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Abstract
This paper explores the connective ‘because’, based on the idea that ‘C because A’
implies the acceptance/truth of the antecedent A as well as of the consequent C , and
additionally that the antecedent makes a difference for the consequent. To capture this
idea of difference-making a ‘relevantized’ version of the Ramsey Test for conditionals
is employed that takes the antecedent to be relevant to the consequent in the following
sense: a conditional is true/accepted in a state σ just in case (i) the consequent is
true/accepted when σ is revised by the antecedent and (ii) the consequent fails to
be true/accepted when σ is revised by the antecedent’s negation. To extend this to a
semantics for ‘because’, we add that (iii) the antecedent and (iv) the consequent are
accepted/true in the state σ . We get metaphysical or doxastic interpretations of these
clauses, depending on what we mean by a model and a state. We introduce several
semantics known from suppositional conditionals, whichwe reinterpret for difference-
making conditionals and ‘because’.Wepresent aminimal logic for ‘because’ sentences
and show how it can be extended in ways that parallel the hierarchy of extensions of
the logic of suppositional conditionals. We establish correspondence results between
axioms for ‘because’ and properties of states, and prove that the specified logics are
sound with respect to the semantics.
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E. Raidl, H. Rott

1 Introduction: conditionals and ‘because’

Many philosophers felt that there is a close connection between the connective ‘if’ on
the one hand and the connectives ‘since’ and ‘because’ on the other. Frege (1892, p.
48), Ramsey (1931, p. 317), Goodman (1947, p. 114), Ryle (1950, pp. 339–340), von
Kutschera (1974, pp. 265–268), Pizzi (1980, pp. 75–77), McCall (1983, p. 315) and
Blau (2008, p. 164–171) have all voiced their opinions about this idea. For example,
it has been argued that ‘because A, C’ implies the conditional ‘if A, then C’, and also
the might counterfactual ‘if ¬A, it might have been the case that ¬C’, or even the
stronger ‘if ¬A, it would have been the case that ¬C’. There is even a terminological
encoding of the similarity of ‘if’ and ‘since’. Goodman called ‘since’ sentences factual
conditionals, because their assertion presupposes that the antecedent is (believed to
be) a fact. This label makes equally good sense for ‘because’. In this article, we will
in fact assume that ‘since’ and ‘because’ are synonymous, and we will mostly talk
about ‘because’. We take it that ‘because’ sentences do not necessarily express causal
relations, but may express reason relations or explanatory relations in a broader sense.

Given the above-mentioned long tradition of philosophical notes on the relation
between ‘because’ and ‘if’, it is a striking and surprising fact that although philosophy,
logic, linguistics and psychology have produced a vast literature on the logic of ‘if’
sentences (i.e., on conditional logic), these investigations have not been used to get
more insights on ‘because’. Indeed, very little work has been done on the logic of
sentences featuring ‘because’.

In this paper, we want to make up for this discrepancy by proposing a logic for
‘because’. We will not, however, use any of the bridges suggested by the philosophers
mentioned above. We will follow our own route linking ‘because’ to existing work
in conditional logic. We argue that there is a missing link between the suppositional
conditionals that are typically the subject of conditional logics and ‘because’ sentences.
This missing link are difference-making conditionals. On the one hand, difference-
making conditionals are like suppositional conditionals in that they allow for various
truth or acceptance values of the antecedent (which is not true for ‘because’). In
fact, we think that many conditionals uttered in ordinary discourse are intended as
difference-making conditionals, and we’ll give some examples for this claim. On the
other hand, difference-making conditionals are like ‘because’ sentences in that they
highlight that their antecedent is relevant for their consequent (which is not true for
‘if’ in its suppositional interpretation). That is, supposing the antecedent to be true
has the effect of ‘raising’ the truth value or acceptance value of the consequent. This
is consonant with the idea that ‘because’ sentences express explanations, that their
antecedents name reasons for their consequents. In our approach, difference-making
conditionals are stronger than suppositional conditionals, and ‘because’ sentences are
in turn stronger than difference-making conditionals.

The plan of the paper is as follows. We first recapitulate some of the most popular
logics for suppositional conditionals. We base our subsequent considerations on a
minimal core logic and show how it can be extended to some of the most well-
known logics for suppositional conditionals. Second, we argue that most of the usual
principles for suppositional conditionals fail for ‘because’. Then we introduce several
semantics known from suppositional conditionals, whichwe reinterpret for difference-
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making conditionals and for ‘because’. In a fourth step, we present our minimal logic
for ‘because’ sentences and show how it can be extended in ways that parallel the
extensions of the minimal logic of suppositional conditionals. We prove these logics
to be sound with respect to the semantics. We then compare our account with related
work. In this first and major part of the paper, we argue on the one hand from a number
of natural language examples that certain principles should fail for reasoning with
‘because’. On the other hand, we argue from a semantic interpretation of ‘because’
that it should followcertain principles.At the end of our paper,we confront our analysis
with a number of examples known to be problematic for models of causal reasoning.
Some of them turn out to be problematic for our analysis of ‘because’ sentences, too,
others don’t.

2 The logic of suppositional conditionals

We will be using several object languages in this paper. All of them feature the usual
truth-functional propositional operators ¬, ∧, ∨,⊃ and ≡. We define the logical con-
stants� (verum) and⊥ (falsum) in the obviousway:� designates an arbitrary classical
propositional tautology, for example p∨¬p, and⊥ designates¬�.We use� to denote
classical consequence. We say that a sentence is factual if it is only composed of the
above vocabulary, i.e., factual sentences are the sentences of classical propositional
logic.

Our object languages also feature conditional connectives of three different kinds:
the suppositional conditional >, the difference-making conditional 	 (both read ‘if
…, [then] …’) and the ‘because’ connective 	. A 
> B is short for the negation of
the statement A > B, and similarly for the other conditionals. The semantics for these
conditionals will be presented in Sect. 4. In this section, we are concerned with the
most important inference principles known from suppositional conditional reasoning.
They should be read as follows: If the antecedent conditionals hold, the consequent
conditionals hold as well.1

The most prominent principles of suppositional conditionals > are:

If � A ≡ B, then: if A > C then B > C . LLE
If � B ⊃ C , then: if A > B then A > C . RW
A > A. ID
If A > B and A > C , then A > B ∧ C . AND
If A > C and A > B, then A ∧ B > C . CM
If A ∧ B > C and A > B, then A > C . CUT
If A > C and B > C , then A ∨ B > C . OR
If A ∨ B > C , then A > C or B > C . DR
If A > C and A 
> ¬B, then A ∧ B > C . RM

LLE is Left Logical Equivalence, RW is Right Weakening, ID is Identity (also known
as Reflexivity), AND is also known Conjunction in the Consequent, CM is Cautious

1 The verb ‘to hold’ is used in this paper with the intention that it can be understood both in terms of
acceptance and in terms of truth.
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Monotonicity, CUT is a kind of reverse version ofCM,OR is also known asDisjunction
in the Antecedent, DR is Disjunctive Rationality and RM is Rational Monotonicity.

The four principles LLE–AND determine the System B for basic reasoning.2 The
six principles LLE–CUT determine the System C for cumulative reasoning, the seven
principles LLE–OR determine the System P for preferential reasoning.3 System P has
often been considered to be the conservative core of reasoning with conditionals.4 The
eight principles LLE–DR determine the SystemD for disjunctively rational reasoning,
the nine principles LLE–RM determine the System R for rational reasoning.5

It should be noted that in the presence of Right Logical Equivalence

If � B ≡ C , then: if A > B then A > C . RLE

RW is equivalent to any of the following two conditions:

If A > B, then A > B ∨ C . DW
If A > B ∧ C , then A > C . CW

DW stands for Disjunctive Weakening, CW for Conjunctive Weakening. In fact, we
can always replace RW by RLE + DW (Raidl, 2021b, p. 88) or by RLE + CW.

We define the inner necessity � A and the outer necessity � A in the following
way6:

� A = (� > A).
� A = (¬A > ⊥).

We let � A := ¬� ¬A and � A := ¬� ¬A denote the inner and outer possibility of
A, respectively. In a possibleworlds account (see Sect. 4 below), the inner necessity can
be interpreted as expressing what is true in the closest possible world(s) and the outer
necessity can be thought of as a metaphysical necessity. In a belief revision account
(see Sect. 4), the inner necessity can be interpreted as a belief operator (provided we
assume that revising by the tautology does not change the agent’s beliefs), and the
outer necessity is a doxastic necessity.

The weakest logic that we will consider here, let us call it B+, is B augmented by
the following principles:

¬� ⊥. CONS
If A > C , then �(A⊃C). INC
If � A and �C , then A > C . CPRES

CONS is a Consistency condition, INC is similar to the belief revision principle of
Inclusion and CPRES to the belief revision principle of Cautious Preservation.7 The
last is not to be confused with the (in)famous principle of Preservation

2 This name is chosen in partial analogy to the terminology of AGM (1985), cf. Rott (2022a). The analogy
is partial because AGM’s ‘basic’ set also includes INC and PRES introduced below. B is not to be confused
with Burgess’ system of conditional logic B which is similar to P.
3 See Makinson (1989) and Kraus et al. (1990). CUT is redundant after adding OR.
4 For instance, by Adams (1975), Burgess (1981), Veltman Stalnaker (1985), Pearl (1989), Kraus et al.
(1990) and Halpern (2003).
5 Kraus et al. (1990), Freund (1993). DR is redundant after adding RM.
6 We follow Lewis (1973, pp. 22, 30), with a slight change for � (cf. Raidl (2021b), p. 89).
7 For these connections, see Raidl (2021a, p. 189) or Raidl (2021b, pp. 89, 102).
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Fig. 1 Hierarchy of systems: On the left: the system B for basic reasoning, C for cumulative reasoning,
BAGM for basic reasoning according the AGM theory, P for preferential reasoning,D for disjunctive rational
reasoning, R for rational reasoning, and B′ the system obtained from B by adding Inclusion (INC) and
Cautious Preservation (CPRES).On the right: the strengthenings of these systems by Consistency (CONS)
are denoted by adding the letter N. The basic system considered here is B+ = B′N

If � A and �C , then A > C . PRES

We do not necessarily assume PRES. And we do not require the following principle
of Strong Consistency, which strengthens CONS:

If A > ⊥, then A � ⊥. SCONS

In most systems � A implies � A. It suffices to apply RW and INC. It is easy
to verify that given ID, LLE and RW, we can derive INC, CPRES, PRES from OR,
CM, RM, respectively. Furthermore, PRES implies CPRES in the presence of CONS.
CONS says that the inner modality (and the outer modality) is consistent. In terms of
beliefs, this means that the prior beliefs (and the doxastic necessities) are consistent.
In terms of closest worlds, it means that there are always closest possible worlds (and
thus always accessible worlds).

We call B′ the system obtained from B by adding INC and CPRES, and BAGM the
system obtained from B by adding INC and PRES. We call BN, PN, DN and RN, the
strengthenings of the systems B, P, D and R by the principle CONS (Fig. 1).8 Thus
our system B+ can equivalently be written as BN+ INC + CPRES, or as B′ N. RN
can be seen as the non-nested fragment of the Lewisean System VN = V + CONS,
analysed in Raidl (2019). A hierarchy including P, D, R, PN, DN, RN, or rather their
extensions with unrestricted embeddings and nestings of conditionals, is analysed in
Raidl (2021a, ch. 7).

8 N stands for Lewis’ (1973, p. 120–21) ‘normality’ which corresponds to adding CONS.
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3 Almost all traditional principles for suppositional conditionals fail
for ‘because’

It will turn out that only two of the principles for suppositional conditionals remain
valid in our modeling of ‘because’, namely LLE and AND. We discuss here a few
examples that illustrate how some of the principles can come to fail.9 In Sect. 4.3
below we will formalize these examples.

Against Right Weakening. It makes perfect sense to say ‘Because you pay an extra
fee (p), your letter will be delivered (q) by express (r )’, since the extra fee will buy
you a special service.10 But it sounds odd to say ‘Because you pay an extra fee, your
letter will be delivered’, since the letter would be delivered anyway, even if you did
not pay the extra fee.

Rott (2022a) has argued that it is the hallmark of difference-making conditionals
that they do not satisfy Right Weakening. Just as it is the most striking feature of the
conditionals modeled by conditional logics in the wake of Stalnaker and Lewis that
they don’t validate ‘Left Strengthening’ (also known as Strengthening theAntecedent),
it is the most striking feature of difference-making conditionals that they invalidate
Right Weakening (or Weakening the Consequent).

Against Cautious Monotony.A research project with two postdoc positions is about
to start. I believe that Pam and Quinn will work on the project (p and q), and that the
project will be successful (r ). I know that Pam is an excellent and dedicated researcher,
and if she is missing, the project might fail. On the other hand, I know that Quinn is
neither the greatest researcher and nor terribly interested in the topic of the project.
But Quinn likes Pam a lot, and if Pam is not in, it is not sure that Quinn will be in.
So I think ‘Because Pam works on the project, Quinn will work on it, too’, and I also
think ‘Because Pam works on the project, the project will be successful’. It sounds
strange, however, to say ‘Because Pam and Quinn work on the project, the project will
be successful’, since should one of them not be in the project, it will most likely be
Quinn who is missing—remember he is not keen on the topic—and the project will
be a success anyway because of Pam’s work.

Against Cut. Another research project with two postdoc positions is about to start.
There have been many highly qualified applicants. I believe that Peter and Quiana will
work on this project (p and q), and that the project will be successful (r ). I know that
Peter is not the greatest researcher but an exceptionally nice person, and that Quiana
is brilliant but the topic of the project is not her favourite one. However, Quiana likes
Peter a lot, and if Peter is not in, it is very unlikely that Quiana will be in. Peter and
Quiana form a very good team, but if one of them is missing, this will be Quiana and
the project is likely to fail (it is Quiana’s contribution that is crucial for the success
of the project). So I think ‘Because Peter works on the project, Quiana will work on

9 Our examples are similar to the examples for difference-making conditionals given in Rott (2022a). It is
proven there (Observation 5.4) that for all inference schemes except for RightWeakening, counterexamples
are possible only if the difference-making conditionals involved are factual ones, in the sense that their
antecedents and consequents are believed to be true.
10 A reviewer has pointed out that ‘by express’ is not a proposition. We presuppose here that the above
sentence is equivalent to ‘Because you pay an extra fee (p), your letter will be delivered (q) and it will be
delivered by express (r )’.
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it, too’, and I also think ‘Because Peter and Quiana work on the project, the project
will be successful’. It sounds strange, however, to say ‘Because Peter works on the
project, the project will be successful’, since should Peter not be in the project, it will
be successful anyway, as there are many competent applicants for this project.

Against OR. Pam and Quinn live in a village with two pubs. They both prefer the
Irish pub to the Spanish pub, but they don’t avoid the latter altogether. I know that they
will go out tonight and they want to meet in a pub, but it is not quite clear in which
pub. I believe that Pam will go to the Irish pub (p), that Quinn will go to the Irish pub
(q), and that they will meet each other (r ). It makes sense to say ‘Because Pam goes
to the Irish pub, they will meet’, since if Pam does not go to the Irish pub (and goes to
the Spanish pub instead), they will most likely miss each other. Similarly for ‘Because
Quinn goes to the Irish pub, they will meet’. But it sounds odd to say ‘Because Pam
goes to the Irish pub or Quinn goes to the Irish pub, they will meet’, since if neither
of them goes to the Irish pub, they will meet each other anyway in the Spanish pub.11

4 Semantics

In the debate about conditionals there is a controversy whether conditionals have truth
values or only acceptance values. We want to provide a semantics that is flexible
enough to accommodate both positions. The most general models of this kind are
multi-state models in which the states may either be doxastic states or wordly states.
Each state is represented by a set of possible worlds and some choice function over this
set.12 More traditional possible-worlds models of the Stalnaker-Lewis kind are special
cases of multi-state models: they can be identified with models having a multitude of
states each of which is associated to a single world which is the “most plausible” world
for that state. This then is the distinguished world of the state, and the “plausibility”
of the other worlds is reinterpreted as their comparative closeness or similarity to the
distinguished world. Such models can be understood as non-doxastic ones, and they
provide truth conditions for conditionals at world-state pairs. In the following we will
consider truth conditions and acceptance conditions in parallel.

In this paper, we do not want to commit ourselves to the view that sentences with
conditionals or ‘because’ as the main connective express propositions. So we con-
sider only flat (non-embedded) conditionals with a factual antecedent A and a factual
consequent C . We refrain from insisting that it makes sense to embed conditionals
in complex sentences.13 For this reason, we can work with very simple single-state
models with only a single state.

11 To enforce a non-exclusive reading of ‘or’, we may consider ‘Because at least one of Pam and Quinn
goes to the Irish pub, they will meet’. To our ears, this sentence sounds odd for the same reasons.
12 Since W is only needed to define the domain of the selection function σ , we will frequently identify
states with selection functions.
13 On the other hand, we do not want to exclude an interpretation of conditionals that takes them as
expressing propositions. See below on the ‘metaphysical’ interpretation.
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4.1 Models, satisfaction, validity

Amodel is a tripleM = 〈W , σ, v〉, whereW is a set of possible worlds, v is a valuation
function over worlds and propositional variables extended to all factual sentences in
the classical Boolean way,14 and σ is a choice function over W which assigns to each
subset V ofW a (possibly empty) subset of V . Thus the following property is satisfied:

(id) σ(V ) ⊆ V .

Since we assume (id), we will also call these models (id)-models.
Our guiding idea is to think of σ as a plausibility function representing our dis-

positions to restrict attention to certain possible worlds, given certain suppositions.
Intuitively, for a subset V of W , σ selects the most plausible elements of V ; these are
then given by σ(V ). An agent whose dispositions are represented by σ and whomakes
the supposition that V restricts attention to the worlds in σ(V ) for her further reason-
ing. This allows for both a doxastic interpretation and a metaphysical interpretation
of M and σ . In the doxastic interpretation, M represents an agent’s doxastic state, and
σ(V ) can be understood as the strongest believed proposition after (hypothetically)
revising her beliefs by V . σ(W ) can be identified with the strongest proposition cur-
rently believed to be true by the agent. In themetaphysical interpretation,M represents
a possible-worlds scenario, and σ(V ) can be understood as the set of V -worlds that
are closest to the actual world. σ(W ) then is the set containing only the world that is
closest to the actual world, viz., the actual world itself.

If A is a factual sentence, we write [A]v for the A-worlds {w ∈ W : v(w, A) = 1}
and drop the subscript if there is no danger of confusion. Factual sentences A are
satisfied in worlds as usual: w � A iff w ∈ [A]v . For two factual sentences A and C ,
the satisfaction of a suppositional conditional A > C in a model M = 〈W , σ, v〉 is
defined by

M � A > C iff σ([A]) ⊆ [C].
We also allow negated conditionals and define M � A 
> C as M � (A > C). Let

X1, . . . , Xn be a (possibly empty) sequence of conditionals or negated conditionals,
and let Y be a conditional or a negated conditional or a disjunction ‘Y1 or Y2’ of
conditionals. The inference from X1, . . . , Xn to Y is valid in a model iff whenever σ

satisfies X1, . . . , Xn , it also satisfies Y (or respectively, it also satisfies Y1 or satisfies
Y2).15 The inference is valid in a class of models iff it is valid in all models of that
class.

Our basic semantics, which we call 0-semantics, has the following additional prop-
erties:

(cons) σ(W ) 
= ∅ .
(inc) If σ(V ) ⊆ U , then σ(W ) ⊆ V ∪U .

(cpres) If σ(W ) ⊆ V ∩U , then σ(V ) ⊆ U .

14 A valuation is a function v : W ×L −→ {0, 1}. v(w, A) = 1 means that A is true in w. Otherwise A is
false in w.
15 When we generalize this approach to multi-state models, satisfaction in a model is satisfaction in all
states of the model, and we need to generalize validity locally by inserting ‘for all states σ in the model’ in
front of ‘whenever σ ’.
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We will shortly see that the properties (id), (cons), (inc) and (cpres) correspond to
the principles ID, CONS, INC and CPRES, respectively.Wewill not generally impose
the stronger principles

(scons) If σ(V ) = ∅, then V = ∅.
(pres) If σ(W ) ⊆ U and σ(W ) � V , then σ(V ) ⊆ U .

We can now formulate properties corresponding to the principles OR, CM, DR and
RM, and just as we extended our minimal logic B+ by the additional principles, we
can strengthen our semantics by the corresponding properties:

(or) σ(U ∪ V ) ⊆ σ(U ) ∪ σ(V ).
(cm) If σ(U ) ⊆ V , then σ(U ∩ V ) ⊆ σ(U ).
(dr) If σ(U ∪ V ) ⊆ T , then σ(U ) ⊆ T or σ(V ) ⊆ T .
(rm) If σ(U ) � V , then σ(U ∩ V ) ⊆ σ(U ).

The (id)-semantics with (cons), (or), (cm) and (rm) was called consistent Lewisean
semantics by Raidl (2019). The weaker (id)-semantics with just (or) and (cm), or the
additional (dr) were analysed in Raidl (2021a, ch. 7).

Lemma 1 Every (id)-model validates the principles LLE, RW, AND and ID.

Theorem 1 If a model has the property (cons), (inc), (cpres), (pres), (cm), (or), (dr) or
(rm), respectively, it validates the corresponding principle (CONS), (INC), (CPRES),
(PRES), (CM), (OR), (DR) or (RM).

Wecan thus conclude that our 0-semantics validatesB+, and that if it has a collection
of properties from the above list then it validates the corresponding collection of
principles.16

We can properly reproduce the Lewisean account, restricted to the flat language,
in our models. Lewis’ assumption that the possible worlds can be arranged in nested
plausibility spheres is encoded by (id), (or), (cm) and (rm)—call this aLewiseanmodel.
A centered model is a model where σ(W ) is a singleton {wσ }. The world wσ can be
thought of as the ‘center’ of the state σ and thus of the Lewisean spheres. Intuitively
(and in accordance with Lewis), for all V ⊆ W , σ(V ) is the set of V -worlds that are
closest or most similar to the world wσ . The move from models to centered models
marks a transition from a doxastic interpretation to a metaphysical interpretation of
our models. Conditionals can then be interpreted as having truth values—and not just
acceptance values—in possible worlds models.

4.2 Suppositional conditionals, difference-making conditionals and ‘because’

We extend the language L> so as to feature not only > but also the connectives 	
and 	. As before, we only consider flat conditionals.17 Conditionals (with factual

16 The reverse of Theorem 1 only holds on the level of frames, see Raidl (2021a, Theorem 5.3, 2021b).
17 Although our flat language can express the suppositional ‘if’, the difference-making ‘if’ and ‘because’,
this does not mean that it expresses beliefs about the relevant connections. But it could be extended
accordingly. For a fully general account of nested and embedded conditionals and ‘because’, see Raidl
(2022).
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antecedent A and factual consequent C) are satisfied in a model M = 〈W , σ, v〉, and
the defining conditions are the following18:

Suppositional conditionals:

(RT) M � A > C iff σ([A]) ⊆ [C].
Difference-making conditionals:

(RRT) M � A 	 C iff σ([A]) ⊆ [C] and σ([¬A]) 
⊆ [C].
‘Because’:

(RTB) M � A 	 C iff σ([A]) ⊆ [C] and σ([¬A]) 
⊆ [C] and σ(W ) ⊆ [A]∩[C].
A few comments are in order. We have repeated clause (RT) that is reminiscent of

the famous Ramsey test19 and encodes the suppositional conditional > (or Lewisean
conditional). ‘M � A > C’ may generally be read as ‘A > C holds in M’. According
to (RT), the condition for this is thatC is true in all worlds from σ([A]). In the doxastic
interpretation, (RT) requires that C is believed after supposing A and minimally alter-
ing one’s beliefs in accordance with that supposition. In this interpretation, ‘A > C
holds in M’ means that A > C is accepted by the agent whose doxastic state is repre-
sented by σ . In the metaphysical interpretation, on the other hand, (RT) requires that
C is true in the A-worlds that are closest or most similar to the world in σ(W ). In this
interpretation, ‘A > C holds in M’ means that A > C is true in the world in σ(W ).

In most accounts, (RT) yields that whenever A and C are (believed to be) true in
M , then the conditional ‘If A then C’ holds in M—regardless of whether A is in any
way (considered to be) relevant for C or whether there is any substantive connection
between A and C .20 In many contexts, this inference, called conjunctive sufficiency or
conjunction conditionalization, is counter-intuitive and should be blocked. Thus (RT)
does not take into account a fundamental feature of conditionals as used in natural
language: typically, such conditionals do express that the antecedent is relevant to the
consequent.21

Taking up this idea, (RRT) is reminiscent of the Relevant Ramsey test of Rott
(2022a) and encodes the difference-making conditional. Such a conditional A 	 B
holds in a model M just in case (i) B is true at all worlds in σ([A]), (ii) but not
at all worlds in σ([¬A]). Roughly speaking, supposing A makes a difference to the
metaphysical or doxastic status of the consequent. The idea of incorporating relevance
into the interpretation of conditionals was the basis of Rott (1986), who introduced
RRT in a belief-revision interpretation.22 Difference-making conditionals express that
the antecedent is a “sufficient reason” for the consequent in the sense of Spohn (1983),
a notion that was suggested to be applied to conditionals in Spohn (2013, 2015). The
logic of such conditionals was analysed by Raidl (2021b, c).

18 For multi-state semantics, the same adjustment needs to made here as in footnote 15.
19 See for example Stalnaker (1968, pp. 100–103).
20 In the metaphysical setting, this is due to centering, in the doxastic one, it is due to (cpres).
21 The notion of relevance used here is a doxastic one and different from the one tracked by relevance
logic.
22 The idea of difference-making conditionals was first formulated (but not worked out) by von Kutschera
(1974, p. 266).
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The conditions of (RTB) for a ‘because’ sentence A 	 C to hold are those of
(RRT), namely (i) and (ii), extended by the requirement (iii) of the truth or acceptance
of the antecedent and (iv) of the consequent. It is a kind of Ramsey test for ‘because’
sentences. We formally represent ‘because’ by the symbol 	 in this paper.

Overall, (RRT) and (RTB) stepwise strengthen the original Ramsey test (RT). For
a conditional to hold in σ , (RT) imposes (i) that the consequent is true in the most
plausible antecedent worlds, (RRT) adds (ii) that the consequent fails to be true in at
least one of the most plausible non-antecedent worlds. (RTB) further adds (iii) that the
antecedent is (believed to be) true in the state and that (iv) the consequent is (believed
to be) true in the state.

Validity is defined as before. In Sect. 5, we will derive principles of reasoning with
‘because’ from the properties of the choice functions σ .

Although widely taken for granted, the semantic postulate of Preservation (pres)
and its conditional analogue (PRES) have repeatedly been criticised in belief revision
theory and conditional logic alike.23 There is no similar discussion of the weaker
cousin—Cautious Preservation (CPRES)—nor of Inclusion (INC) for suppositional
conditionals. In fact, the semantic conditions (inc) and (cpres) are unavoidable, if we
model σ(V ) as the minimal V -worlds according to an order relation. They are also
unavoidable if we accept the highly entrenched laws of conditional reasoning OR and
CM. For this reason, we prefer not to endorse (pres) generally, but do not quarrel with
(inc) and (cpres).

In fact, one can show that we need not adopt Preservation at all. In the languageL�	
(without > and 	), it makes no difference whether the models do or do not satisfy
(pres).

Lemma 2 For every model M satisfying (id), (cons) and (cpres), and violating (pres),
there is a (pres) model M ′ with the same worlds and the same valuation which agrees
with M on all L�	 -sentences.

Corollary 1 Let C be a class of models satisfying (id), (cons) and (cpres), and C ′ the
restriction of C to those that satisfy (pres). Then C and C ′ have the same L�	 logic.

Our choice of 0-semantics as the minimal semantics for the modelling of ‘because’
is rooted in our assumption that actual belief is consistent (cons) and our endorse-
ment of (inc) and (cpres), which are weak standard requirements in both doxastic or
metaphysical interpretations of conditionals.

4.3 Formalizing the counterexamples

We here briefly formalize the examples from Sect. 3 and illustrate why the principles
mentioned there are invalid. For this we use a system of spheres in the style of Grove
(1988). In the center of such a system, we find the possible worlds compatible with the

23 For arguments against Preservation in belief revision, see Cross (1990), Rabinowicz (1996), Bradley
(2012), Shear and Fitelson (2019) and Cantwell and Rott (2019). Arguments against the stronger principle
of Rational Monotonicity were put forward by Stalnaker (1994), Lin and Kelly (2012), Genin (2019), Genin
and Kelly (2019), Kelly and Lin (2021), Genin and Huber (2021), and Boylan and Schultheis (2021).
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Fig. 2 RW is invalid for
‘because’: p 	 q ∧ r , but not
p 	 q

[p]

[q]

[r]

agent’s beliefs. These are the most plausible worlds. Should the agent learn, however,
that none of these possible worlds is the actual one, she has a first fallback position
with the ring of possible worlds around the center. Should she learn that none of
these is the actual world either, her next fallback position is the next ring. And so
on. Systems of spheres interpreted in this way are essentially equivalent to a total
plausibility preordering of W , where w is more plausible than v, in symbols w < v,
iff there is a sphere that containsw but doesn’t contain v. Since all possible worlds are
comparable in terms of plausibility, it should be noted that this representation makes
the conditional > rather strong, and the related hypothetical belief revision is close
to the standard AGM belief revision mechanism. But this causes no problems for the
argument, since if a principle is invalid for a strong semantics, it is invalid for any
weaker semantics. Thus to show that the principles RW, CM, CUT and OR are invalid
in our ground semantics, it suffices to show that they are invalid in a stronger semantics
for ‘because’.

Against Right Weakening. Recall our example: It is fine to say ‘Because you pay an
extra fee (p), your letterwill be delivered (q) by express (r )’, formalized as p 	(q∧r).
But it sounds odd to say ‘Because you pay an extra fee, your letter will be delivered’,
formalized as p 	 q. Figure 2 gives a diagram representing this situation.

The figure is to be read as follows. The most plausible worlds are all in the inner
circle. Each of them make p, q and r true. That is, we believe p, q and r . We also
believe q ∧ r given p, since the most plausible p-worlds (in the inner circle) are
q ∧ r -worlds. And we don’t believe q ∧ r given ¬p, since some of the most plausible
¬p-worlds (like the one designated by the red spot and in the second circle) is not an
r -world. That is, we accept the suppositional conditional ‘if you hadn’t payed the extra
fee, your letter might not have been delivered by express’. However, we also accept
the suppositional conditional ‘if you hadn’t payed the extra fee, your letter would have
been delivered’, since the most plausible ¬p-worlds (in the second circle but outside
the p-area) are in fact q-worlds. And thus we reject ‘if you hadn’t payed the extra fee,
your letter might not have been delivered’. This is why we reject ‘your letter will be
delivered, because you pay the extra fee’. We won’t repeat such a detailed analysis for
the following illustrations.
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Fig. 3 Cautious Monotony is
invalid for ‘because’: p 	 q and
p 	 r , but not p ∧ q 	 r [p]

[q]

[r]

Fig. 4 Cut is invalid for
‘because’: p 	 q and
p ∧ q 	 r , but not p 	 r [p]

[q]

[r]

Against Cautious Monotony.Our example was that we accept ‘Because Pam works
on the project (p), Quinnwill work on it, too (q)’, formalized as p 	 q.We also accept
‘Because Pam works on the project (p), the project will be successful (r )’, formalized
as p 	 r . But in the situation described, we would reject ‘Because Pam and Quinn
work on the project, the projectwill be successful’, formalized as p∧q 	 r . The reason
was that we think that Quinn is not competent and is not interested in the project, but
wants to work with Pam. Figure 3 depicts this situation. We accept ¬(¬p > q) and
¬(¬p > r), but we reject ¬(¬(p ∧ q) > r), since we accept ¬(p ∧ q) > r .

Against Cut.We accept ‘Because Peter works on the project (p), Quiana will work
on it, too (q)’, formalized as p 	 q, and we also accept ‘Because Peter and Quiana
work on the project, the project will be successful (r )’, formalized as p∧q 	 r . Butwe
reject ‘Because Peter works on the project, the project will be successful’, formalized
as p 	 r . The project will be successful due to Quiana, and Quiana will work on the
project because Peter works on it, but Peter will make no contribution to the project.
Figure 4 presents a diagram illustrating this situation. We accept ¬(¬p > q) and
¬(¬(p ∧ q) > r), but we reject ¬(¬p > r), since we accept ¬p > r .
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Fig. 5 OR is invalid for
‘because’: p 	 r and q 	 r , but
not p ∨ q 	 r

[p]

[q]

[r]

Against OR. In our example we accepted ‘Because Pam goes to the Irish pub, they
will meet’ (p 	 r ), and ‘Because Quinn goes to the Irish pub, they will meet’ (q 	 r ),
but we would reject ‘Because Pam goes to the Irish pub or Quinn goes to the Irish pub,
they will meet’ (p∨q 	 r ), This situation is depicted in Fig. 5.We accept¬(¬p > r)
and ¬(¬q > r), but we reject ¬(¬(p ∨ q) > r), since we accept (¬p ∧ ¬q) > r .

5 Logics for ‘because’

5.1 Translation and backtranslation

Now we will concentrate on two sublanguages. The first language L> has just >

as a non-classical connective. The other one, L�	 , has 	 and � as non-classical
connectives. We correspondingly denote the restricted semantic relations by �> and
� 	 . Wewant to find the logic for 	, and for this we will use two translations between
the languages and our knowledge about the logic for the suppositional conditional >.
We need � in the language for ‘because’ for the following reason:

Lemma 3 � is not definable in terms of 	.

The relation between the two languages is given by:

Lemma 4 In all models we have (1), in all 0-models we have (2), and assuming addi-
tionally (pres) we have (3) and (4):

(1) M � 	 � A iff M �> � > A.
(2) M � 	 A 	 C iff M �>(� > A) ∧ (� > C) ∧ (¬A 
> C).
(3) M � 	 A 	 C iff M �>(� > C) ∧ (¬A 
> C).
(4) M �> A > C iff M � 	 �(A ⊃ C) ∧ (¬A 	/ ¬A ∨ C).

The meanings of some particular ‘because’ conditionals in the doxastic interpreta-
tion are collected in Table 1.

5.2 Systems for ‘because’

We are finally in a position to list the central principles of our systems for because.
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Table 1 The meanings of some basic sentences using ‘because’ in the doxastic interpretation

A 	 A � A and ¬ � A A is believed and
not necessary

A 	 A ∧ C �(A ∧ C) and ¬ � A A and C are
believed, and A
is not necessary

A 	 A ∨ C � A and ¬A 
> C A is believed, and
C is not believed
after revising by
¬A

¬A 	/ (A⊃C) � A or A > C ¬A is not
believed, or C is
believed after
revising by A

�(A⊃C) and ¬A 	/ (A⊃C) A > C C is believed after
revising by A

Here we presuppose (pres) and (cons)

If � A, then � A. N
If �(A ⊃ B) and � A, then � B. K
Not � ⊥. D
If � A ≡ B, then: if A 	 C then B 	 C . LLE
If � A ≡ B, then: if C 	 A then C 	 B. RLE
If A 	 B, then � A. BA
If A 	 B, then � B. BC
A 	/ �. NTC
If A 	 B, then A 	(A ∨ B). VDW
If A 	 C and � B, then A 	(B ∧ C). CW*
If A 	(B ∧ C), then A 	 B or A 	 C . AND*

If A 	 C and � B, then A 	 B or (B ⊃ A) 	 C . CUT*
If (A ∧ B) 	 C , then A 	 C or B 	 C . OR*
If (B ⊃ A) 	 C and � B, then A 	 B or A 	 C . CM*
If A 	 C and B 	 C , then (A ∧ B) 	 C . DR*
If A 	 B and (A ∨ B) 	 C , then A 	 C . RM*

The core of the logic is given by the first eleven principles from N to AND*. We
denote this logic by BEC. Extensions are given by adding any (combination) of the
remaining principles CUT*, OR*, CM*, DR* or RM*.

The starred labels may strike the reader as surprising. The principles with starred
labels are best understood as obtained by backtranslating the original principles for >

and sometimes applying some further logical simplifications involving other princi-
ples. The first three principles (N)–(D) are standard assumptions for a belief modality.
It follows that belief is monotone,24 closed under conjunction and consistent. LLE
and RLE are Left Logical Equivalence and Right Logical Equivalence. But in BEC

24 If � A ⊃ B and � A, then � B.
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the stronger RW is invalid. The reader might ask why we endorse LLE (and relatedly
RLE). After all, ‘because’ might be hyperintensional, just as ‘if’ has been suggested
to be hyperintentional, for instance by Fine (2012). We realize that this is an interest-
ing topic for future research, but in this paper we take LLE and RLE as simplifying
assumptions and assume ‘because’ to be an intensional connective.25 BA and BC are
our fundamental assumptions that the explanans (antecedent) and the explanandum
(consequent) of an explanation are believed. NTC stands for No Tautological Conse-
quent and says that there is no relevant antecedent for the tautology. It corresponds to
the principle CN A > �, but in the language of 	 it is expressed by the negation of
CN. CW* is obtained as a backtranslation from CW, and thus in a way corresponds to
RW. VDW stands for Very Weak Disjunctive Weakening and says that one can always
weaken an explanatory conditional by introducing the antecedent as additional dis-
junct in the consequent. AND* is obtained as a backtranslation of AND. Both VDW
and AND* constitute weak replacements for Right Weakening which is invalid for
‘because’.

CUT* and CM* are more complex. CUT* says that if A is a reason for C but not
for the belief B, then the material implication B ⊃ A is a reason for C . CM* says that
if A is neither a reason for C nor for the belief B, then the material conditional B ⊃ A
is not a reason for C either. Taken together, CUT* and CM* imply that if A is not a
reason for the belief B then: A is a reason for C if and only if the weaker B ⊃ A is
already a reason forC . OR*, DR* and RM* are rather simple. OR* says that if neither
A nor B is a reason for C , then they cannot jointly be a reason for C . DR* says that
reasons can be conjunctively conjoined in the antecedents of factive conditionals with
the same consequent. While Rational Monotonicity for suppositional conditionals is
a rather complicated principle involving a negated conditional in the antecedent (a so-
called non-Horn principle), its counterpart RM* for 	 is rather simple and intuitive:
If B because A, and C because A or B, then C because A. In general, the counterparts
of Horn principles frequently become non-Horn, and vice versa.

Note that due to CW* and RLE, the conjunction of the three principles BA, BC and
VDW can equivalently be expressed as a single more compact principle.

A 	 B iff � A and � B and A 	(A ∨ B) B

B together with CW* is the proper axiom of the logic of ‘because’ in the sense of
Raidl (2021b). Together with LLE and RLE they form a minimal core for the logic of
‘because’.

Theorem 2 The above principles from BEC are valid in our 0-semantics. And if the
semantics validates CUT, OR, CM, DR, RM inL>, then it validates CUT*, OR*, CM*,
DR*, RM* in L�	 .

One can in fact prove a stronger result: the principles of BEC determine the 0-
semantics. And the reverse of the second statement holds, too.26

25 We thank an anonymous reviewer for raising this point. Fine’s particular argument against LLE for
counterfactuals cannot be transferred to our analysis of ‘because’, since we reject some of his principles
(for example RW).
26 For these results and completeness proofs for the full language of these logics, see Raidl (2022, Theorem
1–5).
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5.3 Further derivable principles and validities

The following lemma lists further interesting principles.

Lemma 5 The following principles are derivable in BEC:

A 	/ ¬A. AT
� 	/ A. NTA

If we additionally assume OR*, we can also derive:

If A 	 B ∨ C and �C, then A ∨ B 	 C. COND*

AT stands for Aristotle’s Thesis. It is a fundamental principle of connexive logic
and says that a sentence cannot explain its negation. NTA stands for No Tautological
Antecedent and says that tautologies are not relevant for anything. NTA and NTC
taken together tell us that tautologies do not enter into relevance relations. COND*
says that if A ∨ B is not a reason for a belief C , then A cannot be a reason for B ∨C .
It is a problematic principle that will be discussed in Sect. 7.

6 Comparison with other work

We believe that the systems introduced and discussed in this paper constitute the first
systematic study of logics for ‘because’. Our semantics closely links the meaning of
‘because’ to themeaning of ‘if’. As a consequence, our logics for ‘because’ are closely
related and comparable to the standard systems of conditional logic that have been
studied over the last 50 years. To the best of our knowledge, there has so far been no
comparable work on the logic of ‘because’ or ‘since’.

There are nonetheless some works that may be compared to our approach. Some
works aim at a logic of ‘because’ rather directly; some works offer alternatives to the
account of difference-making conditionals; some works address similar problems in
a probabilistic framework. We briefly comment on each of these approaches in turn.

6.1 Work on ‘because’

Burks (1951) developed an early proposal for a kind of causal conditional called
‘causal implication’ and a kind of counterfactual called ‘counterfactual implication’,
assuming the latter to be definable from the former by adding that the antecedent is
false. Burks’s implication is supposed to express causal sufficiency which he analyzes
with the help of a strict implication, with the necessity behaving like a normal Kripke
necessity. As a consequence, his causal implication validates rather undesirable laws,
such as Strengthening the Antecedent, (weak) Transitivity, Contraposition and the
paradoxes of strict implication. We hope to have made it clear that these principles
cannot hold for the natural-language connective ‘because’.

Urchs (1994) investigates principles for a precausal connective, listing good prin-
ciples that should be valid and bad principles that should be invalid. There are some
axiomatic similarities to our account, since he rejects symmetry as well as asym-
metry as general principles, and also rejects Contraposition and Strengthening the
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Antecedent. His connective is factive. However, he endorses Conjunctive Weakening.
The latter fails, however, for ‘because’, since Right Weakening fails.

Schnieder’s (2011) paper on “A logic for ‘because’ ” is very different from, and can
hardly be compared to, the work in conditional logic. He motivates the axioms for his
logic based on a particular kind of ‘because’—the noncausal ‘because’ appearing in the
literature on grounding. A similarity with our account are Schnieder’s truth axioms,
according to which ‘because’ implies the truth of the antecedent as well as of the
consequent, and thus his grounding ‘because’ is factive. But his approach differs from
ours significantly. On the one hand, Schnieder’s axiomatic system is rather weak. In
particular, ‘because’ is treated as hyperintensional, so that equivalent sentences cannot
be substituted in the scope of ‘because’ and LLE and RLE become invalid. On the
other hand, Schnieder’s system is rather strong, since his ‘because’ is required to
be asymmetric and transitive. In contrast, our ‘because’ invalidates asymmetry and
transitivity. Concerning transitivity, this is just as it should be in a general analysis
of ‘because’. From the premises ‘Because Hinckley fired at Reagan, agent McCarthy
threw himself in front of Reagan’ and ‘Because Agent McCarthy threw himself in
front of Reagan, Reagan survived March 30, 1981’ it does not follow that ‘Because
Hinckley fired at Reagan, Reagan survived March 30, 1981.’ Concerning asymmetry,
we say more in Sect. 7.

Andreas and Günther (2019) offer a formal analysis of ‘because’ that has some
similarities to our doxastic interpretation. Like Rott (2022a), they pick up on an idea
contained in Rott (1986) and emphasize that ‘because’ is factive and not strictly asym-
metric. However, they use a variant of the Ramsey Test, contracting first to ensure that
any beliefs about the antecedent and about the consequent (or their negations) get
eliminated, and then expanding by the antecedent. Andreas and Günter do not offer a
logic for ‘because’, but such an analysis might be given if the properties of the con-
traction operation with respect to the antecedent and the consequent were analyzed in
detail.

6.2 Alternatives to difference-making conditionals

Fariñas del Cerro and Herzig (1996) frame their work in the context of belief change
theories. They use the formula ‘A � C’ to express that ‘C depends on A’. After non-
trivial adaptations to our framework aremade, this is equivalent to�C and¬A 
> C .27

If we assume PRES (and CONS), this in turn is equivalent to our definition of A 	 C
(see part 3 of Lemma 4). Thus the formula A � C seems to express exactly the same
content as our ‘C , because A’.

However, the equivalence only holds in a rather strong semantics, and differences
emerge as soon as we drop PRES or admit incomparabilities.28 Consider the example
given in Fig. 6 with a language having only two propositional variables p and q. The

27 See Fariñas and Herzig (1996, p 156). The adaptations require the Harper identity for revision and
contraction, see Rott (2022a, p. 140), which may fail if we admit incomparabilities.
28 Incomparabilities arise if we define σ(V ) = min<(V ∩ W ′), where < is an irreflexive and transitive
relation on W ′ ⊆ W , but < is not modular. A relation < is modular iff for any x, y, z, if x < y then x < z
or z < y.
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pq
pq

pq

Fig. 6 An example with incomparable worlds: the world denoted by ‘pq’, at which p is false and q is true,
is neither more plausible nor less plausible than any of the other worlds. World pq is more plausible than
world pq

example violates Preservation, since we have� > q and� 
> p, but¬p 
> q. In such
a context, Fariñas and Herzig’s analysis (FH) of dependency and our analysis (RTB)
of ‘because’ diverge: we have p � q but not p 	 q.29 It is intuitively clear that an
agent would not accept ‘q, because p’ in this situation because she does not believe
that the antecedent p is true. ‘Because’ is factive in the antecedent. If we want to be
able to do without full comparability (or without Preservation) and retain factivity,
we must add, as we did, that the antecedent is believed as a defining condition for
‘because’.

A further difference to Fariñas and Herzig is that their semantics is rather strong.
In our terminology, they consider models for the logic RN+SCONS. SCONS allows
them to treat the outer modality as validity or logical truth. This, however goes against
the now standard precaution to distinguishmetaphysical or doxastic necessity from the
stronger logical necessity. For this reason, we consider SCONS as a dubious axiom.

We already mentioned that Spohn’s notion of sufficient reason has essentially the
same structure as the difference-making conditional. And Spohn’s account can be
captured by a semanticswith the conditional logicRN (Raidl 2019). As a consequence,
our strongest doxastic analysis of ‘C , because A’ captures essentially the same idea
as A being a sufficient reason for C joined with having the reason A.30

A structurally different account is the ‘evidential conditional’ studied by Crupi
and Iacona (2022a) in the framework of a possible world semantics. Their evidential
conditional can be defined from a Lewisean suppositional conditional > by putting
A � B iff A > B and ¬B > ¬A. The evidential conditional thus has Contraposition
built into it,which is invalid for our ‘because’. Further differences are that the evidential
conditional validatesAND,CM,ORand evenSupraclassicality, aswell as the so-called
paradoxes of strict implication, i.e., NecessaryConsequent and ImpossibleAntecedent
(Raidl, Iacona and Crupi 2022). The evidential conditional is not factual. The only
similarity to differencemaking and our ‘because’ is that RightWeakening is violated—
this violation being the ‘hallmark of relevance’. One may very well, however, base a
definition for ‘because’ on � by adding that the antecedent and the consequent are
(believed to be) true; the logic of such a connective remains yet to be explored. Rott
(2022b), however, raises serious doubts as to whether Contraposition is suitable for
capturing the idea of evidence or support.

29 Provided we maintain condition (iii) of Sect. 4.2, σ(W ) ⊆ [A].
30 Indeed, by INC, A > C implies the belief that A ⊃ C and this together with the belief that A implies
the belief that C .

123



E. Raidl, H. Rott

6.3 Probabilistic accounts

The study of a logic of conditionals that incorporates relevance in a probabilistic
framework has only begun very recently, with the analysis of ‘evidential conditionals’
by Douven (2016, Ch. 5), Crupi and Iacona (2022b) and van Rooij and Schulz (2022).

Douven’s account of an evidential conditional A ⇒ C is a refinement of the com-
bination of probabilistic relevance P(C |A) > P(C) and high conditional probability
P(C |A) > t for an appropriate threshold t . Whereas high conditional probability is
known to invalidate AND (cf. Hawthorne andMakinson 2007), probabilistic relevance
is known to validate symmetry. Like our ‘because’, Douven’s evidential conditional
violates RW, and it also invalidates AND, CM, CUT and OR. In addition, it is not
factive.

Crupi and Iacona’s probabilistic evidential conditional, although having a slightly
different logic from their possible-worlds based account, also violates RW and val-
idates AND, but it in addition validates CM, OR and Contraposition. It is also not
factive.

According to van Rooij and Schulz (2022), a relevance-based conditional A ⇒ C
holds when the causal power of A for C is high, i.e., P(C|A)−P(C|¬A)

1−P(C|¬A)
> t for an

appropriate threshold t . If P(C |¬A) = 0 we obtain high conditional probability. If
we disregard the subtraction in the denominator and set t to 0, we obtain probabilistic
relevance, since P(C |A) > P(C |¬A) iff P(C |A) > P(C).31 So far the logic for this
notion of causal power has not been determined. Note, however, that AND will fail,
and that this connective, too, will not be factive.

7 Problem cases

So far we have argued that certain first principles should hold for reasoning with
‘because’. We have built a formal framework for these natural ideas and outlined the
logic for ‘because’ that flows naturally from our premises. In this section, we confront
our analysis with a number of examples that are known to be pose problems for models
of causal reasoning. A word of caution is in order, though: problematic examples
for causation are not necessarily problematic when transferred to the discussion of
‘because’ sentences. While a causal relation can always be expressed by a ‘because’
sentence, it must be borne inmind that ‘because’ sentences can be used to express non-
causal explanatory relations, too. And thus, not every ‘because’ sentence expresses a
causal relation.

Unless stated otherwise, wewill make the simplifying assumption that the selection
function σ is based on a plausibility order<. That is, there is a strict transitive relation
< over W ′ ⊆ W such that σ(V ) = min<(V ∩ W ′), where min< X = {y ∈ X : there
is no x ∈ X such that x < y}. Here x < y is read as ‘x is more(!) plausible than y’.

Reflexivity.32 On our account, A 	 A holds if and only if A is a belief the negation of
which is possible. So ‘A, because A’ is a contingent sentence that may, but need not be

31 We neglect the case P(¬A) = 0, in which P(C |¬A) is undefined and P(C |A) > P(C) is false.
32 The problem of reflexivity was raised by Vera Hoffmann-Kolss in discussion.
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true. In conditional logic many people think that Reflexivity should be axiomatic. This
is in stark contrast to causation and explanation. It seems that A cannot possibly ever
cause or explain itself. Not everyone agrees: Halpern (2016, p. 17), for instance, holds
that reflexivity is a natural property of his ‘affects’ relation. Another possible reaction
to this problem is to say that ‘A, because A’ is a limiting case in our formalization
that can and should be dealt with just according to what one’s best theory tells us.

Asymmetry. Since causation is asymmetric, one may be inclined to think that
because should be asymmetric as well. This inference, however, would only be admis-
sible if all ‘because’ sentences could be rephrased in terms of causing. As already
mentioned, we think that this is not the case. We can always express the fact that
p causes q by the sentence ‘q because p’; but not every such ‘because’ sentence
expresses a causal relation. Other than for causation, asymmetry is not always to be
expected for explanation. Sometimes an effect may be regarded as a reason for, or an
explanation of, the (fact that we infer the) cause, as for example in an inference to
the best explanation. And this, too, can be expressed by ‘because’ sentences. We can
say both ‘Because Carol is at home, her apartment is lit’ (which may track a causal
relation) and ‘Carol is at home, because her apartment is lit’ (which may be seen as
tracking a converse ‘is evidence for’ relation).33 Our account makes room for such
symmetric explanations, thus violating asymmetry. Yet it does not fall into the other
extreme of validating symmetry, contrary to the probabilistic concept of dependency
or relevance.

The problem, on our account, is rather that symmetric explanations are abun-
dant. Consider a situation in which you believe, with good justification, that Pam
and Quentin, a married couple, are at Frieda’s party. However, you are not entirely
sure, because you know that they have also been invited by Ben. You think it is not
impossible that either (i) they both went to Ben’s party (pq) or that they split and (ii)
Pam went to Frieda and Quentin went to Ben (pq) or (iii) Quentin went to Frieda and
Pam went to Ben (pq). Actually, you think that if they aren’t both at Frieda’s party,
each of the three possibilities (i), (ii) and (iii) is equally plausible. In this case, our anal-
ysis then commits us to accepting both ‘Pam went to Frieda’s party because Quentin
went’ (q 	 p) and ‘Quentin went to Frieda’s party because Pam went’ (p 	 q); see
part (1) of Fig. 7. This may seem strange. But perhaps it is an adequate result. They
are a married couple after all, and both of them being at Ben’s party is just as plausible
as only one of them being there. So p and q seem to explain each other. Parts (2) and
(3) of Fig. 7 show how alternative plausibility orderings give rise to other acceptance
and rejection patterns of ‘because’ sentences.

Sufficient reasons.34 Consider a situation in which a reasoner accepts the sentence
(i) ‘Peter went to the party because he was invited to the party and he wanted to get
drunk.’ If we suppose that the ‘because’ clause specifies sufficient reasons for the
main clause, it may seem that, on our analysis, the reasoner is committed to accepting

33 One might call the latter an evidential ‘because’. However, we won’t use this term in order to avoid
confusion with the sense of ‘evidential’ in the ‘evidential conditionals’ of Douven and Crupi and Iacona
discussed above.
34 We are grateful to an anonymous reviewer for pressing us on the problem of sufficient reasons and
confronting us with the example discussed in this paragraph. The notion of ‘sufficient reason’ used here is,
however, different from Spohn’s notion that we mentioned earlier.
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pq

pq pqpq

(1) pq

pq pq

pq

(2) pq

pq pq

pq

(3)

Fig. 7 Plausibility orderings for the worlds pq, pq , pq and pq . In (1), we have p 	 q and q 	 p, a
violation of Asymmetry. In (2), p 	/ q and q 	/ p, and in (3), p 	 q and q 	/ p, a violation of Symmetry

also the reverse, (ii) ‘Peter was invited to the party and wanted to get drunk because
he went to the party.’ If the reasons given in (i) are considered as sufficient, then
supposing that Peter didn’t go to the party will result in giving up the reasons. Now
it looks as if we are caught with a counter-intuitive result regarding the acceptance
of (ii). The two reasons mentioned are only sufficient in the context of the particular
situation at hand—which is captured, in our model, by the selection function. In order
to see whether sentence (ii) is acceptable, we have to look at the situation carefully.
There are situations in which (ii) is indeed acceptable, namely when the counterfactual
assumption that Peter didn’t go to the party would lead the reasoner to abandon the
conjunction ‘Peter was invited to the party and he wanted to get drunk’. But this need
not be the case. If, for example, the reasoner is very sure for independent reasons that
Peter was invited and wanted to get drunk, then the counterfactual assumption of his
absence would make her rather believe that Peter was sick, had an accident or faced
some other strong impediment that prevented him from coming. So the acceptability
of (ii) depends on whether Peter’s presence is evidence for his being invited (i) and
desiring to get drunk (d).

Now one may object: The example can be strengthened by appending to the con-
junction in the ‘because’ clause of (i) and the main clause of (ii) that none of the
potential impediments is present: that Peter isn’t sick, doesn’t have an accident, etc
(q1 ∧ · · · ∧ qn). By using such an extended conjunction, the speaker takes care to
specify ‘fully sufficient reasons’ for Peter’s going to the party (p). In our model, it
makes sense then to render the extended ‘fully sufficient’ form of (i) as the modal (i f )
�((i ∧ d ∧ q1 ∧ · · · ∧ qn) ⊃ p), and the question is whether (i f ) entails that (ii f )
p 	(i ∧d ∧q1 ∧· · ·∧qn). To this we reply that, first, extending the natural-language
sentence (i) in such a way would result in a rather long and unnatural ‘because’
sentence, one that would hardly ever be uttered in normal conversations.35 But sec-
ond, it is true that our analysis predicts that (ii f ) be accepted if (i f ) is accepted,
i, d, q1, . . . , qn, p are believed and the side condition ¬�p is accepted, too. Given
that the reasoner believes that all parts of the fully specified conjunctive sufficient
reason are true, the fact that Peter goes to the party is evidence for this sufficient
reason (unless Peter goes to the Party necessarily). Correspondingly, according to our
analysis, ‘because’ comes out symmetric for all truly sufficient reasons in the above
modal sense.We do not think that this is a counterintuitive result. A problemwill arise,
however, in the case of (presumed) overdetermination—another problem to which we
now turn.

35 Notice, by the way, that the modal sufficient-reasons statement �(i ∧ d ∧ q1 ∧ · · · ∧ qn ⊃ p) does not
imply the ‘because’ statement (i ∧ d ∧ q1 ∧ · · · ∧ qn) 	 p. And the reverse does not hold either.
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pqr

pqr pqr

(1) pqr

pqr pqrpqr

(2) pqr

pqr pqr

pqr

(3) pqr pqr

pqrpqr

(4)

Fig. 8 Plausibility orderings for theworlds pqr , pqr , pqr , pqr ,…. Implausibleworlds are not represented.
In (1) p 	/ r , q 	/ r , p∧q 	/ r . In (2) p 	 r , q 	 r , p∧q 	 r . In (3) p 	 r , q 	/ r , p∧q 	/ r . In (4) p 	 r ,
q 	/ r , p ∧ q 	/ r . In all cases p ∨ q 	 r . (1) treats overdetermination but is problematic for productive
preemption. (2) explains non-productive preemption. (3)–(4) explain productive preemption

Overdetermination.36 Overdetermination is known to be a problem for many causal
theories. Consider a firing squad of two soldiers (Pam andQuinn), and assume that one
shot is sufficient for the delinquent’s (Ron’s) death (r ). Pam and Quinn actually fire
a shot (pq). What does our model say? This depends on the plausibilities of possible
worlds. The situation suggests that we think that Ron dies (r ) and that both fire, and
it is more plausible that both Pam and Quinn fire than only one of them (see (1)
in Fig. 8). The world pqr and those with r are all implausible. Assuming this, our
model says that neither ‘Ron dies because Pam fires’ nor ‘Ron dies because Quinn
fires’ holds (p 	/ r , q 	/ r ). ‘Ron dies because Pam and Quinn fire’ does not hold
either, according to the model, but ‘Ron dies because Pam or Quinn fires’ does hold
(p ∧ q 	/ r , p ∨ q 	 r ). We think that this is a satisfying result. It is not that Ron
died because Pam shot at him—he would have died even if Pam had refrained from
shooting. Similarly for Quinn Ron died because at least one member of the squad shot
at him. Our analysis produces a disjunctive explanation and excludes the single-factor
explanations (and the conjunctive explanation, too).37

We think that the above plausibility order gets the conjunctive and the disjunctive
reading right—the shooting of all soldiers doesn’t make a difference, but the shooting
of at least one of them does. Yet, many contributors to the causal and legal literature
agree that every single shot is a cause and thus provides an explanation. Our diagnosis
is that such overdetermining causes do not provide an explanation, since one soldier’s
refraining from shooting doesn’t make a difference. If this is correct, then we have a
deviation here from the thesis mentioned above that a causal relation can always be
expressed by a ‘because’ sentence.

Preemption. Preemption is also known from the causal literature. An event (p) may
cause some effect (r ), while another (slightly later) event (q) is merely a preempted
potential cause, since the first already caused the effect. Usually, if ‘because’ is read
as expressing (productive) causing, one would like to affirm ‘r because p’ but not ‘r
because q’.

Let us consider the well-known case of late preemption (with new names) fromHall
(2004). Both Pam and Quentin throw a stone at a glass bottle (pq). The bottle breaks
(r ). Pam throws just a fraction of a second earlier, so that it is her stone that actually
hits the glass bottle and causes its shattering. Quentin’s throw is a preempted potential

36 The problems of overdetermination and preemption were brought up by Jonathan Schaffer in discussion.
37 Halpern’s (2016, p. 29) more sophisticated analysis of overdetermination rests on a modified Lewisean
analysis and can handle overdeterminers as proper causes. Halpern is ready to allow ‘discunctive causes’
here.
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cause. In our simple model which does not have time in it, a possible representation is
again part (1) of Fig. 8. Then ourmodel says that both ‘The bottle shatters because Pam
throws’ and ‘The bottle shatters because Quentin throws’ are false or unacceptable,
but that ‘The bottle shatters because Pam or Quentin throws’ is true or acceptable.
This is counterintuitive in one (perhaps the preferred!) reading of ‘because’. Indeed,
one reading of ‘because’ is the causal reading in the production sense, using Hall’s
terminology. And in this sense we expect ‘The bottle shatters because Pam throws a
stone at it’ to hold but we would reject the same claim for Quentin.

This diagnosis cannot be reproduced if ‘because’ is interpreted along the lines
suggested in this paper. Our connective 	 can only represent causal relations in
the dependence sense—which we think is an admissible interpretation. If Pam had
refrained from throwing a stone at the bottle, it would still have shattered. So the
shattering of the bottle does not depend on Pam’s throwing, just as it doesn’t depend
on Quentin’s throwing. Although the situation represented by part (1) of Fig. 8 does
not allow for a productive causal reading of ‘because’ it allows for a dependence
reading.38

This failure to model the productive reading in the preemptive case is due to the fact
that the asymmetry of the example is not represented in the model. There are however
at least two ways of getting an asymmetric model in which the disjunction (p ∨ q) as
well as one of the disjuncts (p) explain, but the other disjunct (q) doesn’t.

The first option is essentially to assume that p is believed but q is not, and that
pq and pq are equally plausible (or incomparable) in terms of plausibility. Part (4)
of Fig. 8 depicts this situation. In the bottle example, this means that we believe that
Pam (and thus someone) throws, but we don’t believe that Quentin throws. After all,
he throws after Pam, so that he might refrain from throwing if Pam does not throw.
The second option is essentially to assume that pqr is not less plausible than pqr , but
keeping the belief of both q and p (and r ). Part (3) of Fig. 8 depicts this situation. In
the bottle example, this means that we believe that both throw, and we think that if Pam
hadn’t thrown, Quentin might not have thrown either. In both options, the disjunction
explains (p ∨ q 	 r ), and one of the disjuncts explains the shattering of the bottle
(p 	 r , but q 	/ r ).

Both option (3) and option (4) of Fig. 8 represent situations with patterns of
‘because’ sentences that match the production sense of causation. However, it is debat-
able whether they represent our plausibilistic intuitions about the situation.

‘Conditionalization’. The principle of Conditionalization for suppositional condi-
tionals (COND: If A ∧ B > C , then A > (B ⊃ C)) gets transformed for factual
difference-making conditionals into the following principle (COND*): If A 	 B ∨C
and �C , then A ∨ B 	 C (see Lemma 5). This is a very surprising principle. Con-
sider the following example concerning a much desired job. Sam accepts ‘Bob gets
the job or Carol gets the job because Ann makes the decision’, since he knows that
Bob and Carol are Ann’s protégés. Actually, Sam believes that Carol will get the job.
It seems strange, to say the least, that Sam is justified to infer from these premises that
‘Carol gets the job because Annmakes the decision or Bob gets the job.’ After all, Bob
getting the job would exclude Carol’s getting it! But this is what our analysis licenses.

38 We reach a similar conclusion if we use part (2) of Fig. 8.
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We acknowledge that this inference presents a serious challenge to our analysis. We
may, however, note that ‘Carol gets the job because Ann makes the decision or Bob
gets the job’ does not imply ‘Carol gets the job because Bob gets the job.’ Moreover,
(COND*) requires (OR*) or the corresponding semantic principle (or), and we can
do without that principle in our weakest semantics (see Fig. 1).

In sum, we think that some of the six problem cases reviewed in this section turned
out to be problematic for our analysis. Others are not so problematic. We do not claim
that our approach solves all the problems. The main goal of this paper has been to give
an axiomatic characterization of an analysis of ‘because’ that is plausible prima facie.
In this section, we have indicated some (real and potential) problems that we see in our
account, with the idea of paving the way for a discussion between the modal logic and
the causation communities. But our main contribution clearly lies in the development
of a formal system (or actually, of formal systems) that can be put to such tests in the
first place. Our systems are in a situation akin to that of the early conditional logics
that were known to be plagued by problems of a similar caliber (like the problem of
Simplification of Disjunctive Antecedents) and were yet given a chance to grow and
develop.

8 Conclusion

Different kinds of conditionals validate different sets of inference patterns. For natural-
language conditionals, as opposed to material (or strict) conditionals, strengthening
the antecedent is invalid. This has been one of the most important messages of con-
ditional logic ever since the times of Goodman, Adams, Stalnaker and Lewis. For
difference-making conditionals, as opposed to conditionals normally studied in the
field of conditional logic, the dual pattern ofweakening the consequent (RW) is invalid,
too. What raises the doxastic status of C does not necessarily raise the doxastic status
of B ∨ C . Many other well-known patterns get lost as well, and conditionals appear
to behave rather irregularly if the relevance idea is heeded. Still there is a logic of
difference-making conditionals as captured by the Relevant Ramsey Test and there is
a logic for ‘because’ as captured by the Ramsey Test for ‘because’. We used the latter
to provide a semantics for ‘because’.

To the best of our knowledge, we have presented in this paper the first logics for
‘because’ that can be compared, in status and elaboration, to the more orthodox logics
for suppositional conditionals that have been dominant in the discussion for 50 years.
We have shown how they relate to each other. For every conditional logic L> (starting
with B+) there is a corresponding companion ‘because’ logic L	 such that they are
valid in the same sets of models, the first with respect to the Ramsey Test (RT),
the second with respect to the Ramsey Test for ‘because’ (RTB). Difference-making
conditionals defined by the Relevant Ramsey Test (RRT) can be viewed as a missing
link.

Our analysis is not fully exhaustive yet and can be extended. We restrict ourselves
to mentioning the technical aspects here. First, we have disregarded Boolean com-
binations of conditionals as well as nested conditionals. Correspondingly, we have
disregarded multistate models and possible worlds semantics with multistates. Sec-
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ond, our validity results here constitute only one direction of the correspondence result.
The other direction requires one to argue on the level of frames (instead of models).
Third, although we obtain more general soundness results from our validity results,
the related completeness part requires a proof of the full correspondence result and a
property known as canonicity. This can also be done indirectly by backsimulating the
suppositional conditional logic in the logic for ‘because’ (cf. Raidl 2021b). The logics
arising from our principles for ‘because’ are in fact not only sound, but also complete
for their corresponding semantics. This is shown by Raidl (2022).

It is, of course, a very good question to ask how far an analysis of ‘because’ can
go if it is confined to modal logic broadly construed.39 We have not answered this
question. But we believe we have provided a solid logical basis for attacking it, by
showing what follows from our analysis (the validities) and discussing what the limits
of this analysis are (its invalidities and potential counter-examples).
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Appendix: Proofs

Proof of Theorem 1: The proof is similar as for set-selection semantics, see Raidl
(2021b, Theorems 2, 9, and remark after Theorem 12), or Raidl (2021a, Theorem
5.3). ��
Proof of Lemma 2: For simplicity, but without loss of generality, suppose that all sub-
sets in M are representable by sentences. Suppose M is a model which does not satisfy
(pres). Hence (by representability) there are sentences A,C such that � A, �C and
A 
> C . Since we assume (cpres), this means that ¬� A, and hence �¬A. Call such
a pair (A,C), where � A, � ¬A,�C and A 
> C a (pres)-violator. We define a new
model M ′ from M , with the same worlds and the same valuation but with the new
state σ ′, where
1. σ ′([A]) = σ([A]) ∩ σ(W ), if there is C such that (A,C) is a (pres)-violator,
2. σ ′([A]) = σ([A]), otherwise.
Remark (†): σ ′(W ) = σ(W ), since � � by (id), and hence there is no (pres)-violator
(�,C). Let us first show that M ′ now satisfies (pres), i.e., validates PRES.

Case 1. When � A in M , there can be no (pres)-violator, since � A contradicts
�¬A. Hence σ ′([A]) = σ([A]). Thus σ ′ satisfies (pres) for these A, due to (cpres).
Case 2. Similarly when �¬A
Case 3. Let A such that ¬� A and ¬� ¬A. Thus � ¬A and � A in M . Suppose

(A,C) is a (pres)-violator inM . Hence�C , but A 
> C inM . Nowσ ′([A]) = σ([A])∩
σ(W ) by definition, and σ ′(W ) = σ(W ) by (†). Since �C , that is σ(W ) ⊆ [C], we
obtain σ ′([A]) ⊆ [C]. Thus (pres)-violators have been deleted.

The satisfaction of the same L�	 sentences is proven by induction over the com-
plexity of the formula. Only � and 	 sentences need to be checked. We have � A in
σ iff � A in σ ′, since we have σ ′(W ) = σ([�]) = σ(W ), due to the fact that � �,
and hence we are in case 1 here. Consider 	:

Case 1. Suppose � A. Since � A, we have σ ′([A]) = σ([A]) by definition of
σ ′. Since �¬¬A, we also have σ ′([¬A]) = σ ′([¬A]) from case 2. By definition:
σ � A 	 C iff σ([A]) ⊆ C , σ([¬A]) � [C], σ(W ) ⊆ [A ∧ C]. But since σ ′(V ) =
σ(V ) for V = W , [A], [¬A], we obtain that the previous holds iff σ ′ � A 	 C .

Case 2. Similarly.
Case 3. Let A such that ¬� A and ¬� ¬A. Then � A and �¬A in σ . Since

σ ′(W ) = σ(W ), � A and �¬A in σ ′. Thus σ � A 	/ C and σ ′ � A 	/ C . ��
Proof of Corollary 1: Since C ′ ⊆ C , everything that is valid in C is valid in C ′. Con-
versely, suppose α is valid in C ′, and suppose for reductio that it is not in C . Hence
there is a model M in C such that α does not hold in M . But since we showed that
M can be transformed into a (pres) model M ′ satisfying the same L�	 sentences, α

would not hold in M ′. Yet M ′ is from C ′. This contradicts that α is valid in C ′. ��
Proof of Lemma 3: It suffices to find two models that agree on 	, but disagree on �.
Consider the language with two propositional variables p and q. Let W = {v,w, . . .}
be a set of worlds and V some valuation such that w ∈ [p∧ q] and v ∈ [¬p ∧ q]. We
define M1 by σ1(V ) = V ∩ [p] and M2 by σ2(V ) = V ∩ [p ∨ q], with M1 and M2
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having the same worlds W and the same valuation v. (Both models satisfy our basic
assumptions (id), (inc) and (cpres).)

We have M1 � � p, but M2 � � p: Indeed, σ1(W ) = W ∩ [p] ⊆ [p], but v ∈
σ2(W ) = W ∩ [p ∨ q] � [p]. Yet, M1 and M2 satisfy the same 	-sentences, viz., no
sentences of the form A 	 C at all: Suppose for reductio that M1 satisfies some such
sentence, i.e., M1 � A 	 C . By (RTB), this implies σ1(W ) ⊆ [A], i.e., [p] ⊆ [A]. But
then σ1([¬A]) = ∅, so σ1([¬A]) ⊆ [C], which contradicts M1 � A 	 C , by (RTB)
again. A similar argument can be made for M2. Thus the two models agree on 	 but
disagree on �.

��
Proof of Lemma 4: (1) follows from the syntactic definition of �, (2) follows from the
semantic definition of 	 and assuming (cpres). (3) By (pres), � > C together with
¬A 
> C implies� > A. Finally, let us prove (4), assuming (pres). Suppose�(A ⊃ C)

and ¬A 	/ ¬A ∨ C . Thus, by (1) and (3), which uses (pres), we have � > (A ⊃ C)

and either (i) � 
> ¬A ∨ C or (ii) ¬¬A > ¬A ∨ C . But (i) is incompatible with
� > (A ⊃ C), due to RLE. Thus only (ii) remains. But (ii) implies A > C , by LLE,
ID, AND and RW, and so we have the left-hand side of (4). Conversely,� > (A ⊃ C)

follows from A > C , by (inc). The latter also implies (ii), by LLE and RW. As we
have seen, this is the right-hand side of (4). ��
Proof of Theorem 2: We use parts (1) and (2) of Lemma 4. In what follow A, B,C are
all factual.

N. Suppose � A. Then � � ⊃ A. By ID, we have � > �. Thus by RW we have
� > A. That is � A.

K. Suppose �(A ⊃ B) and � A. Thus � > (A ⊃ B) and � > A. Hence � > B
by AND and RW. That is � B.

D. We need to prove ¬� ⊥. That is ¬(� > ⊥). But this is the axiom Cons.
LLE. Suppose that � A ≡ B and assume that A 	/ C . That is, either � 
> A, or

� 
> C or ¬A > C . Thus � 
> B or � 
> C or ¬B > C by RLE and LLE. This is
the translation of B 	/ C .

RLE. Suppose that � B ≡ C and A 	/ B. That is, either � 
> A or � 
> B or
¬A > B. Thus � 
> A or � 
> C or ¬A > C by RLE. This is the translation of
A 	 C .

BA. Suppose A 	 B. Then � > A, that is, � A.
BC. Suppose A 	 B. Then � > B, that is � B.
VDW. Suppose A 	 B. Thus � > A and � > B and ¬A 
> B. If we had,

¬A > A ∨ B, we would have ¬A > B by ID, AND and RW. This contradicts our
assumption. Thus we must have¬A 
> A∨ B. But from� > B we obtain� > A∨ B
by RW. And � > A by assumption. Thus A 	 A ∨ B.

CW*. Suppose that� B and A 	/ B∧C . That is,� > B, and� 
> A or� 
> B∧C
or¬A > B∧C . If the second disjunct holds, then� 
> C , byAND. If the third disjunct
holds, then ¬A > C , by RW. Thus overall, we get � 
> A or � 
> C or ¬A > C .
This is the translation of A 	/ C .

AND*. Suppose that A 	/ B and A 	/ C . That is, first, either � 
> A or � 
> B
or ¬A > B, and second, either � 
> A or � 
> C or ¬A > C . If, on the one hand,
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� 
> B then � 
> B ∧C , by RW. The same holds when � 
> C . If, on the other hand,
¬A > B and ¬A > C , then ¬A > B ∧ C , by AND. Thus overall, we get � 
> A or
� 
> B ∧ C or ¬A > B ∧ C . This is the translation of A 	/ B ∧ C .

NTC. Suppose for reductio that A 	 �. That is, � > A, � > � and ¬A 
> � by
the translation. The latter contradicts ID + RW.

In the following, we assume CUT for CUT*, OR for OR*, CM for CM*, DR for
DR* and RM for RM*.

CUT*. Suppose A 	 C and � B, and also A 	/ B. Then first we have ¬A 
> C ,
� > A, � > C and � > B. We can already say that from these we obtain the belief
parts � > (B ⊃ C) and � > C of the conclusion (B ⊃ C) 	 C that we want
to establish. It thus suffices to establish ¬(B ⊃ A) 
> C . By A 	/ B, we also have
¬A > B or� 
> A or� 
> B. But the last two are excluded by what we already know.
Hence¬A > B. Suppose now for reductio that¬(B ⊃ A) > C . Then (¬A∧B) > C ,
by LLE. Hence and since we previously established ¬A > B, we obtain ¬A > C , by
CUT. This contradicts ¬A 
> C . Thus the reductio assumption is false, and we have
proven (B ⊃ A) 	 C .

OR*. Suppose that A 	/ C and B 	/ C . That is, first, either � 
> A or � 
> C or
¬A > C , and second, either � 
> B or � 
> C or ¬B > C . That is, either � 
> A or
� 
> B, or � 
> C or both ¬A > C and ¬B > C . If � 
> A or � 
> B, we obtain
� 
> A ∧ B, by RW. This implies A ∧ B 	/ C . If � 
> C , then A ∧ B 	/ C , too. If
both ¬A > C and ¬B > C , then ¬A∨ ¬B > C , by OR, and thus ¬(A∧ B) > C by
LLE. So again, A ∧ B 	/ C .

CM*. Suppose that � B, A 	/ B and A 	/ C . That is, (i) � > B, (ii) either � 
> A
or � 
> B or ¬A > B, and (iii) � 
> A or � 
> C or ¬A > C . Due to (i), (ii) delivers
� 
> A or ¬A > B. Now we consider the three cases of (iii) in turn. If � 
> A, then
we obtain from (i) that� 
> B ⊃ A, by AND and RW. Hence (B ⊃ A) 	/ C . If� 
> C ,
then (B ⊃ A) 	/ C , too. If ¬A > C , we can use the previously established � 
> A
or ¬A > B. The case � 
> A was already treated. The second possibility leads to
¬A ∧ B > C , by CM. Thus ¬(B ⊃ A) > C , by LLE. So again, (B ⊃ A) 	/ C .

DR*. Suppose A 	 C and B 	 C . Thus on the one hand � > A, � > C and
¬A 
> C . On the other hand � > B, � > C and ¬B 
> C . From ¬A 
> C and
¬B 
> C , we obtain (¬A ∨ ¬B) 
> C by DR. That is ¬(A ∧ B) 
> C by LLE. And
from � > A and � > B, we obtain � > (A ∧ B) by AND. Hence, since we also
have � > C , this establishes A ∧ B 	 C .

RM*. Suppose that A 	 B and A 	/ C . That is, (i)� > A and� > B and¬A 
> B,
and, since � > A, using AND, RW and CONS, (ii) either � 
> C or ¬A > C . If,
on the one hand, � 
> C , then A ∨ B 	/ C . If, on the other hand, ¬A > C , we can
use ¬A 
> B, that is ¬A 
> ¬¬B by RW, to obtain ¬A ∧ ¬B > C by RM. Thus
¬(A ∨ B) > C by LLE. So again, A ∨ B 	/ C . ��

Proof of Lemma 5: AT. A 	/ ¬A follows from BA, BC, N, K and D.
NTA. Suppose for reductio that � 	 A. Then by VDW � 	 � ∨ A, and by RLE

� 	 �, contradicting NTC.
COND*. Suppose A 	(B ∨ C) and �C . From the former we get with LLE that

((A ∨ B) ∧ (B ⊃ A)) 	(B ∨ C). So by OR*, either (A ∨ B) 	(B ∨ C) or (B ⊃
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A) 	(B ∨ C). But the latter is impossible, by VDW, NTC and RLE. So we have the
former, from which we get, by CW* and RLE, that (A ∨ B) 	 C , as desired. ��
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