1 for Ma-Mel-86a and 0,5:1 

for Ma-Mel-86c (cytotoxicity setting) for 20 h. Cells were lysed, and remaining luciferase activity was measured 

by luminescence. Raw luciferase units (RLU) were normalized to RLU of Scr3 and Scr2, respectively. Bars 

represent the mean of technical replicates + standard deviation. Significances between viability and cytotoxicity 

setting were calculated by applying an unpaired two-tailed t-test (*p<0,05, **p<0,01, ***p<0,001, 

****p<0,0001, ns = not significant). Representative data of three independent experiments. 

 

5.3 High-throughput (HTP) screens reveal novel immune resistance genes 

5.3.1 Performance of the primary HTP screen 

In the primary HTP screens a siRNA library comprising 5202 genes was used encoding for the entire 

surfaceome like G-protein coupled receptors as well as kinases and cell metabolism-related proteins. 

Each gene was targeted by a pool of four individual non-overlapping siRNAs. The Ma-Mel-86 HLA-A2+ 

Luc+ cells were transfected in a 384-well format and the screen including the viability (culture of cells 

in medium) and cytotoxicity (co-culture with FluT cells) setting was conducted in technical duplicates 

(Figures 19&20). 
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Subsequently the screen was analyzed using the programming language R for statistical computing 

with the package ‘CellHTS2’ [155]. Briefly, to be able to compare the raw luciferase unit results 

originating from different plates and therefore to eliminate inter-plate variability, plate normalization 

was applied. Also, consistency in both technical replicates was determined by calculation of the 

correlation coefficient for all plate pairs. All genes were afterwards scored, meaning their location 

among each other was estimated and their distribution was scaled (z-score). To identify each gene’s 

immunomodulatory potential, a differential score between the cytotoxicity and viability score was 

calculated and corrected by applying locally estimated scatterplot smoothing (LOESS). This resulted in 

a final LOESS score ranking in which the genes with the highest immune resistance phenotypes receive 

the highest score and genes with opposite effects receive negative scores. The list of genes was filtered 

to eliminate genes that showed high impact on the viability of the tumor cells. As in general higher 

viability effects were observed for Ma-Mel-86a the range for viability z-scores was set between -3 and 

1 and for Ma-Mel-86c the range between -2,5 and 1,5 was chosen. 

Figure 19 shows the performance of the controls in the screens where blue dots represent the viability 

setting and red ones the cytotoxicity setting. For positive controls a shift in z-score can be seen 

confirming their immunoregulatory impact. In agreement with previous kill assays the effects were 

higher in Ma-Mel-86a (SIK3 s1, SIK3 s11, CAMK1D pool) than in Ma-Mel-86c (OR10H1 s1, OR10H1 s5, 

Gal-3 pool). The Scr controls did not show immunomodulatory effects and LOESS scores were 

comparable to the medium, especially for Scr3 and Scr4 (Figure 19&20). As previously observed in the 

kill assays, Cell Death siRNA and the knockdown of UBC resulted in a high cell death of Ma-Mel-86a 

already in the viability setting while moderate effects were observed for Ma-Mel-86c.  
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Figure 19: Performance of the controls in the primary high-throughput (HTP) RNAi screens. 
A siRNA library of 5202 genes was used in the HTP screens. Additionally, non-targeting Scr controls, the 

transfection control ‘Cell Death’ as well as positive controls SIK3, CAMK1D, OR10H1 and Galectin-3 were 

included. Viability and cytotoxicity settings were applied as described in Figure 15. HTP screens were analyzed 

using the programming language R for statistical computing with the package ‘CellHTS2’. Raw luciferase units 

(RLU) were normalized plate-wise and transformed into z-scores for each duplicate in the viability and 

cytotoxicity setting. Scatter plots show the z-scores of technical replicates of the controls for (A) Ma-Mel-86a and 

(B) Ma-Mel-86c. Blue and red dots represent the z-scores of the viability and the cytotoxicity settings, 

respectively. 
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For both cell lines a set of immunoregulatory genes showing a higher impact on tumor cell rejection 

by FluT cells than the positive controls could be identified. For Ma-Mel-86a the best performing 

positive control SIK3 s1 occupied rank 96 of 4217 remaining genes while for Ma-Mel-86c the best 

performing positive control OR10H1 s1 occupied rank 337 of 4733 (Figure 20B). Among the best 

performing genes (hits), genes that were previously identified in another HTP screen in our group could 

be found or those that are known for their immune resistance phenotype such as Janus Kinase 2 (JAK2 

- rank 12 in Ma-Mel-86a) and CASP8 And FADD Like Apoptosis Regulator (CFLAR/FLIP - rank 1 in Ma-

Mel-86c), corroborating the validity and reliability of the outcome of the HTP screens. Taken together, 

the HTP screens identified novel putative immune resistance genes in melanoma that increased 

susceptibility to T cell-mediated tumor cell rejection stronger than previously established positive 

controls. 

 

Figure 20: Outcome of the high-throughput (HTP) RNAi screens. 
This figure extends Figure 19. (A) The mean of z-scores of both replicates of the viability setting were plotted 

against the cytotoxicity setting for library and control genes. Bold lines indicate a z-score of 0. Vertical faint lines 

indicate the threshold of the viability score for further analysis. Some control and candidate genes are 

highlighted. (B) Differential scores between viability and cytotoxicity scores were corrected by applying locally 

estimated scatterplot smoothing (LOESS). Library and control genes were filtered for viability thresholds in each 

HTP screen and ordered by their LOESS score. High values indicate cytotoxic influence on T cell-mediated 

rejection. Horizontal lines indicate a LOESS score of 0. Selected control and candidate genes are highlighted. 

 

Figure 13

0 1000 2000 3000 4000

-4

-2

0

2

4

6

LOESS ranking in  Ma-Mel-86c

Gene index

L
O

E
S

S
 s

c
o
re

0 1000 2000 3000 4000

-4

-2

0

2

4

6

LOESS ranking in  Ma-Mel-86a

Gene index

L
O

E
S

S
 s

c
o
re

MediumMedium

Scr2
Scr2

Scr4
Scr3

Scr4
Scr3SIK3 s11

SIK3 s1

TMCC3 & JAK2
CFLAR

SLC39A13

OR10H1 s5

OR10H1 s1

SLC39A13
PD-L1

0 5 10

0

5

10

z-scores in Ma-Mel-86a

Viability z-score

C
y
to

to
x
ic

it
y
 z

-s
c
o

re

0 5 10

0

5

10

z-scores in Ma-Mel-86c

Viability z-score

C
y
to

to
x
ic

it
y
 z

-s
c
o

re

Medium

Medium

PD-L1

Medium

Cell Death

SLC39A13

TMCC3

SLC39A13

OR10H1 s1SIK3 s1

PD-L1

Cell DeathTMCC3

A

B



65 
 

5.3.2 Design of a siRNA library for a secondary validation screen 

The primary screens made use of a siRNA library comprising 5202 genes in which each gene was 

targeted by a pool of four individual siRNAs. In order to exclude off-target effects as well as to validate 

the findings from the HTP screens, a secondary screen was performed. Here, hits with strong immune 

resistance phenotypes were selected. In the validation screens, each gene was targeted either by one 

individual siRNAs or with pool of 4 siRNAs (de-convolution of the siRNA pool). 

I selected hits with diverse effects to be included in the secondary screen library: genes that showed 

either an immune resistance phenotype in Ma-Mel-86a or in Ma-Mel-86c in the primary screens as 

well as common hits showing the effect in both cell lines. The z-score thresholds for viability effects for 

both cell lines stated in the previous chapter were applied and genes that had a LOESS score of above 

1,5 in Ma-Mel-86a but below 1 in Ma-Mel-86c was considered a Ma-Mel-86a specific hit and vice versa. 

This selection criterion resulted in 111 and 41 of Ma-Mel-86c and Ma-Mel-86a specific hits, 

respectively. Accordingly, the number of Ma-Mel-86c specific hits were reduced to 41 by selecting 

those with the highest LOESS score and/or with the highest score difference compared to Ma-Mel-86a 

(LOESSMa-Mel-86c – LOESSMa-Mel-86a). Common hits were defined to have a LOESS score above 1 in both cell 

lines with a sum of both scores above 2,5. Due to their relevance for this project, I also included MITF 

and PD-L1/CD274 in the library. Finally, a siRNA library comprising 174 genes was designed targeting 

hits that showed strong effects in Ma-Mel-86a and/or Ma-Mel-86c in the primary HTP screens (Figure 

21, Supplementary Table 1). 

 

Figure 21: Selection of library genes for a secondary validation screen. 
Scatter plot was created using the programming language R for statistical computing with the package “ggplot2”. 

LOESS scores derived from the primary high-throughput (HTP) screens in Ma-Mel-86a and Ma-Mel-86c were 

plotted against each other to select genes for a secondary validation screen in both cell lines. Vertical and 

horizontal faint lines indicate a LOESS score of 1. Viability thresholds were applied to each cell line to exclude 

genes that showed a high impact on tumor cell viability after knockdown. Red dots indicate common hits that 

displayed a strong immunomodulatory effect in both cell lines, Ma-Mel-86a and Ma-Mel-86c. Blue dots indicate 

Figure 14

LOESS score Ma-Mel-86a

LO
ES

S 
sc

o
re

 M
a-

M
el

-8
6

c

-5 50

-5

0

5



66 
 

Ma-Mel-86a specific hits with a LOESS score higher than 1,5 in Ma-Mel-86a and lower than 1 in Ma-Mel-86c. 

Green dots indicate Ma-Mel-86c specific hits. LOESS score had to be higher than 1,5 in Ma-Mel-86c and lower 

than 1 in Ma-Mel-86a. Altogether, 174 genes were selected to be tested in the validation screen (Supplementary 

table 1). 

 

5.3.3 Performance of the secondary validation screen 

The secondary screen was performed in a similar manner as the primary HTP screens, the format was 

changed from 384-well to 96-well plates due to a smaller library size. Scr2-4 were included as negative 

controls as well as Cell Death siRNA as a transfection control. SIK3 s1 and s11 and CAMK1D were used 

as positive controls in Ma-Mel-86a while OR10H1 s1, SIK3 s1 and Gal-3 were used as positive controls 

in Ma-Mel-86c (Figures 22&23). 

Subsequently, the analysis was performed as before with the R package ‘CellHTS2’. This was valuable 

to get a general overview of the performance of the controls and to assess the transformation of the 

luciferase units to z-scores (Figure 22). Here, Cell Death control worked well in both melanoma cell 

lines. For Ma-Mel-86a the best positive control was again SIK3 s1 for which a shift in the scatter plot is 

observed as blue dots represent the viability setting while the red ones the cytotoxicity setting. This 

shift is not visible for OR10H1 s1 or another control in Ma-Mel-86c. On the other hand, medium and 

Scr controls show a shift in the opposite direction.  
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Figure 22: Performance of the controls in the secondary validation high-throughput (HTP) RNAi screens. 
A siRNA library of 174 genes was used in the HTP screens. Additional indicated controls were included. As the 

primary HTP screens, validation screens were conducted with a viability and cytotoxicity setting as described in 

Figure 15. Analysis was conducted using the programming language R for statistical computing with the package 

‘CellHTS2’. Raw luciferase units (RLU) were normalized plate-wise and transformed into z-scores for each 

duplicate in the viability and cytotoxicity setting. Scatter plots show the z-scores of technical replicates of the 

controls for (A) Ma-Mel-86a and (B) Ma-Mel-86c. Blue dots represent z-scores of the viability setting while red 

dots represent z-scores of the cytotoxicity setting. 

 

Figure 15

Medium Scr2 Scr3 Scr4

Cell Death SIK3 s1 SIK3 s11 CAMK1D

z-score plate replicate 1

z-
sc

o
re

 p
la

te
re

p
lic

at
e

2

Ma-Mel-86a

Medium Scr2 Scr3 Scr4

Cell Death OR10H1 s1 Gal-3 SIK3 s1

z-score plate replicate 1

z-
sc

o
re

 p
la

te
re

p
lic

at
e

2

Ma-Mel-86c

A

B

• Viability setting • Cytotoxicity setting



68 
 

Additionally, raw luciferase units (RLU) were normalized to a Scr negative control in a plate-wise 

manner to directly compare the effects of the different siRNA treatments on the viability and 

cytotoxicity in Ma-Mel-86a and -86c for each gene. In order to select the most appropriate Scr control 

for each cell line, luciferase units of the medium condition were compared to the ones of the single 

Scr controls. Finally, in Ma-Mel-86a RLU for each gene were normalized to RLU of Scr4 while for Ma-

Mel-86c values were normalized to RLU of Scr3 as those Scr controls showed highest similarity to the 

medium condition (Figure 23). Normalized values of Cell Death siRNA reproduced findings of the 

CellHTS2 analysis. Additionally, downregulation of SIK3 by using siRNAs s1 and s11 improved T cell-

mediated killing of Ma-Mel-86a while targeting Gal-3 and OR10H1 showed a similar phenotype in Ma-

Mel-86c. 

To improve comparability, I fitted the z-score viability threshold from the primary screens to the 

normalized values in the secondary screens. Finally, the thresholds for Scr normalization were set to 

0,265 for Ma-Mel-86a and 0,772 for Ma-Mel-86c. In order to call a gene a validated hit, the following 

validation criteria were applied: the viability impact should be above the set thresholds and an 

immunomodulatory effect should be seen for the siRNA pool as well as at least two individual siRNAs 

of the same gene. An immunomodulatory effect was defined as a cytotoxicity/viability ratio (CV ratio) 

≤ 0,85, meaning additional 15 % more tumor cells died in the co-culture setting with FluT cells. 

Alternatively, if the CV ratio was above 0,85 a significant p-value between both settings was necessary, 

determined by an unpaired two-tailed students t-test. Finally, the phenotype should be reproduced in 

the same cell line as it was shown in the primary screen. For genes that showed an effect on tumor cell 

rejection by FluT cells in both cell lines, validation in one cell line was sufficient. 
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Figure 23: Performance of controls and selected genes in the secondary validation high-throughput (HTP) RNAi 
screens. 
After implementation of the HTP screens in Ma-Mel-86, raw luciferase units (RLU) for each gene were normalized 

to Scr4 negative control in Ma-Mel-86a and to Scr3 negative control in Ma-Mel-86c in a plate-wise manner. Bar 

plots show the normalized values in the viability (culture of melanoma cells in plain medium, black bars) and 

cytotoxicity (co-culture with FluT cells, red bars) settings for the controls as well as the selected genes CFLAR, 

TMCC3 and SLC39A13. Blots of library genes represent the different conditions using individual siRNAs or the 

pool of four siRNAs. Bars correspond to the mean of the duplicates + standard deviation. 
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From a total of 174 genes, the secondary screen validated 91 genes (53,2 %). Additionally, there were 

17 genes (9,9 %) that fulfilled the basic criteria but not in the melanoma cell line from which the hit 

originated according to the primary HTP screen. For Ma-Mel-86c more cell line-specific genes could be 

validated (59,7 % compared to 24,4 % in Ma-Mel-86a). From the common hits 18,4 % were validated 

in both cell lines while 69,4 % were validated in at least one of the cell lines. As already observed in the 

primary HTP screening, genes that are known to manipulate tumor cell resistance to immune cells like 

TNF Receptor Superfamily Member 6b (TNFRSF6B/DcR3) could also be validated by this secondary 

screen. The phenotype of CFLAR which was especially strong in Ma-Mel-86c was reproduced in the 

secondary screen yet due to a high viability impact it was not assigned as a validated hit. Figure 23 

shows the performance of CFLAR as well as two more selected genes in the secondary validation HTP 

screens as examples. In conclusion, the secondary screen validated the immune resistance phenotype 

of 91 genes to regulate T cell-mediated tumor cell rejection. 

 

5.4 Bioinformatic analyses reveal clusters of co-expressed immune resistance genes 

with inter-individual expression patterns 

Many patients do not respond to immunotherapies due to the fact that tumor cells have developed 

mechanisms to circumvent immune responses by using complementary proteins and pathways to 

those targeted by an immunotherapy [105]. This could be especially valid for resistant MITFlow 

melanomas. I hypothesized that immune resistance genes were co-regulated and in case one protein 

or pathway is affected by immunotherapy, another gene can be upregulated by the tumor cell to 

become resistant against apoptosis induced by immune cells. 

For this reason, different bioinformatic analyses were performed using the programming language R 

for statistical computing. The analyses were mainly performed with expression data of genes that were 

validated in the secondary HTP screens. Our group had previously performed six HTP screens in tumor 

cell lines of different entities: breast cancer, lung adenocarcinoma, pancreatic ductal adenocarcinoma 

(PDAC), melanoma, multiple myeloma and glioblastoma. Each screen revealed a list of validated 

immunoregulatory genes that were also included in the analyses. Finally, known immune checkpoint 

genes that are expressed on tumor cells as well as genes that were described to be positively or 

negatively correlating with MITF were added to the list as controls. In total 265 genes were included 

in the bioinformatic analyses. 

Publicly available RNA sequencing data sets were used as expression data input. For this thesis, the 

following data sets were of importance: bulk RNA-Seq data from Skin Cutaneous Melanoma (SKCM) 

samples of The Cancer Genome Atlas (TCGA) and healthy organ samples from the Genotype-Tissue 
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Expression (GTEx) project [175]. Furthermore, single cell RNA-Seq data from patient’s melanoma 

tumors from Jerby-Arnon et al. [152] and bulk RNA-Seq data from patient-derived melanoma cell lines 

from Wouters et al. [83] was used. The single cell data set (Jerby-Arnon et al.) provided an annotation 

file that labeled each cell to a specific cell type like ‘malignant’ while the cell line data set (Wouters et 

al.) annotated each cell line by their phenotype: melanocytic (MITFhigh), intermediate (MITFhigh), neural 

crest stem cell like (MITFlow) or mesenchymal (MITFlow). Additionally, bulk RNA-Seq data was available 

for Ma-Mel-86 [130]. Here raw sequencing data was kindly processed by our institute’s Next 

Generation Sequencing (NGS) core facility. Afterwards it was combined with the sequencing data of 

the other melanoma cell lines (Wouters et al.) and corrected for batch effects using ComBat-Seq to be 

able to analyze it as one data set (Supplementary Figure 1). 

 

5.4.1 Melanoma and healthy tissues upregulate different sets of immune resistance genes 

To get a first impression of the expression of the immune resistance genes, I was interested how they 

are expressed across different tissues (Figure 24). Gene expression in melanoma compared to a set of 

healthy organs was investigated, using TCGA data for melanoma and GTEx data for healthy samples. 

As the data originated from different projects and data sets, batch effects were expected. The 

University of California Santa Cruz (UCSC) developed the pipeline TOIL in which they processed the 

TCGA and GTEx data in a single analysis to remove any batch effect from the bioinformatics side [175]. 

Although technical batch effects were possible to remain, no further batch effect correction was 

performed to not overcorrect the data and lose biological information. Gene expression of the immune 

resistance genes from the HTP screens were tested against each other in melanoma (TCGA) and Skin, 

Colon, Kidney, Liver, Lung, Pancreas, Adrenal Gland, Heart and Blood (GTEx). Genes were ordered by 

significant overexpression in the different data sets. Analysis was performed by my colleague Leonard 

Bellersheim. 

The heatmap is shown in Figure 24. Every column represents a single gene while rows represent single 

samples. The coloured bar on the left side of the heatmap indicates the different tissues. The analysis 

showed that melanoma as well as all healthy organs have a set of immune resistance genes that are 

significantly upregulated. The first block of genes on the left represents genes which are upregulated 

in melanoma, among them MITF was present. Blood has a large set of genes overexpressed compared 

to the other entities, but also many other genes that are low expressed indicated by the blue color. 

The right half of the heatmap represents genes that are not uniquely overexpressed in a single entity. 

Still, some genes show higher expression in melanoma. In summary, melanoma and healthy tissues 

showed increased expression of a specific set of immune resistance genes. 
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Figure 24: Expression of Immune resistance (IR) genes in melanoma and different healthy tissues. 
Analysis was conducted by using the programming language R for statistical computing. Log2 transformed 

normalized count expression data from the pipeline TOIL from the University of California Santa Cruz (UCSC) was 

filtered for data of melanoma patients from TCGA and for healthy samples of skin, colon, kidney, liver, lung, 

pancreas, adrenal gland (AG), heart and blood from the GTEx project. Expression of each gene was tested against 

each other by applying a Mann-Whitney-U-Test always using two single data sets. Resulting p-values were 

adjusted for multiple testing and genes were ordered by their significance to be upregulated in the different data 

sets. Expression data was transformed into z-scores in a gene-wise manner and a heatmap was created using the 

R package ‘pheatmap’. Analysis was performed by my colleague Leonard Bellersheim. 

 

5.4.2 Immune resistance genes are co-expressed in clusters 

In order to check for co-expression of immune resistance genes, a Weighted Gene Co-expression 

Network Analysis (WGCNA) was performed using the R package ‘WGCNA’ (Figure 25). This analysis 

enables the identification of clusters of correlating genes that are defined as module eigengene (ME) 

[162]. MEs could further be correlated to each other or to marker genes and external traits. Selected 

parameters were dependent on the data set e.g., for TCGA data I decided to correlate the clusters to 

marker genes of melanoma plasticity like MITF, Melan-A (MLANA/MART-1), Tyrosinase (TYR) and SRY-

Box Transcription Factor 10 (SOX10) for the melanocytic MITFhigh phenotype, AXL Receptor Tyrosine 

Kinase (AXL) for the mesenchymal MITFlow phenotype or Nerve Growth Factor Receptor (NGFR) for the 

neural-crest stem cell like MITFlow phenotype. Additionally, I correlated the expression of the clusters 

to the sample type, representing if the sample was obtained from a primary or a metastatic melanoma. 

As this is a binary category, metastatic was labeled as 1 and primary as 0. Therefore, a positive 

correlation means higher expression in metastasis and a negative correlation higher expression in 

primary melanoma. WCGNA was conducted to identify a signed correlation network meaning that 

genes were only associated to the same cluster when they showed a high positive correlation and 

negatively correlating genes were attributed to different clusters. 
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WGCNA was conducted for all three data sets: TCGA, Jerby-Arnon et al. and Wouters et al. together 

with Ma-Mel-86. In all three data sets WGCNA was able to identify clusters of co-expressed genes 

(Figure 25). Dendrograms of the WGCNA represent the distribution and proportion of the identified 

clusters depicted by the colored bars at the bottom. In all three data sets MITF-related clusters could 

be identified of which MITF was part of. Additionally, the correlation heatmaps demonstrated 

negatively correlating modules to MITF and MITF clusters. 

In the TCGA data, MITF was attributed to the yellow module of the dendrogram (Figure 25A). The 

correlation heatmap confirmed the correlation of MITF and the yellow cluster and demonstrated that 

the yellow module was negatively correlating with the turquoise module (Figure 25B). Interestingly, 

the turquoise module contained both MITFlow markers AXL and NGFR as well as known 

immunoregulatory genes like CD274/PD-L1 and CFLAR. Additionally, the turquoise module showed 

positive correlation to the sample type, thus to metastatic melanoma. 

Due to low gene expression of many genes in single cell RNA-Seq data, correlations were more difficult 

to find in the Jerby-Arnon et al. data set. Here, I only focused on the 2018 annotated malignant cells 

and excluded other cell types of the tumor microenvironment. The dendrogram revealed that MITF 

was part of the turquoise module that showed positive correlation to all melanocytic marker genes in 

the correlation heatmap (Figure 25C&D). The brown module showed negative correlation to the MITF 

cluster which contained the marker gene NGFR. AXL together with CFLAR were not part of the 

turquoise but of the yellow module which didn’t show negative correlation to the MITF cluster.  

In the Wouters et al. data set combined with expression data of Ma-Mel-86, MITF was again part of 

the melanocytic-associated turquoise cluster in the dendrogram (Figure 25E). In the correlation 

heatmap the green module showed negative correlation to the MITF cluster and contained AXL which 

itself showed positive correlations to the pink, black and blue cluster (Figure 25F). The other MITFlow-

associated gene NGFR was not connected to any cluster. 

In conclusion, WGCNA in all data sets revealed co-expression clusters of immune resistance genes that 

in part, could be associated with positive or negative correlation to MITFhigh or MITFlow marker genes. 
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Figure 25: Weighted gene co-expression network analysis (WGCNA) in melanoma data sets. 
Analysis was conducted by using the programming language R for statistical computing. Used data sets: (A-B) 

Normalized counts expression data from Skin Cutaneous Melanoma (SKCM) samples from TCGA. (C-D) 

Transcripts per million (TPM) expression data from annotated malignant cells from Jerby-Arnon et al. (E-F) Batch 

effect corrected normalized counts expression data from Wouters et al. combined with normalized counts 

expression data of Ma-Mel-86a and Ma-Mel-86c. (A-F) Expression data of all data sets were log2 transformed 

Figure 18

AXL

NGFR

Type

SOX10

TYR

MLANA

MITF

A
X

L

N
G

FR

Ty
p

e

SO
X

10

TY
R

M
LA

N
A

M
IT

F

1

-1

0

C
o

rr
el

at
io

n

A B

AXL

PD-L1

TMCC3

NGFR

MITF

SLC39A13

Dendrogram - TCGA Correlation heatmap - TCGA

1

-1

0

C
o

rr
el

at
io

n

NGFR
SOX10

TYR
MITF

MLANA

AXL

A
X

L

M
LA

N
A

M
IT

F

TY
R

SO
X

10

N
G

FR

C D

AXL

PD-L1

TMCC3

NGFR

MITF

SLC39A13

Dendrogram - Jerby-Arnon et al. Correlation heatmap
Jerby-Arnon et al.

1

-1

0

C
o

rr
el

at
io

n

NGFR

AXL

SOX10

TYR

MITF

MLANA

A
X

L

M
LA

N
A

M
IT

F

TY
R

SO
X

10

N
G

FR

E F

AXL

PD-L1

TMCC3

NGFR

MITF SLC39A13

Dendrogram
Wouters et al. + Ma-Mel-86

Correlation heatmap
Wouters et al. + Ma-Mel-86



75 
 

and WGCNA was performed using the R package ‘WGCNA’. (A, C, E) Dendrogram representing co-expression 

clusters of correlating immune resistance (IR) genes depicted by different colors. The position of melanoma 

marker (MITF, NGFR, AXL) and selected IR genes (PD-L1, TMCC3, SLC39A13) in the dendrogram are highlighted. 

(B, D, F) Correlation heatmap representing the correlation of the identified clusters to each other as well as to 

the melanoma marker genes MITF, MLANA, TYR, SOX10, NGFR and AXL. Additionally, the TCGA data (B) includes 

the clinical trait “Type” in which positive correlations indicate higher expression in metastatic melanoma 

compared to primary melanoma and vice versa. 

 

5.4.3 Cluster expression is inter-individually heterogeneous 

As it was possible to identify clusters of co-expressed genes, I was interested how these expressions 

were distributed within the sample populations (Figure 26). To get an impression of that, a heatmap 

of the expression data was generated using the R package ‘pheatmap’ The genes were ordered as in 

the dendrogram as the columns of the heatmap depicted by the colored bar on top of the heatmap. 

Gene-wise standardization to z-scores was applied to see up- and downregulation of genes compared 

to the mean expression of each gene. Every single row was a sample, meaning a tumor sample (TCGA), 

a melanoma cell line (Wouters et al. and Ma-Mel-86) or a tumor cell (Jerby-Arnon et al.). Rows were 

either clustered by the pheatmap function or grouped by patient (single cells) or phenotype (cell lines) 

and ordered manually. 

Upon hierarchical clustering by the pheatmap function, the TCGA data showed that the clusters are 

heterogeneously expressed (Figure 26A). Groups of patients share similar expression patterns and can 

therefore be stratified into different cohorts. Genes that were associated to one cluster show mutual 

down- and upregulation and for some modules their relationship to each other is clearly visible as for 

example a negative correlation between the brown and the blue cluster. 

For the single cell data set of Jerby-Arnon et al. the tumor cells were grouped by the patients from 

which they originated, and patients were ordered by their mean MITF expression with MITFhigh patients 

being positioned at the top of the heatmap (Figure 26B). Parts of white coloring in the heatmap 

indicated that the immune resistance genes and clusters are in many cases not expressed in all cells. 

Some clusters were exclusively expressed in one or a few patients or cells. In general, the heatmap 

showed that the clusters are homogeneously expressed within a patient but show heterogeneous 

expression patterns among the different melanoma patients. The turquoise MITF cluster was 

expressed in many cells to different degrees. In one MITFlow patient the brown cluster that contained 

NGFR was upregulated which no other patient had expressed to comparable levels. 

In the Wouters et al. and Ma-Mel-86 data set the melanoma cell lines were grouped by their 

phenotype: melanocytic (MITFhigh), intermediate (MITFhigh), neural crest stem cell like (MITFlow) or 

mesenchymal (MITFlow). Similar to the melanoma cells in the Jerby-Arnon et al. dataset, some genes 

showed hardly any expression across all cell line samples (Figure 26 C). The turquoise MITF cluster is 



76 
 

higher expressed in the MITFhigh fraction of melanoma cell lines and the green cluster is upregulated in 

the MITFlow melanoma cell lines. 

Taken together, immune resistance genes and co-expression clusters showed inter-individual 

expression patterns in all three data sets. 

 
Figure 26: Differential expression patterns of immune resistance (IR) genes in melanoma data sets. 
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This figure extends Figure 25. Analysis was conducted by using the programming language R for statistical 

computing. Log2 expression data was transformed into z-scores in a gene-wise manner and genes were ordered 

by their position in the dendrogram of the respective data set. On top of the heatmaps, the colored bar 

represents clusters of the dendrogram previously identified by WGCNA (Figure 25). Heatmaps were created using 

the R package ‘pheatmap’ and MITF is highlighted.  (A) Heatmap of the TCGA data set. Samples were ordered by 

hierarchical clustering in order to group patients with similar expression patterns. (B) Heatmap of the Jerby-

Arnon et al. data set. Malignant cells were group by annotated patient ID (colored bar on the left side of the 

heatmap) and patients were ordered by their mean of the MITF expression. Patients with higher MITF expression 

are positioned at the top of the heatmap. (C) Heatmap of the Wouters et al. dataset combined with expression 

data of Ma-Mel-86. Melanoma cell lines were grouped by their annotated phenotype (colored bar on the left 

side of the heatmap) and groups were ordered by their MITF expression. MITFhigh cell lines are positioned at the 

top of the heatmap. (Phenotypes: Mel = melanocytic, Inter = intermediate, NC = neural-crest stem cell like, Mes 

= mesenchymal). 

 

5.4.4 Immune resistance gene expression can be correlated to MITF expression status 

As whole clusters could be attributed to low or high MITF expression, I investigated a general gene-

wise correlation between the immune resistance genes and MITF (Figure 27). For this purpose, 

melanoma cells of Jerby-Arnon et al. and melanoma cell lines of Wouters et al. together with Ma-Me-

86 were grouped into MITFlow and MITFhigh and a statistical test was applied to the expression data 

between both groups in a gene-wise manner with subsequent correction for multiple testing. Due to 

low expression for some genes, I assumed that the data was not normally distributed and applied a 

Mann-Whitney-U-Test. Genes were ordered by their adjusted p-value of the test in columns and 

vertical red lines indicate the significance threshold. 

Due to a high cell number, I chose a more stringent separation factor in the single cell data set of Jerby-

Arnon et al. (Figure 27A). The MITFlow group was represented by cells with a z-score below 0 for MITF, 

but also for MLANA and TYR while the MITFhigh fraction of cells had a z-score above 0 for all three genes 

to retrieve a clearer melanocytic cell population. From 2018 malignant cells 430 were attributed to the 

MITFlow
 group while 809 were categorized as MITFhigh. Numerous genes could be attributed to the 

MITFlow group with NGFR as the most significant gene (p = 7,0 e-41). In the MITFhigh group, TYR, MITF 

and MLANA were the most significant genes (p = 2,0 e-188 / 1,1 e-185 / 1,7 e-183, respectively), 

underlining the reliability of the test. In total, 48 genes were significantly upregulated in MITFlow 

melanoma cells while 89 showed significant upregulation in MITFhigh melanoma cells, interestingly 

among them CD274/PD-L1 could be found (p = 0,04). 

In the Wouters et al. dataset, the cells were grouped by their annotation in the publication (Figure 

27B). Melanocytic and intermediate annotated cell lines together with Ma-Mel-86c represented the 

MITFhigh group while mesenchymal and neural crest stem cell like annotated cell lines together with 

Ma-Mel-86a represented the MITFlow group. MITF was the gene with the highest significance in the 

MITFhigh group (p = 3,7 e-9) while AXL was the most significant one in the MITFlow group (p = 1,1 e-5). 
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In total, 21 genes showed significant upregulation in MITFlow melanoma cell lines while 44 genes were 

significantly upregulated in MITFhigh melanoma cell lines. 

In conclusion MITFlow and MITFhigh cells and cell lines showed significant upregulation of specific sets of 

immune resistance genes. 

 

Figure 27: Significant up- and downregulation of immune resistance (IR) genes with respect to MITF expression 
in melanoma data sets. 
This figure extends Figure 25. Analysis was conducted by using the programming language R for statistical 

computing. (A) Log2 expression data of Jerby-Arnon et al. was transformed into z-scores and malignant cells 

were divided into a MITFhigh group of cells with z-scores of MITF, MLANA and TYR > 0 and a MITFlow group of cells 

with z-scores of MITF, MLANA and TYR < 0. (B) Log2 expression data of Wouters et al. combined with expression 

data of Ma-Mel-86 was transformed into z-scores and melanoma cell lines were divided into the MITFhigh group 

of cell lines with the annotated phenotype “melanocytic” or “intermediate” or the MITFlow group when annotated 

“neural-crest stem cell like” or “mesenchymal”. (A-B) Gene expression in the MITFhigh and MITFlow group were 

tested against each other by applying a Mann-Whitney-U-Test in a gene-wise manner. The resulting p-values 

were corrected for multiple testing and genes were ordered by their adjusted p-values. Heatmaps were created 

for visualization using the R package ‘pheatmap’. Vertical red lines indicate the threshold of significant 

upregulation in the respective group (adjusted p < 0,05). Position of selected melanoma marker genes (MITF, 

NGFR, AXL) and IR genes (PD-L1, TMCC3, SLC39A13) are highlighted in the heatmap. 
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5.4.5 Patient-derived melanoma samples reveal MITFlow cell subset that shows upregulation of 

immune resistance genes 

One type of analysis that is widely used in the scientific community for single cell RNA-Seq analysis is 

Seurat [160]. With the help of cell marker genes, it identifies cell populations in data sets by comparing 

their expression profiles. The R package ‘Seurat’ together with ‘Harmony’ which eliminates patient-

specific batch effects were used on raw count data of the Jerby-Arnon et al. data set in order to identify 

malignant and MITFlow malignant cell subsets in melanoma patient samples (Figure 28&29). 

After conduction of quality control and harmony integration, 16 clusters were discovered (Figure 28A). 

A list of marker genes identified the malignant cell population in cluster 1, 5, 9 and 11 as well as T cells, 

B cells, NK cells, Macrophages, Endothelial cells, and cancer-associated fibroblasts (CAFs) (Figure 

28B&C). The two smallest clusters with unclear cell assignment were eliminated from further analysis. 

By applying a list of marker genes to differentiate between MITFlow and MITFhigh cells, one large MITFhigh 

(cluster 1) and three smaller MITFlow (cluster 5, 9, 11) malignant cell populations were identified as 

melanocytic markers such as MITF, TYR, MLANA and Premelanosome Protein (PMEL) were upregulated 

in cluster 1 (Figure 28B&D). By applying a function to identify marker genes of each cell type and 

overlaying the list of marker genes with the list of immune resistance genes identified by our HTP 

screens I was able to identify immune resistance genes for each cell type that were upregulated (Figure 

29A). Interestingly, the malignant MITFlow population still shared gene expression with the MITFhigh 

population but at the same time, upregulated another set of genes. This was not higher expressed in 

the MITFhigh population but interestingly in part in the CAF population. 
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Figure 28: Malignant MITFhigh and MITFlow cell subsets in patient-derived melanoma samples. 
Analysis was conducted by using the programming language R for statistical computing with the packages ‘Seurat’ 

and ‘harmony’. Raw count data from the Jerby-Arnon et al. data set was subjected to quality control followed by 

normalization and scaling of the data. Harmony integration removed patient-specific batch effects and cells were 

clustered by their expression profiles. (A) UMAP plot of 16 identified clusters of cells. (B) UMAP plot with 

relabeled cell populations after cell type identification and exclusion of clusters 14 and 15. (CAF = cancer-

associated fibroblasts, EC = endothelial cells, MΦ = macrophages). (C-D) Dot plots representing the expression 

patterns of marker genes to identify (C) melanoma cells among stromal cell populations and (D) subpopulations 

of MITFhigh and MITFlow cells within the melanoma cell fraction of clusters 1, 5, 9 and 11.  
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By checking for cluster-associated marker genes within the malignant cell subpopulation and 

overlaying it with the list of immune resistance genes, genes that are differentially expressed between 

the four malignant clusters were identified (Figure 29B). MITF, MLANA and TYR are among those from 

cluster 1, the MITFhigh cluster. Cluster 5 showed upregulation of several proteasomal subunit genes like 

Proteasome 26S Subunit, ATPase 1 (PSMC1), PSMC3, Proteasome 26S Subunit, Non-ATPase 1 (PSMD1), 

PSMD6 and PSMD13. Also, Heparin Binding Growth Factor (HDGF) is among them, which is associated 

to cancer cell transformation and metastasis.  

In summary, Seurat analysis revealed that immune resistance genes were differentially expressed 

between malignant cells and cells of the microenvironment as well as between the clusters of 

malignant cells. 

 

Figure 29: Overexpression of immune resistance (IR) genes in cell clusters of melanoma patients. 
This figure extends Figure 28. Analysis was conducted by using the programming language R for statistical 

computing. (A) Marker genes for each cell type were identified and genes were filtered for the IR genes. Heatmap 

represents expression of IR marker genes in the cell subsets (CAF = cancer-associated fibroblasts). (B) Marker 

genes for each cluster of malignant cells (cluster 1, 5, 9 and 11) were filtered for immune resistance genes. 

Heatmap represents IR marker genes in the malignant clusters. 
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5.5 Functional validation of immune resistance genes 

The HTP screens together with the bioinformatics aimed to identify novel immune resistance genes 

that showed an impact on tumor cell rejection by cytotoxic T cells, even in therapy resistant MITFlow 

melanomas. In order to finally understand the resistance mechanism, candidates for further functional 

validation were selected considering different parameters: 

• Strong immune resistance phenotype in the HTP screens, especially in Ma-Mel-86a (MITFlow) 

• Association to a MITFlow co-expression cluster 

• Negative correlation to MITF in gene expression data 

• Low recognition in literature with regard to cancer and immunology 

• Moderate to high expression levels in Ma-Mel-86, especially in Ma-Mel-86a (MITFlow) 

Validated hits from the HTP screens were filtered mainly for their recognition in literature to be 

included in functional analyses. Genes well known in cancer research with indications to or described 

resistance mechanisms were excluded. With regard to hits that were selected by their performance in 

the bioinformatic analyses, the genes had to be associated to MITFlow across multiple data sets. 

 

5.5.1 Primary functional validation of pre-selected immune resistance genes 

According to the selection parameters, a total of 17 genes were pre-selected for validation. I also 

included the control genes AXL, NGFR, CFLAR and HDGF which are either markers of MITFlow 

melanomas and/or genes that are known to play a role in cancer and immune resistance. Luciferase-

based cytotoxicity assays for each gene were performed as in the HTP screens to check their impact 

on immune resistance. Additionally, gene expression levels were measured by quantitative PCR. Table 

20 shows the summary of the performed experiments. 

Immune resistance phenotypes of hits validated from the HTP screens were accordingly confirmed in 

the assays (Table 20). However, the effects in Ma-Mel-86c were not as strong as in the screen (Figure 

30). Those genes that were added due to bioinformatic analyses such as Delta Like Canonical Notch 

Ligand 1 (DLL1) or Plexin A3 (PLXNA3) showed no or only weak immune resistance potential (Table 20). 

qPCR results demonstrated that many genes are expressed at low levels (Ct > 30). To narrow down the 

list of candidates for further functional analysis I selected hits with the strong effects and those which 

had a Ct value of less than 30, both conditions preferentially fulfilled in Ma-Mel-86a. Additionally, I 

took the gene’s recognition described in literature into account. Finally, the remaining genes were 

MOK Protein Kinase (MOK), Solute Carrier Family 39 Member 13 (SLC39A13), Transmembrane and 

Coiled-Coil Domain Family 3 (TMCC3) and Zinc Finger Protein 443 (ZNF443). Of note, the protein 

encoded by SLC39A13 is preferentially called ZIP13. For simplicity, I will stay with the name SLC39A13 
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in the upcoming sections for both, gene and protein name. Figure 30 shows the results of the kill assays 

for the remaining genes which show that several siRNAs of each gene affect the immunoregulatory 

potential of the melanoma cell. Additionally, the results for CFLAR and HDGF are displayed as control 

genes. 

Table 20: Summary of Luciferase-based kill assays and quantitative real-time PCR 

Gene Origin Effect in cytotoxicity assay Ct value in qPCR 

    Ma-Mel-86a Ma-Mel-86c Ma-Mel-86a Ma-Mel-86c 

GJC2 Screen     29,4 29,7 

MOK Screen     23,5 22,0 

ITGAX Screen     33,4 26,9 

SLC39A13 Screen     25,4 26,6 

SLC13A2 Screen     31,9 33,5 

TMCC3 Screen     27,5 28,0 

SPNS3 Screen     30,8 32,5 

ZNF443 Screen     29,1 35,2 

GRM6 Screen     31,5 34,1 

DLL1 Bioinformatics     30,8 30,6 

CDH24 Bioinformatics     30,4 32,1 

ELN Bioinformatics     31,7 30,6 

GCK Bioinformatics     31,0 32,2 

LRRN1 Bioinformatics     31,3 31,9 

TMEM132E Bioinformatics     32,8 32,2 

S1PR1 Bioinformatics     27,0 31,1 

PLXNA3 Bioinformatics     26,4 27,6 
      

AXL Bioinformatics     20,4 30,9 

NGFR Bioinformatics     30,8 27,2 

HDGF Bioinformatics     21,4 22,9 

CFLAR Screen     25,2 26,1 

Column “Origin” indicates if the gene was selected primarily due to its performance in the HTP screens or because 
of its MITFlow association in the bioinformatic analyses. Blue color in the columns “Effect in cytotoxicity assay” 
represents immune resistance phenotype in the luciferase-based cytotoxicity assays while grey color indicates 
that no effect was observed. Columns “Ct value in qPCR” list the Ct values that were determined by quantitative 
real-time PCR with blue font highlighting a Ct value below 30. Amelie Bärnreuther contributed to the generation 
of the results as a student under my co-supervision. 
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Figure 30: Performance of validated immune resistance (IR) genes in a de-convolution kill assay.   
Luciferase-based cytotoxicity assay to validate the immune resistance phenotype of the candidate genes TMCC3, 

SLC39A13, MOK and ZNF443 and re-test the effect of CFLAR and HDGF. Ma-Mel-86 HLA-A2+ Luc+ were 

transfected with individual or pooled siRNAs for 48 h. Melanoma cells were pulsed for 1 h and subsequently 

cultured in plain medium (viability setting) or co-culture with FluT cells (cytotoxicity setting) in an E:T ratio of 1:1 

for Ma-Mel-86a and 0,5:1 for Ma-Mel-86c. Cells were lysed, and remaining luciferase activity was measured by 

luminescence. Raw luciferase units (RLU) were normalized to RLU of Scr3. Bars represent the mean of three 

independent experiments + standard deviation. Amelie Bärnreuther contributed to the generation of the data 

as a student under my co-supervision. 

 

After confirming the immunoregulatory capacity for several siRNAs from the remaining candidate 

genes (Figure 30), qPCR was performed to check for the downregulation of target genes in Ma-Mel-86 

cells upon transfection with siRNA (Figure 31). Just like in the previous cytotoxicity assays, individual 

as well as the pool of siRNAs for each gene were used (Supplementary Figure 2). Taking the cytotoxicity 

assays and qPCR data together, a single siRNA condition was chosen for each gene that showed a low 

viability impact but a strong effect on the cytotoxicity as well as strong knockdown efficiency. Further 

functional testing of the genes was conducted with the pool of four siRNAs for TMCC3, MOK and 
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SLC39A13 and with siRNA #4 for ZNF443. Concerning the qPCR results with these siRNAs, expression 

of TMCC3, MOK, SLC39A13 and ZNF443 was reduced in Ma-Mel-86a on average by 92 %, 86 %, 95 % 

and 43 % while in Ma-Mel-86c expression was reduced in average by 73 %, 39 %, 77 % and 40 %, 

respectively (Figure 31A). Western blot results showed downregulation of TMCC3, SLC39A13 and MOK 

in Ma-Mel-86a, but hardly downregulation of ZNF443 (Figure 31B). In Ma-Mel-86c downregulation of 

MOK was demonstrated by western blot. TMCC3 and SLC39A13 protein expression was difficult to 

detect, despite moderate mRNA expression (Table 20). Contrarily, expression of ZNF443 was present, 

although mRNA expression was low (Ct = 35,2). However, protein knockdown efficiency of this gene 

was low both at mRNA and protein level. 

 

Figure 31: Knockdown efficiency of selected immune resistance (IR) genes. 
Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, SLC39A13 and MOK or 

ZNF443 s4 siRNA for 48 h. (A) Cells were lysed for RNA isolation followed by reverse transcription to cDNA. 

Quantitative real-time PCR was used to measure target gene expression. Expression of Actin-beta was measured 

as reference gene to normalize gene expression and values were normalized to Scr3. Bars represent the mean + 

standard deviation of three independent experiments. Significance between siRNA and Scr3 for each cell line was 

calculated by applying a one-tailed ratio paired t-test (*p<0,05, **p<0,01). (B) Cells were lysed, and total protein 

was extracted. Protein expression of target genes was measured by western blot. GAPDH expression was 

acquired as reference gene. Verena Babl contributed to the generation of the data as a Master`s student under 

my co-supervision. 

 

To further validate the immunomodulatory role of the hits that was observed in the luciferase-based 

cytotoxicity assay with FluT cells, another assay system was chosen. Instead of measuring the 

remaining cell viability by luciferase activity, a real-time cytotoxicity assay was performed. Upon co-

culture of Ma-Mel-86 HLA-A2+ Luc+ cells with FluT cells, the Incucyte® Cytotox Red Dye was added to 

measure tumor cell death. The Cytotox Dye enters cells with reduced cell membrane integrity and 
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binds to DNA. The GFP signal of the Luc+ cells was used to measure the confluency of the remaining 

cells to deduce the capacity of the tumor cells to continue proliferation. Every two hours green and 

red signal were detected in the Incucyte® instrument and the red signal was normalized to the green 

signal to measure tumor cell death in a time range up to 22-24 hours. The results of the real time 

cytotoxicity assay confirmed the phenotypes that were observed previously (Figure 32). siRNA 

transfection and knockdown of all four candidate genes caused increased tumor cell death by FluT cells 

in Ma-Mel-86a. While the effects were low for ZNF443 and SLC39A13, silencing of MOK and TMCC3 as 

well as the positive control CFLAR resulted in a stronger kill. In Ma-Mel-86c similar effects were 

observed (Figure 32). Downregulation of the positive control CFLAR as well as TMCC3 improved T cell-

mediated tumor cell kill whereas silencing of MOK, SLC39A13 and ZNF443 showed low to no effects on 

the immunoregulatory capacity of the Ma-Mel-86c cells. 

Taken together, the four immune resistance genes TMCC3, SLC39A13, MOK and ZNF443 showed strong 

immune resistance phenotypes and were therefore selected for more extensive functional analyses. 

 

Figure 32: Impact of immune resistance genes on FluT cell-mediated tumor cell rejection. 
Real time cytotoxicity assay to measure the impact of gene knockdown on the cytotoxicity of FluT cells. Ma-Mel-

86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, SLC39A13, MOK or CFLAR or 

ZNF443 s4 siRNA for 48 h. Melanoma cells were pulsed with flu peptide and subsequently cultured in medium or 

co-cultured with FluT cells at an effector to target ratio of 1:1 for Ma-Mel-86a and 0,5:1 for Ma-Mel-86c. 

Incucyte® Cytotox Red Dye was added to label dead cells and tumor cell death was measured every two hours 

for 22 h. The signal of the Red Area was normalized to the Green Area, representing the confluency of the tumor 

cells by detection of GFP. Representative data of two independent experiments. 

 

5.5.2 Immunoregulatory potential of candidate genes is independent of T cell specificity 

After performing cytotoxicity assays with FluT cells, immune resistance phenotypes of the four 

candidate genes were tested using melanoma specific MART-1 and TIL412 in the luciferase-based and 

the real-time cytotoxicity assays (Figure 33). As Figure 10 showed high resistance of Ma-Mel-86a 

against TIL412 and MART-1 T cells without prior pulsing with MART-1 peptide, Ma-Mel-86 HLA-A2+ 

Luc+ were pulsed with MART-1 peptide before co-culture with MART-1 T cells to normalize antigen 

Figure 25
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presentation between both melanoma cell lines. TIL412 were added without previous treatment to 

see if tumor cells can be sensitized to apoptosis in an antigen-unspecific manner. 

Similar to cytotoxicity assays using FluT cells, co-culture of Ma-Mel-86a with MART-1 T cells showed 

increased tumor cell lysis upon knockdown of candidate genes (Figure 33A&C). Although TIL412 are 

not reactive to Ma-Mel-86a in principle, knockdown of all candidates and CFLAR increased tumor cell 

death significantly in the luciferase-based kill assay. Similarly in Ma-Mel-86c, gene knockdown 

increased tumor cell lysis in co-culture experiments with MART-1 and TIL412 (Figure 33B&D). Here, co-

culture experiments with TIL412 showed stronger effects than in Ma-Mel-86a. In conclusion, the 

previously observed immune resistance phenotype of the candidate genes were confirmed in 

cytotoxicity assays with a different T cell co-culture system. 
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Figure 33: Impact of immune resistance genes on tumor cell rejection mediated by MART-1 T cells and TIL412. 
Cytotoxicity assays to measure the impact of gene knockdown on the cytotoxicity of MART-1 T cells and TIL412.  

Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, SLC39A13, MOK or CFLAR 

or ZNF443 s4 siRNA for 48 h. In cytotoxicity assays with MART-1 T cells, the melanoma cells were pulsed with 

MART-1 peptide for 1 h and subsequently cultured in plain medium (viability setting) or co-cultured with MART-

1 T cells (cytotoxicity setting) at an effector to target ratio of 1:1 for Ma-Mel-86a and 0,5:1 for Ma-Mel-86c. In 

experiments with TIL412, Ma-Mel-86 were not pulsed and cultured in plain medium (viability setting) or co-

cultured with TIL412 (cytotoxicity setting) at an effector to target ratio of 5:1 for Ma-Mel-86a and 2,5:1 for Ma-

Mel-86c. (A-B) Luciferase-based cytotoxicity assay with (A) Ma-Mel-86a and (B) Ma-Mel-86c. After co-culture of 

melanoma cells with T cells for 20 h, cells were lysed, and remaining luciferase activity was measured by 

luminescence. Raw luciferase units (RLU) were normalized to RLU of Scr3. Bars represent the mean + standard 
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deviation of three independent experiments. Significances between viability and cytotoxicity setting were 

calculated by applying a two-tailed paired t-test (*p<0,05, **p<0,01, ***p<0,001). (C-D) Real-time cytotoxicity 

assay with (C) Ma-Mel-86a and (D) Ma-Mel-86c. Upon co-culture of tumor cell and T cells Incucyte® Cytotox Red 

Dye was added to label dead cells and tumor cell death was measured every two hours for 24 h. The signal of the 

Red Area was normalized to the Green Area, representing the confluency of the tumor cells by detection of GFP. 

Representative data of two independent experiments. Verena Babl contributed to the generation of the data as 

a Master`s student under my co-supervision. 

 

5.5.3 Immune resistance genes show intrinsic protective effects in the tumor cells 

As immune resistance of tumor cells can be caused either by inhibiting T cell function or by prevention 

of tumor cell apoptosis, I aimed to investigate on which side the four candidate genes act. Hence, Ma-

Mel-86 HLA-A2+ Luc+ were treated with supernatant of polyclonally activated FluT cells in the 

cytotoxicity setting instead of co-cultured with cytotoxic T cells. The results showed that gene silencing 

of TMCC3, MOK, SLC39A13 and ZNF443 resulted in an increased cell death upon culture of tumor cells 

in supernatant (Figure 34). In the luciferase-based cytotoxicity assay this effect is stronger in Ma-Mal-

86a than in Ma-Mel-86c. In the real-time cytotoxicity assay for both cell lines the effect is strong for 

TMCC3 and the positive control CFLAR and weaker for the remaining three genes. Taken together, all 

genes showed intrinsic protective effects in Ma-Mel-86 against the treatment with T cell supernatant. 

 

Figure 34: Impact of immune resistance genes on supernatant-mediated tumor cell rejection. 
Cytotoxicity assays to measure the impact of gene knockdown on the cytotoxicity of supernatant of polyclonally 

activated FluT cells. Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, 

SLC39A13, MOK or CFLAR or ZNF443 s4 siRNA for 48 h. Subsequently, cells were cultured in plain medium 

(viability setting) or in supernatant of FluT cells that were polyclonally activated for 24 h (cytotoxicity setting). 

(A) Luciferase-based cytotoxicity assay with Ma-Mel-86a and Ma-Mel-86c. After treatment of melanoma cells 

Figure 27
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with supernatant for 20 h, cells were lysed, and remaining luciferase activity was measured by luminescence. 

Raw luciferase units (RLU) were normalized to RLU of Scr3. Bars represent the mean + standard deviation of three 

independent experiments. Significances between viability and cytotoxicity setting were calculated by applying a 

two-tailed paired t-test (*p<0,05, **p<0,01, ***p<0,001). (B) Real-time cytotoxicity assay with Ma-Mel-86a and 

Ma-Mel-86c. Upon treatment of tumor cells with supernatant Incucyte® Cytotox Red Dye was added to label 

dead cells and tumor cell death was measured every two hours for 24 h. The signal of the Red Area was 

normalized to the Green Area, representing the confluency of the tumor cells by detection of GFP. Representative 

data of two independent experiments. Verena Babl contributed to the generation of the data as a Master`s 

student under my co-supervision. 

 

5.5.4 Silencing of immune resistance genes sensitizes tumor cells to death receptor ligands 

Figure 14 shows primary resistance of Ma-Mel-86 to treatments with the death receptor ligands TRAIL, 

TNFα, FasL, LTα and LIGHT. In order to investigate if silencing of candidate genes sensitizes tumor cells 

to apoptosis induced by death receptor ligands, cytotoxicity assays were performed by treating Ma-

Mel-86 HLA-A2+ Luc+ with TRAIL, TNFα, FasL, LTα, LIGHT as well as IFNγ after gene knockdown. Figure 

35A shows exemplary results of the luciferase-based cytotoxicity assay in Ma-Mel-86a for TRAIL and 

IFNγ treatment. Knockdown of the genes sensitized tumor cells to TRAIL induced tumor cell death, 

with the weakest effect with SLC39A13 siRNA. On the other hand, SLC39A13 silencing increased 

apoptosis upon IFNγ treatment more than other genes such as TMCC3 and CFLAR. This was also 

observed in the real-time cytotoxicity assay measuring tumor cell death over a time of 48 h (Figure 35 

B). The whole set of results can be found in Supplementary Figures 3 and 4.  

 

Figure 35: Impact of immune resistance genes on tumor cell rejection mediated by TRAIL or IFNγ. 
Cytotoxicity assays to measure the impact of gene knockdown on the cytotoxicity of TRAIL or IFNγ treatment. 

Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, SLC39A13, MOK or CFLAR 

Figure 28
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or ZNF443 s4 siRNA for 48 h. Subsequently, cells were cultured in plain medium (viability setting) or treated with 

100 ng/ml recombinant TRAIL or IFNγ (cytotoxicity setting). (A) Luciferase-based cytotoxicity assay with Ma-Mel-

86a and Ma-Mel-86c. After treatment of melanoma cells with TRAIL or IFNγ for 20 h, cells were lysed, and 

remaining luciferase activity was measured by luminescence. Raw luciferase units (RLU) were normalized to RLU 

of Scr3. Bars represent the mean + standard deviation of three independent experiments. Significances between 

viability and cytotoxicity setting were calculated by applying a two-tailed paired t-test (*p<0,05, **p<0,01, 

***p<0,001, ns=not significant). (B) Real-time cytotoxicity assay with Ma-Mel-86a and Ma-Mel-86c. Upon 

treatment of tumor cells with TRAIL or IFNγ Incucyte® Cytotox Red Dye was added to label dead cells and tumor 

cell death was measured every two hours for 48 h. The signal of the Red Area was normalized to the Green Area, 

representing the confluency of the tumor cells by detection of GFP. Representative data of two independent 

experiments. Verena Babl contributed to the generation of the data as a Master`s student under my co-

supervision. 

 

In order to increase the comparability of the impact of gene knockdown on the different treatments, 

the ratio of cytotoxicity and viability setting (CV ratio) for each condition was determined. Thereby it 

was investigated to which treatments and putative pathways a gene can contribute to resistance. 

Generally, these resistance profiles were similar between Ma-Mel-86a and Ma-Mal-86c but as 

observed before, effects in Ma-Mel-86a were stronger than in Ma-Mel-86c, except for co-culture 

experiments with TIL412 (Figure 36). In general, gene silencing in the MITFhigh cell line Ma-Mel-86c did 

not sensitize the cells to treatment with FasL and LTα. TMCC3 knockdown increased susceptibility of 

tumor cell death to the death receptor ligands TNFα, TRAIL, FasL and LTα. Compared to the co-culture 

with FluT and MART-1 or treatment with supernatant of polyclonally activated FluT cells, tumor cell 

death was even increased when treated with TRAIL in Ma-Mal-86a (75 % vs. 60 %). There was no 

enhanced apoptosis of the cells after treatment with LIGHT or IFNγ. Similar results could be observed 

for MOK and ZNF443, however effects were generally weaker while IFNγ treatment showed an 

increase of tumor cell death of about 20 %. On the other hand, downregulation of SLC39A13 sensitized 

Ma-Mel-86a against IFNγ stronger compared to its impact on TNFα or TRAIL treatment. However, no 

single treatment was able to induce tumor cell death to a similar level as co-culture with T cells or 

treatment with supernatant (Figure 36). 

In summary, knockdown of immune resistance genes resulted in increased sensitivity of Ma-Mel-86 

towards cytotoxic ligands with differential protective effects of the genes towards single treatments. 
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Figure 36: Cytotoxicity profiles of the immune resistance (IR) genes. 
Summary of luciferase-based cytotoxicity assays. Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of 

four siRNAs for TMCC3, SLC39A13, MOK or CFLAR or ZNF443 s4 siRNA for 48 Melanoma cells were cultured in 

plain medium (viability setting) or co-cultured with different T cell sources, treated with 100 ng/ml of single 

cytotoxic ligands or the supernatant of polyclonally activated FluT cells (cytotoxicity setting) for 20 h as described 

in Figures 30, 33-35 and Supplementary Figure 3. Normalized values of the cytotoxicity setting were divided by 

values of the viability setting, resulting in the CV ratio. Bars represent the mean of the CV ratios + standard 

deviation of three independent experiments for all different treatments. Significances between viability and each 

cytotoxicity setting were calculated by applying a two-tailed ratio paired t-test (*p<0,05, **p<0,01, ***p<0,001, 

no asterisk means not significant). 

 

5.6 TMCC3 and SLC39A13 use different mechanisms to prevent tumor cell apoptosis 

TMCC3 and SLC39A13 were selected for further mode of action analysis in order to investigate how 

exactly they impact immune resistance in the MITFlow cell line Ma-Mel-86a. While TMCC3 

downregulation showed increased cell death upon TRAIL treatment, SLC39A13 knockdown increased 

the susceptibility to IFNγ the most. Therefore, I picked two genes that could impact different pathways 

in the tumor cells. Additionally, knockdown efficiency was strong on both, the mRNA and protein level 

in Ma-Mel-86a. Both genes could also be associated with MITFlow in bioinformatic analysis: TMCC3 was 

associated to the turquoise MITFlow gene cluster in the TCGA data as well as was part of the brown 

single cell cluster in the Jerby-Arnon et al. data set that was upregulated in a MITFlow patient (Figures 
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25&26). Additionally, TMCC3 and SLC39A13 were each higher expressed in one of the three MITFlow 

cell clusters in the Seurat analysis compared to the MITFhigh cell cluster (Supplementary Figure 5). Also, 

SLC39A13 was higher expressed in MITFlow cell lines compared to MITFhigh cell lines, although not 

significantly (Figure 27). 

 

5.6.1 The relationship between the expression of MITF and that of TMCC3 or SLC39A13 

In order to better understand if the expression of MITF and the two selected immune resistance genes 

influence each other in the MITFlow melanoma cell line Ma-Mel-86a I checked for the expression of 

TMCC3 and SLC39A13 after transfection of tumor cells with Scr3 or MITF siRNA (Figure 37A). The results 

showed that neither TMCC3 nor SLC39A13 expression was significantly affected by the downregulation 

of MITF. 

Furthermore, TMCC3 and SLC39A13 were silenced and alterations of the expression of MITF were 

investigated (Figure 37B). Here, results demonstrated that upon knockdown of TMCC3, MITF was 

induced significantly. In contrast, MITF did not show changes in expression upon SLC39A13 

downregulation. 

 

Figure 37: Relationship of gene expression between MITF and TMCC3 or SLC39A13. 
Quantitative real-time PCR to measure the gene expression of MITF, TMCC3 and SLC39A13. Ma-Mel-86a HLA-

A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for TMCC3, SLC39A13 or MITF for 48 h. 

Subsequently, cells were lysed for RNA isolation followed by reverse transcription to cDNA. Quantitative real-

time PCR was used to measure target gene expression. Expression of Actin-beta was measured to normalize gene 

expression and values were normalized to Scr3. Bars represent the mean + standard deviation of three 

independent experiments. Significance between siRNA and Scr3 was calculated by applying a two-tailed ratio 

paired t-test (*p<0,05, ns=not significant). (A) Expression of TMCC3 and SLC39A13 upon MITF knockdown. (B) 

Expression of MITF upon knockdown of TMCC3 and SLC39A13, respectively. 
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5.6.2 Supernatant of activated FluT cells induces TMCC3 expression 

I also investigated whether TMCC3 and SLC39A13 are upregulated as a resistance mechanism in 

response to cytotoxic ligands expressed by T cells to induce tumor cell apoptosis. For that reason, 

expression of the two genes was measured after treatment of Ma-Mel-86 with supernatant of 

polyclonally activated FluT cells, TNFα or IFNγ. Expression changes of MITF in response to these 

treatments was also investigated (Figure 38). 

The results demonstrated that TMCC3 expression was significantly increased by 2,5-fold in Ma-Mel-

86a upon treatment with the supernatant of polyclonally activated FluT cells while SLC39A13 induction 

was not significant (Figure 38A). TNFα treatment did not alter the expression of both genes while IFNγ 

treatment had no impact on the expression of TMCC3 and decreased SLC39A13 levels significantly by 

around 50 % (Figure 38B&C). MITF was downregulated significantly by 40 % in response to treatment 

with supernatant (Figure 38A). IFNγ treatment led to an insignificant decrease of MITF expression, 

while TNFα treatment didn’t change MITF expression (Figure 38B&C). 

 

Figure 38: Expression of TMCC3, SLC39A13 and MITF after various treatments of Ma-Mel-86a. 
Quantitative real-time PCR to measure the gene expression of MITF, TMCC3 and SLC39A13 in Ma-Mel-86a HLA-

A2+ Luc after 20 h of culture in plain medium or treatment with 100 ng/ml TNFα or IFNγ or supernatant of FluT 

cells that were polyclonally activated for 24 h. Subsequently, cells were lysed for RNA isolation followed by 

reverse transcription to cDNA. Quantitative real-time PCR was used to measure target gene expression. 
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Expression of Actin-beta was measured to normalize gene expression and values were normalized to those of 

cells that were cultured in plain medium. Bars represent the mean + standard deviation of (A) three or (B-C) two 

independent experiments. Significance between untreated and treated cells was calculated by applying a two-

tailed ratio paired t-test (*p<0,05, ns=not significant). (A) Expression of TMCC3, SLC39A13 and MITF upon 

treatment with supernatant. (B) Expression of TMCC3, SLC39A13 and MITF upon treatment with TNFα. (C) 

Expression of TMCC3, SLC39A13 and MITF upon treatment with IFNγ. 

 

5.6.3 Simultaneous knockdown of TMCC3 and SLC39A13 does not increase tumor cell rejection 

by FluT cells 

As a proportion of tumor cells survive after co-culture with T cells or treatment with cytotoxic ligands, 

I investigated whether combined knockdown of the genes could increase tumor cell lysis especially as 

the hypothesis indicated that TMCC3 and SLC39A13 could impact different signaling pathways (Figure 

39). Both genes were silenced simultaneously, and luciferase-based and real-time cytotoxicity assays 

were performed. The results showed that tumor cell death was not increased by combining TMCC3 

and SLC39A13 siRNAs, observed in both assay systems (Figure 39A&B). 

In order to exclude the possibility that only cells survived that were not affected by gene silencing of 

the genes, gene expression was measured by qPCR in cells cultured in plain medium and in remaining 

cells after the co-culture with FluT cells. The results demonstrated that gene knockdown of TMCC3 and 

SLC39A13 was present before and after co-culture (Figure 39C). 

 

Figure 39: Co-knockdown of TMCC3 and SLC39A13 in Ma-Mel-86a. 
Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for TMCC3 or SLC39A13 or 

TMCC3+SLC39A13 for 48 h. Melanoma cells were pulsed with flu peptide for 1 h and subsequently cultured in 

plain medium (viability setting) or co-cultured with FluT cells (cytotoxicity setting) at an effector to target ratio 
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of 1:1. (A) Luciferase-based cytotoxicity assay. After co-culture of melanoma cells with FluT cells for 20 h, cells 

were lysed, and remaining luciferase activity was measured by luminescence. Raw luciferase units (RLU) were 

normalized to RLU of Scr3. Bars represent the mean of technical replicates + standard deviation. (B) Real-time 

cytotoxicity assay. Upon co-culture of tumor cell and FluT cells Incucyte® Cytotox Red Dye was added to label 

dead cells and tumor cell death was measured every two hours for 48 h. The signal of the Red Area was 

normalized to the Green Area, representing the confluency of the tumor cells by detection of GFP. (C) 

Quantitative real-time PCR to measure the expression of TMCC3 and SLC39A13. After culture in plain medium or 

co-culture of melanoma cells with FluT cells for 20 h, cells were lysed for RNA isolation followed by reverse 

transcription to cDNA. Quantitative real-time PCR was used to measure target gene expression. Expression of 

Actin-beta was measured as reference gene to quantify gene expression and values were normalized to Scr3 in 

both, the viability and cytotoxicity setting. Bars represent the mean of technical replicates + standard deviation. 

Representative data of two independent experiments.  

 

5.6.4 Co-culture with FluT cells downregulate expression of receptors that are important for 

antigen expression as well as induction of apoptosis 

As simultaneous knockdown of TMCC3 and SLC39A13 did not increase tumor cell death compared to 

a single knockdown, it was further investigated whether surface expression of receptors that are 

involved in tumor cell death was reduced in Scr3 and TMCC3 and/or SLC39A13 silenced Ma-Mel-86a 

cells. After co-culture with FluT cells expression of DR5/TRAILR2, TNFR1, FAS, and IFNγR1 as well as the 

expression of HLA-A2 being responsible for flu peptide antigen presentation was analyzed by flow 

cytometry (Figure 40). To characterize receptor expression on live or apoptotic cells a live/dead marker 

was used. Zombie NIR dye enters dying cells and therefore separates the population of dying and living 

cells. Zombie NIR staining interestingly showed that among the fraction of living cells two 

subpopulations after FluT co-culture were present, mainly in TMCC3 silenced cells (Figure 40A). 

Receptor expression was differentially investigated in the Zombie NIRlow population (most viable cells) 

and the Zombie NIRmedium population. Figure 40B shows exemplary histograms of the flow cytometry 

analysis in which expression of DR5 and HLA-A2 is lower in the NIRlow fraction, especially in the TMCC3 

silenced cells. 
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Figure 40: Flow cytometry analysis after co-culture of Ma-Mel-86a with FluT cells. 
Ma-Mel-86a HLA-A2+ were transfected with Scr3 or a pool of four siRNAs for TMCC3 or SLC39A13 or 

TMCC3+SLC39A13 for 48 h. Melanoma cells were pulsed with flu peptide for 1 h and subsequently cultured in 

plain medium (viability setting) or co-cultured with FluT cells (cytotoxicity setting) at an effector to target ratio 

of 1:1 for 20 h. Subsequently, cells were stained with Zombie NIR as well as isotype or antigen-specific antibodies 

for DR5/TRAILR2, TNFR1, FAS, IFNγR1 and HLA-A2. Representative data of three independent experiments. (A) 

Dot plots representing the positivity of Zombie NIR in Ma-Mel-86a in order to identify the fraction of living cells. 

The upper lane shows plots for cells in the viability setting while the lower lane shows plots for cells in the 

cytotoxicity setting after co-culture with FluT cells. (B) Histogram plots of DR5 (upper lane) and HLA-A2 (lower 

lane) expression in all living cells (left), in cells with medium Zombie NIR positivity (center) and in cells with low 
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Zombie NIR positivity (right). One plot represents the histograms for the isotype of Scr3 treated cells (pink curve) 

as well as the staining with receptor-specific antibodies in all different siRNA conditions after co-culture of Ma-

Mel-86a with FluT cells. 

 

Flow cytometry analysis demonstrated that upon co-culture tumor cells downregulated the majority 

of the acquired receptors (Figure 41). Death receptors DR5/TRAILR2 and TNFR1 as well as IFNγR1 and 

HLA-A2 were lower expressed while expression of FAS was increased. Receptor downregulation was 

even more prominent in the Zombie NIRlow cell subpopulation, for example up to 80 % for IFNγR1 after 

co-culture. Here, TMCC3 silenced cells also lost their phenotype of FAS upregulation. Regarding the co-

knockdown, the expression levels of the receptors were between those of the single knockdowns in 

Ma-Mel-86a. 

Taken together, upon co-culture with FluT cells, Ma-Mel-86 decreased susceptibility to T cell-mediated 

rejection by downregulation of several receptors that are important for apoptosis induction and 

antigen presentation. 
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Figure 34
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Figure 41: Regulation of surface receptors after co-culture of Ma-Mel-86a with FluT cells. 
This figure extends Figure 40. Flow cytometry analysis was used to calculate the ΔMFI (MFI: mean fluorescence 

intensity using the geometric mean), representing the difference between the MFI of receptor-stained cells and 

the MFI of the respective isotype. ΔMFI was calculated for all acquired receptors DR5/TRAILR2, TNFR1, FAS, 

IFNγR1 and HLA-A2 in the viability and cytotoxicity setting for all living cells (left panel) and the cells with low 

Zombie NIR positivity (right panel). Bars represent the mean of ΔMFI + standard deviation of three independent 

experiments. Significances between viability and cytotoxicity setting were calculated by applying a one-tailed 

paired t-test (*p<0,05, **p<0,01, ***p<0,001, ****p<0,0001, ns = not significant). 

 

5.6.5 Downregulation of TMCC3 and SLC39A13 alter receptor expression per se 

In order to understand increased T cell-mediated tumor cell death after silencing of TMCC3 and 

SLC39A13, it was investigated if the downregulation of the two proteins alter the expression of surface 

receptors that are important for apoptosis of Ma-Mel-86a. In the context of the previous experiment, 

I also checked by flow cytometry analysis if the knockdown of TMCC3 and SLC39A13 altered the 

expression of DR5/TRAILR2, TNFR1, FAS, IFNγR1 and HLA-A2 per se (Figure 42). 

The results indicated that TMCC3 silencing did not change the expression of HLA-A2, IFNγR1, TNFR1 

and FAS (Figure 42A). Surface expression of DR5/TRAILR2 was increased, although not significantly. 

SLC39A13 knockdown on the other hand increased expression of DR5/TRAILR2, FAS and IFNγR1 

significantly. Expression of HLA-A2 was decreased with significance upon SLC39A13 silencing while 

TNFR1 expression was reduced insignificantly. Figure 43B shows exemplary histograms for the 

expression of DR5, IFNγR1 and HLA-A2 after knockdown of TMCC3 and SLC39A13. In conclusion, 

downregulation of TMCC3 or SLC39A13 altered the expression of receptors that are important for 

apoptosis induction and antigen presentation, per se. 
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Figure 42: Regulation of surface receptors upon knockdown of TMCC3 and SLC39A13. 
This figure extends Figure 40. Flow cytometry analysis was used to calculate the ΔMFI (MFI: mean fluorescence 

intensity using the geometric mean), representing the difference between the MFI of receptor-stained cells and 

the MFI of the respective isotype. ΔMFI was calculated for all acquired receptors DR5/TRAILR2, TNFR1, FAS, 

IFNγR1 and HLA-A2 in the viability setting for all living cells in Scr3 and single knockdowns of TMCC3 and 

SLC39A13. (A) Bars represent the mean of ΔMFI + standard deviation of three independent experiments. 

Significances between Scr3 and TMCC3 or SLC39A13 knockdown were calculated by applying a two-tailed paired 

t-test (*p<0,05, ns = not significant). (B) Histogram plots of DR5 (left panel), IFNγR1 (center panel) and HLA-A2 

(right panel) expression. One plot represents the histograms for the isotype of Scr3 treated cells (pink curve) as 

well as the staining with receptor-specific antibodies in all different siRNA conditions. Representative data of 

three independent experiments. 

 

5.6.6 Downregulation of TMCC3 and SLC39A13 sensitize Ma-Mel-86a to apoptosis by regulating 

the expression of caspases and BCL-2 

After demonstration of increased tumor cell lysis by various treatments upon knockdown of TMCC3 

and SLC39A13 and alteration of expression of receptors playing a role in antigen presentation and 

apoptosis induction, tumor cell intrinsic pathways were further investigated. Initially, the protein 
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expression of apoptotic proteins such as cleaved Caspase-3, Caspase-8 and Caspase-9 as well anti-

apoptotic protein B-cell lymphoma 2 (BCL-2) was measured by western blot (Figure 43). 

The results showed that downregulation of TMCC3 and SLC39A13 impacted the expression of caspases 

and BCL-2. TMCC3 knockdown didn’t affect expression of Caspase-9 but enhanced Caspase-3 and 

Caspase-8 expression and downregulated BCL-2. Cleavage of caspases, especially of caspase-8 could 

be detected upon TMCC3 silencing. SLC39A13 knockdown did not alter the expression of Caspase-3, 

but increased expression of Caspase-8 and Caspase-9. Furthermore, BCL-2 expression was 

downregulated. In contrast to TMCC3 silencing, cleavage of caspases is hardly present in the SLC39A13 

knockdown cells. In summary, downregulation of both immune resistance gene increased 

susceptibility towards tumor cell death by upregulation of caspases as well as downregulation of BCL-

2. 

 

Figure 43: Expression of apoptotic genes in TMCC3 or SLC39A13 proficient/deficient Ma-Mel-86a. 
Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for TMCC3 or SLC39A13 for 48 h. 

Cells were lysed, and total protein was extracted. Expression of TMCC3, SLC39A13, BCL-2 and activity of Caspase-

3/-8/-9 was detected by western blot. GAPDH expression was acquired as reference gene. Representative data 

of two independent experiments. Verena Babl contributed to the generation of the data as a Master`s student 

under my co-supervision. 
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5.6.7 TRAIL treatment increases caspase activity in TMCC3 silenced Ma-Mel-86a 

As TRAIL showed strong capacity in inducing tumor cell death after TMCC3 knockdown, the induction 

of the caspase activity and the expression of BCL-2 was monitored upon TRAIL treatment for 30 min, 

2 h and 4 h by western blot (Figure 44). The results demonstrated that caspases were cleaved upon 

TRAIL treatment preferentially in the TMCC3 silenced tumor cells. In Scr3 transfected cells Caspase-8 

as well as Caspase-3 cleavage was present in later time points of TRAIL treatment, but in the TMCC3 

knockdown cells this was highly increased. BCL-2 expression is not altered upon TRAIL treatment, and 

it remained to be lower expressed in the TMCC3 silenced cells. In summary, TRAIL treatment induced 

apoptosis preferentially in TMCC3 deficient Ma-Mel-86a. 

 

Figure 44: Expression of apoptotic genes in TMCC3 proficient/deficient Ma-Mel-86a upon TRAIL treatment. 
This figure extends Figure 43. Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for 

TMCC3 for 48 h. Subsequently, cells were treated with 100 ng/ml of recombinant TRAIL for 30 min, 2 h or 4 h or 

cultured in plain medium for 4 h. Cells were lysed, and total protein was extracted. Expression of TMCC3 (same 

as in Figure 43), BCL-2 and activity of Caspase-3/-8/-9 were detected by western blot. GAPDH expression was 

acquired as reference gene. Representative data of two independent experiments. Verena Babl contributed to 

the generation of the data as a Master`s student under my co-supervision. 

 

5.6.8 TMCC3 silencing activates Akt survival pathway 

TMCC3 was described to be able to regulate the activation of Protein kinase B (PKB/Akt). In breast 

cancer stem cells, it was shown that a downregulation of TMCC3 is concomitant with a lower 
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phosphorylation of AKT, therefore decreasing its activity [182]. Hence, the impact of TMCC3 

knockdown on survival and apoptosis-related downstream proteins of AKT was investigated upon 

TRAIL treatment (Figure 45). Related to the experiment mentioned in 5.6.7, I checked for the 

expression of AKT, phosphorylated AKT (pAKT) and the phosphorylation of target genes BCL2 

Associated Agonist Of Cell Death (pBAD), RELA Proto-Oncogene, NF-KB Subunit p65 (pRELA) as well as 

Tumor Protein P53 (p53) and X-Linked Inhibitor Of Apoptosis (XIAP). 

While expression of total AKT was not impacted by the knockdown of TMCC3 in Ma-Mel-86a, TRAIL 

treatment slightly decreased its expression after 4 h. In contrast to its reported impact on breast cancer 

cells, TMCC3 downregulation did not decrease the phosphorylation of AKT but instead increased it in 

Ma-Mel-86a. Like total AKT, pAKT expression was lower after 4 h of TRAIL treatment. Furthermore, a 

higher phosphorylation of RELA and BAD and an increased expression of p53 and XIAP can be observed 

in the TMCC3 silenced cells which is more prominent upon TRAIL treatment (Figure 45). Taken 

together, TMCC3 deficient Ma-Mel-86a increased pro-survival AKT signaling as well as expression of 

p53. 

 

Figure 45: Expression of AKT pathway-related genes in TMCC3 proficient/deficient Ma-Mel-86a without and 
with TRAIL treatment. 
Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for TMCC3 for 48 h. Subsequently, 

cells were treated with 100 ng/ml of recombinant TRAIL for 30 min, 2 h or 4 h or cultured in plain medium for 4 

h. Cells were lysed, and total protein was extracted. Expression of TMCC3 (same as in Figure 43/44), AKT, pAKT, 
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pBAD, pRELA, p53 and XIAP was detected by western blot. GAPDH expression was acquired as reference gene. 

The same GAPDH blots can be displayed more than one time due to detection of several proteins on the same 

membrane. Representative data of two independent experiments. Verena Babl contributed to the generation of 

the data as a Master`s student under my co-supervision. 

 

5.6.9 TMCC3 silencing results in perturbation of ER homeostasis 

As I observed contrary results to previously published data with regard to AKT phosphorylation and as 

survival signaling by AKT was increased in TMCC3 silenced Ma-Mel-86a, another mechanism had to be 

responsible for the increased tumor cell death. TMCC3 is an important protein for the tubular network 

of the endoplasmic reticulum (ER) by working together with atlastins to build three-way junctions 

[183]. Therefore, the expression of proteins regulated during ER stress was investigated, namely 

Binding-Immunoglobulin Protein (BiP), C/EBP homologous protein (CHOP), total and phosphorylated 

Inositol-Requiring Protein 1 (IRE1α), phosphorylated JUN N-Terminal Kinase (JNK) as well as the large 

fragment of CFLAR as downstream target of pJNK. As in the experiment in 5.6.7 and 5.6.8 protein 

expression was measured by western blot after knockdown of TMCC3 and upon treatment with TRAIL 

in Ma-Mel-86a (Figure 46). 

Results showed that the expression of BiP was neither affected by knockdown of TMCC3 nor by 

treatment with TRAIL. TMCC3 downregulation resulted in decreased CHOP expression compared to 

Scr3 but upon treatment with TRAIL expression levels became similar. TMCC3 knockdown did not alter 

expression of total IRE1α but induced phosphorylation of IRE1α as well as of JNK. TRAIL treatment 

enhanced levels of pIRE1α and stronger of pJNK, especially in the TMCC3 silenced cells. After 4 h of 

TRAIL treatment, phosphorylation of JNK was decreased. TMCC3 knockdown led to undetectable levels 

of the large fragment of CFLAR independent of TRAIL treatment. In the Scr3 treated cells, TRAIL 

treatment reduced CFLARL expression, but protein expression was still detectable (Figure 46). In 

conclusion, TMCC3 deficient Ma-Mel-86a induced ER stress which is enhanced upon treatment with 

TRAIL. 
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Figure 46: Expression of ER stress-related genes in TMCC3 proficient/deficient Ma-Mel-86a without and with 
TRAIL treatment. 
Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for TMCC3 for 48 h. Subsequently, 

cells were treated with 100 ng/ml of recombinant TRAIL for 30 min, 2 h or 4 h or cultured in plain medium for 4 

h. Cells were lysed, and total protein was extracted. Expression of TMCC3 (same as in Figure 44/45/46), BiP, 

CHOP, IRE1α, pIRE1α, pJNK and CFLARL was detected by western blot. GAPDH expression was acquired as 

reference gene. The same GAPDH blots can be displayed more than one time due to detection of several proteins 

on the same membrane. Representative data of two independent experiments. 

 

5.6.10 IFNγ treatment increases caspase activity in SLC39A13 silenced Ma-Mel-86a 

Upon SLC39A13 silencing, IFNγ was the cytotoxic ligand with the strongest phenotype in terms of cell 

death of Ma-Mel-86a. In order to investigate expression of apoptosis-related markers, cells were 

treated with IFNγ for 30 min, 4 h and 20 h. Expression and cleavage of Caspases-3/-8/-9 and BCL-2 

were subsequently measured by western blot (Figure 47). In SLC39A13 proficient Ma-Mel-86a no 

activation of Caspase-3/-8/-9 could be observed. Caspase cleavage of all three measured caspases 

occurred only in the SLC39A13 knockdown cells after 20 h of IFNγ treatment. BCL-2 expression 

remained to be downregulated in SLC39A13 silenced cells, only after 4 h of IFNγ treatment expression 

is slightly increased but downregulated again after 20 h. In Scr3 treated cells BCL-2 expression 
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remained unchanged in all conditions. In summary, only SLC39A13 deficient Ma-Mel-86a induced 

apoptosis after 20 h of treatment with IFNγ. 

 

Figure 47: Expression of apoptotic genes in SLC39A13 proficient/deficient Ma-Mel-86a upon IFNγ treatment. 
This figure extends Figure 43. Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for 

SLC39A13 for 48 h. Subsequently, cells were treated with 100 ng/ml of recombinant IFNγ for 30 min, 4 h or 20 h 

or cultured in plain medium for 20 h. Cells were lysed, and total protein was extracted. Expression of SLC39A13 

(same as in Figure 43), BCL-2 and Caspase-3/-8/-9 was detected by western blot. GAPDH expression was acquired 

as reference gene. Representative data of two independent experiments. 

 

5.6.11 SLC39A13 silencing shifts STAT1/STAT3 ratio to induce apoptosis 

SLC39A13 was described to be involved in activation of Src/FAK pathway which is associated with cell 

survival by activating among others the PI3K/AKT pathway or STAT3 signaling [184]. Therefore, 

expression and phosphorylation of AKT, STAT3 as well as STAT1 being downstream of IFNγ signaling 

was measured by western blot in Ma-Mel-86a equally treated as in 5.6.10 (Figure 48). 

The results demonstrated that expression of AKT was neither affected by knock-down of SLC39A13 nor 

IFNγ treatment of Ma-Mel-86. Phosphorylation of AKT was slightly increased in the SLC39A13 silenced 

cells, but IFNγ induced phosphorylation also in the Scr3 treated cells. After 20 h pAKT expression went 

down in both conditions. SLC39A13 knockdown cells increased total STAT1 protein expression. IFNγ 

treatment increased STAT1 and STAT3 expression in general with higher expression in the knockdown 
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cells. Baseline phosphorylation of STAT3 was higher in the SLC39A13 silenced cells but IFNγ treatment 

increased pSTAT3 in the Scr3 treated cells. However, after 20 h of treatment pSTAT3 levels were still 

increased in the knockdown cells. pSTAT1 was not present in both conditions without IFNγ treatment. 

IFNγ induced phosphorylation of STAT1 in Ma-Mel-86a but the level of pSTAT1 was higher in the 

SLC39A13 silenced cells after 20 h of treatment. Taken together, SLC39A13 deficient Ma-Mel-86a 

showed increased STAT1 signaling upon treatment with IFNγ. 

 

Figure 48: Expression of FAK/Src and IFNγR pathway-related genes in SLC39A13 proficient/deficient Ma-Mel-
86a without and with IFNγ treatment. 
Ma-Mel-86a HLA-A2+ Luc+ were transfected with Scr3 or a pool of four siRNAs for SLC39A13 for 48 h. 

Subsequently, cells were treated with 100 ng/ml of recombinant IFNγ for 30 min, 4 h or 20 h or cultured in plain 

medium for 20 h. Cells were lysed, and total protein was extracted. Expression of SLC39A13 (same as in Figure 

43/47), AKT, pAKT, STAT3, pSTAT3, STAT1 and pSTAT1 was detected by western blot. GAPDH expression was 

acquired as reference gene. The same GAPDH blots can be displayed more than one time due to detection of 

several proteins on the same membrane. Representative data of two independent experiments. 

 

5.6.12 Overexpression of TMCC3 decreases FluT cell-mediated tumor cell death 

As downregulation of TMCC3 and SLC39A13 resulted in an increased tumor cell death upon co-culture 

with FluT cells and other death-inducing treatments, I investigated if overexpression of these genes 
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leads to a protective effect (Figure 49). Stable transfection with an overexpression plasmid increased 

TMCC3 and SLC39A13 expression in Ma-Mel-86 HLA-A2+ Luc+ more than 200-fold on the mRNA level 

compared to an empty vector control (Figure 49A). Normalized to the empty vector control, the results 

of the luciferase-based cytotoxicity assay showed overexpression of TMCC3 and SLC39A13 resulted in 

increased raw luciferase values without treatment (Figure 49B). Upon co-culture with FluT cells this is 

enhanced for TMCC3 but not for SLC39A13. However, overexpression of TMCC3 decreased tumor cell 

death to 18 % compared to 35 % in the empty vector control when normalized to the untreated 

condition (Figure 49C). Here, SLC39A13 overexpression showed similar levels of tumor cell lysis as the 

empty vector control. In conclusion, overexpression of TMCC3 showed protective effects towards FluT 

cell-mediated lysis of Ma-Mel-86a. 

 

Figure 49: Overexpression of TMCC3 and SLC39A13 and their impact on T cell-mediated rejection. 
Ma-Mel-86a HLA-A2+ Luc+ were stably transfected with an empty vector or overexpression vector for TMCC3 

and SLC39A13. (A) Cells were lysed for RNA isolation which was reversely transcribed into cDNA. Gene expression 

of TMCC3 and SLC39A13 was measured by quantitative real-time PCR (qPCR). Expression of Actin-beta was 

measured as reference gene and used for normalization of TMCC3 and SLC39A13 in the qPCR, respectively. Gene 

expression was normalized to expression levels of cells transfected with an empty vector. Bars represent the 

mean of technical replicates + standard deviation. (B-C) Luciferase-based cytotoxicity assay to investigate the 

immunoregulatory effect of overexpression of TMCC3 and SLC39A13. Cells were cultured for 48 h in complete 

medium. Subsequently, cells were cultured in plain medium (viability setting) or co-cultured with FluT cells 

(cytotoxicity setting) in an E:T ratio of 1:1 for 20 h. Cells were lysed, and remaining luciferase activity was 

measured by luminescence. Raw luciferase units (RLU) were normalized to RLU of the empty vector cells (B) or 

to the viability setting (C). Bars represent the mean of three independent experiments + standard deviation. 
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6 Discussion 

 

6.1 MITF downregulation increases resistance of melanoma cells 

MITF is the key transcriptional factor of melanocytes and a marker of melanoma plasticity [71, 88]. A 

dedifferentiation of melanoma cells is concomitant with a more invasive and resistant phenotype. The 

cell line pair Ma-Mel-86 is derived from different lesions of the same melanoma patient and were 

reported to differ in their MITF expression [130]. In a first experiment I confirmed the phenotype of 

Ma-Mel-86a as MITFlow and Ma-Mel-86c as MITFhigh cell line. Co-culture experiments with melanoma 

specific tumor infiltrating lymphocytes (TILs) showed that only Ma-Mel-86c were efficiently killed by 

these T cells. Ma-Mel-86a were not targeted by TIL412 or MART-1 specific T cells, even in higher E:T 

ratios. These results confirmed the expression of typical melanoma differentiation antigens (MDA) 

such as MART-1 and gp100 in Ma-Mel-86c making them susceptible to TIL412 and MART-1 specific T 

cells [130]. Dedifferentiated MITFlow cells like Ma-Mel-86a lose MDAs and become resistant which 

often occurs during immunotherapy [185]. The authors of the original study of Ma-Mel-86 showed 

that both tumor cell lines induced the expansion of T cell clones with hardly any cross-reactivity [130]. 

For further experiments, it was therefore necessary to either increase the expression of antigens which 

TIL412 and MART-1 T cells can recognize or choose a melanoma-unspecific T cell system. Addition of 

MART-1 peptide resulted in lysis of Ma-Mel-86a upon co-culture with MART-1 TILs. However, the 

degree of tumor cell death was higher in the MITFhigh cell line Ma-Mel-86c. Co-culture of the cell lines 

with FluT cells after pulsing with flu peptide confirmed the increased resistance of the MITFlow cell line. 

After stable transfection, both cell lines highly expressed HLA-A2 which presented the A2-matched flu 

peptide to FluT cells generated from HLA-A2+ donors. However, HLA-A2 independent treatment of 

Ma-Mel-86 with supernatant of polyclonally activated FluT cells demonstrated a higher tumor cell lysis 

of Ma-Mel-86c. ELISA of the supernatant showed that the supernatant contained cytotoxic molecules 

like TNFα and IFNγ. Death receptor ligands such as TRAIL, FasL, LTα and LIGHT are expressed on the T 

cell surface and were detected by flow cytometry. Initially surface-expressed ligands are proteolytically 

cleaved from activated T cells [186]. Receptors of the ligands such as TNFR1, DR5 and FAS showed 

generally a higher expression in Ma-Mel-86a. Therefore, the T cell co-culture experiments and 

treatment with FluT supernatant underlines stronger cell intrinsic resistance mechanisms in the MITF 

low cell line. Despite receptor expression, treatment of Ma-Mel-86 with individual ligands showed a 

primary resistance to TRAIL, TNFα, FasL, LTα and LIGHT. Resistance of melanoma cells against death 

receptor ligands have been previously reported [187]. As described in 1.1.4 different mechanisms 

contribute to resistance like elevated pro-survival and anti-apoptotic signaling [28, 54]. Also, the 

soluble form of ligands like TRAIL and FasL show decreased cytotoxic potential [28, 186]. However, 
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synergistic activity of several death receptor ligands can improve apoptosis induction in target cells 

[188]. Furthermore, binding of several ligands to their cognate receptors on the tumor cells in close 

proximity could enhance receptor oligomerization for successful signal transduction [189]. Therefore, 

despite resistance to death receptor ligands in individual treatments, they might still be able to 

contribute to tumor cell lysis in treatment experiments with supernatant. Individual treatment of IFNγ 

induced tumor cell death in both melanoma cell lines which was more pronounced in Ma-Mel-86c. A 

similar degree of tumor cell lysis was achieved as treatment with supernatant. Reducing the cytotoxic 

effect of the supernatant to the properties of IFNγ would be short-sighted as I observed cell apoptosis 

mediated by IFNγ at concentrations above 1 ng/ml (data not shown) which was higher than in the 

supernatant. Besides IFNγ and death receptor ligands, the supernatant contains other cytotoxic 

molecules such as perforin and granzyme B whose expression have not been investigated.  

PD-L1 is upregulated on cancer cells in order to escape immune responses [190]. It is the ligand for PD-

1 which is expressed on T cells and ligand-receptor interaction results in inhibition of T cell activation 

and survival. The PD-1/PD-L1 axis has been the target of many antibody therapies inhibiting PD-1 

(Nivolumab/Pembrolizumab) or PD-L1 (Atezolizumab). In melanoma plasticity, higher expression of 

PD-L1 is more associated with low MITF expression and it has been described that MITF contributes to 

lysosomal degradation of PD-L1 [88, 191, 192]. This supports increased resistance of dedifferentiated 

melanoma cells against T cell-based therapies. The patient Ma-Mel-86 received different 

immunotherapies although no PD-1/PD-L1 treatment [130]. Both Ma-Mel-86 cell lines expressed high 

levels of PD-L1. The expression was higher in the MITFlow cell line Ma-Mel-86a which can explain why 

T cell-mediated killing was decreased in co-culture experiments with this cell line. Therefore, I 

investigated whether downregulation of PD-L1 would increase susceptibility to FluT cell-mediated 

tumor cell lysis. MITFlow cell line Ma-Mel-86a showed reduction of viability upon siRNA transfection 

but PD-L1 silencing did not further improve T cell cytotoxicity. To a certain degree, this was the case 

for the MITFhigh cell line Ma-Mel-86c. The increased resistance of Ma-Mel-86a could be due to 

additional proteins that inhibit T cell function. Tumor cells are able to express various molecules 

targeting different immune checkpoints to prevent antitumor immunity [193]. Alternatively, as 

expression of PD-L1 was initially higher in Ma-Mel-86a, downregulation to a degree that is achieved by 

siRNA treatment might not be sufficient to overcome PD-L1-mediated resistance. 

 

6.2 A high-throughput RNAi screen in melanoma 

Despite improved median overall survival in malignant melanoma patients since the advent of 

immunotherapy, especially by immune checkpoint inhibitors, patients still die from this disease due to 

primary or acquired therapy resistance [105]. Melanoma is highly plastic and phenotype switching of 



112 
 

differentiated melanoma cells with increased expression of antigens to a dedifferentiated and invasive 

state is common and associated with increased resistance to immunotherapy [88]. Within one tumor, 

different phenotypes coexist, and resistant clones are able to outgrow during immunotherapy [70]. 

Therefore, finding alternative targets for immunotherapy that increase activity of effector immune 

cells even against dedifferentiated, resistant tumor cells, are of great importance to further improve 

patient survival rates. 

 

6.2.1 Rationale and design 

In order to identify novel immune resistance genes in melanoma, a high-throughput (HTP) RNAi screen 

was performed. The original method of the RNAi screen was developed in our group by Dr. Nisit 

Khandelwal and resulted in the identification of several genes that tumor cells of different entities use 

to circumvent immune cell responses [143-145]. Interestingly, the lists of identified genes from the 

different screens showed small overlap, indicating tumor entity specificity of immune resistance 

mechanisms. The cell lines used in this project were derived from lesions of the same melanoma 

patient Ma-Mel-86 at different phases of the disease [130]. Among others, the cell lines showed 

mutations in BRAF, PTEN and TP53. The patient received several immunotherapies such as tumor 

lysate-loaded DC vaccine and IFNα but finally deceased after relapse. While Ma-Mel-86c showed a 

differentiated melanoma phenotype with high MITF expression, Ma-Mel-86a expressed low levels of 

MITF while the receptor tyrosine kinase AXL was upregulated. In first experiments, I demonstrated 

that the MITFlow cell line Ma-Mel-86a showed features of increased resistance, confirming the 

phenotype of dedifferentiated melanoma cells [88]. 

The HTP screens were performed in both cell lines to identify immune resistance genes that can 

mediate resistance in melanoma in general but also to investigate whether there are selective 

mechanisms in the different phenotypes. Due to the association to increased resistance, immune 

resistance genes showing an effect in the MITFlow cell line Ma-Mel-86a were of particular interest and 

importance. As the patient was HLA-A2 negative, the cell lines were stably transfected with HLA-A2 

and transduced with luciferase for eligibility of the screening approach. Afterwards, both cell lines 

expressed high levels of HLA-A2 and luciferase. Flu peptide specific cytotoxic T (FluT) cells were chosen 

as effector T cells in the screen. The protocol for the generation of FluT cells from PBMCs of HLA-A2+ 

donors was previously established in our group by Dr. Ayşe Menevşe. Pulsing of tumor cell lines with 

HLA-A2 matched flu peptide resulted in recognition of the target cells by the FluT cells and approved 

to be an effective assay system [144, 194]. Apart from adjustment of the effector to target ratio, the 

degree of tumor cell death could also be regulated by defining an optimal peptide concentration. For 

this project, the assay system was especially reasonable as typical melanoma differentiation antigens 
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such as MART-1 and gp100 targeted by tumor infiltrating lymphocytes (TILs) like TIL412 are 

downregulated upon dedifferentiation of melanoma hence making the MITFlow melanoma cell line Ma-

Mel-86a resistant to co-culture with such T cells. 

Since the first screen in our group more than a decade ago the used siRNA libraries were enlarged from 

520 to 5202 genes. The library used in this project comprised genes encoding for the whole surfaceome 

as well as kinases and genes involved in cell metabolism. Surface genes are of particular interest as 

they are more likely to directly interact with the T cells potentially modifying T cell function. 

Additionally, surface molecules are easier to target in a therapeutic approach as seen for the immune 

checkpoint molecule PD-L1 targeted by monoclonal antibodies. Kinases are important regulators of 

intrinsic cell signaling and in melanoma, frequent mutations result in increased MAPK signaling. Kinase 

inhibitors against BRAF or MEK are in use and show improved survival of melanoma patients. In our 

group both, surface molecules as well as kinases have been identified to mediate resistance to T cell-

mediated killing [143-145]. By enlarging the siRNA library to more than 5200 genes with additional 

functions it was possible to identify yet unknown resistance mechanisms, even in therapy resistant 

MITFlow melanoma cells. 

Since the advent of CRISPR in genetic manipulation, CRISPR screens are nowadays widely used as 

alternative to RNAi. However, there are several advantages to use RNAi over CRISPR. Complete loss of 

a target gene is not always favorable as knockout of genes with essential functions can be lethal for 

the cells [137]. Furthermore, CRISPR can introduce random mutations that don’t disrupt the open 

reading frame (ORF) and makes it difficult to interpret the resulting phenotype. Here, transient 

downregulation of transcriptional products is more straightforward. Finally, siRNA-based RNAi is faster 

as well as better represents the application of drugs which usually downregulate protein function 

instead of preventing transcription [137]. 

 

6.2.2 Optimization of the screening protocol 

In advance to the primary HTP screens, the setup of the cytotoxicity assay was optimized in terms of 

appropriate transfection and co-culture conditions as well as inclusion of positive and negative 

controls. In a transfection experiment with siRNAs targeting SIK3 and PD-L1, I showed that a 

transfection of 48 h resulted in a more reduced gene expression compared to 72 h. In co-culture 

experiments, FluT cells killed tumor cells only when cells were previously pulsed with flu peptide, 

validating the efficiency and reliability of the assay system. Increased concentration of flu peptide 

accordingly resulted in increased tumor cell lysis. Higher effector to target (E:T) ratios enhanced tumor 

cell death more in Ma-Mel-86c compared to Ma-Mel-86a. Overall, I chose a peptide concentration of 

0,01 µg/ml for both melanoma cell lines with an E:T ratio of 1:1 for Ma-Mel-86a and 0,5:1 for Ma-Mel-



114 
 

86c. This resulted on average in 40-50 % tumor cell lysis of Ma-Mel-86a and 60-80 % lysis of Ma-Mel-

86c, respectively. Degree of tumor cell death was also dependent on the expansion experiment in 

which FluT cells were generated. 

The selection of appropriate negative and positive controls was important to confirm the validity of 

the approach and to interpret the outcome of the screen [142]. Negative controls were siRNA 

sequences that do not target any gene. Additionally, effects of positive controls were normalized to 

sequence-independent siRNAs due to higher similarity between targeting and non-targeting siRNA 

settings than to a setting without any siRNA treatment (mock). For my cytotoxicity assay and screening 

approach I used positive control genes that are well established in the literature to have an impact on 

resistance as well as genes that have been identified in our group to show the same phenotype. 

Comparison of candidate genes to positive controls enabled me to assess the impact of novel immune 

resistance genes. Interestingly, differences between Ma-Mel-86a and Ma-Mel-86c were observed. 

While in Ma-Mel-86a, the kinase SIK3 showed a strong impact on T cell-mediated rejection of tumor 

cells, in Ma-Mel-86c this was the case for OR10H1. The kinase SIK3 was previously identified in a 

pancreatic cancer screen in our group having an impact on TNFα-mediated apoptosis [145]. Olfactory 

receptor OR10H1 playing a superior role in MITFhigh cell line Ma-Mel-86c was particularly interesting as 

OR10H1 was identified in a melanoma screen in our group in which the melanoma cell line M579 was 

used that showed expression of melanocytic markers similarly to Ma-Mel-86c [181]. The performance 

of positive controls therefore already indicated that different genes could mediate resistance in 

melanoma cells with different phenotypes. Finally, transfection controls that compromised cell 

viability were included such as siRNA targeting UBC or the ‘Cell Death’ siRNA cocktail. Transfection of 

Ma-Mel-86a resulted in complete loss of tumor cells while for Ma-Mel-86c, only 30-50 % of tumor cells 

died. Only upon co-culture with FluT cells the proportion of dead melanoma cells increased. 

Overall, Ma-Mel-86a showed higher response to transfection controls than Ma-Mel-86c. This was 

accompanied by general stronger viability effects upon transfection as well as increased effect sizes of 

immune resistance genes in cytotoxicity assays. Finally, as seen in later experiments, the knockdown 

efficiency of most target genes was higher in Ma-Mel-86a. Therefore, it is plausible that transfection 

efficiency was enhanced in the MITFlow cell line resulting in the observed phenotypes. MITF or the 

differentiation status of melanoma cells could impact the transfection efficiency. MITF is able to 

regulate the transcription of DICER1 encoding Dicer, an important nuclease that processes dsRNAs to 

siRNAs before RISC assembly [195, 196]. Although commercially available siRNA duplexes don’t require 

processing, increased Dicer expression could impact the amount of siRNA available for targeted gene 

knockdown. MITF-induced Dicer expression could also be concomitant with counterregulatory 

mechanisms to limit production of siRNAs. Furthermore, experiments investigating intracellular duplex 
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siRNA trafficking showed that siRNA-lipid complexes are not simply incorporated into the cell to be 

processed and integrated into the RISC. siRNA complexes can lose integrity by remaining in endosomal 

structures or accumulate in perinuclear structures or the nucleus [197]. MITF as key regulator in 

melanocytes can regulate hundreds of other genes e.g., genes involved in lysosome and endosome 

function [71]. Hence, differentiation status and differential gene expression might impact the 

distribution and availability of siRNAs for gene knockdown. Of note, the melanoma cell line M579 as 

well as another tested cell line with high MITF expression similarly showed decreased cell death upon 

transfection with UBC siRNA or the ‘Cell Death’ (data not shown) [181]. 

 

6.2.3 Performance of primary and validation screens 

HTP screens in Ma-Mel-86a and Ma-Mel-86c were performed in the viability setting in which siRNA 

transfected tumor cells were cultured in plain medium and in the cytotoxicity setting in which cells 

were co-cultured with FluT cells. Genes with an immune resistance phenotype ideally would not show 

an impact on the viability of the cells but would enhance T cell-mediated lysis compared to a non-

targeting siRNA control. As recommended, screens were conducted in technical duplicates to increase 

the reliability of observed effects [142]. 

In the primary screens, each gene was targeted by a pool of four non-overlapping siRNAs. In the 

subsequent analysis, the performance of control and library genes were scored, and the regressed 

differential score termed LOESS score was used to rank all genes. I was able to reproduce the 

phenotypes of the controls in previous cytotoxicity assays including the pattern of increased viability 

impacts as well as cytotoxicity effects in Ma-Mel-86a. Using the ‘Cell Death’ siRNA cocktail resulted in 

strong tumor cell death and SIK3 was the best performing positive control in Ma-Mel-86a. In the LOESS 

score ranking, it occupied rank 96 among the library genes while in Ma-Mel-86c, the best performing 

positive control OR10H1 ranked at position 337. Corroborating the reliability of the approach and 

outcome of the screens, genes that were previously identified in our group and those with known 

resistance phenotypes were among the best performing candidates. JAK2 occupied rank 12 in Ma-Mel-

86a and was also a hit in the M579 screen [181]. JAK2 is involved in pro-survival JAK2-STAT3 signaling 

that promotes expression of anti-apoptotic proteins like BCL-2 or immunosuppressive checkpoint 

molecules like PD-L1 [198]. CFLAR was the strongest hit in the Ma-Mel-86c screen. CFLAR is an anti-

apoptotic protein that shows structural similarities to caspase-8 [199]. In death receptor signaling, it 

binds to FADD in the DISC in order to prevent caspase-8 induction and activity. 

Despite various advantages of the use of siRNAs in RNAi screens, one concern of their use are off-target 

effects and concomitantly the production of false positive results. Off-target effects are sequence 

dependent or independent and can be assigned to three categories [137, 200, 201]. Due to partial 
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sequence complementarity, siRNAs bind to the 3’UTR of other mRNAs leading to their unintended 

degradation. Furthermore, siRNAs compete with endogenous miRNAs resulting in RISC saturation. 

Therefore, miRNAs are not able anymore to execute their function properly. Finally, both siRNAs as 

well as the delivery vehicles can activate Toll-like receptors of the target cells which induce 

inflammatory responses. It could be the combination of sequence dependence and independence 

together with the differential gene and miRNA expression profiles in MITFlow and MITFhigh melanoma 

cells that result in general stronger viability impacts in Ma-Mel-86a upon siRNA transfection. In order 

to validate the findings of the primary screens and to identify false positives, secondary screens were 

performed in which the siRNA pool was deconvoluted [142, 202]. This means, apart from using the 

pool of four siRNAs, each individual siRNA was used separately. I selected 174 genes to be tested in 

the validation screens that showed either strong effects in both cell lines or differential effects in Ma-

Mel-86a and Ma-Mel-86c. In order to define a gene as validated immune resistance gene, the pool and 

at least two single siRNAs had to increase tumor cell lysis by at least 15 % compared to a Scr control as 

described in 5.3.3. Another validation criterion comprised a viability threshold in Ma-Mel-86a of 0,265 

and in Ma-Mel-86c of 0,772. The threshold of 0,265 in Ma-Mel-86a was very low, meaning that more 

than 70 % of viability loss was in range. However, viability thresholds were adapted to LOESS score 

thresholds in the primary screens to increase comparability. 

Normalization of the controls reproduced their phenotype in previous cytotoxicity assays confirming 

that the implementation of the screen was generally successful. In contrast, Figure 22 shows the z-

score analysis of the controls which indicates that negative controls increase the viability upon co-

culture with FluT cells while positive controls don’t show an impact. The z-score of a gene represents 

its localization within a distribution. As I aimed to validate strong phenotypes from the primary screens 

that distribution is shifted. In the cytotoxicity setting, many genes decrease tumor cell viability, 

therefore increasing the z-scores of the negative controls. Overall, 91 of 174 library genes (53,2 %) 

were validated in the secondary screens. Furthermore, 17 genes (9,9 %) fulfilled the general criteria 

but in the other cell line as in the primary screen. Similar to the primary screen, genes that are known 

to mediate immune resistance like TNFRSF6B were validated, corroborating the reliability of the 

approach. TNFRSF6B/DcR3 is a decoy receptor that binds to death receptor ligands such as FasL and 

LIGHT to neutralize their function therefore preventing apoptosis of tumor cells [56]. Despite the 

validation of the majority of genes, the secondary screens at the same time identified false positive 

phenotypes in the primary screens, underlining this important step in advance of functional analysis 

of hits. 
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6.3 Selection of novel immune resistance genes for functional analyses 

6.3.1 Performance of bioinformatic analyses 

Transcriptome analysis by RNA-Seq has become a popular tool to study the biology of cancer [148]. 

Especially the advent of single cell RNA-Seq made it possible to define cancer heterogeneity and cell 

subsets with distinct transcriptional profiles. Using bulk and scRNA-Seq of patient-derived melanomas 

and melanoma cell lines lead to the discovery of marker genes and gene regulatory networks of specific 

phenotypes of melanoma plasticity as well as signatures associated with immune resistance and 

therapy response [83, 86, 123, 152]. 

Generally, differential gene expression (DGE) analysis of two or more conditions is applied to define 

sets of genes or functions that can be attributed to one condition [203]. Furthermore, Seurat analysis 

on scRNA-Seq data is used to define cell populations by measuring the differential expression of marker 

genes in identified cell clusters [160]. In DGE analysis, usually the expression of the whole genome is 

investigated. In contrast, our group has validated more than 200 genes that are able to regulate T cell-

mediated rejection of tumor cells in a tumor entity-specific context. This is an enormous advantage as 

we can selectively investigate DGE of immune resistance (IR) genes in various data sets. For the 

analyses in this project, I focused on bulk and scRNA-Seq data from human melanomas and patient-

derived melanoma cell lines to investigate individual co-expression patterns and associations of gene 

expression with the MITF status. As a decrease of MITF is associated with invasion and immunotherapy 

resistance [88], it was particularly interesting to identify IR genes that are upregulated in MITFlow, 

potentially contributing to this melanoma phenotype. The screens in Ma-Mel-86 identified 91 genes 

that regulated T cell-mediated rejection of tumor cells. For the bioinformatic analyses I also included 

the 17 genes that showed an impact in the other melanoma cell line as in the primary screens. The 

library of the validation screen was designed by applying thresholds of the LOESS scores and therefore 

categorizing the genes into common and cell line-specific hits. Cell line specificity did not exclude the 

possibility that a gene showed an impact on cytotoxicity in the other cell line but rather that the gene 

could not reach the LOESS score threshold. Hence, effects of some genes in the secondary screen were 

expected and therefore, including them in the bioinformatic analyses was appropriate. Furthermore, I 

included validated genes that were previously identified by other HTP screens in our group. Thereby, I 

was able to investigate their correlation patterns to melanoma-specific hits and MITF. Additionally, 

genes with a strong MITFlow association were eligible for re-evaluation in functional assays as they 

potentially failed to be included in the secondary library due to LOESS score thresholds or off-target 

effects in the primary screen. 

By using WGCNA I was able to identify co-expression clusters of IR genes. Analyses of bulk RNA-Seq 

data revealed larger clusters with stronger correlation patterns. This is expectable due to generally 
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higher coverage of genes as many cell types contribute to the averaged gene expression data in one 

sample while in scRNA-Seq data cell subsets are defined by differential gene expression with 

occurrence of a higher number of zero read counts [204]. In all data sets I was able to identify a MITF-

related cluster. Part of the same cluster were also genes that are known to be upregulated by MITF 

such as MLANA, TYR and CEACAM1 which were added to the analyses as controls. Being able to 

reconstruct their co-expression in dendrograms and correlation heatmaps confirmed WGCNA to be an 

appropriate method of choice and increased on the other hand the reliability of negatively correlating 

clusters and genes to MITF. In every data set used for WGCNA clusters were identified that showed 

negative correlation to the MITF cluster and MITF itself. This was more prominent in the bulk RNA-Seq 

data due to the previously mentioned zero counts in scRNA-Seq data which impedes high correlations. 

In the bulk TCGA and melanoma cell line data the clusters that clearly anticorrelated with MITF 

contained the gene AXL. AXL is a receptor tyrosine kinase that is a marker for mesenchymal MITFlow 

melanomas [88]. Additionally, it was previously described that on the bulk level melanomas can be 

categorized into MITFhigh and AXLhigh while this is not the case for the single cell level [70]. Hence, my 

analyses were able to reconstruct these phenotypes. The only cluster that was negatively correlating 

with MITF in the scRNA-Seq data set of Jerby-Arnon et al. did not contain AXL but instead NGFR which 

is a marker gene of neural crest stem cell (NCSC)-like MITFlow melanomas [88]. According to single 

expression data from the Human Protein Atlas, NGFR as well as other genes from the same cluster 

such as TMCC3, CDH24 and LRRN1 are more associated to neuronal and glial cells [205, 206]. 

Interestingly, the publication of the TCGA network described as well that the identified MITF-low 

cluster was enriched with genes associated to the nervous system and neuronal development [149]. 

By separation of the single cells in MITFlow and MITFhigh cells and performing statistical tests between 

both groups, NGFR was identified as the most significant gene upregulated in the MITFlow population. 

In total, 48 genes showed significance in this population while MITF and MITF-regulated genes were 

significantly upregulated in the MITFhigh population, underlining the rationale of the analyses. Similar 

results were observed in the RNA-Seq data of the patient-derived melanoma cell lines in which 21 

genes showed significant upregulation in MITFlow cell lines with AXL showing the highest significance. 

Heatmaps displayed in Figure 26 show expression patterns between melanoma patients and 

melanoma cells. Hierarchical clustering of TCGA samples indicated that the gene and also the cluster 

expression is heterogeneous between patients and would allow to stratify the patients into cohorts 

(Figure 26A). Correlations between the clusters are visually apparent as for example the heatmap 

shows a clear negative correlation between the brown and the blue cluster. The heatmap of the scRNA-

Seq data confirms heterogeneous expression of IR gene clusters between patients after grouping of 

cells from the same patient (Figure 26B). On the other hand, the expression of a cluster within a patient 

is rather homogeneous. As previously mentioned, scRNA-Seq data features higher number of zero read 



119 
 

counts [204] which is also represented in the heatmap by white coloring. Clusters like the brown one 

show mainly expression in one patient and in general some clusters show expression only in a few 

patients or even cells while other clusters like the yellow, turquoise and blue ones are expressed in 

more patients but with varying degree. The inter-individual differences of IR gene expression can 

underline the meaningfulness of personalized or precision medicine in which therapies are tailor-made 

for each patient depending on the profile of each tumor [207]. 

The Seurat analysis of the scRNA-Seq data set was performed to identify cell populations of patient-

derived melanoma samples with a focus on subsets of malignant cells and their expression of IR genes, 

independent of individual expression patterns. Patient-specific batch effects were therefore removed 

by using harmony integration. By applying a list of cell type signature genes, I was able to assign cell 

types to the identified clusters. In a next step, I differentiated between MITFhigh and MITFlow 

populations within the four malignant cell clusters. Cluster 1 was identified as one large MITFhigh cluster 

as MITF and melanocytic genes were identified as marker genes. Hence, clusters 5, 9 and 11 were 

identified as MITFlow cell populations. Seurat analysis enabled the determination of marker genes of 

each cell type. The resulting list was filtered for IR genes and displayed two interesting features. First, 

malignant cells as well as cells of the microenvironment upregulated a specific set of IR genes. Second, 

the MITFlow cells showed higher expression of two sets of IR genes. On the one hand they still expressed 

genes of the MITFhigh cluster although to a lower extent. Considering that MITFlow cells still originate 

from melanocytes, expression of MITFhigh marker genes compared to stromal cells was plausible. On 

the other hand, MITFlow cells upregulated a set of IR genes that were not expressed in the MITFhigh 

population. In contrast, it was rather expressed by cancer-associated fibroblasts (CAFs). In a tumor, 

CAFs contribute to an immunosuppressive environment by the secretion of IL-6 and TGFβ and are 

associated with remodeling of the extracellular matrix, invasion and modulation of therapy response 

[208]. These features overlap with those of MITFlow melanoma cells [87, 88]. Phenotype switching of 

melanoma cells have also been described in the context of transdifferentiation in which cells can 

convert into a CAF-like or endothelial-like phenotype [87, 209]. Also, neural differentiation has long 

been observed in melanoma [210]. These events are associated with melanoma progression and might 

be induced during therapy to establish resistance. The expression of IR genes in the cell subsets 

underline the trajectories from differentiation via dedifferentiation to transdifferentiation. 

Identification of marker genes between the malignant clusters similarly showed cluster-specific IR gene 

features. While in the MITFhigh cluster MITF and melanocytic genes are upregulated, others take over 

in the MITFlow population. Cluster 5 for example shows increased expression of HDGF, a growth factor 

which was shown to play a role in cell transformation and metastasis [211]. HDGF stimulated pro-

survival pathways such as MAPK or PI3K and the production of HDGF itself as well as factors like VEGF 

by binding to genomic DNA [212].  Cluster 11 showed upregulation of PRDX4 which is often 
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overexpressed in cancer and is described to promote therapy resistance and protection of cell 

homeostasis by regulating ROS metabolism [213]. 

By investigating the differential expression of IR genes between malignant melanoma and a set of 

healthy tissues I similarly could identify sets of genes that were significantly upregulated in single 

entities. Interestingly, some genes that showed higher expression in melanoma overlapped with 

marker genes of MITFhigh and MITFlow melanoma cells from the Seurat analysis including MITF and MOK. 

On the one hand, melanoma selective genes appear to be more biased towards general melanoma-

associated genes like MITF making it difficult to differentiate between MITFhigh and MITFlow. On the 

other hand, scRNA-Seq data is successfully able to reproduce observations of bulk RNA-Seq data 

despite the presence of other cell types in bulk samples. A large set of IR genes was upregulated in 

blood samples. Blood samples are comprised of hematopoietic stem/progenitor cells and 

differentiated lymphocytes, myeloid cells and erythrocytes [214]. Various blood cell types express a 

low number of different genes. In relative terms this results in a higher number of very high and very 

low expressed genes which is represented by the intense coloring of the genes in the blood samples in 

the heatmap. 

Despite increased understanding of melanoma biology due to bulk and single cell transcriptomics, 

many mechanisms of melanoma resistance to targeted and immunotherapy remain unclear or at least 

incomplete. New technologies and more studies on therapy-matched patient samples are necessary 

to increase the resolution of the complexity of melanoma and therapy resistance. Investigating the 

expression of validated immune resistance genes improves the interpretation but a drawback is the 

limited sequencing depth that is currently possible in single cells. Comprehension of IR gene expression 

by epigenetic mechanisms as well as posttranslational activity of IR proteins will be complemented by 

broad multiomics studies. 

 

6.3.2 Hit selection and refinement  

The HTP screens identified a set of strong immune resistance genes eligible for functional analysis. 

Bioinformatic analyses were performed to further select validated IR genes that showed strong 

association to a low expression of MITF, therefore putatively contributing to melanoma 

dedifferentiation and therapy resistance. These features together with a low profile in literature 

resulted in a pre-selection of 17 genes to re-evaluate their impact on T cell-mediated rejection in Ma-

Mel-86 in cytotoxicity assays. 

As expected, luciferase-based cytotoxicity assays confirmed the immune resistance phenotype of 

those genes that were identified in the Ma-Mel-86 screen. However, those genes that were primarily 
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selected due to an association to a low MITF expression in the bioinformatic analyses, did not or hardly 

increased T cell-mediated rejection upon knockdown. High impacts of these genes were less probable 

as otherwise these genes would have performed well in the primary screens. On the other side, off-

target effects of the individual siRNAs could have prevented immune resistance phenotypes of the 

pool in the primary screens. Therefore, re-evaluation of genes identified by bioinformatic analyses was 

reasonable. Low effects of these genes could also be due to dependence on the cell line or tumor 

entity. Bioinformatic analyses showed inter-individual differences in the gene expression of IR genes 

pointing to selective effects in cell lines. qPCR analyses of the genes mostly confirmed higher 

expression in the MITFlow cell line Ma-Mel-86a, but gene expression was in general low for various 

genes (Ct value above 30).  Low expression of target genes could therefore result in low impacts on T 

cell-mediated rejection. At the same time, complementary immune resistance mechanisms could 

easily fill in upon downregulation. Alternatively, the identification of these IR genes proposes novel 

biomarkers of resistant MITFlow melanomas that facilitate the interpretation of the disease but failed 

to show biological impact, at least in Ma-Mel-86a. In general, omics studies discover many potential 

biomarkers with only a few that survive pre-clinical and clinical validation [215].  

Finally, I selected TMCC3, MOK, SLC39A13 and ZNF443 for further functional analyses due to their 

higher mRNA expression levels and their performance in the cytotoxicity assays as well as their low 

recognition in the literature. Additionally, some genes showed upregulation in MITFlow (TMCC3, 

SLC39A13, ZNF443) or were selectively upregulated in melanoma compared to healthy tissues (MOK – 

not indicated in heatmap). For each gene, I selected a single siRNA condition (pooled or individual 

siRNAs) that showed low to moderate viability effects but enhanced cytotoxic potential of T cells as 

well as reasonable knockdown efficiencies. Detection of knockdown on the protein level was difficult 

due to the availability of antibodies as the genes were not yet much of interest in research. While 

knockdown of TMCC3, SLC39A13 and MOK was observed in Ma-Mel-86a, this was only the case for 

MOK in Ma-Mel-86c. Protein expression of TMCC3 and SLC39A13 was very low in the MITFhigh cell line 

Ma-Mel-86c. This was especially surprising for SLC39A13 as mRNA expression was reasonably high. 

The Human Protein Atlas describes several splice variants of SLC39A13 that could result in proteins 

with different molecular size than the one predicted to be detected by the antibody [206]. Different 

isoforms could be apparent in MITFhigh and MITFlow cell lines. Furthermore, it is possible that mRNA and 

protein expression show only limited correlation [216]. This is due to the regulation of transcription, 

RNA degradation, translation and protein degradation [217]. This would also contribute to the contrary 

expression on mRNA and protein level of ZNF443 in both cell lines. Despite higher mRNA expression in 

Ma-Mel-86a, the protein expression in both cell lines is comparable. Upon siRNA transfection, mRNA 

levels drop by 40 % with hardly any changes on the protein level. 
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The effects observed in the luciferase-based cytotoxicity assays were further confirmed in real-time 

cytotoxicity assays which measured the degree of dying cells upon co-culture with cytotoxic T cells. 

TMCC3 showed the strongest effects of the four candidates in both cell lines while MOK was especially 

strong in Ma-Mel-86a. To that point, experiments were performed with the FluT cell system. To 

validate the findings, the effect of the genes was investigated in co-culture experiments with MART-1 

T cells in the presence of MART-1 peptide and with TIL412. Both systems confirmed the results of the 

cytotoxicity assays with FluT cells. Although Ma-Mel-86a were initially not targeted by TIL412 due to 

the lack of melanoma differentiation antigens gene knockdown resulted in a sensitization toward 

TIL412-mediated tumor cell killing. This was surprising as non-activated TIL412 did not show expression 

or secretion of cytotoxic molecules. However, how IR gene knockdown remodeled the phenotype of 

Ma-Mel-86a making them susceptible to TIL412-mediated lysis by for example induction of the 

expression of melanoma differentiation antigens or release of mediators that lead to activation of 

TIL412 was not further investigated. 

In order to investigate whether IR genes modulate T cell function or increase the resistance of the 

tumor cells intrinsically, tumor cells were treated with supernatant of polyclonally activated T cells. 

Knockdown of all genes increased tumor cell lysis upon supernatant treatment. As T cells were absent 

in the experiment, I concluded that the genes convey resistance mechanisms within the melanoma 

cells. Subsequently, I was able to show that knockdown of IR genes sensitized tumor cells to treatment 

with cytotoxic ligands like TRAIL, TNFα, FasL and IFNγ. This was particularly interesting as both cell lines 

showed primary resistance against death receptor ligands. In order to investigate how the proteins 

contribute to resistance, I selected TMCC3 and SLC39A13 for deeper mode of action analyses. TMCC3 

showed generally very strong phenotypes in the experiments. Treatment with TRAIL resulted even in 

a stronger tumor cell death compared to co-culture assays upon gene knockdown. In general 

susceptibility to several death receptor ligands was affected in Ma-Mel-86a. This was strongly in 

contrast to SLC39A13 which is the reason this protein was additionally selected for mode of action 

analyses. Of the single treatments, SLC39A13 silencing resulted in the sensitization mostly to IFNγ 

treatment and not to death receptor ligands. Therefore, two opposing and complementary signaling 

pathways could be affected and could contribute to the resistance. As low MITF expression is 

associated with increased resistance, functional analyses of TMCC3 and SLC39A13 were performed in 

the MITFlow cell line Ma-Mel-86a. Here, protein expression was detectable, and knockdown of these 

genes resulted in decreased expression on the mRNA and protein level. Although both genes were 

primarily selected due to their performance in the HTP screens, both genes were associated with 

increased expression in MITFlow melanoma cells in the Seurat analysis. Additionally, TMCC3 was 

associated with clusters identified by WGCNA that negatively correlated to the MITF clusters in the 
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TCGA and the single cell RNA-Seq data, further supporting the rationale for mode of action analyses of 

these genes. 

 

6.4 TMCC3 and SLC39A13 as immune resistance genes in melanoma 

TMCC3 and SLC39A13 were selected for further mode of action analyses and were associated with 

MITFlow and an increased resistance. Therefore, I investigated whether the expression of the two genes 

were affected by MITF or by various treatments of Ma-Mel-86a. Downregulation of MITF did not 

change the expression of TMCC3 or SLC39A13, but TMCC3 knockdown increased MITF expression. 

MITF is a key transcription factor in melanocytes and its expression can be regulated by various 

activating and repressing mechanisms [71]. As TMCC3 silencing increased T cell-mediated rejection of 

Ma-Mel-86a, multiple pathways could be affected by the knockdown that induce MITF expression. 

Treatment of Ma-Mel-86a with supernatant of activated FluT cells induced TMCC3. Taken into account 

that TMCC3 was identified as an immune resistance gene, it could well be upregulated as a resistance 

mechanism of the tumor cells. While no significant difference of SLC39A13 expression was detected, 

MITF expression was downregulated upon treatment with supernatant. Inflammation and cytokines 

such as TNFα and IL-6 can induce phenotype switching and downregulate MITF in melanoma cells [71, 

88, 124]. However, treatment of cells with TNFα alone did not alter MITF or TMCC3 mRNA expression. 

The expression of SLC39A13 was only affected by IFNγ treatment. This was interesting as a knockdown 

of this gene resulted in higher susceptibility of Ma-Mel-86a to IFNγ-mediated apoptosis. 

As downregulation of TMCC3 and SLC39A13 resulted in an increased susceptibility towards T cell-

mediated tumor cell lysis, I investigated whether overexpression of the genes would increase the 

protection against T cell attack. Ma-Mel-86a were stably transfected with overexpression plasmids for 

TMCC3 and SLC39A13 or with an empty vector control. The luciferase-based cytotoxicity assay showed 

increased luciferase values when both genes were overexpressed, assuming that proliferation was 

enhanced. Upon FluT cell co-culture, SLC39A13 overexpressing cells showed similar proportion of 

dying cells as the empty vector control. In contrast, TMCC3 overexpression resulted in a decreased 

degree of tumor cell death indicating that this gene increases resistance towards T cell-mediated lysis. 

SLC39A13 overexpression did not demonstrate the desired effect. As protein levels were already high 

in wildtype cells, increased expression potentially didn’t improve immune resistance. This would also 

be supported by the fact that by treatment of Ma-Mel-86a with T cell supernatant SLC39A13 is not 

further increased while this is the case for TMCC3. 

 



124 
 

6.4.1 TMCC3 and SLC39A13 knockdown changes the expression of receptors important for 

antigen presentation and apoptosis induction 

As downregulation of either TMCC3 or SLC39A13 increased T cell-mediated rejection of melanoma 

cells, both genes were silenced simultaneously. The genes were associated to different clusters in the 

bioinformatic analyses while in functional analyses TMCC3 showed protective effects against death 

receptor ligands and SLC39A13 to IFNγ. Therefore, I investigated whether co-knockdown resulted in 

an additive effect towards T cell cytotoxicity. Tumor cell death was not increased upon simultaneous 

gene silencing, so I assessed whether the surviving cells after co-culture with T cells were still TMCC3 

and SLC39A13 proficient to protect the tumor cells. Knockdown was still present, so tumor cells were 

apparently using a complementary resistance mechanism.  

Flow cytometry analyses revealed that after co-culture, expression of DR5, TNFR1, IFNγR1 and HLA-A2 

was decreased, receptors that are important for apoptosis induction or antigen presentation [218, 

219]. Downregulated receptor expression was especially present in cells with the strongest viability 

phenotype. The identified subset of cell death resistant cells that emerge during the experiment can 

originate by two different hypotheses that represent the categories described in 1.3.2: Either resistant 

clones with low receptor expression existed prior to co-culture with FluT cells and outgrew during the 

experiment or the receptors were downregulated in the course of the experiment. As untreated wild-

type cells did not show receptor negative populations the knockdown would need to be the reason for 

its generation. Generally, the second hypothesis is more probable. In the homeostatic resistance 

model, clones emerge under immune pressure during treatment [122]. HLA and death receptor 

expression can be downregulated by epigenetic, transcriptional and posttranslational silencing [220-

223]. The expression of HLA on the surface is further dependent on the stability of the HLA-peptide 

complex [224]. If the peptide is removed from the complex, the β2M subunit gets lost and HLA will be 

internalized, ubiquitinylated and proteolytically degraded. Moreover, it was shown in PDAC that NBR1 

mediates HLA internalization and localization to lysosomes for autophagy-mediated degradation [225]. 

Similar to HLA-A2, DR5 and IFNγR1 expression can be downregulated by autophagy [222, 226]. 

Autophagy is induced by stress and is associated to tumor progression and drug resistance [227]. It 

was shown to induce STAT3 signaling in cancer cells to prevent sensitivity to T cell cytotoxicity. 

Therefore, autophagic processes in Ma-Mel-86a could be induced by the FluT cells to enhance stress 

tolerance and downregulate expression of HLA-A2, DR5 and IFNγR1 as a resistance mechanism. 

Additionally, expression of IL-3 by T cells can induce downregulation of TNFR1 [228, 229]. In contrast, 

co-culture of Ma-Mel-86a with FluT cells resulted in stronger FAS expression which could be induced 

by IFNγ release of the T cells [230]. However, sensitivity to FAS-induced apoptosis is not necessarily 

increased by higher FAS expression [231]. In cell lines that are initially resistant to FAS-mediated 

apoptosis (like Ma-Mel-86), stimulation of FAS is more tumorigenic as it stimulates pathways involved 
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in invasiveness and growth [232]. At the same time, resistant cells often increase the expression of 

FasL to induce apoptosis in T cells. 

The analysis revealed that co-culture of Ma-Mel-86a with FluT cells generates an immune resistant cell 

population by downregulation of receptors important for antigen recognition and induction of 

apoptosis, potentially due to degradation initiated by autophagy. Additionally, I observed that the 

knockdown of TMCC3 and SLC39A13 changed the receptor expression per se. Although TMCC3 

knockdown did not alter expression significantly, there was an increase of DR5 expression. This could 

be one aspect explaining the increased susceptibility to TRAIL of TMCC3 deficient cells. SLC39A13 

silencing increased the expression of DR5, FAS, IFNγR1 and decreased the one of HLA-A2 significantly. 

As SLC39A13 knockdown increased the susceptibility of Ma-Mel-86a slightly to TRAIL and stronger to 

IFNγ, the increased receptor expression could be a reason. On the other hand, downregulation of HLA-

A2 in SLC39A13 deficient cells can contribute to explain why TMCC3 showed a stronger IR phenotype 

in co-culture experiments with T cells. The expression levels of the receptors in simultaneous 

knockdown of TMCC3 and SLC39A13 were constantly between those of the single knockdowns. As 

there were no opposite effects in receptor alterations between TMCC3 and SLC39A13, flow cytometry 

analysis could not clarify why there is no additive effect upon simultaneous knockdown. Overall, 

altered receptor expression was no sufficient characterization of how TMCC3 and SLC39A13 protect 

Ma-Mel-86a. This was further investigated by western blot analysis. 

 

6.4.2 Structure and function of TMCC3 

Transmembrane and coiled-coil domain family 3 (TMCC3) belongs along with TMCC1, TMCC2 and 

TEX28 to the testis-expressed 28 (TEX28) family that typically contain two transmembrane domains 

and cytoplasmic coiled-coil domains [183, 233]. TMCC3 is highly expressed in the nervous system and 

the testis, and it is located in the endoplasmic reticulum membrane (ER). Here, it works in tandem with 

atlastins and lunapark in order to build three-way junctions of the tubular network of the ER [183, 

234]. The ER plays a major role in cell homeostasis being important for protein synthesis as well as 

calcium and lipid metabolism [235]. The network of the tubular ER is highly dynamic and characterized 

by a rather peripheral cell localization and by three-way junctions that connect tubules with each 

other. The smooth tubular network is not defined by high density of ribosomes and is therefore more 

important for lipid synthesis, calcium signaling and contact sites for other organelles [235]. Indeed, 

TMCC1-3 have also been associated to the regulation of endosome trafficking from the ER [236]. 

Downregulation of TMCC3 resulted in the decrease of three-way junctions and changes of the ER 

morphology [183]. TMCC3 has been shown to bind to the 14-3-3 protein family [233, 234]. The 14-3-3 

protein family are phosphoserine/phosphothreonine-binding proteins that interact with various 
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proteins to regulate for example their localization or activity [237]. Overexpression of 14-3-3γ reduced 

the localization of TMCC3 to three-way junctions of the ER and the number of three-way-junctions 

[234]. TMCC3 possesses a long cytoplasmic domain that can be phosphorylated which facilitates the 

binding of 14-3-3γ [183, 234]. The kinase that is responsible for the phosphorylation is yet unknown 

[234]. 

In cancer research, TMCC3 has not drawn much attention so far. TMCC3 protein expression was 

reported to be upregulated in Chronic lymphocytic leukemia (CLL) vs. healthy B-cells [238]. In 

pancreatic cancer, expression of TMCC3 and neighboring genes was induced by increased expression 

of miR-492 [239]. miR-492 expression was associated to cell proliferation and EMT by TGFβ/Smad3 

signaling. Enhanced characterization of TMCC3 was performed in a study in breast cancer stem cells 

(BCSCs) [182]. TMCC3 expression was increased in BCSCs and knockdown of TMCC3 resulted in 

decreased cell migration and metastasis in vitro and in vivo, respectively. The authors described that 

TMCC3 can interact with AKT with its cytoplasmic coiled-coil domain in order to activate AKT [182]. 

 

6.4.3 TMCC3 sensitizes melanoma cells to TRAIL-mediated apoptosis 

As TMCC3 was described to interact with AKT and promote its activation in BCSCs [182], I wanted to 

investigate how this impacts the sensitivity to apoptosis in Ma-Mel-86a. AKT was characterized to 

promote pro-survival signaling for example by inhibition of anti-apoptotic BAD [240]. I showed in my 

experiments that TMCC3 downregulation increased susceptibility of Ma-Mel-86a towards TRAIL 

treatment. Therefore, I investigated expression and activation of AKT signaling and apoptosis-related 

proteins upon TMCC3 knockdown and TRAIL treatment. In contrast to the published data, silencing of 

TMCC3 did not reduce phosphorylation and thereby activation of AKT but promoted it in Ma-Mel-86a. 

Consequently, pAKT target genes BAD and NF-kB/RELA were likewise phosphorylated and the 

expression of anti-apoptotic XIAP was upregulated, especially during TRAIL treatment [240, 241]. pAKT 

activates MDM2, an E3 ubiquitin ligase leading to the degradation of p53 that induces apoptosis [240]. 

In TMCC3 silenced cells, p53 expression was enhanced which is on the one hand contrary to increased 

phosphorylation of AKT, but on the other hand it can contribute to increased tumor cell death upon 

treatment. p53 is able to induce pro-apoptotic proteins and the expression of death receptors [242]. 

Apart from AKT pathway-related genes, the expression of caspases and anti-apoptotic BCL-2 indicated 

anti-survival features. BCL-2 was downregulated and caspase-3 and -8 were upregulated which favored 

pro-apoptotic signaling. This supported increased tumor cell lysis upon co-culture with FluT cells or 

treatment with death receptor ligands like TRAIL. Accordingly, treatment with TRAIL induced caspase 

cleavage much stronger in TMCC3 deficient cells. Caspase activity was also apparent in the absence of 

TRAIL which explains the viability impact in TMCC3 siRNA-treated cells. Expression of Caspase-9 was 
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not increased potentially due to counter regulatory mechanisms by increased AKT activation [243]. In 

conclusion, TMCC3 downregulation sensitized Ma-Mel-86a towards apoptosis by death receptor 

signaling which was counter regulated by increased AKT activity. 

 

6.4.4 Downregulation of TMCC3 induces perturbation of ER homeostasis 

In contrast to published data, my results showed that TMCC3 knockdown resulted in increased activity 

of AKT and consequently of proteins downstream of AKT. I therefore had to investigate other 

mechanisms how TMCC3 could protect Ma-Mel-86a from T cell or TRAIL-mediated lysis. As described 

previously, TMCC3 is important for the generation of three-way junctions of the tubular ER [183]. In 

the respective publication they investigated if downregulation of TMCC3 results in ER stress in U2OS 

cells by measurement of the expression of BiP and CHOP, two important markers of ER stress. This was 

not the case [183]. If ER homeostasis is disturbed by protein misfolding or disturbance of lipid and 

calcium metabolism, ER stress occurs resulting in the unfolded protein response (UPR) [244, 245]. In 

the homeostatic condition, BiP binds to the three important proteins Inositol Requiring 1 (IRE1), PKR-

like ER kinase (PERK), and Activating Transcription Factor 6 (ATF6) [244]. If ER stress occurs, BiP 

dissociates and IRE1, PERK and ATF6 are activated and induce the UPR in which different pathways try 

to either resolve the stress situation or induce apoptosis. Phosphorylation of IRE1α and PERK results 

in signaling cascades that stimulate apoptosis by phosphorylation of JNK and expression of CHOP, 

respectively [244]. The results of my experiments showed that TMCC3 increased susceptibility to death 

receptor ligand-mediated apoptosis. Phosphorylated JNK is able to promote death receptor-mediated 

apoptosis via downregulation of CFLARL and in tandem with CHOP also of BCL-2 while upregulating 

DR5 [245-247]. Additionally, TMCC3 silencing promoted AKT activity. Increased activity of AKT and 

expression of XIAP was shown to be induced to by ER stress [248]. The published data and previous 

results therefore supported the hypothesis that TMCC3 knockdown induces ER stress in Ma-Mel-86a. 

Although TMCC3 downregulation did not induce ER stress in U2OS cells, I did not exclude this possibility 

in Ma-Mel-86a. In melanoma plasticity, MITFlow/AXLhigh cells like Ma-Mel-86a can be induced by 

nutrient starvation or inflammation via eIF2α and ATF4 [88, 249]. ATF4 is also induced during the UPR 

and regulates CHOP expression potentially linking melanoma plasticity to susceptibility of ER stress 

[244]. 

I therefore investigated if the knockdown of TMCC3 induces ER stress in Ma-Mel-86a in order to 

sensitize the cells to apoptosis which is counter regulated by increased AKT signaling. I measured the 

expression and/or phosphorylation of BiP, CHOP, IRE1α, JNK and CFLARL. As hypothesized, TMCC3 

silencing resulted in phosphorylation of JNK and degradation of CFLARL which explains enhanced 

susceptibility of tumor cell lysis upon TRAIL treatment and together with increased p53, could be 
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associated to increased DR5 expression. Upstream of JNK is IRE1α which also shows phosphorylation 

upon TMCC3 downregulation and indicates ER stress. The expression of other two proteins BiP and 

CHOP was not induced by TMCC3 knockdown. CHOP expression under homeostatic conditions is in 

general very low and increases strongly upon ER stress [250]. The high expression that was observed 

in Scr3 cells could be due to expression of ATF4 that is associated with low MITF expression. However, 

ATF4 expression was not measured in the experiment. A reason why there is no induction of CHOP 

upon knockdown and potentially also of BiP could be due to general high protein expression that is not 

further enhanced. However, phosphorylation of IRE1α demonstrate the presence of ER stress. 

Furthermore, increased expression of p53 can also be attributed to ER stress [242, 251]. Treatment of 

TRAIL enhanced pIRE1α and stronger pJNK, especially in TMCC3 deficient cells, but expression and 

phosphorylation levels of the BiP, CHOP, CFLARL as well as total IRE1α did not show alterations during 

treatment. The degree and the precise source of the ER stress upon downregulation could further be 

investigated by measurement of more ER stress-related proteins as well as the involvement of calcium 

due to the calcium storage function of the tubular ER network. However, these measurements were 

not part of this thesis. 

Taken together, knockdown of TMCC3 induces ER stress in Ma-Mel-86a that on the one hand induces 

pro-survival signaling via AKT but also brings the cells into an apoptosis sensitive state. Downregulation 

of anti-apoptotic proteins BCL-2 and CFLARL in combination with upregulation of DR5 make TMCC3 

deficient Ma-Mel-86a cells highly susceptible to TRAIL-mediated cell death. 

 

6.4.5 Structure and function of SLC39A13/ZIP13 

Solute Carrier Family 39 Member 13 (SLC39A13) whose gene product is preferentially called ZIP13 

protein belongs to the LIV-1 subfamily of ZIP zinc transporters [252]. ZIP family members possess eight 

transmembrane (TM) domains and enable zinc influx into the cytoplasm [253]. Zinc is an important 

regulator of the function of enzymes such as histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) as well as DNA methyltransferases (DNMTs), therefore regulating gene 

expression by epigenetic mechanisms. Apart from bones, also skin is abundant of zinc, especially in the 

epidermis [254]. Here, ZIP13 is mainly expressed by fibroblasts for the development of connective 

tissue [255]. It was shown to be important for bone morphogenetic protein (BMP) and TGFβ signaling 

by regulating the nuclear localization of Smad proteins. In contrast to other family members, ZIP13 is 

not located in the cytoplasmic membrane but located in the Golgi apparatus transporting zinc out of 

the Golgi compartment. Both the N and the C terminus of the eight TM domain protein face the luminal 

side on the Golgi [252]. Between TM3 and TM4 resides a hydrophilic loop located in the cytoplasm that 

is unique from the other ZIP family members. 
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A loss of SLC39A13 has been linked to the spondylocheiro dysplastic form of Ehlers-Danlos syndrome 

which is characterized by alterations of the extracellular matrix (ECM) and skin fragility [256, 257]. In 

terms of cancer biology, the gene has not been extensively studied. SLC39A13/ZIP13 was reported to 

be higher expressed in pancreatic and breast cancers compared to respective healthy tissues [258, 

259]. One study reported that SLC39A13/ZIP13 activated the Focal adhesion kinase (FAK)/Src signaling 

pathway in ovarian cancer [184]. Establishment of ZIP13 knockout cell lines showed reduced growth 

potential and decreased generation of tumors in vivo. Differential gene expression analyses between 

wildtype and knockout cell lines revealed that ZIP13 is important for various pathways such as ECM-

receptor interaction, cytokine signaling and focal adhesion. Proteins like STAT3 and ERK that are 

involved in FAK/Src signaling were downregulated upon ZIP13 knockdown [184]. FAK/Src pathway 

activity promoting tumorigenesis and metastasis is well established in cancers like lung and pancreatic 

cancer [260]. As this pathway is required for mesenchymal invasion and related to inflammatory 

signaling, it might well play a role in MITFlow cells such as Ma-Mel-86a. The study on ZIP13 in ovarian 

cancer proposed its role in the Zinc distribution in the cell in order enable FAK/Src pathways signaling 

and expression of proinflammatory and invasion-related genes [184]. 

 

6.4.6 SLC39A13/ZIP13 sensitizes melanoma cells to IFNγ-mediated apoptosis by increasing 

STAT1/STAT3 ratio 

MITFlow cell line Ma-Mel-86a was previously shown to have increased phosphorylation of STAT3 

compared to the MITFhigh cell line Ma-Mel-86c [130]. This could indicate an increased activation of the 

FAK/Src pathway upon dedifferentiation in melanoma. Knockdown of SLC39A13 increased the 

susceptibility of Ma-Mel-86a towards T cells as well as IFNγ. IFNγ binding to IFNγR results in canonical 

JAK-STAT1 signaling that can induce apoptosis in the target cancer cell [21, 261]. If STAT1 is absent, 

STAT3 can be stimulated for pro-survival signaling [261]. I therefore decided to investigate the 

expression and phosphorylation of STAT1, STAT3 as well as of AKT as another pro-survival pathway 

that can be activated by FAK/Src. I determined protein expression upon SLC39A13 knockdown and 

during IFNγ treatment. I was not able to reproduce the phenotype described in the publication, in 

which it was shown that SLC39A13 deficiency decreased STAT3 expression and phosphorylation [184]. 

Knockdown of SLC39A13 did not change the expression of total STAT3 and even increased its 

phosphorylation in Ma-Mel-86a. On the other side, total STAT1 was upregulated making the cells more 

prone to IFNγ-mediated apoptosis. Upon IFNγ treatment total and phosphorylated STAT1 levels 

increased, especially in the SLC39A13 silenced cells while phosphorylation of STAT3 showed small 

changes. STAT1 activation in SLC39A13 proficient cells can explain cell death of Ma-Mel-86a upon IFNγ 

treatment. Knockdown of SLC39A13 however increases STAT1 expression prior to treatment and 

enhances the phosphorylation to induce apoptosis. I therefore concluded, by increasing the ratio of 
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STAT1/STAT3, Ma-Mel-86a became more prone to apoptosis induction in ZIP13 deficient cells. In a 

mathematical model this balance was similarly described [262]. It determined if cancer cells are 

promoting apoptosis (high STAT1) or repress it (high STAT3). 

Apoptosis in ZIP13 deficient Ma-Mel-86a is also enhanced by the increased expression of caspases and 

decreased expression of BCL-2 upon gene knockdown. The previously described mathematical model 

of STAT1/STAT3 balance further proposed that the higher STAT1 results in BCL-2 downregulation as 

well as upregulation of pro-apoptotic BAX [262]. Reduced BCL-2 expression was achieved by SLC39A13 

downregulation without IFNγ treatment. STAT1 is generally activated through phosphorylation [263]. 

However, experiments showed that transfection of U3A cells with STAT1 reduced BCL-2 promotor 

activity without IFNγ treatment [264]. Similarly, in U3A unphosphorylated STAT1 was able to induce 

expression of caspases 1, 2 and 3 [265]. It is therefore possible that STAT1 is responsible for the 

upregulation of other caspases upon SLC39A13 knockdown. STAT1 has additionally been described to 

upregulate death receptors like FAS or DR5 [265]. Here, upregulation was dependent on IFNγ-induced 

STAT1 activity. However, due to regulation of expression of BCL-2 and caspases, it should not be ruled 

out that also unphosphorylated STAT1 can induce death receptor expression. This could also explain 

why downregulation of SLC39A13 resulted in altered expression of death receptor expression in Ma-

Mel-86a. Another possibility was the previously mentioned autophagic processes. In fibrosarcoma, it 

was shown that ZIP13 can inhibit autophagy [266]. As autophagy could be a reason for reduced 

receptor expression of DR5 and IFNγR1, SLC39A13/ZIP13 knockdown could reduce this process, 

therefore increasing the surface expression of the receptors. 

Taken together, SLC39A13/ZIP13 increased the STAT1/STAT3 ratio which brings Ma-Mel-86a into an 

apoptosis sensitive state by downregulation of BCL-2 and which works in tandem with increased 

IFNγR1 expression to increase IFNγ-STAT1 dependent apoptosis. 

 

6.5 Translational implications of SLC39A13 and TMCC3 in malignant melanoma 

As many melanoma patients still do not respond to immunotherapies and melanoma cells 

dedifferentiate into MITFlow cells and acquire resistance mechanisms, alternative targets are in need 

to overcome tumor immunity. This project aimed to identify complementary resistance mechanisms 

and identified with TMCC3 and SLC39A13/ZIP13 two proteins that protected melanoma cells with low 

MITF expression. 

In immunotherapeutic approaches, antibody therapies and small molecules are used to improve 

benefits for cancer patients [267]. Small molecules have the advantage of modulating intracellular 

targets and pathways. As neither TMCC3 nor ZIP13 are expressed on the cell surface, they are not 
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eligible for antibody therapies and would rather be targeted by small molecules. TMCC3 has been 

subject of  a patent for an antibody therapy for breast cancer [268]. However, the patent was issued 

before it was published that the protein is not expressed on the surface but the endoplasmic reticulum. 

Downregulation of TMCC3 activated an ER stress response in Ma-Mel-86a bringing the cell into an 

apoptosis sensitive state that can be killed through death receptor signaling. Targeting TMCC3 

intracellularly would be difficult as the protein is not an enzyme or a channel. Increased research on 

the different domains of the protein is highly necessary for development of an appropriate therapy. 

14-3-3γ was shown to bind to phosphorylated TMCC3 which regulated the location of TMCC3 and 

reduced the number of three-way junctions [234]. However, the kinase that phosphorylates TMCC3 

remains unknown so far and inducing a kinase or 14-3-3γ activity would probably have very broad 

effects in the target cells. 

SLC39A13 downregulation sensitized Ma-Mel-86a to IFNγ-mediated apoptosis by upregulation of 

IFNγR1 and STAT1 paralleled by downregulation of BCL-2. Inhibitors of Zinc transporters are under 

development [269]. Although ZIP13 has not directly been targeted by an inhibitor, the ZIP7 inhibitor 

NVS-ZP7-4 has been shown to target ZIP7 in the ER to regulate intracellular zinc levels. Therefore, ZIP13 

could be similarly inhibited by a compound to reproduce the reported sensitivity to tumor cell 

apoptosis. 

Also, TMCC3 expression is elevated in the nervous system and the testis while SLC39A13 is highly 

expressed in the bone and in hard and connective tissue [233, 269]. Targeting these proteins 

systemically could therefore be accompanied with severe adverse events and damage of healthy 

tissues. Application of a drug at a specific location like the tumor microenvironment could be achieved 

for example by 4th generation CAR T cells. As previously described, CAR T cells are not restricted to 

antigen recognition on HLA and express synthetic receptors for improved T cell activity [99, 270]. 4th 

generation CAR T cells are designed to produce and release proteins such as cytokines or antibodies 

upon activation [270]. Hence, activation of CAR T cells in the tumor microenvironment could induce 

the expression and secretion of small inhibitory proteins or mediators targeting TMCC3 and SLC39A13 

locally. However, applying CAR T cell therapy to MITFlow melanoma would be concomitant with two 

major difficulties. Despite successful application against hematological cancers, solid tumors like 

melanoma didn’t show promising results yet [271]. Also, the selection of an appropriate melanoma 

specific surface antigen for CAR T cell receptor activation is compromised. Melanoma differentiation 

antigens (MDAs) are often targets for T cell therapy, but MITFlow melanoma cells don’t express MDAs. 

Alternative but more unspecific targets could be cancer germline antigens (CGA) like NY-ESO-1 or even 

better, neoantigens. Neoantigen therapy would be a highly personalized, but also expensive approach 

[271]. 
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Appendix 
 

I. Supplementary Figures 
 

 

Supplementary Figure 1: ComBat-seq to remove dataset specific batch effects. 
Raw count RNA-Seq data from Wouters et al. and Ma-Mel-86 in triplicates was combined and subjected to 

ComBat-seq in order to remove batch effects that were introduced due to the different origin of the two data 

sets. Principle component analysis (PCA) was conducted to represent the similarity of the samples (A) before and 

(B) after ComBat-seq. Red colored samples represent RNA-Seq data of Ma-Mel-86 while blue colored samples 

represent cell lines from Wouters et al. The different symbols represent the melanoma cell line subtypes 

melanocytic (MITFhigh), intermediate (MITFhigh), mesenchymal (MITFlow) and neural-crest stem cell (NCSC)-like 

(MITFlow). 
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Supplementary Figure 2: Knockdown efficiency of selected immune resistance (IR) genes. 
Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3 and individual or pooled siRNAs for TMCC3, SLC39A13, MOK 

or ZNF443 for 48 h. Cells were lysed for RNA isolation followed by reverse transcription to cDNA. Quantitative 

real-time PCR was used to measure target gene expression. Expression of Actin-beta was measured as reference 

gene to normalize gene expression and values were normalized to Scr3. Bars represent the mean of technical 

replicates + standard deviation. 
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Supplementary Figure 3: Impact of immune resistance genes on tumor cell rejection mediated by cytotoxic 
ligands I. 
Luciferase-based cytotoxicity assays to measure the impact of gene knockdown on the cytotoxicity of TRAIL, 

TNFα, FasL, LTα, LIGHT or IFNγ. Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for 

TMCC3, SLC39A13, MOK or CFLAR or ZNF443 s4 siRNA for 48 h. Subsequently, cells were cultured in plain medium 

(viability setting) or treated with 100 ng/ml recombinant TRAIL, TNFα, FasL, LTα, LIGHT or IFNγ (cytotoxicity 

setting). After 20 h of treatment, cells were lysed, and remaining luciferase activity was measured by 

luminescence. Raw luciferase units (RLU) were normalized to RLU of Scr3. Bars represent the mean + standard 

deviation of three independent experiments. Significances between viability and cytotoxicity setting were 

calculated by applying a two-tailed paired t-test (*p<0,05, **p<0,01, ***p<0,001, ns=not significant). 
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Supplementary Figure 4: Impact of immune resistance genes on tumor cell rejection mediated by cytotoxic 
ligands II. 
Real-time cytotoxicity assays to measure the impact of gene knockdown on the cytotoxicity of TRAIL, TNFα, FasL, 

LTα, LIGHT or IFNγ. Ma-Mel-86 HLA-A2+ Luc+ were transfected with Scr3, a pool of four siRNAs for TMCC3, 

SLC39A13, MOK or CFLAR or ZNF443 s4 siRNA for 48 h. Subsequently, cells were cultured in plain medium 

(viability setting) or treated with 100 ng/ml recombinant TRAIL, TNFα, FasL, LTα, LIGHT or IFNγ (cytotoxicity 

setting). Upon treatment Incucyte® Cytotox Red Dye was added to label dead cells and tumor cell death was 

measured every two hours for 48 h. The signal of the Red Area was normalized to the Green Area, representing 

the confluency of the tumor cells by detection of GFP. Representative data of two independent experiments. 
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Supplementary Figure 5: Expression of control and immune resistance genes in different melanoma cell 
subsets. 
This figure extends Figures 28 and 29. Seurat analysis was conducted by using the programming language R for 

statistical computing. Expression of control and immune resistance genes was investigated in the four melanoma 

cell clusters 1, 5, 9 and 11 and represented as (A) dotplot or (B) heatmap. 
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II. Supplementary Tables 

Supplementary Table 21: siRNA library of the secondary validation screen. 

AATK CCDC51 FAT4 KCNK5 NINJ2 PLA2G1B RIPK1 TGFA 

ABCA13 CCL4 FES KCNS2 NLK PLD2 RNF19A TMCC3 

ABCA5 CD274 FGFR2 KLRC3 NR0B2 PLPP2 RPS6KA2 TMEM106B 

ABHD13 CDH24 FLVCR2 LETM1 OR11G2 PLPP4 SCARA3 TMEM132E 

ADIPOR2 CFLAR GABRA4 LNPK OR1E2 PLPP6 SERTM1 TMEM165 

AK2 CHEK1 GABRB1 LRFN3 OR1S1 POLR2G SIGLEC6 TMEM248 

AKAP1 CHRNA7 GCK LRFN4 OR2H1 PRDX4 SLC12A1 TMEM42 

ALDH2 CHRND GJB1 LTB4R OR2K2 PRKD2 SLC13A2 TMEM63C 

ANO8 CLEC12B GJC2 MAK OR4A47 PRKD3 SLC13A5 TNFRSF13B 

APOA2 CNOT3 GPAT4 MALT1 OR51G2 PRRT1 SLC20A1 TNFRSF1A 

ASTL CNTNAP1 GPR142 MAP3K14 OR5AN1 PSMC1 SLC26A11 TNFRSF6B 

ATP13A5 COASY GPR87 MAP3K9 OR7A5 PSMC3 SLC34A2 TNIK 

ATP1A4 DCK GRK1 MAP4K1 OR8U8 PSMD13 SLC39A13 TP53AIP1 

ATP2B4 DDIT3 GRM6 MARK3 PCDHAC2 PSMD3 SLC7A10 TPD52L3 

ATP8A1 DENND6B HAS1 MARK4 PHGDH PSMD6 SLC9A5 TRPC7 

ATP8B2 DGKQ HTR1A MAT2A PI4KA PTCHD3 SNRPE WDR83OS 

BCAP29 DUOX2 HYAL1 MITF PIEZO1 RAPGEF4 SPNS3 XPO1 

BCL10 DYRK2 ITGAX MOK PIGP RBBP4 SSPN ZNF443 

BCL2L10 DYRK3 JAK2 MRGPRE PIK3C2G RELT STAB1 ZNF705A 

BRD2 EDNRA JAKMIP3 MRGPRF PIK3CG RETREG1 STX17  

BTN2A2 ELFN2 KCNJ9 NCCRP1 PKD2 RETREG2 TAAR8  

C1orf162 ELN KCNK13 NDC1 PKLR RHBDD3 TAS2R43  

 

 


