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Abstract

We consider a variety of shape and topology optimization problems in which the cost
functional always contains a finite selection of eigenvalues of the shape that is to be op-
timized. The governing state equations in our framework are either the Laplace equation
with Dirichlet or Neumann boundary data or the equations of linear elasticity with mixed
boundary data. The control variable is given in the framework of a diffuse interface
approach as a possibly vector-valued phase-field variable, allowing for structures to be
composed of multiple materials.
In a first step, in each case, we analyze the continuity and differentiablity of the involved
eigenvalues and eigenfunctions in order to arrive at well-posedness of the associated op-
timization problem and first order necessary optimality conditions. Subsequently, we
perform the sharp-interface limit in order to link the diffuse interface approach with op-
timization problems which only involve phases in their pure form, i.e., we analyze the
limit passage when the thickness of the diffuse interface gets infinitesimally small. In
the case of the Dirichlet–Laplacian we will rigorously perform this limit in the sense of
Γ-convergence.
The theory developed here allows us to state a novel phase-field version of the Faber–
Krahn theorem which then in the limit provides a version of the Faber–Krahn theorem in
the class of functions of bounded variation.
In the setting of linear elasticity we will apply the ansatz of formally matched asymptotic
expansions in order to derive the sharp-interface problem including first-order conditions.
Eventually, we present and discuss several numerical simulations for concrete spectral
optimization problems.



Zusammenfassung

Wir betrachten diverse Probleme der Form- und Topologieoptimierung in denen das Ziel-
funktional immer eine endliche Auswahl an Eigenwerten der Form beinhaltet, welche
optimiert werden soll. Die zugrundeliegenden Zustandsgleichungen unseres Modells sind
entweder die Laplace Gleichung mit Dirichlet oder Neumann Randwerten oder die Glei-
chungen der linearen Elastizität mit gemischten Randdaten. Die Kontrollvariable ist im
Rahmen des Ansatzes diffuser Grenzschichten als gegebenenfalls vektorwertiges Phasen-
feld gegeben. Dies ermöglicht die Konstruktion von Strukturen aus mehreren Materialien.
Zunächst analysieren wir jeweils die Stetigkeit und Differenzierbarkeit der involvierten
Eigenwerte und Eigenfunktionen, um zur Wohlgestelltheit des zugehörigen Optimierungs-
problems und notwendigen Optimalitätsbedingungen erster Ordnung zu gelangen. Darauf-
hin studieren wir den sogenannten “scharfen Grenzschicht Limes” um die diffusen Grenz-
schichtmodelle mit Optimierungsproblemen in Verbindung zu bringen, welche die Pha-
sen ausschließlich in ihrer Reinform beinhalten, d.h. wir analysieren denjenigen Grenz-
übergang für den die Dicke der diffusen Grenzschicht beliebig klein wird. Im Falle des
Dirichlet–Laplace werden wir diesen Grenzübergang rigoros im Sinne der Γ-Konvergenz
durchführen.
Die hier entwickelte Theorie erlaubt es uns eine neuartige Phasenfeld Version des Faber–
Krahn Theorems herzuleiten, welche uns dann im Grenzwert eine Version des Faber–
Krahn Theorems in der Klasse der Funktionen mit beschränkter Variation liefert.
Im Kontext der linearen Elastizität werden wir den Ansatz der formalen asymptotischen
Entwicklungen nutzen, um das zugehörige scharfe Grenzschicht Problem inklusive ersten
Ordnungbedingungen herzuleiten.
Abschließend diskutieren wir diverse numerische Simulationen für konkrete Eigenwertop-
timierungsprobleme.
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Chapter 1

Introduction

1.1. General overview and relation to the literature

Optimization encounters everyone of us in everyday life and is deeply encoded into our
human nature. “What is the shortest way to the next gas station?”, “How to arrange my
weekend plans in order to have the most fun, while respecting my needs for sleep and the
limited time of the weekend in general?”, “What is the least amount of exercises that I
have to solve on my exercise sheets but still pass the course?”.
All of this boils down to the question: “How can we get the most out of something with the
least amount of effort?”. Science is aiming to give specific answers to this question across
the whole spectrum of its disciplines, from mathematics and engineering over economics
to philosophy. For a nice introduction to the topic of optimization from a mathematical
engineering point of view including historical background, we refer to [158].
An ancient problem we want to mention at this stage, as it is also closely related to the
contents of this thesis, is the foundation of the so called class of isoperimetric problems
(iso meaning same and perimeter denoting the length of the boundary of a shape). It is
commonly known as Dido’s problem dating back to the 9th century B.C., see [24, 110].
According to roman mythology, queen Dido founded the city of Carthage by taking the
hide of a bull and enclosing the largest possible area within it. Doing so, she composed a
half circle out of narrow strips of the hide, as she was allowed to use the coast line as a
natural boundary. In other words, Dido intuitively solved the problem of finding among
all curves of given length a curve which encloses maximal area. It took mankind over two
thousand years to give a rigorous proof to the fact that the circle in the plane is indeed a
minimizer of the Euclidean isoperimetric problem. This was basically proven by the ideas
of J. Steiner (1796-1863) and his famous symmetrization technique, see [121, Section 14]
for a complete mathematical treatment of this problem. We note that symmetrization
techniques are also the main tools in Chapter 4 for proving a phase-field version of the
Faber–Krahn theorem, which belongs also to the class of isoperimetric problems.
By the way Dido’s problem also motivated Euler in the 18th century to found a whole
new mathematical discipline, namely the calculus of variations, which happens to be the
mathematical field this thesis is located in.
Let us come to the more specific branch of optimization this thesis aims at. The field of
shape and topology optimization is a huge area of research as it tries to answer the question
in which way an object consisting of possibly many materials has to be constructed in order
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6 CHAPTER 1. INTRODUCTION

to have optimal properties, while simultaneously satisfying initially imposed constraints.
In pure shape optimization indeed only the shape of the object is considered as control
in the optimization process, whereas in topology optimization also topological changes
such as the creation or nucleation of holes within the object are admissible. Note that in
the literature the notions are not consistent and sometimes topology optimization is also
included in the category of shape optimization.
The object varied along the optimization process, which is commonly referred to as shape,
is surrounded by an ambient domain which does not vary along the optimization process.
It is called the design domain or reference domain. Thus, the main objective in shape
and topology optimization is to distribute material and void within this design domain in
order to arrive at an optimal structure. Mathematically this is done by minimizing a so
called cost functional, also often called objective functional. The quantities that are to be
optimized are then often characterized as solutions of one or multiple partial differential
equations, which are referred to as the state equations.
Of course this gives rise to the question which features of the structure should be optimal
and how this optimality is measured. A fundamental problem in this context is the so
called minimum compliance problem. Here the final structure should minimally comply
when a load is applied to its boundary and/or forces act within the structure. Formulated
as in [4, Section 1.2], the less the work of the structure under applied forces is, the more
rigid it is.
Taking now the eigenvalues of the structure into account, which is the key problem in
this thesis, goes beyond the compliance problem: It is known that structures with a
high fundamental eigenfrequency tend to be reasonably stiff for all conceivable loads,
see [29,158].
Apart from this observation, problems in dynamics are also relevant on their own. The
eigenvalues model the so called resonant frequencies of a structure, i.e., they correspond
to those frequencies that the structure freely vibrates with. Thus, in many applications
it is desirable to control these frequencies with the goal of either tuning the structure
towards some desired frequency response or preventing unwanted resonance.
We want to illustrate this situation briefly with the following example of [29] which is a
motivating example for considering eigenvalues in linear elasticity in Chapter 5. Consider
an airplane driven by an engine. Of course the working engine vibrates, but at frequencies
that we can assume to be rather low. These vibrations are forced to some extent also
on the other parts of the airplane, such as the wings. In order to avoid a resonance
disaster, the resonant frequencies of the wings must be kept as far away as possible from
the frequencies of the engine. Mathematically speaking, this goal can be realized by
maximizing the smallest non-trivial eigenvalue of the wings, because then also all larger
eigenvalues of the wings are separated from the low frequencies of the engine.
Of course in all these problems additional constraints, such as volume restrictions and
prescribed solid or void regions have to be taken into account. These constraints will also
be incorporated into our mathematical framework. For a comprehensive overview over
shape and topology optimization, we refer to [4, 29,88,158].
The mathematical treatment of shape and topology optimization problems is a large field
of research and many techniques have been analyzed in order to tackle these problems.
The first intuition when optimizing the shape of a domain is to deform its boundary
in order to arrive at an optimal domain. Thus, the traditional approach is to consider
boundary variations by computing so called shape derivatives. These shape derivatives
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give then suitable descent directions in order to decrease the value of the cost functional.
In this context shape derivatives are obtained by perturbing the shape via a family of
diffeomorphisms and then considering the first variation of this perturbation in the sense
of Fréchet-derivatives, see e.g., [49,110,128,138,145,146] and the references cited therein.
We will compare our formally derived first-order conditions on the sharp-interface level in
Chapter 6 with those obtained in the framework of shape derivatives.
From a computational point of view the drawbacks of the technique of boundary variation
are its high costs, especially due to frequent re-meshing, and no opportunity to include
topological changes, see [6, 134]. These drawbacks, in some situations, can be overcome
by homogenization methods (see, e.g., [3]) or variants of this approach such as the SIMP
(Solid Isotropic Material with Penalization) method (see, e.g., [29]). Having the applica-
tion to spectral shape and topology optimization problems in mind, the SIMP method
has a further drawback. In the framework of this method it is rather delicate to deal with
spurious eigenmodes localizing in void areas of the structure. These modes are problem-
atic when their associated eigenvalues fall within the part of the spectrum we are trying
to optimize, see [29, 136]. In the framework of formally matched asymptotics we will see
in Chapter 6 that our approach is able to deal with localized modes.
A further method enjoying a huge popularity in the recent literature is the level-set
method. Originally developed in [132], it was frequently used also in the context of
spectral shape and topology optimization (see, e.g., [5, 6, 17, 60, 74, 115, 131, 134, 157]).
In this approach the evolution of the shape in the optimization process is driven by a
Hamilton–Jacobi equation. The involved normal velocities evolving the boundary are
again computed with the above mentioned classical shape calculus via shape derivatives.
The main advantages of the level-set method are its moderate numerical costs and that
it allows for topological changes. Nevertheless, the creation of new holes can be a chal-
lenge. This drawback can be overcome by incorporating so called topological derivatives,
see [59,129].
In this thesis we pursue the so called phase-field approach, also known as diffuse interface
approach. The key idea and at the same time a huge benefit compared to a technical ge-
ometrical evolution of the shape interface is the following. Instead of directly varying the
shape, we formulate an approximate eigenvalue problem involving a phase-field variable
on the fixed design domain. Any shape within this domain is now implicitly represented
by this phase-field.
More precisely, instead of interpreting the shape as the unknown quantity in the optimiza-
tion process, we describe it via a phase-field φε, which we assume to be a scalar valued
and suitably regular function for the sake of this introduction. It attains the value +1 in
most parts of the shape and the value −1 in most parts of its complement (with respect
to the design domain). These values will also be referred to as the pure phases, because
they represent material or void in its pure unmixed form. The most important feature of
the phase-field approach is that it approximates the sharp shape boundary by a so called
diffuse interface in the following way. We consider a tubular neighborhood around the
shape boundary of thickness proportional to a small parameter ε > 0, which is commonly
called the interface parameter. In this small region the phase-field now undergoes a tran-
sition between the values +1 and −1, meaning that in this region the phases mix, creating
a diffuse interface. From an analytical point of view it is important to mention that with
respect to the space variable the phase-field φ does not change its values abruptly along
the diffuse interface. In other words the phase-field does not simply jump between pure
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phases but exhibits a “continuous” transition, that will be specified later. This regularity
is a main feature of the phase-field approach, as it makes the models we intend to study
very well suited to be treated with methods from functional analysis.
The phase-field method was applied to topology optimization for the first time in [43] and
afterwards reached a wide popularity in the shape and topology optimization community,
e.g., in [18, 20, 31, 32, 34, 60, 68, 82, 84, 95, 96, 122, 137, 154–156]. The main advantage of
this approach compared to the ones discussed above is that the possibility of topological
changes is directly incorporated within the diffuse interface framework. Especially, the
creation of holes within the shape does not pose any problems, as there is no need for a
priori information on the shape boundary.
The goal of this thesis is to study spectral shape and topology optimization problems for-
mulated in the phase-field framework. Regardless of the specific governing state equations
we will always proceed as follows. First of all, we will assure the existence of solutions to
the eigenvalue problem serving as state equation and analyze some useful properties of this
eigenvalue equation. Then we will rigorously analyze the continuity and differentiability
of eigenvalues and eigenfunctions with respect to the phase-field variable in the diffuse
interface setting, i.e., for fixed ε > 0. Subsequently, we will derive from this analysis
first-order necessary optimality conditions providing us with an optimality system for the
underlying optimization problem.
Large parts of this thesis are then devoted to either rigorously or formally pass the op-
timization problems formulated in the diffuse interface framework to the sharp-interface
limit. Identifying such a limit optimization problem is of major importance, because this
will guarantee that the phase-field optimization problems are indeed suitable approxima-
tions of the physically reasonable optimization problems formulated on the sharp-interface
level.
This thesis is divided into the study of two different partial differential equations and
associated optimization problems, which we want to briefly explain at this point.
In Part I the governing problem is to optimize the eigenvalues of the Laplacian with either
homogeneous Dirichlet or homogeneous Neumann boundary conditions. More explicitly,
the aim is to find a shape D such that a finite selection of eigenvalues of{

−∆w = λw in D,

w = 0 on ∂D,
or

{
−∆w = µw in D,

∂nw = 0 on ∂D,
(CL)

is optimal. Here the notion of optimality of course depends on the specific application and
will be further specified in the according chapters. As explained above, our analysis of
these problems will be based on a phase-field approximation of these classical problems.
At this point it is worth mentioning that the Neumann problem is in general harder to
deal with, because the eigenvalues in this case carry some deep stability issues. We will
comment on that at the end of this introduction.
In the Dirichlet case the situation is still delicate but easier to deal with and for the sake
of this introduction let us focus on this case. The approximate eigenvalue problem, which
will serve as the state equation in the forthcoming optimization problems, is given as{

−∇ · [aε(φ)∇wε,φ] + bε(φ)wε,φ = λε,φcε(φ)wε,φ in Ω,
wε,φ = 0 on ∂Ω,

(AL)

where ε > 0 is the interface parameter and aε, bε, cε : R → R are functions depending on
this parameter and the phase-field variable φ. The key idea is to choose these functions
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such that in the sharp-interface limit ε → 0, at least formally, we recover the classical
eigenvalue problem (CL). This kind of relaxation was also applied in [41, 96, 97] in the
modeling and analysis of fluid dynamics.
In Part II of the thesis we will focus on the the system of equations of linear elasticity.
Here we allow now for structures which are composed of multiple materials, i.e., we pass
from a scalar-valued phase-field to a vector-valued one. The governing system of equations
is given as 

−∇ · [Cε(φ)E(wε,φ)] = λε,φρε(φ)wε,φ in Ω,
wε,φ = 0 on ΓD,

[Cε(φ)E(wε,φ)] n = 0 on Γ0,

(AE)

with the disjoint splitting ∂Ω = ΓD ∪ Γ0. Here the elasticity tensor Cε and the density ρε

are from a modeling point of view closely linked to the coefficient functions aε, cε appearing
in the Laplace problem (AL). The corresponding sharp-interface problem is of Neumann
type and thus a rigorous analysis of the sharp-interface limit is quite delicate and to
the best of the author’s knowledge not performed yet. Nevertheless, in Chapter 6 we
will derive the following sharp-interface limit system together with first-order optimality
conditions in the framework of formally matched asymptotic expansions

−∇ · [CE(w)] = λρw in D,

[CE(w)] n = 0 on ∂D,
(CE)

which we simplified for the sake of this introduction.
Now let us come to the formulation of the optimization problems which are given anal-
ogously in both parts of the thesis. This is why we will for the moment consider the
scalar-valued case. A key ingredient in the optimization problems studied in this thesis
will be the so called Ginzburg–Landau energy

Eε
GL(φ) =

ˆ
Ω

ε

2 |∇φ|2 + 1
ε
ψ(φ) dx,

where ψ : RN → R∪{+∞} is a bulk potential. This energy was first introduced in [67] as
it describes the demixing of two materials or fluids as ε → 0. In optimization problems it
serves as a penalizing term accounting for the desired phase-field structure and providing
us with well-posed problems, see e.g., [32,39,43,96]. In the works [23,126,127,135,147,148]
this energy is studied in the framework of Γ-convergence as an approximation of the
perimeter of the limit shape both in the scalar-valued and in the vectorial case. Of course
the analysis of this energy depends on the specific choice of the potential ψ. In this thesis
we mostly work with the non-smooth double obstacle potential, rigorously studied in this
context in [37], but we will also allow for the standard continuous double-well potential
studied in [126, 127, 147]. The double obstacle potential is obtained via a so called deep
quench limit from the originally proposed logarithmic energy potential in [67]. From a
physical viewpoint this means that using such kind of a non-smooth potential models
the behavior of phase separation when the temperature is small compared to the critical
temperature, see [37,130].
It is the goal of this thesis to understand the cost functional

Jε
l (φ) := Ψ(λε,φ

i1
, . . . , λε,φ

il
) + γEε(φ),
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where λε,φ
i1
, . . . , λε,φ

il
is a finite selection of eigenvalues either to (AL) or (AE) and γ > 0

is a parameter weighting the perimeter penalization. The function Ψ : (R>0)l → R can
be chosen quite general and thus, allows us to formulate a large variety of optimization
problems involving the above selection of eigenvalues, such as linear combinations of these
eigenvalues. Hence, this general formulation includes problems ranging from classical ones
such as minimizing the first Dirichlet eigenvalue, see [90,108,117,139] to problems which
especially numerically have not been considered yet, such as the simultaneous minimiza-
tion and maximization of different eigenvalues. Thus, studying the phase-field approach
has two main benefits. On the one hand it is a framework very well suited for mathe-
matical analysis and numerical computations and on the other hand by considering the
sharp-interface limit we can justify that the phase-field formulation is indeed a suitable
approximation of the aforementioned classical spectral shape and topology optimization
problems.
To conclude this introduction let us give an overview over the existing literature in order
to put our theory into further context both from an analytical and a numerical viewpoint.
In the pioneering papers [61, 63, 73] a relaxed formulation is introduced for shape opti-
mization problems where the state equation is given as a Dirichlet problem. Their theory
is based on the relaxation of Dirichlet problems derived in [77]. Relaxation in this con-
text means that the intuitive optimization problem formulated in the class of open sets is
replaced by a much more general problem where not the shapes directly but non-negative
Borel measures serve as controls in the optimization problem. This relaxation is indeed
necessary, because general shape optimization problems on the sharp-interface level are
not well-posed in the class of open sets, see e.g., [49, Section 4]. Based on this relaxed
formulation the authors of [64] show well-posedness of above optimization problems in the
class of so called quasi-open sets. In particular, spectral optimization problems associated
to the Dirichlet-Laplacian can be treated in this framework, see also [62]. Quasi-openness
is a generalization of the concept of openness and is very naturally associated to the
Sobolev space H1(Ω), see [110, Section 3.3.4] and Section 2.2.6.
This theory will also be of crucial importance when considering the Γ-limit of the cost
functionals studied in this thesis in Chapter 3, because there we will perform a smoothing
argument on the sharp-interface level which requires the continuity of eigenvalues with
respect to this approximation. Note that in our analysis and in above references the
monotonicity of the function under which the eigenvalues enter the cost function, in our
notation the function Ψ, is crucial, because only then the monotonicity of Dirichlet eigen-
values with respect to set inclusion is inherited by the whole cost functional. In some cases
there are results in the literature when this monotonicity assumption does not need to be
satisfied. In this spirit in [28, 50] an existence result is shown when the cost functional
depends only on the two lowest eigenvalues.
Furthermore it is crucial in all of the above results and also in our analysis that all shapes
belonging to the admissible set are contained in a bounded design domain. By a deep ge-
ometric analysis the existence result of [64] is generalized in [123] to the unbounded case.
Independently this generalization was also proven in [48] which relies on the concept of
shape subsolutions allowing the author to deduce that minimizers of the k-th eigenvalue
are sets of finite perimeter. A further interesting approach is performed in [106] for the
minimization of the principal Dirichlet eigenvalue with a volume constraint. There the
author shows the existence of a Lipschitz regular minimizer, particularly proving that the
minimization in the case of the first Dirichlet Laplace eigenvalue is indeed well-posed in
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the class of open sets, not only in the larger class of quasi-open sets. This is of course
clear when a ball satisfying the volume constraint fits into the surrounding design domain,
due to the Faber-Krahn theorem. The approach was already applied by the same author
to general Dirichlet problems with a given force on the right hand-side of the equation
instead of the eigenvalue, see [105]. It uses a beautiful approximate problem where a
relaxation function gε enters which is reminiscent of our penalization function bε. Here no
phase-field enters but the eigenfunction uε of the approximate problem is plugged into gε

allowing the author to show via a clever Lagrange multiplier technique the convergence
of principal eigenvalues of the approximate problem to the initial non-relaxed principal
eigenvalue.
Let us also relate our analysis to the work in [12]. The authors there investigate the conti-
nuity of eigenvalues of penalized Dirichlet eigenvalues. Similar to the works [38,40,42,133]
which will be discussed below, the penalizing coefficient function is given as λa where λ
is some constant (not the eigenvalue) sent to infinity in the limit and a is a suitably nice
Borel function which is fixed along the limit process and only depends on the spatial vari-
able. Our case of bε(φε) is much more general than just scaling by a constant, as we do
not have a priori knowledge on the phase-fields as ε → 0 other than L1-convergence and a
rate condition. Let us also mention the work [65] which tackles shape optimization prob-
lems where the controls are given as Schrödinger operators. As mentioned there, certain
types of Schrödinger operators can be used to approximate classical shape optimization
problems similarly to the bε term in our phase-field approach.
A very vivid field of research is also the analysis of the regularity of minimizing shapes
for spectral shape optimization problems, see [56, 66, 80, 81, 118, 124, 125]. Note that our
analysis does not provide regularity results but also does not rely on further knowledge on
the regularity of minimizers as the sharp-interface problem in our case is always formulated
in the class of sets of finite perimeter.
Now let us comment on the numerical aspects. The numerical simulations discussed in
this thesis are implemented by Dr. Christian Kahle in a finite element setting via the vari-
able metric projected gradient (VMPT) method in order to solve the optimization problem.
This method is very well suited for problems formulated in the diffuse interface framework
as it extends the projected gradient method to the setting of non-reflexive Banach spaces,
which is the class of spaces the optimization problems we deal with are formulated in.
The method was developed in [36] and applied to shape and topology optimization, e.g.,
in [33,98]. We will see that one of the strengths of the phase-field approach in combination
with this method is that it allows for a large variety of optimization problems that have
not been simulated in the existing literature.
At this point let us review the existing literature concerning numerical approaches for
spectral shape and topology optimization problems. In [38, 40, 42, 133] the authors use
a phase-field like penalization (also there referred to as fictious domain method) in or-
der to obtain a relaxation of an optimal partition problem for the first Dirichlet-Laplace
eigenvalue which is suited for numerical computations. Note that their justification of
the convergence of the relaxed problem to the desired optimization problem is limited
to the first Dirichlet eigenvalue as a concavity arguments is exploited. As also stated
by the authors this argumentation does not extend to the larger Dirichlet eigenvalues.
More precisely, it is only shown that the values of the relaxed cost functionals converge
to the values of the initial cost functional, see [42, Theorem 2.4]. But for eigenvalues
other than the first one it is not clear whether the minimizers of the relaxed problem
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converge to a characteristic function representing the desired partitioned shape. In this
thesis however, the rigorous study of the sharp-interface limit goes beyond these results as
the Γ-convergence of the cost functionals in Chapter 3 is shown no matter which Dirichlet
eigenvalues are involved.
Also in the context of optimal partition problems for the first Dirichlet-Laplace eigen-
value, [153] proposes a relaxation approach via a diffusion generated method. Only the
continuity of the first eigenvalue is discussed with respect to the relaxation and no Γ-
convergence result is provided.
A beautiful numerical comparison between the classical method of boundary variation and
a relaxed approach involving the level-set method for the optimization of Dirichlet eigen-
values is contained in [134]. Here the relaxation is directly based on the initial measure
theoretic relaxation for shape optimization problems of [63] described above, combined
with a finite element method. The results there were improved and also extended to the
Neumann case in [15,17] by solving the eigenvalue problem via the method of fundamental
solutions, see [13], and the optimization problem via a gradient method evolving the shape
with the shape derivative of eigenvalues. Results using the same method for the associated
perimeter constrained problem were simulated in [16]. In [15,16] the shape is parameter-
ized in polar coordinates which restricts their method to the class of star-shaped domains.
In [17] the shapes are parameterized by a level-set like method using Fourier series, which
also allows for multiple connected components. Let us also mention the related work [30]
which uses a finite element discretization combined with the previously mentioned Fourier
series parameterization to compute the eigenvalues and boundary variations to solve the
optimization problem.
Finally [39] uses a phase-field approach similar to the one proposed in this thesis combined
with a finite difference discretization in order to tackle the minimization of Dirichlet
eigenvalues with perimeter constraint. Nevertheless, the theory in the thesis at hand
allows for more general penalizing terms in the approximate eigenvalue problem and is
able to deal with additional volume constraints and point-wise constraints. Furthermore
our proof of Γ-convergence is more flexible regarding the construction of the recovery
sequence as it only relies on the continuity properties rigorously derived in this thesis when
passing from diffuse to sharp-interfaces. More precisely opposed to [39], we do not require
the monotonicity of eigenvalues with respect to the recovery sequence in order to obtain
the lim sup inequality. In particular, we cover not only the case of smooth potentials in
the Ginzburg–Landau energy but account for the non-smooth double-obstacle potential.
In the numerical section of Chapter 3 we will reproduce the results of [17] but simulate
several other non-standard examples such as simultaneous minimization and maximization
of eigenvalues or the presence of obstacles within the design domain. In the multi-phase
case in Chapter 5 we will reproduce results of [5] obtained via the level-set method but
also simulate other non-standard examples such as the maximization of the sum of the
first two eigenvalues and joint compliance and spectral optimization.
So far we have mostly focused on eigenvalues to the Dirichlet problem. To conclude
this introduction let us discuss the issues occurring when considering Neumann boundary
conditions. On the sharp-interface level the spectrum of the Neumann-Laplacian can be
extremely unstable under general domain perturbations as stated in [49, Section 7]. As
shown in a classical example by Courant and Hilbert, see [108, Section 2.3.4], the first
non-trivial Neumann eigenvalue can degenerate along a sequence of shapes γ-converging
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to a rectangle. Obviously a rectangle has non-trivial second Neumann eigenvalue. So there
is in general no hope to obtain continuity of the Neumann spectrum. For the concept of
γ-convergence see Section 2.2.6. Note that as opposed to the Neumann eigenvalues, the
Dirichlet eigenvalues are continuous with respect to γ-convergence.
The main problem, in particular in the light of a Γ-convergence approach, is that the
Neumann problem as opposed to the Dirichlet or the Robin problem does not involve an
energy which controls the behavior of eigenfunctions at the boundary, see also [54] where
the additional boundary energy in the Robin problem is crucial for the analysis in the
SBV setting.
Nevertheless, there is very recent progress concerning the Neumann problem also from
the viewpoint of a suitable numerical approximation, see [55]. There the authors use de-
generate densities which also naturally arise in our phase-field approach as the coefficient
functions aε(φ) and cε(φ). In [55, Lemma 14] they prove an approximation result for the
Neumann eigenvalues which we believe can also be used to prove the continuity when
passing from the diffuse interface level to the sharp-interface level if the final shape is
assumed to be smooth enough. But a delicate subsequent step would be the approxima-
tion of an arbitrary finite perimeter set by smooth sets on the sharp-interface level and
to obtain the continuity of the Neumann eigenvalue with respect to this approximation in
analogy to the Γ-convergence proof in the Dirichlet case in Chapter 3. Note that using our
approach we can guarantee the convergence of shapes not only in symmetric difference but
the associated characteristic functions converge strictly in BV which is a slightly better
property, as this guarantees that in the limit no perimeter is lost, which is a key issue in
the counter example by Courant and Hilbert mentioned above.
This discussion motivates why in Part II of this thesis in Chapter 6 we pursue a formal
approach in order to derive a limit optimality system. As noted above, we will see in Chap-
ter 6 that (AE) corresponds to the Neumann problem (CE) on the sharp-interface level,
so a rigorous limit passage at the moment seems out of reach. Nevertheless, the spaces
of generalized functions of bounded variation GSBV applied to the Ambrosio-Tortorelli
functional to provide a phase-field relaxation of the Mumford-Shah problem and general-
ized functions of bounded deformation GSBD applied to linear elasticity are verified to
be the adequate function spaces for Γ-convergence results when no boundary energy is
present, see [45,69–71,76,92]. Thus, it would be a promising further research topic to use
theses spaces in order to derive Γ-convergence results for optimization problems involving
the Neumann spectrum.

1.2. Structure and main contributions of this thesis

In Chapter 2 we will formulate the problems, make the necessary assumptions and give
the most important theory applied in this thesis.
In Chapter 3 we will focus on general optimization problems involving the eigenvalues of
the Laplacian with either Dirichlet or Neumann boundary data.
Section 3.2.1 comprises the analysis of the optimization problems associated to the Dirich-
let and Neumann-Laplace eigenvalues, i.e., it studies the existence of the spectrum and
the continuity and differentiability of spectral quantities with respect to the phase-field
variable. In Section 3.2.2 we will state the optimality system resulting from these pre-
vious properties. In particular the Fréchet-differentiability of simple eigenvalues is used
to arrive at a variational inequality serving as first-order optimality condition. Here,
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the assumption that the considered eigenvalues are simple will be essential, as otherwise
Fréchet-differentiability can not be guaranteed. Note that in these two sections we keep
the proofs short as they directly follow from their counterparts in linear elasticity proven
in full detail in Chapter 5.
In Section 3.3 we perform an in depth and rigorous study of the sharp-interface limit of
the Dirichlet problem in the framework of Γ-convergence. As a first step we will analyze
the sharp-interface limit problem and especially the continuity of spectral quantities when
passing from diffuse to sharp-interfaces, see Section 3.3.1. On the basis of these results we
will then show in Section 3.3.2 the Γ-convergence of cost functionals in the Dirichlet case.
In a first step in Theorem 3.3.11 we will show Γ-convergence of cost functionals which do
not involve the volume constraint and then in the final proof of Theorem 3.3.9 we will
see how we can modify the recovery sequence constructed in Theorem 3.3.11 in order to
account for the desired mean value. Finally, in Section 3.4 we provide numerical simu-
lations, which were carried out by Dr. Christian Kahle from the University of Koblenz.
Through many numerical examples we show the strength of the phase-field approach ap-
plied to shape and topology optimization problems. In particular our approach allows us
to reproduce former results obtained by [17] but is also capable of dealing with a broad
variety of spectral shape optimization problems exceeding the classical examples given in
the literature.
In Chapter 4 we then apply the results of the previous chapter in the context of the most
fundamental problem when it comes to spectral optimization, namely the Faber–Krahn
theorem. The intention of this chapter is to derive a novel phase-field version of this
celebrated theorem. Our main results show that all minimizers φε of this optimization
problem are radially symmetric-decreasing functions which indeed exhibit a phase-field
structure (see Theorem 4.3.7 and Theorem 4.3.8). This radial symmetry of the phase-
fields is the natural analogue to the radial symmetry of the balls in the Faber–Krahn
inequality. Furthermore, by means of Γ-convergence we link this diffuse interface version
to a general Faber–Krahn theorem in the framework of functions of bounded variations, see
Theorem 4.3.15 and Corollary 4.3.16. Note that in this chapter a homogeneous Dirichlet
boundary condition is crucially imposed on the phase-field variable in order to apply the
theory of symmetric-decreasing rearrangements. This gives rise to a Γ-convergence proof
in the case of boundary data extending the theory of the previous chapter. At this stage
we will give two versions of the proof, one inspired by [43] and the other inspired by the
more general framework of [135].
In Chapter 5 we consider eigenvalues in the framework of linear elasticity. As explained
above we now analyze a system of equations in the multi-phase case. As this system is
more involved we present here all the proofs in detail which then are easily carried over
to the proofs of Section 3.2. First of all in Section 5.2 we prove the existence of spectral
quantities solving the state equation. Afterwards in Section 5.3 we prove continuity of
eigenvalues and eigenfunctions with respect to the phase-field variable. Here the notion of
continuity is specifically tailored to the one induced by the optimization problem. More
precisely, we show continuity of spectral quantities when the phase-fields only weakly
converge in H1(Ω;Rd), see Theorem 5.3.4. However, under stronger assumptions on the
convergence of the phase-fields we will even show Lipschitz continuity of eigenvalues, see
Lemma 5.3.5.
In Section 5.4 we show the Fréchet-differentiability of simple eigenvalues and eigenfunc-
tions in Theorem 5.4.3 and provide an ansatz for still obtaining directional derivatives in
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the case of a multiple principal eigenvalue. Afterwards, in Section 5.5 the well-posedness
of the associated optimization problem is shown. Finally, in Theorem 5.5.3, we arrive at
first-order necessary optimality conditions which involve a variational inequality crucially
depending on the derivative of the involved eigenvalues. Finally in Section 5.6 we combine
the eigenvalue problem with compliance minimization problems as studied, e.g., in [32].
In Chapter 6 we use the method of formally matched asymptotic expansions in order derive
the sharp-interface limit of the problem studied in Chapter 5. This method will not only
provide us with an eigenvalue equation in the limit but also with a gradient equality,
see Section 6.7. This gradient equality is obtained in two steps. First, in Section 6.3,
we carefully analyze the variational inequality, obtained in the previous chapter, via the
regularization procedure from [35] in order to arrive at an equality on the diffuse interface
level which is suited for the asymptotic process. In order to arrive at this equality a
regularity assumption on the eigenfunctions involved in the gradient inequality will be
crucial.
The asymptotic process itself will be carried out in several steps. In Section 6.4.1 we derive
the state equations of the limit problem via outer expansions which capture the behavior
of the phase-field in regions away from an interface. Furthermore in Subsection 6.4.2 we
will include a discussion on how an adequate choice of model parameters is able to deal
with localized eigenmodes. This will in particular motivate the model used for the final
numerical computations.
The foundations for inner expansions are layed in Section 6.4.3 in full detail where a
rescaled coordinate system is introduced in order to capture rapid changes of the phase-
field variable in interfacial layers. In intermediate layers both expansions are matched in
Section 6.5. Finally in Section 6.6 both the state equation and the gradient equality are
considered to leading orders. This procedure allows us to derive boundary conditions on
the free boundary prescribed by the materials in the sharp-interface setting. Furthermore
it will provide us with a limit of the gradient equality. Section 6.7 then comprehensively
states the limit optimality system. In Section 6.8 we will relate this equality to the first-
order condition of the corresponding optimization problem formulated in the framework
of classical shape derivatives from [5]. In the numerical simulations, carried out by Dr.
Christian Kahle, in Section 6.9 we will justify our model by successfully comparing it
to the cantilever beam examples in [5]. Furthermore we will provide simulations for
the simultaneous maximization of the first two eigenvalues and a joint optimization of
compliance and principal eigenvalue.
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Chapter 2

Preliminaries

2.1. Formulation of the problem

2.1.1. The design domain and the phase-field variable

Throughout this thesis we fix a bounded design domain Ω ⊂ Rd, d ∈ N with Lipschitz
boundary. Whenever we are concerned with Γ-convergence, i.e. in Section 3.3.2 and
Theorem 4.3.17 we need to strengthen this assumption to d ≥ 2 because there we are in
need of the theory of quasi-open sets, see Section 2.2.6, but we will recall this fact later
on. In Chapter 4, we will always restrict the design domain to the case Ω = BR(0), i.e.,
Ω is the ball centered at the origin with finite radius R > 0.
Within the design domain now lives a set D which from a mathematical point of view in
our model will be quite general namely a set of finite perimeter, see Section 2.2.4. This
set is the quantity that is to be optimized and thus we denote it as shape. More precisely,
the goal of our shape and topology optimization problems is to minimize a cost functional
involving a selection of eigenvalues by adjusting the shape D in an optimal way.
The key concept in this thesis is to replace this sharp interface problem by a diffuse
interface relaxation via a phase-field approach. Here we need to differentiate two different
models according to the two different parts of this thesis.
In Chapter 3, to approximate the shape D, we use a scalar-valued phase-field function
φε : Ω → [−1, 1] which attains the value +1 in most parts of D and the value −1 in
most parts of the relative complement Ω\D. These extremal values of the phase-field
will be referred to as the pure phases as they capture either the shape we are interested
in or its complement. In physical terms the set {x ∈ Ω | φε(x) = 1} is the set where the
design domain is entirely filled by one material, whereas the set {x ∈ Ω | φε(x) = −1}
corresponds to the void part. In Chapter 4 we are going to replace the void value −1
by the value 0 in order to account for an elegant application of the theory of symmetric-
decreasing rearrangements, see Section 2.2.3.
In Part II of the thesis we pass to the so called multi-phase approach, by considering a
vector-valued phase-field variable. Here the distribution of N ∈ N materials is represented
by the vector-valued phase-field φε : Ω → RN . This means, for any i ∈ {1, ..., N}, the
component φi,ε ranging from 0 to 1 can be interpreted as the concentration of the i-th
material. In this regard, φi,ε = 0 describes the absence of the i-th material, whereas
φi,ε = 1 means that only the i-th material is present. We use the convention that void is
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also interpreted as a sort of material, whose distribution is given by the N -th component
of the vector φε. Thus, in the vector-valued case the pure phases are represented by the
family of standard basis vectors ei ∈ RN for i = 1, . . . , N .
In any of these cases, the free boundary ∂D of the sharp shape is approximated by a thin
interfacial layer in which the phase-field variable performs a suitably regular transition
between the pure phases. This regularity will be understood in the weak sense of Sobolev
spaces in the following section. The thickness of this transition region, also referred to
as diffuse interface, is proportional to a small parameter ε > 0 also indicated in the
phase-field variable. In our notation we will often drop this ε dependence when ε > 0 is
fixed.
In the sharp interface limit, i.e., sending the interface thickness ε → 0, we expect a cor-
responding sequence of phase-fields to converge to a function with much less regularity.
Loosely speaking, this limit function will exhibit jumps across the sharp interfaces sepa-
rating the pure phases. Here the space of functions of bounded variation, see Section 2.2.4,
will provide an adequate formulation. The rigorous analysis of the sharp interface limit
for the Dirichlet-Laplace spectral optimization problem in Chapter 3 and the formal anal-
ysis of the sharp interface limit for the spectral optimization problem in the framework of
linear elasticity in Chapter 6 are at the heart of this thesis.
As the notation and the specific assumptions vary between the two-phase case in Part I
and the multi-phase case in Part II, we will at first focus on the preliminaries of the
first part and then explain the necessary adaptions in upcoming sections introducing the
second part.

2.1.2. The constraints on the phase-field in Part I

Having optimization problems in mind we will now formulate the constraints that we
demand the phase-fields to satisfy. For the moment let us focus on the setting of Chapter 3.
First of all, we prescribe regions within the design domain Ω where the pure phases are
prescribed. Mathematically speaking, we fix two disjoint measurable sets S0, S1 ⊂ Ω such
that Ω̃ := Ω\(S0 ∪ S1) is a domain with Lipschitz boundary. This is, for example, the
case if we choose S0 and S1 as closed balls which keep a fixed, positive distance between
themselves and towards the boundary ∂Ω of the design domain. Thus, the set representing
these constraints on φ is given as

U :=
{
φ ∈ L1(Ω)

∣∣∣φ = −1 a.e. on S0 and φ = 1 a.e. on S1
}
. (2.1.1)

As the values of φ ∈ U are fixed on S0 ∪S1, the relevant set in our optimization process is
given as Ω̃ which will play also an important role in the definition of the Ginzburg–Landau
energy in Section 2.1.4.
We additionally prescribe general bounds on the mean value of φ in order to take volume
constraints into account. To this end, we impose the general constraint

β1
∣∣Ω̃∣∣ ≤

ˆ
Ω̃
φ dx ≤ β2

∣∣Ω̃∣∣,
with β1, β2 ∈ R, β1 ≤ β2 and β1, β2 ∈ (−1, 1). This condition ensures that in the sharp
interface case, where φ ∈ BV (Ω̃, {±1}), the sets {φ = 1}∩ Ω̃ and {φ = −1}∩ Ω̃ both have
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strictly positive measure. Hence, the trivial cases are excluded. Note that for the choice
β1 = β2 we obtain an equality constraint for the mean value.
Furthermore, we require sufficient regularity of the phase-field, namely H1(Ω̃), in order to
account for suitably smooth transitions between two pure phases and for the Ginzburg–
Landau energy (that will be introduced in the next subsection) to be well-defined. All
these constraints are summarized in the set

Gβ =
{
φ ∈ H1(Ω̃)

∣∣∣∣ |φ| ≤ 1, β1
∣∣Ω̃∣∣ ≤

ˆ
Ω̃
φ dx ≤ β2

∣∣Ω̃∣∣} . (2.1.2)

Finally, the admissible set, i.e., the set over which we will formulate our optimization
problem in Chapter 3, see also Section 2.1.7, is given as Φad := Gβ ∩ U . Note that we
only demand φ ∈ H1(Ω̃), i.e., we do only prescribe regularity in the region of the design
domain where the phase-field is not fixed by the prescribed values in U . We will comment
on that in further detail in Section 2.1.4.
We point out that for the upcoming analysis in Section 3.2, we could also include a con-
straint preventing the shape to touch the boundary, i.e., the Dirichlet boundary condition
on the phase-field φ = −1 on ∂Ω, which is used also in some of the numerical simulations
presented in Section 3.4. In order for this constraint to be well-defined in the trace sense,
and not to interfere with the one formulated via U in (2.1.1), we would also need to de-
mand S1 ⊂⊂ Ω to be compactly contained. Nevertheless, we do not include this Dirichlet
condition in the discussion of the sharp interface limit in Section 3.3 as this would pro-
duce an additional term in the Γ-limit of the Ginzburg-Landau energy as explained in the
following section.
In Chapter 4 we will rigorously incorporate this boundary condition on the phase-field
and especially prove the Γ-limit result in this more complex setting requiring to carefully
adapt the Γ-limit proof of Theorem 3.3.11 to obtain Theorem 4.3.17. Note that we are also
forced to do so, because without the inclusion of this Dirichlet condition the application of
the technique of symmetric-decreasing rearrangements is bound to fail, see Remark 2.2.13.
Let us now introduce the remaining constraint formulated in Chapter 4. There we are
concerned with the Faber–Krahn theorem where only a volume constraint is present.
Thus, we do not prescribe the point-wise constraint (2.1.1) there. Furthermore above
volume constraint is simplified to  

Ω
φ dx = m,

with prescribed m ∈ (0, 1). Recall that here the pure phase −1 used in Chapter 3 in order
to model void is replaced by the value 0, thus the volume constraint exactly corresponds
to the case when β1 = β2 previously mentioned. Combining this volume constraint with
the appropriate regularity of the phase-field and the above mentioned Dirichlet boundary
condition we arrive at the admissible set

Φad :=
{
φ ∈ H1

0 (Ω)
∣∣∣∣∣ 0 ≤ φ(x) ≤ 1 for a.e. x ∈ Ω,ffl

Ω φ dx = m

}
⊂ H1

0 (Ω) ∩ L∞(Ω) .

2.1.3. The constraints on the phase-field in Part II

Let us now consider the constraints formulated for the vector-valued phase-field variable
φ : Ω → RN used in Chapter 5 and 6. We want to prescribe the total spatial amount of
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each phase. To this end, we impose the mean value constraint
 

Ω
φ dx = m = (mi)N

i=1,

where mi ∈ (0, 1) is a fixed given number for any i ∈ {1, . . . , N}. In addition, we want
φ(x) for a.e. x ∈ Ω and thus, also the vector m to be an element of the set

ΣN =
{

ξ ∈ RN

∣∣∣∣∣
N∑

i=1
ξi = 1

}
.

This constraint is a plausible consequence of the physical fact that at each point in space
the volume fractions of the materials should sum up to 1. Furthermore, being a volume
fraction, each component of φ(x) clearly has to be non-negative. For the upcoming
analysis, in analogy to the two-phase case we want to prescribe a suitable regularity for
the phase-field, namely H1(Ω;RN ). All these constraints are expressed in the set

Gm =
{

φ ∈ G
∣∣∣∣  

Ω
φ dx = m

}
.

Here, G is given by

G =
{

φ ∈ H1(Ω;RN )
∣∣∣ φ(x) ∈ G for almost all x ∈ Ω

}
,

where G = RN
+ ∩ ΣN with

RN
+ =

{
ξ ∈ RN

∣∣∣ ξi ≥ 0 ∀i ∈ {1, . . . , N}
}
.

The set G is referred to as the Gibbs-Simplex.
In Chapter 5 we additionally impose a point-wise constraint in analogy to the previous
section. Thus, we fix two disjoint measurable sets Si ⊂ Ω with i ∈ {0, 1} and define the
set

U c :=
{

φ ∈ H1(Ω;RN ) |φN = 0 a.e. on S0 and φN = 1 a.e. on S1
}
,

to fix material on S0 and complete void on S1. Note that as we are not concerned with
the sharp interface limit in Chapter 5 we can simply impose the H1-regularity on the
whole of Ω without worrying about the regularity of the sets S0, S1. Nevertheless, in
order to obtain a well-posed optimization problem in Section 2.1.11, these sets have to be
chosen such that U c ̸= ∅, which is for example guaranteed if the sets keep a positive fixed
distance.
In Chapter 6 however, we omit above constraint as our analysis in Section 6.3 is not
able deal with it. More precisely, in the regularization process applied to the gradient
inequality, we would get additional terms resulting from the constraint U c in which we
are not able to pass to the limit. Therefore we omit this constraint in order to recover
a strong formulation of the original non-regularized gradient inequality by passing the
regularization parameter to the limit, see also Theorem 6.3.12.
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2.1.4. The Ginzburg–Landau energy

Let us give a general introduction to the Ginzburg–Landau energy which in phase-field
models is a key ingredient in the objective functional. Let us assume for the moment that
we can formulate this energy on the whole design domain Ω. Then the Ginzburg–Landau
energy is given as

Eε
GL(φ) =

ˆ
Ω

ε

2 |∇φ|2 + 1
ε
ψ(φ) dx, ε > 0. (2.1.3)

Here, the potential ψ : R → R∪{+∞} is assumed to have exactly the two global minimum
points at the pure phases, which we denote for the sake of this general introduction with
−1 and +1, with

min
R
ψ = ψ(±1) = 0.

We have already indicated in the introduction that the minimization of the Ginzburg–
Landau energy enforces the demixing of phases into their pure form. Heuristically, this is
seen as follows. The gradient term in (2.1.3) wishes the phase-field to be as constant as
possible or in other words to have as less transitions as possible. Our volume constraints
on φ of the previous section are now chosen in such a way that the design domain is neither
completely occupied by the shape neither completely empty. Thus, transitions need to
take place. Naively, the gradient term in the energy can be kept small by choosing this
transition region to be very thin. But the thinner this region gets the steeper the phase-
field transition gets and we pay with a large gradient.
These two effects now obviously compete and this is where the interface parameter ε
comes into play. Let us assume that the thickness of the transition region corresponding
to φε is of order O(ε). Then formally the gradient is of qualitative order

∥∇φε∥L∞(Ω) = O(ε−1).

In combination, we deduce that as long as the transition region is of order O(ε) the
gradient term in the energy (2.1.3) remains finite as ε → 0.
Now let us come to the potential term. So far the gradient term only tells us that
transitions should happen at a length-scale of order O(ε) but not in between which specific
values this takes place. So it is not surprising that the potential is constructed in such a
way that it favours the pure phases. More precisely by considering the above transition
φε enforced by the gradient term, we arrive at

ˆ
Ω
ψ(φε) dx = O(ε),

as ψ vanishes outside the transition layer which is of order O(ε). Thus, this discussion
justifies why we expect minimizers of the Ginzburg–Landau energy to perform transi-
tions between the pure phases on a legthscale proportional to ε. At this point we want
to mention that from a numerical point of view the constants appearing in such quali-
tative estimates can in general be quite large and thus “proportional” especially in the
quantitative sense has to be understood with care.
As already indicated in the introduction and as we will also see explicitly in Chapter 4
there are two qualitatively different cases depending on the explicit choice of the bulk
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potential ψ. We will refer to these cases as the smooth and the non-smooth case and
give an in depth mathematical treatment of the following discussion in Chapter 4 and
especially the proofs of Theorem 4.3.17.
If ψ is chosen to be a function belonging to C1,1

loc (R,R) we speak of the smooth case. A
classical choice here is the quartic double-well potential ψ(φ) = 1

4(1 −φ2)2, see [126,147].
In this case, although the transition layer is qualitatively of order O(ε), the pure phases
will be reached only asymptotically. In particular we will see in the construction of the
optimal profile in Theorem 4.3.17 that a stretching of the transition layer combined with
a suitable interpolation will be necessary in order for the phase-field to reach the pure
phase values on a finite length-scale, see also the construction in [135,147] our analysis in
this case is based on. A beautiful side note, also mentioned in [135], is that this stretching
introduces an intermediate region which is crucial in the theory of formally matched
asymptotic expansions because in this region both inner and outer expansions meet and
via matching conditions one is able to deduce boundary conditions on the sharp-interface
boundary, see Chapter 6.
Now let us come to the non-smooth case, which will be the one mostly used in this thesis.
Let ψ be decomposed as ψ(φ) = ψ0(φ) + I[−1,1](φ) with I[−1,1] : R → R∪ {+∞} being the
indicator functional

I[−1,1](ξ) =
{

0 if ξ ∈ [−1, 1],
+∞ otherwise.

and ψ0 ∈ C1,1
loc (R;R), denoted as the regular part of ψ. A classical choice here is the

quadratic potential ψ0(φ) = 1
2(1 − φ2), see [37]. Now ψ is a non-smooth potential taking

the value infinity outside the pure-phase interval. This choice is referred to as double-
obstacle potential as it enforces φ to stay within the pure phase interval [−1, 1] as this
interval is not penalized by the indicator functional. We refer to [87] who first introduced
this obstacle formulation of the energy Eε

GL. Compared to the smooth case this choice has
the benefit that it is possible to construct an optimal profile directly connecting the pure
phase values on a length-scale of O(ε), i.e., the pure phases are reached in finite time, see
the proofs of Theorem 4.3.17. Note that in the framework of [37] the energy is scaled with√
ε and not with ε as in our setting.

If we do not give detailed assumptions on the choice of the potential in the upcoming
analysis of this thesis we will allow both for the smooth case and for the non-smooth
case, with general ψ ∈ C1,1

loc in the smooth case and ψ0 ∈ C1,1
loc in the non-smooth case. In

particular if we are in the smooth case we will identify ψ = ψ0 in our notation.
In the light of first-order optimality conditions, see Chapter 3 and Chapter 5, we also wish
to derive the Ginzburg–Landau energy with respect to φ. In our optimization problems,
we impose the phase-field constraint φ ∈ Φad, which implies that the phase-field variable
does not leave the pure phase interval. Thus, it suffices to include the regular part

Eε(φ) :=
ˆ

Ω

(
ε

2 |∇φ|2 + 1
ε
ψ0(φ)

)
dx, (2.1.4)

of the Ginzburg–Landau energy in the cost functional, since Eε(φ) = Eε
GL(φ) for all φ ∈

Φad. This is important for the analysis as it allows us to compute directional derivatives

d
dtE

ε(φ+ t(φ̃− φ))
∣∣
t=0 =

ˆ
Ω
ε∇φ · ∇(φ̃− φ) dx+

ˆ
Ω

1
ε
ψ′

0(φ)(φ̃− φ) dx,
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in every direction φ̃− φ with φ̃ ∈ Φad .
Let us mention a further detail which will be important for Chapter 3 in view of the Γ-limit
performed in Section 3.3.2. In the light of the point-wise constraint (2.1.1) the relevant
set of our optimization process is Ω̃ thus, in Chapter 3 we consider the Ginzburg–Landau
energy restricted to this set Ω̃, i.e.,

Eε
GL(φ) =

ˆ
Ω̃

ε

2 |∇φ|2 + 1
ε
ψ(φ) dx.

Thus, it is also natural to include only the regularity H1(Ω̃) in the definition of Gβ in
(2.1.2). If we demanded φ ∈ H1(Ω) ∩ U , we would obtain Dirichlet conditions

φ = −1 on ∂S0,

φ = 1 on ∂S1.

This would produce an additional contact energy term in the Γ-limit of Eε as ε → 0,
see [135]. In order to avoid this phenomenon and to obtain the classical Γ-limit as studied
in [37,126,147], the energy and the H1-regularity are restricted to the subset Ω̃ ⊂ Ω, which
also reveals the regularity assumption on the sets S0, S1 with respect to Ω. Nevertheless, as
mentioned above, we will rigorously include a homogeneous Dirichlet boundary condition
on the phase-field in Chapter 4.
In Part II of this thesis the Ginzburg–Landau energy is defined as in (2.1.3) but now of
course depending on the vector-valued phase-field φ : Ω → RN . Thus, we suitably modify
the bulk potential ψ. The function ψ : RN → R ∪ {+∞} should attain exactly N global
minima of value zero attained at the unit vectors ei ∈ RN , i.e., for all i ∈ {1, ..., N},

minψ = ψ(ei) = 0.

Recall from Section 2.1.3 that the unit vectors exactly correspond to the pure phases in our
model. Furthermore, in the whole of Part II, ψ is assumed to exhibit the decomposition
ψ(φ) = ψ0(φ) + IG(φ) with ψ0 ∈ C1,1(RN ,R) and IG being the indicator functional

IG(φ) =
{

0 if φ ∈ G,

+∞ otherwise.

Analogously as for the scalar case, this type of obstacle functional is used to enforce that φ
attains its values only in G. In our optimization problems, we will impose the phase-field
constraint φ ∈ Gm which ensures that φ(x) ∈ G for almost all x ∈ Ω. Thus, as in the
previous discussion for the scalar case it suffices to include the regular part (2.1.4) in the
cost functional.

2.1.5. The approximate eigenvalue problems in Part I

For any ε > 0, we now introduce approximate eigenvalue problems with Dirichlet bound-
ary condition and Neumann boundary condition, respectively. These problems will be
governing the analysis in Chapter 3 and 4. They will act as the state equation in the
forthcoming optimization problems. We either consider{

−∇ · [aε(φ)∇w] + bε(φ)w = λε,φcε(φ)w in Ω,
w = 0 on ∂Ω,

(2.1.5)
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or 
−∇ · [aε(φ)∇w] = µε,φcε(φ)w in Ω,

∂w

∂ν
= 0 on ∂Ω.

(2.1.6)

Here ν is the outer unit normal vector on ∂Ω, and aε, bε, cε : R → R are coefficient
functions which depend on the phase-field φ and the interface parameter ε > 0. Note that
these equations are imposed on the whole design domain and not just on the restriction
Ω̃. Of course this is necessary as the set S1 is fixed to be part of the final shape on which
the eigenvalue equation in the sharp interface limit shall hold.
For fixed ε > 0, we demand that aε, cε > Cε > 0 in order to avoid degeneration for
fixed ε and bε ≥ 0 in R. Note that if we would just choose aε = cε ≡ 1 and bε ≡ 0
we would obtain the classical Dirichlet and Neumann eigenvalue problems formulated
on the whole of Ω. The beauty of these coefficient functions is that they will enforce the
Dirichlet and Neumann problems on a shape within the design domain. We further assume
aε, bε, cε ∈ C1,1

loc (R). These properties allow us to define the following scalar products on
L2(Ω) depending on the phase-field φ ∈ L∞(Ω):

(u, η)aε(φ) :=
ˆ

Ω
aε(φ)uη dx, (u, η)cε(φ) :=

ˆ
Ω
cε(φ)uη dx, u, η ∈ L2(Ω).

The induced norms on L2(Ω) are

∥u∥aε(φ) = (u, u)
1
2
aε(φ) , ∥u∥cε(φ) = (u, u)

1
2
cε(φ) . (2.1.7)

In the following, we use the notation L2
φ(Ω) to indicate that L2(Ω) is equipped with the

φ-dependent scalar product (·, ·)cε(φ). Similarly, we equip the spaces H1
0 (Ω) and

H1
(0),φ(Ω) =

{
w ∈ H1(Ω)

∣∣∣∣ˆ
Ω
cε(φ)w dx = 0

}
with the scalar product (∇·,∇·)aε(φ). For the purpose of a clearer presentation we fur-
ther define a positive semi-definite bi-linear form (·, ·)bε(φ) in the same fashion as for the
coefficient functions aε, cε. However, this bi-linear form does not define a scalar product
as it possibly degenerates.
In the subsequent analysis, we will work with the weak formulations of the approximate
problems (2.1.5) and (2.1.6) which are given as

(∇w,∇η)aε(φ) + (w, η)bε(φ) = λε,φ (w, η)cε(φ) for all η ∈ H1
0 (Ω), (2.1.8)

and

(∇w,∇η)aε(φ) = µε,φ (w, η)cε(φ) for all η ∈ H1(Ω), (2.1.9)

respectively. In Theorem 3.2.2 we will see that for any φ ∈ L∞(Ω), all eigenvalues in
either the Dirichlet or the Neumann case can be written as a sequence

0 < λε,φ
1 ≤ λε,φ

2 ≤ λε,φ
3 ≤ · · · → ∞,
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or

0 = µε,φ
0 < µε,φ

1 ≤ µε,φ
2 ≤ µε,φ

3 ≤ · · · → ∞,

respectively.
In the sharp interface limit studied in Section 3.3.2 and in the modeling of the Faber–
Krahn theorem studied in Chapter 4 we will choose aε ≡ cε ≡ 1 in the approximate
problem (2.1.5), because the appropriate choice of the functions (bε)ε>0 will provide the
desired relaxation of the Dirichlet-Laplace problem on the sharp shape D as we will see
formally in the next section. Nevertheless, we include the coefficients aε, cε in the Dirichlet
problem in order to keep the model as general as possible. As we will see also in the next
section, for the Neumann problem the coefficients aε, cε are indeed essential.

2.1.6. The sharp interface limit: A formal discussion

Before we formulate the optimization problems in which (2.1.8) and (2.1.9) serve as the
state equations, we formally discuss their behavior when taking the limit ε → 0.
In both cases (2.1.5) and (2.1.6) we want to ensure that the boundary condition is not
only fulfilled on the fixed boundary ∂Ω but also on the free boundary obtained in the
sharp interface limit ε → 0. By our diffuse interface approach we want to approximate
this behavior.
Although the analytical results for ε > 0 are independent of the following considerations
as they can be carried out under the general assumptions on the coefficient functions
made in Section 2.1.5, we want to formally discuss how the coefficient functions need to
be chosen explicitly in order to obtain the desired properties in the sharp-interface limit.
For a sequence of phase-field functions (φε)ε>0 that is expected to converge to φ0 in the
sharp-interface limit ε → 0 (with φ0 attaining only the values −1 and +1), we define

Ωε
+ := {x ∈ Ω|φε(x) ≥ 0} ,

Ωε
− := {x ∈ Ω|φε(x) < 0} ,

Ω± := {x ∈ Ω|φ0(x) = ±1} ,
Γ := ∂Ω+ ∩ Ω,

where nε is the outer unit normal vector field on ∂Ωε
+ ∩ Ω and n is the outer unit normal

vector field on Γ. An illustration of the diffuse interface and the sharp interface limit can
be found in Figure 2.1.
Now, the coefficient functions are to be chosen in such a way that they enforce the bound-
ary condition

w = 0 on Γ, (2.1.10)

in the Dirichlet case and the boundary condition
∂w

∂n
= 0 on Γ, (2.1.11)

in the Neumann case. We now present suitable choices for the coefficients aε, bε and cε

and we formally discuss how the boundary conditions (2.1.10) and (2.1.11) are obtained
in the sharp interface limit.
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Ω−

Ω+

Γ

−∆w = λw

−∆w = µw

}
in Ω+

w = 0
∂nw = 0

}
on Γ

w = 0
∂νw = 0

}
on ∂Ω

Figure 2.1: The classical eigenvalue problems on D = Ω+ approximated by the diffuse
interface approach. The diffuse interface is represented by the light gray surrounding of
Γ.

In the Neumann case, we choose

aε(1) = cε(1) = 1, aε(−1) = aε, cε(−1) = cε, (2.1.12)

with constants a, c > 0. Then, condition (2.1.11) will be implicitly enforced in the follow-
ing sense. The weak formulation of (2.1.6) is given by

ˆ
Ω
aε(φε)∇wε,φε · ∇η dx = µε,φε

ˆ
Ω
cε(φε)wε,φεη dx for all η ∈ H1(Ω). (2.1.13)

Assuming that the convergence φε → φ0 implies the convergence of all appearing ε-
dependent quantities, we use (2.1.12) to recover

ˆ
Ω+

∇wφ0 · ∇η dx = µφ0

ˆ
Ω+

wφ0η dx for all η ∈ H1(Ω),

that is the weak formulation of the classical eigenvalue problem with Neumann boundary
data

−∆wφ0 = µφ0wφ0 in D = Ω+,

∂wφ0

∂n
= 0 on ∂D = Γ,

by formally sending ε → 0. Note that in order to arrive at this limit problem the degen-
eracy of aε(−1) and cε(−1) as ε → 0 is essential.
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For the Dirichlet case let us fix aε = cε ≡ 1. Then condition (2.1.10) will be ensured
by the coefficient function bε appearing in the state equation (2.1.5) by prescribing the
following properties

bε(1) = 0, lim
ε↘0

bε(−1) = ∞. (2.1.14)

The idea of adding such a coefficient function comes from the porous medium approach
that is used to model fluid dynamics phenomena, see e.g., [41, 96,97].
For ε > 0, let us consider the weak formulation of the Dirichlet problem (2.1.8) which
now reads asˆ

Ω
∇wε,φε∇η dx+

ˆ
Ω
bε(φε)wε,φεη dx = λε,φε

ˆ
Ω
wε,φεη dx for all η ∈ H1

0 (Ω).

Assuming again that the convergence φε → φ0 implies the convergence of all appearing
ε-dependent quantities, we infer that

sup
{ˆ

Ωε
−

bε(φε) |wε,φε |2 dx
∣∣∣∣∣ ε > 0

}
< ∞. (2.1.15)

In the light of the choice (2.1.14) this can only be the case if wφ0 = 0 almost everywhere
on the set Ω\Ω+ = {φ0 = −1}. Proceeding as in the Neumann case and formally passing
to the limit ε → 0 in the weak formulation, we conclude that wφ0 is a solution to the
classical eigenvalue problem on Ω+ with Dirichlet boundary data, that is{

−∆wφ0 = λφ0wφ0 in D = Ω+,

wφ0 = 0 on ∂D = Γ.

For a detailed rigorous analysis of the sharp interface limit in the Dirichlet case we refer
to Section 3.3.
However, a rigorous analysis of the Neumann problem in our framework at the moment
is not possible as the coefficient function aε chosen in (2.1.12) degenerates outside the
prescribed shape. More explicitly, testing the weak formulation of the Neumann problem
(2.1.13) with the eigenfunction wε,φε yields

ˆ
Ω
aε(φε) |∇wε,φε |2 dx = µε,φε ,

as we can assume the eigenfunction to be normalized with respect to ∥ · ∥cε(φ). To apply
classical compactness results, we need to control the Dirichlet energy of the eigenfunctions,
but aε as chosen in (2.1.12) degenerates in the phase {φε = −1} as ε → 0, i.e., on the
left-hand side we obtain the term

aε

ˆ
{φε=−1}

|∇wε,φε |2 dx.

In other words, knowing that the sequence of eigenvalues (µε,φε)ε>0 is bounded, does not
imply that, on the whole of Ω, also the Dirichlet energy is bounded.
Nevertheless, we believe that by choosing the convergence orders of aε(−1) and cε(−1) in
an appropriate way similarly to [55, Lemma 14] one can still obtain the desired convergence
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if the shape D is smooth enough. The key idea there in the notation of our setting is to
use the model parameters

aε(−1) = aε, cε(−1) = cε2,

and then apply this particular scaling to the Rayleigh quotient
´

Ω aε(φε)
∣∣∇wε,φε∣∣2 dx´

Ω cε(φε) |wε,φε |2 dx
= µε,φε ,

in order to obtain the convergence

lim
ε↘0

µε,φε = µφ0 ,

at least if the sequence (φε)ε>0 is a suitably nice recovery sequence for φ0. Note that
this choice of model parameters is also reflected in the discussion about the avoidance of
spurious eigenmodes in Section 6.4.2. In the elasticity problem there it is also essential
to scale the void part of the stiffness with a lower ε order compared to the mass in order
to exclude the case of physically unreasonable localized eigenmodes. A rigorous analysis
of the Γ-limit for the phase-field approximation of the Neumann problem is definitely a
fascinating future research project.
Having motivated the constraints and the state equations we are now in a position to
introduce the optimization problems studied in Chapter 3 and Chapter 4 for ε > 0.

2.1.7. The optimization problems in Part I

For any fixed l ∈ N and indices i1, . . . , il ∈ N with 1 ≤ i1 < i2 < · · · < il , we include a finite
selection of eigenvalues λε,φ

i1
, . . . , λε,φ

il
of (2.1.5) or µε,φ

i1
, . . . , µε,φ

il
of (2.1.6), respectively, in

the cost functional via the function

Ψ : (R>0)l → R,

which is assumed to be of class C1. As mentioned above, the Ginzburg–Landau energy
also needs to be included in the cost functional in order to guarantee for the desired
phase-field structure and well-posed optimization problems. Hence, for ε > 0, we define
the objective functional as

JD,ε
l (φ) := Ψ(λε,φ

i1
, . . . , λε,φ

il
) + γEε

GL(φ), (2.1.16)

in the Dirichlet case, and

JN,ε
l (φ) := Ψ(µε,φ

i1
, . . . , µε,φ

il
) + γEε

GL(φ), (2.1.17)

in the Neumann case, where γ > 0 is a weighting parameter. In the light of (2.1.1) and
(2.1.2), we recall the set of admissible phase-fields as Φad = Gβ ∩U . Now, the optimization
problem reads as 

min JD,ε
l (φ),

s.t. φ ∈ Φad,

λε,φ
i1
, . . . , λε,φ

il
are eigenvalues of (2.1.8)

(PD,ε
l )
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in the Dirichlet case, and
min JN,ε

l (φ),
s.t. φ ∈ Φad,

µε,φ
i1
, . . . , µε,φ

il
are eigenvalues of (2.1.9)

(PN,ε
l )

in the Neumann case.
Note that we do not need an additional assumption on the function Ψ to be bounded from
below in order for the minimization problem to possess a minimizer, as we can show that
any eigenvalue of our approximate problem is bounded by the corresponding eigenvalue of
the classical eigenvalue problem where the shape is chosen to be the whole design domain
Ω, see Lemma 3.2.7.
This allows us to cover a large variety of optimization problems. For example, the Faber–
Krahn problem and the Szegő –Weinberger problem, see (3.1.2) and (3.1.3) in the intro-
duction of Chapter 3, can be formulated within our framework by choosing

Ψ(λε,φ
1 ) = λε,φ

1 , Ψ(µε,φ
1 ) = −µε,φ

1 ,

in (PD,ε
l ) and (PN,ε

l ), respectively. In Section 3.4, we will further demonstrate that the
optimization of linear combinations of eigenvalues

Ψ(λε,φ
i1
, . . . , λε,φ

il
) =

l∑
j=1

αjλij , Ψ(µε,φ
i1
, . . . , µε,φ

il
) =

l∑
j=1

αjµij ,

(with coefficients αj ∈ R) can also be handled at least numerically. In the Dirichlet case,
if we additionally assume the coefficients αj ≥ 0 for j = 1, . . . , l, linear combinations are
even included in the setting of our rigorous sharp-interface analysis in Section 3.3.2.
Now that we have explained all the necessary preliminaries for Part I, we will focus on
Part II of this thesis which covers spectral optimization problems in the framework of
linear elasticity.

2.1.8. The density function

In analogy to the previous state equations, for the equations of linear elasticity we will
both allow for a phase-field dependent density distribution ρε and a phase-field dependent
elasticity tensor Cε. Compared to the approximate Neumann problem introduced in
(2.1.6) the density plays now the role of the coefficient function cε and the elasticity
tensor plays the role of the coefficient function aε. The density distribution ρε depends
directly on the phase-field φ and this way, ρε is not just a given function but represents
the density of the actual structure we want to optimize.
To this end, we assume that the density function ρε belongs to C1,1

loc (RN ;R) and is uni-
formly positive, i.e., for ε > 0 there exists a constant ρε,0 > 0 such that ρ(φ) ≥ ρε,0 for
all φ ∈ RN . This directly yields

ρε,0 |u|2 ≤ ρ(φ) |u|2 , (2.1.18)

for all φ,u ∈ RN . For any fixed φ ∈ RN we infer from the above properties that there
exist constants Cε,φ, C

′
ε,φ > 0 (that may locally depend on φ, i.e., Cε,φ and C ′

ε,φ can be
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chosen uniformly on bounded sets), such that
|ρε(φ)u · v| ≤ Cε,φ |u| |v| ,∣∣ρ′
ε(φ)hu · v

∣∣ ≤ C ′
ε,φ |h| |u| |v| ,

(2.1.19)

for all u,v ∈ Rd and h ∈ RN . Next, for any function ϱ ∈ L∞(Ω), we define(
f , g

)
ϱ

:=
ˆ

Ω
ϱf · g dx for all f , g ∈ L2(Ω;Rd).

Due to the above assumptions, we can use this notation to define a family of scalar
products on L2(Ω;Rd) depending on φ ∈ L∞(Ω;RN ) by

(f , g)ρε(φ) :=
ˆ

Ω
ρε(φ)f · g dx for all f , g ∈ L2(Ω;Rd). (2.1.20)

These scalar products canonically induce norms that are all equivalent to the standard
norm on L2(Ω;Rd). To indicate the norm we consider L2(Ω;Rd) to be equipped with, we
will use the notation L2

ρε(φ)(Ω;Rd) or simply L2
φ(Ω;Rd) when ε > 0 is fixed. On the other

hand (·, ·) denotes the classical scalar product on L2(Ω;Rd).
A reasonable choice of ρ would be

ρε(φ) = ρ(φ) + ρε,NφN =
N−1∑
i=1

ρi φi + ερ̃NφN , φ ∈ G. (2.1.21)

Here, for any i ∈ {1, ..., N − 1}, the coefficient ρi > 0 stands for the density of the i-th
material which is assumed to be constant. In our model we interpret the void as a material
of very low density. Hence, we chose ρε,N = ερ̃N as corresponding density, where ρ̃N > 0
is a fixed constant.
Note that from the view of formally matched asymptotic expansions in Chapter 6, any
scaling of ρ̃N with εp and p > 0 would be admissible here. In Section 6.4.2 we will
give a quadratic decomposition of (2.1.21) and an explicit ε scaling which we will see,
in combination with a related decomposition of the elasticity tensor C, is able to deal
with the phenomenon of spurious eigenmodes. As mentioned also in the introduction,
from a numerical viewpoint the occurrence of such modes localizing in void areas are
problematic if the associated eigenvalues fall into the lower part of the spectrum our
optimization problem deals with, see [5, 29, 55, 136]. Thus, we will verify that choosing
above model parameters adequately, we can guarantee that eigenmodes localizing in void
areas will only produce eigenvalues λε which will become arbitrarily large as ε → 0 and
therefore leave the relevant part of the spectrum for ε small enough. This model is then
also successfully implemented in the numerical simulations in Section 6.9.
Note that whenever we are not concerned with the limit process ε → 0 we will drop this
index in order to account for a more elegant depiction.
For the sake of mathematical analysis in Chapter 6, we have to extend the choice of ρε in
(2.1.21) onto the whole of RN . To this end, proceeding as in [32, Sect. 2.2], we define the
cut-off function

σδ : R → R s 7→



−δ if s ≤ −δ,
aδ if − δ < s < 0,
s if 0 ≤ s ≤ 1,
bδ if 1 < s < 1 + δ,

1 + δ if s ≥ 1 + δ,

(2.1.22)
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for any δ > 0 which will be specified later. Here, aδ and bδ are monotonically increasing
C1,1-functions such that σδ ∈ C1,1(R;R). We now define the function ρ by

ρ : RN → R, φ 7→
N∑

i=1
ρi σδ(PΣ(φ)i), (2.1.23)

where PΣ denotes the ℓ2-orthogonal projection of RN onto ΣN defined as

PΣ(φ) = arg min
v∈ΣN

1
2 ∥φ − v∥2

ℓ2 ,

or equivalently

PΣ(φ) = PT Σ(φ) + 1
N

1,

where 1 = (1, ..., 1)T ∈ RN and PT Σ denotes the (linear) ℓ2-orthogonal projection onto
the tangent space

TΣN =
{

ξ ∈ RN

∣∣∣∣∣
N∑

i=1
ξi = 0

}
.

Obviously, it holds that ρ ∈ C1,1(RN ;R) and since σδ(PΣ(φ)i) = φi for all i ∈ {1, ..., N}
as long as φ ∈ G, the relation (2.1.21) holds true for this definition.
It remains to show that ρ is uniformly positive, at least if δ is chosen sufficiently small.
To this end, we fix an arbitrary vector φ ∈ ΣN and define the index sets

I := {1, ..., N}, I<0 := {i ∈ I |φi < 0}, I≥0 := I \ I<0.

Recalling the definition of ΣN , we infer that∑
I≥0

φi ≥ 1, and thus also
∑
I≥0

σδ(φi) ≥ 1.

Choosing

M := max
i∈I

ρi, m := min
i∈I

ρi, δ := m

2MN
> 0, and ρ0 := m

2 > 0

we conclude the estimate

ρ(φ) =
∑
I≥0

ρi σδ(φi) +
∑
I<0

ρi σδ(φi) ≥ m− δMN = ρ0 > 0.

Since φ ∈ ΣN was arbitrary, this estimate holds for all φ ∈ ΣN and by application of the
projection in (2.1.23) also for all φ ∈ RN . We point out that ρ0 does not depend on φ
and thus, this estimate is uniform. This means that the function ρ defined in (2.1.23) is
admissible as it exhibits all properties that we demand for general density distributions.
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2.1.9. The elasticity tensor

The underlying quantities appearing in linear elasticity are the tensors appearing in
Hooke’s Law (see, e.g., [86, 102]), namely the strain and the elasticity tensor which de-
scribe the stress tensor. To introduce the strain tensor we consider the displacement
vector u : Ω → Rd that describes the deformation of the structure under applied forces
or vibrations. Now, the strain tensor of u can be defined as

E(u) := (∇u)sym ,

where Asym := 1
2
(
A + AT

)
is the symmetrized gradient for any matrix A ∈ Rd×d. For

ε > 0 the elasticity tensor Cε is a fourth order tensor whose components are demanded
to fulfill Cijkl ∈ C1,1

loc (RN ,R) as well as the symmetry properties

Cijkl = Cjikl = Cijlk = Cklij . (2.1.24)

for all i, j, k, l ∈ {1, . . . , d}. From the regularity property we conclude that for any φ ∈ RN ,
there exist constants Λε,φ,Λ′

ε,φ > 0 locally depending on φ such that

|Cε(φ)A : B| ≤ Λε,φ |A| |B| ,∣∣C′
ε(φ)hA : B

∣∣ ≤ Λ′
ε,φ |h| |A| |B| ,

(2.1.25)

for all symmetric matrices A,B ∈ Rd×d\ {0} and h ∈ RN , where

A : B :=
d∑

i,j=1
AijBij ,

and

C′
ε(φ)h =

(
N∑

m=1
∂mCijkl(φ)hm

)d

i,j,k,l=1
,

denotes the derivative of Cε(φ) in the direction h. Furthermore, we demand that there
exists a constant θε > 0 such that for all symmetric matrices A ∈ Rd×d\ {0} and for all
φ ∈ RN it holds

θε |A|2 ≤ Cε(φ)A : A. (2.1.26)

Recall that the application of a fourth order tensor onto a quadratic matrix is given by

(CA)ij =
d∑

k,l=1
CijklAkl.

A concrete choice of the elasticity tensor in analogy to the construction of ρ is

Cε(φ) = C(φ) + Cε,NφN =
N−1∑
i=1

Ciφi + εC̃NφN , φ ∈ G,

where for i = 1, . . . , N − 1, Ci denote constant material specific elasticity tensors. To
guarantee (2.1.26) we need to assume the existence of positive constants Θ̃i,Θi such that
for all A ∈ Rd×d\ {0}, it holds that

Θ̃i |A|2 ≤ CiA : A ≤ Θi |A|2 ,
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for all i = 1, . . . , N − 1 and the existence of positive constants Θ̃N ,ΘN such that

Θ̃N |A|2 ≤ C̃N A : A ≤ ΘN |A|2 ,

for all A ∈ Rd×d\ {0}. Now, proceeding similarly as for the density ρ, we can construct
an extension to RN satisfying the above properties.

2.1.10. The state equations in Part II

We now introduce the system of equations approximating the vibration of an elastic
structure which will serve as state equation in the optimization problems studied in Part II.
Let ε > 0, then consider the eigenvalue problem

−∇ · [Cε(φ)E(wε,φ)] = λε,φρε(φ)wε,φ in Ω,
wε,φ = 0 on ΓD,

[Cε(φ)E(wε,φ)] n = 0 on Γ0.

(2.1.27)

Here, n is the outer unit normal vector to the boundary of the design domain ∂Ω =
ΓD ∪ Γ0. The subsets ΓD,Γ0 ⊂ ∂Ω are relatively open and satisfy ΓD ∩ Γ0 = ∅ and
Hd−1 (ΓD) > 0, where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure. These
assumptions are crucial for Korn’s inequality, see Theorem 2.2.2 and [160, Section 62.15].
To consider above system in the weak sense, we define the closed subspace

H1
D(Ω;Rd) :=

{
η ∈ H1(Ω;Rd)

∣∣∣ η = 0 on ΓD

}
⊂ H1(Ω;Rd).

Endowed with the standard inner product and norm given by

(·,·)H1
D(Ω;Rd) := (·,·)H1(Ω;Rd) , ∥ · ∥H1

D(Ω;Rd) := ∥ · ∥H1(Ω;Rd) ,

H1
D(Ω;Rd) is a Hilbert space. For any matrices A,B ∈ Rd×d and any fourth-order tensor

C ∈ Rd×d×d×d, we introduce the notation

⟨A,B⟩C :=
ˆ

Ω
CA : B dx.

Let φ ∈ L∞(Ω;RN ), then the mapping

⟨E(·), E(·)⟩Cε(φ) : H1
D(Ω;Rd) ×H1

D(Ω;Rd) → R, (w,η) 7→ ⟨E(w), E(η)⟩Cε(φ) (2.1.28)

defines a scalar product on H1
D(Ω;Rd). As for ρ we only write the ε dependence in C

explicitly when we consider the sharp interface limit. By Korn’s inequality, the norm
induced by this inner product is equivalent to the standard norm on H1

D(Ω;Rd). In what
follows, we will always choose for a given φ ∈ L∞(Ω;RN ) this inner product and induced
norm on H1

D(Ω;Rd).
Using this notation and invoking the symmetry property (2.1.24), the weak formulation
of (2.1.27) can be expressed as

⟨E(wε,φ), E(η)⟩Cε(φ) = λε,φ (wε,φ,η)ρε(φ) for all η ∈ H1
D(Ω;Rd). (2.1.29)
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In Section 5.2, we will see that for any φ ∈ L∞(Ω,RN ), there exists a sequence of eigen-
values

0 < λε,φ
1 ≤ λε,φ

2 ≤ λε,φ
3 ≤ · · · → ∞

and corresponding eigenfunctions {wε,φ
1 ,wε,φ

2 , ...} ⊂ H1
D(Ω;Rd) which form an orthonor-

mal basis of L2
ρε(φ)(Ω;Rd).

Next, we introduce the structural optimization problem in which the system (2.1.27) can
be regarded as the state equation.

2.1.11. The optimization problem in Part II

For l ∈ N and i1, . . . , il ∈ N, the finite selection of eigenvalues λε,φ
i1
, ..., λε,φ

il
of (2.1.27) is

to be penalized via a function

Ψ : (R>0)l → R,

which is assumed to be of class C1. Hence, in analogy to the two-phase case we define
the objective functional as

Jε
l (φ) := Ψ(λε,φ

i1
, . . . , λε,φ

il
) + γEε

GL(φ), (2.1.30)

with γ > 0. Consequently, the overall optimization problem reads as
min Jε

l (φ),
s.t. φ ∈ Gm ∩ U c,

λε,φ
i1
, . . . , λε,φ

il
are eigenvalues of (2.1.29).

(Pε
l )

Recall from Section 2.1.4 that it suffices to include the regular part of the Ginzburg–
Landau energy here, because Eε(φ) = Eε

GL(φ) for all φ ∈ Gm ∩ U c ⊂ G. Note that here
we of course need to assume that the sets S0, S1 introduced in Section 2.1.3 are chosen
such that the admissible set Gm ∩ U c is non-empty, in order to allow for a well-posed
optimization problem. In the light of the discussion in Section 2.1.3 this is guaranteed if
the sets S0, S1 keep a positive fixed distance and |S0| < |Ω| (1 −mN ) and |S1| < |Ω|mN ,
because then a phase-field φ ∈ H1(Ω;RN ) has enough freedom to meet the mean value
constraint imposed by Gm.

2.1.12. A combination of compliance and eigenvalue optimization

As mentioned also in the introduction of this thesis, minimizing the compliance of a
structure is a fundamental task in shape and topology optimization. Thus, we want
to analytically and numerically consider also a problem of combining both spectral and
compliance optimization, see Section 5.6 and Section 6.9.3.
In [32], the problem of minimizing the mean compliance

F (u,φ) =
ˆ

Ω

(
1 − φN)f · u dx+

ˆ
Γg

g · u dΓ,
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with f ∈ L2(Ω;Rd) and g ∈ L2(Γg,Rd), and the deviation with respect to a target
displacement uΩ ∈ L2(Ω;Rd) given by

J0(u,φ) =
(ˆ

Ω
c
(
1 − φN) |u − uΩ|2 dx

)ν

, ν ∈ (0, 1],

is considered. Here, c ∈ L∞(Ω) denotes a function with |supp c| > 0, where |supp c| stands
for the Lebesgue measure of the support. The boundary ∂Ω is split into two relatively
open, disjoint subsets ΓC ,Γg ⊂ ∂Ω such that ∂Ω = ΓC ∪ Γg and Hd−1(ΓC) > 0. Moreover,
the state equation is determined by the mean compliance in order to obtain

u ∈ H1
C(Ω;Rd) :=

{
η ∈ H1(Ω;Rd)

∣∣∣η = 0 on ΓC

}
as the displacement vector under the given forces. It reads as

−∇ · [C(φ)E(u)] =
(
1 − φN

)
f in Ω,

u = 0 on ΓC ,

[C(φ)E(u)] n = g on Γg.

(2.1.31)

Combining this problem with the one discussed in the previous section, we obtain a
structure that is on the one hand as stiff as possible (i.e., it has small compliance) and
on the other hand realizes the desired vibration properties (e.g., a large first eigenvalue).
Note that in order to account for a general model the Dirichlet boundary of the compliance
problem ΓC needs not to be identical to the Dirichlet boundary of the spectral problem
ΓD. The combination of (Pε) in [32] and (Pε

l ) reads as

min Iε
l (u,φ) = αF (u,φ) + βJ0(u,φ) + γEε(φ) + Ψ(λφ

i1
, . . . , λφ

il
)

s.t. (u,φ) ∈ H1
C(Ω,Rd) ×H1(Ω,RN ),

(2.1.31) is fulfilled,φ ∈ Gm ∩ U c,

and λφ
i1
, . . . , λφ

il
are eigenvalues of (2.1.29),

(Kε
l )

where α, β ≥ 0, γ, ε > 0, m ∈ (0, 1)N ∩ ΣN . In Section 5.6, we will present an existence
result as well as the variational inequality for this combined problem. Numerically we will
revisit this problem at the end of the thesis in Section 6.9.3.
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2.2. Mathematical tools

Let us now summarize some of the most important mathematical tools that are used in
this thesis. We will tacitly assume that we are in the setting of the previous section.

2.2.1. General notation

Let us give some general notation that we will use throughout this thesis. Ld stands for
the d-dimensional Lebesgue measure and Hd−1 denotes the (d− 1)-dimensional Hausdorff
measure.
We write R+

0 = [0,∞) to denote the interval of non-negative real numbers and R>0 to
denote the interval of positive real numbers (0,∞).
As we have also seen in the introduction of the double obstacle potential it is useful to
consider cost functions taking also the value +∞. Therefore we introduce the extended
real numbers, see [142, 1.22] and [10, Example 2.8].

Definition 2.2.1. We define the extended real numbers R = R∪{±∞}, with the standard
ordering on R and −∞ < a < +∞ for a ∈ R. We use the standard arithmetic operations
and especially the convention ±∞ · 0 = 0. Furthermore

d : R × R → [−1, 1]
d(x, y) := |g(x) − g(y)|

with

g(x) :=


−1 for x = −∞

x
1+|x| for x ∈ R
+1 for x = +∞,

defines a metric on R.

In particular for a sequence (an)n∈N ⊂ R we understand the limit

lim
n→∞

an = +∞ in R,

with respect to this metric.
With △ we denote the symmetric difference of sets, which is defined as

A△B = (A\B) ∪ (B\A) = (A ∪B)\(A ∩B).

For a function u : Ω → R and t ∈ R we use the standard abbreviations

{u > t} := {x ∈ Ω | u(x) > t} ,
u+ := max {0, u} .

We will always indicate weak convergence with the symbol ⇀ and strong convergence
with the symbol →.
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2.2.2. Tools from functional and geometric analysis

First of all we will give Korn’s inequality which will allow us to give a suitable norm on

H1
D(Ω;Rd) :=

{
η ∈ H1(Ω;Rd)

∣∣∣ η = 0 on ΓD

}
⊂ H1(Ω;Rd),

in terms of the symmetrized gradient. As indicated in Section 2.1.10 this is crucial for the
theory in Part II, because this will tell us that the bi-linear form (2.1.28) induced by the
state equation is coercive.
Recall that Ω ⊂ Rd was chosen to be a bounded Lipschitz domain.

Theorem 2.2.2 (Korn’s inequality). Let ΓD ⊂ ∂Ω be a relatively open subset with

Hd−1(ΓD) > 0.

Then there is a C > 0 such thatˆ
Ω

E(u) : E(u) dx ≥ C ∥u∥2
H1(Ω,Rd) ,

for all u ∈ H1
D(Ω;Rd).

Remark 2.2.3.

1. For a proof we refer to [75, 6.15-4] or [160, Section 62.15].

2. It is essential in above assertion that the Hausdorff measure of ΓD is positive. If ΓD = ∅
then it holds {

u ∈ H1(Ω;Rd)
∣∣∣ E(u) = 0 a.e. in Ω

}
=
{
x 7→ Bx+ a

∣∣∣ B ∈ Rd×d,BT = −B,a ∈ Rd
}
.

The space on the right-hand side is called the space of infinitesimally rigid motions,
see [160, Lemma 62.15] or [86, Section 6.1.9]. In physical terms this means that rotating
and translating a shape which can freely move within the design domain does not affect
its elastic energy.

3. Note that Korn’s inequality is a very deep result which is delicate to prove due to the
mixed terms ∂iuj∂jui appearing in E(u) : E(u). Nevertheless, under the additional
assumption that u ∈ H2(Ω;Rd) and ΓD = ∂Ω the mixed terms can be transformed
into quadratic terms via integration by parts, see [86, Theorem 6.14].

The following theorem is useful when the classical Lebesgue’s theorem is not applicable,
but the integrand can be majorized by a suitable sequence of functions.

Theorem 2.2.4 (Lebesgue’s general convergence theorem ). Let 1 ≤ p < ∞, f, fk : Ω →
RN and gk → g in L1(Ω,R) for k → ∞.
Furthermore let

fk → f a.e. in Ω for k → ∞,

|fk|p ≤ gk a.e. in Ω for all k ∈ N.

Then it holds

fk → f in Lp(Ω,RN ).



38 CHAPTER 2. PRELIMINARIES

For a proof see [10, Theorem 3.25].
In order to compute first-order optimality conditions in Chapter 3 and Chapter 5 we
will derive the cost functional with respect to the phase-field variable. Here the notion of
Fréchet- and Gâteaux-derivative is important. For a comprehensive overview see also [159].

Definition 2.2.5. Let X,Y be Banach spaces with x ∈ X. Denote U(x) ⊂ X an open
neighborhood around x. Consider the function f : U(x) → Y .

1. The function f is said to be Fréchet-differentiable at x, if there is a continuous linear
operator T ∈ L(X,Y ), such that

f(x+ h) − f(x) = Th+ o (∥h∥) , (2.2.1)

for all h in a sufficiently small neighborhood around 0 denoted by U(0) ⊂ X. This
property uniquely defines T ∈ L(X,Y ). We call T the Fréchet-derivative of f at x and
write f ′(x) = T . Furthermore for given h ∈ X we denote the Fréchet-derivative of f
at x in direction h with f ′(x)h.

2. The function f is said to be Gâteaux-differentiable at x, if there is a continuous linear
operator T ∈ L(X,Y ), such that

f(x+ tk) − f(x) = tTk + o (t) , (2.2.2)

for all t ∈ R with t → 0 and all k ∈ X with ∥k∥ = 1 and x+ tk ∈ U(x). This property
uniquely defines T ∈ L(X,Y ). We call T the Gâteaux-derivative of f at x an write
f ′(x) = T . For given h ∈ X we denote the Gâteaux-derivative of f at x in direction h
with f ′(x)h.

3. Let A ⊂ X be an open subset. If the Fréchet- (respectively Gâteaux-) derivative exists
for all x ∈ A then we call the mapping

f ′ : A ⊂ X → L(X,Y )
x 7→ f ′(x),

the Fréchet- (respectively Gâteaux-) derivative on A.

4. Let Z be a further Banach space and consider f : D(f) ⊂ X × Y → Z, where D(f)
denotes the domain of definition of f . Then the partial Fréchet-(respectively Gâteaux-)
derivative with respect to the x coordinate, denoted by f′x, is defined as the Fréchet-
(respectively Gâteaux-) derivative of

g : U(x) ⊂ X → Z

x 7→ f(x, y),

where y ∈ Y is fixed. The derivative with respect to the y coordinate is defined
analogously.

Of course one can easily prove that all the classical properties such as the linearity, prod-
uct rule and chain rule hold also for the Fréchet- and Gâteaux-derivative. Furthermore,
we see that Fréchet-differentiability always implies Gâteaux-differentiability. We want
to give one further essential property that will be used in the main proof concerning
Fréchet-differentiability of the control-to-state operator of our optimization problem, see
Theorem 5.4.3.
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Proposition 2.2.6. Let f : D(f) ⊂ X × Y → Z be partially Fréchet-differentiable with
respect to both the x and y coordinate in a neighborhood U(x, y) ⊂ D(f) around the point
(x, y) ∈ D(f). Furthermore let both f′x : U(x, y) → L(X,Z) and f′y : U(x, y) → L(Y,Z)
be continuous at (x, y). Then f is Fréchet-differentiable at (x, y) and the Fréchet-derivative
satisfies

f ′(x, y)(h1, h2) = f′x(x, y)h1 + f′y(x, y)h2,

for all h1 ∈ X and h2 ∈ Y .

For a proof we refer to [159, Proposition 4.8].
In the theory of Γ-limits one has to show a lim sup and a lim inf inequality, see Sec-
tion 2.2.5. For the lim inf inequality Fatou’s lemma is a helpful tool. Note that Fatou’s
lemma holds true on the extended positive real line and thus, is applicable in the context
of the coefficient functions (bε)ε>0 that will take the value ∞ outside the shape in the
limit sharp-interface case, see Lemma 3.3.5.

Lemma 2.2.7 (Fatou’s lemma). Let (fk)k∈N be a sequence of Ld measurable functions
with

fk : Ω → [0,∞]

for each k ∈ N. Then defining f(x) := lim inf
k→∞

fk(x) ∈ [0,∞] for almost every x ∈ Ω, it
holds

ˆ
Ω
f dx ≤ lim inf

k→∞

ˆ
Ω
fk dx.

For a proof see [89, Theorem 1.17].
As we are concerned with the eigenvalues of elliptic operators, we of course heavily rely
on the following spectral theorem for compact self-adjoint operators.

Theorem 2.2.8. Let H be a Hilbert space over R with scalar product (·, ·)H and T :
H → H a compact, self-adjoint, positive-semi definite continuous linear operator. Then
the following holds true:

• There is an orthonormal system (ek)k∈N ⊂ H, with N ⊂ N, and a “sequence”
(λk)k∈N ⊂ (0,∞) with

T ek = λkek for all k ∈ N.

• If N is infinite then λk → 0 for k → ∞.

• The sequence (λk)k∈N comprises all non-trivial eigenvalues, i.e., if there is an ele-
ment e ∈ H and a λ ∈ R satisfying

T e = λe,

then there is either a k ∈ N such that λk = λ or λ = 0.
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• The space H can be orthogonally decomposed as

H = N(T ) ⊥ ⟨e1, e2, . . . ⟩span.

Here N(T ) ⊂ H denotes the kernel of the operator T and ⟨e1, e2, . . . ⟩span ⊂ H is
the closure of the subspace spanned by the orthonormal system (ek)k∈N ⊂ H, more
precisely u ∈ ⟨e1, e2, . . . ⟩span if and only if for k ∈ N there are αk ∈ R such that

u =
∑
k∈N

αkek,

where the convergence of the series has to take place in H.

• The operator T is characterized by the eigenpairs (λk, ek)k∈N via the decomposition

T x =
∑
k∈N

λk(x, ek)Hek,

for any x ∈ H.

Proof. The proof for the case where R is replaced by C and the condition T self-adjoint is
replaced by T normal is found in [10, Theorem 12.12] combined with [10, Remark 12.13].
The real case is easily obtained from the complex case, by using the complexification
argument in [10, 11.14].

Let us conclude this section with giving one of the most important tools in geometric
analysis, which is the coarea formula. This formula is at the heart of the proofs of the
lim sup inequality for the Ginzburg–Landau energy in [37, 126, 135, 147] and will also
play a crucial role in the explicit construction of a recovery sequence in the proof of
Theorem 4.3.17 in order to study the Γ-limit of our spectral optimization problem.

Theorem 2.2.9. Let m ≤ d, f : Rd → Rm be Lipschitz and g ∈ L1(Rd;R). Then for
Lm-almost every y ∈ Rm the integral

ˆ
{f=y}

|g(x)| dHd−m(x),

is finite and it holds
ˆ
Rd

g(x)Jf(x) dLd(x) =
ˆ
Rm

[ˆ
{f=y}

g(x) dHd−m(x)
]

dLm(y).

Here the coarea factor is defined as

Jf(x) :=
√

det(Df(x)Df(x)T ).

As we will see in Theorem 4.3.17, when f = d is the signed distance function with respect
to a smooth surface this will allow for a beautiful transformation of the integrals coming
from the Ginzburg–Landau energy when the recovery sequence is inserted.
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2.2.3. Symmetric-decreasing rearrangements

As explained also in the introduction, symmetrization techniques are a traditional and
crucial tool in order to compare arbitrary shapes to more symmetric shapes or even the
ball. We will see that for our purposes in Chapter 4, especially in Theorem 4.3.7, the
symmetric-decreasing rearrangement will be a powerful tool.
For functions f : Rd → R+

0 vanishing at infinity (i.e., the level sets {x ∈ Rd | f(x) > t} have
finite Lebesgue-measure for all t > 0), a definition of their radially symmetric-decreasing
rearrangement can be found in [119, Section 3.3]. We can easily adapt this definition to
functions f : Ω → R+

0 where Ω = BR(0) is an open ball in Rd with radius R > 0 centered
at the origin, which will be the setting in Chapter 4. Note that if Ω would be an arbitrary
non-symmetric bounded design domain then the symmetric-decreasing rearrangement will
also change the design domain, which is not reasonable, as the design domain shall remain
fixed in our optimization problems.

Definition 2.2.10. Let Ω = BR(0) be an open ball in Rd centered at the origin with a
given radius R > 0.

(a) A measurable function f : Ω → R is called (radially) symmetric-decreasing, if
any fixed representative of the equivalence class of f satisfies the properties{

f(x) = f(y) if |x| = |y| ,
f(x) ≥ f(y) if |x| ≤ |y|

(2.2.3)

for almost all x, y ∈ Ω. If additionally

f(x) > f(y) if |x| < |y|

for almost all x, y ∈ Ω, then f is called strictly (radially) symmetric-decreasing.

(b) For any measurable set A ⊆ Ω with Ld(A) < ∞, its (radially) symmetric rear-
rangement A∗ is defined to be the open ball centered at the origin whose volume is
equal to that of A. This means that

A∗ =
{
x ∈ Ω : |x| < r

}
where r ≥ 0 satisfies Ld(Bd) rd = Ld(A).

Here, Bd denotes the d-dimensional ball with radius 1.

(c) Let f : Ω → R+
0 be any measurable function. Then its (radially) symmetric-

decreasing rearrangement f∗ is defined as

f∗(x) =
ˆ ∞

0
1{f>t}∗(x) dt

for all x ∈ Ω.

Remark 2.2.11. Let Ω = BR(0) be an open ball in Rd centered at the origin with a
given radius R > 0.

(a) It obviously holds Ω∗ = Ω, and for any measurable function f : Ω → R+
0 , we have

f∗∗ = f∗.
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(b) For any measurable function f : Ω → R+
0 , its trivial extension f0 : Rn → R+

0
with f0|Ω = f and f0|Rd\Ω = 0 is measurable and naturally vanishes at infinity. In
particular, we have f∗

0 |Ω = f∗, where the symmetric-decreasing rearrangement f∗
0 of

the extension f0 is defined as in [119, Section 3.3].

Some important properties of the symmetric-decreasing rearrangement are collected in
the following lemma.

Lemma 2.2.12. Let Ω = BR(0) be an open ball in Rd centered at the origin with a given
radius R > 0, and let f, g : Ω → R+

0 be arbitrary measurable functions. Then the following
statements hold:

(a) f∗ is measurable and symmetric-decreasing. Moreover, f∗ is defined everywhere in
Ω. In particular, the condition (2.2.3) is satisfied everywhere in Ω.

(b) The level sets of f∗ are the rearrangements of the level sets of f , meaning that{
x ∈ Ω : f∗(x) > t

}
=
{
x ∈ Ω : f(x) > t

}∗

up to a Lebesgue null set in Rd. In particular, if f ∈ Lp(Ω) for some p ∈ [1,∞], it
holds that f∗ ∈ Lp(Ω) with

∥f∗∥Lp(Ω) = ∥f∥Lp(Ω) .

(c) Let Φ : R+
0 → R+

0 be a non-decreasing, lower semi-continuous function. Then it holds
that

(Φ ◦ f)∗ = Φ ◦ f∗ a.e. in Ω.

(d) Let Ψ ∈ C1([0, 1]) with Ψ(0) = 0. If 0 ≤ f ≤ 1 a.e. in Ω, it holds that
ˆ

Ω
Ψ ◦ f∗ dx =

ˆ
Ω

Ψ ◦ f dx. (2.2.4)

(e) Hardy–Littlewood inequality: It holds that
ˆ

Ω
f g dx ≤

ˆ
Ω
f∗ g∗ dx (2.2.5)

with the convention that when the left-hand side is infinite, then also the right-hand
side is infinite.

(f) Nonexpansivity of the rearrangement: Let F : R → R+
0 be a convex function

such that F (0) = 0. Then
ˆ

Ω
F ◦ (f∗ − g∗) dx ≤

ˆ
Ω
F ◦ (f − g) dx.
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(g) Pólya–Szegő inequality: Suppose that f ∈ H1
0 (Ω;R+

0 ). Then, f∗ ∈ H1
0 (Ω;R+

0 )
with

ˆ
Ω

|∇f∗|2 dx ≤
ˆ

Ω
|∇f |2 dx. (2.2.6)

Moreover, if f > 0 almost everywhere in Ω and

Ln({x ∈ Ω | ∇f∗(x) = 0}
)

= 0, (2.2.7)

then equality in (2.2.6) holds if and only if f = f∗ almost everywhere in Ω.

We first assure that the basic properties of radially symmetric-decreasing rearrangements
in Rd carry over to our local case.

Proof. In view of Remark 2.2.11(b), the statements (a)–(c), (e) and (f) are direct conse-
quences of the results in [119, Sections 3.3–3.5].
To prove (d), we use the decomposition Ψ′ = Ψ′

+ − Ψ′
−, where Ψ′

+ := max(Ψ′, 0) and
Ψ′

− := − min(Ψ′, 0) denote the positive part and the negative part of Ψ′, respectively.
Now, we define

Ψ1(t) :=
ˆ t

0
Ψ′

+(s) ds and Ψ2(t) :=
ˆ t

0
Ψ′

−(s) ds for all t ∈ [0, 1].

Recalling Ψ(0) = 0, we apply the fundamental theorem of calculus to derive the decom-
position Ψ = Ψ1 − Ψ2. As the functions Ψ1 and Ψ2 are non-decreasing, (2.2.4) follows
directly from [119, Section 3.3(iv)].
To prove (g), let f ∈ H1

0 (Ω;R+
0 ) be any function, and let f0 : Rn → R+

0 denote its trivial
extension as in Remark 2.2.11(b). This means that f0 ∈ H1(Rn) is a non-negative function
with compact support. We further define

A : [0,∞) → [0,∞), x 7→ x2.

Hence A ∈ C2([0,∞) is strictly increasing, A(0) = 0 and A
1
2 is convex. Thus, as all

conditions are fulfilled, we can apply the first part of [47, Theorem 1.1] and obtain
ˆ
Rn

∣∣∇f∗
0
∣∣2 dxn ≤

ˆ
Rn

∣∣∇f0
∣∣2 dxn, (2.2.8)

which directly implies (2.2.6) since ∇f0 = 0 and ∇f∗
0 = 0 almost everywhere on Rn\Ω.

In addition, let us now assume that condition (2.2.7) holds true and that f > 0 almost
everywhere in Ω. Since f∗

0 = 0 on Rn\Ω, we have {f∗
0 > 0} ⊂ Ω and thus,

Ln
(
{x ∈ Rn | ∇f∗

0 (x) = 0} ∩
(
f∗

0
)−1((0,∞)

))
≤ Ln({x ∈ Ω | ∇f∗(x) = 0}

)
= 0.

Therefore, [47, Theorem 1.1] states that equality in (2.2.8) holds if and only if f0 is a
translate of f∗

0 . This directly entails that equality in (2.2.6) holds if and only if f is a
translate of f∗. However, since f ∈ H1

0 (Ω) with f > 0 almost everywhere in Ω = BR(0),
this is possible if and only if f = f∗ almost everywhere in Ω, which proves the claim.
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Remark 2.2.13. We point out that the condition that f has a vanishing trace on ∂Ω
is actually a necessary assumption for the Pólya–Szegő inequality (Lemma 2.2.12(g)). In
general, as the following example shows, there exist functions f ∈ H1(Ω;R+

0 ) such that
f∗ does not even belong to H1(Ω;R+

0 ).
Counterexample to the Pólya–Szegő inequality for functions in H1(Ω;R+

0 ).
Let Ω = B1(0) be the open unit ball in R2. We consider the function

f : Ω → R+
0 , x 7→ |x| ,

which obviously belongs to H1(Ω;R+
0 ) but not to H1

0 (Ω;R+
0 ). Its symmetric-decreasing

rearrangement f∗ is given by

f∗ : Ω → R+
0 , x 7→

√
1 − |x|2 .

Hence, f∗ is weakly differentiable with

∇f∗(x) = −x√
1 − |x|2

for all x ∈ Ω\{0}.

However, it is easy to see that the blow-up at |x| = 1 causes
ˆ

Ω
|∇f∗|2 dx2 = +∞.

This means that f∗ /∈ H1(Ω;R+
0 ) and in particular, the Pólya–Szegő inequality (2.2.6)

does not hold.

2.2.4. Functions of bounded variation and sets of finite perimeter

As the sequence of phase-fields will naturally develop jumps on the sharp-interface level
we need to relax the space H1(Ω) in order to account for this behavior while still having
some control on the jumps and good compactness results.
As characteristic functions of finite perimeter sets are an important sub-class of functions
of bounded variation, the theory of sets of finite perimeter and functions of bounded
variation is closely related. We refer to [14, 89, 121] for more details. Let me note that
the book [14] has become one of my favourite mathematical books during my doctoral
project.

Definition 2.2.14. The space of functions of bounded variation in Ω with values in R,
also referred to as BV functions, is defined as

BV (Ω) :=
{
u ∈ L1(Ω)

∣∣∣ V (u,Ω) < ∞
}
.

Here V (u,Ω) denotes the variation of a function u ∈ L1
loc(Ω) defined as

V (u,Ω) := sup
{ˆ

Ω
u div ξ dx

∣∣∣∣ ξ ∈ C1
0 (Ω,Rd), ∥ξ∥L∞(Ω;Rd) ≤ 1

}
.
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Remark 2.2.15. • The more abstract but equivalent definition of the space BV (Ω) is
the following: u ∈ L1(Ω) belongs to BV (Ω) if and only if its distributional derivative
is representable by a finite Radon-measure, see also [14, Definition 1.40], i.e., there is
a Rd-valued Radon-measure Du = (D1u, . . . ,Ddu) such that

ˆ
Ω
u
∂ϕ

∂xi
dx = −

ˆ
Ω
ϕ dDiu, (2.2.9)

for i = 1, . . . , d and |Du| (Ω) < ∞. Here |µ| denotes the total variation of a measure, see
[14, Definition 1.4, Proposition 1.47]. It is important to note that |Du| (Ω) = V (u,Ω)
for any u ∈ BV (Ω), see [14, Proposition 3.6]

• Endowed with the norm

∥u∥BV (Ω) := ∥u∥L1(Ω) + V (u,Ω),

BV (Ω) is a Banach space, see [14, Proposition 3.6]

• Due to above definition, any u ∈ W 1,1(Ω) belongs to BV (Ω) because by definition of
the weak derivative (2.2.9) is fulfilled for the finite Radon-measure Du := ∇uLd.

As indicated in the beginning of this section, the space BV (Ω) is equipped with the
following compactness. This compactness is the key to prove that the Ginzburg–Landau
energy provides us with compactness in our optimization problems, see Proposition 2.2.25.

Theorem 2.2.16. Let (uk)k∈N ⊂ BV (Ω) be a bounded sequence with respect to the BV -
norm. Then there exists a (non-relabeled) subsequence and a u ∈ BV (Ω), such that

uk → u in L1(Ω),

for k → ∞.

However, for some practical purposes, the topology induced by the above BV -norm is too
strong. For this reason, the concept of strict convergence is commonly used.

Definition 2.2.17. We say that a sequence uk ∈ BV (Ω) strictly converges to u ∈ BV (Ω)
if

uk → u in L1(Ω) and V (uk,Ω) → V (u,Ω),

as k → ∞.

Note that in this definition we do not require for the sequence uk to converge in variation
but that only the variations of uk converge.
One of the fine properties of the space BV (Ω), recalling that Ω ⊂ Rd is Lipschitz in our
setting, is that it allows for a well-defined trace.

Theorem 2.2.18. Let u ∈ BV (Ω), then there exists a function

u|∂Ω ∈ L1((∂Ω,Hd−1 ∂Ω);R
)
,
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which satisfies

lim
ρ↘0

ρ−d

ˆ
Ω∩Bρ(x)

∣∣∣u(y) − u|∂Ω(x)
∣∣∣ dy = 0, (2.2.10)

for Hd−1 a.e. x ∈ ∂Ω. Here, Hd−1 ∂Ω denotes the restriction of the Hausdorff measure
Hd−1 to the boundary ∂Ω and L1((∂Ω,Hd−1 ∂Ω);R

)
is the space of L1-functions on

∂Ω with respect to the measure Hd−1 ∂Ω. u|∂Ω is uniquely defined as an element in
L1((∂Ω,Hd−1 ∂Ω);R

)
. We call u|∂Ω the trace of u on ∂Ω.

For a proof we refer to [14, Theorem 3.87].
In the following, we will simply write L1(∂Ω) instead of L1((∂Ω,Hd−1 ∂Ω);R

)
. The

corresponding norm on L1(∂Ω) is given by

∥·∥L1(∂Ω) =
ˆ

∂Ω
|·| dHd−1. (2.2.11)

Finally an important property is the continuity of the trace operator in BV (Ω) not only
with respect to the classical norm but with respect to strict convergence, which will be
essential in the proof of Theorem 4.3.17.

Theorem 2.2.19. The operator

BV (Ω) → L1(∂Ω),
u 7→ u|∂Ω,

is continuous with respect to strict convergence in BV (Ω).

For a proof see [14, Theorem 3.88].
Having understood the theory of the space BV (Ω), it is only a small step to understand
sets of finite perimeter, as they are defined as follows.

Definition 2.2.20. The relative perimeter in Ω of a measurable set E ⊂ Rd is defined as

PΩ(E) := V (χE ,Ω) = |DχE | (Ω).

We say that the set E is of relative finite perimeter in Ω if it holds

PΩ(E) < ∞.

Remark 2.2.21.

• A deep relation which is due to [14, Theorem 3.61] is

PΩ(E) = Hd−1(Ω ∩ ∂∗E),

for any set of finite perimeter E ⊂ Rd.
Here the so called essential boundary ∂∗E is a suitable measure theoretic concept for
the boundary of finite perimeter sets, see [14, Definition 3.60]. If E is a bounded
Lipschitz set, then ∂E coincides Hd−1 almost everywhere with ∂∗E by [121, Example
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12.6]. This gives sense to the notion “perimeter”, as PΩ(E) in this case simply measures
the boundary of E that lies within Ω.
In general, for d ≥ 2, there are pretty wild sets of finite perimeter. It is really crucial
to have these examples in mind, because they are intuitively hard to grasp. For any
ε > 0, [121, Example 12.25] constructs open finite perimeter sets Eε contained in the
unit ball B with Ld(Eε) ≤ ε but Ld(∂Eε) > 0. Hence, in particular Hd−1(∂Eε) = ∞.
The idea of this construction is to take a dense sequence (xk)k∈N ⊂ B and define for
ε > 0

Eε := ∪k∈NBrk
(xk) ⊂ B,

with sufficiently small radii rk(ε) ∈ (0, ε). It is then seen in [121, Example 12.25] that
Ld(Eε) ≤ ε and PRd(Eε) ≤ 1.
Taking the complement of this set we arrive at a bounded set of finite perimeter
with empty interior but positive Lebesgue measure! More precisely just take
one of the sets Eε from above with ε > 0 small enough and consider the set Ec

ε := B\Eε

which then satisfies

Ld(Ec
ε) ≥ Ld(B) − ε

PRd(Ec
ε) ≤ PRd(B) + PRd(Eε) < ∞,

using [121, Lemma 12.22].

• It is crucial not to confuse the relative perimeter with the global perimeter, i.e., PΩ
vs. PRd . The relative perimeter arises as the Γ-limit of the Ginzburg–Landau energy
when no boundary condition is imposed on the phase-fields on ∂Ω. When a Dirichlet
boundary condition is imposed, this will yield the global perimeter as we have al-
ready discussed at the end of Section 2.1.4 and which will also be seen rigorously in
Theorem 4.3.17.

A final property is the lower semi-continuity of the perimeter with respect to local con-
vergence in measure.
Proposition 2.2.22. Let (En)n∈N, E ⊂ Rd be sets of relative finite perimeter in Ω. Fur-
thermore for any open set A ⊂⊂ Ω let Ld(A ∩ (En △ E)) → 0 for n → ∞. Then it
holds

PΩ(E) ≤ lim inf
n→∞

PΩ(En).

For a proof see [14, Proposition 3.38]. Note that the convergence in measure with respect
to Ω, i.e., Ld(Ω ∩ En △ E) → 0, implies local convergence in measure. Furthermore, the
convergence in measure is equivalent to the convergence χEn → χE in L1(Ω), see [14,
Remark 3.37].

2.2.5. Γ-convergence

The concept of Γ-convergence going back to E. De Giorgi is a tool that is very well suited
in order to analyze minimization problems. In particular Γ-convergence of cost functionals
implies the convergence of minimizers if additionally a certain compactness holds. For a
comprehensive and accessible overview over Γ-convergence we refer to [44]. In this section
let X be a metric space. In our applications this will mostly be the space L1(Ω).
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Definition 2.2.23. A sequence of functionals Jk : X → R is said to Γ-converge in X to
J : X → R if for all x ∈ X the following two conditions are satisfied:

• For every sequence (xk)k∈N converging to x it holds

J(x) ≤ lim inf
k→∞

Jk(xk).

This is called the lim inf inequality.

• There exists a sequence (xk)k∈N converging to x such that

lim sup
k→∞

Jk(xk) ≤ J(x).

This is called the lim sup inequality.

If the above properties are satisfied we write Jk
Γ→ J .

As a rule of thumb the lim sup inequality is always harder to prove, because there one has
to explicitly construct a so called recovery sequence which is specifically tailored to the
sequence of functionals in order to satisfy this inequality.

Notation. In this thesis we we will often consider sequences depending on the interface
parameter ε which will be sent to 0. In order to study sequences (ζε)ε>0 depending on
the continuous parameter ε we will use the following notation. (ζε)ε>0 stands for (ζεk

)k∈N
where (εk)k∈N denotes an arbitrary sequence with εk → 0 as k → ∞. In this sense, a
subsequence extraction from (ζε)ε>0 is to be understood as a subsequence extraction from
the associated sequence (εk)k∈N. For convenience, our subsequences will not be relabeled,
meaning that for any subsequence, we will use the same notation as for the whole sequence
it was extracted from.
As mentioned above let us state the main reason why Γ-convergence is such a useful tool.

Proposition 2.2.24. Let (xk)k∈N ⊂ X be a sequence of global minimizers of Jk over X,
i.e.,

Jk(xk) = min
x∈X

Jk(x),

and let furthermore Jk
Γ→ J .

If there is a subsequence of (xk)k∈N (which we do not relabel here) converging to some
x ∈ X, then it holds

lim
k→∞

Jk(xk) = J(x),

along this subsequence and x is a global minimizer of J over X.

For a proof we refer to [44, Remark 1.22]. So this proposition tells us that if we have
an accumulation point of a sequence of minimizers (xk)k∈N then Γ-convergence implies
that the accumulation point is a minimizer of the limit functional. In particular, although
proving Γ-convergence itself is always a difficult business, one has to make sure that there
exists an accumulation point of a sequence of minimizers. In our case this will always be
gained by exploiting the following compactness of the Ginzburg–Landau energy. For full
generality we will state this proposition under minimal assumptions on the potential ψ.
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Proposition 2.2.25. Let ψ0 ∈ C0([−1, 1]) with ψ0 > 0 on (−1, 1). Furthermore let
(φε)ε>0 ⊂ H1(Ω; [−1, 1]) be a sequence such that there is a C ≥ 0 with

Eε(φε) =
ˆ

Ω

ε

2 |∇φε|2 + 1
ε
ψ0(φε) dx ≤ C,

for all ε > 0. Then there is a φ0 ∈ L1(Ω; [−1; 1]) and a non-relabeled subsequence such
that

φε → φ0 in L1(Ω),

for ε → 0.

Proof. This beautiful proof is given in [126, Proposition 3(a)], [147, Remark (1.35)] and
[37, Theorem 3.7]. As it reveals some nice properties of the Ginzburg–Landau energy and
its interplay with the theory of the space BV (Ω) let us give this proof here.
Let us define the anti-derivative of the continuous function

√
2ψ0 on [−1, 1] as

Φ : [−1, 1] → [0, c0]

s 7→
ˆ s

−1

√
2ψ0(t) dt.

(2.2.12)

Here c0 :=
´ 1

−1
√

2ψ0(t) dt is an important constant appearing in the Γ-limit of the
Ginzburg–Landau energy later on, see e.g., Theorem 3.3.11.
The function Φ has now some nice properties which we will exploit in the following. First
of all clearly Φ ∈ C1([−1, 1]) with Φ′(s) =

√
2ψ0(s) for all s ∈ [−1, 1]. Additionally as

ψ0 > 0 on (−1, 1), we know that Φ is strictly increasing and thus invertible with contin-
uous inverse Φ−1 : [0, c0] → [−1, 1]. Due to [99, Lemma 7.5], the composition satisfies
Φ◦φε ∈ H1(Ω) with ∇(Φ◦φε) = Φ′(φε)∇φε =

√
2ψ0(φε)∇φε. The beauty of this formula

is that this is now closely related to the Ginzburg–Landau energy as follows
ˆ

Ω
|∇(Φ ◦ φε)| dx =

ˆ
Ω

∣∣∣∣√2ψ0(φε)∇φε

∣∣∣∣ dx ≤
ˆ

Ω

ε

2 |∇φε|2 + 1
ε
ψ0(φε) dx

This last ingenious step, which is an application of Young’s inequality, is often referred to
as the Modica–Mortola trick. Now the space W 1,1(Ω) has the severe deficit that there is
no similar compactness as for example in H1(Ω). This is now what exactly motivates the
space BV (Ω). Namely, due to the compactness of this space, see Theorem 2.2.16,we can
extract a subsequence such that

Φ ◦ φε → ϕ0 in L1(Ω),

for ε → 0 and a suitable ϕ0 ∈ BV (Ω; [0, c0]). Exploiting the continuity and boundedness
of Φ−1 this provides us with φ0 = Φ−1 ◦ϕ0 ∈ L1(Ω; [−1, 1]) and thus the proof is complete.

2.2.6. Quasi-open sets and γ-convergence

As mentioned already in the introduction, on the sharp-interface level one needs a certain
notion of convergence under which eigenvalues behave continuously. This will be the
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so called γ-convergence. As a first step we will introduce the notion of quasi-openness
which is a generalization of openness naturally appearing in the classical relaxation of the
Dirichlet-Laplace problem studied in the seminal work [64]. For a comprehensive overview
we refer to [19,49,110].
The concept of quasi-open sets heavily relies on the notion of capacity. From an intuitive
point of view the benefit of the capacity is that it measures sets in a finer way than the
Lebesgue measure does. In other words there are Lebesgue null sets with positive capacity,
see [19, Section 5.8.2].

Definition 2.2.26. The capacity of a measurable set E ⊂ Rd is defined as

cap(E) = inf
{ˆ

Rd

|∇u|2 + u2 dx
∣∣∣∣u ∈ UE

}
,

where UE is the set of functions u ∈ H1(Rd) such that u ≥ 1 a.e. in a neighborhood of
E. Here, the expression “a.e. in a neighborhood” means that there exists an open set U
containing E such that u ≥ 1 a.e. in U .
We say that a relation holds quasi-everywhere (short q.e.) if it holds up to a set of zero
capacity.

This allows us to introduce the notion of quasi-open sets. Intuitively a set is quasi open
if it can be approximated by open sets in capacity. The analogous idea is also used to
introduce the notion of quasi-continuity.

Definition 2.2.27. A set ω ⊂ Rd is called quasi-open if for every δ > 0 there is an open
set ωδ ⊂ Rd such that cap(ω △ ωδ) < δ.
A function u : Ω → R is called quasi-continuous if for any δ > 0 there exists a continuous
function uδ : Ω → R such that cap({x ∈ Ω | u(x) ̸= uδ(x)}) < δ.

The concept of capacity is beautifully related to the Sobolev space H1(Ω) as the following
proposition shows. In particular quasi-open sets naturally arise as super-level sets of H1

functions. This is a beautiful relaxation of the fact that super-level sets of continuous
functions are open.

Proposition 2.2.28.

1. Let u ∈ H1(Ω) then there is a quasi-continuous representative of u which coincides
with u almost everywhere. This representative is uniquely defined up to a set of
zero capacity. We will always identify u with this representative. Whenever we
want to distinguish between u and its quasi continuous representative we denote this
representative with û.

2. Let A ⊂ Ω be an open subset, then it holds

H1
0 (A) =

{
u ∈ H1

0 (Ω)
∣∣∣ u = 0 q.e. in Ω\A

}
. (2.2.13)

3. Let u ∈ H1(Ω) and t ∈ R then the set {u > t} := {x ∈ Ω | u(x) > t} (where we recall
that u is the quasi-continuous representative) is quasi-open.
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Note that here in (2.2.13) on the left-hand side, as A is open, the space H1
0 (A) is defined

in the classical way as closure of C∞
0 (A) with respect to the associated H1-norm. For a

proof we refer to [51, Theorem 4.1.1, Theorem 4.1.3] and [110, Proposition 3.3.41].
In the light of the characterization (2.2.13), we want to give sense to the space H1

0 (E)
when E is merely a measurable set.
Definition 2.2.29. Let E ⊂ Ω be measurable. Then we define

H1
0 (E) =

{
u ∈ H1

0 (Ω)
∣∣∣ u = 0 q.e. in Ω\E

}
.

In the sharp-interface limit problems studied in Chapter 3 and Chapter 4 we want to
formulate the Dirichlet-Laplace eigenvalue problem on a shape which is quite irregular,
namely a set of finite perimeter which could in general even have empty interior, see
Remark 2.2.21.
In the light of the previous discussion the natural candidate for the Sobolev space on
which we formulate the Dirichlet eigenvalue problem in the sharp-interface case would be
H1

0 (E) as defined above. But let us recall the formal discussion from Section 2.1.6 and
especially (2.1.15) which reads as

sup
{ˆ

Ωε
−

bε(φε) |wε,φε |2 dx
∣∣∣∣∣ ε > 0

}
< ∞. (2.2.14)

Based on this boundedness we will show in Theorem 3.3.7 that if the sequence of phase-
fields (φε)ε>0 ⊂ H1(Ω) converge in L1(Ω) to some φ ∈ BV (Ω; {±1}) then there is a
non-relabeled subsequence such that

lim
ε↘0

∥wε,φε − u∥H1(Ω) = 0

and

lim
ε↘0

ˆ
Ω
bε(φε) |wε,φε |2 dx =

ˆ
Ω
b0(φ) |u|2 dx = 0.

Clearly u plays the role of an eigenfunction for the sharp-interface problem. Recalling the
construction of the coefficient function bε in (2.1.14) we have b0(1) = 0 and b0(−1) = ∞.
Thus, the condition ˆ

Ω
b0(φ) |u|2 dx = 0.

is equivalent to u = 0 almost everywhere in {φ = −1}. So we see that here the under-
lying measure is indeed the Lebesgue measure and not the capacity, thus motivating the
introduction of the following relaxed “Sobolev-like” space.
Definition 2.2.30. For any measurable set E ⊂ Ω, we define the space

H̃1
0 (E) =

{
u ∈ H1

0 (Ω)
∣∣∣ u = 0 a.e. in Ω\E

}
. (2.2.15)

It is clear that H̃1
0 (E) ⊂ H1

0 (Ω) is a closed subspace equipped with the norm induced
by H1

0 (Ω). In general, even for open sets E ⊂ Ω, the inclusion H1
0 (E) ⊂ H̃1

0 (E) might
be strict, see [80, Remark 2.1]. However, if the open set E additionally has a Lipschitz
boundary, then equality holds, see [51].
Now we note the following crucial relation between these definitions, which will be also
used in our Γ-convergence proof, see Theorem 3.3.11.
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Proposition 2.2.31. Let E ⊂ Ω be a measurable set. Then there exists a unique quasi-
open set ω ⊂ Ω such that

H̃1
0 (E) = H1

0 (ω) =
{
u ∈ H1

0 (Ω)
∣∣∣ u = 0 q.e. in Ω\ω

}
. (2.2.16)

Here uniqueness is to be understood up to a set of zero capacity. Furthermore this set
satisfies ω ⊂ E a.e.

Note that [110, Prop. 3.3.44] only asserts the existence of a unique quasi-open set ω ⊂
E such that H1

0 (E) = H1
0 (ω), so there the left hand side is the classical space from

Definition 2.2.29. Although Proposition 2.2.31 has been frequently used in the literature,
see [39,51,81], we give the proof here for the sake of completeness.

Proof. As H̃1
0 (E) ⊂ H1

0 (Ω) is a closed subspace and H1
0 (Ω) is separable, we infer the

existence of a dense sequence (un)n∈N ⊂ H̃1
0 (E). Now we define

ω := ∪n∈N {ûn ̸= 0} = ∪n∈N({ûn > 0} ∪ {ûn < 0}),

which due to Proposition 2.2.28 is a quasi-open subset of Ω as the countable union of
quasi-open sets is quasi-open, see [110, Proposition 3.3.40]. By definition of the space
H̃1

0 (E) we know for any n ∈ N

{ûn ̸= 0} ⊂ E a.e.,

and thus, we directly infer ω ⊂ E a.e. and

H1
0 (ω) ⊂ H̃1

0 (ω) ⊂ H̃1
0 (E),

by noting that vanishing quasi everywhere is a stronger condition than vanishing almost
everywhere.
Now for the other inclusion let u ∈ H̃1

0 (E) be arbitrary. Then by construction we can
extract a non-relabeled subsequence from the initially fixed dense sequence such that

un → u in H̃1
0 (E).

Due to [49, Theorem 4.1.2] it holds by extracting possibly a further subsequence

ûn → û q.e. in Ω

and thus we infer

{û ̸= 0} ⊂ ∪n∈N {ûn ̸= 0} = ω q.e.

and thus by Definition 2.2.29 we infer H̃1
0 (E) ⊂ H1

0 (ω), as u ∈ H̃1
0 (E) was arbitrary. The

uniqueness follows directly from the fact

ω1, ω2 ⊂ Ω quasi-open with H1
0 (ω1) ⊂ H1

0 (ω2) ⇒ ω1 ⊂ ω2 q.e.,

see the proof of [110, Prop. 3.3.44].

Remark 2.2.32.
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• From this constructive proof we see that ω ⊂ Ω is chosen to be the largest quasi-open
set contained in E with the property H1

0 (ω) ⊂ H̃1
0 (E). It is important to notice

that, in general, the inclusion ω ⊂ E is strict, even in the almost everywhere sense.
Indeed, the case Ld(E\ω) > 0 may occur, see [51].
In this line of thought it would be interesting to know whether there is an example
of a finite perimeter set with positive Lebesgue measure for which H̃1

0 (E) = {0}?
Of course in that case E has to have empty interior. This question was tackled
in [2, Section 11.3]. Due to [2, Theorem 11.3.2] for a Borel set E ⊂ Rd with empty
interior it holds H1

0 (E) = {0} if and only if

cap(ω\E) = cap(ω), for all open sets ω ⊂ Rd. (2.2.17)

As discussed in [2], with the analogous construction as for the wild set of finite
perimeter in Remark 2.2.21, one obtains an example for which condition (2.2.17) is
not fulfilled. In other words there are measurable sets E with empty interior for
which the space H1

0 (E) and thus also the space H̃1
0 (E) is non-trivial. On the other

hand it is in general not clear whether (2.2.17) already implies that E is a Lebesgue
null set.
This discussion motivates the assumption for any admissible shape Eφ in the sharp-
interface setting to contain an open ball, see Assumption (A4) in Chapter 3, as this
obviously guarantees H̃1

0 (Eφ) to be a non-trivial infinite dimensional vector space.

The relation (2.2.16) can now further be refined via the following Laplace equation. Thus,
let E ⊂ Ω be a measurable set and ω ⊂ E be the quasi-open set provided by Proposi-
tion 2.2.31.
Let uE ∈ H̃1

0 (E) be the unique solution of
ˆ

Ω
∇uE · ∇v dx =

ˆ
Ω

1v dx ∀v ∈ H̃1
0 (E) (2.2.18)

and uω ∈ H1
0 (ω) be the unique solution of

ˆ
Ω

∇uω · ∇v dx =
ˆ

Ω
1v dx ∀v ∈ H1

0 (ω). (2.2.19)

We thus infer uE = uω in H1
0 (ω). We now associate the quasi-open set ω with the Borel

measure

∞Ω\ω(B) =
{

0 if cap(B ∩ (Ω\ω)) = 0,
+∞ else,

for any Borel-set B. Using the notation µω := ∞Ω\ω, this allows us to define the so called
relaxed Dirichlet problem associated to (2.2.19):
Find uµω ∈ Xµω (Ω) := H1

0 (Ω) ∩ L2
µω

(Ω)
ˆ

Ω
∇uµω · ∇v dx+

ˆ
Ω
uµωv dµω =

ˆ
Ω

1v dx ∀v ∈ Xµω (Ω). (2.2.20)

Here H1
0 (Ω) ∩ L2

µω
(Ω) denotes the space of functions v ∈ H1

0 (Ω) fulfilling
ˆ

Ω
v2 dµω < ∞.
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This problem is studied in depth in [19,49,63,78,110] as this is the canonical limit problem
when passing to the limit with a sequence of solutions of the classical Dirichlet–Laplace
problem formulated on open sets (Ωn)n∈N in the sharp-interface case. Due to [49,63], Xµω

is a Hilbert space with the scalar product

(u, v)Xµω
:=

ˆ
Ω

∇u · ∇v dx+
ˆ

Ω
uv dµω.

Using [49, Ex. 4.3.2] and the fact that there exists a finely open set A ⊂ Ω and a set of
zero capacity N such that ω = A ∪ N (see [49, Thm. 4.1.5]), one deduces that

H1
0 (ω) = Xµω ,

and therefore uµω = uω in H1
0 (ω).

Note that the comparison principle known for classical elliptic PDEs still holds for the
relaxed Dirichlet problem, see [78, Prop. 2.6], which allows us to deduce that uµω ≥ 0
q.e. in Ω and uµω ∈ L∞(Ω). Furthermore, using this comparison principle along with the
relations shown above, we eventually obtain

H̃1
0 (E) = H1

0 (ω) = H1
0 ({uω > 0}) = H1

0 ({uµω > 0}) = H1
0 ({uE > 0}).

Using these identities, it is easy to see that

H1
0 ({uω > 0}) = H̃1

0 ({uω > 0}),

because uω ∈ H1
0 (ω) = H̃1

0 (E). The equality between these spaces will be crucially
exploited in the proof of Theorem 3.3.11
In particular, for any quasi-open set ω ⊂ Ω, this discussion shows us that solving the
relaxed Dirichlet problem (2.2.20) is equivalent to solve the classical Dirichlet problem
(2.2.19) over H1

0 (ω). Thus, as also done in [39, 51], we can adapt the density result [78,
Proposition 5.5] to our setting.

Proposition 2.2.33. Let ω ⊂ Ω be a quasi-open set and uω ∈ H1
0 (ω) be the unique

solution of (2.2.19). Then

{uωϕ | ϕ ∈ C∞
0 (Ω)} ⊂ H1

0 (ω) = H1
0 ({uω > 0}). (2.2.21)

is dense.

This result is particularly helpful to show γ-convergence and we will apply this result also
in the proof of Theorem 3.3.11.
Now let us finally come to the notion of γ-convergence. The γ-convergence can be ab-
stractly defined in terms of Γ-convergence, see [49, Definition 3.3.1]. For our purposes the
following working definition will be enough, see also [49, Proposition 4.5.3, Remark 4.5.5]
for the equivalence of both definitions.

Definition 2.2.34. Let (ωn)n∈N ⊂ Ω and ω ⊂ Ω be quasi-open sets. We say that ωn

γ-converges to ω and write ωn
γ→ ω if

uωn → uω in H1
0 (Ω),

where uωn ∈ H1
0 (ωn), uω ∈ H1

0 (ω) denote the unique solutions associated to equation
(2.2.19).
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This means that the γ-convergence of quasi-open shapes is defined via the convergence
of solutions to a generic state equation on each shape, namely Poisson’s equation with
right-hand side 1.
As mentioned above let us give a characterization of γ-convergence in terms of Mosco-
convergence and therefore define convergence in the sense of Mosco at first.

Definition 2.2.35. Let (ωn)n∈N ⊂ Ω and ω ⊂ Ω be quasi-open sets. We say that H1
0 (ωn)

converges in the sense of Mosco to H1
0 (ω) if the following two conditions are satisfied.

(M1) For all ϕ ∈ H1
0 (ω) there exists a sequence ϕn ∈ H1

0 (ωn) such that

ϕn → ϕ in H1
0 (Ω).

(M2) Let ϕn ∈ H1
0 (ωn) be an arbitrary sequence which weakly converges in H1

0 (Ω) to some
ϕ ∈ H1

0 (Ω).
Then it holds ϕ ∈ H1

0 (ω).

This convergence reveals the close link to Γ-convergence from Definition 2.2.23, because
in proving (M1) one has to construct a recovery sequence, which is reminiscent of the
lim sup inequality and in proving (M2) one has to show a property for the limit of any
sequence, which is reminiscent of the lim inf inequality.
Now the following characterization holds due to [51, Proposition 4.5.3].

Theorem 2.2.36. Let (ωn)n∈N ⊂ Ω and ω ⊂ Ω be quasi-open sets. Then ωn
γ→ ω if and

only if H1
0 (ωn) converges to H1

0 (ω) in the sense of Mosco.

Finally, let us mention the stability of γ-convergence with respect to intersection.

Proposition 2.2.37. Let (An)n∈N, A, (Bn)n∈N, B ⊂ Ω be quasi-open sets with An
γ→ A

and Bn
γ→ B then it holds

An ∩Bn
γ→ A ∩B.

For a proof we refer to [49, Proposition 4.5.6].
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Part I

Spectral optimization problems
for the Laplace operator
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Chapter 3

The Laplace problem

3.1. Introduction

Poisson’s equation is one of the most fundamental equations in physics and mathematics.
From the perspective of vibration phenomena the eigenvalue equation associated to the
Laplace operator for example models the vibration of a membrane. Furthermore it serves
also as a model problem to understand the behavior of eigenvalues for more general elliptic
partial differential equations.
The key motivation for this chapter is to find a model that is well suited for the mathe-
matical analysis of the problems{

−∆w = λw in D,

w|∂D = 0 on ∂D,
or

{
−∆w = µw in D,

∂nw = 0 on ∂D,
(CL)

where D is a varying shape. As also discussed in the general introduction, a rich part of
the literature is devoted to classical shape optimization. Classical here means that the
shape itself is varied along the optimization process, i.e., the shapes here serve as control
in the optimization problems, see [5, 49,51,64,108,109].
In order to approximate the classical problems (CL) we introduce a phase-field formulation
of these equations. Even though our approach is similar to the one used in [39] we propose
a model with a more general relaxation term in the approximate eigenvalue problem.
Furthermore, our framework allows us to deal with additional volume constraints and gives
us the possibility to place obstacles within the design domain and to initially prescribe
regions containing either material or void throughout the optimization process. Finally,
our proof for the sharp interface limit in the Dirichlet case works for the non-smooth double
obstacle potential in the Ginzburg–Landau energy and not only for smooth potentials.
This is due to the fact that we prove the continuity of eigenvalues when passing from
diffuse to sharp interfaces.
Let us now shortly explain the strategy we will pursue.
As mentioned in the overall introduction we approximate (CL) by introducing a phase-
field variable allowing us to formulate an elliptic eigenvalue problem on the whole design
domain. This problem now involves coefficient functions depending on the phase-field
which are chosen such that the associated classical eigenvalue problem is approximately
satisfied on the shape given by the super-level set Ωε

+ = {φε ≥ 0}, see also Section 2.1.6.

59
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Thus, Ωε
+ in turn can be understood as approximate shape which is implicitly recovered

from the phase-field variable. In Section 2.1.6 we have already discussed choices of these
coefficient functions which will formally lead to the classical eigenvalue problem (CL) on
the shape D = {φ0 = 1} when passing the interface parameter ε → 0.
We refer to the books [19,49,108,110] for in depth discussions of analytical results about
classical shape variation, especially the continuity of eigenvalues under perturbation of
the shape and shape differentiability. A crucial tool introduced there is the notion of γ-
convergence, see Section 2.2.6. This concept for the sharp-interface case is constructed in
such a way that the γ-convergence of the shapes implies the convergence of the associated
eigenvalues. In our framework we also need to rely on this theory as the Γ-limit of the
associated cost functionals involves an approximation of finite perimeter sets by smooth
sets and thus, we particularly need the continuity of eigenvalues with respect to this
approximation on the sharp-interface level. Here on the sharp-interface level, we will
follow the lines of reasoning of [39], but need to be careful in distinguishing the relative
perimeter PΩ from the global perimeter PRd , see Section 3.3.2.
In order to illustrate the behavior of solutions (λ,w) to (CL) let us consider this problem
in the class of rectangular shapes. Therefore let the shape be D = DL,l = (0, L) × (0, l)
with L > l > 0. The eigenvalues in both problems of (CL) in this two dimensional
example can be directly computed as

π2
(
m2

L2 + k2

l2

)
. (3.1.1)

The crucial difference is that in the Neumann case m, k ∈ N0 can be zero whereas in the
Dirichlet case both m ∈ N and k ∈ N have to be strictly positive. The corresponding
L2(D)-normalized eigenfunctions are

wD
m,k(x, y) = 2√

Ll
sin
(
mπx

L

)
sin
(
kπy

l

)
m, k ≥ 1,

in the Dirichlet case, and

wN
m,k(x, y) = 2√

Ll
cos

(
mπx

L

)
cos

(
kπy

l

)
m, k ≥ 0,

in the Neumann case, see e.g., [108, Proposition 1.2.13].
Having optimization problems in mind we observe the following. Let us consider the class
of above rectangles which additionally satisfies the area constraint Ll = 1. Then for fixed
L, l the smallest non-trivial Neumann eigenvalue of (CL) is given by π2

L2 . This eigenvalue
converges to zero for L → ∞ and l = 1

L → 0. In other words taking long and thin rectan-
gles, the first non-trivial Neumann eigenvalue degenerates and thus, the minimization of
this eigenvalue in the class of rectangles of prescribed area is not well-posed. On the other
hand the smallest Dirichlet eigenvalue of (CL) is given as π2( 1

L2 + 1
l2 ). Hence, choosing

long and thin rectangles will produce arbitrarily large principal eigenvalues. This indicates
from a mathematical viewpoint that the maximization of the smallest non-trivial Neu-
mann eigenvalue and the minimization of the smallest Dirichlet eigenvalue are well-posed
problems.
Let us now mention two classical results concerning the optimization of eigenvalues on the
sharp-interface level. Definitely the most fundamental problem in this context is given
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by the theorem of Faber–Krahn (see, e.g., [108, Theorem 3.2.1]), which states the ball
B ⊂ Rn of prescribed volume |B| = c > 0 satisfies

λ1(B) = min {λ1(D) |D open subset of Rn with |D| = c} . (3.1.2)

From a physical point of view, this theorem, which was first conjectured by Lord Rayleigh
in 1877 (see [139]), states in particular that the lowest possible frequency under all clamped
membrane of fixed area is achieved by a circular membrane. Loosely speaking: “All drums
are round.” Chapter 4 of this thesis is entirely devoted to the study of this celebrated
result in the phase-field framework.
In the Neumann case the analogon to the Faber–Krahn theorem is the theorem of Szegő
and Weinberger (see, e.g., [108, Theorem 7.1.1]) which states that the ball of fixed volume
|B| = c maximizes the first non-trivial eigenvalue as follows

µ1(B) = max
{
µ1(D)

∣∣∣∣∣D open subset of Rn with
Lipschitz boundary and |D| = c

}
. (3.1.3)

Note that this Lipschitz condition here is indeed necessary in order to obtain a sequence of
increasingly Neumann eigenvalues by classical spectral theory, see Theorem 2.2.8 and [108,
Theorem 1.2.8] using the compactness of the embedding H1(Ω) ↪→ L2(Ω).
For the sake of completeness let us briefly recall the formulation of the optimization
problems studied in this chapter, see also Section 2.1.7. Let the interface parameter ε > 0
be fixed. For some phase-field φ = φε, let

(
λε,φ

k

)
k∈N and

(
µε,φ

k

)
k∈N comprise all the

Dirichlet and Neumann eigenvalues of the equations approximating (CL), respectively. In
the Dirichlet case, we minimize the functional

JD
ε (φ) = Ψ(λε,φ

i1
, . . . , λε,φ

il
) + γEε

GL(φ), (3.1.4)

and in the Neumann case, we minimize the functional

JN
ε (φ) = Ψ(µε,φ

i1
, . . . , µε,φ

il
) + γEε

GL(φ), (3.1.5)

where the indices i1, . . . , il ∈ N select eigenvalues from the above sequences and Eε
GL is

the Ginzburg–Landau energy.
One of the strengths of our model lies in the feasible set Φad, these problems are formulated
on, see Section 2.1.2. On the one hand φ ∈ Φad satisfies a volume constraint, in the sense
that its integral lies in between some initially imposed barriers and on the other hand
we initially prescribe regions within the design domain which are either completely filled
with material or have to remain empty along the optimization process. We will see in
Section 3.3.2 that these additional constraints combined with the perimeter penalization
coming from the Ginzburg–Landau energy require a quite delicate analysis which goes
beyond the existing Γ-convergence proof for the Dirichlet Laplace problem in [39].
In summary, this chapter comprises the analysis of the optimization problems associated
to (3.1.4) and (3.1.5), an in depth and rigorous study of the sharp-interface limit of the
Dirichlet problem in the framework of Γ-convergence and finally numerical simulations
which through many examples show the strength of the phase-field approach applied to
shape and topology optimization problems.



62 CHAPTER 3. THE LAPLACE PROBLEM

3.2. Analysis of the diffuse interface problem

3.2.1. The state equations and their properties

In this section we fix ε > 0 and therefore, we will just write φ instead of φε. For a cleaner
presentation, we also omit the superscript ε when denoting eigenvalues and eigenfunctions
as the ε-dependency is indicated by the coefficient functions.

Definition 3.2.1 (Definition of eigenvalues and eigenfunctions). Let φ ∈ L∞(Ω) be arbi-
trary.

(a) λφ is called a Dirichlet eigenvalue of the state equation (2.1.8) if there exists a non-
trivial weak solution wD,φ to (2.1.8), i.e., 0 ̸= wD,φ ∈ H1

0 (Ω), and it holds that(
∇wD,φ,∇η

)
aε(φ)

+
(
wD,φ, η

)
bε(φ)

= λφ
(
wD,φ, η

)
cε(φ)

for all η ∈ H1
0 (Ω).

(3.2.1)

In this case, the function wD,φ is called an eigenfunction to the eigenvalue λφ.

(b) µφ is called a Neumann eigenvalue of the state equation (2.1.9) if there exists a
non-trivial weak solution wN,φ to (2.1.9), i.e., 0 ̸= wN,φ ∈ H1(Ω), and it holds that(

∇wN,φ,∇η
)

aε(φ)
= µφ

(
wN,φ, η

)
cε(φ)

for all η ∈ H1(Ω). (3.2.2)

In this case, the function wN,φ is called an eigenfunction to the eigenvalue µφ.

The properties and assumptions of the preliminary section allow us to prove two classical
functional analytic results concerning the eigenvalues and eigenfunctions.

Theorem 3.2.2 (Existence and properties of eigenvalues and eigenfunctions).
Let φ ∈ L∞(Ω) be arbitrary.

(a) There exist sequences(
wD,φ

k , λφ
k

)
k∈N

⊂ H1
0 (Ω) × R,

(
wN,φ

k , µφ
k

)
k∈N0

⊂ H1(Ω) × R,

possessing the following properties:

• For all k ∈ N, wD,φ
k is an eigenfunction to the eigenvalue λφ

k and wN,φ
k is an

eigenfunction to the eigenvalue µφ
k in the sense of Definition 3.2.1.

• The eigenvalues λφ
k , µ

φ
k (which are repeated according to their multiplicity) can

be ordered in the following way:

0 < λφ
1 ≤ λφ

2 ≤ λφ
3 ≤ · · · ,

0 = µφ
0 < µφ

1 ≤ µφ
2 ≤ µφ

3 ≤ · · · .

Moreover, it holds that λφ
k , µ

φ
k → ∞ as k → ∞, and there exist no further

eigenvalues of the state equation (3.2.1) and (3.2.2).
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• Both the Dirichlet eigenfunctions {wD,φ
1 , wD,φ

2 , . . . } ⊂ H1
0 (Ω) and the Neumann

eigenfunctions {wN,φ
0 , wN,φ

1 , . . . } ⊂ H1(Ω) form an orthonormal basis of the
space L2

φ(Ω). Furthermore, the eigenfunctions {wN,φ
1 , wN,φ

2 , . . . } belong to the
space H1

(0),φ(Ω) and form an L2
φ(Ω)-orthonormal basis of the space

L2
(0),φ(Ω) =

{
w ∈ L2

φ(Ω)
∣∣∣∣ˆ

Ω
cε(φ)w dx = 0

}
.

In particular, this implies that any eigenfunction to a non-trivial eigenvalue
belongs to the space H1

(0),φ(Ω).

(b) For k ∈ N, we have the Courant–Fischer characterizations

λφ
k = max

V ∈Sk−1
min

{ ´
Ω aε(φ) |∇v|2 dx+

´
Ω bε(φ) |v|2 dx´

Ω cε(φ) |v|2 dx

∣∣∣∣∣ v ∈ V ⊥,L2
φ(Ω) ∩H1

0 (Ω),
v ̸= 0

}
,

(3.2.3)

and

µφ
k = max

V ∈Sk−1
min


´

Ω aε(φ) |∇v|2 dx´
Ω cε(φ) |v|2 dx

∣∣∣∣∣ v ∈ V ⊥,L2
φ(Ω) ∩H1

(0),φ(Ω),
v ̸= 0

 . (3.2.4)

Here, Sk−1 denotes the collection of all (k − 1)-dimensional subspaces of L2
φ(Ω).

The set V ⊥,L2
φ(Ω) denotes the orthogonal complement of V ⊂ L2(Ω) with respect to

the scalar product (·, ·)cε(φ) on L2
φ(Ω).

Moreover, the maximum is attained at the subspace

V = ⟨wD,φ
1 , . . . , wD,φ

k−1⟩span and V = ⟨wN,φ
1 , . . . , wN,φ

k−1⟩span,

respectively.

(c) We can choose the eigenfunction wD,φ
1 such that it is positive almost everywhere in

Ω. Furthermore, every solution w ∈ H1
0 (Ω) of

(∇w,∇η)aε(φ) + (w, η)bε(φ) = λφ
1 (w, η)cε(φ) for all η ∈ H1

0 (Ω),

is a multiple of wD,φ
1 , i.e., there is a constant ξ ∈ R such that w = ξwD,φ

1 almost
everywhere in Ω. This means that the eigenspace to λφ

1 is simple.

Proof of Theorem 3.2.2. (a) The assertion is a direct consequence of the spectral the-
orem for compact self-adjoint operators, see Theorem 2.2.8 and also the proof of Theo-
rem 5.2.2 where we go through the main steps which then directly apply to our situation.
(b) The claim is established in the same fashion as we will do later on for the problem in
linear elasticity, see Theorem 5.2.2.
(c) The assertion follows directly from [99, Theorem 8.38].



64 CHAPTER 3. THE LAPLACE PROBLEM

Remark 3.2.3. In the following, we impose weaker assumptions on our phase field φ
compared to the analysis in Chapter 5, namely we only consider φ ∈ H1(Ω̃) ∩ L∞(Ω)
instead of φ ∈ H1(Ω) ∩ L∞(Ω), where Ω̃ = Ω\(S0 ∩ S1) with S0 and S1 being the sets
appearing in the point-wise constraint (2.1.1). As explained in Section 2.1.4, we consider
this reduction of H1-regularity in order to avoid additional Dirichlet boundary conditions
for the phase-field on the boundaries of S0 and S1 which would complicate the sharp-
interface limit ε → 0 that is discussed in Section 3.3.
Nevertheless, one can still formulate and prove all the continuity and differentiability
results established in Chapter 5 as the results in Section 5.3.1 merely rely on the point-wise
almost everywhere convergence of phase-field sequences φk → φ in Ω and the boundedness
in L∞(Ω) in order to apply Lebesgue’s dominated convergence theorem and the results
from Section 5.3.2 and Section 5.4 only rely on the strong convergence in L∞(Ω;Rd) as
this is sufficient to exploit the local Lipschitz continuity of C and ρ there.

Following this remark, we only display the most important results of Chapter 5 adapted
to our setting, namely the continuity of eigenvalues and eigenfunctions as well as the
Fréchet-differentiability of simple eigenvalues.

Theorem 3.2.4 (Continuity properties for the eigenvalues and their eigenfunctions). Let
j ∈ N be arbitrary and let (φk)k∈N ⊂ L∞(Ω) be a bounded sequence with

φk → φ a.e. in Ω as k → ∞.

Moreover, let (uD,φk
j )k∈N ⊂ H1

0 (Ω) and (uN,φk
j )k∈N ⊂ H1

(0),φ(Ω) be sequences of L2
φk

(Ω)-
normalized eigenfunctions to the eigenvalues (λφk

j )k∈N and (µφk
j )k∈N respectively.

Then it holds that

λφk
j → λφ

j and µφk
j → µφ

j as k → ∞.

Furthermore, there exist L2
φ(Ω)-normalized eigenfunctions uD

j ∈ H1
0 (Ω), uN

j ∈ H1
(0),φ(Ω)

to the eigenvalue λφ
j , µ

φ
j respectively, such that for ζ ∈ {D,N},

uζ,φk
j ⇀ uζ

j in H1(Ω), and uζ,φk
j → uζ

j in L2
φ(Ω),

as k → ∞ along a non-relabeled subsequence.

Proof. The assertion can be established inductively by proceeding as in Theorem 5.3.4,
using the Courant–Fischer characterization from Theorem 3.2.2, and the Banach–Alaoglu
theorem applied to the sequence of eigenfunctions.

In the remaining analysis of this section, namely the Fréchet-differentiability of eigenval-
ues, the assumption that the considered eigenvalues are simple is crucial. For instance, it
already becomes clear in finite dimension (see [108, Sec. 2.5] or Section 5.4.2) that mul-
tiple eigenvalues are in general not differentiable as two different eigenvalues can cross
in a non-differentiable way. To overcome this issue, one can switch to a weaker notion
of differentiability such as directional differentiability or semi-differentiability, cf. [108] or
Section 5.4.2. Nevertheless, our numerical method needs the first-order conditions to be
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formulated in the framework of classical Fréchet-differentiability. However multiple eigen-
values can to some extent still be handled numerically by adaptively reformulating the
cost functional as we will see in Section 3.4.
Let us first recall the sign condition for simple eigenvalues that is introduced in Sec-
tion 5.3.3.

Lemma 3.2.5. Let i ∈ N and φ ∈ L∞(Ω) be arbitrary. We suppose that the eigenvalue
λφ

i (or µφ
i ) is simple. Let wD,φ

i ∈ H1
0 (Ω)

(
or wN,φ

i ∈ H1
(0),φ(Ω)

)
be an L2

φ(Ω)-normalized
eigenfunction to the eigenvalue λφ

i (or µφ
i ).

Then, for all 0 < σ < 1, there exists δ > 0 such that for all

h ∈ L∞(Ω) with ∥h∥L∞(Ω) < δ,

there exist a unique L2
φ+h(Ω)-normalized eigenfunction wD,φ+h

i ∈ H1
0 (Ω)

(
or wN,φ+h

i ∈
H1

(0),φ(Ω)
)

to the eigenvalue λφ+h
i (or µφ+h

i ) satisfying the condition

0 < σ <
(
wD,φ+h

i , wD,φ
i

)
cε(φ)

(
or 0 < σ <

(
wN,φ+h

i , wN,φ
i

)
cε(φ)

)
. (3.2.5)

In particular, the eigenvalue λφ+h
i (or µφ+h

i ) is simple.

In the following, for the derivatives of the coefficient functions, we will use also the notation

(u, v)a′
ε(φ)h :=

ˆ
Ω
a′

ε(φ)huv dx

to provide a clearer presentation.

Theorem 3.2.6 (Fréchet-differentiability of simple eigenvalues and their eigenfunctions).
Let φ ∈ L∞(Ω) be arbitrary and suppose that for i ∈ N, the eigenvalue λφ

i (or µφ
i ) is

simple. We further fix a corresponding L2
φ(Ω)-normalized eigenfunction wD,φ

i (or wN,φ
i ).

Then there exist constants δφ
i , rφ

i > 0 such that the operatorS
D,φ
i : Bδφ

i
(φ) ⊂ L∞(Ω) → Brφ

i

(
(wD,φ

i , λφ
i )
)

⊂ H1
0 (Ω) × R

ϑ 7→
(
wD,ϑ

i , λϑ
i

)
(

or

S
N,φ
i : Bδφ

i
(φ) ⊂ L∞(Ω) → Brφ

i

(
(wN,φ

i , µφ
i )
)

⊂ H1
(0),φ(Ω) × R,

ϑ 7→
(
wN,ϑ

i , µϑ
i

)
)
,

is well-defined and continuously Fréchet-differentiable.
Here, for any ϑ ∈ Bδφ

i
(φ), wD,ϑ

i (or wN,ϑ
i ) denotes the unique L2

ϑ(Ω)-normalized eigen-
function to the eigenvalue λϑ

i (or µϑ
i ) satisfying the sign condition (3.2.5) written for

h = ϑ− φ.
Moreover, for any h ∈ L∞(Ω), the Fréchet-derivative (λϑ

i )′h of the Dirichlet eigenvalue
λϑ

i at ϑ ∈ Bδφ
i

(φ) in the direction h reads as(
λϑ

i

)′
h =

(
SD,φ

i,2 (ϑ)
)′
h

=
(
∇wD,ϑ

i ,∇wD,ϑ
i

)
a′

ε(ϑ)h
+
(
wD,ϑ

i , wD,ϑ
i

)
b′

ε(ϑ)h
− λϑ

i

(
wD,ϑ

i , wD,ϑ
i

)
c′

ε(ϑ)h
.

(3.2.6)
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On the other hand, for any h ∈ L∞(Ω), the Fréchet-derivative (µϑ
i )′h of the Neumann

eigenvalue µϑ
i at ϑ ∈ Bδφ

i
(φ) in the direction h reads as

(
µϑ

i

)′
h =

(
SN,φ

i,2 (ϑ)
)′
h =

(
∇wN,ϑ

i ,∇wN,ϑ
i

)
a′

ε(ϑ)h
− µϑ

i

(
wN,ϑ

i , wN,ϑ
i

)
c′

ε(ϑ)h
. (3.2.7)

Proof. This is proven as in Theorem 5.4.3 by combining the implicit function theorem
with the Fredholm alternative from Lemma 5.4.4.

3.2.2. First-order optimality conditions

We now intend to apply the theory developed in Section 3.2 to show that the optimization
problems (PD,ε

l ) and (PN,ε
l ) (that were introduced in Section 2.1.7) possess a minimizer.

However, in the Neumann case, we first need to establish an additional boundedness
property.
Recall that one possible application of our model is to maximize the first non-trivial
Neumann eigenvalue. Since (PN,ε

l ) is formulated as a minimization problem, we thus
allow for functions Ψ that are not bounded from below. A possible choice to realize a
maximization of the first Neumann eigenvalue would be Ψ(µφ

1 ) = −µφ
1 (meaning that

Ψ(x) = −x for all x ∈ R). To apply the direct method in the calculus of variations, we
need to show that the cost functional Jε

1(φ) = Ψ(µφ
1 ) + γEε(φ) remains bounded from

below on the admissible set Φad, even if Ψ is not bounded from below.
Our goal is to show that any Dirichlet eigenvalue of (3.2.1) and any Neumann eigenvalue
of (3.2.2), is uniformly bounded by expressions involving the corresponding eigenvalue of
the classical eigenvalue problem on the whole design domain Ω. This allows us to deduce
that each Dirichlet and Neumann eigenvalue belongs to a compact subset of R>0. Hence,
as the function Ψ is assumed to be continuous on (R>0)l, it is bounded on such compact
sets.

Lemma 3.2.7. Let k ∈ N and let λLD
k denote the k-th eigenvalue of the classical Dirichlet

eigenvalue problem, i.e.,

(∇w,∇η) = λLD
k (w, η) ∀η ∈ H1

0 (Ω),

and let µLD
k denote the k-th eigenvalue of the classical Neumann eigenvalue problem, i.e.,

(∇w,∇η) = µLD
k (w, η) ∀η ∈ H1(Ω),

where (·, ·) denotes the standard scalar product on L2(Ω). Then there exist constants C1,ε,
C2,ε > 0 depending only on the choice of coefficient functions aε, bε, and cε such that

C1,ε λ
LD
k ≤ λφ

k ≤ C2,ε (λLD
k + 1),

C1,ε µ
LD
k ≤ µφ

k ≤ C2,ε µ
LD
k ,

for all φ ∈ Φad.

Proof. Let us start with the Neumann case. We will work with a Courant–Fischer
characterization which is equivalent to (3.2.4) namely

µφ
k = min

V ∈S̃k+1
max

{ ´
Ω aε(φ) |∇v|2 dx´

Ω cε(φ) |v|2 dx

∣∣∣∣∣ v ∈ V,

v ̸= 0

}
, (3.2.8)
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see [108, Sec. 1.3.1]. Here, S̃k+1 denotes the collection of all (k+1)-dimensional subspaces
of H1(Ω). Note that compared to [108] we have to consider dimension (k + 1) instead
of k, as we start our labeling of Neumann eigenvalues with the index 0 and not with 1.
Obviously, we obtain the characterization of the classical Neumann eigenvalue by setting
aε ≡ cε ≡ 1, i.e.,

µLD
k = min

V ∈S̃k+1
max

{ ´
Ω |∇v|2 dx´

Ω |v|2 dx

∣∣∣∣∣ v ∈ V,

v ̸= 0

}
. (3.2.9)

We now recall the assumptions on the coefficient functions from Section 2.1.5. In partic-
ular, we know that there is a constant C̃ε > 0 such that aε(φ), cε(φ) < C̃ε for all φ ∈ Φad,
as aε, cε ∈ C0(R) and |φ| ≤ 1. Furthermore, we assumed aε, cε to be uniformly bounded
from below, i.e., aε, cε ≥ Cε for some constant Cε > 0. Thus, we deduce that there are
constants C1,ε, C2,ε > 0 that only depend on the choice of the real functions aε, cε, such
that

C1,ε

´
Ω |∇v|2 dx´

Ω |v|2 dx
≤

´
Ω aε(φ) |∇v|2 dx´

Ω cε(φ) |v|2 dx
≤ C2,ε

´
Ω |∇v|2 dx´

Ω |v|2 dx
,

for all 0 ̸= v ∈ H1(Ω) and φ ∈ Φad. Comparing (3.2.8) and (3.2.9), this directly allows us
to deduce the claim in the Neumann case.
The Dirichlet case works completely analogously but one has to mind the additional term
coming from the coefficient function bε ∈ C1,1

loc (R) which is assumed to be non-negative.
Thus we obtain here

C1,ε

´
Ω |∇v|2 dx´

Ω |v|2 dx
≤

´
Ω aε(φ) |∇v|2 + bε(φ) |v|2 dx´

Ω cε(φ) |v|2 dx
≤ C2,ε

(´
Ω |∇v|2 dx´

Ω |v|2 dx
+ 1

)
,

for all 0 ̸= v ∈ H1
0 (Ω) and φ ∈ Φad.

Theorem 3.2.8 (Existence of a minimizer to (PD,ε
l ) and (PN,ε

l )). The problems (PD,ε
l )

and (PN,ε
l ) possess a minimizer φD ∈ Gβ ∩ U and φN ∈ Gβ ∩ U , respectively.

Proof. We proceed by applying the direct method in the calculus of variations. First of
all, the feasible set Gβ ∩ U is non-empty since it contains the function which is identical
to β1 in Ω̃, −1 in S0 and 1 in S1. By the previous discussion we already know that the
objective functionals JD,ε

l and JN,ε
l are bounded from below. Since φ ∈ Gβ ⊂ L∞(Ω), the

term

γEε(φ) = γ

ˆ
Ω̃

(
ε

2 |∇φ|2 + 1
ε
ψ0(φ)

)
dx,

in the cost functional can be used to control φ in the H1(Ω̃)-norm, but not in the whole
H1(Ω)-norm. This means that for any minimizing sequence, we can only apply compact-
ness on Ω̃ which implies strong convergence in L2(Ω̃). However, as the elements of this
minimizing sequence are additionally contained in the feasible set Gβ ∩ U , their values on
S0 ∪ S1 are a priori fixed, which gives us the desired point-wise almost everywhere con-
vergence on the whole domain Ω. This allows us to apply Theorem 3.2.4 which provides
the continuity of the eigenvalues with respect to the phase-field variable.
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Now, invoking the differentiability properties established in Section 3.2, we can derive a
first-order necessary condition for local optimality. The following variational inequalities
follow directly from the fact that for ζ ∈ {D,N} and ϑ ∈ Gβ ∩ U

0 ≤ d
dt
[
Jζ,ε

l

(
φζ + t(ϑ− φζ)

)]
|t=0

=
(
Jζ,ε

l

)′ (
φζ)(ϑ− φζ),

as the convexity of Gβ ∩ U implies that φζ + t(ϑ− φζ) ∈ Gβ ∩ U for t ∈ [0, 1].

Theorem 3.2.9 (The optimality system to (PD,ε
l )). Let φ ∈ Gβ ∩ U be a local minimizer

of the optimization problem (PD,ε
l ), i.e., there exists δ > 0 such that

JD,ε
l (ϑ) ≥ JD,ε

l (φ) for all ϑ ∈ Gβ ∩ U with ∥ϑ− φ∥L∞(Ω) < δ.

Suppose that the eigenvalues λφ
i1
, . . . , λφ

il
are simple and let us fix associated L2

φ(Ω)-normalized
eigenfunctions wD,φ

i1
, . . . , wD,φ

il
∈ H1

0 (Ω).
Then the following optimality system is satisfied:

• The state equations−∇ ·
[
aε(φ)∇wD,φ

ij

]
+ bε(φ)wD,φ

ij
= λφ

ij
cε(φ)wD,φ

ij
in Ω,

wD,φ
ij

= 0 on ∂Ω
(SDj)

are fulfilled in the weak sense for all j ∈ {1, . . . , l}.

• The variational inequality

0 ≤ γε

ˆ
Ω̃

∇φ · ∇(ϑ− φ) dx+ γ

ε

ˆ
Ω̃
ψ′

0(φ)(ϑ− φ) dx

+
l∑

j=1

{
[∂λij

Ψ]
(
λφ

i1
, . . . , λφ

il

) ((
∇wD,φ

ij
,∇wD,φ

ij

)
a′

ε(φ)(ϑ−φ)
+
(
wD,φ

ij
, wD,φ

ij

)
b′

ε(φ)(ϑ−φ)

− λφ
ij

(
wD,φ

ij
, wD,φ

ij

)
c′

ε(φ)(ϑ−φ)

)}
(V D)

is satisfied for all ϑ ∈ Gβ ∩ U .

Theorem 3.2.10 (The optimality system to (PN,ε
l )). Let φ ∈ Gβ ∩U be a local minimizer

of the optimization problem (PN,ε
l ), i.e., there exists δ > 0 such that

JN,ε
l (ϑ) ≥ JN,ε

l (φ) for all ϑ ∈ Gβ ∩ U with ∥ϑ− φ∥L∞(Ω) < δ.

Suppose that the eigenvalues µφ
i1
, . . . , µφ

il
are simple and let us fix associated L2

φ(Ω)-normalized
eigenfunctions wN,φ

i1
, . . . , wN,φ

il
∈ H1

(0),φ(Ω).
Then the following optimality system is satisfied:
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• The state equations
−∇ ·

[
aε(φ)∇wN,φ

ij

]
= µφ

ij
cε(φ)wN,φ

ij
in Ω,

∂wN,φ
ij

∂ν
= 0 on ∂Ω

(SNj)

are fulfilled in the weak sense for all j ∈ {1, . . . , l}.

• The variational inequality

0 ≤ γε

ˆ
Ω̃

∇φ · ∇(ϑ− φ) dx+ γ

ε

ˆ
Ω̃
ψ′

0(φ)(ϑ− φ) dx

+
l∑

j=1

{
[∂λij

Ψ]
(
µφ

i1
, . . . , µφ

il

) ((
wN,φ

ij
, wN,φ

ij

)
a′

ε(φ)(ϑ−φ)

− µφ
ij

(
wN,φ

ij
, wN,φ

ij

)
c′

ε(φ)(ϑ−φ)

)} (V N)

is satisfied for all ϑ ∈ Gβ ∩ U .

3.3. Sharp-interface asymptotics for the Dirichlet case

In this section, we want to discuss the sharp-interface asymptotics for the Dirichlet eigen-
value optimization problem (PD,ε

l ), i.e., its behavior when ε → 0. For the sake of a
rigorous discussion we need to make additional assumptions that are supposed to hold
throughout the remainder of this section.

(A1) We assume that the design domain Ω is a bounded Lipschitz domain in Rd with
d ≥ 2.

(A2) We fix aε = cε = 1 on [−1, 1].

(A3) Let

bε : [−1, 1] → [0, bε], ε > 0, and b0 : [−1, 1] → [0,+∞], (3.3.1)

be functions with

• bε is decreasing, continuous and surjective
• b0 is continuous at the point 1
• b0(0) < +∞,
• bε → b0 point-wise on [−1, 1] as ε → 0,
• and bδ ≥ bε on [−1, 1] for all 0 ≤ δ ≤ ε.

Here, the interval [0,+∞] is to be understood as a subset of the extended real
numbers R = R∪ {±∞}, on which we use the common conventions ±∞ · 0 = 0 and
0−1 = +∞, see also Section 2.2.1.
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Moreover, the numbers bε in (3.3.1) are chosen such that

lim
ε→0

bε = +∞ with bε = o(ε−κ) as ε → 0,

where, depending on the dimension d,{
κ ∈ (0, 1) if d = 2,
κ = 2

d if d ≥ 3.

(A4) In the following, we only consider elements φ ∈ BV (Ω̃, {±1}) ∩ U such that the set

Eφ := {x ∈ Ω |φ(x) = 1}

contains an open ball B. From this assumption we infer C∞
0 (B) ⊂ V φ hence this

excludes the pathological case that the space

V φ :=
{
η ∈ H1

0 (Ω) | η = 0 a.e. in Ω\Eφ
}

= H̃1
0 (Eφ)

is trivial or finite dimensional. See also the discussion in Remark 2.2.32. Recalling
the definition of the set U in Section 2.1.7, this condition on Eφ can be implemented
in the constraint φ ∈ U by simply demanding B ⊂ S1 for any prescribed open ball
B ⊂ Ω. Later, in Subsection 3.3.1, we will discuss how V φ is related to “Sobolev-
like” spaces in the context of quasi-open sets. We further define the space

Hφ :=
{
η ∈ L2(Ω) | η = 0 a.e. in Ω\Eφ

}
.

(A5) In addition to the assumptions of Section 2.1.2, we demand that S0 and S1 are sets of
finite perimeter in Ω. Then [14, Theorem 3.87] yields that any φ ∈ BV (Ω̃, {±1})∩U
is indeed an element of BV (Ω, {±1}). Hence, in particular, Eφ is a set of finite
perimeter in Ω. Therefore, we consider φ ∈ BV (Ω, {±1}) ∩ U in the following.

(A6) For the potential ψ appearing in the Ginzburg–Landau energy, we choose the double-
obstacle potential whose regular part is given as ψ0(φ) = 1

2(1 − φ2), see also Sec-
tion 2.1.4.

Remark 3.3.1.

(a) The case of dimension d = 1 needs to be excluded as here some of the fundamen-
tal theorems about quasi-open sets and capacity theory are not true, see, e.g., [49,
Chap. 4].

(b) The growth condition bε = o(ε−κ) is chosen in order to obtain the desired convergence
of the term involving bε in Lemma 3.3.5 and Theorem 3.3.7 via a Hölder estimate
in dependence of the dimension d ≥ 2, see [96, Proof of Lemma 3, 2nd step] for the
case d = 3. As explained in [96, Rem. 2], for d = 2, this growth condition can be
weakened to bε = o(ε−κ) for any κ ∈ (0, 1). We will go through all the details in Step
2 of the proof of Lemma 3.3.5.
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(c) According to [107, Lemma 3.2], we find a crack free representative Eφ
c of Eφ that is

a set of finite perimeter with int(Eφ
c ) = int(Eφ

c ) (where int denotes the interior) and

|Eφ △ Eφ
c | = 0, where Eφ △ Eφ

c = (Eφ ∪ Eφ
c )\(Eφ ∩ Eφ

c ).

We further point out that assumption (A4) guarantees that int(Eφ
c ) ̸= ∅ and we can

thus apply [83, Theorem 6.3] from which we infer

V φ ⊂
{
v ∈ H1

0 (Ω) | v = 0 a.e. in Ω\Eφ
c

}
= H1

0 (int(Eφ
c )).

This means any function in the abstract space V φ can be seen as an element of
the restricted Sobolev space H1

0 (int(Eφ
c )). This will help us to understand the limit

problem in the remainder of this section.

(d) Instead of employing the potential as declared in (A6), it would also be possible to
use different choices. For instance, the quartic regular part ψ0(φ) = 1

4(1−φ2)2 could
also be chosen. This choice would only affect the choice of profiles used to construct
a recovery sequence in Step 1 of the proof of Theorem 3.3.11 but our theory would
still remain valid.

Under the above assumptions, we can prove that eigenfunctions of (3.2.1) for ε > 0
converge to eigenfunctions of a limit problem as ε ↘ 0, and these limit functions have
suitable properties. To this end, we first want to develop a better understanding of the
limit problem.

3.3.1. The limit problem and its properties

In the following, we discuss the limit eigenvalue problem and its most important properties.
It is well known that due to well-posedness of the minimization problem on the sharp-
interface level, we need to consider the Dirichlet eigenvalue problem in its relaxed form
using Borel measures as introduced, e.g., in [19, 49, 63, 78, 110]. This theory we have
discussed in Section 2.2.6, so we can directly start with the analysis of the limit problem.
First of all, we now analyze the limit eigenvalue problem. After that, we will establish its
connection to the diffuse eigenvalue problem (3.2.1).

Theorem 3.3.2. In addition to the assumptions made in Section 2.1, we suppose that the
assumptions (A1)–(A6) are fulfilled. For any given φ ∈ BV (Ω, {±1}) ∩ U , we consider
the following eigenvalue problem: Find (w, λ) ∈ (V φ\{0}) × R such that

ˆ
Ω

∇w · ∇η dx = λ

ˆ
Ω
wη dx ∀η ∈ V φ. (3.3.2)

Then the following holds true:

(a) There exists a sequence (
w0,φ

k , λ0,φ
k

)
k∈N

⊂ (V φ\{0}) × R,

having the following properties:
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• For all indices k ∈ N, w0,φ
k is an L2(Ω)-normalized eigenfunction of (3.3.2) to

the eigenvalue λ0,φ
k and these eigenfunctions are pairwise orthogonal with respect

to the canonical scalar product on L2(Ω) denoted by (·, ·).
• The eigenvalues λ0,φ

k (which are repeated according to their multiplicity) can be
ordered in the following way:

0 < λ0,φ
1 ≤ λ0,φ

2 ≤ λ0,φ
3 ≤ · · · .

Moreover, it holds that λ0,φ
k → ∞ as k → ∞, and there exist no further eigen-

values of the limit problem (3.3.2).
• The normalized eigenfunctions w0,φ

1√
λ0,φ

1

,
w0,φ

2√
λ0,φ

2

, . . .

 ⊂ V φ,

form an orthonormal basis of the space V φ and any u ∈ V φ can be expressed as

u =
∞∑

i=1
(u,w0,φ

i )w0,φ
i ,

where the series converges in V φ.

(b) For any k ∈ N, we have the Courant–Fischer characterization

λ0,φ
k = max

U∈Sk−1
min

{ ´
Ω |∇v|2 dx´

Ω |v|2 dx

∣∣∣∣∣ v ∈ U⊥ ∩ V φ,

v ̸= 0

}
. (3.3.3)

Here, Sk−1 denotes the collection of all (k− 1)-dimensional subspaces of L2(Ω). The
set U⊥ denotes the orthogonal complement of U ⊂ L2(Ω) with respect to the canonical
scalar product.
Moreover, the maximum is attained at the subspace

U = ⟨w0,φ
1 , . . . , w0,φ

k−1⟩span.

Remark 3.3.3. Let us relate this definition to the one of [51, Section 6] in the framework
of the relaxed Dirichlet problem, also introduced in Section 2.2.6.
For ω ⊂ Ω quasi-open the eigenvalue problem

ˆ
Ω

∇w · ∇η dx+
ˆ

Ω
wη dµω = λ

ˆ
Ω
wη dx for all η ∈ Xµω (Ω),

is considered in [51, Section 6], where µω = ∞Ω\ω as in Section 2.2.6. Due to the discussion
there, see also [51, Remark 6.1.4], this problem is equivalent to

ˆ
Ω

∇w · ∇η dx = λ(ω)
ˆ

Ω
wη dx for all η ∈ H1

0 (ω). (3.3.4)

Thus, for Eφ = {φ = 1} in above theorem, recalling Proposition 2.2.31, there is a unique
quasi-open set ω ⊂ E such that V φ = H̃1

0 (Eφ) = H1
0 (ω). Thus, we obtain that λ0,φ

k

is identical to the k-th eigenvalue λk(ω) of (3.3.4). We will stick to this notation in the
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following. Note that for convenience we also define λ0
k(E) := λ0,χE

k for any finite perimeter
set E.
In other words λk(ω) plays the role of a “classical” eigenvalue as it is formulated over the
classical Sobolev space H1

0 (ω), whereas the limit eigenvalue λ0
k(E) is formulated over the

Sobolev-like space H̃1
0 (E).

Now a key argument in the Γ-convergence proof in Theorem 3.3.11, as performed also in
[51, Theorem 3.6] and [39, Theorem 3.1], will be to exploit this relation and the continuity
of eigenvalues with respect to γ-convergence established in [49, Corollary 6.1.8, Remark
6.1.10], which reads as follows:
Let k ∈ N. If (ωn)n∈N, ω̃ ⊂ Ω are quasi-open sets

ωn
γ→ ω̃ ⇒ λk(ωn) → λk(ω̃), (3.3.5)

for n → ∞. A further crucial property that we will use is the monotonicity of these
eigenvalues with respect to set inclusion, i.e., for quasi-open set ω2 ⊂ ω1 ⊂ Ω it holds

λk(ω1) ≤ λk(ω2). (3.3.6)

This is simply due to the fact that H1
0 (ω2) ⊂ H1

0 (ω1).

Proof of Theorem 3.3.2. Proof of (a). Equipping V φ ⊂ H1
0 (Ω) with the canonical

H1
0 (Ω) scalar product

(·, ·)V φ : V φ × V φ → R, (v, w)V φ :=
ˆ

Ω
∇v · ∇w dx,

it is a closed subspace ofH1
0 (Ω) and hence, it is a Hilbert space. Using standard arguments,

we conclude the existence of a self-adjoint and compact solution operator

T : Hφ → V φ ↪→ Hφ, T (f) := vf ,

where vf denotes the unique solution of
ˆ

Ω
∇vf · ∇η dx =

ˆ
Ω
fη dx ∀η ∈ V φ. (3.3.7)

We point out that the operator T is not necessarily injective, because we can in general
not take η = f as test function, as f possesses only L2 regularity. Additionally in the spirit
of the fundamental lemma in the calculus of variations we can only test with functions
C∞

0 (Ω\Eφ) because the set Ω\Eφ is in general not open. Recall that the finite perimeter
set can be wild in the sense of Remark 2.2.21 and thus, in particular Eφ = Ω is possible.
However, by assumption (A4), we have C∞

0 (B) ⊂ V φ ⊂ Hφ and the operator T restricted
to C∞

0 (B) is obviously injective due to the fundamental lemma in the calculus of variations.
We thus conclude that the image T (Hφ) of the non-restricted operator is an infinite
dimensional space.
Thus, the spectral theorem for compact self-adjoint linear operators, see Theorem 2.2.8,
yields an infinite sequence (λ̂k)k∈N comprising all non-trivial eigenvalues of T that con-
verges to 0. Furthermore it provides us with the decomposition

Hφ = N(T ) ⊥ ⟨w0,φ
1 , w0,φ

2 , . . . ⟩span, (3.3.8)
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where N(T ) denotes the kernel of T and (wk)k∈N ⊂ V φ are the eigenfunctions corre-
sponding to (λ̂k)k∈N. The sequence (λk)k∈N is now obtained by defining λk = λ̂−1

k and a
suitable reordering due to the construction of T .
Now we have to be very precise with the question if (λk)k∈N indeed comprises all eigen-
values of problem (3.3.2) in view of the in general non-trivial kernel N(T ). As this
sequence comprises of course all non-trivial eigenvalues, the question is answered if we
show that λ = 0 is not an eigenvalue in (3.3.2). Thus, assume that there is a non-trivial
w ∈ V φ ⊂ H1

0 (Ω) such that
ˆ

Ω
∇w · ∇η dx = 0

ˆ
Ω
wη dx for all η ∈ V φ.

By Poincaré’s inequality this directly implies w ≡ 0, and thus all eigenvalues of (3.3.2)
are positive.
The remaining assertions are obtained in complete analogy to Theorem 3.2.2, see also
Theorem 5.2.2, but in order to be precise let us comment on the fact that w0,φ

1√
λ0,φ

1

,
w0,φ

2√
λ0,φ

2

, . . .

 ⊂ V φ,

forms an orthonormal basis of V φ even though{
w0,φ

1 , w0,φ
2 , . . .

}
⊂ Hφ,

is in general not an orthonormal basis of Hφ in the light of the non-trivial kernel N(T ).
Therefore let u ∈ V φ be arbitrary such that

0 =
ˆ

Ω
∇u · ∇w0,φ

k dx = λ0,φ
k

ˆ
Ω
uw0,φ

k dx,

for all k ∈ N. Due to the decomposition (3.3.8) and the crucial fact that λ0,φ
k > 0 this

implies that u ∈ N(T ). In the light of (3.3.7) this means

0 =
ˆ

Ω
∇T (u) · ∇η dx =

ˆ
Ω
uη dx ∀η ∈ V φ.

Now the crucial fact that u ∈ V φ and not only in Hφ allows us to test with η = u and
infer u ≡ 0. In other words this shows that V φ ∩N(T ) = {0} .

In general, due to possible cracks within the set Eφ, we cannot guarantee that an eigen-
function w of the limit problem vanishes on the whole of ∂Eφ. Nevertheless, we know
from Remark 3.3.1.(c) that w = 0 on ∂ (int(Eφ

c )) in the trace sense (provided that the
boundary is sufficiently smooth), meaning that w has trace zero at least on the outer
boundary of Eφ. For more details we refer to [107, Sec. 3]. If Eφ is actually an open
set with Lipschitz boundary, then indeed w ∈ H1

0 (Eφ) = H̃1
0 (Eφ) where H1

0 (Eφ) can be
understood in the standard sense, meaning that the trace of w vanishes on ∂Eφ. We thus
interpret (3.3.2) as the weak formulation of the classical eigenvalue problem{

−∆w = λw in Eφ,

w = 0 on ∂Eφ,
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where the boundary condition is included in the space V φ of test functions in a relaxed
way.

Remark 3.3.4. Recall from Theorem 3.2.2 that for given ε > 0 and φ ∈ L∞(Ω), we can
fix the sequence (

wε,φ
k , λε,φ

k

)
k∈N ⊂ H1

0 (Ω) × R+

of eigenfunctions and eigenvalues to (3.2.1), where {wε,φ
1 , wε,φ

2 , . . . , } ⊂ L2(Ω) forms an
orthonormal basis. This notation will be used throughout this chapter, and we will drop
the additional index ε if the context is clear.

The following lemma will now link the diffuse interface problem (3.2.1) to the sharp-
interface problem (3.3.2) for the first eigenvalue and it will serve as initial case for all
higher eigenvalues. This rigorous continuity analysis is new to the best of the authors’
knowledge. Recall from the introduction that there are further results in optimal partition-
ing for the principal eigenvalue using a phase-field approach which show the convergence
of minimizing eigenvalues of the optimization problem, see [40,42].

Lemma 3.3.5. In addition to the assumptions made in Section 2.1, we suppose that
the assumptions (A1)–(A6) are fulfilled. Let (φε)ε>0 ⊂ L1(Ω) with |φε| ≤ 1 almost
everywhere in Ω and let φ ∈ BV (Ω, {±1}) ∩ U such that

lim
ε↘0

∥φε − φ∥L1(Ω) = 0, (3.3.9)

and the convergence exhibits the rate

∥φε − φ∥L1(Eφ∩{φε<0}) = O(ε).

Then there exists an eigenfunction u ∈ V φ of the limit problem (3.3.2) to the eigenvalue
λ0,φ

1 such that

lim
ε↘0

ˆ
Ω
bε(φε) |wφε

1 |2 dx =
ˆ

Ω
b0(φ) |u|2 dx = 0,

as well as

lim
ε↘0

∥wφε
1 − u∥H1(Ω) = 0 and lim

ε↘0
λε,φε

1 = λ0,φ
1 ,

up to subsequence extraction.

Remark 3.3.6.

(a) We point out that we will always use the letter u (or u1, u2, . . . ) to denote the limit of
eigenfunctions. This is done in order to avoid confusion with the orthogonal system

{w0,φ
1 , w0,φ

2 , . . . } ⊂ V φ

of eigenfunctions to the limit problem we obtained in Theorem 3.3.2. From the above
lemma, we merely know that u belongs to the first eigenspace which is spanned by the
first eigenfunctions w0,φ

i in accordance with the multiplicity of the space. However,
we cannot relate u and w0,φ

i any further.
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(b) Note that, in contrast to [96], it would suffice to demand the above convergence rate
condition only on the set Ẽφ ∩ {φε < 0} with Ẽφ := {x ∈ Ω̃ |φ(x) = 1} ⊂ Ω̃ instead
of Eφ = {x ∈ Ω |φ(x) = 1} ⊂ Ω. As we have φε, φ ∈ U , the difference φε − φ
vanishes on S0 ∪ S1 anyway.

Proof of Lemma 3.3.5. Some ideas of the proof are the same as in [96, Lemma 3],
especially Step 1 and Step 2 carry over in large parts. However, for the sake of readability
we will include all the details here. We will also divide the proof into several steps.
In the following, due to (3.3.9), we may consider a non-relabeled subsequence of (φε)ε>0
such that φε → φ a.e. in Ω.
Step 1: For almost every x ∈ Ω, it holds that

lim
ε↘0

bε(φε(x)) = b0(φ(x)) in [0,+∞]

We will show this by proving

lim inf
ε↘0

bε(φε) = lim sup
ε↘0

bε(φε) = b0(φ0) in [0,+∞]. (3.3.10)

For the lim sup inequality

lim sup
ε↘0

bε(φε(x)) ≤ b0(φ(x)), (3.3.11)

in the proof of Step 1 of [96, Lemma 1], the additionally assumed continuity of b0 in the
point 1 given in (A3) is needed. More precisely, as φ ∈ BV (Ω, {±1}) the inequality is
clear if φ(x) = −1 because then b0(φ(x)) = +∞. If φ(x) = 1 then due to the point-wise
convergence φε(x) → φ(x), the continuity of b0 in 1 and the fact bε ≤ b0 point-wise, we
obtain

lim sup
ε↘0

bε(φε(x)) ≤ b0(φ(x)).

To prove the lim inf inequality

b0(φ(x)) ≤ lim inf
ε↘0

bε(φε(x)) (3.3.12)

one can proceed exactly as in [96]. So for fixed ε > 0 let us choose a δ > 0 with ε < δ.
Now exploiting the monotonicity assumption bδ ≤ bε from (A3) we obtain that for almost
every x ∈ Ω

lim
ε↘0

bδ(φε(x)) ≤ lim inf
ε↘0

bε(φε(x))

and thus, due to the point-wise convergence bδ → b0 on [−1, 1] from assumption (A3)
and the continuity of bδ we have

b0(φ(x)) = lim
δ↘0

bδ(φ(x)) = lim
δ↘0

(lim
ε↘0

bδ(φε(x))) ≤ lim
δ↘0

(lim inf
ε↘0

bε(φε(x))) = lim inf
ε↘0

bε(φε(x)).

Hence, we arrive at (3.3.12). Thus combining (3.3.11) and (3.3.12) we proved at (3.3.10).
We point out that for this step, the convergence rate imposed on (φε)ε>0 was not needed.
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Step 2: For any v ∈ H1
0 (Ω) with

v = 0 a.e. in Ω\Eφ (3.3.13)

i.e., v ∈ V φ, it holds that

lim
ε↘0

ˆ
Ω
bε(φε) |v|2 dx =

ˆ
Ω
b0(φ) |v|2 dx = 0.

This step can be established as in [96] since by assumption (A3), the coefficient function
bε possesses all the properties of [96]. Nevertheless, as this is a key part of the proof we
provide it here. Note also that this step heavily relies on the convergence rate imposed
on (φε)ε>0.
So let us fix a v ∈ H1

0 (Ω) satisfying (3.3.13), then we know from Step 1

lim
ε↘0

bε(φε(x)) |v(x)|2 = b0(φ(x)) |v(x)|2 = 0, (3.3.14)

for almost every x ∈ Ω, as b0(φ) = 0 a.e on Eφ by assumption (A3).
Now the strategy is to split the integral over Ω into two integrals over Ω+

ε := {φε ≥ 0}
and Ω−

ε := {φε < 0} respectively, recall also the formal motivation in Section 2.1.6.
On Ω+

ε the goal is to apply Lebesgue’s theorem. Noticing that for fixed ε > 0, bε is
decreasing on [−1, 1] and bε ≤ b0 point-wise on [−1, 1] we obtain

bε(φε(x)) |v(x)|2 ≤ bε(0) |v(x)|2 ≤ b0(0) |v(x)|2 ,

for almost every x ∈ Ω+
ε . As b0(0) < +∞ by assumption (A3), we deduce

χΩ+
ε
bε(φε) |v|2 ≤ C |v|2 .

As v ∈ L2(Ω), Lebesgue’s theorem and using the point-wise convergence (3.3.14) yield

lim
ε↘0

ˆ
Ω+

ε

bε(φε) |v|2 dx = lim
ε↘0

ˆ
Ω
χΩ+

ε
bε(φε) |v|2 dx = 0. (3.3.15)

Now we need to deal with the set Ω−
ε , which is more involved as here b0 becomes un-

bounded.
By definition of Eφ we obtain

{x ∈ Ω| v(x) ̸= 0} ⊂ {x ∈ Ω|φ(x) = 1} a.e.,

as we have chosen v with the property (3.3.13). Hence, for almost every x ∈ Ω−
ε we infer

bε(φε(x)) |v(x)|2 ≤ bε |φε(x) − φ(x)| |v(x)|2 χEφ(x), (3.3.16)

as per assumption (A3) bε : [−1, 1] → [0, bε] and noting that |φε(x) − φ(x)| ≥ 1 on
Ω−

ε ∩ Eφ. Recalling that Ω ⊂ Rd is a Lipschitz domain we have the embedding

H1(Ω) ↪→

Lq(Ω) for any q ∈ [1,∞) if d = 2,
L

2d
d−2 (Ω) if d > 2,

(3.3.17)
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see e.g. [10, 10.9].
As indicated in Remark 3.3.1, if d > 2, we now apply Hölder’s inequality with p := d

2 , p
′ :=

d
d−2 in the following way

ˆ
Ω
χΩ−

ε ∩Eφ |φε − φ| |v|2 dx ≤
(ˆ

Ω

∣∣∣χΩ−
ε ∩Eφ (φε − φ)

∣∣∣p dx
) 1

p
(ˆ

Ω

(
|v|2

)p′
dx
) 1

p′
.

(3.3.18)

As we know |φε| ≤ 1 and |φ0| ≤ 1, we find a constant Cp > 0 such that

|φε − φ|p ≤ Cp |φε − φ| ,

almost everywhere in Ω. Thus, we deduce
ˆ

Ω
χΩ−

ε ∩Eφ |φε − φ| |v|2 dx ≤ C ∥φε − φ∥
2
d

L1(Ω−
ε ∩Eφ) ∥v∥2

L
2d

d−2 (Ω)
.

Now we can use the rate condition from the assumption, i.e.,

∥φε − φ∥L1(Eφ∩{φε<0}) = O(ε),

and combine it with the rate of bε from assumption (A3), namely

bε = o
(
ε−κ),

with κ = 2
d (as we are in the case d > 2 for the moment) to infer

lim
ε↘0

(
bε

ˆ
Ω
χΩ−

ε ∩Eφ |φε − φ| |v|2 dx
)

= 0. (3.3.19)

Due to the embedding (3.3.17) for the case d = 2 we can use any p′ ∈ [1,∞) in the
estimate (3.3.18) and thus see that in this case the assumption bε = o

(
ε−κ

)
with arbitrary

κ ∈ (0, 1) in (A3) is sufficient to deduce the convergence (3.3.19).
Using the estimate (3.3.16) this yields

lim
ε↘0

ˆ
Ω−

ε

bε(φε(x)) |v|2 dx = 0,

and together with (3.3.15) we obtain the desired convergence, as by construction
ˆ

Ω
b0(φ) |v|2 dx = 0,

because b0(φ) vanishes a.e. on Eφ.
In the remainder of this proof, we establish the convergence properties for the eigenvalues
and eigenfunctions using the Courant–Fisher characterization. In the following, we write
wε and λε instead of wφε

1 and λε,φε
1 , respectively, for convenience.

Step 3: We find a subsequence of (wε)ε>0 and an L2(Ω)-normalized function u ∈ V φ such
that

wε ⇀ u in H1(Ω) and wε → u in L2(Ω). (3.3.20)
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For any eigenfunction solving (3.2.1) to the smallest eigenvalue λε we recall the Courant–
Fischer characterization (3.2.3) which simplifies to

λε = min
{ ´

Ω |∇v|2 dx+
´

Ω bε(φε) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ H1
0 (Ω),

v ̸= 0

}

= min
{ˆ

Ω
|∇v|2 dx+

ˆ
Ω
bε(φε) |v|2 dx

∣∣∣∣ v ∈ H1
0 (Ω),

∥v∥L2(Ω) = 1

}
,

as we have fixed the coefficient functions aε and cε in assumption (A2). We define

Fε : Q → R+
0 , v 7→

ˆ
Ω

|∇v|2 dx+
ˆ

Ω
bε(φε) |v|2 dx,

with Q := {v ∈ H1
0 (Ω) | ∥v∥L2(Ω) = 1}. In this way, wε ∈ Q fulfills

Fε(wε) = min
v∈Q

Fε(v). (3.3.21)

To describe the limit situation, we similarly define

F0 : Q → [0,+∞], v 7→
ˆ

Ω
|∇v|2 dx+

ˆ
Ω
b0(φ) |v|2 dx.

By assumption (A4), V φ is non-trivial and hence, there exists a function v ∈ Q satisfying
property (3.3.13). Then, (3.3.21) obviously entails that

Fε(wε) ≤ Fε(v),

and from Step 2, we already know that there is a constant C > 0 such that for all ε > 0,
ˆ

Ω
bε(φε) |v|2 dx ≤ C.

We thus infer that

∥∇wε∥2
L2(Ω) ≤ Fε(wε) ≤ Fε(v) ≤ C,

and combining these two bounds, the Banach–Alaoglu theorem implies the desired con-
vergences (3.3.20) up to subsequence extraction.
Step 4: The function u ∈ Q is a minimizer of F0 and we have

lim
ε↘0

Fε(wε) = F0(u), (3.3.22)

along a non-relabeled subsequence.
If we can show that Fε Γ-converges to F0 on Q with respect to the weak topology on
H1(Ω), we can apply Proposition 2.2.24 which give exactly the claimed properties. To
prove Γ-convergence we have to verify the corresponding lim sup and lim inf inequalities.
To verify the lim sup inequality, for any v ∈ Q we need to find a so called recovery sequence
(vε)ε>0 ⊂ Q that converges to v ∈ Q weakly in H1(Ω) and satisfies

lim sup
ε↘0

Fε(vε) ≤ F0(v). (3.3.23)
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Here, we can simply choose the constant sequence vε := v ∈ Q. Without loss of gener-
ality, we can assume that F0(v) < +∞, as otherwise (3.3.23) is trivially fulfilled. This
assumption implies that

ˆ
Ω
b0(φ) |v|2 dx < ∞,

and since b0(−1) = +∞ and φ ∈ BV (Ω, {±1}), we conclude that v ∈ V φ. Hence, we infer
from Step 2 that

ˆ
Ω
b0(φ) |v|2 dx = lim

ε↘0

ˆ
Ω
bε(φε) |v|2 dx = 0. (3.3.24)

By construction of Fε and F0, this already implies (3.3.23).
For the lim inf inequality we need to show that for any sequence (vε)ε>0 ⊂ Q converging
to a v ∈ Q weakly in H1(Ω) topology, it holds

F0(v) ≤ lim inf
ε↘0

Fε(vε). (3.3.25)

By the compact embedding H1(Ω) ↪→ L2(Ω) we know that vε → v almost everywhere in
Ω up to subsequence extraction. Furthermore, we have already seen in Step 1 that for
almost every x ∈ Ω,

lim
ε↘0

bε(φε(x)) = b0(φ(x)).

Therefore, we deduce
ˆ

Ω
b0(φ0(x)) |v(x)|2 dx =

ˆ
Ω

lim
ε↘0

bε(φε(x)) lim
ε↘0

|vε(x)|2 dx

=
ˆ

Ω
lim inf

ε↘0

[
bε(φε(x)) |vε(x)|2

]
dx

≤ lim inf
ε↘0

ˆ
Ω
bε(φε(x)) |vε(x)|2 dx,

by means of Fatou’s lemma, see Lemma 2.2.7. Noting that the H1
0 (Ω) norm ∥∇ · ∥L2(Ω) is

weakly lower semi- continuous this yields the lim inf inequality (3.3.25).
In summary, this means that

Fε
Γ→ F0,

with respect to the weak H1(Ω)-topology. In the light of Step 3 we can apply Proposi-
tion 2.2.24 to deduce the claim of Step 4.

We now want to complete the proof by applying the results established in the previous
steps. Proceeding as in Step 4, and using the convergence properties in (3.3.20), we deduce

ˆ
Ω
b0(φ) |u|2 dx ≤ lim inf

ε↘0

ˆ
Ω
bε(φε) |wε|2 dx,

ˆ
Ω

|∇u|2 dx ≤ lim inf
ε↘0

ˆ
Ω

|∇wε|2 dx.
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As both sequences are bounded from below by zero, we can use (3.3.22) along with [96,
Lemma 4] to infer ˆ

Ω
b0(φ) |u|2 dx = lim

ε↘0

ˆ
Ω
bε(φε) |wε|2 dx,

ˆ
Ω

|∇u|2 dx = lim
ε↘0

ˆ
Ω

|∇wε|2 dx.

From the second convergence and the weak convergence (3.3.20) from Step 3, we conclude
that

lim
ε↘0

∥wε − u∥H1(Ω) = 0.

Furthermore, we have seen in the previous step that u ∈ Q minimizes F0. Hence,ˆ
Ω
b0(φ) |u|2 dx < +∞,

and arguing as in (3.3.24), we find thatˆ
Ω
b0(φ) |u|2 dx = 0. (3.3.26)

To complete the proof, we still have to prove the following assertion:
Step 5: The function u ∈ V φ solvesˆ

Ω
∇u · ∇η dx = λ0,φ

1

ˆ
Ω
uη dx for all η ∈ V φ, (3.3.27)

and λ0,φ
1 = lim

ε↘0
λε.

If we can show that u ∈ V φ ∩Q is even a minimizer of

v 7→
´

Ω |∇v|2 dx´
Ω |v|2 dx

subject to v ∈ V φ, v ̸= 0, (3.3.28)

we directly infer from the first-order condition associated with this minimization problem
and the Courant–Fischer characterization (3.3.3) that u solves (3.3.2) to the eigenvalue
λ0,φ

1 .
As u ∈ V φ is a minimizer of F0 over Q we use (3.3.26) to deduce

min
{ ´

Ω |∇v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V φ,

v ̸= 0

}
≤

´
Ω |∇u|2 dx´

Ω |u|2 dx
= F0(u)

= min
{ ´

Ω |∇v|2 dx+
´

Ω b0(φ) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ H1
0 (Ω),

v ̸= 0

}

≤ min
{ ´

Ω |∇v|2 dx+
´

Ω b0(φ) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V φ,

v ̸= 0

}
.

Here, the last inequality holds because V φ ⊂ H1
0 (Ω). However, we already know from

Step 2 that
´

Ω b0(φ) |v|2 dx = 0 for all v ∈ V φ. Hence, we conclude from the above
estimate that u ∈ V φ minimizes (3.3.28), and in particular, F0(u) = λ0,φ

1 . Now, the
second claim of Step 5 follows from (3.3.22) since Fε(wε) = λε holds by construction.
The proof of Lemma 3.3.5 is now complete.
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This lemma now serves as initial step to show the analogous properties also for all higher
eigenvalues and eigenfunctions via induction.

Theorem 3.3.7. In addition to the assumptions made in Section 2.1, we suppose that
the assumptions (A1)–(A6) are fulfilled. Let k ∈ N, and suppose that (φε)ε>0 ⊂ L1(Ω)
and φ ∈ BV (Ω, {±1}) ∩ U fulfill the same assumptions as in Lemma 3.3.5.
Then, there exists an eigenfunction uk ∈ V φ of the limit problem (3.3.2) to the eigenvalue
λ0,φ

k such that the convergences

lim
ε↘0

ˆ
Ω
bε(φε)

∣∣wφε

k

∣∣2 dx =
ˆ

Ω
b0(φ) |uk|2 dx = 0,

lim
ε↘0

∥∥wφε

k − uk

∥∥
H1(Ω) = 0, lim

ε↘0
λφε

k = λ0,φ
k

hold up to subsequence extraction.

Proof. We prove the assertion via induction. The initial step was carried out in Lemma 3.3.5.
Let us now assume that the assertion is already established for the first k−1 eigenfunctions
wε

1 := wφε
1 , . . . , wε

k−1 := wφε

k−1 of (3.2.1).
To prove the result for wε

k := wφε

k , let Wε := ⟨wε
1, . . . , w

ε
k−1⟩span ⊂ L2(Ω) denote the space

spanned by the first k−1 eigenfunctions and W⊥
ε its orthogonal complement with respect

to the canonical scalar product on L2(Ω) that is denoted by (·, ·). We further define the
space

Qε :=
{
v ∈ H1

0 (Ω)
∣∣∣∥v∥L2(Ω) = 1 and v ∈ W⊥

ε

}
,

as well as the operator

Fε : Qε → [0,+∞], v 7→
ˆ

Ω
|∇v|2 dx+

ˆ
Ω
bε(φε) |v|2 dx.

Then, from the Courant-Fischer characterization (3.2.3) we infer that

λε
k := λφε

k = min
v∈Qε

Fε(v).

In the limit situation, we define the space W0 := ⟨u1, . . . , uk−1⟩span where the functions
ui ∈ V φ, i = 1, . . . , k − 1 are determined by the induction hypothesis as the limits

wε
i → ui in H1(Ω) as ε → 0,

up to subsequence extractions, as discussed in Lemma 3.3.5. In particular, for i, j =
1, . . . , k − 1 with i ̸= j, we have (ui, uj) = 0 since (wε

i , w
ε
j ) = 0. Moreover, we know that

∥wε
i ∥L2(Ω) = 1 and hence, we also have ∥ui∥L2(Ω) = 1 for i = 1, . . . , k − 1. This means

that {u1, . . . , uk−1} ⊂ L2(Ω) is an orthonormal basis of the (k − 1)-dimensional space
W0 ⊂ V φ. We further set

Q0 :=
{
v ∈ H1

0 (Ω)
∣∣∣∥v∥L2(Ω) = 1 and v ∈ W⊥

0

}
,

and we define the operator

F0 : Q0 → [0,+∞], v 7→
ˆ

Ω
|∇v|2 dx+

ˆ
Ω
b0(φ) |v|2 dx.
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Now we introduce the orthogonal projections

Pε : L2(Ω) → Wε, v 7→
k−1∑
i=1

(v, wε
i )wε

i ,

P0 : L2(Ω) → W0, v 7→
k−1∑
i=1

(v, ui)ui.

In the following, these projections will be a useful tool to construct recovery sequences.
Per construction, wε

k ∈ H1
0 (Ω) is a minimizer of Fε. Now, we need to show that there

exists a constant C > 0 that does not depend on ε > 0 such that

Fε(wε
k) ≤ C, (3.3.29)

as this allows us to bound (wε
k)ε>0 in the H1(Ω) norm.

As in Step 3 of the proof of Lemma 3.3.5, we want to choose suitable elements vε in the
feasible sets Qε for which we can bound the sequence (Fε(vε))ε>0. Here, the situation is
more complicated compared to Lemma 3.3.5 as the feasible set Qε depends on ε.
Due to assumption (A4), we find v0 ∈ V φ such that

v0 ∈ W⊥
0 \ {0} .

Otherwise, V φ would be a subset of the (k− 1)-dimensional space W0, which is a contra-
diction to the fact that V φ is infinite dimensional. Let us define the sequence

vε := v0 −
k−1∑
i=1

(
v0, wε

i

)
wε

i = v0 − Pε(v0) ∈ H1
0 (Ω) ∩W⊥

ε .

Now, by the induction hypothesis, for every i = 1, . . . , k − 1, we know that

wε
i → ui in H1(Ω), (3.3.30)

along a suitable non-relabeled subsequence. Hence, from the construction of vε, we infer

vε → v0 in H1(Ω). (3.3.31)

In particular, for ε > 0 sufficiently small, we thus have vε ̸= 0. Altogether this allows us
to define the sequence

vε = vε

∥vε∥L2(Ω)
∈ Qε,

which fulfills the convergence

vε → v0 := v0

∥v0∥L2(Ω)
∈ Q0 in H1(Ω).

If we can now verify that

Fε(vε) ≤ C, (3.3.32)
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uniformly in ε, (3.3.29) directly follows as our minimizer wε
k ∈ Qε obviously fulfills

Fε(wε
k) ≤ Fε(vε).

Therefore, we recall that

Fε(vε) =
ˆ

Ω
|∇vε|2 dx+

ˆ
Ω
bε(φε) |vε|2 dx.

For the first summand on the right-hand side, we obtain
ˆ

Ω
|∇vε|2 dx = 1

∥vε∥2
L2(Ω)

(ˆ
Ω

|∇vε|2 dx
)
.

Hence, this term is bounded because of (3.3.31) which further entails the convergence
∥vε∥L2(Ω) →

∥∥v0∥∥
L2(Ω) > 0. For the second summand, we use Young’s inequality to

obtain
ˆ

Ω
bε(φε) |vε|2 dx ≤ 2

∥vε∥2
L2(Ω)

(ˆ
Ω
bε(φε)

∣∣v0∣∣2 dx+
ˆ

Ω
bε(φε)

∣∣Pε(v0)
∣∣2 dx

)
.

As, per construction, v0 ∈ V φ fulfills property (3.3.13) we can apply Step 2 of the proof
of Lemma 3.3.5 which yields

lim
ε↘0

ˆ
Ω
bε(φε)

∣∣v0∣∣2 dx = 0.

Furthermore, Lemma 3.3.5 implies that for i = 1, . . . , k − 1,

lim
ε↘0

ˆ
Ω
bε(φε)

∣∣wε
i

∣∣2 dx = 0.

Now, as

Pε(v0) =
k−1∑
i=1

(
v0, wε

i

)
wε

i ,

we obtain

lim
ε↘0

ˆ
Ω
bε(φε)

∣∣Pε(v0)
∣∣2 dx = 0,

by applying Young’s inequality again. Altogether, we deduce

lim
ε↘0

ˆ
Ω
bε(φε) |vε|2 dx = 0.

This proves the estimate (3.3.32) which directly entails the uniform bound (3.3.29). In
particular, we have

ˆ
Ω

|∇wε
k|2 dx ≤ Fε(wε

k) ≤ C.
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Applying the Banach–Alaoglu theorem and the compact embedding H1(Ω) ↪→ L2(Ω) we
infer the existence of a limit uk ∈ H1

0 (Ω) such that

wε
k ⇀ uk in H1(Ω), wε

k → uk in L2(Ω), wε
k → uk a.e. on Ω (3.3.33)

as ε → 0 up to subsequence extraction.
Our next task is to show that uk belongs to Q0 and fulfills

F0(uk) = min
v∈Q0

F0(v). (3.3.34)

First of all, we can use the convergence (3.3.30) of the first k − 1 eigenfunctions along
with (3.3.33) to obtain the convergence

lim
ε↘0

(wε
k, w

ε
i ) = (uk, ui),

for i = 1, . . . , k − 1. However, by the orthogonality of the eigenfunctions for ε > 0, we
know 0 = (wε

k, w
ε
i ), and thus (uk, ui) = 0, i = 1, . . . , k − 1. This already proves that

uk ∈ W⊥
0 . Notice that ∥uk∥L2(Ω) = 1, as the wε

k are assumed to be L2(Ω)-normalized. All
in all, we get uk ∈ Q0.
To verify (3.3.34) we cannot directly apply the theory of Γ-convergence as in Lemma 3.3.5
but we can establish similar estimates that will help us to obtain the desired properties.
For the sake of a clearer presentation we divide this part of the proof into several steps.
Step 1: The following lim inf inequality holds:

F0(uk) ≤ lim inf
ε↘0

Fε(wε
k). (3.3.35)

To prove the assertion, we recall that

F0(uk) =
ˆ

Ω
|∇uk|2 dx+

ˆ
Ω
b0(φ0) |uk|2 dx.

For the gradient term, we obtain the inequality
ˆ

Ω
|∇uk|2 dx ≤ lim inf

ε↘0

ˆ
Ω

|∇wε
k|2 dx,

by using the weak lower semi-continuity of this expression. Now, due to the convergence
properties (3.3.33), we are exactly in the same situation as in Step 4 of the proof of
Lemma 3.3.5. Hence, Fatou’s lemma yields

ˆ
Ω
b0(φ) |uk|2 dx ≤ lim inf

ε↘0

ˆ
Ω
bε(φε) |wε

k|2 dx.

In summary, we infer (3.3.35).
Step 2: For any v ∈ Q0 there exists a sequence (vε)ε>0 ⊂ Qε which satisfies

lim sup
ε↘0

Fε(vε) ≤ F0(v). (3.3.36)
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Here, finding such a recovery sequence is more complicated than in Step 4 of Lemma 3.3.5,
as we cannot just take the constant sequence v. Without loss of generality, we assume
that F0(v) < +∞ as otherwise (3.3.36) is trivially fulfilled. This guarantees that

ˆ
Ω
b0(φ0) |v|2 dx < +∞.

Hence, v fulfills property (3.3.13) (i.e., v ∈ V φ) which will be needed later. Analogously
to the beginning of this proof, we now define the sequence

vε := v −
k−1∑
i=1

(v, wε
i )wε

i = v − Pε(v) ∈ W⊥
ε .

Exactly as in (3.3.31), we obtain the convergence

vε → v −
k−1∑
i=1

(v, ui)ui = v − P0(v) ∈ W⊥
0 in H1(Ω).

However, since v ∈ Q0, we also have v ∈ W⊥
0 meaning that P0(v) = 0. We thus get

vε → v in H1(Ω). Furthermore, v ∈ Q0 ensures that ∥v∥L2(Ω) = 1 > 0 and hence, we infer
that for ε > 0 sufficiently small, it holds that ∥vε∥L2(Ω) > 0. We can thus consider the
normalized sequence

vε := vε

∥vε∥L2(Ω)
∈ Qε, which fulfills vε → v in H1(Ω). (3.3.37)

We now prove (3.3.36) by again considering the gradient term and the term involving bε

appearing in Fε separately. Using (3.3.37), we infer that

lim
ε↘0

ˆ
Ω

|∇vε|2 dx =
ˆ

Ω
|∇v|2 dx.

For the second term, considering the representation

vε = 1
∥vε∥

[
v −

k−1∑
i=1

(v, wε
i )wε

i

]
,

we see that this sequence has exactly the same properties as the same-named sequence in
the beginning of this proof. Hence, proceeding as above, we use the convergence properties
known for wε

i , the convergence ∥vε∥L2(Ω) → ∥v∥L2(Ω) > 0 and the crucial fact that v ∈ V φ

to deduce

lim
ε↘0

ˆ
Ω
bε(φε) |vε| dx = 0 =

ˆ
Ω
b0(φ) |v|2 dx.

Hence, in particular, this verifies (3.3.36).

Now, combining these two steps, we obtain for any arbitrary v ∈ Q0,

F0(uk) ≤ lim inf
ε↘0

Fε(wε
k) ≤ lim sup

ε↘0
Fε(wε

k) ≤ lim sup
ε↘0

Fε(vε) ≤ F0(v),
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since wε
k is a minimizer of Fε over Qε. As v ∈ Q0 was arbitrary, this finally shows that

F0(uk) = min
v∈Q0

F0(v).

Furthermore, plugging v = uk into the above chain of estimates we get

F0(uk) = lim inf
ε↘0

F ε(wε
k) = lim sup

ε↘0
F ε(wε

k),

which directly yields

lim
ε↘0

Fε(wε
k) = F0(uk). (3.3.38)

As in the proof of Lemma 3.3.5, this allows us to deduce

lim
ε↘0

∥wε
k − uk∥H1(Ω) = 0, and uk ∈ V φ.

Therefore, it only remains to prove the following statement.
Step 3: The function uk ∈ V φ solves

ˆ
Ω

∇uk · ∇η dx = λ0,φ
k

ˆ
Ω
ukη dx for all η ∈ V φ, (3.3.39)

and it holds that λ0,φ
k = lim

ε↘0
λφε

k .

With an analogous reasoning as in Step 5 of the proof of Lemma 3.3.5, we see that

λ̃ := min
{ ´

Ω |∇v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V φ ∩W⊥
0 ,

v ̸= 0

}
=

´
Ω |∇uk|2 dx´

Ω |uk|2 dx
= F0(uk). (3.3.40)

As W0 = ⟨u1, . . . , uk−1⟩span is a (k− 1)-dimensional subspace of V φ, the Courant–Fischer
characterization (3.3.3) entails that λ0,φ

k ≥ λ̃.
Furthermore, for ε > 0, we have λφε

k ≥ λφε

k−1, and by (3.3.38) and the induction hypothesis
we infer

lim
ε↘0

λφε

k = lim
ε↘0

Fε(wε
k) = F0(uk) = λ̃, and lim

ε↘0
λφε

k−1 = λ0,φ
k−1.

This proves that λ̃ ≥ λ0,φ
k−1.

Now, to show that λ̃ = λ0,φ
k , we need to consider two cases.

Case 1: It holds that λ0,φ
k = λ0,φ

k−1. Then, from the above considerations we already infer
that λ0,φ

k = λ̃ = λ0,φ
k−1.

Case 2: It holds that λ0,φ
k > λ0,φ

k−1. Then, the span of the eigenfunctions {w0,φ
1 , . . . , w0,φ

k−1} ⊂
V φ (given as in Theorem 3.3.2) contains the union of all eigenspaces belonging to the
eigenvalues λ0,φ

1 , . . . , λ0,φ
k−1. On the other hand, we know from the induction hypothesis

that {u1, . . . , uk−1} is a linearly independent family of eigenfunctions belonging to the
aforementioned eigenvalues. Hence, we conclude that

W0 = ⟨u1, . . . , uk−1⟩span = ⟨w0,φ
1 , . . . , w0,φ

k−1⟩span. (3.3.41)
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This means that W0 is exactly the (k−1)-dimensional vector space on which the maximum
in the Courant–Fischer characterization (3.3.3) is attained. Thus, by (3.3.40), we infer
λ̃ = λφ

k .
Now, computing the first-order optimality condition (Euler–Lagrange equation) of the
minimization problem associated with (3.3.40), we conclude that uk ∈ V φ and λφ

k fulfill
the weak formulation (3.3.2) of the limit problem for all test functions in V φ ∩ W⊥

0 .
However, we know from (3.3.41) that W0 is spanned by eigenfunctions to the limit problem
(3.3.2). This means that uk and λφ

k trivially satisfy the weak formulation (3.3.2) for all
test functions in W0. In summary, this proves that uk is an eigenfunction of the limit
problem (3.3.2) to the eigenvalue λ0,φ

k .
This completes the proof by induction.

3.3.2. Sharp-interface limit of the optimization problem

We now show that a sequence of minimizers of the cost functionals for ε > 0 converges,
as ε → 0, to a minimizer of the cost functional associated with the sharp-interface setting
which will be defined in the following.
First of all, we demand again that the coefficient functions satisfy the assumptions (A2)
and (A3). For ε > 0, we extend the cost functional of the problem (PD,ε

l ) to the space
L1(Ω) by defining

Jε(φ) :=
{

Ψ(λε,φ
i1
, . . . , λε,φ

il
) + γEε

GL(φ) if φ ∈ Φad,

+ ∞ if φ ∈ L1(Ω)\Φad.
(3.3.42)

Here, for any k ∈ N, λε,φ
k denotes the k-th eigenvalue of the Dirichlet problem (3.2.1) with

ε > 0 and φ ∈ Φad ⊂ L∞(Ω). In the sharp-interface situation, we consider

G̃β =
{
φ ∈ L1(Ω̃)

∣∣∣∣|φ| ≤ 1, β1
∣∣Ω̃∣∣ ≤

ˆ
Ω̃
φ dx ≤ β2

∣∣Ω̃∣∣} ,
and define the cost functional as

J0(φ) :=
{

Ψ(λ0,φ
i1
, . . . , λ0,φ

il
) + γc0PΩ̃(Ẽφ) if φ ∈ Φ0

ad,

+ ∞ if φ ∈ L1(Ω)\Φ0
ad,

where Φ0
ad := BV (Ω, {±1}) ∩ U ∩ G̃β.

(3.3.43)

Here, for any k ∈ N, λ0,φ
k denotes the k-th eigenvalue of the limit problem (3.3.2) that

was introduced in Theorem 3.3.2 for φ ∈ BV (Ω, {±1}) ∩ U .
Let PΩ̃(Ẽφ) denote the relative perimeter in Ω̃ of the set Ẽφ := {x ∈ Ω̃ |φ(x) = 1}, i.e.,

PΩ̃(Ẽφ) := sup
{ˆ

Ẽφ

divζ dx
∣∣∣∣ ζ ∈ C1

0 (Ω̃,Rd), ∥ζ∥L∞(Ω̃) ≤ 1
}
.

We further set

c0 :=
ˆ 1

−1

√
2ψ0(x) dx,
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where ψ0 is the potential appearing in the regularized Ginzburg–Landau energy

Eε(φ) =
ˆ

Ω̃

(
ε

2 |∇φ|2 + 1
ε
ψ0(φ)

)
dx, ε > 0.

Additionally to the assumptions in Section 2.1.7, we make the following assumption that
is supposed to hold throughout the remainder of this section.

(A7) Ψ is bounded from below, i.e., we find a constant CΨ > 0 such that Ψ(x) ≥ −CΨ
for all x ∈ (R>0)l. Without loss of generality, we assume CΨ = 0.

Now, the goal is to show Γ-convergence of the cost functionals as this yields that a sub-
sequence of minimizers φε of Jε converges in L1(Ω) to a minimizer of J0. In this sense,
the diffuse interface optimization problem can be regarded as an approximation of the
sharp-interface optimization problem.
In our previous considerations, we needed to impose the rate condition

∥φε − φ0∥L1(Eφ0 ∩{φε<0}) = O(ε), (3.3.44)

in order to show the desired properties such as the convergence of the eigenvalues as ε → 0.
However, to obtain a true unconditional Γ-convergence result, we do not want to impose
such an additional assumption on our sequence of minimizers. The lim inf inequality can
be shown for general cost functionals, i.e., for Ψ fulfilling only the current assumptions.
Furthermore, the proof does not rely on the continuity of eigenvalues when passing from
diffuse to sharp-interfaces. Therefore, no rate condition needs to be assumed.
For the lim sup inequality, the classical recovery sequence for the Ginzburg–Landau energy
constructed in [37] fulfills the rate condition. However, it is a delicate aspect that this
recovery sequence can only be constructed explicitly for sets fulfilling suitable regularity
assumptions, but not for general finite perimeter sets. As also seen in [37, 126], one
therefore needs to approximate finite perimeter sets on the sharp-interface level in a
suitable way such that the perimeter converges and, in our framework, also the eigenvalues.
This convergence of eigenvalues on the sharp-interface level was studied in [39, 51] and
can be applied here also in a slightly modified way in order to take care of the constraint
formulated in U . As done there we also need to assume that the cost functional satisfies
a component-wise monotonicity. Note that in [39] the Γ-convergence was studied without
any additional volume constraint, which allows the usage of the recovery sequence of [127].
After the authors had shown the convergence of eigenvalues on the sharp-interface level,
their lim sup inequality on the diffuse interface level was a direct consequence of the
monotonicity of the cost functional. Hence, no continuity property for the eigenvalues
was required. In our situation with an additional volume constraint, even though we also
need to assume the monotonicity of the cost functional, we can rely on the continuity of
eigenvalues on the diffuse interface level in the sense of Theorem 3.3.7. This allows us to
use the recovery sequence from [96] for the double obstacle potential which is based on
the construction of [37,126].
To motivate the additional monotonicity assumption on Ψ, we first establish the following
lemma.

Lemma 3.3.8. Let X ⊂ Rl. We consider a continuous function

f : X → R.
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Then the following assertions are equivalent.

(a) For any sequence (xk)k∈N ⊂ X and x ∈ X fulfilling

x ≤ lim inf
k→∞

xk ∈ X component-wise,

it holds

f(x) ≤ lim inf
k→∞

f(xk).

(b) f is monotonically increasing in the sense that for x,y ∈ X,

x ≤ y component-wise ⇒ f(x) ≤ f(y). (3.3.45)

Proof. The implication (a)⇒(b) follows by choosing the constant sequence xk = y for all
k ∈ N. In order to show (b)⇒(a) we recall the definition of the limes inferior, and we use
the monotonicity and the continuity of f to obtain

f(x) ≤ f

(
lim inf
k→∞

xk

)
= lim

n→∞
f (inf {xk| k ≥ n}) .

Exploiting again the monotonicity of f , we deduce that for all n ∈ N,

f (inf {xk| k ≥ n}) ≤ inf {f(xk)| k ≥ n} .

This implies that

f(x) ≤ lim
n→∞

inf {f(xk)| k ≥ n} = lim inf
k→∞

f(xk),

an thus, the claim is established.

In order to be able to apply Lemma 3.3.8, we make the following additional assumption
on the function Ψ, which is supposed to hold throughout the remainder of this section.

(A8) The function Ψ : (R>0)l → R≥0 is assumed to be monotonically increasing in the
sense of Lemma 3.3.8 and exhibit the coercivity property

(Ψ(xk))k∈N is bounded ⇒ (xk)k∈N is bounded, (3.3.46)

for any sequence (xk)k∈N ⊂ (R>0)l.

These properties are for example fulfilled if Ψ is given as a positive linear combination of
the components, i.e.,

Ψ(x) =
l∑

j=1
αjxj ,

where αj > 0 for j = 1, . . . , l. In the context of our cost functional this would mean
that linear combinations of eigenvalues λε,φ

ij
and λ0,φ

ij
respectively are involved in our
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optimization process. In particular, by choosing l = 1 and ψ(x) = x for all x ∈ R≥0, the
minimization of just one single eigenvalue of course also fulfills the assumption on Ψ.
Assumption (A8) might look a bit technical at first sight, but it is exactly what we
need in order to establish the lim inf inequality. The monotonicity of Ψ combined with
Lemma 3.3.8 allows us to infer the lim inf inequality for the cost functional from the
lim inf inequality for the eigenvalues. On the other hand the coercivity property (3.3.46)
entails that the sequence of eigenvalues is bounded uniformly in ε if the cost functionals
stay bounded.
Under Assumption (A8) it is now possible to establish an unconditional Γ-convergence
result.

Theorem 3.3.9. In addition to the assumptions made in Section 2.1, we suppose that
the assumptions (A1)–(A8) are fulfilled. Then, it holds that

Jε Γ→ J0 as ε → 0.

Due to the compactness of the Ginzburg–Landau energy from Proposition 2.2.25 and the
abstract convergence of minimizers from Proposition 2.2.24 we directly draw the following
corollary.

Corollary 3.3.10. In addition to the assumptions made in Section 2.1, we suppose that
the assumptions (A1)–(A8) are fulfilled. Let (φε)ε>0 be a sequence of minimizers of the
functionals (Jε)ε>0. Then there exists a function φ0 ∈ L1(Ω), such that

lim
ε↘0

∥φε − φ0∥L1(Ω) = 0, lim
ε↘0

Jε(φε) = J0(φ0),

and φ0 is a minimizer of J0. In particular, this means that φ0 ∈ Φ0
ad ⊆ BV (Ω, {±1}).

We now conclude this section by presenting the proof of the above theorem. In order to
tackle the volume constraint

β1
∣∣Ω̃∣∣ ≤

ˆ
Ω̃
φ dx ≤ β2

∣∣Ω̃∣∣,
we first show a Γ-convergence result similar to [39, Theorem 3.1], where the volume
constraint is omitted and then, in a further step, we suitably modify the recovery sequence
such that it actually fulfills the volume constraint.

Theorem 3.3.11. In addition to the assumptions made in Section 2.1, we suppose that
the assumptions (A1)–(A8) are fulfilled. Let

Iε(φ) :=
{

Ψ(λε,φ
i1
, . . . , λε,φ

il
) + γEε

GL(φ) if φ ∈ Λad,

+ ∞ if φ ∈ L1(Ω)\Λad
(3.3.47)

and

I0(φ) :=
{

Ψ(λ0,φ
i1
, . . . , λ0,φ

il
) + γc0PΩ̃(Ẽφ) if φ ∈ Λ0

ad,

+ ∞ if φ ∈ L1(Ω)\Λ0
ad,

(3.3.48)

with

Λad :=
{
φ ∈ H1(Ω̃)

∣∣∣ |φ| ≤ 1
}

∩ U ,



92 CHAPTER 3. THE LAPLACE PROBLEM

Λ0
ad := BV (Ω, {±1}) ∩ U .

Then, it holds that Iε Γ→ I as ε → 0.

To proof the assertion we will follow partly the reasoning in [39]. Although, the arguments
in [39] contain highly valuable ideas, we have the impression that at some points the au-
thors do not distinguish carefully enough between the global perimeter PRd on Rd and the
relative perimeter PΩ̃ on Ω̃ which does not see the boundary ∂Ω̃, see also Remark 2.2.21.
This plays a crucial role when the Γ-convergence results of [37, 126, 127] are applied. In
the following, we thus present a very detailed proof where we take care that all steps are
applicable for the relative perimeter PΩ̃.
We further point out that in contrast to [39], our proof does not rely on the property that
the recovery sequence (φε)ε>0 constructed in [127] fulfills the inclusion

{φ = 1} ⊂ {φε = 1} for all ε > 0,

where φε → φ in L1(Ω). In [39], this inclusion is crucial to obtain the lim sup inequality
for the eigenvalues. As we do not require this condition, we can use the construction
of [37, 96] for the double obstacle potential. Our strategy is based on the continuity
properties of eigenvalues shown in the previous section. In this way, we achieve that our Γ-
convergence result holds for any general coefficient function bε fulfilling Assumption (A3).
In particular, this means that the coefficient function can be chosen in a more general
way compared to the explicit affine linear construction in [39].

Proof of Theorem 3.3.11. As previously explained, we need to approximate any gen-
eral finite perimeter set by a sequence of (sufficiently) smooth sets in order to construct
a recovery sequence for the lim sup inequality. The construction of such an approximate
sequence of smooth sets is presented now.
Step 1: For Ẽ ⊂ Ω̃ with PΩ̃(Ẽ) < ∞ there exists a sequence of bounded smooth open sets
Ek ⊂ Rd fulfilling 

Hd−1(∂Ek ∩ ∂Ω̃) = 0,
lim

k→∞
PΩ̃(Ek) = PΩ̃(Ẽ),

lim
k→∞

φk = φ in L1(Ω),

lim sup
k→∞

λ0,φk ≤ λ0,φ,

(3.3.49)

where φk := 2χ
EΩ̃

k
∪S1

− 1 and φ := 2χẼ∪S1
− 1, and for m ∈ N, λ0,φ = λ0,φ

m , stands for an

arbitrary eigenvalue. Here, for any set A ⊂ Rd, we use the notation AΩ̃ := A ∩ Ω̃.
To construct an approximate sequence of bounded smooth open sets, we follow the proof
of [126, Lem. 1] which can also be found in [140, Lemma 13.9]. For the sake of readability,
we explain the key steps of this construction and will stick to the notation of [140]. Note
that we cannot assume that the finite perimeter set Ẽ contains an open ball. For pure
perimeter minimization this assumption would be justified by [100, Theorem 1] if only
the convergence of minimizers is to be shown. For that reason, we cannot easily adjust
the volume of the approximating sets Ek by including or excluding balls as it was done
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in [126,140]. To overcome this, we will adjust the volume of the recovery sequence only at
the diffuse interface level which will eventually be done in the proof of Theorem 3.3.9. An
alternative way of tackling the volume constraint on the sharp-interface level is performed
in [147] which does not need the finite perimeter set Ẽ to contain any open ball. There,
the approximating sequence Ek is modified by adding or subtracting suitable hyper-cubes,
but due to the rather technical construction this would require a delicate discussion in
order to analyze the lim sup inequality of eigenvalues in (3.3.49).
The key idea of constructing a sequence (Ek)k∈N of bounded smooth open sets is to extend
χE ∈ BV (Ω̃) ∩ L∞(Ω̃) to a function v ∈ BV (Rd) ∩ L∞(Rd) with |Dv| (∂Ω̃) = 0 (which is
possible as Ω̃ is assumed to be a bounded Lipschitz domain, see [14, Prop. 3.21]). Note
that the set {v ̸= 0} is still bounded. Here, Dv denotes the Radon measure associated
with v ∈ BV (Rd) and | · | denotes the total variation. It is crucial that |Dv| (∂Ω̃) = 0 as
we want to approximate the relative perimeter which does not see the boundary of the
design domain ∂Ω̃ but only the parts of the boundary of Ẽ lying within Ω̃.
Now, in order to construct a sequence of smooth approximating sets Ek fulfilling (3.3.49),
we choose a standard sequence of mollifieres (ρn)n∈N ⊂ C∞

0 (Rd) and consider the super-
level sets

{vn > t} , where vn := v ∗ ρn,

for t ∈ (0, 1). In contrast to [126, 140], where for each n ∈ N, a specific tn ∈
( 1

n , 1 − 1
n

)
is

selected in order to show the convergence of the corresponding super level sets with respect
to perimeter and measure, we use the ideas of [39, Proof of Theorem 3.1] to obtain these
convergences even for almost all t ∈ (0, 1).
Due to our extension, we have |Dv| (∂Ω̃) = 0. Proceeding as in [140], we thus get

lim
n→∞

ˆ
Ω̃

|∇vn| dx = PΩ̃(Ẽ).

In combination with the coarea formula for the relative perimeter (see [14, Theorem 3.40])
and Fatou’s lemma, we deduce as in [39] that

PΩ̃(Ẽ) = lim
n→∞

ˆ 1

0
PΩ̃({vn > t}) dt ≥

ˆ 1

0
lim inf
n→∞

PΩ̃({vn > t}) dt.

On the other hand, as in [140], we infer that for almost every t ∈ (0, 1),∣∣∣({vn > t} ∩ Ω̃
)

△ Ẽ
∣∣∣ → 0

as n → ∞ and thus,

PΩ̃(Ẽ) ≤ lim inf
n→∞

PΩ̃({vn > t}),

due to the lower semi-continuity of the perimeter, see Proposition 2.2.22. Combining the
previous inequalities, we conclude

PΩ̃(Ẽ) = lim inf
n→∞

PΩ̃({vn > t}) (3.3.50)

for almost every t ∈ (0, 1). Now, according to [140], the properties

∇vn(x) ̸= 0 for all x ∈ Rd with vn(x) = t and (3.3.51)
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Hd−1
({
x ∈ ∂Ω̃

∣∣∣ vn(x) = t
})

= 0, (3.3.52)

hold for all n ∈ N and almost all t ∈ (0, T ). In summary, this means that we can choose
a Lebesgue null set N ⊂ (0, 1) such that for every t ∈ (0, 1)\N the sets En,t := {vn > t}
are bounded, smooth and fulfill the transversality condition

Hd−1(∂En,t ∩ ∂Ω̃) = 0.

After extracting a suitable (non-relabeled) subsequence (possibly depending on the choice
of t), we further infer the convergence properties lim

n→∞
PΩ̃(En,t) = PΩ̃(Ẽ),

lim
n→∞

φn,t = φ in L1(Ω),
(3.3.53)

where φn,t := 2χ
EΩ̃

n,t∪S1
− 1.

It thus remains to establish the lim sup inequality for the eigenvalues. As the eigenvalue
equation is formulated on the whole of Ω (not only Ω̃), we now consider E := Ẽ ∪ S1.
Here we can exactly apply the strategy employed in [39, Theorem 3.1] which can also be
found in [51, Theorem 3.5]. For the sake of readability, we explain the key steps.
By the theory of Section 2.2.6, there is a quasi-open set ω ⊂ Ω such that V φ = H̃1

0 (E) =
H1

0 (ω). Now, we choose uω ∈ H1
0 (ω) as the solution of the Laplace equation (2.2.19).

It then holds H1
0 (ω) = H1

0 ({uω > 0}) = H̃1
0 ({uω > 0}), see Section 2.2.6. In the light

of Remark 3.3.3 we know λ0
k(E) = λk({uω > 0}), where we recall that the eigenvalue

λk({uω > 0}) denotes the one formulated over the classical Sobolev space H1
0 ({uω > 0}).

Furthermore, we know from Section 2.2.6 that uω ∈ L∞(Ω) and hence, without loss of
generality, we may assume that uω ≤ 1 a.e. on Ω. Due to the inclusion {uω > 0} ⊂ ω ⊂ E,
we have uω ≤ χE = v a.e. on Ω and hence up to a Lebesgue null set,

{uω ∗ ρn > t} ∩ Ω ⊂ {v ∗ ρn > t} ∩ Ω ⊂ EΩ
n,t ⊂ EΩ̃

n,t ∪ S1,

for all t ∈ (0, 1) and n ∈ N. In particular, we have

{uω ∗ ρn > t} ∩ ω ⊂ EΩ̃
n,t ∪ S1, (3.3.54)

up to a Lebesgue null set, for all t ∈ (0, 1) and n ∈ N. Hence, due to the monotonicity of
eigenvalues with respect to set inclusion (3.3.6), it holds

λ0,φn,t ≤ λ({uω ∗ ρn > t} ∩ ω) ≤ λ({uω ∗ ρn > t} ∩ {uω > t} ∩ ω). (3.3.55)

Note that here we used Proposition 2.2.31 for the first inequality in order to find the
quasi-open set ωn,t ⊂ EΩ̃

n,t ∪ S1 that satisfies

H̃1
0 (EΩ̃

n,t ∪ S1) = H1
0 (ωn,t),

and due to inclusion (3.3.54) this quasi-open set in turn obviously satisfies

H1
0 ({uω ∗ ρn > t} ∩ ω) ⊂ H1

0 (ωn,t),
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because {uω ∗ ρn > t} ∩ ω is quasi-open, see also the remark below Proposition 2.2.31.
Now, using the density result Proposition 2.2.33, it was shown in [39, 51] that for all
t ∈ (0, 1)\N ,

{uω ∗ ρn > t} ∩ {uω > t} γ→ {uω > t} ,

as n → ∞. For the sake of clarity let us comment on this crucial point a little further.
Due to the fact

ˆ
Ω

∇(uω − t)+ · ∇η dx =
ˆ

Ω
∇uω · ∇η dx for all η ∈ H1

0 ({uω > t}),

the function (uω − t)+ ∈ H1
0 (
{
(uω − t)+ > 0

}
) = H1

0 ({uω > t}) is the unique solution of
(2.2.19) in H1

0 ({uω > t}). An amusing way to reformulate this statement is

(uω − t)+ = u{uω>t} in H1
0 ({uω > t}).

Thus, the density result Proposition 2.2.33 yields that{
(uω − t)+ϕ

∣∣∣ ϕ ∈ C∞
0 (Ω)

}
⊂ H1

0 ({uω > t}).

is dense. In the light of this density result and due to the characterization of γ-convergence
via Mosco convergence in Theorem 2.2.36 it suffices now to find for fixed ϕ ∈ C∞

0 (Ω) a
sequence ϕn ∈ H1

0 ({uω ∗ ρn > t} ∩ {uω > t}) such that

ϕn → ϕ(uω − t)+ in H1
0 (Ω), (3.3.56)

for n → ∞ in order to show the first Mosco condition (M1). The second Mosco condition
(M2) is obviously fulfilled due to the inclusion

H1
0 ({uω ∗ ρn > t} ∩ {uω > t}) ⊂ H1

0 ({uω > t}).

So in order to satisfy (M1), as proposed in [39], one chooses

ϕn := ϕ · min
{

(uω ∗ ρn − t)+, (uω − t)+
}

∈ H1
0 ({uω ∗ ρn > t} ∩ {uω > t}).

The convergence (3.3.56) now easily follows from the convergence

uω ∗ ρn → uω in H1
0 (Ω),

for n → ∞.
As the γ-convergence is stable under intersection with quasi-open sets, see Proposi-
tion 2.2.37, we conclude

{uω ∗ ρn > t} ∩ {uω > t} ∩ ω
γ→ {uω > t} ∩ ω.

Now due to the continuity of eigenvalues with respect to γ-convergence, see Remark 3.3.3
we have

lim
n→∞

λ({uω ∗ ρn > t} ∩ {uω > t} ∩ ω) = λ({uω > t} ∩ ω),
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and thus in the light of (3.3.55),

lim sup
n→∞

λ0,φn,t ≤ λ({uω > t} ∩ ω).

For the limit t → 0 we again want to apply the density result Proposition 2.2.33 in order
to show that for any zero sequence (tn)n∈N ⊂ (0, 1) it holds

{uω > tn} γ→ {uω > 0} , (3.3.57)

as n → ∞. In the same line of reasoning as above, noting the fact that {uω > tn} ⊂
{uω > 0}, it suffices to construct for an arbitrary ϕ ∈ C∞

0 (Ω) a sequence ϕn ∈ H1
0 ({uω > tn})

such that

ϕn → ϕ(uω)+ = ϕuω in H1
0 (Ω),

for n → ∞. Here the natural choice is

ϕn := ϕ · (uω − tn)+ ∈ H1
0 ({uω > tn}).

This sequence converges to ϕ(uω)+ due to the point-wise a.e. convergence of (uω −tn)+ →
(uω)+ and the fact that

∇(uω − tn)+ = χ{uω>tn}∇uω a.e. in Ω

So finally from (3.3.57) we deduce

lim
n→∞

λ({uω > tn} ∩ ω) = λ({uω > 0} ∩ ω) = λ({uω > 0}) = λ0,φ,

where the second equality is valid due to the inclusion {uω > 0} ⊂ ω.
Hence, by a diagonal sequence argument, we can now choose a zero sequence (tk)k∈N ⊂
(0, 1)\N and a sequence of indices (nk)k∈N ∈ N such that Ek := Enk,tk

fulfills the desired
properties (3.3.49).
Step 2: Let φ ∈ L1(Ω) be arbitrary. There exists a recovery sequence (φε)ε>0 ⊂ L1(Ω)
with

lim
ε↘0

∥φε − φ∥L1(Ω) = 0,

such that the lim sup inequality

lim sup
ε↘0

Iε(φε) ≤ I0(φ),

holds.
Without loss of generality, we assume I0(φ) < ∞. We thus have φ ∈ Λ0

ad ⊆ BV (Ω, {±1}).
Due to the previous step there exists a sequence of bounded smooth open sets (Ek)k∈N ⊂
Rd approximating Ẽφ satisfying all the properties in (3.3.49). Now, the idea is to construct
for each k a recovery sequence (φk,ε)ε>0 ⊂ Λad for φk := 2χ

EΩ̃
k

∪S1
− 1 ∈ Λ0

ad. Due to the
properties of the set Ek we can proceed as in [96, Theorem 2] (which relies on the ideas
of [37, 126, 147]). Note that we operate on the open subset Ω̃ ⊂ Ω where the point-wise
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constraints incorporated in U do not play any role. In this way, for every k ∈ N, we obtain
a recovery sequence

(φk,ε)ε>0 ⊂
{
φ ∈ H1(Ω̃)

∣∣∣ |φ| ≤ 1
}
,

which satisfies

lim sup
ε↘0

ˆ
Ω̃

γε

2 |∇φk,ε|2 + γ

ε
ψ(φk,ε) dx ≤ γc0PΩ̃(Ẽφk), (3.3.58)

and

∥φk,ε − φk∥L1(Ω̃) = O(ε).

For any ε > 0, the function φk,ε can be extended onto the whole design domain Ω by
choosing φk,ε := −1 on S0 and φk,ε := 1 on S1. In particular, φε ∈ L1(Ω) for all ε > 0,
and it holds that

∥φk,ε − φk∥L1(Ω) = ∥φk,ε − φk∥L1(Ω̃) = O(ε). (3.3.59)

It is worth mentioning that the constant hiding in O(ε) might strongly depend on k, see
also Remark 3.3.12. Now, Theorem 3.3.7 implies that for k ∈ N and for each m = 1, . . . , l
we have

λ
φk,ε
m → λ0,φk

m for ε → 0, (3.3.60)

along a non-relabeled subsequence, where λφk,ε
m and λ0,φk

m denote the m-th eigenvalues of
the diffuse interface problem (3.2.1) and the limit problem (3.3.2), respectively. Recalling
that Ψ is continuous, we use (3.3.58) and (3.3.60) to conclude that

lim sup
ε↘0

Iε(φk,ε) ≤ I0(φk).

By Step 1, we also know from the properties (3.3.49) and Assumption (A8) that

lim sup
k→∞

I0(φk) ≤ I0(φ).

Therefore, by a diagonal sequence argument, we find a zero sequence (εk)k∈N such that

lim sup
k→∞

Iεk(φk,εk
) ≤ I0(φ).

This proves Step 2.
Step 3: Let φ ∈ L1(Ω) be arbitrary. For any sequence (φε)ε>0 ⊂ L1(Ω) with

lim
ε↘0

∥φε − φ∥L1(Ω) = 0,

it holds that

I0(φ) ≤ lim inf
ε↘0

Iε(φε).
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This is also shown in the setting of [39] using the compactness of the γ-convergence (see
e.g., [49, Prop. 4.3.7]). Here, we provide an alternative proof which does not rely on
γ-convergence but directly uses the Courant–Fischer characterization of eigenvalues.
Without loss of generality, we may assume

lim inf
ε↘0

Iε(φε) < +∞. (3.3.61)

Moreover, after extracting a suitable subsequence, we have

lim
ε↘0

Iε(φε) = lim inf
ε↘0

Iε(φε) < +∞. (3.3.62)

Applying [37, Prop. 3.8], we conclude again that φ ∈ Λ0
ad and that

γc0PΩ̃(Ẽφ) ≤ lim inf
ε↘0

ˆ
Ω̃

(
γε

2 |∇φε|2 + γ

ε
ψ(φε)

)
dx. (3.3.63)

Therefore, for n = ij ∈ N with j = 1, . . . , l recall the Courant–Fischer characterization of
the diffuse interface problem (3.2.3) for ε > 0, that is

λε,φ
n = max

W ∈Sn−1
min

{ ´
Ω |∇v|2 dx+

´
Ω bε(φ) |v|2 dx´

Ω |v|2 dx

∣∣∣∣∣ v ∈ H1
0 (Ω) ∩W⊥,

v ̸= 0

}
, (3.3.64)

and the Courant–Fischer characterization for the sharp-interface problem (3.3.3), that is

λ0,φ
n = max

W ∈Sn−1
min

{ ´
Ω |∇v|2 dx´

Ω |v|2 dx

∣∣∣∣∣ v ∈ V φ ∩W⊥,

v ̸= 0

}
, (3.3.65)

where in both cases the maximum is taken over all (n−1)-dimensional subspaces of L2(Ω).
Now, our goal is to show that

λ0,φ
n ≤ lim inf

ε↘0
λε,φε

n ∈ R>0, (3.3.66)

since then Lemma 3.3.8 implies that

Ψ(λ0,φ
i1
, . . . , λ0,φ

il
) ≤ lim inf

ε↘0
Ψ(λεk,φε

i1
, . . . , λεk,φε

il
),

and along with (3.3.62) and (3.3.63), this proves the assertion of Step 3.
First of all, Theorem 3.3.2 yields that the maximum in (3.3.65) is attained in the space
W := ⟨w0,φ

1 , . . . , w0,φ
n−1⟩span ⊂ L2(Ω), where w0,φ

1 , . . . , w0,φ
n−1 ∈ V φ are the first n− 1 eigen-

functions of the limit problem (3.3.2). Hence, we can reformulate the Courant–Fischer
characterization as

λ0,φ
n = min

{ˆ
Ω

|∇v|2 dx
∣∣∣∣ v ∈ V φ ∩W⊥,

∥v∥L2(Ω) = 1

}
. (3.3.67)

Since W ⊂ L2(Ω) is a (n− 1)-dimensional subspace, we infer from (3.3.64) that

λε,φε
n ≥ min

{ˆ
Ω

|∇v|2 dx+
ˆ

Ω
bε(φε) |v|2 dx

∣∣∣∣ v ∈ H1
0 (Ω) ∩W⊥,

∥v∥L2(Ω) = 1

}
. (3.3.68)
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By means of the direct method in the calculus of variations it is straightforward to show
that for any fixed ε > 0, there exists a L2(Ω)-normalized function vε ∈ H1

0 (Ω) ∩ W⊥ at
which the minimum in (3.3.68) is attained.
Next, from (3.3.62) we deduce that the sequence

(
Ψ(λε,φε

i1
, . . . , λε,φε

il
)
)

ε>0 is bounded.
Hence, using condition (3.3.46) from Assumption (A8), we conclude that the sequence
(λε,φε

n )ε>0 is also bounded and in particular the limes inferior of this sequence exists.
Now, using (3.3.68), we infer that (∥∇vε∥L2(Ω))ε>0 is bounded and hence, we find a func-
tion v ∈ H1

0 (Ω) such that the convergences

vε ⇀ v in H1
0 (Ω), vε → v in L2(Ω), vε → v a.e. in Ω (3.3.69)

hold along a non-relabeled subsequence. Moreover, we have

bε(φε(x)) → b0(φ(x)) as ε → 0 for almost all x ∈ Ω,

up to subsequence extraction. This convergence was shown in Step 1 of the proof of
Lemma 3.3.5 and its proof did not require any rate assumption on (φε)ε>0. We thus
obtain

lim inf
ε↘0

λε,φε
n ≥ lim inf

ε↘0

[ˆ
Ω

|∇vε|2 dx+
ˆ

Ω
bε(φε) |vε|2 dx

]
≥
ˆ

Ω
|∇v|2 dx+

ˆ
Ω
b0(φ) |v|2 dx,

by applying Fatou’s lemma on the bε term, and employing the weak lower semi-continuity
of ∥∇ · ∥L2(Ω). In particular, this implies that

ˆ
Ω
b0(φ) |v|2 dx < +∞.

Hence, recalling that φ ∈ Φ0
ad, we conclude that v ∈ V φ which in turn implies

ˆ
Ω
b0(φ) |v|2 dx = 0.

Now, by construction, we have ∥vε∥L2(Ω) = 1 and vε ∈ H1
0 (Ω) ∩W⊥. Due to the conver-

gences in (3.3.69) the same holds for the limit v ∈ V φ. This means that v belongs to the
set appearing in (3.3.67), and we finally deduce

lim inf
ε↘0

λε,φε
n ≥

ˆ
Ω

|∇v|2 dx ≥ min
{ˆ

Ω
|∇v|2 dx

∣∣∣∣ v ∈ V φ ∩W⊥,

∥v∥L2(Ω) = 1

}
= λ0,φ

n > 0,

which proves (3.3.66). This means that Step 3 is established and thus, the proof of
Theorem 3.3.11 is complete.

Remark 3.3.12. Let us comment more on the rate condition (3.3.59) given as

∥φk,ε − φk∥L1(Ω) = ∥φk,ε − φk∥L1(Ω̃) = O(ε), (3.3.70)
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which is crucially used in order to pass the eigenvalues to the sharp-interface limit. Written
more explicitly, we know that for any k ∈ N there is a constant Ck > 0 and a δk > 0 such
that

∥φk,ε − φk∥L1(Ω) ≤ Ckε, (3.3.71)

for all ε ∈ (0, δk), which is enough for the previous proof. We can now sharpen this
estimate by showing that the constant Ck is independent of k ∈ N as follows. The
essential contribution to this constant is a term of the form

sup
|s|≤

√
ε

(
Hd−1({dΓk

= s} ∩ Ω)
)
,

where dΓk
denotes the signed distance to the boundary of the smooth set Ek, see e.g.

[37, Proof of Proposition 3.11]. We will also perform these explicit computations in the
alternative proof of Theorem 4.3.17. As we will also see there, for fixed k one can show
that

lim
ε↘0

sup
|s|≤

√
ε

(
Hd−1({dΓk

= s} ∩ Ω)
)

= Hd−1({dΓk
= 0} ∩ Ω) = PΩ(Ek).

Thus, choosing for any k ∈ N an εk > 0 small enough, we deduce by a diagonal sequence
argument, exploiting PΩ(Ek) → PΩ(E) for k → ∞ (see (3.3.49)), that

sup
|s|≤

√
ε

Hd−1({dΓk
= s} ∩ Ω) ≤ PΩ(E) + 1 =: C,

Thus we sharpen (3.3.71) to

∥φk,εk
− φk∥L1(Ω) ≤ Cεk,

where now the constant C is independent of k. Nevertheless, this is not enough to deduce

∥φk,εk
− φ∥L1(Ω) ≤ Cεk, (3.3.72)

because we only know

lim
k→∞

∥φk − φ∥L1(Ω) = 0,

from Step 1 of the previous proof. Of course for any given ε > 0 we can choose kε ∈ N so
small that

∥φkε − φ∥L1(Ω) ≤ ε,

but we have already chosen εk in dependence of k, so this results in a vicious circle! On
the other hand if we would not choose εk in dependence of k we loose the uniform constant
C above.
The problem in the Γ-convergence proof [96, Step 1 of proof of Theorem 2] is that the
authors also rely on the rate (3.3.72), and not as stated there on the rate O(k−1), in order
to apply [96, Lemma 3]. In order to see if we can correct this mistake we recall that in our
proof of Theorem 3.3.11 we were obliged in Step 1 to perform an analysis of the sharp-
interface problem, especially of the continuity properties of the quantities appearing in
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our optimization problem before entering the proof of the diffuse to sharp-interface limit,
for which then the rate for fixed k ∈ N in (3.3.70) is indeed enough.
Unfortunately we are not able to correct the proof of [96, Theorem 2]. This is due to the
fact that the sharp-interface analysis in Step 1 of the proof of Theorem 3.3.11 heavily
relies on the monotonicity of eigenvalues with respect to set inclusion, in particular the
estimate (3.3.55). Even if we include some additional monotonicity assumption we can not
make the proof work with the tools we have at hand, due to the additional impressibility
condition hidden in the underlying space. Divergence free spaces are known to be difficult
to handle with γ-convergence, see [49, Remark 4.10.5]. Let us see why the impressibility
does not allow us to perform the γ-convergence approach.
Let us first introduce the setting of [97]. The sharp-interface cost functional in [96] reads
as

J(φ,u) =
ˆ

Ω
h(x,u, Du) dx+ γc0PΩ(Eφ),

φ ∈ Φ0
ad :=

{
φ ∈ BV (Ω; {±1})

∣∣∣∣ ˆ
Ω
φ dx ≤ β |Ω|

}
with β ∈ (0, 1), where the function

H1(Ω;Rd) → R,

u 7→
ˆ

Ω
h(x,u, Du) dx,

(3.3.73)

is continuous. Furthermore in the minimization of J , the state u ∈ V φ is always chosen
to be the unique solution of the state equation

µ

ˆ
Ω

∇u : ∇η dx =
ˆ

Ω
f · η dx, for all η ∈ V φ, (3.3.74)

where

V φ := {η ∈ V | η = 0 a.e. in Ω\Eφ} ,

V :=
{

η ∈ H1
0 (Ω;Rd)

∣∣∣ divη = 0 a.e. in Ω
}
.

This solution u is proven to exist for any φ ∈ L1(Ω) in [96, Lemma 2]. In that case,
using the same notation as there, we denote S0(φ) := u. This allows us to introduce the
reduced cost functional

j0(φ) :=
{
J0(φ, S0(φ)) if φ ∈ Φ0

ad,

+∞ otherwise,

and thus to consider the minimization problem

min
φ∈L1(Ω)

j0(φ) = min
φ∈L1(Ω)

ˆ
Ω
h(x, S0(φ), D(S0(φ))) dx+ γc0PΩ(Eφ).

Note that in order to adapt the theory of [96] to our setting we only allow for homogeneous
boundary data on ∂Ω, or in the notation of [96] g = 0, which in particular implies that we
do not need to distinguish, as done there, between the spaces V φ and Uφ. Furthermore let
us note that the impressibility property divη = 0 will play a crucial role in the following.
As indicated above, additionally to the assumptions made in [96] let us make the assump-
tion:
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(Mon) Let ω2 ⊂ ω1 ⊂ Ω be quasi-open sets. Then it shall hold
ˆ

Ω
h(x, S(ω1), D(S(ω1))) dx ≤

ˆ
Ω
h(x, S(ω2), D(S(ω2))) dx.

Note that in the same line of reasoning as in Remark 3.3.3 we define here for any quasi-
open set ω ⊂ Ω the function S(ω) ∈ H1(ω;Rd) ∩ V =: V ω to be the unique solution
of

µ

ˆ
Ω

∇S(ω) : ∇η dx =
ˆ

Ω
f · η dx, for all η ∈ V ω.

Let us remark, that here the term
´

Ω h(x, S(φ), D(S(φ))) dx plays the same role as a limit
eigenvalue λ0,φ and

´
Ω h(x, S(ω), D(S(ω))) dx plays the role of a “classical” eigenvalue

λ(ω).
As an example of h which satisfies (Mon) we could choose h to be the total potential
power

h(x,u, Du) = µ

2 |Du|2 − f(x) · u,

as this definition allows for the variational characterizationˆ
Ω
h(x, S(ω), D(S(ω))) dx = min

{
µ

2

ˆ
Ω

∇v : ∇v dx−
ˆ

Ω
f · v dx

∣∣∣∣ v ∈ H1
0 (ω;Rd) ∩ V

}
,

and H1
0 (ω2;Rd) ⊂ H1

0 (ω1;Rd) for ω2 ⊂ ω1.
Now let us try to apply the strategy of Step 1 of the proof of Theorem 3.3.11 to the above
setting. Denoting A(Ω) the class of quasi-open sets in Ω, let us introduce

A(Ω) → R,

ω 7→
ˆ

Ω
h(x, S(ω), D(S(ω))) dx.

(3.3.75)

Note that now also in the vector valued case, by the theory introduced in Section 2.2.6,
we find for any measurable set E ⊂ Ω a unique quasi-open set ω ⊂ E such that

H̃1
0 (E;Rd) = H1

0 (ω;Rd) = H1
0 ({uω > 0} ;Rd) = H̃1

0 ({uω > 0} ;Rd), (3.3.76)

as a function belongs to a vector valued Sobolev space if and only if each component
belongs the according scalar valued Sobolev space. In particular it holds

S(ω) = S(χE) ∈ H1
0 (ω),

as V ω = H1
0 (ω;Rd) ∩ V = H̃1

0 (E;Rd) ∩ V = V χE .
Thus, if we could show that the function (3.3.75) is continuous with respect to γ-convergence,
we can apply Step 1 of the proof of Theorem 3.3.11 in complete analogy to the cost func-
tional j0 which would fix then the mistake in [96, Step 1 of proof of Theorem 2], as then
the rate (3.3.70) is sufficient to perform a diagonal sequence argument as in our proof of
Theorem 3.3.11 to conclude the lim sup inequality.
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Now let us see why this continuity is not obvious. In order to discuss the desired continuity,
the characterization of γ-convergence via Mosco convergence from Theorem 2.2.36 will be
helpful. The following attempted proof follows a classical line of reasoning, see [49, Propo-
sition 4.5.3], but we will see where the impressibility property makes things complicated.
So let (ωn)n∈N, ω ⊂ Ω be quasi-open sets with ωn

γ→ ω. First of all we know that for
n ∈ N the function vωn

:= S(ωn) ∈ V ωn satisfies

µ

ˆ
Ω

∇vωn : ∇η dx =
ˆ

Ω
f · η dx, for all η ∈ V ωn , (3.3.77)

and thus in particular (vωn)n∈N ⊂ V is bounded. Therefore we can extract a non-relabeled
subsequence such that

vωn ⇀ ṽ in H1
0 (Ω;Rd), (3.3.78)

for n → ∞ and a suitable ṽ ∈ V , because V ⊂ H1
0 (Ω;Rd) is a closed subspace. The

second Mosco-condition (M2) exactly tells us that ṽ ∈ H1
0 (ω;Rd), hence ṽ ∈ V ω.

Now fix an arbitrary test function of the limit problem η ∈ V ω. We know due to the first
Mosco-condition (M1) that there is a recovery sequence ηn ∈ H1

0 (ωn;Rd) such that

ηn → η in H1
0 (Ω;Rd), (3.3.79)

for n → ∞. Now we have to be cautious because ηn is not yet an admissible test function
in (3.3.77), as it is not divergence free. For this purpose, for n ∈ N let us denote the
orthogonal projection with

Pn : H1
0 (ωn;Rd) → V ωn .

Note that the underlying scalar product is (∇·,∇·)L2(Ω) as V ωn ⊂ H1
0 (ωn;Rd) ⊂ H1

0 (Ω)
are closed subspaces of one another. Now consider the left hand side of equation (3.3.77)
tested with Pn(ηn) ∈ V ωn

µ

ˆ
Ω

∇vωn : ∇Pn(ηn) dx = µ

ˆ
Ω

∇vωn : ∇ηn dx → µ

ˆ
Ω

∇ṽ : ∇η dx,

for n → ∞. In the equality we used the fact that vωn ∈ V ωn and thus the projection Pn

can be dropped. Furthermore we used the convergence (3.3.78) combined with (3.3.79).
Now the problem for the right hand side of (3.3.77) is that we can not just drop the
projection, as f only belongs to L2(Ω;Rd) and is not even divergence free in the weak
sense. Even if it would be, the L2 scalar product is not the one associated to the projection
Pn.
On the other hand one only knows that there is some η̃ ∈ V ω such that

Pn(ηn) ⇀ η̃ in H1
0 (Ω),

by exploiting (M2). Thus, we can only deduce the limit of (3.3.77) to be

µ

ˆ
Ω

∇ṽ : ∇η dx =
ˆ

Ω
f · η̃ dx.

So as long as we do not know that η̃ = η the proof can not be completed. If we knew
η̃ = η we would be done, because then ṽ satisfies the desired equation and thus, due to
uniqueness we arrive at ṽ = vω. Then by standard arguments one could sharpen the weak
convergence in (3.3.78) to strong convergence. Then by the H1-continuity of (3.3.73) this
would give the desired continuity in (3.3.75).
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Let us return to proving the sharp-interface limit of our spectral optimization problem.
Using Theorem 3.3.11, we can finally prove the desired Γ-convergence result Jε Γ→ J0

where the volume constraint is now incorporated.

Proof of Theorem 3.3.9. Due to the inclusion Φad ⊂ Λad we have Iε(φ) ≤ Jε(φ) for
all φ ∈ L1(Ω). Furthermore for a sequence (φε)ε>0 ⊂ Φad with φε → φ in L1(Ω) we
deduce φ ∈ G̃β and therefore I0(φ) = J0(φ). Hence, the lim inf inequality for Jε directly
follows from Theorem 3.3.11.
It remains to prove that for any φ ∈ Φ0

ad, there exists a recovery sequence (φ̃ε)ε>0 ⊂ Φad
such that

lim
ε↘0

∥φ̃ε − φ∥L1(Ω) = 0, (3.3.80)

lim sup
ε↘0

Jε(φ̃ε) ≤ J0(φ). (3.3.81)

Here our strategy is now to use the recovery sequence from Theorem 3.3.11. In the
following, it will be denoted by (φε)ε>0 ⊂ Λad. For any ε > 0, we now carefully modify
the function φε via a diffeomorphism in order to ensure that it additionally fulfills the
volume constraint comprised in G̃β. In the following, we will always understand the
functions φε, φ ∈ L1(Rd) as being trivially extended onto Rd, i.e., these functions are
constant zero on Rd\Ω.
The key idea is to construct for any ε > 0 a suitable transformation Ts(ε) : Rd → Rd with
Ts(ε)(Ω̃) = Ω̃ such that the modified functions φ̃ε := φε(T−1

s(ε)) belong to Φad and satisfy
the convergence properties (3.3.80) and (3.3.81). This is a common method in geometric
analysis and a similar procedure in the sharp-interface case can be found for example in
the proof of [121, Theorem 19.8].
We now fix an arbitrary function φ ∈ Φ0

ad. First of all, we find a vector field ξ ∈ C1
0 (Ω̃;Rd)

such that ˆ
Ω̃
φ∇ · ξ dx > 0,

as otherwise the total variation of the associated Radon measure would vanish, i.e.,
|Dφ| (Ω̃) = 0, which would imply that φ is constant almost everywhere in Ω̃. How-
ever, this is not possible as neither φ ≡ 1 nor φ ≡ −1 in Ω̃ would fulfill the mean value
constraint in G̃β due to the choice of β1, β2 in (2.1.2).
Using the vector field ξ, we now define a family of transformations

Ts : Rd → Rd, x 7→ x+ sξ(x),

for s ∈ R. As this map is a perturbation of the identity via a C1-map with compact
support in Ω̃, it is clear that, for |s| sufficiently small, Ts is a C1-diffeomorphism with
Ts(Ω̃) = Ω̃. Hence,

Ts|Ω̃ : Ω̃ → Ω̃

is also a C1-diffeomorphism. Moreover, the chain rule for Sobolev functions (see e.g., [10,
4.26]) implies

φε ◦ T−1
s ∈ H1(Ω̃).
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Since φε ∈ U and Ts|Rd\Ω̃ = idRd\Ω̃, we infer
ˆ
Rd

φε ◦ T−1
s dx =

ˆ
Ω̃
φε ◦ T−1

s dx+ |S1| − |S0| ,

due to the trivial extension of φε on Rd\Ω. Moreover, we use the representation
ˆ
Rd

φε ◦ T−1
s dx =

ˆ
Rd

φε |detDTs| dx. (3.3.82)

Recalling that the determinant is a multi-linear form, a straightforward computation
reveals that there is a δ > 0 and a constant C > 0 depending only on δ and ξ such that
for all x ∈ Rd and s ∈ (−δ, δ),

1
2 ≤ 1 − C |s| ≤ detDTs(x) ≤ 1 + C |s| . (3.3.83)

In the following, we use the convenient notation φ0 := φ. We now define the function

f : Bδ(0) ⊂ R2 → R, (ε, s) 7→
ˆ
Rd

φ|ε| ◦ T−1
s dx−

ˆ
Ω̃
φ dx− |S1| + |S0| ,

where 0 < δ < 1 is chosen sufficiently small in order to ensure that Ts|Ω̃ : Ω̃ → Ω̃ is a
C1-diffeomorphism and (3.3.83) holds for all s ∈ (−δ, δ).
Now our next goal is to apply the implicit function theorem formulated in [159, Theo-
rem 4.B] to the equation f(ε, s) = 0. First of all, f(0, 0) = 0 is clear since φ ∈ Φ0

ad.
We next prove that f is continuous at (0, 0). To this end, let us choose zero sequences
(εk)k∈N , (sk)k∈N. Due to the symmetry of f with respect to its first argument, we may as-
sume without loss of generality that εk ≥ 0. As per construction, we find a non-relabeled
subsequence (φεk

)k∈N which converges to φ almost everywhere as k → ∞, and since
∥φεk

∥L∞(Rn) ≤ 1, we apply Lebesgue’s dominated convergence theorem to the right-hand
side of (3.3.82). Along with (3.3.83), we deduce

f(εk, sk) → f(0, 0) for k → ∞.

As this limit does not depend on the choice of the subsequence, this argument can be
repeated for any subsequence, thus, continuity of f at (0, 0) is shown.
In order to apply the implicit function theorem it remains to show that ∂

∂sf exists on
Bδ(0), is continuous at (0, 0) and does not vanish at (0, 0). First of all, due to (3.3.83),
the modulus in (3.3.82) can be omitted. Furthermore, the proof of [143, Lemma 1] implies
that for fixed x ∈ Rd and t ∈ (−δ, δ) we have

d
ds [detDTs]|s=t = tr

( d
ds [DTs]|s=t (DTt)−1

)
detDTt

= tr
(
∇ξ(Id + t∇ξ)−1

)
det(Id + t∇ξ)

= tr
(

∇ξ
∞∑

k=0
(−t∇ξ)k

)
det(Id + t∇ξ). (3.3.84)

As ξ ∈ C1
0 (Ω̃,Rd), we directly see that

sup
t∈(−δ,δ)

∥∥∥∥ d
ds [detDTs]|s=t

∥∥∥∥
C0(Ω̃)

< ∞.
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Noticing again that ∥φε∥L∞(Ω) ≤ 1 for all ε ≥ 0, we deduce via Lebesgue’s dominated
convergence theorem that for any (ε, t) ∈ Bδ(0), we have

∂f

∂s
(ε, t) =

ˆ
Rn

φε tr
(

∇ξ
∞∑

k=0
(−t∇ξ)k

)
det(Id + t∇ξ) dx.

Therefore we directly infer

∂f

∂s
(0, 0) =

ˆ
Rn

φ0∇ · ξ dx =
ˆ

Ω̃
φ∇ · ξ dx > 0,

by our choice of ξ ∈ C1
0 (Ω̃,Rn) at the beginning of this proof. Now, the continuity of ∂f

∂s
at (0, 0) follows again via Lebesgue’s dominated convergence theorem using that for any
x ∈ Rd,

tr
(

∇ξ
∞∑

k=0
(−t∇ξ)k

)
det(Id + t∇ξ).

is continuous at t = 0.
Now that we have checked all the assumptions of the implicit function theorem [159,
Theorem 4.B], we deduce the existence of a δ̃ > 0 and a function

s : (−δ̃, δ̃) → (−δ, δ),

which is continuous at 0, such that

f(ε, s(ε)) = 0 for all ε ∈ (−δ̃, δ̃) and
s(0) = 0.

In our framework, this means that having started with the recovery sequence (φε)ε>0 of
Theorem 3.3.11, we now know

φ̃ε := φε ◦ T−1
s(ε) ∈ Φad,

i.e., we have constructed an admissible sequence. Note that the point-wise constraints
φ̃ε = 1 a.e. in S1 and φ̃ε = −1 a.e. in S0 are fulfilled since Ts|Rd\Ω̃ = idRd\Ω̃. Hence, it
remains to show

lim
ε↘0

∥φ̃ε − φ∥L1(Ω) = 0,

lim sup
ε↘0

Jε(φ̃ε) ≤ J0(φ).

The L1 convergence follows from the triangle inequality∥∥∥φε ◦ T−1
s(ε) − φ

∥∥∥
L1(Ω)

≤
∥∥∥(φε − φ) ◦ T−1

s(ε)

∥∥∥
L1(Ω)

+
∥∥∥φ ◦ T−1

s(ε) − φ
∥∥∥

L1(Ω)
.

Here, the convergence of the first summand can be shown by the same argumentation
as for the continuity of f at 0, whereas the convergence of the second summand can be
established via Lebesgue’s dominated convergence theorem after approximating φ0 by a
sequence of C0

0 (Ω) functions.
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To verify the lim sup inequality, let us first consider the Ginzburg–Landau energy sepa-
rately. For the potential term we compute with the help of (3.3.83)

ˆ
Ω̃
ψ(φ̃ε) dx =

ˆ
Ω̃
ψ(φε)

∣∣∣detDTs(ε)

∣∣∣ dx ≤ (1 + C |s(ε)|)
ˆ

Ω̃
ψ(φε) dx.

Using the fact that for every x ∈ Rd,(
D
(
T−1

s

))
(x) =

(
DTs

(
T−1

s (x)
))−1

,

we infer that the gradient term can be expressed as
ˆ

Ω̃
|∇φ̃ε(x)|2 dx =

ˆ
Ω̃

∣∣∣∣(DTs(ε)
(
T−1

s(ε)(x)
))−T

∇φε

(
T−1

s(ε)(x)
)∣∣∣∣2 dx

=
ˆ

Ω̃

∣∣∣(Id + s(ε)∇ξ(x)
)−T ∇φε(x)

∣∣∣2 ∣∣∣detDTs(ε)(x)
∣∣∣ dx

=
ˆ

Ω̃

∣∣∣∣∣∣
( ∞∑

k=0
(−s(ε)∇ξ)k

)T

∇φε(x)

∣∣∣∣∣∣
2 ∣∣∣detDTs(ε)(x)

∣∣∣ dx

≤
(
1 + C |s(ε)|

)ˆ
Ω̃

|∇φε(x)|2 dx,

where we use (3.3.83) and a straightforward computation involving the geometrical series.
Therefore, the constant C only depends on δ̃ and ξ. Altogether, we deduce

lim sup
ε↘0

ˆ
Ω̃

ε

2 |∇φ̃ε|2 + 1
ε
ψ(φ̃ε) dx ≤ lim

ε↘0
(1 + C |s(ε)|) lim sup

ε↘0

ˆ
Ω̃

ε

2 |∇φε|2 + 1
ε
ψ(φε) dx

≤ c0 PΩ̃(Ẽφ), (3.3.85)

as (φε)ε>0 was the recovery sequence for φ of Theorem 3.3.11.
Now, we consider the eigenvalue term of the cost functional Jε. Due to Theorem 3.3.11,
we already know

lim sup
ε↘0

λε,φε
ij

≤ λ0,φ
ij
, (3.3.86)

for j = 1, . . . , l. In the following, to provide a cleaner presentation, we will write k := ij .
We intend to show that there exists a sequence (αs(ε))ε>0 (that may depend on k) with

lim
ε↘0

αs(ε) = 1,

such that for all ε > 0 small enough

αs(ε)λ
φ̃ε

k ≤ λφε

k . (3.3.87)

Using (3.3.86) this then directly gives

lim sup
ε↘0

λε,φ̃ε

k ≤ λ0,φ
k . (3.3.88)
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So for ε > 0 let us consider the Courant–Fischer characterization of λφε

k which due to
Theorem 3.2.2 reads as

λφε

k = max
V ∈Sk−1

min
{ ´

Ω |∇v|2 dx+
´

Ω bε(φε) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V ⊥,L2(Ω) ∩H1
0 (Ω),

v ̸= 0

}
. (3.3.89)

Now let us choose the subspace

VTε
:=
{(
wφ̃ε

1 ◦ Ts(ε)
) ∣∣∣detTs(ε)

∣∣∣ , . . . , (wφ̃ε

k−1 ◦ Ts(ε)
) ∣∣∣detTs(ε)

∣∣∣} ⊂ L2(Ω).

As the family of eigenfunctions

Wε :=
{
wφ̃ε

1 , . . . , wφ̃ε

k−1

}
⊂ L2(Ω)

is linearly independent, VTε ⊂ L2(Ω) is indeed a (k− 1)-dimensional subspace. Hence, we
infer from (3.3.89) that

λφε

k ≥ min


´

Ω |∇v|2 dx+
´

Ω bε(φε) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V
⊥,L2(Ω)

Tε
∩H1

0 (Ω),
v ̸= 0

 .
Now we want to show that

min


´

Ω |∇v|2 dx+
´

Ω bε(φε) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V
⊥,L2(Ω)

Tε
∩H1

0 (Ω),
v ̸= 0


≥ min


´

Ω

∣∣∣∇ (
v ◦ Ts(ε)

)∣∣∣2 dx+
´

Ω bε(φε)
∣∣∣v ◦ Ts(ε)

∣∣∣2 dx
´

Ω

∣∣∣v ◦ Ts(ε)

∣∣∣2 dx

∣∣∣∣∣∣∣
v ∈ W⊥,L2(Ω)

ε ∩H1
0 (Ω),

v ̸= 0

 .
(3.3.90)

To verify this, denote with 0 ̸= v ∈ V
⊥,L2(Ω)

Tε
∩H1

0 (Ω) a function at which the minimum in
the first line is attained. Then, by the transformation formula it holds for m = 1, . . . , k−1

0 =
ˆ

Ω
v
(
wφ̃ε

m ◦ Ts(ε)
) ∣∣∣detTs(ε)

∣∣∣ dx =
ˆ

Ω

(
v ◦ T−1

s(ε)

)
wφ̃ε

m dx.

As we additionally know Ts(ε)(∂Ω) = ∂Ω, the function

0 ̸=
(
v ◦ T−1

s(ε)

)
∈ W⊥,L2(Ω)

ε ∩H1
0 (Ω)

is admissible and, per construction, (3.3.90) holds. For any arbitrary v ∈ H1
0 (Ω), we find

that ˆ
Ω

∣∣∣∇ (
v ◦ Ts(ε)

)
(x)
∣∣∣2 dx =

ˆ
Ω

∣∣∣(Id + s(ε)∇ξ(x))T ∇v
(
Ts(ε)(x)

)∣∣∣2 dx

≥ (1 − C |s(ε)|)
ˆ

Ω

∣∣∣∇v (Ts(ε)(x)
)∣∣∣2 dx,

with a constant C > 0 depending only on δ̃ and ξ. Hence, invoking the transformation
theorem and using (3.3.83), we conclude for the remaining terms in (3.3.90) that

min


´

Ω

∣∣∣∇ (
v ◦ Ts(ε)

)∣∣∣2 dx+
´

Ω bε(φε)
∣∣∣v ◦ Ts(ε)

∣∣∣2 dx
´

Ω

∣∣∣v ◦ Ts(ε)

∣∣∣2 dx

∣∣∣∣∣∣∣
v ∈ W⊥,L2(Ω)

ε ∩H1
0 (Ω),

v ̸= 0
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≥ (1 − C |s(ε)|) min
{ ´

Ω |∇v|2 dx+
´

Ω bε(φ̃ε) |v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ W⊥,L2(Ω)
ε ∩H1

0 (Ω),
v ̸= 0

}
.

Combining all the previous computations and recalling that Wε is the space spanned by
the first k − 1 eigenfunctions corresponding to φ̃ε = φε ◦ T−1

s(ε), we use Theorem 3.2.2 to
conclude (3.3.87) with α(ε) := (1 − C |s(ε)|), and we eventually arrive at (3.3.88).
Finally, we use the monotonicity of Ψ from Assumption (A8) along with (3.3.85) to
deduce

lim sup
ε↘0

Jε(φ̃ε) ≤ J0(φ).

This completes the proof.

Remark 3.3.13. Assume that the sets S0 and S1 are compactly contained in the design
domain Ω (i.e., S0, S1 ⊂ Ω). Then, the minimization of Jε implicitly enforces the Neumann
boundary condition ∂φε

∂ν = 0 on ∂Ω. As discussed in Section 2.1.2, we could alternatively
impose the Dirichlet condition φε = −1 on ∂Ω which produces a different limiting cost
functional for ε → 0 in which a term penalizing the energy of transitions from φ0 = 1 to
φ0 = −1 when approaching ∂Ω needs to be added; see Chapter 4 for a detailed discussion.
In Figure 3.7, we show a numerical example where the Dirichlet condition φε = −1 on
∂Ω is explicitly imposed in order for the boundary of Ω to act as an obstacle.

3.4. Numerical computations

In this section, we validate our approach by presenting several numerical examples. In
Section 3.4.1, we describe the methods we use for the numerical approximation of a
solution to (PD,ε

l ) or (PN,ε
l ), respectively. In Section 3.4.2, we study the solutions to

some standard examples with known analytical solution to fix the parameters bε and cε in
our approach. Thereafter, in Section 3.4.3, we show further capabilities of our proposed
method by solving problems whose solution is analytically unknown.

3.4.1. The numerical realization

To discretize (PD,ε
l ) and (PN,ε

l ), we use standard piece-wise linear and globally continuous
finite elements, provided by the finite element toolbox FEniCS [9, 120], for all appearing
functions to obtain finite dimensional approximations φh of φ and wh

i of wi, where i
corresponds to the index of the eigenvalue. The finite dimensional variants of the state
equations (2.1.8) and (2.1.9) are solved by the eigenvalue solver SLEPc [112] provided by
PETSc [21, 22] to obtain approximate eigenvalues λh

i and µh
i . The optimization problems

(PD,ε
l ) and (PN,ε

l ) are treated by the VMPT method, see [36]. As mentioned in the intro-
duction, this method can be understood as an extension of the projected gradient method
to non-reflexive Banach spaces. In our setting, we consider φ ∈ H1(Ω) ∩ L∞(Ω). As
part of this method we need to solve projection-type sub-problems, that have the form
of linear-quadratic optimization problems. These are solved using the package IPOPT,
see [151].
Since the phase field φh changes its value between −1 and 1 over a length-scale of size ε, a
very high resolution of certain parts of the computational domain is required. Here, we use
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locally refined meshes. For given ε > 0, we fix the mesh parameter hmin as hmin = sε, with
s ≈ 0.08. This leads to about 12 cells over a length of ε. We start the optimization with
a very coarse mesh and use the VMPT method until convergence to a numerical solution
φh occurs. Thereafter, we adapt the mesh and refine all cells K with diameter larger
than hmin which satisfy |φh(Km)| ≤ 0.99 (where Km denotes the midpoint of K), whereas
cells that satisfy |φh(Km)| ≥ 1.0 are coarsened. We then optimize again on the the new
mesh. This loop is executed until no refinement is performed during the adaptation step.
Alternative concepts for local error estimation might be used, e.g., residual based error
estimation or dual weighted residuals, but we stress that, in any case, a high resolution
of the interface |φh| ≤ 0.99 is required for successful numerical calculations.
We point out that for small values of ε and γ, the interfaces tend to become very thin and
thus, starting with a coarse mesh is numerically not feasible. In this situation a homotopy
starting from larger values for γ is used. We choose γ as homotopy parameter because γ
can be varied over larger scales than ε.

3.4.2. Fixing the model parameters

The considered optimization problems (PD,ε
l ) and (PN,ε

l ) involve several parameters that
need to be chosen. Here, we fix some of them, and we will stick to this choice unless
stated differently. We fix Ω = (0, 1)d, d ∈ {2, 3},

´
Ω

φ+1
2 = (1/2)d|Ω|, i.e., β1 = β2 = −0.5

if d = 2 and β1 = β2 = −0.75 if d = 3, and start from a constant initial value φ0.
Moreover, we use ε = 0.02, γ = 1 and the classical double-obstacle potential with regular
part ψ0(φ) = 1

2(1 − φ2).
The phase field approximations (2.1.8) and (2.1.9) involve three model functions, namely
aε(φ), bε(φ), and cε(φ). Here we make the following settings

• We fix aε(φ) = 1−ε
2 φ+ 1+ε

2 , meaning that aε(1) = 1 and aε(−1) = ε.

• We fix cε(φ) = 1−cε
2 φ+ 1+cε

2 with some c > 0, meaning that cε(1) = 1 and cε(−1) =
cε. In case we consider Dirichlet boundary data we fix c = 1.

• We fix bε(φ) = b 1−φ
2ε4/3 with some b > 0, meaning that bε(1) = 0 and bε(−1) = b

ε4/3 .

We note that, in the following, the rate ε4/3 appearing in bε leads to a common choice for
b independent of ε. In summary, in case that we apply Dirichlet boundary data, we have
one unknown parameter, namely b, and in case that we use Neumann boundary data, we
have one unknown parameter, namely c.

Remark 3.4.1. In case of Dirichlet boundary data, we could potentially set aε(φ) ≡
cε(φ) ≡ 1 as stated in Assumption (A2). However, in this setting, we experienced when
solving the minimization problem that the shape tends to attain the form of one large ball,
even in cases where, for instance, two balls are the optimal solution. Nevertheless, using
aε(−1) = ε and cε(−1) = cε as introduced above does not conflict with the assumptions
made in Section 2.1.5. Hence, the analytical results obtained in Section 3.2 are valid in
the current setting.
Functions like aε are often chosen as polynomials to mimic the SIMP approach (see,
e.g., [136]). However, during the minimization process such an approach would lead to
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2D, |D| = 1
4 3D, |D| = 1

8
one ball two balls one ball two balls

r
√

1
4π

√
1

8π
3
√

3
32π

3
√

3
64π

λ1 72.67 145.34 102.59 162.84
λ2 184.50 145.34 209.86 162.84
λ3 184.50 369.00 209.86 333.14
λ4 331.43 369.00 209.86 333.14

Table 3.1: The first eigenvalues of the Laplace operator with Dirichlet boundary condition
in two dimensions on a ball of volume 1

4 and on two balls of volume 1
8 each, and in three

dimensions on a ball of volume 1
8 and two balls of volume 1

16 each. The value r denotes
the radius of one ball. We refer to [108, Proposition 1.2.14] on how to compute these
values.

very thin interfaces that can barely be resolved by a finite element mesh. As we solve a
minimization problem, the final shape of the interface is adjusted in an optimal way in
terms of the chosen parameter functions.

Fixing b for Dirichlet boundary data. To fix b we solve the minimization prob-
lem related to minimizing the first eigenvalue λ1 for the Laplace operator with Dirichlet
boundary data for sequences of b and ε. The analytical result is given by Theorem 3.4.2
which is known as the Faber–Krahn theorem, see also Chapter 4.

Theorem 3.4.2 (Faber–Krahn, cf. [108, Theorem 3.2.1]). The minimum of λ1(D) among
all bounded open sets D ⊂ Rd, d ∈ N, with given volume is achieved by one ball.

In Table 3.1, we present the first four analytical eigenvalues on one ball of the given volume
and, for later reference, on two balls with the given volume in sum.
We solve the minimization problem related to Theorem 3.4.2 for b ∈ {300, 400, 500, 550, 600,
700, 800} and ε ∈ {0.04, 0.02, 0.01, 0.005} and compare the numerically found eigen-
value λh

1 to the analytical known values λ1 provided in Table 3.1. The relative errors
ηλ

1 := |λ1 − λh
1 |/λ1 are presented in Figure 3.1. From Figure 3.1, we obtain that for the

scaling b(−1) = bε−4/3 the choice of b = 550 is optimal in this situation and thus, in the
following, we fix b = 550.
For ε = 0.02 and b = 550, the eigenfunction wD,h

1 related to the eigenvalue λh
1 approxi-

mates the analytical wD
1 with a relative error ∥wD

1 − wD,h
1 ∥L2(Ω)/∥wD

1 ∥L2(Ω) = 12 · 10−4.
Here, wD

1 is a scaled Bessel function, see [108, Proposition 1.2.14]. It is extended to the
whole computational domain Ω with the constant value zero.
We validate our choice by solving the optimization problem related to λ2 and λ3 for
ε = 0.02. The global optimal solutions are stated in Theorem 3.4.3 and Theorem 3.4.4.

Theorem 3.4.3 ( [108, Theorem 4.1.1]). The minimum of λ2(D) among all bounded open
sets D ⊂ Rd, d ∈ N, with given volume is achieved by the union of two identical disjoint
balls.

Theorem 3.4.4 ( [108, Corollary 5.2.2]). The minimum of λ3(D) among all bounded
open sets D ⊂ Rd, d ∈ {2, 3}, with given volume is achieved by one ball.



112 CHAPTER 3. THE LAPLACE PROBLEM

300 400 500 600 700 8000

1

2

3 ·10−2

b

ε = 0.04
ε = 0.02
ε = 0.01
ε = 0.005

Figure 3.1: The relative error ηλ
1 = |(λ1 − λh

1)|/λ1 when minimizing λ1 in two dimensions
for several values of b and ε. Here bε(−1) = bε−4/3.

Remark 3.4.5 (Eigenvalues with multiplicity larger one). In the situation of Theo-
rem 3.4.2, λ2 has multiplicity two, while in the situation of Theorem 3.4.4, λ3 has mul-
tiplicity equal to the spatial dimension. If eigenvalues have multiplicity larger one, the
corresponding gradient is no longer unique and depends on the random ordering that the
eigenvalue solver provides for these identical eigenvalues. This problem can be detected by
considering the relative difference of subsequent eigenvalues during the optimization run.
If this problem is detected for an eigenvalue of multiplicity two, we modify the objective
functional to minimize the arithmetic mean of these equal eigenvalues. As both eigen-
values are equal, this does not change the value attained by the objective at the current
local optimum. We stress, that changing the objective functional in advance does lead to
a different optimization problem and thus, we typically obtain different local minimizers.
We also refer to [134, Section 4.5] for more details.
In practice, we notice that this modification does not work for eigenvalues with a mul-
tiplicity larger than two. This is because it is rather unlikely, that the pairwise relative
difference of more than two eigenvalues becomes small at the same time and thus jointly
trigger the modification of the objective. In this situation, the above modification actually
changes the objective and we would thus solve a different problem. This situation appears,
for instance, when minimizing λ3 in three spatial dimensions, where λ2 = λ3 = λ4 holds
for the optimal shape, namely a ball. Luckily, in this situation, by solving the modified
optimization problem we still detect the correct minimizer predicted by Theorem 3.4.4 if
γ is initially chosen sufficiently large and decreased subsequently.

The global optimal solutions are successfully found in two and three spatial dimensions.
In Figure 3.2 we show optimal shapes for minimizing λi, i = 1, 2, 3 in two spatial dimen-
sions. We note, that in case of minimizing λ3 there also is an attracting local minimum,
containing three small balls. Here, we need to start with a large value of γ = 103 to guide
the optimization process to the correct global optimum in combination with a homotopy
of decreasing values for γ towards γ = 1. Moreover, in three dimensions we need to
substitute the minimization problem for λ3 by 1

3(λ2 + λ3 + λ4) to deal with the multiple
eigenvalue. In two dimensions this problem is handled as described in Remark 3.4.5. The
correct topologies are found and in Table 3.2, we present our numerical results in terms
of the eigenvalues that we obtained.
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2D, |{φ > 0}| = 1
4 3D, |{φ > 0}| = 1

8
k λk λh

k ηλ
k λk λh

k ηλ
k

1 72.67 72.68 1 · 10−4 102.59 101.43 113 · 10−4

2 145.34 143.16 150 · 10−4 162.84 162.40 27 · 10−4

3 184.50 183.53 54 · 10−4 209.86 209.21 31 · 10−4

Table 3.2: Analytical and numerically found eigenvalues related to minimizing λk, k ∈
{1, 2, 3} in two and three spatial dimensions. Here λk denotes the analytical value of
the k-th eigenvalue, λh

k denotes the numerical found approximation of this value and
ηλ

k := |λk − λh
k |/λk denotes the related relative numerical error.

Figure 3.2: The optimal shape for minimization of λi, i = 1, 2, 3, 5 (left to right) is
presented by the zero level line of φh black in each case, while the value of the corre-
sponding eigenfunction wD,h

i is shown in gray scale. The gray outer domain corresponds
to wD,h

i ≈ 0. Note that in the case of minimizing λ2, there is a second eigenfunction (to
same eigenvalue) that is supported on the bottom circle, while in the case of minimizing
λ3, there is a second eigenfunction (to same eigenvalue) that is rotated by 90◦.

One additional example with known solution. As another example for which a
reference solution exists, we consider the minimization of λ5. From [17, Figure 11.1] we
expect a butterfly-like shape and the proposed eigenvalue is λ5 = 312.60. In contrast to
the simulation above, we use γ = 0.1 to get closer to the features of the butterfly. In Fig-
ure 3.2 (right), we show our numerically obtained shape together with the corresponding
eigenfunction wD,h

5 . We obtain the eigenvalue λh
5 = 311.59. The normalized amplitude of

wD,h
5 is ∥wD,h

5 ∥L∞(Ω) = 3.94, while the amplitude of wD,h
5 on the zero-level line of φh is of

order ∥wD,h
5 ∥L∞({φh=0}) = 0.50. We point out that the result proposed in [17, Figure 11.1]

is more pronounced in the middle part and also on the left and right there are additional
small deflections.

Fixing c for Neumann boundary data. Here we proceed as in the case of fixing b.
We solve the corresponding maximization problem for µ1 for

c ∈ {0.2, 0.15, 0.1, 0.05} and ε ∈ {0.04, 0.02, 0.01, 0.005}

on Ω = (0, 1)2. In this situation, the optimal shape is a disc of radius r =
√

1/(4π) with
first eigenvalue µ1 = 42.6002. This can be obtained from [108, Proposition 1.2.14], see
also the theorem of Szegő and Weinberger from the introduction of this chapter.
For the sake of brevity, we omit the presentation of relative errors as in Figure 3.1 and
just state that we observe that c = 0.1 is a good choice independent of ε. In the following,
we fix c = 0.1.
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Figure 3.3: The zero level lines of φh for minimizing µ1 with γ ∈ {103, 102, 101} (left) and
with γ ∈ {100, 10−1, 10−2, 10−3} (right). We observe that a large value of γ leads to a
circle and that decreasing γ allows the optimizer to find topologies with longer boundaries.

Figure 3.4: When minimizing µ1 we obtain the shape that is indicated by black lines,
which is the zero-level line of φh. From left to right, we show the first three (non-trivial)
eigenfunctions wN,h

1 , wN,h
2 , and wN,h

3 on this shape. Here, gray corresponds to wN,h
i ≈ 0.

By our approach, the eigenfunctions are defined on the complete domain Ω, and as we
are considering the Neumann case, they do not degenerate on the complement of the
shape. The corresponding eigenvalues are µh

1 = 0.40, µh
2 = 67.55, and µh

3 = 68.23. In this
example we chose γ = 10−3.

3.4.3. Numerical examples without known solution

In the following, we investigate some numerical examples where the analytical solution
is unknown in order to show the strength of our approach in finding unknown shapes
with a priori unknown topologies. We also remark that the boundary of Ω acts as an
obstacle which can be seen in several computations below. We refer to [103,111] for more
information on obstacle type problems for eigenvalues.

Minimization of µ1. As discussed above, the maximization of µ1 leads to a disc. Now
we ask for the optimal shape and topology when minimizing µ1 on Ω = (0, 1)2. In
Figure 3.3, we present the found optimal topology and the influence of γ on the result
by showing the iterates for a homotopy reducing γ from 103 to 10−3. In Figure 3.4, we
present the first three corresponding non-trivial eigenfunctions on the optimal topology
for γ = 10−3. We observe that the boundary of Ω might act as an obstacle for the shape
optimization problem.

Mixing minimization and maximization. In this example, we consider the mini-
mization of a weighted sum of eigenvalues. Especially, we consider weights with different
signs which leads to simultaneous minimization and maximization of certain eigenvalues.
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Figure 3.5: Optimal shapes for an example of mixed minimization and maximization,
namely Jλ = 6λ1−λ3

7 + E0.02(φ). The optimal shape is indicated by the zero-level line of
φh in black, and we show wD,h

1 , wD,h
2 , and wD,h

3 in gray scale (left to right). Gray indicates
the zero level of the eigenfunctions. The corresponding eigenvalues are λh

1 = 81.32, λh
2 =

161.01, and λh
3 = 255.42.

Figure 3.6: Optimal shapes for an example of mixed minimization and maximization,
namely Jµ = 12µ1−µ3−µ4

14 + 10E0.02(φ). The optimal shape is indicated by the zero-level
line of φh in black, and we show wN,h

1 , wN,h
2 , and wN,h

3 in gray scale (left to right).
Gray indicates the zero level of the eigenfunctions. The corresponding eigenvalues are
µh

1 = 12.94, µh
2 = 56.94, and µh

3 = 115.27. Here, the eigenfunctions wN,h
i , i = 1, 2, 3, are

plotted only on the actual shape.

In Figure 3.5, we present numerical results for the objective Jλ = 6λ1−λ3
7 +E0.02(φ) and in

Figure 3.6, we present numerical results for the objective Jµ = 12µ1−µ3−µ4
14 + 10E0.02(φ).

Influences from Ω. As stated in Theorem 3.4.2, the minimizer of the first eigenvalue is
one single disc of diameter d = 2

√
1/(4π) ≈ 0.56. Here, we show the optimal shape in the

case that this ball does not fit into the computational domain. This leads to an obstacle
like problem where the boundary of Ω acts as an obstacle, see also [108, Section 3.4].
We consider two cases, namely Ω1 = (0.0, 2.5) × (0.0, 0.4) which is a rectangular domain
of height 0.4 ≤ d, and Ω2 = (0, 1.45)2\(0.4, 1.45)2 which is an L-shaped domain. In both
cases, a disc of diameter d ≈ 0.56 does not fit into the domain. In this example we fix
φh = −1 on ∂Ω to prevent the shape from touching the boundary. In Figure 3.7 we
present numerical results for the minimization of λ1 in this situation.

Prescribing parts of the optimal topology. Finally, we show another aspect of the
flexibility of the proposed approach. We present two examples, in which we a-priori fix
certain parts of the design domain. In Figure 3.8, we present numerical results obtained
by either fixing some part of the domain as shape (left) or as void (right). In both cases,
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Figure 3.7: The optimal shapes for minimizing λ1 on the rectangular domain Ω1 =
(0.0, 2.5) × (0.0, 0.4) (left) and the L-shaped domain Ω2 = (0, 1.45)2\(0.4, 1.45)2 (right).
The shapes are indicated by the zero level line of φh

ε in black and we show the correspond-
ing first eigenfunction wD,h

1 in gray-scale. Gray indicates the zero level of wD,h
1 . We show

only the relevant part of the computational domain. The corresponding eigenvalues are
λh

1(Ω1) = 85.54 and λh
1(Ω2) = 77.13. A disc of the same size would lead to λ1 = 72.68 as

stated in Table 3.2.

Figure 3.8: Numerically obtained optimal shapes in gray for minimizing λ1. On the left
we fix the domains inside the gray boxes as part of the shape, i.e., φh = 1, while on the
right we fix the black domains to be void, i.e., φh = −1.
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we minimize λ1 and we fix γ = 0.01.



118 CHAPTER 3. THE LAPLACE PROBLEM



Chapter 4

A phase-field version of the
Faber–Krahn theorem

4.1. Introduction

As already mentioned in the introduction of the preceding chapter, the Faber–Krahn
theorem is one of the most fundamental theorems when it comes to spectral shape opti-
mization. This theorem asserts that in the class of open sets E ⊂ Rd with fixed volume
|E| = 1, the smallest eigenvalue λ(E) > 0 of the eigenvalue problem

−∆w = λw in E, (4.1.1a)
w = 0 on ∂E, (4.1.1b)

attains a global minimum if E is a ball B of volume |B| = 1. This result was first proven in
dimension d = 2 independently by Faber [90] and Krahn [117], not in this whole generality
but with suitable assumptions on the regularity of the shape boundary. By now it is well
known that the result holds in full generality as stated above for any dimension d ≥ 2, see,
e.g., [108, Section 3.2]. A direct consequence of this theorem is the so called Faber–Krahn
inequality which states that for any open ball B ⊂ Rd and any open set E ⊂ Rd it holds

|B|
2
dλ(B) ≤ |E|

2
dλ(E) (4.1.2)

see, e.g., [94].
The goal of this chapter is to prove a version of this result in our phase-field framework.
Let us recall from Section 2.1.5 that our phase-field approach approximates (4.1.1) via
the equation

−∆wε,φ + bε(φ)wε,φ = λε,φwε,φ in Ω, (4.1.3a)
wε,φ = 0 on ∂Ω, (4.1.3b)

where the coefficient function bε : [0, 1] → R is chosen analogously as in the previous
chapter in order to enforce homogeneous Dirichlet boundary conditions in the sharp-
interface limit. Considering the Faber–Krahn theorem, the cost functional studied in the
previous chapter, see also Section 2.1.7, simplifies to

Jε
γ(φ) = λε,φ

1 + γEε(φ), (4.1.4)

119
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where λε,φ
1 denotes the principal eigenvalue of (4.1.3).

The proof of our phase-field version of the Faber–Krahn theorem given in Theorem 4.3.7 is
based on a symmetrization technique. The key idea which is also a fundamental tool in the
original proofs of Faber and Krahn [90, 117] is to decrease the cost functional by, plainly
speaking, making the phase-field and the eigenfunction associated to the principal eigen-
value more symmetric. This is accomplished by using the theory of symmetric-decreasing
rearrangements, also frequently refereed to as Schwarz rearrangements, see Section 2.2.3.
Breakthrough results such as the quantitative isoperimetric inequality [93] underline the
strength of such symmetrization techniques.
In the light of the cost functional (4.1.4), the main task in proving a phase-field version
of the Faber–Krahn theorem will be to show that the principal eigenvalue λε,φ

1 and the
Ginzburg–Landau energy Eε(φ) are non-increasing under radially symmetric-decreasing
rearrangements. The latter can be seen as a phase-field version of the Euclidean isoperi-
metric problem which, recalling it as Dido’s problem from the introduction of this thesis,
states that in the class of measurable sets of fixed volume the ball has minimal perimeter,
see [121, Section 14].
As opposed to the theory developed in Chapter 3 it will be crucial to choose the design
domain to be an open ball in Rd centered at the origin. This is due to the fact that the
ball is obviously invariant under symmetric rearrangement, see also Section 2.2.3.
Let us emphasize a further consequence of exploiting symmetrization techniques. Opposed
to the previous chapter the admissible set Φad in the minimization of (4.1.4) must impose
a homogeneous Dirichlet boundary condition on the phase-field variable in order for the
proof of our main theorem to work. This means that not only the eigenfunction wφ but
also the phase-field φ has to satisfy a Dirichlet boundary condition on the boundary of
the design domain. This condition is crucial in order to apply the famous Pólya–Szegő
inequality asserting the non-expansivity of the Dirichlet energy under rearrangement, see
especially Remark 2.2.13.
In turn this additional Dirichlet condition requires a delicate analysis when performing
the Γ-limit for the cost functional, as a further contact energy enters the cost functional in
the sharp-interface setting. Building up on the theory developed in the previous chapter
we will perform the Γ-limit rigorously in this more complex setting and even give two
versions of the proof. The first one uses the approach of [43] where the additional term
in the limit energy is handled by a cut-off procedure on the sharp-interface level. This
ansatz has the drawback that it only works for constant boundary data. The second
version of the proof is inspired by the more general framework of [135]. Their ansatz
allows even for non-constant boundary data. We will apply this ansatz in our proof just
for homogeneous Dirichlet data but we believe that our proof is rather illustrative also
for general Dirichlet boundary data. Furthermore this version of the proof involves the
technical construction of a recovery sequence explicitly and in full detail, which we believe
to be quite informative for the reader. Here the key idea is to perform a smooth cut-off by
multiplying the classical recovery sequence with an optimal profile on the diffuse interface
level.
Performing the sharp-interface limit we will finally arrive at a generalized version of the
Faber–Krahn theorem formulated in the framework of functions of bounded variation, see
Theorem 4.3.15 and Corollary 4.3.16.
To conclude this introduction let us review some further approaches in the literature deal-
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ing with the Faber–Krahn inequality. In order to give an alternative proof of the classical
Faber–Krahn inequality for the Dirichlet-Laplacian, Bucur and Freitas [53] use methods
developed by Alt and Caffarelli [11] (see also [58] for a comprehensive overview) by giving
sense to this inequality in a free boundary value problem framework. More precisely, the
key idea is to pass from finding an optimal domain to finding the optimal support of the
first eigenfunction, i.e., the shapes under consideration are associated to the super-level
sets {w > 0}, see also [152]. Furthermore, in order to prove radial symmetry of an opti-
mal shape, the authors do not exploit the classical Schwarz rearrangement but the Steiner
symmetrization which reflects a given shape with respect to a hyperplane.
An interesting alteration of the Faber–Krahn problem is studied in [57] where no longer
the Laplace operator but a general elliptic operator in divergence form with space depend-
ing coefficients is considered. These non-constant coefficients destroy the symmetry of the
Laplacian which makes the application of symmetrization techniques impossible. Never-
theless, the authors can still show existence of minimizers via a concentration-compactness
argument. A natural further development of the Faber–Krahn theorem is to replace the
Dirichlet boundary condition by a boundary condition of Robin type interpolating in
between Dirichlet and Neumann boundary conditions. In [79] the corresponding Faber–
Krahn inequality for the Robin Laplacian is established via a level-set characterization of
the principal eigenvalue. This characterization proves to be useful in order to give an esti-
mate on the principal eigenvalue for which then a symmetrization argument is applicable
in order to show the desired inequality in the class of Lipschitz domains. [52] generalizes
this result for the p-Laplacian subject to a Robin boundary condition. In order to avoid the
constraint of competing shapes to possess Lipschitz regularity, Bucur and Giacomini [54]
characterize the Robin-Laplace eigenvalues via a Courant–Fischer characterization in the
framework of special functions of bounded variation. The Faber–Krahn inequality is then
obtained with the level-set characterization introduced in [79].

4.2. Additional assumptions

Additionally to the general preliminary assumptions from Chapter 2 the following as-
sumptions on the potential ψ : R → R ∪ {+∞} and the coefficients bε are supposed to
hold throughout this chapter:

(A1) ψ ∈ C2([0, 1]), ψ(0) = ψ(1) = 0 and ψ > 0 in (0, 1).

(A2) The minima of ψ at 0 and 1 are non-degenerate in the sense that for x ∈ {0, 1}, we
either have ψ′(x) ̸= 0 or ψ′(x) = 0 < ψ′′(x).

(A3) For any ε > 0, the coefficient bε is a function

bε : [0, 1] → [0, βε] (4.2.1)

for some real number βε > 0. We demand that bε is continuous, strictly decreasing
and surjective onto [0, βε].

(A4) In complete analogy to the setting of Section 3.3 we make the following assumptions
on the coefficient functions bε. The numbers βε = bε(0) satisfy

lim
ε↘0

βε = +∞ and βε = o
(
ε−κ) with

{
κ ∈ (0, 1) if d = 2,
κ = 2

d if d ≥ 3.
(4.2.2)
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Moreover, there exists a limit function

b0 : [0, 1] → [0,+∞] (4.2.3)

satisfying

• b0(1
2
)
< +∞,

• bε → b0 pointwise in [0, 1] as ε → 0,
• bδ ≥ bε on [0, 1] for all 0 ≤ δ ≤ ε.

0 φ

βε

βδ

b0

bδ

bε

1 0 φ

ψ(φ)

ψ(φ)

1

Figure 4.1: Sketch of a possible choice for the coefficient functions bε and b0 (left) and the
potential ψ (right).

Remark 4.2.1. The two classical choices we have in mind for the potential ψ are either
the smooth quartic double-well potential ψ(x) = 1

4(1 − x)2x2 (which satisfies ψ′(x) = 0 <
ψ′′(x) for x ∈ {0, 1}) or the non-smooth double-obstacle potential

ψ(x) =
{1

2(1 − x)x if x ∈ [0, 1],
+∞ else.

(which satisfies ψ′(x) ̸= 0 for x ∈ {0, 1}). However, the assumptions (A1) and (A2) allow
for very general potentials. In particular, asymmetric potentials satisfying ψ′(0) ̸= 0 and
ψ′(1) = 0 < ψ′′(1) (or vice versa) can also be included.
Note that in the case of a smooth potential as studied in [126,147], opposed to their theory,
we do not need a growth condition as in [126, Proposition 3(b)] or [147, Proposition 3]
since we additionally incorporate the box constraint φ ∈ [0, 1] in our set of admissible
phase-fields. Therefore, depending on the choice of ψ, one of the results [126, Proposition
3(a)], [147, Remark (1.35)] and [37, Theorem 3.7] can be applied, which are summarized in
our general setting in Proposition 2.2.25, providing us with compactness of the Ginzburg–
Landau energy.
The assumptions on ψ in [147, Theorem 1] differ from (A1) only in the fact that global
continuity is assumed. However, due to the box constraint φ ∈ [0, 1], our phase-fields may
not leave the interval [0, 1] and thus, such an assumption is not necessary.
The crucial difference between [147] and [37] is that in [147], the potentials need to satisfy
(A2) with ψ′(x) = 0 < ψ′′(x) for x ∈ {0, 1}, whereas [37] only covers the case ψ′(x) ̸= 0 for
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x ∈ {0, 1}. However, we will see that also the mixed case ψ′(0) ̸= 0 and ψ′(1) = 0 < ψ′′(1)
(or vice versa) can be handled by combining the proofs of [147, Theorem 1] and [37,
Proposition 3.11]. This is possible since their construction of a recovery sequence remains
practicable as the ODE

η′(t) =
√

2ψ(η(t)), (4.2.4)

which is used to define the profile at the diffuse interface, possesses a global solution that
is strictly increasing as long as η(t) ∈ (0, 1). In [147], any solution of (4.2.4) satisfies
η(t) ∈ (0, 1) for all t ∈ R, whereas in [37], there exist t0, t1 ∈ R with t0 < t1 such that

η(t)


= 0, if t ∈ (−∞, t0],
∈ (0, 1), if t ∈ (t0, t1),
= 1, if t ∈ [t1,∞).

(4.2.5)

In our Γ-convergence proof of Theorem 4.3.17, we will take care of both cases simulta-
neously. Therefore, proceeding as in [147], we interpolate the solution η of (4.2.4) in
such a way that the interpolated solution exhibits the behavior described in (4.2.5). The
solvability of (4.2.4) and further properties of solutions to this ODE will be analyzed in
depth in the proof of Theorem 4.3.17.

4.3. The phase-field Faber–Krahn theorem and its sharp-
interface limit

4.3.1. Recalling the state equation

In the following, we consider the design domain Ω = BR(0) ⊂ Rd with d ≥ 2 and some
finite radius R > 0.
For functions φ ∈ L∞(Ω; [0, 1]), the eigenvalue problem introduced in Section 2.1.5 reads
as

−∆w + bε(φ)w = λw in Ω, (4.3.1a)
w|∂Ω = 0 on ∂Ω. (4.3.1b)

In view of the term bε(φ)w, this problem can be understood as a phase-field approximation
of the classical Dirichlet–Laplace eigenvalue problem on the shape represented by the set
{φ = 1}. For a detailed motivation and introduction of this eigenvalue problem we refer
to Section 2.1. To specify the notion of weak solutions, eigenvalues and eigenfunctions,
we recall the following definition from Definition 3.2.1 adapted to our setting.

Definition 4.3.1. Let ε > 0 and φ ∈ L∞(Ω; [0, 1]) be arbitrary.

(a) For any given λ ∈ R, a function w ∈ H1
0 (Ω) is called a weak solution of the system

(4.3.1) if the weak formulationˆ
Ω

∇w · ∇η + bε(φ)wη dx = λ

ˆ
Ω
wη dx (4.3.2)

is satisfied for all test functions η ∈ H1
0 (Ω).
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(b) A real number λε,φ is called an eigenvalue associated with φ, if there exists at least
one non-trivial weak solution wε,φ ∈ H1

0 (Ω) of the eigenvalue problem (4.3.1) written
for λ = λε,φ.
In this case, wε,φ is called an eigenfunction to the eigenvalue λε,φ.

We further recall some important properties of the eigenvalue problem (4.3.1), which were
already obtain in Theorem 3.2.2 but we restate it here for the purposes of this chapter.
Proposition 4.3.2. Let ε > 0 and φ ∈ L∞(Ω) be arbitrary.

(a) The eigenvalue problem (4.3.1) has countably many eigenvalues and each of them has
a finite dimensional eigenspace. Repeating each eigenvalue according to its multiplic-
ity, we can write them as a sequence

(
λε,φ

k

)
k∈N with

0 < λε,φ
1 ≤ λε,φ

2 ≤ λε,φ
3 ≤ ... and λε,φ

k → ∞ as k → ∞.

(b) There exists an orthonormal basis
(
wε,φ

k

)
k∈N of L2(Ω) where for every k ∈ N, wε,φ

k is
an eigenfunction to the eigenvalue λε,φ

k .

(c) The eigenvalue λε,φ
1 is called the principal eigenvalue. It can be represented via

the Courant–Fischer characterization

λε,φ
1 = min

w∈H1
0 (Ω)\{0}

´
Ω |∇w|2 + bε(φ)w2 dx

∥w∥2
L2(Ω)

. (4.3.3)

Any function w ∈ H1
0 (Ω)\{0} at which this minimum is attained is an eigenfunction

to the eigenvalue λε,φ
1 .

Moreover, the eigenspace of λε,φ
1 is one-dimensional, and there exists a unique eigen-

function w ∈ H1
0 (Ω)\{0} corresponding to this eigenvalue which fulfills

w > 0 a.e. in Ω, and ∥w∥L2(Ω) = 1. (4.3.4)

We call w the positive-normalized eigenfunction. Without loss of generality, as
the choice the sign does not matter, we will always choose wε,φ

1 = w in the orthonor-
mal basis given by part (b).

Applying [99, Theorem 8.12] we directly infer the following regularity statement.
Corollary 4.3.3. Let ε > 0 and φ ∈ Φm be arbitrary, and let w be an eigenfunction to
the eigenvalue λε,φ

1 in the sense of Definition 4.3.1. Then it holds that w ∈ H1
0 (Ω)∩H2(Ω)

and w is a strong solution of the system (4.3.1), meaning that

−∆w + bε(φ)w = λε,φ
1 w a.e. in Ω,

w|∂Ω = 0 a.e. on ∂Ω.

Now we formulate the shape optimization problem for the principal eigenvalue. This can
be regarded as a special case of the framework introduced in Section 2.1.7 by choosing
Ψ(λ1) = λ1 there. Hence, we only briefly summarize the main aspects concerning this
optimization problem at this point.
For any prescribed m ∈ (0, 1), we define the set of admissible controls

Φm :=
{
φ ∈ H1

0 (Ω)
∣∣∣∣∣ 0 ≤ φ(x) ≤ 1 for a.e. x ∈ Ω,ffl

Ω φ dx = m

}
⊂ H1

0 (Ω) ∩ L∞(Ω) .
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4.3.2. The phase-field Faber–Krahn theorem

For ε > 0 and φ ∈ Φm, we now introduce the Ginzburg–Landau energy

Eε(φ) :=
ˆ

Ω

ε

2 |∇φ|2 + 1
ε
ψ(φ) dx. (4.3.6)

This term regularizes the optimization problem in order for it to be well-posed. We observe
that the Ginzburg–Landau energy is decreasing with respect to symmetric-decreasing
rearrangement of its argument. This can be interpreted as a phase-field version of the
isoperimetric inequality.

Lemma 4.3.4 (Phase-field isoperimetric inequality). Let ε > 0 be arbitrary. Then, for
all φ ∈ H1

0 (Ω; [0, 1]), we have

Eε(φ∗) ≤ Eε(φ). (4.3.7)

Furthermore we will prove the following phase-field version of the Faber–Krahn inequality
on the diffuse interface level.

Theorem 4.3.5 (Phase-field Faber–Krahn inequality). Let ε > 0 be arbitrary. Then, for
all φ ∈ L∞(Ω; [0, 1]), we have

λε,φ∗

1 ≤ λε,φ
1 .

In order to recover the classical Faber–Krahn inequality in the sharp-interface limit ε → 0,
we consider the following optimization problem:{

Minimize Jε
γ(φ) = λε,φ

1 + γEε(φ)
subject to φ ∈ Φm .

(OPε
γ)

Here, λε,φ
1 denotes the principal eigenvalue corresponding to the function φ as introduced

in Proposition 4.3.2, and γ > 0 is the surface tension. Here, the additional summand
γEε(φ) acts as a regularization term which ensures well-posedness of the optimization
problem and is further used to gain additional information about its minimizers. After
passing to the sharp-interface limit ε → 0, we recover the classical Faber–Krahn inequality
in the framework of BV functions by sending γ → 0, which is possible as we will see later
that the minimizer on the sharp-interface level does not depend on γ.
The existence of a minimizer φ ∈ Φm of the optimization problem (OPε

γ) was established
in Theorem 3.2.8. This means that the following lemma holds.

Lemma 4.3.6. Let ε, γ > 0 be arbitrary. Then, the optimization problem (OPε
γ) possesses

a minimizer φ ∈ Φm.

Now, based on Lemma 4.3.4 and Theorem 4.3.5, the following theorem shows that mini-
mizers of (OPε

γ) are necessarily symmetric-decreasing. The same holds for the positive-
normalized eigenfunction of the corresponding principal eigenvalue.

Theorem 4.3.7 (Phase-field Faber–Krahn theorem). Let ε, γ > 0 be arbitrary, m ∈ (0, 1),
and let φ ∈ Φm be any minimizer of the optimization problem (OPε

γ). Then, φ = φ∗ almost
everywhere in Ω, meaning that φ is symmetric-decreasing, and the positive-normalized
eigenfunction wε,φ

1 to the principal eigenvalue λε,φ
1 also fulfills wε,φ

1 = (wε,φ
1 )∗ almost

everywhere in Ω.
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4.3.3. The sharp-interface limit

Before entering the sharp-interface limit let us mention a nice fact concerning the thickness
of the diffuse interface. The following theorem, which is a direct consequence of the
boundedness of the Ginzburg–Landau energy along a sequence of minimizers for ε → 0,
shows that the thickness of the interface up to an infinitesimally small error is O(ε), which
is a rigorous justification of the formal discussion contained in Section 2.1.4.

Theorem 4.3.8. Let γ > 0 and m ∈ (0, 1) be arbitrary. For any ε > 0, let φε be a
minimizer of the optimization problem (OPε

γ). Then, there is a constant C > 0 such that
for all 0 < δ < 1

2 it holds that

Ld ({δ ≤ φε ≤ 1 − δ}) ≤ Cε

αδγ
with αδ := min

[δ,1−δ]
ψ > 0. (4.3.8)

The proofs of Theorem 4.3.7 and Theorem 4.3.8 are presented in Section 4.4.
Combining the preceding two results, we deduce that every minimizer φε of (OPε

γ) is
symmetric-decreasing and exhibits the expected phase-field structure, i.e., for any 0 <
δ < 1

2 , the width of the annulus on which φε attains values between δ and 1− δ is of order
ε. This behavior is illustrated in Figure 4.2.

Figure 4.2: Schematic sketch of a minimizer φε in radial direction r = |x|.

Now, we investigate the limit ε → 0. Therefore, let us fix a sequence of minimizers (φε)ε>0
of (OPε

γ). We intend to show that this sequence converges to the characteristic function
of the ball centered at the origin with volume m |Ω| and that this ball is a minimizer of
a suitable limit cost functional (see Theorem 4.3.15). To this end, we recall the most
important aspects from Chapter 3 in our setting.
First of all, we recall the limit eigenvalue problem, i.e., the eigenvalue problem corre-
sponding to (4.3.2) on the sharp-interface level. For any given φ ∈ BV (Ω; {±1}), we want
to solve

−∆w = λw in Eφ, (4.3.9a)
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w|∂Eφ = 0 on ∂Eφ, (4.3.9b)

where

Eφ = {x ∈ Ω | φ(x) = 1} .

Note that, in general, Eφ is only a set of finite perimeter and therefore, it merely enjoys a
very weak regularity. However as in Theorem 3.3.2, the following definition turns out to
be the suitable notion of weak solution as it is compatible with the sharp-interface limit
ε → 0 (see Proposition 4.3.12).

Definition 4.3.9. Let

φ ∈ Φ0
m :=

{
φ ∈ BV (Ω; {0, 1})

∣∣ ffl
Ω φ dx = m

}
be arbitrary.

(a) For any given λ ∈ R, a function w ∈ V φ is called a weak solution of the system
(4.3.9) if the weak formulation

ˆ
Ω

∇w · ∇η dx = λ

ˆ
Ω
wη dx (4.3.10)

is satisfied for all test functions η ∈ V φ, where

V φ =
{
η ∈ H1

0 (Ω)
∣∣∣ η = 0 a.e. in Ω\Eφ

}
= H̃1

0 (Eφ),

see Section 2.2.6.

(b) A real number λ0,φ is called an eigenvalue associated with φ, if there exists at least
one non-trivial weak solution w0,φ ∈ H1

0 (Ω) of the eigenvalue problem (4.3.9) written
for λ = λ0,φ.
In this case, w0,φ is called an eigenfunction to the eigenvalue λ0,φ.

We recall the following proposition which is a direct consequence of Theorem 3.3.2.

Proposition 4.3.10. Suppose that φ ∈ Φ0
m with V φ ̸= {0}.

(a) The minimum in

min
{ ´

Ω |∇v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ V φ\{0}
}

=: λ0,φ
1 . (4.3.11)

is attained and any minimizer w ∈ V φ\ {0} is an eigenfunction of the limit problem
(4.3.9) to the eigenvalue λ0,φ

1 in the sense of Definition 4.3.9(b).

(b) λ0,φ
1 > 0 is the smallest eigenvalue of the limit problem (4.3.9) in the sense of Defi-

nition 4.3.9(b).

Remark 4.3.11. Note that in Theorem 3.3.2, we are in the situation that V φ is an
infinite dimensional vector space. In this chapter, we only assume that V φ is non-trivial,
but the above proposition can be established analogously using classical spectral theory,
see Theorem 2.2.8. If V φ = {0}, we set λ0,φ

1 = +∞, which is consistent with the above
proposition.
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Furthermore recall the following continuity result for the principal eigenvalues in the limit
ε → 0 established in Theorem 3.3.5, which will again be crucial for our Γ-limit proof.

Proposition 4.3.12. Let (φε)ε>0 ⊂ L1(Ω; [0, 1]) and suppose that φ ∈ BV (Ω, {0, 1}) with
V φ ̸= {0} such that

lim
ε↘0

∥φε − φ∥L1(Ω) = 0,

Moreover, we demand the additional convergence rate

∥φε − φ∥
L1
(

Eφ∩{φε< 1
2 }
) = O(ε).

Then, there exists an eigenfunction u ∈ V φ of the limit problem (4.3.9) to the eigenvalue
λ0,φ

1 such that

lim
ε↘0

ˆ
Ω
bε(φε)

∣∣wε,φε
1

∣∣2 dx =
ˆ

Ω
b0(φ) |u|2 dx = 0,

as well as

lim
ε↘0

∥wε,φε
1 − u∥H1(Ω) = 0 and lim

ε↘0
λε,φε

1 = λ0,φ
1 .

We point out that in Theorem 3.3.5, the above result was established for any eigenvalue
in the case where V φ is an infinite dimensional vector space. However, as we only consider
the principal eigenvalue, the Rayleigh quotient merely needs to be minimized over the set
V φ\{0} (cf. (4.3.11)). It is thus clear that the proof of Theorem 3.3.5 also works under
the weaker assumption V φ ̸= {0}.
Since λ0,φ

1 = +∞ if V φ = {0}, the following corollary is a direct consequence.

Corollary 4.3.13. Let the assumptions of the previous theorem be fulfilled, but allow for
the case V φ = {0}. Then, it still holds

lim sup
ε↘0

λε,φε
1 ≤ λ0,φ

1 .

Finally, we consider the limit cost functional

J0
γ (φ) :=

λ
0,φ
1 + γc0

(
PΩ(Eφ) +

ˆ
∂Ω
φ|∂Ω dHd−1

)
if φ ∈ Φ0

m,

+ ∞ if φ ∈ L1(Ω)\Φ0
m,

(4.3.12)

where c0 =
´ 1

0
√

2ψ(t) dt and φ|∂Ω ∈ L1(∂Ω) denotes the trace of the BV function φ (see
Section 2.2.4).

Remark 4.3.14. We note that in [135], where the phase-fields are subject to a more
complex inhomogeneous space dependent Dirichlet boundary condition, the corresponding
term in the limit cost functional resulting from the Ginzburg–Laundau energy is written
(transferred to our notation) as

ˆ
Ω

|∇Φ(φ)| dx+
ˆ

∂Ω

∣∣∣Φ(φ|∂Ω)
∣∣∣ dHd−1.
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Here, the function Φ is defined by

Φ(s) :=
ˆ s

0

√
2ψ(t) dt, (4.3.13)

see also (2.2.12) and V (Φ(φ),Ω) =
´

Ω |∇Φ(φ)| dx denotes the variation of Φ(φ) ∈ L1(Ω)
as given in Section 2.2.4. As obviously Φ(φ) = Φ(1)χEφ in BV (Ω, {0, 1}) we obtain

ˆ
Ω

|∇Φ(φ)| dx = c0PΩ(Eφ).

Furthermore, due to the definition of the trace in (2.2.10) and φ ∈ BV (Ω, {0, 1}), we see
that also φ|∂Ω only attains the values 0 and 1. Hence, we have Φ(φ|∂Ω) = Φ(1)φ|∂Ω in
L1(∂Ω), which yields

ˆ
∂Ω

∣∣∣Φ(φ|∂Ω)
∣∣∣ dHd−1 = c0

ˆ
∂Ω
φ|∂Ω dHd−1.

Note that, as we are imposing a homogeneous Dirichlet boundary condition, we do not
need to rely on the very technical construction of a recovery sequence presented in [135]
as we can simply perform a cut-off procedure as in [43]. The idea in [43] is to approxi-
mate any finite perimeter set by truncated sets that are compactly contained within Ω.
For these truncated sets, we then perform a diffuse interface approximation in the spirit
of [126,147]. Using this approach, the need of the additional boundary integral in the limit
cost functional can be clearly seen: In the course of this approximation, the boundaries
of the truncated sets are getting closer and closer to the boundary of Ω. Therefore, the
whole boundary of the limit set has to be perceived by the limit energy. For more details,
we refer to the proof of Theorem 4.3.17 given in Section 4.4.
Nevertheless, we think that the technical construction [135] adapted to our setting of
homogeneous boundary data may be rather illustrative and thus, for the sake of com-
pleteness we additionally include an alternative constructive proof of Theorem 4.3.17 in
Section 4.4

The previous discussion allows us to state the desired theorem which states the conver-
gence of minimizers as ε tends to zero.

Theorem 4.3.15. Let φ0 ∈ Φ0
m be the characteristic function of the ball centered at the

origin with volume m |Ω| and let (φε)ε>0 be a sequence of minimizers of (OPε
γ).

Then

lim
ε↘0

∥φε − φ0∥L1(Ω) = 0, lim
ε↘0

Jε
γ(φε) = J0

γ (φ0),

and φ0 is a minimizer of J0
γ .

As a direct consequence we finally obtain the classical Faber–Krahn theorem in our frame-
work by sending the surface tension parameter γ to zero.

Corollary 4.3.16 (Faber–Krahn theorem for BV functions). Let φ0 ∈ Φ0
m be the char-

acteristic function of the ball centered at the origin with volume m |Ω|. Then, it holds
that

λ0,φ0
1 = min

{
λ0,φ

1

∣∣∣ φ ∈ Φ0
m

}
.
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We point out that this result at first sight extends the classical Faber–Krahn theorem
which merely states that an (open) ball is a minimizer among all open sets of the same
volume. Of course, this result can also be obtained if one takes the classical Faber–
Krahn theorem for granted and then performs the above described regularization of finite
perimeter sets. Furthermore the classical Faber–Krahn theorem is stated without the
constraint of a surrounding design domain, which requires for a more delicate analysis, as
also indicated in the introduction of this thesis. Nevertheless, the purpose of this chapter
is not to generalize the Faber–Krahn theorem but to understand the classical Faber–Krahn
theorem within our approach as the sharp-interface limit of the Faber–Krahn theorem on
the diffuse interface level obtained in Theorem 4.3.7.
In another direction, in [53], it was shown that the Faber–Krahn theorem remains correct
if the minimization problem is formulated for the class of quasi-open sets.
The proof of Theorem 4.3.15 can be found in Section 4.4. In this proof, the key step is to
show that Jε

γ
Γ→ J0

γ as ε → 0, i.e., Jε
γ converges to J0

γ in the sense of Γ-convergence. Our
strategy will be similar as in Section 3.3.2 of the previous Chapter.
The first step is to prove the Γ-convergence for slightly modified functionals F γ

ε where the
corresponding set of admissible phase-fields does not contain a volume constraint. In the
proof, we need to revisit the construction of the recovery sequence in [147] as we allow for
more general potentials ψ. In order to tackle the Dirichlet boundary constraint hidden
in H1

0 (Ω), we apply in the first proof the idea of [43, Theorem 3.1] and in the second the
idea of [135, Lemma 2]. In the first proof, in order to construct a recovery sequence for
any given φ ∈ BV (Ω; {0, 1}), we approximate the corresponding set {φ = 1} by truncated
sets on the sharp-interface level which are compactly contained in Ω. In the second proof
we introduce an additional profile introducing a “smooth” cut-off on the diffuse interface
level in order to guarantee the Dirichlet boundary condition.
The Γ-convergence result is stated by the following theorem.
Theorem 4.3.17. For any ε, γ > 0, let the functions F γ

ε , F
γ
0 : L1(Ω) → R ∪ {+∞} be

defined as

F γ
ε (φ) =

{
λε,φε

1 + γ
´

Ω
ε
2 |∇φ|2 + 1

εψ(φ) dx if φ ∈ H1
0 (Ω; [0, 1]),

+∞ else,

and

F γ
0 (φ) =

λ
0,φ
1 + c0γ

(
PΩ(Eφ) +

´
∂Ω φ|∂Ω dHd−1

)
if φ ∈ BV (Ω; {0, 1}),

+∞ else.

Then F γ
ε

Γ→ F γ
0 .

The second step is to modify the recovery sequence obtained by Theorem 4.3.17, as in
Theorem 3.3.9, via suitable C1-diffeomorphisms such that the modified sequence is actu-
ally a recovery sequence for Jε

γ satisfying the volume constraint included in Φm. This is
done in the following theorem.
Theorem 4.3.18. For any ε, γ > 0, let the functions Jε

γ , J
0
γ : L1(Ω) → R ∪ {+∞} be

defined as

Jε
γ(φ) =

{
λε,φ

1 + γ
´

Ω
ε
2 |∇φ|2 + 1

εψ(φ) dx if φ ∈ Φm,

+∞ else,
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and

J0
γ (φ) =

λ
0,φ
1 + c0γ

(
PΩ(Eφ) +

´
∂Ω φ|∂Ω dHd−1

)
if φ ∈ Φ0

m,

+∞ else.

Then Jε
γ

Γ→ J0
γ .

The proofs of Theorem 4.3.17 and Theorem 4.3.18 are presented in Section 4.4.

Remark 4.3.19. Although for our purposes we have fixed Ω = BR(0) the results pre-
sented in Theorem 4.3.17 and Theorem 4.3.18 hold true for any bounded, open set Ω ⊂ Rd

with Lipschitz boundary, as these proofs do not rely on symmetrization techniques.

4.4. Proofs

We will now present the proofs of above results.

Proof of Theorem 4.3.4. In view of the definition of Eε given in (4.3.6), the assertion
follows directly by using the Pólya–Szegő inequality (Lemma 2.2.12(g)) to estimate the
gradient term, and by applying Lemma 2.2.12(d) to the potential term.

Proof of Theorem 4.3.5. Let φ ∈ H1
0 (Ω; [0, 1]) be arbitrary.

First of all, we derive some general inequalities. Therefore, let w ∈ H1
0 (Ω)\{0} with w ≥ 0

a.e. in Ω be arbitrary. In view of (A3), the coefficient bε is continuous, decreasing and
bε(0) = βε, we infer that the function

Bε : [0, 1] → [0, βε], s 7→ bε(0) − bε(s) (4.4.1)

is continuous and increasing. Hence, according to Lemma 2.2.12(c), we have(
Bε(φ)

)∗ = Bε(φ∗) and
(
w2)∗ =

(
w∗)2

almost everywhere in Ω. Applying Lemma 2.2.12(b) and (e), we thus obtain
ˆ

Ω
bε(φ)w2 dx = bε(0)

ˆ
Ω
w2 dx−

ˆ
Ω
Bε(φ)w2 dx

≥ bε(0)
ˆ

Ω

(
w∗)2 dx−

ˆ
Ω

(
Bε(φ)

)∗ (
w2)∗ dx

= bε(0)
ˆ

Ω

(
w∗)2 dx−

ˆ
Ω
Bε(φ∗)

(
w∗)2 dx

=
ˆ

Ω
bε(φ∗)

(
w∗)2 dx. (4.4.2)

In particular, since φ∗∗ = φ∗, this already entails that
ˆ

Ω
bε(φ∗)w2 dx ≥

ˆ
Ω
bε(φ∗)

(
w∗)2 dx. (4.4.3)
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These general estimates can now be used to prove the assertion λε,φ∗

1 ≤ λε,φ
1 . Therefore,

we define the functional

R : H1
0 (Ω)\{0} → R, w 7→

´
Ω |∇w|2 + bε(φ∗)w2 dx

∥w∥2
L2(Ω)

. (4.4.4)

We now consider the positive-normalized eigenfunction wε,φ∗

1 associated with φ, which
is obviously a minimizer of R. Using (4.4.3) along with the Pólya–Szegő inequality
(Lemma 2.2.12(g)) and Lemma 2.2.12(b), we find that

R
((
wε,φ∗

1
)∗) ≤ R

(
wε,φ∗

1

)
.

Thus,
(
wε,φ∗

1
)∗ is also a minimizer of R and thus, due to Proposition 4.3.2(c), it is an

eigenfunction to the eigenvalue λε,φ∗

1 . As
(
wε,φ∗

1
)∗ is non-negative and L2-normalized, this

is enough to deduce (
wε,φ∗

1
)

=
(
wε,φ∗

1
)∗ a.e. in Ω,

as the eigenspace to λε,φ∗

1 is one-dimensional. On the other hand, the Courant–Fischer
characterization (4.3.3) yields that for any w ∈ H1

0 (Ω)\ {0} with w ≥ 0 a.e. in Ω, we have

λε,φ∗

1 ≤
´

Ω |∇w∗|2 + bε(φ∗) (w∗)2 dx
∥w∗∥2

L2(Ω)
≤

´
Ω |∇w|2 + bε(φ) (w)2 dx

∥w∥2
L2(Ω)

. (4.4.5)

Here, we applied the Pólya–Szegő inequality (Lemma 2.2.12(g)), estimate (4.4.2) and
Lemma 2.2.12(b). Hence, choosing w = wε,φ

1 we use Proposition 4.3.2(c) to conclude

λε,φ∗

1 ≤ λε,φ
1 (4.4.6)

and thus, the proof is complete.

Proof of Theorem 4.3.7. Let φ ∈ Φm be any minimizer of the optimization problem
(OPε

γ). Combining the estimates (4.3.7) and (4.4.6), we deduce that Jε
γ(φ∗) ≤ Jε

γ(φ).Since
φ is a minimizer, this implies that

Jε
γ(φ∗) = Jε

γ(φ). (4.4.7)

This proves that the symmetric-decreasing rearrangement φ∗ is also a minimizer of the
optimization problem (OPε

γ).
Therefore, it remains to prove that the eigenfunction wε,φ

1 and the minimizer φ are
symmetric-decreasing, meaning that φ = φ∗ and wε,φ

1 = (wε,φ
1 )∗ a.e. in Ω.

First of all, using (4.3.7) and (4.4.7), we obtain the estimate

λε,φ
1 = Jε

γ(φ) − γEε(φ) ≤ Jε
γ(φ∗) − γEε(φ∗) = λε,φ∗

1 .

Hence, in combination with (4.4.6), we conclude that

λ := λε,φ
1 = λε,φ∗

1 . (4.4.8)
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As above let w = wε,φ
1 be the positive-normalized eigenfunction corresponding to the

principal eigenvalue λ associated with the minimizer φ. Combining (4.4.5) with (4.4.8)
we arrive at

λε,φ∗

1 =
´

Ω |∇w∗|2 + bε(φ∗) (w∗)2 dx
∥w∗∥2

L2(Ω)
=

´
Ω |∇w|2 + bε(φ) (w)2 dx

∥w∥2
L2(Ω)

= λε,φ
1 . (4.4.9)

Since, according to Proposition 4.3.2(c), the eigenspace to the eigenvalue λ is one-dimensional,
we conclude

w∗ =
(
wε,φ

1
)∗ = wε,φ∗

1 a.e. in Ω. (4.4.10)

Moreover, Proposition 4.3.2(c) further yields w∗ > 0 a.e. in Ω. As w∗ is a symmetric-
decreasing rearrangement, it follows from Lemma 2.2.12(a) that w∗ > 0 actually holds
everywhere in Ω, which will be crucial in the following. Since ∥w∗∥L2(Ω) = ∥w∥L2(Ω) = 1,
(4.4.9) entails that

ˆ
Ω

|∇w|2 + bε(φ)w2 dx =
ˆ

Ω
|∇w∗|2 + bε(φ∗)(w∗)2 dx. (4.4.11)

Invoking (4.4.2), we thus obtain
ˆ

Ω
|∇w|2 dx−

ˆ
Ω

|∇w∗|2 dx =
ˆ

Ω
bε(φ∗)(w∗)2 dx−

ˆ
Ω
bε(φ)w2 dx ≤ 0. (4.4.12)

Hence, we have equality in the Pólya–Szegő inequality (Lemma 2.2.12(g)):
ˆ

Ω
|∇w|2 dx =

ˆ
Ω

|∇w∗|2 dx. (4.4.13)

In order to prove w = w∗ a.e. in Ω, we now intend to show that w∗ is even strictly
symmetric-decreasing. Therefore, we argue by contradiction and assume that this is not
the case. This means that there exists a direction x ∈ Rd with |x| = 1 as well as
0 ≤ s < t ≤ R such that w∗(sx) = w∗(tx) =: c. As the function w∗ is positive in Ω, we
deduce that c > 0. Moreover, since w∗ is non-increasing in radial direction, we infer that
w∗(τx) = c for all τ ∈ [s, t]. Because of spherical symmetry, this already implies

w∗ = c in
{
x ∈ Ω

∣∣ s ≤ |x| ≤ t
}
. (4.4.14)

We further know from Corollary 4.3.3 that w∗ ∈ H2(Ω) is a strong solution of the eigen-
value problem (4.3.1). Hence, we have

0 = ∆w∗ =
(
bε(φ∗) − λ

)
w∗ a.e. in

{
x ∈ Ω

∣∣ s < |x| < t
}
.

As w∗ > 0 in Ω and since bε(φ∗) − λ is non-decreasing and defined everywhere in Ω, we
infer that

bε(φ∗) − λ = 0 in
{
x ∈ Ω

∣∣ s < |x| < t
}
,

bε(φ∗) − λ ≥ 0 in A :=
{
x ∈ Ω

∣∣ s < |x| < R
}
,

which in turn implies

∆w∗ =
(
bε(φ∗) − λ

)
w∗ ≥ 0 a.e. in A. (4.4.15)
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Due to (4.4.14), we have

sup
A
w∗ = c,

since w∗ is symmetric-decreasing. Applying the strong maximum principle for the Laplace
operator (see, e.g., [99, Theorem 8.19] with L = ∆), we infer that

w∗ = c in A.

However, since c > 0, this is a contradiction to the zero-trace condition hidden in w∗ ∈
H1

0 (Ω). We have thus proven that w∗ is strictly symmetric-decreasing.
As a consequence, we have ∇w∗ ̸= 0 almost everywhere in Ω, meaning that

Ld({x ∈ Ω
∣∣∇w∗ = 0

})
= 0.

Recalling that w∗ > 0 in Ω, we use Lemma 2.2.12(g) along with (4.4.13) to conclude

w = w∗ a.e. in Ω,

meaning that w is symmetric-decreasing. Plugging this into (4.4.11) we arrive at
ˆ

Ω
(bε(φ∗) − bε(φ))

(
w∗)2 dx = 0.

Since w∗ > 0 in Ω, we infer

bε(φ∗) = bε(φ) a.e. in Ω.

This directly implies φ = φ∗ a.e. in Ω as bε is strictly decreasing (and thus injective).
This proves that φ is symmetric-decreasing and hence, the proof is complete.

Proof of Theorem 4.3.17. The lim inf inequality of the Ginzburg–Landau part directly
carries over from [135, Lemma 1] as in our case, we only need to consider trivial extensions
of φε, φ instead of the more complicated boundary value function hε discussed there. We
point out that (A1) is sufficient for the proof to work, as only the continuity in [0, 1] and
the non-negativity of the potential ψ is needed to ensure that the function Φ defined in
(4.3.13) is well-defined and differentiable. Note that we actually need to include the factor√

2 in the definition of Φ in order for the Modica–Mortola trick
ˆ

Ω

∣∣∇Φ(φε)
∣∣ dx =

ˆ
Ω

√
2ψ(φε)

∣∣∇φε

∣∣ dx ≤
ˆ

Ω

ε

2
∣∣∇φε

∣∣2 + 1
ε
ψ(φε) dx = Eε(φε)

in the proof of the lim inf inequality to work, see e.g., also [37, Formula (3.61)]. In [135],
the factor 2 is used which is due to the fact that there the gradient term in the energy is
not scaled with 1

2 .
To verify the lim inf inequality for the eigenvalue term, we proceed as in Theorem 3.3.11.
However, we need to be careful with the constraints for the limit cost functional. In
Chapter 3, the additional constraint φ ∈ U was imposed which fixes a non-trivial open set
S1 such that S1 ⊂ {φ = 1}, see also Section 2.1.2. This guaranteed that all the eigenvalues
are finite.
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In our framework, we now additionally need to consider the case λφ
1 = +∞. Therefore we

consider φε → φ in L1(Ω) such that

lim inf
ε↘0

F γ
ε (φε) < +∞.

Applying Fatou’s Lemma to the potential term as in [126, Proposition 1] (which only
requires the continuity of ψ demanded in (A1)), we obtain that φ ∈ BV (Ω; {0, 1}) and,
up to subsequence extraction, that the sequence of eigenvalues (λε,φε)ε>0 is bounded.
Hence, as in Step 3 of the proof of Theorem 3.3.11, the sequence of minimizers (vε)ε>0 of
the problem

min
{ˆ

Ω
|∇v|2 dx+

ˆ
Ω
bε(φε) |v|2 dx

∣∣∣∣ v ∈ H1
0 (Ω),

∥v∥L2(Ω) = 1

}

fulfills

vε ⇀ v in H1
0 (Ω), vε → v in L2(Ω), vε → v a.e. in Ω,

after another subsequence extraction. Now due to the boundedness of the sequence´
Ω bε(φε) |vε|2 dx we proceed as in Step 4 of the proof of Theorem 3.3.5 and use Fa-

tou’s lemma to infer v ∈ V φ. Consequently, V φ is non-trivial and λ0,φ
1 < ∞. This means

that the case λ0,φ
1 = +∞ can only occur if also

lim inf
ε↘0

F γ
ε (φε) = +∞.

Therefore, the lim inf inequality is established as in Theorem 3.3.11.
It remains to prove the lim sup inequality. First of all, as already mentioned in Re-
mark 4.2.1, we want to show that the proof given in [147, Theorem 1] for the smooth
double well potential carries over to general potentials satisfying assumptions (A1) and
(A2). The key step is to consider the ordinary differential equationη′(t) =

√
2ψ(η(t)),

η(0) = 1
2 .

(4.4.16)

As the right hand side is locally Lipschitz away from η(t) = 0 and η(t) = 1, the Picard–
Lindelöf theorem provides the existence of a unique maximal solution η. Moreover, since
the right-hand side is non-negative, we know that η is non-decreasing. Now, depending
on the choice of the potential ψ, the values 0 and/or 1 can either be reached for finite t
or the solution tends to those values asymptotically, meaning that

lim
t→∞

η(t) = 1 and/or lim
t→−∞

η(t) = 0. (4.4.17)

If the solution η satisfies η(t0) = 0 for some t0 < 0 (or η(t1) = 1 for some t1 > 0), it holds
that η(t) = 0 for all t ≤ t0 (or η(t) = 1 for all t ≥ t1). In particular, in any case, the
solution exists for all t ∈ R. These properties follow from classical ODE theory, exploiting
that, due to (A1), the right-hand side of (4.4.16) is strictly positive whenever η(t) ∈ (0, 1).
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As in [147, (1.22)], we construct the profile function ρP
ε : R → [0, 1] by defining

ρP
ε (t) :=



1 for t > 2
√
ε,

1 +
(
1 − η

(
ε− 1

2
)) (

t−2
√

ε√
ε

)
, for

√
ε ≤ t ≤ 2

√
ε,

η
(

t
ε

)
, for |t| ≤

√
ε,

η
(
−ε− 1

2
) (

t+2
√

ε√
ε

)
, for − 2

√
ε ≤ t ≤ −

√
ε,

0, for t < −2
√
ε.

(4.4.18)

The idea behind these profiles is to use the solution of (4.4.16) and possibly linearly
interpolate the values where η is close to 0 or 1. This interpolation is necessary to obtain
a transition from 0 to 1 on a finite interval scaling suitably with ε, even though the
solution of (4.4.16) does possibly not reach these values in finite time.
In case η actually reaches the values 0 and/or 1, the interpolations in the second and
fourth line of this definition become trivial and therefore negligible, provided that ε > 0
is sufficiently small.
In case the values 0 and/or 1 are only reached asymptotically, we still need the following
exponential convergence rates in order for the proof in the spirit of [147] to work out:

• If the value 1 is only reached asymptotically, there exists T1 > 0 as well as constants
C1, a1 > 0 such that

|1 − η(t)| ≤ C1 exp(−a1t) for all t ≥ T1. (4.4.19)

• If the value 0 is only reached asymptotically, there exists T0 > 0 as well as constants
C0, a0 > 0 such that

|η(t)| ≤ C0 exp(−a0t) for all t ≤ −T0. (4.4.20)

We will only prove estimate (4.4.19) since estimate (4.4.20) can be established completely
analogously. Therefore, we assume that η reaches the value 1 only asymptotically, as
otherwise above estimates are trivial. Due to the monotonicity of η, we have η(t) ∈

[1
2 , 1
)

and thus ψ
(
η(t)

)
> 0 for all t ∈ [0,∞). Hence, η is twice continuously differentiable with

η′′(t) = 1
2
√

2ψ(η(t))
2ψ′(η(t))η′(t) = ψ′(η(t)) for all t ∈ [0,∞).

Combining (4.4.17) and (4.4.16), we further deduce

lim
t→∞

η′(t) = 0.

Hence, for any ξ ∈ [0,∞), we have
ˆ ∞

ξ
ψ′(η(t)) dt = −η′(ξ). (4.4.21)

Let us now assume that ψ′(1) ̸= 0. Since ψ : [0, 1] → R possesses a local minimum at 1,
this already entails ψ′(1) < 0. Hence, due to the continuity of ψ′, we have

ψ′(s) < 1
2ψ

′(1) < 0
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for all s ∈ (0, 1) in a suitably small neighborhood around 1. However, this is an obvious
contradiction to the finiteness of the integral in (4.4.21). We thus conclude

ψ′(1) = 0. (4.4.22)

This equality will now be the crucial ingredient in applying the comparison principle for
ODEs. Recalling that ψ ∈ C2([0, 1]), for any s ∈ (0, 1], we consider the Taylor expansion

ψ(s) = ψ(1) + ψ′(1)(s− 1) + 1
2ψ

′′(ξs)(s− 1)2 = 1
2ψ

′′(ξs)(s− 1)2, (4.4.23)

for a ξs between 1 and s. In the light of (4.4.22) and (A2), there exist c, δ > 0 such that∣∣ψ′′(x)
∣∣ ≥ c > 0, for all x ∈ Bδ(1) ∩ [0, 1].

Hence, defining a1 :=
√
c, we obtain√

2ψ(s) ≥ a1(1 − s) (4.4.24)

for all for any s ∈ Bδ(1) ∩ [0, 1]. Due to (4.4.17), there exists t1 ∈ R such that s1 :=
η(t1) ∈ Bδ(1) ∩ (0, 1). We now consider the initial value problem

µ′(t) = a1(1 − µ(t)),
µ(t1) = s1,

(4.4.25)

which possesses the unique global solution

µ : R → R, µ(t) = (s1 − 1) exp(−a1(t− t1)) + 1.

Due to (4.4.24) and the fact that η solves (4.4.25) with the right-hand side being replaced
by
√

2ψ(η(t)), the comparison principle for ODEs implies

η(t) ≥ µ(t) for all t ≥ t1.

Hence, we conclude

|η(t) − 1| = 1 − η(t) ≤ (1 − s1) exp(−a1(t− t1)) for all t ≥ t1, (4.4.26)

which proves (4.4.19) with C̄1 := (1 − s1) exp(a1t1) > 0 and T1 := t1.
Now, the estimates (4.4.19) and (4.4.20) allow us to continue as in [147]. Let us explain
the general strategy first. First of all we need to approximate a general finite perimeter
set by suitable smooth sets, because as in the proof of [147, Theorem 1], one knows that
for any smooth, bounded, open set E ⊂ Rd having finite perimeter and satisfying the
transversality condition

Hn−1(∂E ∩ ∂Ω) = 0,

there exists a recovery sequence (φε)ε>0 ⊂ H1(Ω; [0, 1]) which satisfies
lim sup

ε↘0

ˆ
Ω

ε

2 |∇φε|2 + 1
ε
ψ(φε) dx ≤ c0PerΩ(E),

∥φε − χE∥L1(Ω) = O(ε).
(4.4.27)
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We point out that the above L1-convergence rate can be obtained by following the line of
argument in Step 1 of [147, Theorem 1]. The key fact is that, due to (4.4.19) and (4.4.20),
the profile ρP

ε converges in the interpolation parts exponentially to 0 and 1, respectively.
In the middle part, ρP

ε is scaled with ε such that, using the coarea formula and a change
of variables, we obtain the desired rate.
Obviously, this recovery sequence is not yet admissible as (in general) it does not fulfill
the homogeneous Dirichlet boundary condition hidden in H1

0 (Ω). Following the idea
in [43, Theorem 3.1], we make the following observation: If the finite perimeter set E is
compactly contained in Ω, then (φε)ε>0 ⊂ H1

0 (Ω) is guaranteed provided that ε > 0 is
sufficiently small. This directly follows from the construction of φε via the optimal profile
ρP

ε which vanishes in all points t < −2
√
ε. This means that outside of a small tubular

neighborhood around the boundary of E we indeed have φε = 0.
Therefore, we now approximate any finite perimeter set E ⊂ Ω by smooth, open finite
perimeter sets which are compactly contained in Ω. Although the line of argument is
outlined in the proof of [43, Theorem 3.1], we highlight the key steps in order to present
a comprehensive proof.
Let now φ ∈ BV (Ω; {0, 1}) be arbitrary and E := {φ = 1}. In the following, we use the
notation

EΩ := E ∩ Ω, λ0
1(E) := λ

0,χ
EΩ

1 and F γ
0 (E) := F γ

0 (χEΩ).

In order to construct a recovery sequence in H1
0 (Ω; [0, 1]), we first approximate the finite

perimeter set E by a sequence (Ek)k∈N of bounded, smooth, open sets Ek ⊂ Rd fulfilling

Hn−1(∂Ek ∩ ∂Ω) = 0,
PerΩ(Ek) → PerΩ(E) for k → ∞,

χEΩ
k

→ χE in L1(Ω) for k → ∞,

lim sup
k→∞

λ0
1(Ek) ≤ λ0

1(E).

(4.4.28)

Such a sequence is constructed in the proof of Theorem 3.3.11 relying on ideas of [39,126,
140]. Note that the second and the third property of (4.4.28) mean that

χEΩ
k

→ χE strictly in BV (Ω) (4.4.29)

as k → ∞, see Subsection 2.2.4. Due to the continuity of the trace operator with respect
to strict BV -convergence, see Theorem 2.2.19, we further know

∥∥χEΩ
k

∥∥
L1(∂Ω) → ∥χE∥L1(∂Ω) =

ˆ
∂Ω
φ|∂Ω dHd−1, (4.4.30)

for k → ∞.
Now, the crucial idea of [43, Theorem 3.1] is to perform a further approximation by cutting
off Ek in a tubular neighborhood around the boundary of Ω such that the truncated set
is compactly contained in Ω. As we fix k ∈ N in the following, we omit this index for a
cleaner presentation.
For any δ > 0, the truncated set is defined as Eδ := E ∩Bδ with

Bδ := {x ∈ Ω | dist(x, ∂Ω) > δ} .
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Obviously, Eδ is compactly contained in Ω and it also is a set of finite perimeter. We now
intend to show that 

lim sup
δ→0

F γ
0 (Eδ) ≤ F γ

0 (E),

lim
δ→0

∥∥χEδ − χE

∥∥
L1(Ω) = 0.

(4.4.31)

Then, applying a diagonal sequence argument will yield the desired lim sup inequality, see
below.
The L1 convergence in (4.4.31) is clear by construction. To establish the first line of
(4.4.31), we consider the eigenvalue term and the perimeter term separately.
For the eigenvalue term, we again need to rely on the concept of γ-convergence. First of
all by using the characterization via Mosco convergence, see Theorem 2.2.36, we can show

Bδ
γ→ Ω,

δ → 0. For the condition (M1) we note that for any ϕ ∈ H1
0 (Ω) we find a sequence

(ϕδ)δ>0 ⊂ C∞
0 (Ω) with

ϕδ → ϕ in H1
0 (Ω).

Due to the construction of Bδ and the fact that each ϕδ has compact support in Ω we
know ϕδ ∈ H1

0 (Bδ) (after possibly relabeling the index δ). The condition (M2) is clear as
Bδ ⊂ Ω.
Hence, we infer with Proposition 2.2.37

Eδ = E ∩Bδ
γ→ E ∩ Ω = EΩ.

Note that at this stage we have to be careful not to confuse the notion of eigenvalues, see
also Remark 3.3.3, as continuity with respect to γ-convergence is only formulated for the
notion of eigenvalue defined on the classical Sobolev space, i.e.,

λ1(ω) := min
{ ´

Ω |∇v|2 dx´
Ω |v|2 dx

∣∣∣∣∣ v ∈ H1
0 (ω)\{0}

}
,

with ω ⊂ Ω quasi-open. Recalling Definition 4.3.9, our notion of the limit eigenvalue is
defined as

λ0
1(Ẽ) := min

{ ´
Ω |∇v|2 dx´

Ω |v|2 dx

∣∣∣∣∣ v ∈ H̃1
0 (Ẽ)\{0},

}
,

for any finite perimeter set Ẽ ⊂ Ω. Nevertheless as E ⊂ Rd and Bδ ⊂ Ω are smooth and
open sets we infer from the theorey in Section 2.2.6 that it holds

H̃1
0 (E ∩Bδ) = H1

0 (E ∩Bδ),

and thus in our case λ0
1(Eδ) = λ1(Eδ). Therefore we can apply the γ-continuity of

eigenvalues (3.3.5) and arrive at

lim
δ↘0

λ0
1(Eδ) = λ0

1(E). (4.4.32)
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For the perimeter term, we obtain

PΩ(Eδ) = PΩ(E ∩Bδ) ≤ Hd−1(∂(E ∩Bδ)) (4.4.33)

due to [14, Proposition 3.62], see also Remark 2.2.21. Applying [14, Proposition 2.95], we
deduce that

Hd−1(∂E ∩ ∂Bδ) = Hd−1(∂E ∩
{
dist(·, ∂Ω) = δ

})
= 0.

for almost every δ > 0. Using the simple fact

∂(E ∩Bδ) ⊂ (∂E ∩Bδ) ∪ (∂Bδ ∩ E),

we arrive at

Hd−1(∂(E ∩Bδ)) ≤ Hd−1(∂E ∩Bδ) + Hd−1(E ∩ ∂Bδ)
= PBδ

(E) + Hd−1(E ∩
{
dist(·, ∂Ω) = δ

})
. (4.4.34)

Here, for the equality in the second line, the smoothness of E is crucial. The first summand
in the second line of (4.4.34) side can be expressed as PBδ

(E) = |DχE | (Bδ), where |DχE |
denotes the total variation of the Radon-measure DχE associated with χE ∈ BV (Ω) (see,
e.g., [121, Chapter 12] or Section 2.2.4). From to the σ-additivity of |DχE |, we directly
infer

lim
δ→0

PBδ
(E) = lim

δ→0
|DχE | (Bδ) = |DχE | (Ω) = PΩ(E). (4.4.35)

For the second summand in the second line of (4.4.34), we use the transversality condition
Hd−1(∂E ∩ ∂Ω) = 0 in order to apply [140, Lemma 13.9]. This yields

lim
δ→0

Hd−1(E ∩
{
dist(·, ∂Ω) = δ

})
= Hd−1(E ∩ ∂Ω) =

ˆ
∂Ω
φ|∂Ω dHd−1. (4.4.36)

Noticing that the trace of φδ vanishes on ∂Ω in the sense of Section 2.2.4, we combine
(4.4.33)–(4.4.36) to obtain

lim sup
δ→0

PΩ(Eδ) ≤ PΩ(E). (4.4.37)

Combining (4.4.32) and (4.4.37), we eventually conclude (4.4.31).
Now, we close the proof by means of a final diagonal sequence argument. Therefore, we
reinstate the index k. Note that, without loss of generality, we can assume Eδ

k, which is
compactly contained in Ω, is smooth by performing again the approximation of (4.4.28).
We point out that by performing this approximation of Eδ

k, the approximation sets are
still compactly contained in Ω. This is because the corresponding proof of Theorem 3.3.11
is based on classical convolution with mollifiers and thus, the set Eδ

k is only modified up
to a small tubular neighborhood.
As we now take for granted that the sets Eδ

k are smooth, recalling Remark 4.2.1, it is
shown as in [37, 147] that, depending on the potential ψ, for any k ∈ N there exists
a recovery sequence φk,δ

ε ⊂ H1
0 (Ω; [0, 1]) fulfilling (4.4.27) with E replaced by Eδ

k. The
interested reader can also look at the next proof where we explicitly construct optimal
profiles and perform the necessary computations.
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Using the convergence rate and the upper semi-continuity of eigenvalues provided by
Corollary 4.3.13, we further know for any for fixed k ∈ N and δ > 0,

lim sup
ε↘0

λε,φk,δ
ε

1 ≤ λ1(Eδ
k)

and consequently,

lim sup
ε↘0

F γ
ε (φk,δ

ε ) ≤ F γ
0 (Eδ

k).

Now, according to (4.4.28),(4.4.30) and (4.4.31), for every k ∈ N we can find a sufficiently
small δk > 0 such that

lim sup
k→∞

F γ
0 (Eδk

k ) ≤ F γ
0 (E) and

lim
k→∞

∥∥χ
E

δk
k

− χE

∥∥
L1(Ω) = 0.

This in turn allows us now to choose also εk > 0 small enough such that finally

lim sup
k→∞

F γ
εk

(φk,δk
εk

) ≤ F γ
0 (E) and

lim
k→∞

∥∥φk,δk
εk

− χE

∥∥
L1(Ω) = 0.

Thus, the proof is complete.

Now as already mentioned we want to give an alternative proof of Theorem 4.3.17 which
uses the approach of [135] and does not rely on the cut-off procedure of the previous proof,
but uses a further profile in order to provide a “smooth” cut-off. Together with the proof
of Theorem 3.3.11 this is my personal favorite proof in this thesis.

Alternative proof of Theorem 4.3.17. The first steps of this proof are exactly the
same as in the previous proof and we re-enter the previous proof right before the con-
struction of the optimal profile in (4.4.18). We will construct the profile here in the same
spirit as in the previous proof, taking into account whether the values 0 and 1 are reached
in finite time or not. Thus, for a fixed p ∈ (1

2 , 1) we define the profile

ρP
ε (t) :=



0 for t ≥ 0,
η(−εp−1)(−t

εp ), for − εp ≤ t ≤ 0,
η
(

−t−2εp

ε

)
, for − 3εp ≤ t ≤ −εp,

1 +
(
1 − η

(
εp−1)) (−t−4εp

εp

)
, for − 4εp ≤ t ≤ −3εp,

1, for t ≤ −4εp.

(4.4.38)

Here it will be necessary that in contrast to the construction in (4.4.18) we make the
transition along a region of thickness O(εp) with p > 1

2 . We will see the necessity of this
fudge parameter in Part 3 of the proof, as we need that the intersection of two transversal
interfaces scales with order o(ε). Here we see again, that in the case that η reaches 0 or 1
in finite time the interpolations in the second and fourth line of this definition are trivial
for ε > 0 small enough and therefore negligible. In these interpolation areas, for ε > 0
small enough, the exponential rate (4.4.19) and (4.4.20) of course holds true as in the
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previous proof.

Our goal is to show that for φ ∈ BV (Ω; {0, 1}) we find a recovery sequence (φε)ε>0 ⊂
H1

0 (Ω; [0, 1]) such that

lim sup
ε↘0

F γ
ε (φε) ≤ F γ

0 (φ). (4.4.39)

First of all as in the previous proof we need to approximate the finite perimeter set
E := Eφ = {φ = 1} ⊂ Ω with a sequence of bounded, open, smooth sets Ek ⊂ Rd

fulfilling

Hd−1(∂Ek ∩ ∂Ω) = 0,
PerΩ(Ek) → PerΩ(E) for k → ∞,

χEΩ
k

→ χE in L1(Ω) for k → ∞,

lim sup
k→∞

λ0,φk ≤ λ0,φ,

(4.4.40)

where φk := χEΩ
k

. From the previous proof we additionally recall the trace continuity

∥∥χEΩ
k

∥∥
L1(∂Ω) → ∥χE∥L1(∂Ω) =

ˆ
∂Ω
φ dHd−1, (4.4.41)

for k → ∞.
As the sets Ek enjoy the nice regularity properties mentioned above and recalling Re-
mark 4.2.1, it is shown as in [37, 147] that, depending on the potential ψ, for any k ∈ N
there is a recovery sequence

(
φ̃k

ε

)
ε>0 ⊂ H1(Ω; [0, 1]), constructed via a profile around Γk

analogous to (4.4.38), fulfilling

lim sup
ε↘0

ˆ
Ω

ε

2
∣∣∣∇φ̃k

ε

∣∣∣2 + 1
ε
ψ(φ̃k

ε) dx ≤ c0PerΩ(Ek). (4.4.42)

Note crucially, that these functions are in general not in our admissible set H1
0 (Ω; [0, 1])

but merely in H1(Ω; [0, 1]). These profiles are constructed in the analogous fashion as the
upcoming smooth cut-off ρε for which we will perform all the details.
Now as opposed to the previous proof our goal is to correct the possibly wrong boundary
conditions of φ̃k

ε on the diffuse interface level by multiplication with a “smooth” cut-off
induced directly by the profile ρP

ε . Recall that in the previous proof we have considered
a non-smooth cut-off on the sharp-interface level.
We consider

ρεφ̃
k
ε , where ρε = ρP

ε ◦ d∂Ω,

and where d∂Ω denotes the signed distance with respect to Ω, which is smooth in any
tubular neighborhood of ∂Ω that does not contain the origin, as Ω = BR(0), for more
details concerning the signed distance function we refer to [99, Section 14.6].
On the other hand the signed distance function dΓk

with respect to Ek, where we denote
Γk = Ek, plays a crucial role in the construction of φ̃k

ε in the classical proofs of [37,126,147].
We use the convention that signed distance functions are negative within the set they
are relative to and positive outside the set. Our aim is to derive the sharp upper bound
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including the boundary contact energy ∥χEk
∥L1(∂Ω) for the modified sequence (ρεφ̃

k
ε)ε>0 ⊂

H1
0 (Ω; [0, 1]):

lim sup
ε↘0

ˆ
Ω

ε

2
∣∣∣∇ (

ρεφ̃
k
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k
ε) dx ≤ c0PerΩ(Ek) + c0 ∥χEk

∥L1(∂Ω) . (4.4.43)

Due to the construction in [147, Theorem 1] or [37, Proposition 3.11] we know that φ̃k
ε

takes the values 0 and 1 at least up to a tubular neighborhood {|dΓk
| ≤ 2

√
ε}. But in

analogy to (4.4.38) we can here also take a slightly smaller interface, namely {|dΓk
| ≤ 2εp}

by adapting the profile, which does not change the steps of the proof in [147, Theorem 1].
Furthermore, for ε > 0 small enough, in this neighborhood dΓk

is known to be smooth as
∂Ek is smooth.
Both functions fulfill |∇d| = 1 almost everywhere in Rd, see [89, Theorem 3.14]. Note
that as explained there the weak gradient exists almost everywhere due to Rademacher’s
theorem, as d is globally Lipschitz.
Note that for the H1(Ω) regularity of ρεφ̃

k
ε the fact ρε, φ̃

k
ε ∈ H1(Ω) ∩ L∞(Ω) is crucial

and for the zero trace condition the construction of the optimal profile in (4.4.38) pro-
vides us with the homogeneous Dirichlet boundary condition. Therefore indeed ρεφ̃

k
ε ∈

H1
0 (Ω; [0, 1]) is admissible.

Next, for our purposes we need to introduce a further regularization concerning the sets
Ek. Therefore, for k ∈ N let us define a sequence of sets Eδ

k which is given as

Eδ
k := {dΓk

< δ} ,

where we choose δk
0 > 0 so small that for all δ ∈ (0, δk

0 ) the signed distance function dΓk

is smooth. In other words we simply shift the boundary of Ek in normal direction with
the factor δ > 0. The key advantage of this approximation is, that it guarantees us that
the interfaces ∂Ω and Γδ

k := ∂Eδ
k intersect at an angle which for fixed δ > 0 does not

degenerate. This property which is crucial to Part 3 of our proof will be discussed there.
As we now have passed from Ek to Eδ

k we of course need to justify why the properties
(4.4.40) still hold true if we replace Ek by Eδ

k, and E by Ek there and pass δ → 0. The
boundedness, openness and smoothness are of course not affected as we only shift the
boundary in normal direction. The transversality condition

Hn−1(∂Eδ
k ∩ ∂Ω) = 0, (4.4.44)

is true for almost every δ ∈ (0, δk
0 ), as a direct consequence of a “Sard-like” lemma [14,

Lemma 2.95] using the transversality of Ek and ∂Eδ
k = {dΓk

= δ}.
The convergence in relative perimeter

PerΩ(Eδ
k) → PerΩ(Ek) for δ → 0,

is true for almost every δ ∈ (0, δk
0 ), as a direct consequence of [140, Lemma 13.9] exploiting

the above transversality, due to the relation

PerΩ(Eδ
k) = Hd−1({dΓk

= δ} ∩ Ω),

as the Eδ
k are smooth, see also Remark 2.2.21. The convergence

χEδ
k

→ χEk
in L1(Ω),
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is a direct consequence of the fact Ek ⊂ Eδ
k and [89, Theorem 3.14] which tells us that

Ld(
(
Eδ

k \ Ek

)
) = Ld({0 ≤ dΓk

< δ}) =
ˆ δ

0
Hd−1({dΓk

= t}) dt → 0,

as δ → 0. Note that [89, Theorem 3.14] is stated for the classical distance function, but
this theorem also holds true for the signed distance function as a corollary of the coarea
formula Theorem 2.2.9 due to its Lipschitz continuity of dΓk

and the fact |∇dΓk
| = 1.

Finally, the lim sup inequality of eigenvalues

lim sup
δ↘0

λ0(Eδ
k ∩ Ω) ≤ λ0(Ek ∩ Ω),

is trivial, as by the inclusion Ek ⊂ Eδ
k we have

λ0(Eδ
k ∩ Ω) ≤ λ0(Ek ∩ Ω).

It is now our goal to show that for each δ > 0 and k ∈ N

lim sup
ε↘0

ˆ
Ω

ε

2
∣∣∣∇ (

ρεφ̃
k,δ
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k,δ
ε ) dx ≤ c0PerΩ(Eδ

k) + c0
∥∥χEδ

k

∥∥
L1(∂Ω) and

(4.4.45)∥∥φk,δ
ε − χEδ

k

∥∥
L1(Ω) = O(ε), (4.4.46)

where φk,δ
ε := ρεφ̃

k,δ
ε ∈ H1

0 (Ω; [0, 1]) and the
(
φ̃k,δ

ε

)
ε>0 ∈ H1(Ω; [0, 1]) is the recovery

sequence constructed as in [37, 147] as explained above but now with respect to Eδ
k.

Then we can use the above properties (4.4.40), (4.4.41) and the upper semi-continuity of
eigenvalues given in Corollary 4.3.13 to choose a suitable diagonal sequence such that

lim sup
k→∞

ˆ
Ω

εk

2
∣∣∣∇ (

ρεk
φ̃k,δk

εk

)∣∣∣2 + 1
εk
ψ(ρεk

φ̃k,δk
εk

) dx ≤ c0PerΩ(E) + c0 ∥χE∥L1(∂Ω) ,

lim sup
k→∞

λ
εk,φ

k,δk
εk

1 ≤ λ0,φ
1 and

lim
k→∞

∥∥∥φk,δk
εk

− φ
∥∥∥

L1(Ω)
= 0,

and the proof is done.
In the following, unless mentioned explicitly, we fix a δ ∈ (0, δk

0 )\N where N is a Lebesgue
null set chosen such that all the above properties hold true for δ, recalling the restrictions
on δ induced by (4.4.44). Therefore by abuse of notation we write Ek for Eδ

k and Γk for
Γδ

k.
The distances dΓk

and d∂Ω will help us in the following to separate the relevant transition
parts of Ω into three regions, Region I, Region II, and Region III, see Figure 4.3.
Region I denotes the transition in the bulk, i.e., here we pass from Ek into Ω or vice versa.
This region will provide us with the perimeter term in (4.4.45). Region II is the transition
from Ek to the boundary ∂Ω which enforces a contact energy due to the homogeneous
Dirichlet boundary condition on the phase-field. Thus, this region will provide us with
boundary integral in (4.4.45). Finally in Region III the previous two regions intersect.
Intuitively in this region two interface scaling both with O(εp) meet transversally, recalling
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EΩ
k = Ek ∩ Ω

II

I

III

Figure 4.3: The three relevant regions for energy contributions of the recovery sequence.
The bell-shaped region is the domain Ω. The set Ek is on the left; its boundary Γk within
Ω is indicated by the dashed vertical line.

(4.4.44), thus intuitively this junction region scales with o(ε) as p > 1
2 and thus we will

show that this region does not contribute to the energy.
With these preliminary remarks we can now enter the proof.
Region I: Transition in the bulk. Let us consider those points in Ω which have a sufficiently
large distance from ∂Ω namely those which fulfill d∂Ω(x) ≤ −4εp. This choice is due to
the construction of ρP

ε in (4.4.38) which guarantees that in this part ρε = 1. Thus, we
obtain

ˆ
{d∂Ω≤−4εp}

ε

2
∣∣∣∇ (

ρεφ̃
k
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k
ε) dx =

ˆ
{d∂Ω≤−4εp}

ε

2
∣∣∣∇φ̃k

ε

∣∣∣2 + 1
ε
ψ(φ̃k

ε) dx

≤
ˆ

Ω

ε

2
∣∣∣∇φ̃k

ε

∣∣∣2 + 1
ε
ψ(φ̃k

ε) dx.

Hence (4.4.42) implies

lim sup
ε↘0

ˆ
{d∂Ω≤−4εp}

ε

2
∣∣∣∇ (

ρεφ̃
k
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k
ε) dx ≤ c0PerΩ(Ek).

Region II: Boundary contact energy. Now we consider the part where a transition to the
boundary ∂Ω via ρε takes place but does not intersect with a transition coming from φ̃k

ε .
Speaking in the language of distances we consider the set

{d∂Ω ≥ −4εp} ∩ (Ω \ {|dΓk
| ≤ 2εp}) ⊂ Ω.

Here now φ̃k
ε(x) = 1 or φ̃k

ε(x) = 0 and we compute with the help of [99, Lemma 7.7]
ˆ

{d∂Ω≥−4εp}∩(Ω\{|dΓk |≤2εp})
ε

2
∣∣∣∇ (

ρεφ̃
k
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k
ε) dx

≤
ˆ

{d∂Ω≥−4εp}∩EΩ
k

ε

2 |∇ρε|2 + 1
ε
ψ(ρε) dx,

because {
φ̃k

ε = 1
}

⊂ EΩ
k
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due to the fact that the recovery sequence φ̃k
ε satisfies φ̃k

ε < 1 in Ω \ Ek, see [147, (1.22)]
or [37, (3.66)]. Recalling that ρε = ρP

ε ◦ d∂Ω, it is now our task to prove

lim sup
ε↘0

ˆ
{d∂Ω≥−4εp}∩EΩ

k

ε

2
∣∣∣∇(ρP

ε ◦ d∂Ω)
∣∣∣2 + 1

ε
ψ(ρP

ε ◦ d∂Ω) dx ≤ c0 ∥χEk
∥L1(∂Ω) . (4.4.47)

We will split the integral in (4.4.47) according to the different cases in (4.4.38) and follow
the lines of reasoning of [135] although many steps simplify in our setting as our Dirichlet
boundary on Ω is fixed to be 0. In order to provide a self-contained proof we go through
the steps here. For a cleaner presentation we set d := d∂Ω.
So for the first non-trivial case in (4.4.38) we have the integral
ˆ

{−εp<d<0}
χEΩ

k

ε

2

∣∣∣∣∇(
η
(
−εp−1

) (−d
εp

))∣∣∣∣2 dx+
ˆ

{−εp<d<0}
χEΩ

k

1
ε
ψ

(
η
(
−εp−1

) (−d
εp

))
dx.

(4.4.48)

Using the coarea formula from Theorem 2.2.9 and the fact that |∇d| = 1 almost every-
where, we can estimate the first integral by
ˆ

{−εp<d<0}
χEΩ

k

ε

2

∣∣∣∣∇(
η
(
−εp−1

) (−d
εp

))∣∣∣∣2 dx ≤ 1
2
(η (−εp−1)

εp

)2 ˆ 0

−εp

Hd−1({d = s} ∩ Ek) ds

≤ 1
2
(η (−εp−1)

εp

)2
sup

s∈[−εp,0]

(
Hd−1({d = s} ∩ Ek)

)
→ 0

(4.4.49)

as ε → 0, due to (4.4.20) (recalling p ∈ (1
2 , 1)) and the boundedness of the sup, which

we see as follows. We can use [140, Lemma 13.9] whose assumptions are fulfilled as per
construction in (4.4.40)

Hd−1(∂Ω ∩ ∂Ek) = 0. (4.4.50)

Note that compared to our situation the roles of Ω and E are switched in [140]. Anyways
one obtains

Hd−1 ({d = s} ∩ Ek) → Hd−1({d = 0} ∩ Ek) = Hd−1 (Ek ∩ ∂Ω) =
∥∥χEΩ

k

∥∥
L1(∂Ω) (4.4.51)

as s → 0. The last equality holds, because using (2.2.10) the trace of u := χEΩ
k

∈ BV (Ω)
is given as

u|∂Ω(x) =
{

1 if x ∈ Ek ∩ ∂Ω,
0 if x /∈ Ek ∩ ∂Ω.

Note that this exploits the transversality (4.4.50) in the sense that it suffices to know

u|∂Ω(x) = 0 if x ∈ Ω\Ek, (4.4.52)

in order to to deduce

u|∂Ω(x) = 0 if x ∈ Ω\Ek.
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(4.4.52) is clear from the definition (2.2.10).
The convergence (4.4.51) now tells us that for a suitable neighborhood U(0) ⊂ R around
0 the function

U(0) → R
s 7→ Hd−1({d = s} ∩ Ek),

is continuous at s = 0. Now considering the sup term in (4.4.49) for any ε > 0 there is an
sε ∈ [−εp, 0] such that

Hd−1({d = 0} ∩ Ek) ≤ sup
s∈[−εp,0]

Hd−1({d = s} ∩ Ek) ≤ Hd−1({d = sε} ∩ Ek) + ε,

by definition of the supremum. Combined with above continuity we thus infer that

lim
ε↘0

sup
s∈[−εp,0]

Hn−1({d = s} ∩ Ek) =
∥∥χEΩ

k

∥∥
L1(∂Ω). (4.4.53)

In particular we now know that the sup term in (4.4.49) has to be bounded for ε > 0
small enough.
So let us move on to the potential term in (4.4.48). We see with the coarea formula and
a change of variables
ˆ

{−εp<d<0}
χEΩ

k

1
ε
ψ

(
η
(
−εp−1

) (−d
εp

))
dx = εp−1

ˆ 0

−1

ˆ
{d=sεp}

χEΩ
k
ψ(−η(−εp−1)s) dHd−1 ds.

Taylor and using (A1) yields

ψ(−η(−εp−1)s) = ψ(0) − ψ′(ξε,s)η(−εp−1)s = −ψ′(ξε,s)η(−εp−1)s

for some ξε,s ∈ [0,−η(−εp−1)s] ⊂ [0, 1] with s ∈ [−1, 0]. Again by the exponential decay
of η for t → −∞ in (4.4.20) we infer

εp−1
ˆ 0

−1

ˆ
{d=sεp}

χEΩ
k
ψ(−η(−εp−1)s) dHd−1 ds

≤ C0
(
sup
[0,1]

|ψ′|
)
εp−1 exp(−a0ε

p−1)Hd−1({d = sεp} ∩ Ek) → 0,

for ε → 0.
We note that due to the construction via the linear interpolation the fourth case in (4.4.18)
works completely analogously and hence also vanishes for ε → 0.
So we pass on to the third case in (4.4.38), i.e.,

ˆ
{−3εp<d<−εp}

χEΩ
k

ε

2

∣∣∣∣∇(
η

(−d− 2εp

ε

))∣∣∣∣2 dx

+
ˆ

{−3εp<d<−εp}
χEΩ

k

1
ε
ψ

(
η

(−d− 2εp

ε

))
dx.

For the first term we compute using the ODE (4.4.16)
ˆ

{−3εp<d<−εp}
χEΩ

k

ε

2

∣∣∣∣∇(
η

(−d− 2εp

ε

))∣∣∣∣2 dx = 1
ε

ˆ
{−3εp<d<−εp}

χEΩ
k
ψ

(
η

(−d− 2εp

ε

))
dx.
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Hence, adding this with the above potential term, in the light of (4.4.45) it remains to
show

lim sup
ε↘0

2
ε

ˆ
{−3εp<d<−εp}

χEΩ
k
ψ

(
η

(−d− 2εp

ε

))
dx ≤ c0∥χEΩ

k
∥L1(∂Ω), (4.4.54)

for ε → 0. Applying the coarea formula and a change of variables we obtain the the
left-hand side in (4.4.54) transforms to

2εp−1
ˆ −1

−3

ˆ
{d=sεp}

χEΩ
k
ψ
(
η
(
(−s− 2)εp−1

))
dHd−1 ds

≤
(

sup
−3≤s≤−1

Hd−1 ({d = sεp} ∩ Ek)
)ˆ −1

−3
2εp−1ψ

(
η
(
(−s− 2)εp−1

))
ds.

Due to (4.4.53) we obtain

sup
−3≤s≤−1

Hd−1 ({d = sεp} ∩ Ek) →
∥∥χEΩ

k

∥∥
L1(∂Ω),

as ε → 0.
Using the ODE (4.4.16) and recalling that Φ defined in (4.3.13) is the primitive of

√
2ψ

the remaining factor can be written as
ˆ −1

−3
2εp−1ψ

(
η
(
(−s− 2)εp−1

))
ds = −

ˆ −1

−3

d
dsΦ

(
η
(
(−s− 2)εp−1

))
ds

= Φ
(
η
(
εp−1

))
− Φ

(
η
(
−εp−1

))
→ Φ(1) − Φ(0) = Φ(1)

as ε → 0, recalling (4.4.17). Now c0 = Φ(1) per definition and therefore we get (4.4.54).
Here we see beautifully how the potential dependent coefficient c0 explicitly shows up in
the limit energy.
Putting everything together, this shows (4.4.47).
Region III: Junction. In the following now the additional approximation in Eδ

k, i.e.,
shifting the boundary Γk in normal direction with the factor δ > 0 (see the beginning of
the proof), will play a key role. That is why we will write the δ dependence now again
explicitly and fix a δ > 0 and a k ∈ N in the following.
It remains to consider the part where the transitions ρε and φ̃k,δ

ε both are non-constant,
i.e., we now are in the set

Ωδ
k,ε := {d∂Ω ≥ −4εp} ∩

{∣∣dΓδ
k

∣∣ ≤ 2εp
}

∩ Ω.

As mentioned earlier our goal is to use the “size” of this junction region in order to show
that this part has no contribution to the energy. First of all we notice that there is a
constant Cδ

k > 0 such that for all x ∈ Ωδ
k,ε and ε > 0 in dependence of k small enough

ε

2
∣∣∣∇ (

ρεφ̃
k,δ
ε

)∣∣∣2 ≤ ε

(∣∣∣ρε∇φ̃k,δ
ε

∣∣∣2 +
∣∣∣φ̃k,δ

ε ∇ρε

∣∣∣2) ≤ ε

(∣∣∣∇φ̃k,δ
ε

∣∣∣2 + |∇ρε|2
)

≤ Cδ
k

ε
. (4.4.55)
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This is due to the construction in [37,147] and the computations in Region II which both
crucially depend on the fact that the profiles are constructed via the solution of the ODE
(4.4.16) and that the profiles are scaled at most with order ε−1, as in (4.4.38). What
we mean by that is that as in the calculation of the gradient term in (4.4.49) due to the
chain rule, at most a factor in O(ε−1) shows up in the gradient of an optimal transition.
This exactly corresponds to our formal considerations of the Ginzburg–Landau energy in
Section 2.1.4.
Using (4.4.55) we obtain from the fact that ψ is bounded on [0, 1] by (A1)

ˆ
Ωδ

k,ε

ε

2
∣∣∣∇ (

ρεφ̃
k,δ
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k,δ
ε ) dx ≤ Cδ

k

ε

ˆ
Ωδ

k,ε

1 dx. (4.4.56)

Now our goal is to apply the general coarea formula Theorem 2.2.9 in codimension 2 to
the Lipschitz function

f δ
k : Rd → R2,

x 7→
(
dΓδ

k
(x)

d∂Ω(x)

)
.

This approach is natural as, loosely speaking, the junction of two interface gives rise
to a manifold of codimension 2. Using the notation of Theorem 2.2.9 we denote the
corresponding coarea factor by

Jf δ
k (x) :=

√
detDf δ

k (x)(Df δ
k )T (x),

which is well defined for almost every x ∈ Rd, as the distances are Lipschitz. We notice
that

Df δ
k =

(
(∇dΓ)T

(∇d∂Ω)T

)
∈ R2×d

and thus using ∣∣∇dΓδ
k

∣∣ = |∇d∂Ω| = 1 a.e. ∈ Rd, (4.4.57)

implies

Df δ
k (Df δ

k )T =
(

1 ∇d∂Ω · ∇dΓδ
k

∇d∂Ω · ∇dΓδ
k

1

)
∈ R2×2.

This gives rise to

Jf δ
k =

√
1 − (∇d∂Ω · ∇dΓδ

k
)2. (4.4.58)

In the light of (4.4.56), our aim is to estimate the volume Ld(Ωδ
k,ε). In order to proceed

this way, we show that the δ shift of the boundary of Ek defining the set Eδ
k gives, for

each fixed δ > 0, a uniform lower bound on Jf δ
k in Ωk,ε (with respect to ε → 0).

In other words we will now see that this additional approximation will guarantee that for
any δ > 0 the interfaces Γδ

k and ∂Ω intersect at least at an angle αδ that is bounded away
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from 0, which then will justify the uniform positivity of the corresponding coarea factor
Jf δ

k in Ωδ
k,ε. This non-degeneracy of the angle both interfaces meet with is then crucial

to obtain the appropriate scaling of the junction region.
First of all Sard’s theorem [121, Theorem 13.15] applied to the smooth function dΓk

−
d∂Ω (in a suitably small neighborhood around these boundaries in order to guarantee
smoothness) tells us that for almost every δ ∈ (0, δk

0 ) it holds

∇(dΓk
− d∂Ω) ̸= 0 for all x ∈ Γδ

k ∩ ∂Ω, (4.4.59)

where Γδ
k := {dΓk

= δ} = ∂Eδ
k. Here we used the simple relation

dΓk
− d∂Ω = dΓk

= δ for all x ∈ Γδ
k ∩ ∂Ω.

We denote N a Lebesgue null set such that the relation (4.4.59) holds for any δ ∈
(0, δk

0 )\N . We can repeat this argument to deduce that also for almost every δ ∈ (0, δk
0 )\N

it holds (by possibly adapting the null set N )

∇(dΓk
+ d∂Ω) ̸= 0 for all x ∈ Γδ

k ∩ ∂Ω. (4.4.60)

Thus, for δ ∈ (0, δk
0 )\N , due to the compactness of Γδ

k ∩ ∂Ω ⊂ Rd and noticing that by
construction,

dΓk
= dΓδ

k
+ δ, (4.4.61)

we deduce, the existence of two numbers αδ,1
k , αδ,2

k > 0 such that

αδ,1
k <

∣∣∇dΓδ
k

− ∇d∂Ω
∣∣2 =

∣∣∇dΓδ
k

∣∣2 − 2∇dΓδ
k

· ∇d∂Ω +
∣∣∇d∂Ω

∣∣2 = 2(1 − ∇dΓδ
k

· ∇d∂Ω) and

αδ,2
k <

∣∣∣∇dΓδ
k

+ ∇d∂Ω
∣∣∣2 =

∣∣∇dΓδ
k

∣∣2 + 2∇dΓδ
k

· ∇d∂Ω +
∣∣∇d∂Ω

∣∣2 = 2(1 + ∇dΓδ
k

· ∇d∂Ω),

for all x ∈ Γδ
k ∩ ∂Ω. Thus, we finally infer that for any δ ∈ (0, δk

0 )\N there is an αδ
k > 0

such that √
1 − (∇dΓδ

k
· ∇d∂Ω)2 > 2αδ

k for all x ∈ Γδ
k ∩ ∂Ω. (4.4.62)

Using the smoothness of dΓδ
k

and d∂Ω we see that for ε > 0 small enough it holds in
(4.4.58)

Jf δ
k (x) ≥ αδ

k for all x ∈ Ωδ
k,ε,

as Ωδ
k,ε is the junction region where both distances are small.

In the light of (4.4.56) it is now our goal to show

Ld(Ωδ
k,ε) ≤ cδ

k,ε ε,

as ε → 0, where for each k ∈ N and δ ∈ (0, δk
0 )\N , (cδ

k,ε)ε>0 ⊂ R is a zero sequence. We
will see that we can show an even better result giving us an explicit rate in ε induced by
the thickness of the two interfaces forming the junction.
As mentioned above we apply the coarea formula Theorem 2.2.9 in codimension 2 which
gives us

αδ
kL(Ωδ

k,ε) ≤
ˆ
Rd

χΩδ
k,ε
Jf δ

k dx =
ˆ

(−2εp,2εp)×(0,4εp)
Hd−2

({
f δ

k = s
})

dL2(s). (4.4.63)
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Now we intend to show that the function

H : (−2εp, 2εp) × (0, 4εp) → R

s → Hd−2
({
f δ

k = s
}) (4.4.64)

is bounded for ε > 0 small enough. This then allows us to infer in (4.4.63)

Ld(Ωδ
k,ε) ≤ Cδ

k

1
αδ

k

ε2p, (4.4.65)

with a constant Cδ
k > 0 and 2p > 1, because in the beginning of the proof we have chosen

p ∈ (1
2 , 1).

So lets prove that H is bounded. For s ∈ R2 small we rewrite the level set of f δ
k as{

f δ
k = s

}
=
{
x ∈ Rd

∣∣∣ dΓδ
k
(x) − s1 = 0, d∂Ω − s2 = 0

}
=: Ms.

Let us now consider the situation locally. Therefore we fix x̄ ∈ M0 = Γδ
k ∩∂Ω. Due to the

angle condition (4.4.62) and the Eikonal equality(4.4.57) we know that ∇dΓδ
k
(x̄),∇d∂Ω(x̄) ∈

Rd are linearly independent and therefore we can add n− 2 standard basis vectors in Rd

to obtain a basis in Rd. Thus, without loss of generality we assume that{
e1, . . . , ed−2,∇dΓδ

k
(x̄),∇d∂Ω(x̄)

}
⊂ Rd

forms a basis, where e1, . . . , ed−2 ∈ Rd denote the first (d− 2) standard basis vectors.
Now we define the function

Θ : Rd → Rd,

x 7→ (x1, . . . , xd−2, dΓδ
k
(x), d∂Ω(x))T .

(4.4.66)

This function is smooth around a tubular neighborhood of M0 and per construction
DΘ(x̄) is invertible, because the rows of DΘ(x̄) are eT

1 , . . . , e
T
d−2,∇dΓδ

k
(x̄)T ,∇d∂Ω(x̄)T .

Hence, the inverse function theorem, see e.g., [149, Theorem 17.7.2], provides neighbor-
hoods U ⊂ Rd around x̄ and V ⊂ Rd around Θ(x̄) such that

Θ : U → V

is a bijection and its inverse is a C1-mapping. As M0 ⊂ Rd is compact and x̄ ∈ M0 was
arbitrary, we find a finite covering of such neighborhoods, i.e., there is an N ∈ N and
Ui, Vi ⊂ Rd bounded and open such that

M0 ⊂ ∪N
i=1Ui,

and

Θi : Ui → Vi,

are C1-diffeomorphisms. Now for |s| small enough Ms ⊂ ∪N
i=1Ui, as any sequence of

points xs ∈ Ms possesses a subsequence such that its limit is an element of M0.
Therefore after a classical partition of unity argument, it suffices to consider the situation
on Ms again locally. So denote by U one of the Ui and by V the corresponding image
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under Θi, denoted by Θ for brevity. As up to switching the entries where the distances
appear in (4.4.66), we have

Θ(Ms ∩ U) ⊂ Es ∩ V, (4.4.67)

where

Es :=
{

(x′, s1, s2)
∣∣∣ x′ ∈ Rn−2

}
.

Hence denoting by V ′ := Pd−2(V ) ⊂ Rd−2 the projection of V to its first (d−2) components
we see that defining

Qs,d−2 : V ′ → Es ∩ V,

x′ 7→ (x′, s1, s2),

we have

Θs := Θ−1 ◦Qs,d−2 : V ′ → Θ−1(Es ∩ V )

is a C1-parametrization of Θ−1(Es∩V ). In the light of (4.4.67) obviously Ms∩U ⊂ Θs(V ′).
Thus, the area formula for manifolds [89, 3.3.4 D] yields

Hd−2(Ms ∩ U) ≤ Hd−2(Θs(V ′)) =
ˆ

V ′

√
detGΘs dLd−2,

where GΘs = (DΘs)TDΘs is the metric tensor coming from the parametrization Θs. As
DΘs depends continuously on s via Qs,d−2 and V ′ ⊂ Rn−2 is a bounded open set we have
now proven that H, as defined in (4.4.64), is bounded in s for |s| small enough.
Recalling (4.4.63) we obtain

αδ
kLd(Ωδ

k,ε) ≤
ˆ
Rd

χΩδ
k,ε
Jf δ

k dx =
ˆ

(−2εp,2εp)×(0,4εp)
Hd−2

({
f δ

k = s
})

dL2(s)

≤ 16ε2p sup
s∈(−2εp,2εp)×(0,4εp)

Hd−2
({
f δ

k = s
})

≤ Cδ
kε

2p.

Thus, we have proven (4.4.65).
Hence, in the light of (4.4.56) we have now that for fixed δ > 0 and k ∈ N

lim
ε↘0

ˆ
{d∂Ω≥−4

√
ε}∩
{∣∣dΓδ

k

∣∣≤2εp
} ε2

∣∣∣∇ (
ρεφ̃

k,δ
ε

)∣∣∣2 + 1
ε
ψ(ρεφ̃

k,δ
ε ) = 0,

as 2p > 1. Combining all the three big parts of the proof we performed so far, we arrive
at (4.4.45), because in the parts of Ω not contained in one of the above transition regions
we simply have that ρεφ̃

k,δ
ε is constantly 0 or 1 and thus these do not contribute to the

energy in (4.4.45).
Therefore it only remains to show (4.4.46), because then the proof is finished by a diagonal
sequence argument as explained in the beginning of the proof. We compute

ˆ
Ω

∣∣∣φk,δ
ε − χEδ

k

∣∣∣ dx ≤
ˆ

Ω

∣∣∣ρε

(
φ̃k,δ

ε − χEδ
k

)∣∣∣+ ˆ
Ω

∣∣∣ρεχEδ
k

− χEδ
k

∣∣∣ dx
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≤
ˆ

Ω

∣∣∣φ̃k,δ
ε − χEδ

k

∣∣∣+ ˆ
Ω

|ρε − χΩ| dx.

Now it can be seen completely analogous to the proof of Step 1 of [147, Theorem 1] that
both summands converge with order O(ε) as both are constructed via a profile as in
(4.4.38) which converges exponentially in the interpolating parts and scales with order ε
in between. Here they key steps are analogous to those performed in Region II of our
proof, i.e., using a change of variables combined with the coarea formula results in a term
of order O(ε). This finishes the proof.

Proof of Theorem 4.3.18. We have Φm ⊂ H1
0 (Ω; [0, 1]) and Φ0

m ⊂ BV (Ω; 0, 1) and we
know that the volume constraint is preserved under L1 convergence. Hence, the lim inf
inequality is a direct consequence of Theorem 4.3.17 as now there are less admissible
sequences.
It remains to prove the lim sup inequality, namely that for every φ ∈ Φ0

m there exists a
sequence (φ̃ε)ε>0 ⊂ Φm fulfilling

lim
ε↘0

∥φ̃ε − φ∥L1(Ω) = 0, (4.4.68)

lim sup
ε↘0

Jε
γ(φ̃ε) ≤ J0

γ (φ). (4.4.69)

For any φ ∈ Φ0
m, a recovery sequence (φε)ε>0 ⊂ H1

0 (Ω; [0, 1]) for the functional F γ
ε was

constructed in Theorem 4.3.17. It was shown that this recovery sequence converges in
L1(Ω) and fulfills the lim sup inequality for F γ

ε . Now, our goal is to carefully modify this
recovery sequence such that it preserves these properties but additionally fulfills the mean
value constraint. For this modification, we proceed completely analogously as in the proof
of Theorem 3.3.9.
Let us recall the most important steps. Since φ ∈ Φ0

m, it is non-constant. Hence, we can
find a function ξ ∈ C1

0 (Ω,Rd) such that
ˆ

Ω
φ∇ · ξ dx > 0.

For any s ∈ R, we define the function

Ts : Rd → Rd,

x 7→ x+ sξ(x),

which is a C1-diffeomorphism if s is sufficiently small. By means of the implicit function
theorem, we deduce that for any sufficiently small ε > 0, there exists s(ε) ∈ R such that

φ̃ε := φε ◦ T−1
s(ε) ∈ Φm,

and s(ε) → 0 as ε → 0. In particular, the property φ̃ε ∈ H1
0 (Ω) holds since for x close to

∂Ω, we have Ts(ε)(x) = x due to the fact that ξ has compact support in Ω. Eventually,
we show that the sequence (φ̃ε)ε>0 satisfies the properties (4.4.68) and (4.4.69) and thus,
it is a suitable recovery sequence.
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Proof of Theorem 4.3.8. In the proof of Theorem 4.3.18, for any admissible φ ∈ Φ0
m,

we have constructed a recovery sequence (φ̃ε)ε>0. In particular, this implies that the cost
functional Jε

γ is bounded uniformly in ε along any sequence (φε)ε>0 of minimizers to the
optimization problem (OPε

γ). Consequently, there exists a constant C > 0 independent
of ε and γ such that

ˆ
Ω
ψ(φε) dx ≤ εEε(φε) ≤ ε

γ
Jε

γ(φε) ≤ Cε

γ
, (4.4.70)

for all ε > 0. Recalling that ψ ∈ C2([0, 1]) is non-negative, we thus have(
min

[δ,1−δ]
ψ
)

Ld ({δ ≤ φε ≤ 1 − δ}) ≤
ˆ

{δ≤φε≤1−δ}
ψ(φε) dx

≤
ˆ

Ω
ψ(φε) dx ≤ Cε

γ
, . (4.4.71)

Since ψ > 0 on [δ, 1 − δ] due to (A1), the assertion directly follows.

Proof of Theorem 4.3.15. We apply the compactness of the Ginzburg Landau energy
from Proposition 2.2.25 combined with the convergence of minimizers under Γ-convergence
from Proposition 2.2.24. Consequently, in the light of Theorem 4.3.18 which states that
Jε

γ
Γ→ J0

γ , there exists a function φ0 ∈ BV (Ω, {0, 1}) such that

lim
ε↘0

∥φε − φ0∥L1(Ω) = 0 (4.4.72)

along a non-relabeled subsequence of (φε)ε>0 and φ0 is a minimizer of J0
γ . We further

recall that φε = φ∗
ε according to Theorem 4.3.7. Hence, the non-expansivity of the

rearrangement (see Lemma 2.2.12(f)) yields
ˆ

Ω
|φ0 − φ∗

0| dx ≤
ˆ

Ω
|φ0 − φε| dx+

ˆ
Ω

|φ∗
ε − φ∗

0| dx

≤ 2
ˆ

Ω
|φε − φ0| dx.

Hence, we infer φ0 = φ∗
0 almost everywhere in Ω. As the mean value is preserved under

L1 convergence this is already enough to deduce that φ0 is the characteristic function of
the ball centered at the origin with volume m |Ω|. Obviously the limit φ0 does not depend
on the choice of the subsequence of (φε)ε>0. Hence, the convergence (4.4.72) even holds
for the whole sequence.
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Spectral optimization problems in
linear elasticity
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Chapter 5

Analysis of the diffuse interface
problem

5.1. Introduction

After having mainly focused on the Dirichlet-Laplace problem in the previous two chapters
we will incorporate now more involved state equations into our optimization problem,
namely the equations of linear elasticity, see Section 2.1.11. Therefore we consider the
elliptic system 

−∇ · [C(φ)E(w)] = λφρ(φ)w in Ω,
w = 0 on ΓD,

[C(φ)E(w)] n = 0 on Γ0,

(5.1.1)

with the disjoint splitting ∂Ω = ΓD ∪ Γ0. In order to exclude the case of trivial eigenvalues
we demand ΓD to have strictly positive Hausdorff measure, see Section 2.1.10 for details.
Here, C denotes the elasticity tensor, E(w) is the symmetrized gradient of w, where
w = wφ is an eigenfunction to the eigenvalue λφ, both depending on the phase-field
variable φ : Ω → RN . ρ is the phase-field dependent density function introduced in
Section 2.1.8. Opposed to the previous chapters the eigenfunctions w : Ω → Rd are now
given as vector-valued displacement fields. Furthermore, also the phase-field is vector-
valued meaning that the structure that is to be optimized can now be constructed out of
multiple materials, see Section 2.1.1. Problem (5.1.1) now actually models the physical
example of the airplane wings given in the introduction of this thesis, as the wings can
be understood as an elastic structure freely vibrating except for the part of the boundary
which is attached to the body of the airplane.
In [5, 32, 33, 150] models similar to the one we intend to study are investigated. In these
papers either no density distribution ρ appears or it is assumed to depend only on the
spatial variable x ∈ Ω. This is a simplification meaning that the specific structure (rep-
resented by the phase-field φ) has no influence on the density. However, as the objective
is indeed to optimize the material distribution within the design domain, the optimal
density distribution is a priori not known.
At this point we mention also the recent works [7,8] considering an optimization problem
in the context of elastoplasticity. The authors there provide an analytical treatment of
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existence, first-order conditions and a sharp-interface limit result. As in our model they
allow also for a phase-field dependent density on the right-hand side. However we consider
an eigenvalue problem and thus, we need to carefully compute and analyze the Fréchet-
derivative of eigenvalues and eigenfunctions which is a non-trivial task as the phase-field
enters these quantities in a highly implicit and non-linear way.
Note that in this chapter we are only concerned with the analysis of the diffuse interface
problem and therefore will mostly drop the dependence on the parameter ε > 0.
The goal of this chapter is to fully analyze the state equation (5.1.1) and the optimization
problem associated to minimizing the cost functional

Jε
l (φ) = Ψ(λφ

i1
, . . . , λφ

il
) + γEε

GL(φ), (5.1.2)

where we recall that Ψ : (R>0)l → R is a function penalizing the finite selection of
eigenvalues λφ

i1
, . . . , λφ

il
, see Section 2.1.11. Furthermore we recall the Ginzburg–Landau

energy from Section 2.1.4

Eε
GL(φ) =

ˆ
Ω

ε

2 |∇φ|2 + 1
ε
ψ(φ) dx, (5.1.3)

where ε > 0 is proportional to the thickness of the diffuse interface and ψ is a bulk poten-
tial being of double obstacle type in our analysis. The phase-field φ in our optimization
will be subject to certain physical constraints, such as a volume constraint and a point-
wise constraint prescribing void and material in certain parts of the design domain Ω, see
Section 2.1.3.
After having proven the existence of eigenvalues and eigenfunctions for problem (5.1.1)
we will focus on continuity properties of these spectral quantities that will be particu-
larly useful in order to show well-posedness of above optimization problem. We show
continuity of spectral quantities when the phase-fields weakly converge in H1(Ω;Rd), see
Theorem 5.3.4. Under stronger assumptions on the convergence of the phase-fields we will
even show Lipschitz continuity of eigenvalues, see Lemma 5.3.5.
The largest part of this chapter is then devoted to rigorously prove first-order necessary
optimality conditions. This requires knowledge about the derivative of eigenvalues with
respect to the control variable φ. In order to show the Fréchet-differentiability of simple
eigenvalues and eigenfunctions we rely on the Fredholm alternative and the implicit func-
tion theorem, which is also the classical strategy in order to prove shape differentiability,
see [110, Section 5.7]. A positive side benefit is that the implicit function theorem not
only provides us with the Fréchet-derivative of a simple eigenvalue but also with the dif-
ferentiability of corresponding eigenfunctions and equations that these derivatives satisfy,
see Theorem 5.4.3.
Here the keyword simple eigenvalue is crucial. As we will also discuss in Section 5.4.2 even
in a finite dimensional setting the differentiability of multiple eigenvalues in the classical
sense of Fréchet-derivatives is not possible. Although from a phenomenological point of
view it can be argued that by imperfect symmetries in nature and numerical computations
multiple eigenvalues are unlikely to occur, see also the discussion in Section 5.4.2, it is ob-
served that in shape optimization problems often multiple eigenvalues occur at an optimal
shape, see [15,39,134]. In order to circumvent the strong requirement of classical Fréchet
differentiability it is natural to consider only directional derivatives and thus obtain also
multiple sensitivities of multiple eigenvalues, see [85, 104] and [108, Section 2.5.3]. Nu-
merically we already have seen in Section 3.4 the application of the strategy of [15,134] in
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order to deal with multiple eigenvalues. Here, if two eigenvalues meet each other along the
optimization process, the cost functional is modified in order to contain not only one of
these eigenvalues but the arithmetic mean of both. This has the advantage that now also
two eigenfunctions are contained in the derivative of the cost functional thus preventing
oscillatory behavior due to a random selection of associated eigenfunctions. In particular,
using this strategy the first-order conditions derived via the classical Fréchet-derivative in
this chapter and in Chapter 3 are applicable in our simulations.
Nevertheless, in Section 5.4.2 we will discuss the concept of semi-differentiability of [141]
applied to our setting in more detail, which will allow us to tackle the issue of non-
differentiability if the principal eigenvalue is multiple.
In this context we also want to further discuss the work [141]. The authors there analyze
a general eigenvalue problem of the form

a
(
φ;w(φ),η

)
= λφb

(
φ;w(φ),η

)
, η ∈ H. (5.1.4)

Here H is a Hilbert space, η ∈ H a test function and w(φ) an eigenfunction with corre-
sponding eigenvalue λφ. In their analysis the bi-linear forms a and b possess the repre-
sentation

a(φ;w,η) =
(
A(φ)w(φ),η

)
H
, b(φ;w,η) =

(
B(φ)w(φ),η

)
H
, (5.1.5)

where A and B are linear, continuous operators, B is compact, and (·, ·)H denotes the
inner product on H.
In [141], for this abstract setting, the authors prove continuity and (semi-)differentiability
of λφ and w(φ) with respect to φ using an approach involving inverse operators. How-
ever, optimization problems are not addressed in [141]. Our approach for continuity and
differentiability of spectral quantities is specifically tailored to the optimization problems
we intend to study, thus we prove continuity results not only for strongly but also weakly
converging sequences of phase-fields that appear naturally in the application of the direct
method in the calculus of variation.
So summing up this introduction the current chapter contains the existence analysis for the
state equation (5.1.1), a rigorous treatment of continuity and differentiability of spectral
quantities, well-posedness of the optimization problem associated to (5.1.2), first-order
necessary optimality conditions and eventually also a further optimization problem where
we combine the classical compliance problem with eigenvalue optimization.

5.2. Analysis of the state equation

Definition 5.2.1 (Definition of eigenvalues and eigenfunctions). Let φ ∈ L∞(Ω;RN ) be
arbitrary. Then λφ is called an eigenvalue of the state equation (2.1.27) if there exists
a non-trivial weak solution wφ to the system (2.1.27), i.e., 0 ̸= wφ ∈ H1

D(Ω;Rd) and it
holds that

⟨E (wφ) , E (η)⟩C(φ) = λφ(wφ,η
)

ρ(φ) for all η ∈ H1
D(Ω,Rd). (5.2.1)

In this case, the function wφ is called an eigenfunction to the eigenvalue λφ.

The assumptions of the previous section allow us to prove two classical functional analytic
results in our setting.
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Theorem 5.2.2 (Existence and properties of eigenvalues and eigenfunctions).
Let φ ∈ L∞(Ω;RN ) be arbitrary.

(a) There exists a sequence (
wφ

k , λ
φ
k

)
k∈N ⊂ H1

D(Ω;Rd) × R

possessing the following properties:

• For all k ∈ N, wφ
k is an eigenfunction to the eigenvalue λφ

k in the sense of
Definition 5.2.1.

• The eigenvalues λφ
k (which are repeated according to their multiplicity) can be

ordered in the following way:

0 < λφ
1 ≤ λφ

2 ≤ λφ
3 ≤ · · · .

Moreover, it holds that λφ
k → ∞ as k → ∞, and there exist no further eigenval-

ues of the state equation (5.2.1).
• The eigenfunctions {wφ

1 ,w
φ
2 , . . . } ⊂ H1

D(Ω;Rd) form an L2
φ(Ω;Rd)-orthonormal

basis of the space L2
φ(Ω;Rd).

(b) For k ∈ N we have the Courant–Fischer characterization

λφ
k = max

V ∈Sk−1
min

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),
u ̸= 0

 .
Here, Sk−1 denotes the collection of all (k− 1)-dimensional subspaces of H1

D(Ω;Rd).
The set V ⊥,L2

φ(Ω;Rd) denotes the orthogonal complement of V ⊂ L2(Ω;Rd) with respect
to the scalar product on L2

φ(Ω;Rd).
Moreover, the maximum is attained at the subspace

V = ⟨wφ
1 , . . . ,w

φ
k−1⟩span.

Proof. Using the Lax–Milgram theorem and the fact that Hd−1 (ΓD) > 0, we conclude
that for any f ∈ L2(Ω;Rd), there exists a unique function vf ∈ H1

D(Ω;Rd) solving the
equation

⟨E (vf ) , E (η)⟩C(φ) =
ˆ

Ω
ρ(φ)f · η dx for all η ∈ H1

D(Ω,Rd).

This allows us to define a solution operator

T : L2(Ω;Rd) → H1
D(Ω;Rd) ⊂ L2(Ω;Rd), f 7→ vf .

Since H1
D(Ω;Rd) is compactly embedded in L2(Ω;Rd), we can easily show that T is a

compact, self-adjoint, and bounded linear operator. Thus, the assertions in (a) directly
follow from the spectral theorem for compact self-adjoint operators, see Theorem 2.2.8.
To prove (b), we first infer from (5.2.1) that the sequence(

wφ
k√
λk

)
k∈N

⊂ H1
D(Ω;Rd),
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forms an orthonormal basis of H1
D(Ω;Rd) when taking the inner product (2.1.28). For

any v ∈ H1
D(Ω;Rd), this yields the representation

v =
∞∑

i=1

(
v,wφ

i

)
ρ(φ) wφ

i ,

where the series on the right-hand side converges in H1
D(Ω;Rd). In the following, we will

sometimes omit the exponent φ for a more convenient depiction.
To establish the Courant–Fischer characterization we now fix an arbitrary subspace V ∈
Sk−1. Let us denote the orthogonal projection from L2

φ(Ω;Rd) to V with respect to the
scalar product on L2

φ(Ω;Rd) by

Pφ : L2
φ(Ω;Rd) → V ⊂ L2

φ(Ω;Rd).

Since V is a (k − 1)-dimensional subspace, the family

{Pφ(w1), . . . , Pφ(wk)} ⊂ V,

must be linearly dependent. Hence, for every i ∈ {1, . . . , k}, we find coefficients αi ∈ R
that are not all equal to zero such that

Pφ

(
k∑

i=1
αiwi

)
=

k∑
i=1

αiPφ(wi) = 0.

Per construction of the orthogonal projection this is equivalent to

v :=
k∑

i=1
αiwi ∈ V ⊥,L2

φ(Ω;Rd) ∩H1
D(Ω;Rd).

As not all of the coefficients vanish, and since the eigenfunctions {w1, . . . ,wk} are linearly
independent, we know that v ̸= 0. Using the orthogonality of eigenfunctions and the fact,
that the sequence of eigenvalues increases, we conclude that

inf

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),
u ̸= 0


≤

⟨E (v) , E (v)⟩C(φ)

∥v∥2
L2

φ(Ω;Rd)
=
∑k

i=1 α
2
iλi∑k

i=1 α
2
i

≤ λk.

(5.2.2)

As the infimum in (5.2.2) obviously exists, we can find a minimizing sequence

(ul)l∈N ⊂
{
V ⊥,L2

φ(Ω;Rd) ∩H1
D(Ω;Rd)

}
\{0},

such that

lim
l→∞

⟨E (ul) , E (ul)⟩C(φ)

∥ul∥2
L2

φ(Ω;Rd)
= inf

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),
u ̸= 0

 .
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Now, recalling that the inner product ⟨E (·) , E (·)⟩C(φ) induces a norm on H1
D(Ω;Rd), this

implies that the sequence

(ũl)l∈N :=
(

ul

∥ul∥L2
φ(Ω;Rd)

)
l∈N

,

is bounded in H1
D(Ω;Rd). Hence, due to the Banach–Alaoglu theorem and the compact

embedding H1
D(Ω;Rd) ⊂ L2(Ω;Rd), there exists a function ũ ∈ H1

D(Ω;Rd) such that
ũl ⇀ ũ in H1

D(Ω;Rd), and ũl → ũ in L2
φ(Ω;Rd),

along a non-relabeled subsequence. In particular, since all members of the sequence (ũl)l∈N
are normalized with respect to the L2

φ(Ω;Rd)-norm, it follows that ũ ̸= 0.

Furthermore, V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd) is a convex and closed subset of H1
D(Ω;Rd). Hence,

it is also weakly (sequentially) closed and we thus know that

ũ ∈
{
V ⊥,L2

φ(Ω;Rd) ∩H1
D(Ω;Rd)

}
\{0}.

Using the fact that norms are always weakly lower semi-continuous we infer that ũ is a
minimizer of the expression in (5.2.2) via the direct method in the calculus of variations.
Since this holds for any arbitrary (k − 1)-dimensional subspace V ⊂ H1

D(Ω;Rd), we con-
clude that

sup
V ∈Sk−1

min

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),
u ̸= 0

 ≤ λk.

We now select a special (k − 1)-dimensional subspace defined by
V := ⟨w1, . . .wk−1⟩span ⊂ H1

D(Ω;Rd).
Then the definition of the orthogonal complement yields

V ⊥,L2
φ(Ω;Rd) = ⟨wk,wk+1, . . . ⟩span ⊂ L2

φ(Ω;Rd).

Hence, any v ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd) can be represented as

v =
∞∑

i=k

(v,wi)ρ(φ) wi,

where the series converges in H1
D(Ω;Rd). Consequently, we obtain

⟨E (v) , E (v)⟩C(φ) =
∞∑

i=k

(v,wi)2
ρ(φ) λi ≥ λk ∥v∥2

L2
φ(Ω;Rd) ,

because of the identity
∞∑

i=k

(v,wi)2
ρ(φ) = ∥v∥2

L2
φ(Ω;Rd) .

Altogether, we conclude that

sup
V ⊂Sk−1

dim(V )=k−1

min

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ V ⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),
u ̸= 0

 = λk.

This means that the maximum is attained at the subspace V = ⟨w1, . . .wk−1⟩span at
0 ̸= wk ∈ V ⊥,L2

φ(Ω;Rd) ∩H1
D(Ω;Rd), which proves the claim.



5.3. CONTINUITY OF EIGENVALUES AND EIGENFUNCTIONS 163

5.3. Continuity of eigenvalues and eigenfunctions

5.3.1. Weak sequential continuity of eigenvalues

First of all we only consider the first eigenvalue λ1 to establish continuity results with
respect to the phase-field φ. Afterwards, we proceed inductively to obtain these results
also for all the other eigenvalues.
We consider the mapping

λ1 : H1(Ω;RN ) ∩ L∞(Ω;RN ) → R>0, φ 7→ λφ
1

associated with the first eigenvalue.
The first continuity result for the eigenvalue λ1 is obtained by proving lower and upper
semi-continuity. Lower semi-continuity is established by the following lemma.

Lemma 5.3.1. Let (φk)k∈N ⊂ H1(Ω;RN )∩L∞(Ω;RN ) be a bounded sequence with respect
to the L∞(Ω;RN )-norm satisfying

φk ⇀ φ in H1(Ω;RN ) as k → ∞.

Then it holds that

λφ
1 ≤ lim inf

k→∞
λ

φk
1 ,

along a non-relabeled subsequence.

Proof. We first notice that the assumptions of Lemma 5.3.1 imply that φ ∈ L∞(Ω;RN ).
Let {w1,w2, . . . } ⊂ L2

φ(Ω;Rd) denote an orthonormal basis of eigenfunctions correspond-
ing to the sequence of eigenvalues

(
λφ

i

)
i∈N from Theorem 5.2.2.

Now, for any k ∈ N, we choose an arbitrary L2
φk

(Ω;Rd)-normalized eigenfunction uk that
fulfills (5.2.1) for λφk

1 . This choice is not necessarily unique up to multiplication with ±1,
as we do not assume simplicity of λφk

1 or λφ
1 yet.

Using the Courant–Fischer representation from Theorem 5.2.2(b) for the first eigenvalue
and the continuity of C and ρ, we see that the sequence (uk)k∈N ⊂ H1

D(Ω;Rd) is bounded.
By the Banach–Alaoglu theorem and the compact embedding H1

D(Ω;Rd) ⊂ L2(Ω;Rd), we
infer the existence of a function u ∈ H1

D(Ω;Rd) with

uk ⇀ u in H1
D(Ω;Rd), and uk → u in L2

φ(Ω;Rd), (5.3.1)

as k → ∞, up to a subsequence. With the help of Lebesgue’s theorem and the assumptions
on the sequence φk, this yields(

uk,uk)
ρ(φk) →

(
u,u

)
ρ(φ),

as k → ∞ after another subsequence extraction. This implies ∥u∥L2
φ(Ω;Rd) = 1 since the

members uk were chosen as L2
φk

(Ω;Rd)-normalized eigenfunctions. In particular, this
implies that

1 =
∞∑

i=1
(u,wi)2

ρ(φ) . (5.3.2)
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Plugging u into the continuous bi-linear form ⟨E (·) , E (·)⟩C(φ) on H1
D(Ω;Rd), and invoking

the increasing order of the sequence
(
λφ

i

)
i∈N, we conclude that

⟨E (u) , E (u)⟩C(φ) =
∞∑

i=1
(u,wi)2

ρ(φ) λ
φ
i ≥ λφ

1 .

If we can now show that

lim inf
k→∞

λ
φk
1 ≥ ⟨E (u) , E (u)⟩C(φ) , (5.3.3)

the proof would be complete. Using the convergence results we have just established, the
Cauchy–Schwarz inequality and the weak formulation (5.2.1), we infer that

lim inf
k→∞

λ
φk
1 =

(
lim inf
k→∞

λ
φk
1

)(
lim

k→∞

∥∥∥uk
∥∥∥

L2
φk

(Ω;Rd)

)(
lim

k→∞
∥u∥L2

φk
(Ω;Rd)

)

= lim inf
k→∞

[
λ

φk
1 ∥uk∥L2

φk
(Ω;Rd) ∥u∥L2

φk
(Ω;Rd)

]
≥ lim inf

k→∞

[
λ

φk
1
(
uk,u

)
ρ(φk)

]
= lim inf

k→∞

〈
E
(
uk), E(u)〉C(φk).

We further know that〈
E
(
uk), E (u)

〉
C(φk) −

〈
E
(
u
)
, E
(
u
)〉

C(φ)

=
[〈

E
(
uk), E (u)

〉
C(φk) −

〈
E
(
uk), E(u)〉C(φ)

]
+
[〈

E
(
uk), E(u)〉C(φ) −

〈
E
(
u
)
, E
(
u
)〉

C(φ)

]
.

Using Lebesgue’s convergence theorem, the boundedness of (uk)k∈N, the local Lipschitz
continuity of C and the assumptions on (φk)k∈N, we conclude that the first summand
converges to zero along a non-relabeled subsequence. The second summand converges to
zero as a direct consequence of (5.3.1).
In summary, we obtain that

lim inf
k→∞

λ
φk
1 ≥ lim inf

k→∞

〈
E
(
uk), E(u)〉C(φk) =

〈
E
(
u
)
, E
(
u
)〉

C(φ) ≥ λφ
1 .

which completes the proof.

Now, we establish the corresponding result for weak upper semi-continuity.

Lemma 5.3.2. Let (φk)k∈N ⊂ H1(Ω;RN )∩L∞(Ω;RN ) be a bounded sequence with respect
to the L∞(Ω;RN )-norm satisfying

φk ⇀ φ in H1(Ω;RN ) as k → ∞.

Then it holds that

λφ
1 ≥ lim sup

k→∞
λ

φk
1 ,

along a non-relabeled subsequence.
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Proof. As C and ρ satisfy suitable continuity properties we can proceed as in [108, The-
orem 8.1.3] and use once more the Courant–Fischer representation for the first eigenvalue
to prove the claim.

Combining both lemmata we can conclude that λ1 is weakly sequentially continuous.

Corollary 5.3.3. Let (φk)k∈N ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) be a bounded sequence with
respect to the L∞(Ω;RN )-norm satisfying

φk ⇀ φ in H1(Ω;RN ) as k → ∞,

and let (uk)k∈N ⊂ H1
D(Ω;Rd) be a sequence of L2

φk
(Ω;Rd)-normalized eigenfunctions to

the eigenvalues (λφk
1 )k∈N, i.e., uk satisfies (5.2.1) written for λφk

1 for every k ∈ N.
Then it holds that

λ
φk
1 → λφ

1 , as k → ∞, (5.3.4)

i.e., the whole sequence of eigenvalues converges and not just a subsequence.
Furthermore, there exists a L2

φ(Ω;Rd)-normalized eigenfunction u ∈ H1
D(Ω;Rd) to the

eigenvalue λφ
1 such that

uk ⇀ u in H1
D(Ω;Rd), and uk → u in L2

φ(Ω;Rd),

as k → ∞, along a non-relabeled subsequence.

Proof. The convergence λφk
1 → λφ

1 as k → ∞ follows from Lemma 5.3.1 and Lemma 5.3.2
after extraction of a subsequence. Moreover, as the limit λφ

1 does not depend on the
choice of the subsequence, we conclude by a standard contradiction argument that the
convergence remains true for the whole sequence.
The convergence properties of (uk)k∈N ⊂ H1

D(Ω;Rd) and the fact that the weak limit
u ∈ H1

D(Ω;Rd) is L2
φ(Ω;Rd)-normalized have already been established in (5.3.1). Hence,

it remains to show that u ∈ H1
D(Ω;Rd) is an eigenfunction corresponding to the eigenvalue

λφ
1 . By construction, we know that for any k ∈ N,〈

E
(
uk), E(η)〉C(φk) = λ

φk
1
(
uk,η

)
ρ(φk), (5.3.5)

for all test functions η ∈ H1
D(Ω;Rd). Using the convergence of eigenvalues (5.3.4) and

proceeding as in the proof of Lemma 5.3.1, we infer that for any any η ∈ H1
D(Ω;Rd),〈

E
(
uk), E(η)〉C(φk) → ⟨E (u) , E (η)⟩C(φ) ,(

uk,η
)

ρ(φk) →
(
u,η

)
ρ(φ),

as k → ∞, after extraction of a subsequence. Hence, we can pass to the limit in equation
(5.3.5) to obtain

⟨E (u) , E (η)⟩C(φ) = λφ
1
(
u,η

)
ρ(φ),

which proves that u ∈ H1
D(Ω;Rd) is indeed an eigenfunction corresponding to λφ

1 .
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Corollary 5.3.3 now serves as initial case for the following inductive proof which yields
convergence of all eigenvalues.

Theorem 5.3.4 (Continuity properties for the eigenvalues and their eigenfunctions). Let
j ∈ N be arbitrary and let (φk)k∈N ⊂ H1(Ω;RN ) ∩L∞(Ω;RN ) be a bounded sequence with
respect to the L∞(Ω;RN )-norm satisfying

φk ⇀ φ in H1(Ω;RN ) as k → ∞.

Moreover, let (uk
j )k∈N ⊂ H1

D(Ω;Rd) be a sequence of L2
φk

(Ω;Rd)-normalized eigenfunc-
tions to the eigenvalues (λφk

j )k∈N, i.e., uk
j satisfies (5.2.1) written for λφk

j for every k ∈ N.
Then it holds that

λ
φk
j → λφ

j , as k → ∞,

for the whole sequence of eigenvalues and not just a subsequence.
Furthermore, there exists a L2

φ(Ω;Rd)-normalized eigenfunction uj ∈ H1
D(Ω;Rd) to the

eigenvalue λφ
j such that

uk
j ⇀ uj in H1

D(Ω;Rd), and uk
j → uj in L2

φ(Ω;Rd)

as k → ∞ along a non-relabeled subsequence.

Proof. As mentioned before we proceed by induction. The initial step has already been
established in Corollary 5.3.3.
Now, we assume that the statement is already verified for the index (j − 1) ∈ N. Our
task is to prove that the assertion is true for the j-th eigenvectors and the associated
eigenfunctions. In this regard, the Courant–Fischer representation of Theorem 5.2.2(b)
will be a helpful tool.
For k ∈ N, we fix the (j−1)-dimensional subspace of H1

D(Ω;Rd) that realizes the maximum
in the Courant–Fischer representation discussed in Theorem 5.2.2(b), namely

Vk := ⟨wφk
1 , . . . ,w

φk
j−1⟩span.

Analogously, we define

V := ⟨wφ
1 , . . . ,w

φ
j−1⟩span.

Then by the induction hypothesis we know that for every i = 1, . . . , j − 1, there exists a
L2

φ(Ω;Rd)-normalized eigenfunction ui ∈ H1
D(Ω;Rd) to the eigenvalue λφ

i such that

w
φk
i ⇀ ui in H1

D(Ω;Rd), and w
φk
i → ui in L2

φ(Ω;Rd), (5.3.6)

as k → ∞ along a non-relabeled subsequence. As
{
w

φk
1 ,w

φk
2 , . . .

}
⊂ L2

φk
(Ω;Rd) form an

orthonormal basis we infer that

(um,ul)ρ(φ) = 0, (5.3.7)

for m ̸= l, using the convergence properties of the sequence (φk)k∈N along with Lebesgue’s
convergence theorem. In particular, the family {u1, . . . ,uj−1} ⊂ L2

φ(Ω;Rd) is linearly
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independent, which yields that all eigenfunctions to eigenvalues strictly smaller than λφ
j

are contained in its span W := ⟨u1, . . . ,uj−1⟩span. Hence, we conclude that

min

 ⟨E (u) , E (u)⟩C(φ)

∥u∥2
L2

φ(Ω;Rd)

∣∣∣∣∣∣u ∈ W⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd),u ̸= 0

 ≥ λφ
j . (5.3.8)

As the minimum is attained, we infer that we find a non-trivial function v ∈ H1
D(Ω;Rd)

with

(v,ui)ρ(φ) = 0, (5.3.9)

for all i = 1, . . . , j − 1 such that

⟨E (v) , E (v)⟩C(φ)

∥v∥2
L2

φ(Ω;Rd)
= λφ

j . (5.3.10)

Otherwise the inequality in (5.3.8) would be strict, which would be a contradiction to
Theorem 5.2.2. This means we have shown the existence of a function

v ∈ W⊥,L2
φ(Ω;Rd) ∩H1

D(Ω;Rd) with v ̸= 0, (5.3.11)

fulfilling (5.3.10).
Let now the sequence (vk)k∈N be defined by

vk := v −
j−1∑
i=1

(
v,w

φk
i

)
ρ(φk) w

φk
i . (5.3.12)

for all k ∈ N. By this construction, we immediately observe that

vk ∈ V
⊥,L2

φk
(Ω;Rd)

k ∩H1
D(Ω;Rd).

We now intend to show that the convergences

⟨E (vk) , E (vk)⟩C(φk) → ⟨E (v) , E (v)⟩C(φ) , (5.3.13)
∥vk∥L2

φk
(Ω;Rd) → ∥v∥L2

φ(Ω;Rd) , (5.3.14)

as k → ∞, hold along a non-relabeled subsequence.
To verify (5.3.13), we consider the decomposition

⟨E (vk) , E (vk)⟩C(φk)

= ⟨E (v) , E (v)⟩C(φk) − 2
〈

E (v) , E

j−1∑
i=1

(
v,w

φk
i

)
ρ(φk) w

φk
i

〉
C(φk)

+
〈

E

j−1∑
i=1

(
v,w

φk
i

)
ρ(φk) w

φk
i

 , E
 j−1∑

m=1
(v,wφk

m )ρ(φk) wφk
m

〉
C(φk)

.

(5.3.15)

For the first product on the right-hand side, we directly obtain the convergence

⟨E (v) , E (v)⟩C(φk) → ⟨E (v) , E (v)⟩C(φ) , as k → ∞,
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along a suitable subsequence. As the functions w
φk
i are L2

φk
(Ω;Rd)-normalized eigen-

functions, we obtain from (5.2.1) the following representation of the third product on the
right-hand side of (5.3.15):〈

E

j−1∑
i=1

(
v,w

φk
i

)
ρ(φk) w

φk
i

 , E
 j−1∑

m=1
(v,wφk

m )ρ(φk) wφk
m

〉
C(φk)

=
j−1∑
i=1

(
v,w

φk
i

)2
ρ(φk) λ

φk
i .

As the sum takes only the indices i = 1, . . . , j − 1 into account, we can again use the
induction hypothesis to obtain

j−1∑
i=1

(
v,w

φk
i

)2
ρ(φk) λ

φk
i →

j−1∑
i=1

(v,ui)2
ρ(φ) λ

φ
i , as k → ∞,

along a suitable subsequence. Hence, (5.3.9) directly yields that the third product on
the right-hand side of (5.3.15) converges to zero. The second product can be handled
similarly, and we can also show that it tends to zero as k → ∞. In summary, we get

⟨E (vk) , E (vk)⟩C(φk) → ⟨E (v) , E (v)⟩C(φ) , as k → ∞.

This proves (5.3.13). The claim (5.3.14) can easily be verified using the induction hypoth-
esis.
In particular, since v ̸= 0, we obtain that vk ̸= 0 for all k ∈ N sufficiently large. For such
k ∈ N, we obtain the estimate

λ
φk
j = min

 ⟨E (u) , E (u)⟩C(φk)

∥u∥2
L2

φk
(Ω;Rd)

∣∣∣∣∣∣u ∈ V
⊥,L2

φk
(Ω;Rd)

k ∩H1
D(Ω;Rd),u ̸= 0


≤

⟨E (vk) , E (vk)⟩C(φk)

∥vk∥2
L2

φk
(Ω;Rd)

.

Using (5.3.13) and (5.3.14), we conclude from (5.3.10) that, along a non-relabeled subse-
quence,

lim sup
k→∞

λ
φk
j ≤ lim sup

k→∞

⟨E (vk) , E (vk)⟩C(φk)

∥vk∥2
L2

φk
(Ω;Rd)

=
⟨E (v) , E (v)⟩C(φ)

∥v∥2
L2

φ(Ω;Rd)
= λφ

j . (5.3.16)

In particular, this implies that the subsequence (λφk
j )k∈N is bounded.

As in Theorem 5.2.2, for k ∈ N, we consider the j-th basis function w
φk
j which is

L2
φk

(Ω;Rd)-orthogonal to Vk. As a consequence of (5.3.16), due to the eigenvalue equation
(5.2.1), the sequence (wφk

j )k∈N ⊂ H1
D(Ω;Rd) is bounded. Applying the Banach–Alaoglu

theorem, we can thus extract a subsequence such that

w
φk
j ⇀ w in H1

D(Ω;Rd), and w
φk
j → w in L2(Ω;Rd), (5.3.17)
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as k → ∞, where w ∈ H1
D(Ω;Rd) is L2

φ(Ω;Rd)-normalized. However, it is a priori not
necessarily an eigenfunction to the eigenvalue λφ

j , as the convergence of the corresponding
eigenvalues is still unknown.
Proceeding as in Subsection 5.3.1, we want to show that

λφ
j ≤ lim inf

k→∞
λ

φk
j . (5.3.18)

As in the proof of Corollary 5.3.3 in combination with (5.3.16), we can then conclude the
desired convergence λφk

j → λφ
j for the whole sequence as k → ∞.

To verify (5.3.18), we first observe that due to the orthogonality of the basis functions,
we have (

w
φk
j ,wφk

m

)
ρ(φk) = 0,

for all m ∈ {1, . . . , j − 1} and all k ∈ N. Recalling the assumptions on (φk)k∈N, we can
use (5.3.17) and (5.3.6) to infer that(

w,um
)

ρ(φ) = 0,

for all m ∈ {1, . . . , j − 1}. Now let us choose j∗ ≤ j − 1 as the maximal index such that
λφ

j∗ < λφ
j . By this choice, we know from the orthogonality (5.3.7) that

⟨u1, . . . ,uj∗⟩span = ⟨wφ
1 , . . . ,w

φ
j∗⟩span ⊂ L2

φ(Ω;Rd).

This leads to the representation

w =
∞∑

m=1
(w,wφ

m)ρ(φ) wφ
m =

∞∑
m=j∗+1

(w,wφ
m)ρ(φ) wφ

m.

As the series converges in H1
D(Ω;Rd), we can use (5.2.1) to obtain

⟨E (w) , E (w)⟩C(φ) =
∞∑

m=j∗+1
λφ

m (w,wφ
m)2

ρ(φ) ≥ λφ
j ,

as w ∈ H1
D(Ω;Rd) is L2

φ(Ω;Rd)-normalized.
Hence, it only remains to show that

lim inf
k→∞

λ
φk
j ≥ ⟨E (w) , E (w)⟩C(φ) .

This, however, can be proven completely analogously as in the proof of Lemma 5.3.1.
In summary, we obtain the convergence

λ
φk
j → λφ

j , as k → ∞, (5.3.19)

along a non-relabeled subsequence. Since the limit does not depend on any subsequence
extraction, this convergence holds true for the whole sequence. As in Corollary 5.3.3, we
conclude that w ∈ H1

D(Ω;Rd) is an eigenfunction to the eigenvalue λφ
j .

Now if we replace the special choice w
φk
j by uk

j ∈ H1
D(Ω;Rd) being an arbitrary L2

φk
(Ω;Rd)-

normalized eigenfunction to the eigenvalue λφk
j , we again know that (uk

j )k∈N ⊂ H1
D(Ω;Rd)

is bounded. Hence, we can extract a subsequence converging weakly in H1
D(Ω;Rd) and by

proceeding as in Corollary 5.3.3, we use (5.3.19) to directly conclude that the weak limit
is an eigenfunction to the eigenvalue λφ

j .
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5.3.2. Local Lipschitz continuity of eigenvalues

The following lemma shows that all eigenvalues are locally Lipschitz continuous with
respect to φ.

Lemma 5.3.5 (Local Lipschitz continuity of the eigenvalues). Let i ∈ N be any index
and let φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) be arbitrary. Then there exist δφ

i , C
i
φ > 0 such that∣∣∣λφ

i − λφ+h
i

∣∣∣ ≤ Ci
φ ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) ,

for all h ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) with ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) < δφ
i . This means that

the mapping

λi : H1(Ω;RN ) ∩ L∞(Ω;RN ) → R>0, φ 7→ λφ
i ,

is locally Lipschitz continuous.

Proof. Let wi ∈ H1
D(Ω;Rd) denote a L2

φ(Ω;Rd)-normalized eigenfunction to the eigen-
value λφ

i . In the same fashion, let wφ+h
i ∈ H1

D(Ω;Rd) denote a L2
φ+h(Ω;Rd)-normalized

eigenfunction to the eigenvalue λφ+h
i . Then, if δφ

i is sufficiently small, we obtain the
estimate∣∣∣(λφ

i − λφ+h
i

)(
wφ+h

i ,wi
)

ρ(φ)

∣∣∣ ≤
∣∣∣λφ

i

(
wφ+h

i ,wi
)

ρ(φ) − λφ+h
i

(
wφ+h

i ,wi
)

ρ(φ+h)

∣∣∣
+
∣∣∣λφ+h

i

(
wφ+h

i ,wi
)

ρ(φ+h) − λφ+h
i

(
wφ+h

i ,wi
)

ρ(φ)

∣∣∣
=
∣∣∣⟨E(wφ+h

i

)
, E
(
wi
)
⟩C(φ)−C(φ+h)

∣∣∣
+
∣∣∣λφ+h

i

((
wφ+h

i ,wi
)

ρ(φ+h) −
(
wφ+h

i ,wi
)

ρ(φ)

)∣∣∣
≤ Ci

φ ∥h∥L∞(Ω;RN ) ,

where the last inequality holds due to the local Lipschitz continuity of C and ρ, and the
boundedness of λφ+h

i which follows from Theorem 5.3.4. Note that the constant Cφ
i may

depend on λφ
i but not on the eigenfunctions we have chosen, as they were assumed to be

normalized.
Suppose now that there exists a zero sequence (hk)k∈N ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) such
that ∣∣∣λφ

i − λφ+hk
i

∣∣∣ > k ∥hk∥H1(Ω;RN )∩L∞(Ω;RN ) ,

as k → ∞. For the corresponding sequence of eigenfunctions (wφ+hk
i )k∈N ⊂ H1

D(Ω;Rd)
for the eigenvalues (λφ+hk

i )k∈N, we know from Theorem 5.3.4 that we find a L2
φ(Ω;Rd)-

normalized eigenfunction w to the eigenvalue λφ
i such that

wφ+hk
i → w in L2

φ(Ω;Rd),

as k → ∞, up to subsequence extraction. In particular, for k sufficiently large, we know
that the members of this subsequence satisfy(

wφ+hk
i ,w

)
ρ(φ) >

1
2
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and thus,

k ∥hk∥H1(Ω;RN )∩L∞(Ω;RN ) < 2Ci
φ ∥hk∥H1(Ω;RN )∩L∞(Ω;RN ) ,

which is an obvious contradiction. This proves the claim.

5.3.3. A sign convention for eigenfunctions

In the previous analysis there was no need to assume that the eigenspaces are one-
dimensional. However, in Section 5.4, we want to show that the eigenvalues are Fréchet-
differentiable with respect to the phase-field. Therefore, it will be necessary to assume
that for fixed φ ∈ H1(Ω;RN )∩L∞(Ω;RN ) the eigenspace corresponding to the considered
eigenvalue λφ

i is one-dimensional. In this case the eigenvalue is called simple.
Simplicity of λφ

i allows us to choose a corresponding eigenfunction wφ
i ∈ H1

D(Ω;Rd)
that is normalized with respect to the scalar product on L2

φ(Ω;Rd) and unique up to
multiplication by ±1. We call such an eigenfunction a representative corresponding to
λφ

i .
In general, any eigenspace could be higher dimensional. For numerically motivated ex-
amples showing that even the simplicity of the first eigenvalue of a scalar elliptic regular
PDE is no longer fulfilled in the vector-valued case, see [72]. However, in concrete appli-
cations, there are physical and numerical justifications for assuming simple eigenvalues.
This is due to the fact that nature as well as numerical simulations on computers lead to
perturbations of the case of equal eigenvalues.
As a classical two dimensional example to illustrate this behavior, an eigenvalue problem
associated with the Laplacian subject to Dirichlet boundary conditions can be considered,
as in Chapter 3. If the domain is a perfect circle, eigenvalues with higher multiplicity will
occur. However, as soon as the perfect circular shape of the domain is perturbed by
small imperfections, these eigenvalues will become different and simple. For more details
see [150]. Apart from this theoretical discussion we have also seen in the numerical section
of Chapter 3 a practical way to deal with multiple eigenvalues, see Remark 3.4.5.
In the following lemma, we will introduce a condition to fix a sequence of representatives
whose elements w

φk
i are uniquely determined if φk ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) is suffi-

ciently close to φ. In particular, we see that it is possible to deduce simplicity of the
eigenvalues λφk

i in a suitable neighborhood of λφ
i .

Lemma 5.3.6. Let i ∈ N and (φk)k∈N ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) be a sequence such
that

φk → φ in H1(Ω;RN ) ∩ L∞(Ω;RN ),

for k → ∞. Moreover, we assume that λφ
i is a simple eigenvalue of (5.2.1) and let wφ

i be
a corresponding L2

φ(Ω;Rd)-normalized eigenfunction.
Then for any ε ∈ (0, 1), we can find a Kε

i > 0 such that for any k > Kε
i , there exists

a unique L2
φk

(Ω;Rd)-normalized eigenfunction w
φk
i ∈ H1

D(Ω;Rd) to the eigenvalue λ
φk
i

satisfying (
w

φk
i ,wφ

i

)
ρ(φ) > ε. (5.3.20)

In particular, the eigenvalues λφk
i with k > Kε

i are simple.
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Proof. Note that we did not make any assumptions on the simplicity of the eigenspaces
corresponding to λφk

i for k ∈ N. However, this can be established if φk is close to φ by
invoking the simplicity of the eigenspace corresponding to λφ

i and using the continuity
properties known from Theorem 5.3.4.
In the following, we will assume, without loss of generality, that k is large enough to
ensure that all eigenspaces to the eigenvalues λφk

i are simple. If we are now able to find
a sequence of representatives w

φk
i that fulfills (5.3.20) for a suitable Kε

i ∈ N, then the
uniqueness assertion is clear since the eigenfunctions are normalized and their sign is fixed
by (5.3.20).
To prove the existence of such a sequence, we argue once more by contradiction. Let
ε ∈ (0, 1) be arbitrary and let us assume that there is no Kε

i ∈ N such that (5.3.20) is
fulfilled. Hence, after possibly swapping some of the signs, we can extract a subsequence
such that ∣∣∣(wφk

i ,wφ
i

)
ρ(φ)

∣∣∣ ≤ ε < 1, for all k ∈ N. (5.3.21)

Using Theorem 5.3.4 we obtain a weak limit w of a non-relabeled subsequence of
(
w

φk
i

)
k∈N

and infer from the simplicity of λφ
i that w = ±wφ

i . Hence, using (5.3.21), we obtain

1 =
(
wφ

i ,w
φ
i

)
ρ(φ) = ±

(
w,wφ

i

)
ρ(φ) < 1,

which is obviously a contradiction.
Eventually, this means that condition (5.3.20) allows us to pick a unique representative
w

φk
i for every k ∈ N sufficiently large such that the obtained sequence fulfills

w
φk
i ⇀ wφ

i in H1
D(Ω;Rd),

as k → ∞, up to subsequence extraction.

The following corollary is a direct consequence of Lemma 5.3.6.

Corollary 5.3.7. For i ∈ N and φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ), we suppose that the
eigenvalue λφ

i is simple. Let wφ
i be a L2

φ(Ω;Rd)-normalized eigenfunction to the eigenvalue
λφ

i .
Then, for all ε > 0, there exists δ > 0 such that for all

h ∈ L∞(Ω;RN ) ∩H1(Ω;RN ) with ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) < δ

there exists a unique L2
φ+h(Ω;Rd)-normalized eigenfunction wφ+h

i to the eigenvalue λφ+h
i

satisfying the condition (
wφ+h

i ,wφ
i

)
ρ(φ) > ε > 0. (5.3.22)

In particular, the eigenvalues λφ+h
i are simple.

This means that, if h is sufficiently small, the signs of the eigenfunctions wφ+h
i can be

uniquely fixed in accordance with the sign of wφ
i by the sign condition (5.3.22).
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5.3.4. Continuity of eigenfunctions

In view of the sign convention from Corollary 5.3.7, we can now prove the following
continuity result.

Lemma 5.3.8 (Continuity of eigenfunctions to simple eigenvalues). Let φ ∈ H1(Ω;RN )∩
L∞(Ω;RN ) be arbitrary and let wφ

i denote a L2
φ(Ω;Rd)-normalized eigenfunction to the

eigenvalue λφ
i which is assumed to be simple. For any ε > 0, we assume that δ > 0, h

and the eigenfunctions wφ+h
i to the eigenvalues λφ+h

i are all chosen in such a way that
the sign condition (5.3.22) is satisfied.

Then the eigenfunctions wφ+h
i are uniquely determined and it holds that∥∥wφ+h

i − wφ
i

∥∥
H1

D(Ω;Rd) → 0, (5.3.23)

as h → 0 in H1(Ω;RN ) ∩ L∞(Ω;RN ). This means that the mapping

wi : H1(Ω;RN ) ∩ L∞(Ω;RN ) → H1
D(Ω;Rd), φ 7→ wφ

i

is (strongly sequentially) continuous with respect to the norm on H1
D(Ω;Rd).

Proof. Let (hk)k∈N ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) be any arbitrary sequence satisfying

∥hk∥H1(Ω;RN )∩L∞(Ω;RN ) < δ for all k ∈ N. (5.3.24)

Defining the sequence (φk)k∈N ⊂ H1(Ω;RN ) ∩L∞(Ω;RN ) by φk := φ + hk for all k ∈ N,
we can apply Theorem 5.3.4 to conclude that

w
φk
i → wφ

i in L2(Ω;Rd) as k → ∞,

along a non-relabeled subsequence. However, as the limit does not depend on the extracted
subsequence, this convergence even holds true for the whole sequence. Note that for this
reasoning it is essential that all members of the sequence are fixed by the sign convention
(5.3.22). As the sequence (hk)k∈N was arbitrary, we further infer that∥∥wφ+h

i − wφ
i

∥∥
L2(Ω;Rd) → 0, as h → 0 in H1(Ω;RN ) ∩ L∞(Ω;RN ). (5.3.25)

If we can now show that〈
E
(
wφ

i − wφ+h
i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ)

→ 0, (5.3.26)

as h → 0 in H1(Ω;RN ) ∩ L∞(Ω;RN ), the prove is completed.
To this end, let h ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) with

∥h∥H1(Ω;RN )∩L∞(Ω;RN ) < δ,

be arbitrary. We derive the identity〈
E
(
wφ

i − wφ+h
i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ)

=
[〈

E
(
wφ

i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ)

−
〈
E(wφ+h

i ), E(wφ
i − wφ+h

i )
〉
C(φ+h)

]
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+
[〈

E(wφ+h
i ), E(wφ

i − wφ+h
i )

〉
C(φ+h)

−
〈
E
(
wφ+h

i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ)

]
.

The second summand on the right-hand side converges to 0 in H1(Ω;RN )∩L∞(Ω;RN ) as
h → 0, since the norm ∥wφ+h

i ∥H1
D(Ω;Rd) is bounded by a constant that may depend on δ

but not on h, and C is locally Lipschitz continuous. As wφ
i and wφ+h

i are eigenfunctions,
they satisfy the state equation (5.2.1) and we thus get〈

E
(
wφ

i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ)

−
〈
E
(
wφ+h

i

)
, E
(
wφ

i − wφ+h
i

)〉
C(φ+h)

= λφ
i

(
wφ

i ,w
φ
i − wφ+h

i

)
ρ(φ)

− λφ+h
i

(
wφ+h

i ,wφ
i − wφ+h

i

)
ρ(φ+h)

= λφ
i

[(
wφ

i ,w
φ
i − wφ+h

i

)
ρ(φ)

−
(
wφ+h

i ,wφ
i − wφ+h

i

)
ρ(φ)

]
+ λφ

i

[(
wφ+h

i ,wφ
i − wφ+h

i

)
ρ(φ)

−
(
wφ+h

i ,wφ
i − wφ+h

i

)
ρ(φ+h)

]
+
[
λφ

i − λφ+h
i

] (
wφ+h

i ,wφ
i − wφ+h

i

)
ρ(φ+h)

.

Here, the first summand converges to zero because of (5.3.25). The second summand
converges to zero due to the local Lipschitz continuity of ρ and the last summand converges
to zero as a consequence of Theorem 5.3.4. This verifies (5.3.26) and thus, the proof is
complete.

5.4. Differentiability of eigenvalues and eigenfunctions

5.4.1. A formal consideration

First of all, we want to discuss the desired differentiability results formally. To obtain the
Fréchet-derivative of the functional

λi : H1(Ω;RN ) ∩ L∞(Ω;RN ) → R>0, φ 7→ λφ
i ,

for i ∈ N, we formally differentiate the state equation in the Gâteaux sense. If w is an
eigenfunction to the eigenvalue λφ

i , we have

⟨E (w) , E (η)⟩C(φ) = λφ
i

ˆ
Ω
ρ(φ)w · η dx for all η ∈ H1

D(Ω;Rd). (5.4.1)

Computing the first variation of (5.4.1) with respect to φ in the direction h ∈ H1(Ω;RN )∩
L∞(Ω;RN ), and choosing w and η as the L2

φ(Ω;Rd)-normalized eigenfunction wφ
i after-

wards, we get

(
λφ

i

)′
h =

〈
E(wφ

i ), E(wφ
i )
〉
C′(φ)h − λφ

i

ˆ
Ω
ρ′(φ)h

∣∣wφ
i

∣∣2 dx. (5.4.2)

Moreover, firstly plugging w = wφ
i into (5.4.1), and then computing the first variation

with respect to φ in the direction h ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) reveals that the formal
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derivative
(
wφ

i

)′
h of wφ

i has to fulfill the equation
〈
E
((

wφ
i

)′
h
)
, E (η)

〉
C(φ)

− λφ
i

ˆ
Ω
ρ(φ)

(
wφ

i

)′
h · η dx

= −
〈
E(wφ

i ), E(η)
〉
C′(φ)h + λφ

i

ˆ
Ω
ρ′(φ)hwφ

i · η dx

+
(
λφ

i

)′
h

ˆ
Ω
ρ(φ)wφ

i · η dx.

(5.4.3)

In the following, we intend to verify these results rigorously. We already see that formula
(5.4.2) is a priori not well-defined if there are at least two orthogonal eigenfunctions to
the eigenvalue λφ

i , i.e., if λφ
i is not simple. In the following approach, we will see that the

simplicity of eigenvalues will play a crucial role in our analysis.

5.4.2. Semi-differentiability of the first eigenvalue

In [141, Section 4.2], the concept of semi-differentiability is introduced and applied to
the first eigenvalue of an abstract problem discussed there. Semi-differentiability is a
concept similar to Gateâux-differentiability, see Section 2.2.2, but the limit does not need
to fulfill any linearity or continuity assumptions, and the variation is only performed along
a fixed positive direction. The advantage becomes clear by the following example presented
in [108, Section 2.5]. We consider the matrix-valued function

A : R → R2×2, A(t) =
(

1 − t 0
0 1 + t

)
,

whose first eigenvalue

λ1 : R → R, λt
1 = 1 − |t|

is not simple at t = 0. Of course, λ1 is not classically differentiable in t = 0, but we still
obtain a well defined limit

lim
t→0
t>0

1 − |t| − 1
t

= −1.

This means we can still compute some sort of derivative in a fixed positive direction.
We now give a precise definition of semi-differentiability which can be found, e.g., in [141,
Definition 4.6].

Definition 5.4.1 (Definition of semi-differentiability). Let X,Y be Banach spaces and
let D ⊆ X be an open subset. Then the map T : D → Y is called semi-differentiable at
the point x ∈ D if for all h ∈ X, there exists y(x, h) ∈ Y such that

lim
t→0
t>0

T (x+ th) − T (x)
t

= y(x, h).

In this case we write T ′(x)h = y(x, h) to denote the semi-derivative of T at the point x
with respect to the direction h.
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We want to show that in our problem the first eigenvalue also fulfills this weaker notion of
differentiability, which will be enough to deduce first-order necessary optimality conditions
for the first eigenvalue as we only want to derive convex combinations where t > 0.
The advantage of this approach is that we do not have to assume simplicity of the first
eigenvalue in order to obtain semi-differentiability, whereas as illustrated in Section 5.4.1,
we need such simplicity assumptions to obtain classical differentiability.
The semi-differentiability of the first eigenvalue is established by the following lemma.

Theorem 5.4.2 (Semi-differentiability of the first eigenvalue). Let φ,h ∈ H1(Ω;RN ) ∩
L∞(Ω;RN ) be arbitrary and let us define

(λφ
1 )′h := inf

⟨E(u), E(u)⟩C′(φ)h − λφ
1 (u,u)ρ′(φ)h

∣∣∣∣∣∣∣∣
u ∈ H1

D(Ω;Rd) is an
eigenfunction to λφ

1
with ∥u∥L2

φ(Ω;Rd) = 1

 . (5.4.4)

Then we have

lim
t→0
t>0

λφ+th
1 − λφ

1
t

=
(
λφ

1
)′

h

and thus, the eigenvalue λφ
1 is semi-differentiable with respect to φ.

Proof. In this proof, the letter C denotes generic positive constants that may depend
on φ and may change their value from line to line. We first prove that the infimum in
(5.4.4) is actually attained by a minimizer. To this end, let u ∈ Fad be arbitrary, where
the feasible set is given as

Fad :=
{

u ∈ H1
D(Ω;Rd)

∣∣∣∣∣ u is an eigenfunction to λφ
1

with ∥u∥L2
φ(Ω;Rd) = 1

}
.

By the differentiability and the local Lipschitz continuity of C, we infer that there exists
t0 > 0 such that for all t < t0,

− C ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) ∥u∥2
H1

D(Ω;Rd)

≤ −
∣∣∣∣∣⟨E (u) , E (u)⟩C(φ+th) − ⟨E (u) , E (u)⟩C(φ)

t

∣∣∣∣∣
≤ 1 + ⟨E(u), E(u)⟩C′(φ)h .

(5.4.5)

Using (5.2.1), we conclude that

∥u∥2
H1

D(Ω;Rd) ≤ Cλφ
1 for all u ∈ Fad. (5.4.6)

Moreover, due to (2.1.19) and (2.1.20), we have∣∣∣(u,u)ρ′(φ)h

∣∣∣ ≤ C ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) for all u ∈ Fad. (5.4.7)

Eventually, combining the above estimates, we conclude that

⟨E(u), E(u)⟩C′(φ)h − λφ
1 (u,u)ρ′(φ)h
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≥ −Cλφ
1 ∥h∥H1(Ω;RN )∩L∞(Ω;RN ) − 1 > −∞

for all u ∈ Fad. This directly implies that the infimum (λφ
1 )′h exists.

Hence, we can find a minimizing sequence (un)n∈N ⊂ Fad such that

lim
n→∞

[
⟨E(un), E(un)⟩C′(φ)h − λφ

1 (un,un)ρ′(φ)h

]
=
(
λφ

1
)′

h.

Due to (5.4.6), there exists u∗ ∈ H1
D(Ω;Rd) such that

un ⇀ u∗ in H1
D(Ω;Rd), and un → u∗ in L2

φ(Ω;Rd)

as n → ∞, up to a subsequence extraction. In particular, this implies that u∗ ∈ Fad

which leads to

⟨E (un − u∗) , E (un − u∗)⟩C(φ) = λφ
1 (un − u∗,un − u∗)ρ(φ) .

This implies that un → u∗ even strongly in H1
D(Ω;Rd). In particular we obtain

(
λφ

1
)′

h = lim
n→∞

[
⟨E(un), E(un)⟩C′(φ)h − λφ

1 (un,un)ρ′(φ)h

]
= ⟨E(u∗), E(u∗)⟩C′(φ)h − λφ

1 (u∗,u∗)ρ′(φ)h .

Hence, the infimum is attained at u∗ ∈ H1
D(Ω;Rd).

To prove

lim
t→0
t>0

1
t

∣∣∣λφ+th
1 − λφ

1 − (λφ
1 )′[th]

∣∣∣ = 0, (5.4.8)

it suffices to show that there exist functions f, g : R → R with f, g ∈ o(t) as t → 0 such
that for all t > 0,

λφ+th
1 − λφ

1 − (λφ
1 )′[th] ≤ f(t), (5.4.9)

−λφ+th
1 + λφ

1 + (λφ
1 )′[th] ≤ g(t). (5.4.10)

By the construction of u∗, we first observe that

λφ+th
1 − λφ

1 − (λφ
1 )′[th]

= λφ+th
1 − ⟨E (u∗) , E (u∗)⟩C(φ) − ⟨E(u∗), E(u∗)⟩C′(φ)th + λφ

1 (u∗,u∗)ρ′(φ)th ,

since u∗ is an L2
φ(Ω;Rd)-normalized eigenfunction to the eigenvalue λφ

1 . We compute

λφ+th
1 − ⟨E (u∗) , E (u∗)⟩C(φ) − ⟨E(u∗), E(u∗)⟩C′(φ)th + λφ

1 (u∗,u∗)ρ′(φ)th

=
(
λφ

1 − λφ+th
1

)
(u∗,u∗)ρ(φ+th)−ρ(φ) + ⟨E(u∗), E(u∗)⟩C(φ+th)−C(φ)−C′(φ)th

− λφ
1 (u∗,u∗)ρ(φ+th)−ρ(φ)−ρ′(φ)th + λφ+th

1 (u∗,u∗)ρ(φ+th) − ⟨E(u∗), E(u∗)⟩C(φ+th).

Now the first three summands on the right-hand side are clearly in o(t) as t → 0 since the
eigenvalues converge, and the functions ρ and C are differentiable and locally Lipschitz
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continuous. For the remaining summands we can use the Courant–Fischer representation
for the first eigenvalue which yields

λφ+th
1 = min

 ⟨E(u), E(u)⟩C(φ+th)

∥u∥2
L2

φ+th
(Ω;Rd)

∣∣∣∣∣∣u ∈ H1
D(Ω;Rd),

u ̸= 0

 ≤
⟨E(u∗), E(u∗)⟩C(φ+th)

∥u∗∥2
L2

φ+th
(Ω;Rd)

.

This implies

λφ+th
1 (u∗,u∗)ρ(φ+th) − ⟨E(u∗), E(u∗)⟩C(φ+th) ≤ 0,

and thus, (5.4.9) is established.
To prove (5.4.10), we argue by contradiction and assume that (5.4.10) does not hold.
Then, there exists ε > 0 and a sequence (tk)k∈N ⊂ (0, 1] with tk → 0 as k → ∞ such that
for all k ∈ N,

−λφ+tkh
1 + λφ

1 + (λφ
1 )′[tkh] ≥ εtk.

Then, according to Theorem 5.3.4, there exists a L2
φ(Ω;Rd)-normalized eigenfunction u

to the eigenvalue λφ
1 , as well as a sequence (uφ+tkh)k∈N consisting of L2

φ+tkh(Ω;Rd)-
normalized eigenfunctions to the eigenvalues (λφ+tkh

1 )k∈N such that

uφ+tkh ⇀ u in H1
D(Ω;Rd) and uφ+tkh → u in L2(Ω;Rd) (5.4.11)

as k → ∞, along a non-relabeled subsequence. Recalling the definition of
(
λφ

1
)′

h, we infer
that

− λφ+tkh
1 + λφ

1 + (λφ
1 )′[tkh]

= −λφ+tkh
1 (uφ+tkh,uφ+tkh)ρ(φ+tkh) + λφ

1 + (λφ
1 )′[tkh]

≤ −
〈
E
(
uφ+tkh), E(uφ+tkh)〉

C(φ+tkh) + λφ
1 +

〈
E
(
u
)
, E
(
u
)〉

C′(φ)tkh

− λφ
1 (u,u)ρ′(φ)tkh .

Recalling the identities 〈
E
(
u
)
, E
(
η
)〉

C(φ) = λφ
1
(
u,η

)
ρ(φ),〈

E
(
uφ+tkh), E(η)〉C(φ+tkh) = λφ+tkh

1
(
uφ+tkh,η

)
ρ(φ+tkh),

for all η ∈ H1
D(Ω;Rd), a straightforward computation reveals that

− λφ+tkh
1 + λφ

1 + (λφ
1 )′[tkh]

≤
〈
E(u), E(u)

〉
C′(φ)tkh+C(φ)−C(φ+tkh) + λφ

1
(
u,u

)
ρ(φ+tkh)−ρ(φ)−ρ′(φ)tkh

+
〈
E(u), E(u − uφ+tkh)

〉
C(φ+tkh)−C(φ)−C′(φ)tkh

+
〈
E(u), E(u − uφ+tkh)

〉
C′(φ)tkh

+ λφ+tkh
1

(
u,u − uφ+tkh)

ρ(φ)−ρ(φ+tkh)

+ (λφ
1 − λφ+tkh

1 )
(
u,u − uφ+tkh)

ρ(φ) +
(
λφ+tkh

1 − λφ
1
)(

u,u
)

ρ(φ+tkh)−ρ(φ).
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Recalling the convergence property (5.4.11), that ρ and C are of class C1
loc, that φ 7→ λφ

1
is locally Lipschitz continuous according to Lemma 5.3.5, and that

⟨E(u), E(·)⟩C′(φ)h ∈
(
H1

D(Ω;Rd)
)∗
,

we conclude that the right-hand side belongs to o(tk) as k → ∞.
On the other hand we assumed

εtk ≤ −λφ+tkh
1 + λφ

1 + (λφ
1 )′[tkh],

which is obviously a contradiction as the inequality cannot hold for k sufficiently large.
This proves (5.4.10).
Now, (5.4.8) directly follows from (5.4.9) and (5.4.10) and thus, the proof is complete.

5.4.3. Fréchet-differentiability of eigenvalues and eigenfunctions

If the considered eigenvalue is simple, we can even obtain stronger differentiability results
in the Fréchet sense. To be precise, if for i ∈ N and φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ), the
eigenvalue λφ

i associated with φ is simple, then λφ
i and any fixed L2

φ(Ω;Rd)-normalized
eigenfunction wφ

i are even Fréchet-differentiable with respect to φ. This is established by
the following theorem:
Theorem 5.4.3 (Fréchet-differentiability of simple eigenvalues and their eigenfunctions).
Let φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) be arbitrary and suppose that for i ∈ N, the eigenvalue
λφ

i is simple. We further fix a L2
φ(Ω;Rd)-normalized eigenfunction wφ

i to the eigenvalue
λφ

i .
Then there exist constants δφ

i , r
φ
i > 0 such that the operator

Sφ
i : Bδφ

i
(φ) ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) → Brφ

i

(
(wφ

i , λ
φ
i )
)

⊂ H1
D(Ω;Rd) × R,

ϑ 7→
(
wϑ

i , λ
ϑ
i

)
,

is well-defined and continuously Fréchet-differentiable. Here, wϑ
i denotes the unique

L2
ϑ(Ω;Rd)-normalized eigenfunction to the eigenvalue λϑ

i satisfying the sign condition
(5.3.22) written for h = ϑ − φ.
Moreover, for any h ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ), the Fréchet-derivative

(
λϑ

i

)′
h of the

eigenvalue λϑ
i at ϑ ∈ Bδφ

i
(φ) in the direction h reads as

(
λϑ

i

)′
h :=

(
Sφ

i,2(ϑ)
)′

h =
〈
E(wϑ

i ), E(wϑ
i )
〉
C′(ϑ)h

− λϑ
i

ˆ
Ω
ρ′(ϑ)h

∣∣∣wϑ
i

∣∣∣2 dx, (5.4.12)

and the Fréchet-derivative
(
wϑ

i

)′
h :=

(
Sφ

i,1(ϑ)
)′

h ∈ H1
D(Ω;Rd) of the corresponding

eigenfunction wϑ
i at ϑ in the direction h is the unique solution of〈

E((wϑ
i )′h), E(η)

〉
C(ϑ)

− λϑ
i

ˆ
Ω
ρ(ϑ)(wϑ

i )′h · η dx

= −
〈
E(wϑ

i ), E(η)
〉
C′(ϑ)h

+ λϑ
i

ˆ
Ω
ρ′(ϑ)hwϑ

i · η dx

+ (λϑ
i )′h

ˆ
Ω
ρ(ϑ)wϑ

i · η dx,

(5.4.13)
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for all η ∈ H1
D(Ω;Rd), that fulfills(

(wϑ
i )′h,wϑ

i

)
ρ(ϑ)

= −1
2

ˆ
Ω
ρ′(ϑ)h

∣∣∣wϑ
i

∣∣∣2 dx. (5.4.14)

To prove this theorem, we intend to apply the implicit function theorem (see, e.g., [159,
Theorem 4.B]). Therefore, it is essential to show a bijectivity condition. In our setting
this condition will be fulfilled if a certain PDE resulting from the eigenvalue equations has
a unique solution. To show this existence and uniqueness we need to apply the Fredholm
alternative established by Lemma 5.4.4.
In the following, we use the space

H−1(Ω;Rd) :=
(
H1

D(Ω;Rd)
)∗

along with the canonical embedding

L2
φ(Ω;Rd) ↪→ H−1(Ω,Rd), v 7→

(
η 7→ (v,η)ρ(φ)

)
. (5.4.15)

In particular, the duality pairing is given by

⟨·, ·⟩H−1,H1 = (·, ·)ρ(φ) .

Lemma 5.4.4 (Fredholm alternative for the eigenvalue problem). Let φ ∈ H1(Ω;RN ) ∩
L∞(Ω;RN ) be arbitrary and suppose that for i ∈ N, the eigenvalue λφ

i is simple. We
further fix a L2

φ(Ω;Rd)-normalized eigenfunction wφ
i to the eigenvalue λφ

i .

Then there exists a solution u ∈ H1
D(Ω;Rd) of the equation

⟨E (u) , E (η)⟩C(φ) − λφ
i (u,η)ρ(φ) = ⟨f ,η⟩H−1,H1 , (5.4.16)

for all η ∈ H1
D(Ω;Rd) if and only if f ∈ H−1(Ω;Rd) fulfills

⟨f ,wφ
i ⟩H−1,H1 = 0.

In this case, there is a unique solution u⊥ in H1
D(Ω;Rd) ∩ ⟨wφ

i ⟩⊥,L2
φ(Ω;Rd)

span , and any other
solution can be expressed as u⊥ + αwφ

i for some α ∈ R.

Proof. Suppose that f ∈ H−1(Ω;Rd). Then, u ∈ H1
D(Ω;Rd) is a solution of (5.4.16) if

and only if

⟨E (u) , E (η)⟩C(φ) =
〈
λφ

i u + f ,η
〉

H−1,H1 ,

for all η ∈ H1
D(Ω;Rd). As

⟨E (·) , E (·)⟩C(φ) : H1
D(Ω;Rd) ×H1

D(Ω;Rd) → R,

is a continuous, coercive bi-linear form, we are able to define a continuous and compact
operator

L−1 : H−1(Ω;Rd) → H1
D(Ω;Rd) ↪→ H−1(Ω;Rd), g 7→ ug,
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that maps any right-hand side g ∈ H−1(Ω;Rd) onto its unique solution ug ∈ H1
D(Ω;Rd)

of

⟨E (ug) , E (η)⟩C(φ) = ⟨g,η⟩H−1,H1 , (5.4.17)

for all η ∈ H1
D(Ω;Rd).

In the following we understand H−1(Ω;Rd) as a Hilbert space endowed with the scalar
product (

g,h
)

L−1 :=
〈
E
(
L−1g

)
, E
(
L−1h

)〉
C(φ).

Indeed, this defines a scalar product as L−1 is injective. Note that due to (5.4.17) and
the the fact that ⟨E (·) , E (·)⟩C(φ) is a scalar product on H1

D(Ω;Rd), the norm induced by
(·, ·)L−1 is equivalent to the canonical operator norm on H−1(Ω;Rd), which guarantees
completeness of this space with respect to this new scalar product.
In the following, we write R(·) and N(·) denote the range and the null space of a linear
operator, respectively. It is easy to see that L−1 is self-adjoint with respect to this
scalar product. Furthermore the following equivalences are follow by a straightforward
computation:

∃u ∈ H1
D(Ω;Rd) that solves (5.4.16),

⇔ ∃u ∈ H1
D(Ω;Rd) : u − λφ

i L
−1u = L−1f ,

⇔ L−1f ∈ R(Id− λφ
i L

−1).
(5.4.18)

Since L−1 is compact, we have that

Id− λφ
i L

−1 : H−1(Ω;Rd) → H−1(Ω;Rd),

is a Fredholm operator. In particular, we thus know that

R(Id− λφ
i L

−1) ⊂ H−1(Ω;Rd),

is closed and

R(Id− λφ
i L

−1) = N(Id− λφ
i L

−1)⊥,H−1(Ω;Rd).

Since L−1 is self-adjoint, we infer that

L−1f ∈ R(Id− λφ
i L

−1) ⇔ ∀v ∈ N(Id− λφ
i L

−1) :
(
L−1f ,v

)
L−1 = 0,

⇔ ∀v ∈ N(Id− λφ
i L

−1) :
(
f , L−1v

)
L−1 = 0.

(5.4.19)

It further holds that

v ∈ N(Id− λφ
i L

−1)
⇔ ∀η ∈ H1

D(Ω;Rd) : λφ
i

〈
L−1v,η

〉
H−1,H1 =

〈
v,η

〉
H−1,H1

⇔ ∀η ∈ H1
D(Ω;Rd) : λφ

i

(
L−1v,η

)
ρ(φ) =

〈
E
(
L−1v

)
, E
(
η
)〉

C(φ)

⇔ L−1v ∈ H1
D(Ω;Rd) is an eigenfunction to the eigenvalue λφ

i

⇔ L−1v ∈ ⟨wφ
i ⟩span ⊂ L2

φ(Ω;Rd),
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where the last equivalence holds since λφ
i was assumed to be simple and therefore, the

corresponding eigenspace is one-dimensional. In view of (5.4.19), this means that

L−1f ∈ R(Id− λφ
i L

−1) ⇔ ∀v ∈ N(Id− λφ
i L

−1) :
(
f , L−1v

)
L−1 = 0

⇔
(
f ,wφ

i

)
L−1 = 0.

(5.4.20)

We further know that

L−1wφ
i = 1

λφ
i

wφ
i ∈ H1

D(Ω;Rd).

Hence, since L−1f is a solution of (5.4.17), we have

(
f ,wφ

i

)
L−1 =

〈
E
(
L−1f

)
, E
(
L−1wφ

i

)〉
C(φ)

=
〈
f , L−1wφ

i

〉
H−1,H1

= 1
λφ

i

〈
f ,wφ

i

〉
H−1,H1 .

(5.4.21)

Combining (5.4.18), (5.4.20) and (5.4.21), we conclude that

∃ u ∈ H1
D(Ω;Rd) that solves (5.4.16)

⇔ L−1f ∈ R(Id− λφ
i L

−1)
⇔

〈
f ,wφ

i

〉
H−1,H1 = 0.

This proves the first assertion.
Let us now assume that

〈
f ,wφ

i

〉
H−1,H1 = 0 and let

Pφ
i : L2

φ(Ω;Rd) → ⟨wφ
i ⟩span ⊂ L2

φ(Ω;Rd),

denote the orthogonal projection onto the linear subspace ⟨wφ
i ⟩span with respect to the

scalar product on L2
φ(Ω;Rd). For any solution u ∈ H1

D(Ω;Rd) of (5.4.16) we obtain from
the decomposition u =

(
u − Pφ

i (u)
)

+ Pφ
i (u) that

⟨f ,η⟩H−1,H1 =
〈
E
(
u − Pφ

i (u)
)
, E
(
η
)〉

C(φ) − λφ
i

(
u − Pφ

i (u),η
)

ρ(φ).

Hence, it also holds that

u⊥ := u − Pφ
i (u) ∈ H1

D(Ω;Rd) ∩ ⟨wφ
i ⟩⊥,L2

φ(Ω;Rd)
span

fulfills equality (5.4.16). Uniqueness of the solution u⊥ follows from the simplicity of λφ
i

and the linearity of equation (5.4.16). In particular, any solution u ∈ H1
D(Ω;Rd) can be

expressed as

u = u⊥ + Pφ
i (u) = u⊥ + αwφ

i

for some α ∈ R. This completes the proof.
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We can now use the Fredholm alternative to prove Theorem 5.4.3.

Proof of Theorem 5.4.3. As mentioned above, we intend to apply the implicit function
theorem to prove the assertion. To this end, we define the operator

F :
(
H1(Ω;RN ) ∩ L∞(Ω;RN )

)
×H1

D(Ω;Rd) × R → H−1(Ω;Rd) × R,

(ϑ,w, λ) 7→
(

−∇ · C(ϑ)E(w) − λρ(ϑ)w
(w,w)ρ(ϑ) − 1

)
.

Here we canonically understand the first component of the right-hand side as an element
of H−1(Ω;Rd), i.e.,

⟨F1(ϑ,w, λ),η⟩H−1,H1
D

= ⟨E (w) , E (η)⟩C(ϑ) − λ (w,η)ρ(ϑ) ,

for all η ∈ H1
D(Ω;Rd). First of all, it is clear that φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ), the

eigenvalue λφ
i ∈ R and the corresponding representative wφ

i ∈ H1
D(Ω;Rd) satisfy

F
(
φ,wφ

i , λ
φ
i

)
= 0.

To apply the implicit function theorem, we need to show that F is of class C1 on a suitable
neighborhood of

(
φ,wφ

i , λ
φ
i

)
. For this purpose, we show that all partial Fréchet-derivatives

are continuous at any point in the domain of definition of F , because by Theorem 2.2.6
this then yields the desired Fréchet-differentiability.
Formally computing the partial derivatives at a point

(ϑ,w, λ) ∈
(
H1(Ω;RN ) ∩ L∞(Ω;RN )

)
×H1

D(Ω;Rd) × R,

in the direction

(h,u, µ) ∈
(
H1(Ω;RN ) ∩ L∞(Ω;RN )

)
×H1

D(Ω;Rd) × R,

gives

∂ϑF1(ϑ,w, λ)h = −∇ · C′(ϑ)hE(w) − λρ′(ϑ)hw, (5.4.22a)
∂wF1(ϑ,w, λ)u = −∇ · C(ϑ)E(u) − λρ(ϑ)u, (5.4.22b)
∂λF1(ϑ,w, λ)µ = −µρ(ϑ)w, (5.4.22c)

∂ϑF2(ϑ,w, λ)h =
ˆ

Ω
ρ′(ϑ)h |w|2 dx, (5.4.22d)

∂wF2(ϑ,w, λ)u = 2
ˆ

Ω
ρ(ϑ)w · u dx, (5.4.22e)

∂λF2(ϑ,w, λ)µ = 0, (5.4.22f)

where the first two identities are to be understood in a weak sense. We can rigorously
prove that the above expressions are actually the partial Fréchet-derivatives. Here, we
will present a detailed proof only for (5.4.22a) as all other derivatives can be verified
analogously. We first notice that for any fixed (ϑ,w, λ) ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) ×
H1

D(Ω;Rd) × R, it holds that[
h 7→ ∂ϑF1(ϑ,w, λ)h

]
∈ L

(
H1(Ω;RN ) ∩ L∞(Ω;RN ), H−1(Ω;Rd)

)
. (5.4.23)
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Indeed, the linearity of the above mapping is clear and the boundedness properties (2.1.19)
and (2.1.25) of C and ρ, respectively, along with Hölder’s inequality imply the existence
of a constant C > 0 such that

∥∂ϑF1(ϑ,w, λ)∥L(H1∩L∞,H−1)

= sup
∥h∥H1∩L∞ =1

sup
∥η∥

H1
D

=1

∣∣∣∣⟨E(w), E(η)⟩C′(ϑ)h + λ

ˆ
Ω
ρ′(ϑ)hw · η dx

∣∣∣∣
≤ C ∥w∥H1

D(Ω;Rd) .

It further holds that

∥F1(ϑ + h,w, λ) − F1(ϑ,w, λ) − ∂ϑF1(ϑ,w, λ)h∥H−1(Ω;Rd)

≤ sup
∥η∥

H1
D

(Ω;Rd)=1

∣∣∣⟨E(w), E(η)⟩C(ϑ+h) − ⟨E (w) , E (η)⟩C(ϑ) − ⟨E(w), E(η)⟩C′(ϑ)h

∣∣∣
+ sup

∥η∥
H1

D
(Ω;Rd)=1

|λ|
ˆ

Ω

∣∣ρ(ϑ + h) − ρ(ϑ) − ρ′(ϑ)h
∣∣ |w · η| dx.

Now, proceeding similarly as in [32, Proof of Theorem 3.3], we invoke the local Lipschitz
continuity of the first derivatives of C and ρ to conclude that∥∥C(ϑ + h) − C(ϑ) − C′(ϑ)h

∥∥
L∞(Ω;RN ) ∈ o

(
∥h∥L∞(Ω;RN )

)
,∥∥ρ(ϑ + h) − ρ(ϑ) − ρ′(ϑ)h

∥∥
L∞(Ω;RN ) ∈ o

(
∥h∥L∞(Ω;RN )

)
.

Hence, Hölder’s inequality yields

∥F1(ϑ + h,w, λ) − F1(ϑ,w, λ) − ∂ϑF1(ϑ,w, λ)h∥H−1(Ω;Rd) ∈ o
(
∥h∥H1(Ω;RN )∩L∞(Ω;RN )

)
,

which proves that ∂ϑF1(ϑ,w, λ) is indeed the partial derivative of F1 with respect to ϑ
in the Fréchet sense.
In the light of Theorem 2.2.6 it remains to prove the continuity of the partial Fréchet-
derivatives. Here we also present the proof only for (5.4.22a) as the continuity of the other
partial derivatives can be established similarly. Let (ϑn,wn, λn)n∈N denote any sequence
in
(
H1(Ω;RN ) ∩ L∞(Ω;RN )

)
×H1

D(Ω;Rd) × R satisfying

(ϑn,wn, λn) → (ϑ,w, λ) in
(
H1(Ω;RN ) ∩ L∞(Ω;RN )

)
×H1

D(Ω;Rd) × R,

for n → ∞. Then it holds that

sup
∥h∥H1∩L∞ =1

∥∂ϑF1(ϑn,wn, λn)h − ∂ϑF1(ϑ,w, λ)h∥H−1(Ω;Rd)

≤ sup
∥h∥H1∩L∞ =1

sup
∥η∥

H1
D

=1

∣∣∣⟨E(wn), E(η)⟩C′(ϑn)h − ⟨E(w), E(η)⟩C′(ϑ)h

∣∣∣
+ sup

∥h∥H1∩L∞ =1
sup

∥η∥
H1

D
=1

∣∣∣∣ˆ
Ω
λnρ

′(ϑn)hwn · η dx−
ˆ

Ω
λρ′(ϑ)hw · η dx

∣∣∣∣ .
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Applying Hölder’s inequality, and recalling again the local Lipschitz continuity of the first
derivative of C and property (2.1.25), we infer that∣∣∣⟨E(wn), E(η)⟩C′(ϑn)h − ⟨E(w), E(η)⟩C′(ϑ)h

∣∣∣
≤
∣∣∣⟨E(wn), E(η)⟩C′(ϑn)h − ⟨E(wn), E(η)⟩C′(ϑ)h

∣∣∣
+
∣∣∣⟨E(wn), E(η)⟩C′(ϑ)h − ⟨E(w), E(η)⟩C′(ϑ)h

∣∣∣
≤ C

(
∥ϑn − ϑ∥H1∩L∞ ∥wn∥H1

D(Ω;Rd) + ∥wn − w∥H1
D(Ω;Rd)

)
· ∥h∥H1∩L∞ ∥η∥H1

D(Ω;Rd) .

Arguing similarly for the second summand, we obtain∣∣∣∣ˆ
Ω
λnρ

′(ϑn)hwn · η dx−
ˆ

Ω
λρ′(ϑ)hw · η dx

∣∣∣∣
≤
∣∣∣∣λn

ˆ
Ω
ρ′(ϑn)hwn · η − ρ′(ϑ)hwn · η dx

∣∣∣∣+ ∣∣∣∣(λn − λ)
ˆ

Ω
ρ′(ϑ)hwn · η dx

∣∣∣∣
+
∣∣∣∣λ ˆ

Ω
ρ′(ϑ)hwn · η − ρ′(ϑ)hw · η dx

∣∣∣∣
≤ C

(
∥ϑn − ϑ∥H1∩L∞ ∥wn∥H1

D(Ω;Rd) + |λn − λ| ∥wn∥H1
D(Ω;Rd)

+ ∥wn − w∥H1
D(Ω;Rd)

)
∥h∥H1∩L∞ ∥η∥H1

D(Ω;Rd) .

Hence, after taking the suprema, we conclude that

∥∂ϑF1(ϑn,wn, λn) − ∂ϑF1(ϑ,w, λ)∥L(H1(Ω;RN )∩L∞(Ω;RN ),H−1(Ω;Rd)) → 0,

as n → ∞. In summary, this implies that

F : H1(Ω;RN ) ∩ L∞(Ω;RN ) ×H1
D(Ω;Rd) × R → H−1(Ω;Rd) × R,

is continuously Fréchet-differentiable.
We next need to show that the partial derivative

∂(w,λ)F (φ,wφ
i , λ

φ
i ) : H1

D(Ω;Rd) × R → H−1(Ω;Rd) × R

is an isomorphism. Regarding injectivity, we consider

∂wF (φ,wφ
i , λ

φ
i )u + ∂λF (φ,wφ

i , λ
φ
i )µ = ∂(w,λ)F (φ,wφ

i , λ
φ
i )(u, µ) = 0,

which is equivalent to the equations

⟨E (u) , E (η)⟩C(φ) − λφ
i (u,η)ρ(φ) − µ

(
wφ

i ,η
)

ρ(φ) = 0, (5.4.24)

for all η ∈ H1
D(Ω;Rd) and

2
(
u,wφ

i

)
ρ(φ) = 0. (5.4.25)
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Testing (5.4.24) with η = wφ
i ∈ H1

D(Ω;Rd) immediately yields µ = 0, as wφ
i is an

L2
φ(Ω;Rd)-normalized eigenfunction. As λφ

i is assumed to be simple, we obtain from
(5.4.25) that u = 0. This shows that the operator is injective.
To verify surjectivity we take an arbitrary tuple (f , κ) ∈ H−1(Ω;Rd) × R and we need to
show that there exists a solution (u, µ) ∈ H1

D(Ω;Rd) × R of the system

⟨E (u) , E (η)⟩C(φ) − λφ
i (u,η)ρ(φ) − µ

(
wφ

i ,η
)

ρ(φ) = ⟨f ,η⟩H−1,H1 ,

2
(
u,wφ

i

)
ρ(φ) = κ,

(5.4.26)

for all η ∈ H1
D(Ω;Rd). Choosing µ = −⟨f ,wφ

i ⟩H−1,H1 , we infer that a solution u ∈
H1

D(Ω;Rd) needs to fulfill

⟨E (u) , E (η)⟩C(φ) − λφ
i (u,η)ρ(φ) = ⟨f ,η⟩H−1,H1 − ⟨f ,wφ

i ⟩H−1,H1
(
wφ

i ,η
)

ρ(φ) , (5.4.27)

for all η ∈ H1
D(Ω;Rd). Testing again with the normalized eigenfunction wφ

i ∈ H1
D(Ω;Rd),

we deduce that

⟨f ,wφ
i ⟩H−1,H1 − ⟨f ,wφ

i ⟩H−1,H1
(
wφ

i ,w
φ
i

)
ρ(φ) = 0.

Hence, Lemma 5.4.4 implies the existence of a function u⊥ ∈ H1
D(Ω;Rd)∩⟨wφ

i ⟩⊥,L2
φ(Ω;Rd)

span ,
such that any solution of (5.4.27) can be written as u⊥ + αwφ

i ∈ H1
D(Ω;Rd) and vice

versa. Using the second equation of (5.4.26), we finally conclude that(
u⊥ + κ

2 wφ
i ,−⟨f ,wφ

i ⟩
)

∈ H1
D(Ω;Rd) × R, (5.4.28)

is a solution of (5.4.26).
In summary, this proves that

∂(w,λ)F (φ,wφ
i , λ

φ
i ) : H1

D(Ω;Rd) × R → H−1(Ω;Rd) × R

is bijective, and thus an isomorphism.
As now all requirements are verified, the implicit function theorem can be applied to the
equation F

(
φ,wφ

i , λ
φ
i

)
= 0. It implies that there exist radii r0, r

φ
i > 0 such that the

mapping

Sφ
i : Br0(φ) ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) → Brφ

i

(
(wφ

i , λ
φ
i )
)

⊂ H1
D(Ω;Rd) × R,

is well-defined, continuously Fréchet-differentiable and satisfies

F
(
ϑ, Sφ

i (ϑ)
)

= 0,

for all ϑ ∈ Br0(φ), where Sφ
i (ϑ) is the unique element fulfilling Sφ

i (ϑ) ∈ Brφ
i

(
(wφ

i , λ
φ
i )
)

and satisfying this equation. In particular, this means that〈
E
(
Sφ

i,1(ϑ)
)

E (η)
〉
C(ϑ)

= Sφ
i,2(ϑ)

ˆ
Ω
ρ(ϑ)Sφ

i,1(ϑ) · η dx,
ˆ

Ω
ρ(ϑ)

∣∣Sφ
i,1(ϑ)

∣∣2 dx = 1,
(5.4.29)
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for all η ∈ H1
D(Ω;Rd), and thus, Sφ

i,1(ϑ) ∈ H1
D(Ω;Rd) is a L2

ϑ(Ω,Rd)-normalized eigen-
function to the eigenvalue Sφ

i,2(ϑ).

However, it is still not clear whether the eigenvalues Sφ
i,1(ϑ) and λϑ

i are actually identi-
cal. By construction, it holds that Sφ

i (φ) =
(
wφ

i , λ
φ
i

)
. We now recall that, according

to Lemma 5.3.5 and Lemma 5.3.8, both ϑ 7→ λϑ
i and ϑ 7→ wϑ

i are continuous on a suit-
able neighborhood around φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ). In particular, we recall from
Lemma 5.3.8 that this neighborhood is chosen in such a way that λϑ

i is simple, which will
be needed later. In combination with (5.4.29) and the uniqueness of Sφ

i (ϑ), we conclude
that there exists a radius δφ

i ∈ (0, r0] such that(
wϑ

i , λ
ϑ
i

)
= Sφ

i (ϑ) for all ϑ ∈ Bδφ
i

(φ). (5.4.30)

Via restriction to the ball Bδφ
i

(φ), we can thus rewrite the operator Sφ
i as

Sφ
i : Bδφ

i
(φ) ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN ) → H1

D(Ω;Rd) × R,

ϑ 7→
(
wϑ

i , λ
ϑ
i

)
.

It remains to compute the Fréchet-derivative of Sφ
i at a point ϑ ∈ Bδφ

i
(φ), which means

computing the desired Fréchet-derivatives of the i-th eigenvalue and the corresponding
eigenfunction with respect to ϑ.
To this end, let ϑ ∈ Bδφ

i
(φ) be arbitrary. Using the chain rule, we conclude that the

Fréchet-derivative (
Sφ

i (ϑ)
)′

h =
(
(wϑ

i )′h, (λϑ
i )′h

)
,

satisfies the equation

∂(w,λ)F (ϑ, Si(ϑ))
(
(wϑ

i )′h, (λϑ
i )′h

)
= −∂ϑF (ϑ, Si(ϑ))h in H−1(Ω;Rd) × R (5.4.31)

for any direction h ∈ H1(Ω;RN ) ∩L∞(Ω;RN ). Note that we will omit the exponent φ in
Sφ

i for a clearer presentation. With the partial derivatives computed in (5.4.22a)-(5.4.22f)
we obtain

∂ϑF (ϑ, Si(ϑ))h =

−∇ ·
[
C′(ϑ)hE(wϑ

i )
]

− λϑ
i ρ

′(ϑ)hwϑ
i´

Ω ρ
′(ϑ)h

∣∣∣wϑ
i

∣∣∣2 dx

 ∈ H−1(Ω;Rd) × R,

for all h ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ), and

∂(w,λ)F
(
ϑ, Si(ϑ)

)
(u, µ) = ∂wF

(
ϑ, Si(ϑ)

)
u + ∂λF

(
ϑ, Si(ϑ)

)
µ

=
(

−∇ · C(ϑ)E(u) − λϑ
i ρ(ϑ)u − µρ(ϑ)wϑ

i

2
´

Ω ρ(ϑ)wϑ
i · u dx

)
∈ H−1(Ω;Rd) × R,

for all (u, µ) ∈ H1
D(Ω;Rd)×R. Consequently, (5.4.31) is equivalent to the system (5.4.26)

written for

(u, µ) =
(
(wϑ

i )′h, (λϑ
i )′h

)
,
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f = ∇ ·
[
C′(ϑ)h E(wϑ

i )
]

+ λϑ
i ρ

′(ϑ)hwϑ
i ,

κ = −
ˆ

Ω
ρ′(ϑ)h

∣∣wϑ
i

∣∣2 dx,

with φ replaced by ϑ ∈ Bδφ
i

(φ). Recalling the Fredholm alternative 5.4.4, and noting
that λϑ

i is simple by its construction, analogously as in (5.4.28) we deduce that µ =
−⟨f ,wϑ

i ⟩H−1,H1 , which directly yields

(
λϑ

i

)′
h =

〈
E(wϑ

i ), E(wϑ
i )
〉
C′(ϑ)h

− λϑ
i

ˆ
Ω
ρ′(ϑ)h

∣∣wϑ
i

∣∣2 dx,

Plugging this into (5.4.26) with the above choices for u, µ f and κ, we conclude that
(wφ

i )′h satisfies 〈
E((wϑ

i )′h), E(η)
〉
C(ϑ)

− λϑ
i

ˆ
Ω
ρ(ϑ)(wϑ

i )′h · η dx

= −
〈
E(wϑ

i ), E(η)
〉
C′(ϑ)h

+ λϑ
i

ˆ
Ω
ρ′(ϑ)hwϑ

i · η dx

+ (λϑ
i )′h

ˆ
Ω
ρ(ϑ)wϑ

i · η dx,

(5.4.32)

for all η ∈ H1
D(Ω;Rd), and(

(wϑ
i )′h,wϑ

i

)
ρ(ϑ)

= κ

2 = −1
2

ˆ
Ω
ρ′(ϑ)h

∣∣wϑ
i

∣∣2 dx.

This completes the proof.

5.5. The optimality system

We can now apply the theory developed in Section 5.3 and Section 5.4 to show that
the optimization problem (Pε

l ) (that was introduced in Subsection 2.1.11) possesses a
minimizer if the set Gm∩U c is non-empty. Here, the assumption that the set of admissible
phase-fields is non-empty is actually necessary as the sets S0 and S1 could be chosen in
such a way that no φ ∈ U c can have the desired regularity H1(Ω;RN ) or the mean value
constraint imposed by Gm is never met, see also the discussion in Section 2.1.11.

Remark 5.5.1. It is worth mentioning that we do not need any boundedness assumption
on the penalizing function Ψ in order to prove the existence of a minimizer to (Pε

l ). In
analogy to Lemma 3.2.7, one can show that there are constants C1,ε, C2,ε > 0 depending
only on the choice of Cε and ρε such that

C1,ελ
M
k ≤ λε,φ

k ≤ C2,ελ
M
k for all φ ∈ G.

Here, λM
k denotes the k-th eigenvalue of the problem (5.2.1) with C ≡ Id and ρ ≡ 1.

Qualitatively speaking, λM
k denotes an eigenvalue in the situation when the whole design

domain is occupied by one material.

Theorem 5.5.2 (Existence of a minimizer to (Pε
l )). Suppose that the set Gm ∩ U c is

non-empty. Then the problem (Pε
l ) possesses a minimizer φ ∈ Gm ∩ U c.
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Proof. To proof the assertion, we apply the direct method in the calculus of variations.
Recalling that Ψ is continuous we first observe using Remark 5.5.1 that the objective
functional is bounded below, i.e. there is a constant C > 0 such that

−C ≤ Jε(φ) < ∞ for all φ ∈ Fad = Gm ∩ U c.

Since Fad is non-empty, the infimum

J̄ := inf
φ∈Fad

Jε(φ)

exists in R. Thus, there exists a minimizing sequence (φk)k∈N ⊂ Fad with J(φk) → J̄ as
k → ∞. Using the fact that (φk)k∈N is bounded in H1(Ω;RN ), we infer that

φk ⇀ φ in H1(Ω;RN ), as k → ∞,

along a non-relabeled subsequence. As the sequence (φk)k∈N lies in Gm it is also bounded
in L∞(Ω;RN ). Hence, Theorem 5.3.4 implies that

λ
φk
ij

→ λφ
ij
, as k → ∞,

for all j = 1, . . . , l. As Ψ is continuous and the Ginzburg–Landau energy is weakly lower
semi-continuous, we conclude that

Jε
l (φ) ≤ lim inf

k→∞
Jε

l (φk) = J̄ .

This directly implies that Jε
l (φ) = J̄ and thus, φ is a minimizer of the functional J on

the set Fad. This completes the proof.

Now, invoking the differentiability properties established in Section 5.4, we can derive a
first-order necessary condition for local optimality.

Theorem 5.5.3 (The optimality system to (Pε
l )). Let φ ∈ (Gm ∩ U c) be a local minimizer

of the optimization problem (Pε
l ), i.e., there exists δ > 0 such that

Jε
l (ϑ) ≥ Jε

l (φ) for all ϑ ∈ Gm ∩ U c with ∥ϑ − φ∥H1(Ω;RN )∩L∞(Ω;RN ) < δ.

Suppose that the eigenvalues λφ
i1
, . . . , λφ

il
are simple and let us fix L2

φ(Ω;Rd)-normalized
eigenfunctions wφ

i1
, . . . ,wφ

il
∈ H1

D(Ω;Rd) to the eigenvalues λφ
i1
, . . . , λφ

il
, respectively.

Then the following optimality system is satisfied:

• The state equations
−∇ ·

[
C(φ)E(wφ

ij
)
]

= λφ
ij
ρ(φ)wφ

ij
in Ω,

wφ
ij

= 0 on ΓD,[
C(φ)E(wφ

ij
)
]

n = 0 on Γ0,

(SEj)

are satisfied for all j ∈ {1, . . . , l}.
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• The variational inequality

0 ≤ γε

ˆ
Ω

∇φ : ∇(ϑ − φ) dx+ γ

ε

ˆ
Ω
ψ′

0(φ)(ϑ − φ) dx

+
l∑

j=1

{
[∂λij

Ψ]
(
λφ

i1
, . . . , λφ

il

) (〈
E(wφ

ij
), E(wφ

ij
)
〉
C′(φ)(ϑ−φ)

− λφ
ij

ˆ
Ω
ρ′(φ) (ϑ − φ)

∣∣wφ
ij

∣∣2 dx
)} (V I)

is satisfied for all ϑ ∈ (Gm ∩ U c) and all j ∈ {1, . . . , l}.

Proof. Since Gm ∩U c is convex, it holds that φ+t(ϑ−φ) ∈ Gm ∩U c for all ϑ ∈ Gm ∩U c

and all t ∈ [0, 1]. As the objective functional Jε
l is differentiable in every admissible

direction ϑ − φ, we know that

0 ≤ d
dtJ

ε
l

(
φ + t(ϑ − φ)

)∣∣
t=0 = (Jε

l )′(φ)(ϑ − φ).

Using (5.4.12) in Theorem 5.4.3 it is now straightforward to check that (Jε
l )′(φ)(ϑ − φ)

is identical with the right-hand side of the variational inequality. This completes the
proof.

Remark 5.5.4. If the first eigenvalue λφ
1 is not simple but only λφ

1 and further simple
eigenvalues appear in the objective functional, we can still derive a variational inequality
by means of the semi-differentiability established in Theorem 5.4.2. This is because in the
above proof only variations φ + t(ϑ − φ) with positive t are considered.
To be precise, let us assume that the multiplicity of the eigenvalue λφ

1 is M ∈ N. This
means that

λφ
1 = λφ

2 = ... = λφ
M .

If now λφ
1 appears in (Pε

l ) but none of the eigenvalues λφ
2 = ... = λφ

M does, the term

〈
E(wφ

1 ), E(wφ
1 )
〉
C′(φ)(ϑ−φ) − λφ

1

ˆ
Ω
ρ′(φ) (ϑ − φ)

∣∣wφ
1
∣∣2,

in the variational inequality has to be replaced by

inf

⟨E(u), E(u)⟩C′(φ)(ϑ−φ) − λφ
1 (u,u)ρ′(φ)(ϑ−φ)

∣∣∣∣∣∣∣∣
u ∈ H1

D(Ω;Rd) is an
eigenfunction to λφ

1
with ∥u∥L2

φ(Ω;Rd) = 1

 .
Of course, if λφ

1 is simple (i.e., M = 1) both terms coincide.
In the following we will only discuss the case of simple eigenvalues, but keep the fact in
mind that it is not necessary to require simplicity of the first eigenvalue.
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5.6. Combination of compliance and eigenvalue optimization

We now want to analyze the optimization problem (Kε
l ) (that was introduced in Sec-

tion 2.1.12) by establishing results similar to those in Section 5.5 To this end, we will use
the control-to-state operator

S : H1(Ω;RN ) ∩ L∞(Ω;RN ) → H1
C(Ω;Rd), φ 7→ u(φ)

that was introduced in [32] and maps any φ ∈ H1(Ω;RN ) ∩ L∞(Ω;RN ) onto its corre-
sponding solution u = u(φ) of the state equation (2.1.31). This allows us to consider the
reduced optimization problem

min Iε
l (φ) = αF

(
S(φ),φ

)
+ βJ0

(
S(φ),φ

)
+ γEε(φ) + Ψ(λφ

i1
, . . . , λφ

il
)

s.t. φ ∈ Gm ∩ U c, (2.1.31) is fulfilled,
and λφ

i1
, . . . , λφ

il
are eigenvalues of (5.2.1)

(Kε∗
l )

(with α, β ≥ 0, γ, ε > 0 and m ∈ (0, 1)N ∩ ΣN ), which is obviously equivalent to the
original problem (Kε

l ).
The following theorem ensures the existence of a minimizer to (Kε∗

l ) or (Kε
l ), respectively.

Theorem 5.6.1 (Existence of a minimizer to (Kε∗
l )). Suppose that the set Gm ∩ U c is

non-empty. Then the problem (Kε∗
l ) has a minimizer φ ∈ Gm ∩ U c.

Proof. The assertion can be verified by simply combining the proof in [32, Theorem 4.1]
and the proof of Theorem 5.5.2. Therefore we omit the details.

From the differentiability properties deduced in [32] and in this chapter we obtain a
variational inequality for the problem (Kε

l ). Note that for ν ∈ (0, 1), the functional J0
is in general not differentiable where the integral raised to the power ν is equal to zero.
Hence, as in [32], we only consider (u,φ) such thatˆ

Ω
c
(
1 − φN) |u − uΩ|2 dx ̸= 0,

if β ̸= 0.
Eventually, we can state the optimality system for the combined problem where the first-
order necessary condition for local optimality is incorporated.
Theorem 5.6.2 (The optimality system to (Kε∗

l )). Let φ ∈ (Gm ∩ U c) be a local mini-
mizer of the optimization problem (Kε∗

l ), i.e., there exists δ > 0 such that

Iε
l (ϑ) ≥ Iε

l (φ) for all ϑ ∈ Gm ∩ U c with ∥ϑ − φ∥H1(Ω;RN )∩L∞(Ω;RN ) < δ.

Suppose that the eigenvalues λφ
i1
, . . . , λφ

il
are simple and let us fix L2

φ(Ω;Rd)-normalized
eigenfunctions wφ

i1
, . . . ,wφ

il
∈ H1

D(Ω;Rd) to the eigenvalues λφ
i1
, . . . , λφ

il
, respectively.

Then, there exist a state u ∈ H1
C(Ω;Rd) and an adjoint state p ∈ H1

C(Ω;Rd) such that
the tuple (

u,φ,p,
(
wφ

ij

)l
j=1,

(
λij

)l
j=1

)
∈ H1

C(Ω;Rd) ×
(
Gm ∩ U c

)
×H1

C(Ω;Rd) ×
(
H1

D(Ω;Rd)
)l × Rl

fulfills the following optimality system:



192 CHAPTER 5. ANALYSIS OF THE DIFFUSE INTERFACE PROBLEM

• The state equations
−∇ · [C(φ)E(u)] =

(
1 − φN

)
f in Ω,

u = 0 on ΓC ,

[C(φ)E(u)] n = g on Γg,

(SE∗)

and 
−∇ ·

[
C(φ)E(wφ

ij
)
]

= λφ
ij
ρ(φ)wφ

ij
in Ω,

wφ
ij

= 0 on ΓD,[
C(φ)E(wφ

ij
)
]

n = 0 on Γ0,

(SE∗
j )

for j = 1, . . . , l, are satisfied in the weak sense.

• The adjoint equation
−∇ · [C(φ)E(p)] = α

(
1 − φN)f

+ 2βνJ0(u,φ)
ν−1

ν c
(
1 − φN) (u − uΩ) in Ω,

p = 0 on ΓC ,
[C(φ)E(p)] n = αg on Γg,

(AE∗)

is satisfied in the weak sense.

• The variational inequality

0 ≤ γε

ˆ
Ω

∇φ : ∇(ϑ − φ) dx+ γ

ε

ˆ
Ω
ψ′

0(φ) · (ϑ − φ) dx

− βνJ0(u,φ)
ν−1

ν

ˆ
Ω
c
(
ϑN − φN) |u − uΩ|2 dx

−
ˆ

Ω

(
ϑN − φN)f · (αu + p) dx − ⟨E(p), E(u)⟩C′(φ)(ϑ−φ)

+
l∑

j=1

{
[∂λij

Ψ]
(
λφ

i1
, . . . , λφ

il

) (〈
E(wφ

ij
), E(wφ

ij
)
〉
C′(φ)(ϑ−φ)

−λφ
ij

ˆ
Ω
ρ′(φ) (ϑ − φ)

∣∣wφ
ij

∣∣2 dx
)}

,

(V I∗)

is satisfied for all ϑ ∈ Gm ∩ U c.

Proof. Using the properties of the control-to-state operator S, the assertion can be proved
proceeding similarly as in the proof of Theorem 5.5.3.

This combination of compliance and eigenvalue optimization will also be considered nu-
merically in Section 6.9.3.



Chapter 6

Formal sharp-interface
asymptotics

6.1. Introduction

In this chapter we will study the formal sharp-interface limit of the optimization problem
studied in the previous chapter in order to relate the diffuse interface approach to the
physically reasonable setting of sharp interfaces. In this context the main goal will be
to derive the sharp-interface limit of the state equations and furthermore give an explicit
formulation of the first-order optimality conditions on the sharp-interface level. Let us
recall the state equations from the previous chapter given as


−∇ · [Cε(φ)E(wε,φ)] = λε,φρε(φ)wε,φ in Ω,

wε,φ = 0 on ΓD,

[Cε(φ)E(wε,φ)] n = 0 on Γ0.

(SEε)

Let us assume for the sake of this introduction that we are in the two-phase case, i.e.,
only one material can be distributed within the design domain. We will show in the
framework of formally matched asymptotic expansions that in the sharp-interface limit
the eigenvalues and eigenfunctions of above problem will converge to a function w0 and
a limit eigenvalue λ0 satisfying



−∇ ·
(
CM E(wnr

0 )
)

= λ0ρ
M w0 in ΩM ,

CM EM (w0) nΓMV
= 0 on ΓMV ,

w0 = 0 on ΓM
D ,

CM E(w0) n = 0 on ΓM
0 .

(SEMV )

Here ΩM is the final shape composed of the material, ΓMV is the free boundary between
shape and void, and ΓM

D ,ΓM
0 are the Dirichlet and Neumann parts of the boundary that the

193
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shape shares with the design domain. Furthermore we will pass the variational inequality

l∑
r=1

{
[∂λnr

Ψ]
(
λε,φ

n1 , . . . , λ
ε,φ
nl

)
·
(
⟨E(wε,φ

nr
), E(wε,φ

nr
)⟩C′(φ)(φ̃−φ) − λε,φ

nr

ˆ
Ω
ρ′(φ)

(
φ̃ − φ

)∣∣wε,φ
nr

∣∣2 dx
)}

+ γε

ˆ
Ω

∇φ : ∇(φ̃ − φ) dx+ γ

ε

ˆ
Ω
ψ′

0(φ)(φ̃ − φ) dx ≥ 0

(GIε)

derived in Theorem 5.5.3 to the sharp-interface limit, which then reads as

0 = γ σMV κMV +
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)λ0,nrρ

M |(w0,nr )M |2

−
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)CM EM (w0,nr ) : EM (w0,nr ) + γ

(
ϑ1

1 − ϑ2
1

)
on ΓMV .

(GEMV )

Here σMV is the energy of an optimal transition from the material phase into the void,
which plays the same role as the prefactor c0 in the Γ-limit of the Ginzburg–Landau
energy in the scalar case, see also Section 3.3.2. κMV denotes the mean curvature of the
interface ΓMV separating void and material and ϑ is the Lagrange multiplier associated
to the volume constraint imposed in the optimization problem. Eventually, we will see
that using classical shape calculus (GEMV ) is exactly the first-order condition associated
to the spectral shape optimization problem on the sharp-interface level.
Note that in (SEMV ) we see that on the free boundary ΓMV a homogeneous Neumann
boundary condition holds. As already discussed in the introduction of this thesis, spectral
problems of Neumann type are harder to analyze rigorously than Dirichlet problems from
the viewpoint of calculus of variations, due to the occurrence of severe instabilities of the
spectrum.
This motivates the ansatz of formally matched asymptotic expansions in order to gain
information about the sharp-interface limit. Let us mention that this approach enjoys
a huge popularity in the framework of phase-field approaches and has been applied suc-
cessfully especially to problems of Allen–Cahn or Cahn–Hilliard type in the literature,
see [1,26,32,46,97]. We also refer to [86,91,116] for a comprehensive overview of formally
matched asymptotic expansions.
Let us explain the general procedure of this technique for the sake of this introduction.
The key assumption we make is that all appearing ε-dependent quantities such as the
phase-field, the eigenfunctions and eigenvalues, each can be expanded as a power series in
integer orders of ε. Each quantity will be associated with two different kinds of expansions,
an inner asymptotic expansion and an outer asymptotic expansion. This distinction is
necessary in view of the expected behavior of the phase-field modeling the diffuse interface:
In regions “close” to the diffuse interface the phase-field exhibits rapid changes on a length-
scale of ε, because here the transition between the pure phases takes place. On the other
hand in regions “far” away from the interface the phase-field is close to the pure phases.
The key idea in order to account for this distinction will be the introduction of a rescaled
coordinate system which captures the ε-scaling of the inner region.
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In a first step we will plug in the outer expansions in the state equations and compare the
leading order terms in order to obtain a sharp-interface version of the state equation in
outer regions. At this point we will include a discussion about localized eigenmodes into
our analysis. As also mentioned in the introduction of this thesis, in numerical simulations
the formation of eigenmodes supported only in void producing eigenvalues polluting the
low part of the spectrum is a major problem. We will see how our asymptotic approach
is able to deal with localized modes, more precisely we will see that if such modes appear,
then as ε → 0 the corresponding eigenvalues λε will become arbitrarily large. Thus for
ε > 0 sufficiently small, localized modes do not affect the lower part of the spectrum
appearing in our optimization problem.
In order to obtain boundary conditions for the sharp-interface state equation, the key step
will be to match the inner with the outer expansion within a so-called intermediate region.
The idea here is to introduce a further intermediate coordinate system in order to make
the two coordinate systems the inner and outer expansion are formulated in comparable.
This comparison, the so called matching, will link the inner with the outer expansions
in the sharp-interface limit ε → 0. Considering now the leading order terms of the inner
expansions in the state equation, this matching allows us to derive the desired boundary
conditions.
As already mentioned above, we are also interested in the sharp-interface limit of the first-
order optimality condition given in form of a gradient inequality derived in the previous
chapter. As this variational inequality is given in integrated form we will first formulate it
in terms of a point-wise equality which we then can analyze in the framework of formally
matched asymptotics. This reformulation will be obtained by regularizing the non-linear
point-wise Gibbs-Simplex constraint in a similar fashion as in [35]. Note that in order to
pass from the variational formulation to a strong formulation we need to assume further
regularity of the involved eigenfunctions in order to then prove H2-regularity of the so-
lution of this variational inequality. The main benefit of this procedure is that it allows
us to explicitly construct Lagrange multipliers for all the constraints involved in our op-
timization problem. This construction provides us with crucial information that will be
exploited in the asymptotic analysis.
Finally, after arriving at the sharp-interface limit of the gradient equality we will also mo-
tivate this specific equation from the viewpoint of classical shape calculus, see [5]. More
precisely we will show that the gradient equality we have obtained via our formal approach
indeed coincides with the classical shape derivative of the associated sharp-interface cost
functional.
We end this chapter by presenting the numerical application of the phase-field approach
to several concrete optimization problems occurring in linear elasticity both included in
and exceeding the literature.
Concluding this introduction the key goal of this chapter is to pass the full optimality
system obtained in the previous chapter to the sharp-interface limit in order to obtain
state equations and a first-order necessary optimality condition in the form of a gradient
equality.
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6.2. Recalling the problem

In order to have a sound fundament for the upcoming analysis let us recall the overall
optimization problem and the corresponding first-order condition formulated as gradient
inequality in the previous chapter.
First let us recall the weak formulation of the state equation (SEε) from Definition 5.2.1.
For ε > 0 and φ ∈ L∞(Ω;RN ) we seek for a solution (λε,φ,wε,φ) ∈ R × H1

D(Ω;Rd)\ {0}
of

⟨E(wε,φ), E(η)⟩Cε(φ) = λε,φ(wε,φ,η
)

ρε(φ) for all η ∈ H1
D(Ω,Rd). (6.2.1)

Note that here the elasticity tensor Cε and the density ρε depend on the interface param-
eter ε. In order for our model to be adapted to the ansatz of formally matched asymptotic
expansions, which expresses all quantities in power series with respect to ε, we choose for
this chapter the decomposition

Cε(φ) = C(φ) + C̃NεφN =
N−1∑
i=1

Ciφi + C̃NεφN ,

ρε(φ) = ρ(φ) + ρ̃NεφN =
N−1∑
i=1

ρiφi + ρ̃NεφN ,

(6.2.2)

for any φ ∈ G, see Section 2.1.8 and Section 2.1.9. We note that the upcoming analysis
will work for ε replaced in (6.2.2) by any εp with p > 0, thus the concrete scaling is not
relevant for the analysis. Nevertheless, as mentioned also in Section 2.1.8, in Section 6.4.2
we will give a specific quadratic composition of Cε and ρε and a suited ε scaling of the
void components C̃N and ρ̃N in order to deal with localized eigenmodes. Note that for a
cleaner depiction we will often omit the index ε in C and ρ.
The associated optimization problem studied in the previous chapter reads as

min Jε
l (φ),

over φ ∈ Gm,
s.t. λε,φ

n1 , . . . , λ
ε,φ
nl
,

are eigenvalues of (6.2.1),

(Pε
l )

with

Jε
l (φ) := Ψ(λε,φ

n1 , . . . , λ
ε,φ
nl

) + γEε
GL(φ) for φ ∈ Gm

for some l ∈ N, where n1, . . . , nl ∈ N indicate a selection of eigenvalues. Here, γ > 0 is
a fixed constant related to surface tension, Ψ is a continuously differentiable penalization
function and Eε is the regular part of the Ginzburg–Landau energy Eε

GL, introduced in
Section 2.1.4. Note that according to the discussion in Section 2.1.3, opposed to the
previous chapter, we do not consider here the additional point-wise constraint φ ∈ U c in
the admissible set of our optimization problem.
In Theorem 5.5.3, the following first-order necessary optimality condition was derived.

Theorem 6.2.1. Let φ ∈ Gm be a local minimizer of (Pε
l ), i.e., there exists δ > 0 such

that Jε
l (φ) ≤ Jε

l (ζ) for all ζ ∈ Gm with ∥ζ − φ∥H1(Ω;RN )∩L∞(Ω;RN ) < δ. We further
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assume that the eigenvalues λε,φ
n1 , . . . , λ

ε,φ
nl

are simple. Then the gradient inequality

l∑
r=1

{
[∂λnr

Ψ]
(
λε,φ

n1 , . . . , λ
ε,φ
nl

)
·
(
⟨E(wε,φ

nr
), E(wε,φ

nr
)⟩C′(φ)(φ̃−φ) − λε,φ

nr

ˆ
Ω
ρ′(φ)

(
φ̃ − φ

)∣∣wε,φ
nr

∣∣2 dx
)}

+ γε

ˆ
Ω

∇φ : ∇(φ̃ − φ) dx+ γ

ε

ˆ
Ω
ψ′

0(φ)(φ̃ − φ) dx ≥ 0

(GIε)

holds for all φ̃ ∈ Gm.

Recall from Theorem 5.2.2 that here for φ ∈ L∞(Ω;RN ) we denote with{
wε,φ

1 ,wε,φ
2 , . . .

}
⊂ H1

D(Ω;Rd),

an L2
φ(Ω;RN ) orthonormal basis of the space L2

φ(Ω;RN ). In particular we have the
normalization condition

1 =
ˆ

Ω
ρ(φ)

∣∣wε,φ
i

∣∣ dx, (6.2.3)

for i ∈ N.
The upcoming sharp-interface analysis will be concerned with passing to the limit in the
state equation (SEε) as well as in the gradient inequality (GIε).

6.3. Analysis of the gradient inequality

In this section, we will show under a suitable regularity assumption on the eigenfunctions
involved in (GIε) that there exists a solution of the above gradient inequality possessing
even the regularity φ ∈ H2(Ω;RN ). This will be carried out by applying a regularization
process to the non-smooth potential ψ, which was employed in a similar fashion in [25,
35,37,87]. Our approach mainly follows the ideas of [35].
We regularize the gradient inequality in order to deal with the indicator functional IG

contained in the definition of the potential ψ. This will yield a sequence of H2-regular
approximating phase-fields

(
φδ
)

δ>0 solving regularized equations and converging to the
desired phase-field φ. Another convenient aspect of this procedure is that it will gener-
ate Lagrange multipliers that will allow us to transform the gradient inequality into an
equality. This strong formulation of (GIε) will be the starting point for our asymptotic
analysis in Section 6.6.

6.3.1. Regularization of ψ and rewriting the constraints

We notice that φ ∈ Gm needs to satisfy the constraint

φi(x) ≥ 0,
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for almost every x ∈ Ω and i = 1, . . . , N . To deal with this constraint we regularize the
potential functional appearing in the Ginzburg-Landau energy which was initially given
as

ψ(φ) = ψ0(φ) + IG(φ).

Definition 6.3.1. For δ > 0 we define the regularized potential

ψδ : RN → R, ψδ(φ) = ψ0(φ) + 1
δ
ψ̂(φ), (6.3.1)

where

ψ̂(φ) :=
N∑

i=1
(min(φi, 0))2. (6.3.2)

Remark 6.3.2. We see that the regularization now approximates the indicator functional
IRN

+
by the function 1

δ ψ̂. For δ ↘ 0 this exactly penalizes the negative parts of the
components of φ.

To deal with the remaining constraints hidden in Gm namely the integral constraintffl
Ω φ dx = m and the sum constraint ∑N

i=1 φ
i = 1 a.e. in Ω, we introduce linear orthogonal

projections.

Definition 6.3.3. Let us define the linear orthogonal projections

P´ : L2(Ω;RN ) → L2
0(Ω;RN ),

u 7→ u −
 

Ω
u dx,

(6.3.3)

with L2
0(Ω;RN ) :=

{
u ∈ L2(Ω;RN )

∣∣ ´
Ω u dx = 0

}
and

PT Σ : L2(Ω;RN ) → L2
T Σ(Ω;RN ),

u 7→ u −
∑̂

u,
(6.3.4)

where for u ∈ L2(Ω;RN )

∑̂
u :=

(
1
N

N∑
i=1

ui

)
1,

with 1 = (1, . . . , 1)T ∈ RN

L2
T Σ(Ω;RN ) :=

{
u ∈ L2(Ω;RN )

∣∣∣∣∣
N∑

i=1
ui = 0 a.e. in Ω

}
.

To simplify the notation, we further define the composition P := PT Σ ◦ P´ = P´ ◦ PT Σ.

Remark 6.3.4. Note that for the constraint φ(x) ∈ RN
+ , we can not introduce a linear

orthogonal projection as there is no vector space corresponding to this constraint. Thus,
the approximation of the indicator function in Definition 6.3.1 is actually necessary.
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6.3.2. Smoothness assumption and rewriting the gradient inequality

In order to obtain a suitable regularization of the gradient inequality, we need to find a
way to test (GIε) with arbitrary functions in H1(Ω;RN ) and not only in H1(Ω;RN ) ∩
L∞(Ω;RN ). Therefore sufficient smoothness of eigenfunctions has to be assumed.
We now fix a parameter ε > 0 as well as a solution φε ∈ Gm ⊂ H1(Ω;RN ) ∩ L∞(Ω;RN )
of (GIε). For a cleaner presentation we omit the superscript ε in the eigenvalues and
eigenfunctions. A priori, the term

⟨E
(
wφ

nr

)
, E
(
wφ

nr

)
⟩C′(φ)η =

ˆ
Ω

[
C′(φ)η

]
E
(
wφ

nr

)
: E
(
wφ

nr

)
dx

is well defined only for η ∈ L∞(Ω;RN ) as the expression E(wnr ) : E(wnr ) merely belongs
to L1(Ω). However, in order to consider a suitable regularized problem associated to
(GIε), we need this term to be an element in L2(Ω). This implies that we need to require
wnr ∈ W 1,4(Ω). Therefore we now make the following crucial smoothness assumption
which shall hold for the rest of this chapter.

(R) For r = 1, . . . , l let the eigenfunctions wnr involved in (GIε) be elements in the space
W 1,4(Ω;Rd).

Remark 6.3.5. Note that there exists regularity theory for the equations of linear and
nonlinear elasticity, see, e.g. [113,144]. However, due to the fact that the coefficient C(φ)
is only essentially bounded, one can only prove the existence of an (in general arbitrarily
small) parameter ι > 0 such that

E(wnr ) ∈ L2+ι(Ω). (6.3.5)

Note that there exist counterexamples going back to De Giorgi for linear systems of
elliptic PDEs (see, e.g., [27, Section 4.1]) providing unbounded solutions u ∈ W 1,2(B;Rd)
for d ≥ 3 to a system of the form

div(A(x)Du(x)) = 0 in B ⊂ Rd,

where A is bounded and coercive and B denotes the unit ball. In particular, in the
physically relevant case d = 3 where W 1,4(Ω;Rd) ↪→ C0(Ω;Rd), the condition wnr ∈
W 1,4(Ω;Rd) seems to be a real assumption as unbounded eigenfunctions might exist.

In the following, let (·, ·) denote the classical scalar product on L2(Ω;RN ). Recalling the
definition

C′(φ)η =
(

N∑
m=1

∂mCijkl(φ)ηm

)d

i,j,k,l=1

for η ∈ L2(Ω;RN ), we have

⟨E
(
wφ

nr

)
, E
(
wφ

nr

)
⟩C′(φ)η =

ˆ
Ω

( N∑
m=1

[∂mC(φ)]ηm
)
E
(
wφ

nr

)
: E
(
wφ

nr

)
dx

=
ˆ

Ω

N∑
m=1

(
[∂mC(φ)]E

(
wφ

nr

)
: E
(
wφ

nr

) )
ηm dx
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=
ˆ

Ω

N∑
m=1

[(
C′(φ)E

(
wφ

nr

)
: E
(
wφ

nr

) )]
m
ηm dx

=
(
C′(φ)E

(
wφ

nr

)
: E
(
wφ

nr

)
,η
)
.

Note that the term in the last line is to be understood as

C′(φ)E
(
wφ

nr

)
: E
(
wφ

nr

)
=
(
[∂mC(φ)]E

(
wφ

nr

)
: E
(
wφ

nr

) )N

m=1
∈ L2(Ω;RN ).

Thus, the projection of this term is well defined and the L2 regularity of this object is
ensured by the fact that Cijkl ∈ C1,1

loc (RN ;R) and assumption (R). For later purposes, we
point out that a straightforward computation reveals

PT Σ
[
C′(φ)E

(
wφ

nr

)
: E
(
wφ

nr

)]
=
[(
PT Σ

[
C′

ijkl(φ)
])d

i,j,k,l=1

]
E
(
wφ

nr

)
: E
(
wφ

nr

)
,

where

C′
ijkl(φ) = (∂mCijkl)N

m=1 ∈ L2(Ω;RN ).

To have a more concise notation, we will write

⟨E
(
wφ

nr

)
: E
(
wφ

nr

)
⟩PT Σ[C′(φ)] := PT Σ

[
C′(φ)E

(
wφ

nr

)
: E
(
wφ

nr

)]
.

Analogously, we use the notation(
wφ

nr
,wφ

nr

)
ρ′(φ)η =

(
ρ′(φ)wφ

nr
· wφ

nr
,η
)

for the density term. To reformulate the gradient inequality (GIε), we further define the
function

fφ := −
l∑

r=1

{
[∂λij

Ψ]
(
λφ

n1 , . . . , λ
φ
nl

)(
C′(φ)E

(
wφ

nr

)
: E
(
wφ

nr

)
− λφ

nr
ρ′(φ)wφ

nr
· wφ

nr

)}
− γ

ε
ψ′

0(φ) .
(6.3.6)

From the above considerations, we infer fφ ∈ L2(Ω;RN ). As φ ∈ Gm is fixed, we write
f = fφ in the following. Using this notation, we directly obtain:

Proposition 6.3.6. The gradient inequality (GIε) is equivalent to

γε (∇φ,∇(φ̃ − φ))L2 ≥ (f , φ̃ − φ)L2 for all φ̃ ∈ Gm. (6.3.7)

6.3.3. The regularized problem and its limit

Now that we have introduced the regularized potential and suitable orthogonal projections,
and have made the necessary regularity assumption (R), we can formulate a regularized
problem which will approximate our initially fixed solution φ ∈ Gm of (GIε) in order to
provide the desired H2-regularity of φ.
Using all the previously introduced notation, we are now in a position to state the so-called
regularized problem.
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Definition 6.3.7. Let

G̃m :=
{

φ̃ ∈ H1(Ω;RN )
∣∣∣∣∣
 

Ω
φ̃ dx = m and

N∑
i=1

φ̃i = 1 a.e. in Ω
}
. (6.3.8)

We say that φδ ∈ G̃m is a solution to the regularized problem if it solves

γε
(
∇φδ,∇η

)
+ γ

δε

(
P [ϕ̂(φδ)],η

)
= (Pf ,η) for all η ∈ H1(Ω;RN ). (RE)

Before proving the existence of a solution to (RE), we recall some properties proven in [35]
that will be important for the upcoming analysis.

Proposition 6.3.8. Let ψ̂ be as defined in (6.3.2). Then the following properties hold
true.

(a) The weak derivative fulfills

∇ψ̂ = ϕ̂ (6.3.9)

where, for ξ ∈ RN , ϕ̂i(ξ) := ϕ̂i(ξi) := 2
[
ξi
]
− with [s]− := min(s, 0) for all s ∈ R.

(b) Monotonicity: ϕ̂ is non-decreasing in each component, i.e.,

0 ≤
(
ϕ̂i(r) − ϕ̂i(s)

)
(r − s) (6.3.10)

for all r, s ∈ R and i = 1, . . . , N .

(c) Convexity: ψ̂ is convex, i.e.,

(ξ − η) · ϕ̂(η) ≤ ψ̂(ξ) − ψ̂(η) (6.3.11)

for all ξ,η ∈ RN .

Now, we are in a position to prove the existence result for the regularized problem. In
order to show H2-regularity of the solution we need the following regularity assumption
on the boundary of the design domain which shall hold for the rest of the chapter.

(D) In addition to the assumptions on the Lipschitz design domain Ω in Section 2.1.10,
we assume that Ω has at least one of the following properties:

(i) The boundary ∂Ω is of class C1,1.
(ii) Ω is convex.

The well-posedness result for the regularized problem (RE) reads as follows.

Lemma 6.3.9. For δ > 0 there exists a unique solution φδ ∈ G̃m ⊂ H1(Ω;RN ) of (RE).
The solution possesses the regularity φδ ∈ H2(Ω;RN ) and it holds

−∆φδ = − 1
δε2P [ϕ̂(φδ)] + 1

γε
Pf a.e. in Ω

∇φδ n = 0 a.e. on ∂Ω,
(PRE)
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Proof. First of all, we want to show that there exists at most one solution to (RE). To
this end, we assume that there are two solutions φδ,1,φδ,2 ∈ G̃m. Then, by subtracting
the corresponding equations, we obtain

γε
(
∇[φδ,1 − φδ,2],∇η

)
+ γ

εδ

(
P [ϕ̂(φδ,1) − ϕ̂(φδ,2)],η

)
= 0

for all η ∈ H1(Ω;RN ). Testing with φδ,1 − φδ,2 ∈ L2
T Σ(Ω;RN ) ∩ L2

0(Ω;RN ), we can drop
the projection P in the second term. Using the monotonicity property (6.3.10), we infer

γε
(
∇[φδ,1 − φδ,2],∇[φδ,1 − φδ,2]

)
≤ 0.

This yields φδ,1 = φδ,2 ∈ G̃m as these functions have identical mean value.
In order to prove the existence of a solution, we consider a suitable minimization problem.
Therefore, we define the functional

Iδ(ξ) :=γε

2

ˆ
Ω

|∇ξ|2 dx+ γ

εδ

ˆ
Ω
ψ̂(ξ) dx−

ˆ
Ω

f · ξ dx (6.3.12)

for all ξ ∈ H1(Ω;RN ). If we can now show that there exists a φδ ∈ G̃m that solves the
minimization problem

min
ξ∈G̃m

Iδ(ξ), (6.3.13)

the existence result is proven since then the Gâteaux derivative of I ′
δ(φδ), which is given

by

I ′
δ(φδ)η =γε

(
∇φδ,∇η

)
+ γ

εδ

(
ϕ̂(φδ),η

)
− (f ,η), (6.3.14)

for all directions η ∈ H1(Ω;RN ) ∩ L2
T Σ(Ω;RN ) ∩ L2

0(Ω;RN ), vanishes. By applying the
projections PT Σ and P´ to any η ∈ H1(Ω;RN ) and then switching them to the other
component in the L2 scalar product, it follows that solving (6.3.13) is equivalent to solving
(RE).
Note that there is no need to project the gradient term. This is justified as follows. By
construction, we have

PT Ση = η −
[

1
N

N∑
k=1

ηk

]
1.

On the other hand, we compute

∇
[

N∑
k=1

ηk1
]

=
([

N∑
k=1

∂1η
k

]
1, . . . ,

[
N∑

k=1
∂dη

k

]
1
)
,

and therefore, the entries in each column are identical. Now, we compute

∇φδ : ∇
[

N∑
k=1

ηk1
]

=
N∑

i=1


[

N∑
k=1

∂iη
k

]
N∑

j=1
∂iφ

j
δ

 . (6.3.15)
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We see that this term vanishes as by construction, as ∑N
i=1 φ

δ,i = 1 a.e. in Ω because
φδ ∈ G̃m. In other words, ∂iφ

δ ∈ L2
T Σ(Ω;RN ).

As the gradient term is invariant under addition of constants we can also drop the pro-
jection P´ .

It remains to show that there exists a minimizer of (6.3.13). By construction, ψ̂ ≥ 0.
Furthermore, using Young’s inequality we find a constant C > 0 such thatˆ

Ω
|∇ξ|2 dx+

ˆ
Ω

f · ξ dx ≥ −C for all ξ ∈ G̃m
. (6.3.16)

This is obtained by absorbing the quantity ∥ξ∥2
L2 with the term ∥∇ξ∥2

L2 which controls the
whole H1(Ω;RN )-norm as all ξ ∈ G̃m have a fixed mean value. Hence, Iδ is bounded from
below on G̃m and the infimum exists. We thus find a minimizing sequence (φδ

k)k∈N ⊂ G̃m

such that

lim
k→∞

Iδ(φδ,k) = inf
φ∈G̃m

Iδ(φ).

In particular, ∥φδ
k∥H1(Ω;RN ) remains bounded and thus, there exists a φδ ∈ H1(Ω;RN )

and a non-relabeled subsequence with the properties

φδ
k ⇀ φδ in H1(Ω;RN ),

φδ
k → φδ in L2(Ω;RN ),

φδ
k → φδ a.e. in Ω.

From this convergence we deduce φδ ∈ G̃m. Noticing that ψ̂(φδ
k) ≤ |φδ,k|2 a.e. in Ω

and that ψ̂ is continuous, we apply the generalized majorized convergence theorem of
Lebesgue, see Theorem 2.2.4, to deduceˆ

Ω
ψ̂(φδ

k) dx →
ˆ

Ω
ψ̂(φδ) dx,

for k → ∞. The weak lower semi-continuity of norms yieldsˆ
Ω

∣∣∇φδ
∣∣2 dx ≤ lim inf

k→∞

ˆ
Ω

∣∣∇φδ
k

∣∣2 dx

and it holds

lim
k→∞

ˆ
Ω

f · φδ
k dx =

ˆ
Ω

f · φδ dx.

Altogether, we thus have

Iδ(φδ) ≤ lim inf
k→∞

Iδ(φδ
k) = inf

φ∈G̃m
Iδ(φ).

This implies that φδ ∈ G̃m is a minimizer.
Now that we have shown the existence of a solution φδ ∈ H1(Ω;RN ) to (RE), it remains
to prove that it possesses the desired regularity H2(Ω;RN ). Since φδ is a weak solution
of (RE), it can be interpreted as a weak solution of

−∆φδ = F in Ω,
∇φδ n = 0 on ∂Ω,

(6.3.17)
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with

F = F(φδ) = − 1
δε2P [ϕ̂(φδ)] + 1

γε
Pf ∈ L2(Ω;RN ). (6.3.18)

Due to assumption (D), elliptic regularity theory (see e.g., [101, Theorem 2.4.2.7] in
the case (D)(i) or [101, Theorem 3.2.3.1] in the case (D)(ii), respectively) yields φδ ∈
H2(Ω;RN ). In particular, using this regularity, we conclude from (RE) that φδ satisfies
(PRE).

As we want to pass to the limit in the regularized equation, we need some uniform bounds
to apply classical compactness results.

Lemma 6.3.10. Let φδ ∈ H2(Ω;RN ) be the solution of (RE). Then there exist a constant
C > 0 such that ∥∥φδ

∥∥
H2(Ω;RN ) ≤ C, (6.3.19)∥∥[φδ]

−
∥∥

L2(Ω;RN ) ≤ Cδ
1
2 , (6.3.20)

1
δ

∥∥P [ϕ̂(φδ)]
∥∥

L2(Ω;RN ) ≤ C, (6.3.21)

for all δ > 0.

Proof. By the previous lemma, we know that φδ minimizes Iδ (see (6.3.12)) over G̃m

(see (6.3.8)). Thus, we have

Iδ(φδ) ≤ Iδ(ξ), for all ξ ∈ G̃m
.

If we now choose any ξ ∈ Gm ⊂ G̃m, we know that it is additionally component-wise
non-negative and therefore ψ̂(ξ) = 0 a.e. in Ω. In view of definition (6.3.12), this yields

γε

2

ˆ
Ω

∣∣∇φδ
∣∣2 dx+ γ

εδ

ˆ
Ω
ψ̂(φδ) −

ˆ
Ω

f · φδ dx

≤ γε

2

ˆ
Ω

|∇ξ|2 dx−
ˆ

Ω
f · ξ dx

≤ C,

(6.3.22)

where C > 0 is a constant independent of δ. Recalling the absorption trick (6.3.16), we
obtain ∥∥φδ

∥∥
H1(Ω;RN ) ≤ C, (6.3.23)

which will be needed in the end of the proof. Furthermore, using the definition of ψ̂ (see
(6.3.2)), we deduce that

N∑
i=1

∥∥[φi
δ

]
−
∥∥2

L2 ≤ Cδ,

which directly leads to (6.3.20).
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We notice that 1
δ ϕ̂(φδ) is weakly differentiable (cf. [99, Lemma 7.6]) and belongs to

H1(Ω;RN ). In order to prove (6.3.21), we test (RE) with η = 1
δ ϕ̂(φδ). We obtain

γ

εδ

(
∇φδ,∇ϕ̂(φδ)

)
+ γ

δ2ε

ˆ
Ω

∣∣P [ϕ̂(φδ)]
∣∣2 dx

= 1
δ

ˆ
Ω

f · P [ϕ̂(φδ)] dx
(6.3.24)

Applying [99, Lemma 7.6] to ϕ̂, we further deduce
γ

εδ

(
∇φδ,∇ϕ̂(φδ)

)
≥ 0

since for a.e. x in Ω either ∇ϕ̂(φδ)(x) = 0 or ∇ϕ̂(φδ)(x) = ∇φδ(x). Applying Hölder’s
inequality in (6.3.24), we thus infer

γ

δ2ε

∥∥P [ϕ̂(φδ)]
∥∥2

L2 ≤ C

δ

∥∥P [ϕ̂(φδ)]
∥∥

L2 ,

and thus,
1
δ

∥∥P [ϕ̂(φδ)
]∥∥

L2 ≤ C.

As we now have bounded both the right-hand side of (PRE) and φδ itself in L2(Ω;RN )
uniformly in δ (see (6.3.23)), we can again apply elliptic regularity theory (see [101,
Theorem 2.3.1.5] or [101, Theorem 3.2.3.1]) to deduce (6.3.19).

In order to reformulate (PRE) by means of Lagrange multipliers that are expected to
converge in the weak sense, we need to get rid of the projection in (6.3.21).

Lemma 6.3.11. There exists a constant C > 0 such that
1
δ

∥∥ϕ̂(φδ)
∥∥

L2 ≤ C, (6.3.25)

for all δ > 0.

Proof. Note that the following proof works in complete analogy to [35, Theorem 2.1],
but for the sake of completeness we go through the steps here.
Testing (RE) with φδ ∈ H2(Ω;RN ) ∩ G̃m, we obtain

γε
(
∇φδ,∇φδ

)
+ γ

δε

(
ϕ̂(φδ), P´ φδ

)
=
(
Pf ,φδ

)
, (6.3.26)

where we used (
P [ϕ̂(φδ)],φδ

)
=
(
ϕ̂(φδ), P´PT Σφδ

)
=
(
ϕ̂(φδ), P´ φδ

)
,

as PT Σφδ = φδ − 1
N 1 and P´ 1 = 0. Now taking any ξ ∈ RN and using the defintion of

P´ , we infer from (6.3.26) that

γ

δε

(
ϕ̂(φδ), ξ −

 
Ω

φδ dx
)

= γ

δε

(
ϕ̂(φδ), ξ − φδ

)
− γε

(
∇φδ,∇φδ

)
+
(
Pf ,φδ

)
≤ γ

δε

(
ψ̂(ξ) − ψ̂(φδ), 1

)
+ C.

(6.3.27)
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For the last inequality, we used the convexity of ψ̂ (see (6.3.11)). The constant C > 0 can
be chosen uniformly in δ > 0 due to the a priori estimate (6.3.19).
Choosing β > 0 with β1 < m < 1 component-wise (which is possible as m ∈ (0, 1)
component-wise), we define

ξ :=
 

Ω
φδ dx± βei = m ± βei,

where ei ∈ RN denotes the i-th standard basis vector. Thus, by construction, ξ ≥ 0
component-wise. This directly implies ψ̂(ξ) = 0. Invoking ψ̂ ≥ 0, we infer from (6.3.27)
that

γ

δε

(
ϕ̂(φδ),±βei

)
≤ C.

Consequently, we have
1
δ

∣∣∣∣ 
Ω

ϕ̂(φδ) dx
∣∣∣∣ ≤ C

for all δ > 0. Therefore, using the definition of P = PT ΣP´ from Definition 6.3.3, we
deduce from (6.3.21) that

1
δ

∥∥PT Σϕ̂(φδ)
∥∥

L2 ≤ C. (6.3.28)

If we can finally find a uniform bound for 1
δ

∑̂
ϕ̂(φδ) in L2(Ω), we infer

1
δ

∥∥ϕ̂(φδ)
∥∥

L2 ≤ 1
δ

∥∥PT Σϕ̂(φδ)
∥∥

L2 + 1
δ

∥∥∑̂ϕ̂(φδ)
∥∥

L2 ≤ C (6.3.29)

for all δ > 0. To derive such a bound, we proceed as follows. Since φδ ∈ G̃m, we know
that ∑N

i=1 φ
i
δ(x) = 1 for almost all x ∈ Ω. Thus, for almost every x ∈ Ω there must be

a j(x) ∈ {1, . . . , N} such that
[
φδ(x)

]j(x) ≥ 0 and hence
[
ϕ̂(φδ(x))

]j(x) = 0. Altogether,
we obtain

[
PT Σϕ̂(φδ(x))

]j(x) =
[
ϕ̂(φδ(x))

]j(x) − 1
N

N∑
i=1

ϕ̂i(φδ(x)) = − 1
N

N∑
i=1

ϕ̂i(φδ(x)).

Recalling ∑̂ξ = 1
N

(∑N
i=1 ξ

i
)

1, we obtain from (6.3.28) that

1
δ

∥∥∑̂ϕ̂(φδ)
∥∥

L2 ≤ C.

Thus, (6.3.29) holds true and therefore, the claim is proven.

Now, we introduce suitable Lagrange multipliers and pass to the limit in the the regular-
ized equation.

Theorem 6.3.12. The initially chosen solution φ ∈ Gm of (GIε) possesses the regularity
φ ∈ H2(Ω;RN ). Furthermore, there are Lagrange multipliers Λ,µ ∈ L2(Ω;RN ) and
ϑ ∈ RN such that

−γε∆φ = 1
ε

(Λ + ϑ + µ) + PT Σfφ a.e. in Ω,

∇φn = 0 on ∂Ω.
(GSε)
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with

Λ = Λ1 for a suitable Λ ∈ L2(Ω), (6.3.30)
µi ≥ 0 and µiφi = 0 a.e. in Ω for all i ∈ {1, . . . , N}, (6.3.31)

N∑
i=1

ϑi = 0. (6.3.32)

Proof. From (6.3.19) we deduce the existence of a function φ ∈ H2(Ω;RN ) such that

φδ ⇀ φ in H2(Ω;RN ),
φδ → φ in H1(Ω;RN ),
φδ → φ a.e. in Ω,

ϕ̂(φδ) → 0 in L2(Ω;RN ),

(6.3.33)

as δ → 0 along a non-relabeled subsequence. This directly implies that φ(x) ∈ RN
+ for

almost all x ∈ Ω. Hence, since φδ ∈ G̃m, we know that φ ∈ Gm.
Recalling the definition of f = fφ in (6.3.6), we now define the Lagrange multipliers of
the regularized problem as

Λδ :=
∑̂(

γ

δ
ϕ̂(φδ)

)
,

ϑδ :=
 

Ω
PT Σ

(
γ

δ
ϕ̂(φδ) − εf

)
dx,

µδ := −γ

δ
ϕ̂(φδ).

(6.3.34)

The reason why we do not reformulate the projection term PT Σf by means of a Lagrange
multiplier is that this is a term depending on x, which will produce terms of order O( 1

ε2 )
when we consider the inner expansions in Section 6.6 due to the involved derivative of
eigenfunctions.
Recalling Definition 6.3.3, we have

Λδ + ϑδ + µδ = −γ

δ
PT Σ[ϕ̂(φδ)] − ε

 
Ω
PT Σf dx.

Hence, we can write (RE) as

γε
(
∇φδ,∇η

)
− 1
ε

(
Λδ + ϑδ + µδ,η

)
= (PT Σf ,η) for all η ∈ H1(Ω;RN ). (6.3.35)

We point out that the Lagrange multipliers are constructed in such a way that the factor
1
ε corresponding to the scaling of the original potential ψ is still present. This will be
important in the next sections for the sharp-interface asymptotics.
We know from Lemma 6.3.11 that Λδ,µδ ∈ L2(Ω;RN ) and ϑδ ∈ RN are bounded uni-
formly in δ. Hence, we find a subsequence and Λ,µ ∈ L2(Ω;RN ) and ϑ ∈ RN such
that

Λδ ⇀ Λ in L2(Ω;RN ),
ϑδ → ϑ in RN ,

µδ ⇀ µ in L2(Ω;RN ),
(6.3.36)
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for δ → 0. We additionally know from the definition of ϕ̂ in (6.3.9) that µ ≥ 0 component-
wise as weak convergence in L2(Ω;RN ) preserves non-negativity. Furthermore from the
construction in (6.3.34) we directly deduce (6.3.30) and (6.3.32).
Passing to the limit in (6.3.35), we infer

γε (∇φ,∇η) − 1
ε

(Λ + ϑ + µ,η) = (PT Σfφ,η) , for all η ∈ H1(Ω;RN ). (6.3.37)

Thus, the regularity φ ∈ H2(Ω;RN ) and partial integration yield the equation

−γε∆φ = 1
ε

(Λ + ϑ + µ) + PT Σfφ a.e. in Ω. (6.3.38)

If we can now show that for our initially fixed solution φ ∈ Gm of (GIε) it holds φ = φ,
the proof is complete.
Let us consider the test function η := φ−φ ∈ H1(Ω;RN )∩L∞(Ω;RN ). First of all, we look
at the Lagrange multipliers. Due to (6.3.30), we have

(
Λδ,η

)
= 0, as ∑N

i=1 η
i = 0 because

of φ,φ ∈ Gm. In view of (6.3.32) we know that
(
ϑ,η

)
= 0, because by construction´

Ω η dx = 0.
As already mentioned, we have µδ ≥ 0. Hence, using the monotonicity (6.3.10), we infer(

µδ,φδ
)

= −1
δ

(
ϕ̂(φδ),φδ

)
≤ 0.

Using the convergences (6.3.33) and (6.3.36), we deduce (µ,φ) ≤ 0. Recalling µ ≥ 0 and
that φ ∈ Gm is component-wise non-negative, we already infer (µ,φ) = 0.
As also φ ∈ Gm and φ is component-wise non-negative, we have (µ,φ) ≥ 0. Combining
these results and testing (6.3.37) with our particular choice η = φ − φ, we get

γε (∇φ,∇[φ − φ]) = −1
ε

(µ,φ) + (PT Σf ,φ − φ) ≤ (PT Σf ,φ − φ).

Considering on the other hand the gradient inequality (6.3.7) tested with φ̃ = φ ∈ Gm,
we have

γε (∇φ,∇[φ − φ]) ≥ (f ,φ − φ) = (PT Σf ,φ − φ).

Hence, by subtracting both inequalities, we infer

γε (∇[φ − φ],∇[φ − φ]) ≤ 0.

By
´

Ω φ − φ dx = 0 the Poincaré inequality gives us the desired identity φ = φ ∈
H2(Ω;RN ).
From the previous reasoning we know

N∑
i=1

ˆ
Ω
µiφi dx = (µ,φ)L2 = 0,

Furthermore, we know that µ,φ ≥ 0 component-wise and thus, each summand in above
equality has to be identical to 0, providing us with (6.3.31).

In the following, we use the above knowledge to show that our asymptotic expansions will
produce a state equation and a gradient equality in the sharp-interface limit.
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6.4. Asymptotic expansions

As mentioned above, we will now perform the procedure of sharp-interface asymptotics.
Therefore, we start by analyzing outer and inner expansions approximating the quantities
involved in our problem. The outer expansions are used to approximate these quantities
in regions far away from the interfacial layers. They will be used to derive the state
equation in the sharp-interface limit. The inner expansions are used in regions close to
the interfacial layers where the phase transition takes place. They will provide boundary
conditions for the equations obtained in the sharp-interface limit. As these layers are
expected to scale proportionally to ε, a rescaling is needed here. By comparing the
leading order equations, we will obtain jump conditions at the phase interfaces within the
design domain and a sharp-interface version of the gradient equality (GSε).
In the following, we choose (φε)ε>0 ⊂ Gm as a sequence of minimizers of the optimization
problem (Pε

l ). For r = 1, . . . , l,(
wε

nr
, λε

nr

)
ε>0 =

(
wε,φε

nr
, λε,φε

nr

)
ε>0 ⊂ H1

D(Ω;Rd) × R

denotes the corresponding sequence of L2
φε

(Ω;Rd) normalized eigenfunctions and eigenval-
ues, i.e., the solutions of the state equation (6.2.1) involved in the optimization problem
(Pε

l ). Note that in order to have a nice depiction of all indices in the following, we will
indicate the ε dependence in the exponent of each quantity.

6.4.1. Outer expansions

As in [32], we first consider the asymptotic expansion for regions far away from the
interface. Therefore, we assume expansions of the form

φε(x) =
∞∑

k=0
εkφk(x),

λε
nr

=
∞∑

k=0
εkλk,nr ,

wε
nr

(x) =
∞∑

k=0
εkwk,nr (x),

(6.4.1)

for all x ∈ Ω. Furthermore, we demand for all x ∈ Ω that φ0(x) ∈ G, φk(x) ∈ TΣ,ffl
Ω φ0 dx = m and

ffl
Ω φk dx = 0 for k ≥ 1, in order to be compatible with the constraints

on the phase-field formulated in Section 2.1.3. As we are concerned with a formal limit
process, we assume all the appearing quantities to possess a suitable regularity such that
we can write the state equation (6.2.1) in its strong formulation (SEε).
To ensure that φε exhibits the desired phase-field structure, we need to make the following
assumption:

(E) There is a C > 0 such that

lim sup
ε↘0

Eε
GL(φε) ≤ C.



210 CHAPTER 6. FORMAL SHARP-INTERFACE ASYMPTOTICS

Without this assumption, there would be no hope that for small ε the minimizers φε

of (Pε
l ) make transitions between pure phases only on a length-scale proportional to

ε, compare in particular Proposition 2.2.25 for the two-phase case. The Γ-limit of the
Ginzburg–Landau energy was studied rigorously in [23] in the multi-phase case. Note
that for φ ∈ G, we have

Eε
GL(φ) = Eε(φ) =

ˆ
Ω

ε

2 |∇φ|2 + 1
ε
ψ0(φ) dx,

since ψ = ψ0 on G, see Section 2.1.4. We further recall that ψ0 is continuous, non-negative
on G, and its zeros in G are exactly the unit vectors e1, . . . , eN (see Section 2.1.4). Hence,
the theory of [23] can be applied.
Using assumption (E) and applying Fatou’s lemma as in the proof of [23, Formula (2.8)],
we now infer

0 ≤
ˆ

Ω
ψ0(φ0) dx ≤ lim inf

ε↘0

ˆ
Ω
ψ0(φε) dx ≤ lim inf

ε↘0
εEε(φε) = 0.

Consequently, as φ0 ∈ G
ˆ

Ω
ψ(φ0) dx =

ˆ
Ω
ψ0(φ0) dx = 0.

Hence, we can partition the domain as

Ω =
N⋃

i=1
Ωi ∪ N with Ωi := {φ0 = ei} , (6.4.2)

where N ⊂ Ω is a Lebesgue null set. In general, the sets Ωi are only of finite perimeter
which is derived from the boundedness of the Ginburg–Landau energy, the inequality [23,
(3.1)] and [23, Proposition 2.2]. Nevertheless, for our asymptotic analysis we assume them
to be smooth enough.
With this knowledge we are in the position to derive the limit system resulting from (SEε)
in the framework of outer expansions.

Claim 6.4.1. Recall the scaling of C and ρ in (6.2.2), i.e.,

C(φ) = C(φ) + C̃NεφN =
N−1∑
i=1

Ciφi + C̃NεφN ,

ρ(φ) = ρ(φ) + ρ̃NεφN =
N−1∑
i=1

ρiφi + ρ̃NεφN ,

(6.4.3)

for φ ∈ G. Then, for r ∈ {1, . . . , l}, we obtain that the pair (λ0,nr ,w0,nr ) fulfills the
eigenvalue equations in the material regions

−∇ ·
[
CiE(w0,nr )

]
= λ0,nrρ

iw0,nr in Ωi,

w0,nr = 0 on ΓD ∩ ∂Ωi,[
CiE(w0,nr )

]
n = 0 on Γ0 ∩ ∂Ωi,

(SEi
0)
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for i = 1, . . . , N − 1. Furthermore, the normalization condition (6.2.3) is transferred to
the limit eigenfunction w0,nr meaning that

1 =
ˆ

Ω
ρ(φ0) |w0,nr |2 dx =

N−1∑
i=1

ˆ
Ωi

ρ(φ0) |w0,nr |2 dx. (6.4.4)

In particular, the eigenfunction w0,nr is non-trivial in Ωi for at least one index i ∈
{1, . . . , N − 1}. Thus, w0,nr cannot be a localized eigenmode as it cannot be supported
only in the void region ΩN .

Remark 6.4.2.

(a) Of course, the eigenvalue λε
nr

could degenerate in the limit, i.e., λ0,nr = 0. This is
no contradiction to the normalization (6.4.4) because w0,nr could potentially be a
non-trivial constant in each material region Ωi. If each material region Ωi shares
a sufficiently nice part of the boundary with ΓD, one can use Korn’s inequality
(see Section 2.2.2) to deduce that w0,nr = 0 in each Ωi, which would then indeed
contradict (6.4.5). The inner expansions will provide us with boundary conditions
that allow us to refine this statement, see Remark 6.7.1.

(b) In the case λ0,nr > 0, even though the limit eigenvalue equations (SEi
0) hold for any

i ∈ {1, . . . , N − 1}, the eigenfunction w0,nr could potentially be non-trivial only in
one particular material region Ωi but vanish in all other material regions Ωj with
j ∈ {1, . . . , N − 1} \ {i}. This means that a non-trivial equation might hold only in
one single material region.

Let us show the above claim assuming that outer expansions of the form (6.4.1) exist. For
the sake of a cleaner presentation, we will now fix the index nr ∈ N and in the following, we
omit the subscript nr. In the spirit of formal asymptotics, we consider the state equation
(SEε), i.e.,

−∇ · [C(φε)E(wε)] = λερ(φε)wε a.e. in Ω,

and the normalization condition

1 =
ˆ

Ω
ρ(φε) |wε|2 dx (6.4.5)

resulting from (6.2.3). Then, we plug in the asymptotic expansions (6.4.1) and consider
each resulting order in ε separately.
We deduce that (6.4.5) reads to order O(1)

1 =
ˆ

Ω
ρ(φ0) |w0|2 dx =

N−1∑
i=1

ˆ
Ωi

ρi |w0|2 dx,

which proves (6.4.4). As a consequence, w0 has to be non-trivial in in Ωi for at least one
index i ∈ {1, . . . , N − 1}.
Eventually, we compare the contributions of order O(1) in the state equation. We obtain

−∇ ·
[
C(φ0)E(w0)

]
= λ0ρ(φ0)w0 a.e. in Ω, (6.4.6)
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which reads for each phase

−∇ ·
[
CiE(w0)

]
= λ0ρ

iw0 a.e. in Ωi

for i = 1, . . . , N − 1.
The remaining boundary conditions on the outer boundary Γ follow directly by plugging
in the asymptotic expansion into (SEε). This completes our argumentation.

6.4.2. Intermezzo on spurious eigenmodes

As also mentioned in the introduction we want now to analytically justify the model that
will be chosen for the numerical computations in order to avoid spurious eigenmodes. As
we have seen in the previous proof, assuming outer expansions of the form (6.4.1) and a
decomposition of C and ρ as in (6.4.3), we recover the desired limit system. Furthermore,
we see that in (6.4.3) it is only important to scale the void contributions C̃N and ρ̃N with
some εp where p > 0, but the specific choice of p > 0 does not affect the steps of the
proof. This is also why we keep this model for the analysis in the subsequent sections
noting that also for all subsequent steps any scaling of the void contributions will work.
However, in numerical simulations the phenomenon of spurious eigenmodes is a serious
issue, see [5, 29, 55, 136]. The problem is that if the model parameters are not suitably
chosen, eigenmodes with support only in void regions can form. The associated eigenvalues
are then of course nonphysical as void should not contribute to the resonance behavior
of a structure. Nevertheless, in (Pε

l ) only a finite selection of eigenvalues enters our
optimization problem, i.e., even though spurious eigenmodes might not be avoided in
simulations, they do not pose a problem if the associated eigenvalues are large, because
then these modes do not affect the optimization problem. Thus, the key idea as also
observed in above literature is to choose the scaling in (6.4.3) in such a way that spurious
eigenmodes will only produce large eigenvalues in simulations or more precisely eigenvalues
λε with λε → ∞ for ε → 0. In other words this means that with an adequate model,
spurious eigenmodes will not enter the sharp-interface limit as their eigenvalues leave the
spectrum.
In order to include the possibility of spurious eigenmodes in our asymptotic expansions
we have to allow also for terms of negative order in ε.

Claim 6.4.3. Assume the following outer asymptotic expansions

φε(x) =
∞∑

k=0
εkφk(x),

λε
nr

=
∞∑

k=−m

εkλk,nr ,

wε
nr

(x) =
∞∑

k=−m

εkwk,nr (x),

(6.4.7)
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with m ∈ N arbitrary. Let C and ρ be given as

C(φ) = C(φ) + C̃Nε(φN )2 =
N−1∑
i=1

Ci(φi)2 + C̃Nε(φN )2,

ρ(φ) = ρ(φ) + ρ̃Nε2(φN )2 =
N−1∑
i=1

ρi(φi)2 + ρ̃Nε2(φN )2,

(6.4.8)

for φ ∈ G. Then, for r ∈ {1, . . . , l}, we obtain wk,nr = 0 and λk,nr = 0 for k < −1 and
the pair (λ−1,nr ,w−1,nr ) fulfills

−∇ ·
[
C̃N E(w−1,nr )

]
= λ−1,nr

[
ρ̃N + ρ(φ1)

]
w−1,nr in ΩN ,

w−1,nr = 0 on ΓD ∩ ∂ΩN ,[
C̃N E(w−1,nr )

]
n = 0 on Γ0 ∩ ∂ΩN ,

(SEN
0 )

and w−1,nr = 0 in Ω\ΩN .

Remark 6.4.4. The asymptotic analysis in the following argumentation is crucially based
on the beautiful interplay of the quadratic interpolation of C and ρ in (6.4.8) and the scal-
ing of the void components in (6.4.3). Note that these two features of the model proposed
in this subsection are also reflected in the numerical part, which crucially depends on the
quadratic interpolation on the one hand and the relatively lower scaling of the density
compared to the elasticity in the void on the other hand. It is also seen in applications in
the literature that a relatively lower scaling of mass compared to stiffness is an appropriate
choice to deal with localized eigenmodes, see [5, 55,136].

We now argue why Claim 6.4.3 is true. Therefore, consider the state equation (SEε) and
the normalization (6.4.5). First of all we note that plugging in the asymptotic expansion
of φε into (6.4.8) yields

C(φε) = C(φ0) + εC̃N (φN
0 )2 + ε2C(φ1) + O(ε3)

ρ(φε) = ρ(φ0) + ε2(ρ(φ1) + ρ̃N (φN
0 )2) + O(ε3).

(6.4.9)

As a first step let us show that wk = 0 in Ω for k = −m,−m + 1, . . . ,−2. Therefore let
us start to lowest order O(ε−2m) in (6.4.5), which reads as

0 =
ˆ

Ω
ρ(φ0) |w−m|2 dx. (6.4.10)

This implies that w−m = 0 in Ω\ΩN or in other words w−m is localized in the void region.
Now let us look at (6.4.5) to the order O(ε−2m+2) reading as

0 =
ˆ

Ω
ρ(φ0) |w−m+1|2 + 2ρ(φ0)w−m · w−m+2 + (ρ(φ1) + ρ̃N (φN

0 )2) |w−m|2 dx,

(6.4.11)

in the light of (6.4.9). Note that here we used −2m+ 2 < 0. As w−m is localized in the
void we infer

0 =
ˆ

Ω
2ρ(φ0)w−m · w−m+2 dx.
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Thus, due to the non-negativity of the first summand in (6.4.11) we deduce

0 =
ˆ

Ω
(ρ(φ1) + ρ̃N (φN

0 )2) |w−m|2 dx. (6.4.12)

In the light of (6.4.8) we have ρ(φ1) ≥ 0. Furthermore φ0 = eN in ΩN and thus we
deduce

0 =
ˆ

ΩN

ρ̃N |w−m|2 dx. (6.4.13)

Hence, due to the positivity of ρ̃N we infer w−m = 0 in Ω. These steps can now be
repeated until the critical order O(1) is reached, because up to this order the normalization
equation (6.4.5) possesses a trivial left hand side. Thus, this shows wk = 0 for k =
−m,−m+ 1, . . . ,−2. We additionally deduce as in (6.4.10) that w−1 = 0 in Ω\ΩN .
With this knowledge we are in the position to show λk = 0 for k = −m,−m+ 1, . . . ,−2.
Therefore let us consider the energy associated with (SEε), i.e.,

λε =
ˆ

Ω
C(φε)E(wε) : E(wε) dx. (6.4.14)

Due to the fact that wk = 0 in Ω for k = −m,−m+ 1, . . . ,−2 and w−1 = 0 in Ω\ΩN we
deduce that the right hand side is of leading order O(ε−1), more precisely

λ−1 =
ˆ

ΩN

C̃N E(w−1)E(w−1) dx,

meaning that λk = 0 for k = −m,−m+ 1, . . . ,−2.
Now it is our task to show that (λ−1,w−1) solves the desired limit problem. Therefore
we consider the state equation (SEε) to order O(1)

−∇ ·
[
C̃N E(w−1) + C(φ0)E(w0)

]
= λ1ρ(φ0)w−1 + λ0ρ(φ0)w0+

λ−1ρ(φ0)w1 + λ−1(ρ̃N + ρ(φ1))w−1.

In ΩN this simplifies to

−∇ ·
[
C̃N E(w−1)

]
= λ−1(ρ̃N + ρ(φ1))w−1 in ΩN .

So summing up this intermezzo, even if spurious eigenmodes are not excluded the appro-
priate choice of the model parameters will force the associated eigenvalues to leave the
spectrum as ε → 0 and thus the spurious modes do not affect our optimization problem.

6.4.3. Inner expansions

In the interfacial regions, i.e., in layers separating two outer regions, we need to rescale
our coordinate system in order to take into account that φε changes rapidly in directions
perpendicular to the interface.
This fact can, for example, be motivated by the following one dimensional computation
that is also one of the crucial ideas for understanding the Γ-limit of the Ginzburg–Landau
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energy, see also the discussion in Section 2.1.4. Let us consider the one dimensional
Ginzburg–Landau energy on [−1, 1] with continuous potential ψ0

Fε(v) =
ˆ 1

−1

ε

2
∣∣v′∣∣2 + 1

ε
ψ0(v) dx.

Then using the rescaling v(x) = w(x
ε ) we obtain

Fε(v) =
ˆ 1

ε

− 1
ε

1
2
∣∣w′∣∣2 + ψ0(w) dy.

Hence for ε → 0 we obtain the energy

F∗(w) =
ˆ ∞

−∞

1
2
∣∣w′∣∣2 + ψ0(w) dy.

Now it can be proved that the solution of the initial value problem

w′
∗ =

√
2ψ0(w∗),

w∗(0) = 0,
(6.4.15)

is the unique minimizer of the energy F∗ over the set

X :=
{
v ∈ H1

loc(R)
∣∣∣∣ lim

t→±∞
v(t) = ±1, v(0) = 0

}
.

In other words (6.4.15), allows us to characterize the (smooth) profile for the transition
from −1 to 1 with the least energy. For instance, if the polynomial double-well potential
ψ0(φ) = 1

2(1 − φ2)2 is chosen, the solution of (6.4.15) is w∗ = tanh. Hence, by rescaling
in accordance to our initial substitution we see a rapid change of the phase-field for small
ε in the transition phase between −1 and 1. For an in detail discussion concerning the
general Γ-limit of the Ginzburg–Landau energy in the scalar case we refer to [37,126,147]
or the alternative proof of Theorem 4.3.17 where the ODE (6.4.15) is used to construct
optimal profiles for the Ginzburg–Landau energy.
Let us come back to our multi-phase problem. For all i, j = 1, . . . , N , we write Γ = Γij

to denote the sharp-interface separating Ωi and Ωj . Moreover, let nΓij denote the unit
normal vector field on Γ pointing from Ωi to Ωj . In the following, we omit these indices
to provide a cleaner presentation. We now introduce a suitable coordinate system that
fits the geometry of the interface. The following discussion can be found, e.g., in [1] but
for the sake of readability we summarize the most important arguments. Let us choose a
local parametrization

γ : U → Rd, γ(U) ⊆ Γ (6.4.16)

of Γ, where U is an open subset of Rd. We further define ν := nΓ ◦ γ.
As we want to describe a whole neighborhood surrounding the local part of the interface
γ(U) ⊂ Γ, we introduce the signed distance function relative to Ωi which satisfies d(x) > 0
if x ∈ Ωj and d(x) < 0 if x ∈ Ωi. For more details concerning the signed distance function
we refer the reader to [99, Sec. 14.6].
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Now, let x ∈ Ω be an arbitrary point belonging to a sufficiently thin tubular neighborhood
around γ(U). We define

s(x) := γ−1
(

min
y∈γ(U)

|x− y|
)

∈ U, z(x) := 1
εd(x) ∈ R.

We further introduce the function

Gε : U × R, Gε(s, z) := γ(s) + εzν(s).

This means that x satisfies the relation

x = Gε(s(x), z(x)
)
.

This holds since the summand γ
(
s(x)

)
denotes the orthogonal projection of x onto γ(U)

and the summand

εz(x)ν
(
s(x)

)
= d(x)nΓ

(
γ
(
s(x)

))
shifts the point γ

(
s(x)

)
back onto x. This allows us to express the point x by means of

the new coordinates s = s(x) ∈ U and z = z(x) ∈ R. Hence, a sufficiently thin tubular
neighborhood around γ(U) can be expressed by the coordinate system (s, z).
For any fixed z ∈ R and sufficiently small ε > 0, we define the (d − 1)-dimensional
sub-manifold

Γεz :=
{
γ(s) + εzν(s)

∣∣ s ∈ U
}
,

which describes a translation of Γ in the direction ν. In the light of our above considera-
tions, for ε > 0 fixed we deduce that for any s = (s1, . . . , sd−1) ∈ U and z ∈ R,{

∂s1γ(s) + εz∂s1ν(s), . . . , ∂sd−1γ(s) + εz∂sd−1ν(s)
}

is a basis of Γεz, and{
∂s1γ(s) + εz∂s1ν(s), . . . , ∂sd−1γ(s) + εz∂sd−1ν(s), εν(s)

}
,

is a basis of Rd.
As we want to analyze the state and gradient equations of the eigenvalue problem, we need
to understand how the differential operators behave under the coordinate transformation
x 7→ (s(x), z(x)). Therefore, let us consider an arbitrary scalar function

b(x) = b(Gε(s(x), z(x)) = b̂(s(x), z(x)).

Using the above bases, we obtain the representations

∇Γεz b̂ =
d−1∑

k,l=1
gkl
(
∂sk

b̂
)
∂sl
Gε, (6.4.17)

for the surface gradient and

∇xb =
d∑

k,l=1
gkl
(
∂sk

b̂
)
∂sl
Gε, (6.4.18)
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for the full gradient (see, e.g., [114, Section 3.1]). Here, (gkl)d
k,l=1 denotes the inverse of

the metric tensor (gkl)d
k,l=1, where

gij =


(∂sk

γ + εz∂sk
ν) · (∂sl

γ + εz∂sl
ν) if k, l ∈ {1, ..., d− 1},

ε2ν · ν = ε2 if k = l = d,

0 else.
(6.4.19)

Using gdd = 1
ε2 , we infer from (6.4.18) that

∇xb =
d−1∑

k,l=1
gkl
(
∂sk

b̂
)
∂sl
Gε + gdd

(
∂sd

b̂
)
∂sd

Gε = ∇Γεz b̂+ 1
ε

(
∂z b̂
)

ν. (6.4.20)

Proceeding analogously, we deduce that the divergence of a vector-valued function j(x) =
ĵ(s(x), z(x)) can be expressed as

∇x · j =
d−1∑

k,l=1
gkl
(
∂sk

ĵ
)

· ∂sl
Gε + gdd

(
∂sd

ĵ
)

· ∂sd
Gε = ∇Γεz · ĵ + 1

ε
∂z ĵ · ν, (6.4.21)

where ∇Γεz · ĵ stands for the surface divergence on Γεz.
Now, we want to derive a formula for the Laplacian ∆xb. First of all, we know from
(6.4.17) that ∇Γεz b̂ ·ν = 0. This directly entails that ∂z

(
∇Γεz b̂ ·ν

)
= 0. Thus, the product

rule yields

∂z
(
∇Γεz b̂

)
· ν = −∇Γεz b̂ · ∂zν = 0.

By the definition of the signed distance function, we further have ν = ∇xd (see, e.g., [99,
Lemma 14.16]). Thus, employing (6.4.20) and (6.4.21), we obtain

∆xb = ∇x · (∇xb) = ∇x ·
(

∇Γεz b̂+ 1
ε

(
∂z b̂
)

ν

)
= ∇Γεz ·

(
∇Γεz b̂+ 1

ε

(
∂z b̂
)

ν

)
+ 1
ε
∂z

(
∇Γεz b̂+ 1

ε

(
∂z b̂
)

ν

)
· ν

= ∆Γεz b̂+ 1
ε
∂z b̂∇Γεz · ν + 1

ε2∂zz b̂

= ∆Γεz b̂+ 1
ε
∂z b̂∇x · ν + 1

ε2∂zz b̂

= ∆Γεz b̂+ 1
ε

(∆xd) ∂z b̂+ 1
ε2∂zz b̂.

(6.4.22)

Moreover, the surface Laplacian can be expressed as

∆Γεz b̂ = 1
√
g

d−1∑
k,l=1

∂sl

(√
g gkl∂sk

b̂
)
, (6.4.23)

where g := det
(
(gkl)d−1

k,l=1
)

(see, e.g., [114, Section 3.1]).
We now recall (6.4.19), where we computed the ε dependent components of the metric
tensor. Moreover, by means of a Taylor expansion, we realize that

1
1 + O(ε) = 1 + O(ε).
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Hence, interpreting the representations of ∇Γεz ,∇Γεz ·,∆Γεz (see (6.4.17), (6.4.21) and
(6.4.23), respectively) as power series with respect to ε, we deduce

∇Γεz b̂(s, z) = ∇Γb̂(s, z) + O(ε),
∆Γεz b̂(s, z) = ∆Γb̂(s, z) + O(ε),

∇Γεz · ĵ(s, z) = ∇Γ · ĵ(s, z) + O(ε).
(6.4.24)

Recall here the relation that Γ is locally represented by Γεz for ε = 0.
In the following, let W denote the Weingarten map associated with Γ that is given by

W(x) := −∇ΓnΓ(x) ∈ Rd×d for all x ∈ Γ, (6.4.25)

see, e.g., [86, Appendix B]. Its non-trivial eigenvalues κ1, . . . , κd−1 are the principal cur-
vatures of Γ and its spectral norm can be expressed as

|W| =
√
κ2

1 + . . . κ2
d−1.

Then, by means of [99, Lemma 14.17], we obtain the description

∆xd =
d−1∑
i=1

−κi

1 − κid
=

d−1∑
i=1

−κi

1 − εκiz
= −

d−1∑
i=1

κi −
d−1∑
i=1

εκ2
i z + O(ε2),

where we used the Taylor expansion of z 7→ (1−εz)−1 at the point z0 = 0 in the last step.
Finally, combining (6.4.22) and (6.4.24), we obtain the representation

∆xb = 1
ε2∂zz b̂− 1

ε

(
κ̂+ εz

∣∣Ŵ∣∣2) ∂z b̂+ ∆Γb̂+ O(ε), (6.4.26)

where κ denotes the mean curvature which is defined as the sum of the principal curvatures
of Γ. Note that in view of (6.4.25), κ can be expressed as

κ(x) = −∇Γ · nΓ(x) for all x ∈ Γ, (6.4.27)

which will be important for later purposes.
Furthermore, applying (6.4.20) to each vector component, the full gradient of a vector-
valued function j(x) = ĵ(s(x), z(x)) is given by

∇xj = 1
ε
∂z ĵ ⊗ ν + ∇Γĵ + O(ε), (6.4.28)

where ⊗ denotes the dyadic product that is defined as a⊗b = (aibj)d
i,j=1 for all a, b ∈ Rd.

Analogously, for a matrix-valued function

A(x) = (aij(x))d
i,j=1 = Â(s(x), z(x)),

we apply formula (6.4.21) to each component of the row-wise defined divergence ∇x · A.
We obtain

∇x · A = ∇Γ · Â + 1
ε
∂zÂν + O(ε) (6.4.29)
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To conclude this section, we introduce the inner expansions that we will work with in the
next section. Therefore, we make the ansatz

wε
nr

(x) =
∞∑

k=0
εk Wk,nr

(
s(x), z(x)

)
,

φε(x) =
∞∑

k=0
εk Φk

(
s(x), z(x)

)
,

(6.4.30)

where we assume Φ0(s(x), z(x)) ∈ G and Φk(s(x), z(x)) ∈ TΣN for all k ≥ 1. In the next
section, we will relate these inner expansions to the outer expansions that were introduced
before.

Remark 6.4.5. Note that the eigenvalues λε
nr

do not depend locally on x ∈ Ω and thus,
their inner expansion simply equals their outer expansion.

6.5. Derivation of the matching conditions

So far, we have constructed outer expansions which are supposed to hold inside the mate-
rial regions Ωi for i = 1, . . . , N as well as inner expansions which are supposed to hold in a
tubular neighborhood around the sharp-interfaces Γij . Note that due to the construction
in the previous section, the thickness of this tubular neighborhood is proportional to ε. In
order to be compatible, both expansions must match in a suitable intermediate region by
suitable matching conditions. This region is approximately given by all points x ∈ Ω with
the property dist(x,Γ) ≤ εθ for some fixed θ ∈ (0, 1). This means we stretch the tubular
neighborhood the inner expansions were constructed on from a thickness proportional
to ε to a thickness proportional to εθ and relate both expansions in this region. These
matching conditions will be expressed as limit conditions for the inner expansions when
ε → 0 or equivalently z → ±∞ depending on which side we approach the interface from.
The definition of such an intermediate region is also required for a rigorous investigation
of the Γ-limit of the Ginzburg–Landau energy (see, e.g., [147, formula (1.22)] or the
construction of optimal profiles in the proofs of Theorem 4.3.17). There, the intermediate
region of thickness 2ε 1

2 is chosen to truncate the optimal profile such that it reaches the
values −1 and 1 (which represent the pure phases), respectively.
In order to make both expansions compatible, we need to fix suitable variables which
work for both expansions. In our case, we introduce the so-called intermediate variable
rθ(x) := ε1−θz(x) = ε−θd(x), where z(x) = ε−1d(x) is the inner variable introduced in
the previous section, which represents the suitably scaled signed distance of x to Γ. First
of all, we want to keep z fixed and analyze the behavior of the outer expansions in which
we insert εθrθ(x) = d(x), and of the inner expansion in which we insert εθ−1rθ(x) = z(x).
To obtain suitable relations between the inner and outer expansions we will need to make
some assumptions on the single summands of these expansions.
Let us start with the outer expansions. Similarly as in the previous section but now
without rescaling the distance coordinate, we write φε(x) = φ̃ε

(
s(x), d(x)

)
for any x in this

intermediate region, provided that ε > 0 is sufficiently small. First of all, we assume that
each summand of the outer expansion of φ̃ε(s, d) (see (6.4.1)) can be smoothly extended
onto Γij by approaching Γij from both sides in normal direction. In the following, we use
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the notation φ̃(s, 0−) to denote the extension corresponding to the outer expansion in Ωi

and we write φ̃(s, 0+) to denote the extension corresponding to the outer expansion in
Ωj . For sufficiently small ε > 0, this allows us to express φ̃(s, d) by means of a Taylor
expansion at the point (s, 0±) as

φ̃ε(s, d) = φ̃ε(s, εθrθ

)
=
{

φ̃0(s, 0+) + εθ∂dφ̃0(s, 0+)rθ + O(ε2θ) + εφ̃1(s, 0+) + O(ε1+θ)... if d > 0,
φ̃0(s, 0−) + εθ∂dφ̃0(s, 0−)rθ + O(ε2θ) + εφ̃1(s, 0−) + O(ε1+θ)... if d < 0.

(6.5.1)

Here, as in the previous section, ∂d = ∂sd
denotes the derivative with respect to the last

component (i.e., the distance variable).
Now, for the summands of the inner expansion (see (6.4.30)), we assume that for large
|z| we have a polynomial approximation. More precisely, we assume that for all k ∈ N0,
there exist coefficient functions Φ±

k,i and pk ∈ N such that

Φk(s, z) ≈
{

Φ+
k,0(s) + Φ+

k,1(s)z + · · · + Φ+
k,pk

(s)zpk if z > 0,
Φ−

k,0(s) + Φ−
k,1(s)z + · · · + Φ−

k,pk
(s)zpk if z < 0,

(6.5.2)

Here, the symbol ≈ means that the difference of the left-hand side and the right-hand
side as well as all its derivatives with respect to z tend to zero as z → ±∞. This
assumption is formally justified because the optimal profile computed in the scalar case
for the Ginzburg–Landau energy tends to the pure phases even exponentially as z → ±∞
(see e.g., (4.4.19) and (4.4.20) in the proof of Theorem 4.3.17). Thus, by plugging εθ−1rθ

into the inner expansion (6.4.30), we obtain

φ̂ε(s, εθ−1rθ) ≈ Φ±
0,0(s) + εθ−1Φ±

0,1(s)rθ + · · · + εp0(θ−1)Φ±
0,p0(s)rp0

θ

+ εΦ±
1,0(s) + εθΦ±

1,1(s)rθ + · · · + εp1(θ−1)+1Φ±
1,p1(s)rp1

θ + . . .
(6.5.3)

for ε → 0 as then z = εθ−1rθ → ±∞ becomes large.
Now, we say that the inner expansions and the outer expansions match if they coincide in
all orders of ε in the limit z → ±∞, i.e., when we approach the sharp-interface from within
Ωj and Ωi respectively. This matching makes sense because the coordinate εθrθ = d in
the outer expansions is supposed to match εθ−1rθ = z in the inner expansions due to our
rescaling of the signed distance by the factor ε−1 in the derivation of the inner expansion.
Matching the outer and inner expansion (6.5.1) and (6.5.3) with respect to their first-
orders and recalling that θ ∈ (0, 1), we deduce

Φ±
0,0(s) = φ̃0(s, 0±), Φ±

0,i(s) = 0 for i > 0,
Φ±

1,0(s) = φ̃1(s, 0±), Φ±
1,1(s) = ∂dφ̃0(s, 0±),

Φ±
1,i(s) = 0 for i > 1.

In particular, using this information to simplify (6.5.2), we obtain

Φ0(s, z) ≈ Φ±
0,0(s) as z → ±∞,

Φ1(s, z) ≈ Φ±
1,0(s) + Φ±

1,1(s)z as z → ±∞.
(6.5.4)
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Recalling that for the outer expansions we have φ0 ≡ ei in Ωi for i = 1, . . . , N , we infer

Φ0(s, z) →
{

φ̃0(s, 0+) = ej as z → +∞,

φ̃0(s, 0−) = ei as z → −∞,

∂zΦ0(s, z) → 0 as z → ±∞

(6.5.5)

and

Φ1(s, z) ≈
{

φ̃1(s, 0+) + ∂dφ̃0(s, 0+)z as z → +∞,

φ̃1(s, 0−) + ∂dφ̃0(s, 0−)z as z → −∞.
(6.5.6)

Reusing the notation from the previous section, where we indicated a function expressed
with respect to the inner coordinates (s, z) with a hat, we obtain the relation

φ̂ε(s, z) = φε(x) = φ̃ε(s, d).
Recalling that z = ε−1d, we further deduce

∂dφ̃0(s, d) = 1
ε
∂zφ̂0(s, z).

Thus, employing (6.4.20) and the fact that the surface gradient is orthogonal to ν, we
arrive at ∂dφ̃0 = ∇xφ0 · ν. In the following, we will drop the index x and just write
∇ = ∇x. We further recall that locally ν is given by ν = nΓ ◦ γ, where γ : U → Rd is a
local parametrization of Γ = Γij (see (6.4.16)). In particular, using the notation

(v)j(x) := lim
δ↘0

v
(
x± δnΓ(x)

)
(6.5.7)

for any x = γ(s) ∈ Γ = Γij , we infer from (6.5.6) that

∂zΦ1(s, z) →
{

(∇φ0)j(x) nΓ(x) as z → +∞,

(∇φ0)i(x) nΓ(x) as z → −∞,
(6.5.8)

In this way, we can rewrite (6.5.5) and (6.5.6) as

Φ0(s, z) →
{

(φ0)j(x) = ej as z → +∞,

(φ0)i(x) = ei as z → −∞,

∂zΦ0(s, z) = 0 as z → ±∞
(6.5.9)

and

Φ1(s, z) ≈

(φ1)j(x) +
(
∇φ0

)
j
(x) nΓ(x) z as z → +∞,

(φ1)i(x) +
(
∇φ0

)
i
(x) nΓ(x) z as z → −∞

(6.5.10)

for all x = γ(s) ∈ Γ = Γij . Similarly, we obtain analogous relations for the expansions of
wε

nr
.

In the following, we will also see that the jump across the interfaces Γij is an important
quantity. It is defined by

[v]ji (x) := lim
δ↘0

(
v
(
x+ δnΓ(x)

)
− v

(
x− δnΓ(x)

))
, (6.5.11)

for any x = γ(s) ∈ Γ = Γij .
Now, we have made all the necessary computations to analyze the state equations and the
gradient equality near the interfaces Γij . In particular, we are able to investigate their
behavior as ε → 0.
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6.6. Comparison of the leading order terms

Now, we want to apply our knowledge about the inner and outer expansions to the op-
timality system consisting of (SEε) and (GSε). This means we apply the formulas for
the differential operators discussed in Section 6.4.3 to the optimality system, compare the
terms with same orders in ε and apply the matching conditions. In this section, we will
suppress the index nr to provide a clearer notation.

6.6.1. The state equation

Although some equalities are derived as in [32], we perform the computations here for
completeness. Note that for the sake of a nice depiction we only write the dependence of
the inner variables on the rescaled coordinates (s, z) when necessary. First of all, applying
(6.4.28) on the lowest order contribution W0 of the inner expansion of wε (see (6.4.30)),
we obtain

E(wε) = (∇xwε)sym =
(

∇ΓW0 + 1
ε
∂zW0 ⊗ ν

)sym
. (6.6.1)

Using (6.4.29) with

A = [C(φ)E (w)] , Â =
[
C(Φ0)

(
∇ΓW0 + 1

ε
∂zW0 ⊗ ν

)sym]
,

and recalling ∂zν = 0, we further deduce

− ∇x · [C(φ)E (w)]

= −∇Γ ·
[
C(Φ0)

(
∇ΓW0 + 1

ε
∂zW0 ⊗ ν

)sym]
− 1
ε
∂z

[
C(Φ0)

(
∇ΓW0 + 1

ε
∂zW0 ⊗ ν

)sym]
ν

= − 1
ε2∂z

[
C(Φ0) (∂zW0 ⊗ ν)sym ν

]
− 1
ε
∂z

[
C(Φ0) (∇ΓW0)sym ν

]
− 1
ε

∇Γ ·
[
C(Φ0) (∂zW0 ⊗ ν)sym

]
− ∇Γ ·

[
C(Φ0) (∇ΓW0)sym

]
.

(6.6.2)

As no derivatives are involved in the right-hand side of the state equation (SEε), its
expression via inner expansions only possesses non-negative orders of ε. Thus, for the
contribution of leading order O(ε−2), we obtain

∂z

[
C(Φ0) (∂zW0 ⊗ ν)sym ν

]
= 0 around Γij . (6.6.3)

Here, the expression “around Γij” means that the statement is valid in a sufficiently thin
tubular neighborhood around Γij where our inner expansions hold.
From (6.5.9), which holds analogously for W0 instead of Φ0, we infer

lim
z→±∞

∂zW0(s, z) = 0 and C(Φ0(s, z)) →
{
Cj for z → +∞,

Ci for z → −∞,
(6.6.4)
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for all s such that γ(s) ∈ Γij with i, j ̸= N . Furthermore we obtain

C(Φ0(s, z)) → 0 as z → +∞, if j = N,

C(Φ0(s, z)) → 0 as z → −∞, if i = N
(6.6.5)

due to the additional factor ε in the void contribution (see (6.2.2)). Of course, the relations
(6.6.4) and (6.6.5) can be obtained analogously for ρ instead of C.
Now multiplying (6.6.3) with W0 and integrating by parts yield

0 =
ˆ +∞

−∞
C(Φ0) (∂zW0 ⊗ ν)sym : (∂zW0 ⊗ ν)sym dz, (6.6.6)

per definition of the dyadic product and the symmetry properties of C from Section 2.1.9.
Note that the fact Φ0(x) ∈ G according to (6.2.2) gives us the decomposition

C(Φ0) =
N−1∑
i=1

CiΦi
0. (6.6.7)

Now the assumptions in Section 2.1.9 yield the non-degeneracy of each Ci. Thus, the
integrand in (6.6.6) is non-negative and thus we infer that for almost every z ∈ (−∞,∞)
either Φ0 = eN or ∂zW0 ⊗ ν = 0. But notice that we consider inner expansions, i.e.,
we are in a tubular neighborhood around Γij where Φ0 realizes a transition between the
pure phases, but the pure phase values e1, . . . , eN are not attained within this region. In
particular this gives

(∂zW0 ⊗ ν)sym = 0 around Γij ,

for i, j = 1, . . . , N . With a simple computation using the definition of the dyadic product
and the properties of the unit normal, we obtain

∂zW0 = 0 around Γij , (6.6.8)

for i, j = 1, . . . , N . Hence, W0 has to be constant in z across the interface Γij . From the
matching condition (6.5.9) written for W0, we obtain

W0(s, z) →
{

(w0)j (x) for z → +∞
(w0)i (x) for z → −∞,

(6.6.9)

for all x = γ(s) ∈ Γij . In combination with (6.6.8) we arrive at the jump condition
[w0]ji = 0, for i, j = 1, . . . , N . But note that practically the jump across an interface
shared between a material and a void region is negligible as we do not know the exact
behavior of w0 at the void boundary. In other words, we will obtain a closed system of
PDEs forming the state equations of the sharp-interface problem in Section 6.7 without
needing this additional jump condition at the void boundary.
Now we pass on to the next order O(1

ε ). Due to (6.6.8) we can drop all terms involving
∂zW0 and obtain in (6.6.2) (now computed analogously also to higher orders in W)

0 = ∂z

[
C(Φ0) (∂zW1 ⊗ ν + ∇ΓW0)sym ν

]
around Γij , (6.6.10)
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for i, j = 1, . . . , N . This means
[
C(Φ0) (∂zW1 ⊗ ν + ∇ΓW0)sym ν

]
is constant in z across

Γij . Now first of all we recall that analogously to (6.4.18) it holds in the non-rescaled
coordinates (s, d)

∇xw0(x) = ∇Γw̃0(s, d) + (∂dw̃0(s, d)) ⊗ ν(s), (6.6.11)

for all x = γ(s) ∈ Γij . In the notation of the previous section we know by matching

W0(s, z) ≈ W±
0,0(s) = w̃0(s, 0±) for z → ±∞,

In particular we get

∇ΓW0(s, z) →
{

(∇Γw̃0(s, 0+))j for z → +∞,

(∇Γw̃0(s, 0−))i for z → −∞,

Combining this with (6.5.6) and using the decomposition (6.6.11) we arrive at

∇ΓW0(s, z) + ∂zW1(s, z) ⊗ ν(s) →
{

(∇xw0(x))j for z → +∞,

(∇xw0(x))i for z → −∞,
(6.6.12)

for all x = γ(s) ∈ Γij . So using (6.6.4) combined with (6.6.10) we obtain for all i ̸= N

CiEi(w0)nΓ =
{

0 if j = N,

CjEj(w0)nΓ if j ̸= N,
(6.6.13)

holds on each Γij with i ̸= N , where for x ∈ Γij

Ei(w0) := lim
δ↘0

E(w0)(x− δnΓ) and Ej(w0) := lim
δ↘0

E(w0)(x+ δnΓ).

6.6.2. The gradient equality

Now, we want to analyze the gradient equality (GSε), which reads as

l∑
r=1

{
[∂λnr

Ψ]
(
λε

n1 , . . . , λ
ε
nl

)[
⟨E(wε

nr
), E(wε

nr
)⟩PT Σ[C′(φε)]

− λε
nr

(
wε

nr
,wε

nr

)
PT Σ[ρ′(φε)]

]}
= γε∆φε + 1

ε
(Λε + ϑε + µε) − γ

ε
PT Σ

[
ψ′

0(φε)
]
. (6.6.14)

Here, we recall that the Lagrange multipliers were constructed in Theorem 6.3.12 in such a
way that their sum appearing in the gradient equality (6.6.14) is scaled by the factor 1

ε . We
now assume the Lagrange multipliers to have the following inner asymptotic expansions:

Λε(x) =
∞∑

k=0
εkΛk(s, z) ϑ =

∞∑
k=0

εkϑk, µε(x) =
∞∑

k=0
εkµk(s, z), (6.6.15)
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Furthermore, in order to deal with the nonlinear terms in (6.6.14) involving C′, ρ′, ψ′
0, ∂λnr

Ψ,
we perform a (component-wise) Taylor expansion around the leading order term Φ0 to
obtain the inner expansions

C′(φε) = C′(Φ0) + O(ε),
ρ′(φε) = ρ′(Φ0) + O(ε),
ψ′

0(φε) = ψ′
0(Φ0) + O(ε),

[∂λnr
Ψ]
(
λε

n1 , . . . , λ
ε
nl

)
= [∂λnr

Ψ]
(
λ0,n1 , . . . , λ0,nl

)
+ O(ε).

In order to get rid of the projections appearing in the left-hand side of (6.6.14), we now
take a closer look at the quantities C′(Φ0) and ρ′(Φ0). To this end, we recall the definition
of ρ in (6.2.2) and (2.1.23), which reads as

ρ : RN → R, φ 7→
N−1∑
i=1

ρiσω(PΣ(φ)i) + ρ̃Nεσω(PΣ(φ)N ),

where ω > 0 is a sufficiently small parameter. Note that we can write the projection PΣ
as

PΣ(φ) = φ −
(

1
N

N∑
i=1

φi

)
1 + 1

N
1,

for φ ∈ RN , where 1 = (1, ..., 1)T ∈ RN . For the partial derivatives with respect to φj

with j ∈ {1, ..., N}, we thus obtain

(∂jPΣ)(φ) = ej − 1
N

1

and therefore,

(∂jρ)(φ) =
N∑

i=1
ρiσ′

ω(PΣ(φ)i)
(
δij − 1

N

)
,

where δij denotes the Kronecker delta and ρN := ερ̃N to simplify the notation. Inserting
Φ0 (which belongs point-wise to ΣN and thus, no projection is necessary) and recalling
that σω is the identity on [0, 1], see (2.1.22), we arrive at

ρ′(Φ0) = ((∂jρ)(Φ0))N
j=1 =

(
ρj − 1

N

N∑
i=1

ρi)N
j=1. (6.6.16)

Keeping in mind that ρN = ερ̃N still produces terms of order O(ε), considering (6.6.16)
to the lowest order O(1) gives

ρ′(Φ0) =
(
ρ1 − 1

N

N−1∑
i=1

ρi, . . . , ρN−1 − 1
N

N−1∑
i=1

ρi,− 1
N

N−1∑
i=1

ρi

)T

. (6.6.17)

Thus, it obviously holds ρ′(Φ0) ∈ TΣN . The function C′(Φ0) can be expressed analo-
gously. Altogether, this allows us to drop the projection acting on the left-hand side in
(6.6.14) when considering only the lowest order contributions.
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Now that we have considered all the quantities appearing in (6.6.14), we begin with our
formal asymptotics. First of all, let us recall (6.6.1) from the beginning of the previous
Subsection

E(wε) =
(
∇xwε)sym =

(
∇ΓW0 + 1

ε
∂zW0 ⊗ ν

)sym
+ O(ε).

Comparing the contributions of order O(ε−2) in (6.6.14), we thus arrive at

0 =
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)

·
[
C′(Φ0)

(
∂zW0,nr ⊗ ν

)sym :
(
∂zW0,nr ⊗ ν

)sym] around Γij ,

where we have used (6.6.1). This equation is obviously fulfilled since ∂zW0 vanishes
according to (6.6.8).
Let us now consider (6.6.14) to order O(ε−1). First of all, we infer from (6.6.8) and (6.6.1)
that the left-hand side has no contribution of order O(ε−1). We thus have

0 = γ∂zzΦ0 + (Λ0 + ϑ0 + µ0) − γPT Σ
[
ψ′

0(Φ0)
]

around Γij , (6.6.18)

where we used the formula (6.4.26) to compute the Laplacian. Multiplying (6.6.18) by
∂zΦ0 and integrating with respect to z from −∞ to ∞, we deduce

−
ˆ ∞

−∞
(Λ0 + ϑ0 + µ0) · ∂zΦ0 dz

= γ

ˆ ∞

−∞
∂zzΦ0 · ∂zΦ0 dz − γ

ˆ ∞

−∞
PT Σ

[
ψ′

0(Φ0)
]
∂zΦ0 dz.

(6.6.19)

Now, we consider each of the terms in (6.6.19) separately. First of all, we seeˆ ∞

−∞
∂zzΦ0 · ∂zΦ0 dz =

ˆ ∞

−∞

1
2

d
dz |∂zΦ0|2 dz

= 1
2

(
lim

z→+∞
∂zΦ0(z) − lim

z→−∞
∂zΦ0(z)

)
= 0,

(6.6.20)

where the last equality follows from the matching condition (6.5.9).
As Φ0 ∈ G point-wise, we know that ∂zΦ0 ∈ TΣN point-wise. Hence, we obtainˆ ∞

−∞
PT Σ

[
ψ′

0(Φ0)
]
∂zΦ0 dz =

ˆ ∞

−∞
ψ′

0(Φ0)∂zΦ0 dz

=
ˆ ∞

−∞

d
dz [ψ0(Φ0)] dz = lim

z→+∞
ψ0(Φ0(z)) − lim

z→−∞
ψ0(Φ0(z)) = 0.

(6.6.21)

For the last equality, we used the fact that ψ0 vanishes on ei for i = 1, . . . , N along with
the matching condition (6.5.9). We have thus shown that the right-hand side of (6.6.19)
vanishes.
Now let us consider the left-hand side in (6.6.19). Recall from (6.3.30) that Λε is identical
in each component. It is therefore natural to assume that every term in the inner expansion
of Λε also has this property. Thus, recalling that ∂zΦ0 ∈ TΣN point-wise, we infer

ˆ ∞

−∞
Λ0 · ∂zΦ0 dz =

ˆ ∞

−∞
Λ0

N∑
i=1

[∂zΦ0]i dz = 0, (6.6.22)
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where Λ0 denotes an arbitrary component of Λ0.
Recall from Theorem 6.3.12 that ϑε ∈ RN is constant. Thus, assuming that this property
is transferred to the inner expansion, ϑ0 is independent of z, we infer by means of the
matching condition (6.5.9) that

ˆ ∞

−∞
ϑ0 · ∂zΦ0 dz =

ˆ ∞

−∞

d
dz [ϑ0 · Φ0] dz = ϑ0 · (ej − ei) . (6.6.23)

Eventually, we want to justify that the remaining Lagrange multiplier fulfills
ˆ ∞

−∞
µ0 · ∂zΦ0 dz = 0. (6.6.24)

Therefore, we recall (6.3.31) which tells us for i = 1, . . . , N that

µε
i = 0 a.e. in Ω+

i =
{
x ∈ Ω

∣∣φε
i (x) > 0

}
= Ω\

{
x ∈ Ω

∣∣φε
i (x) = 0

}
.

Using [99, Lemma 7.7], we infer that for all i ∈ {1, . . . , N},

µε
i ∇xφ

ε
i = 0 a.e. in Ω. (6.6.25)

Using (6.4.20) and comparing the terms of order O(ε−1), we deduce

µi
0 ∂zΦi

0 ν = 0 a.e. in Ω, (6.6.26)

for all i ∈ {1, . . . , N}. In particular, by multiplying with ν and integrating with respect
to z from −∞ to ∞, we arrive at

ˆ ∞

−∞
µi

0(z)∂zΦi
0(z) dz = 0.

for all i ∈ {1, . . . , N}. This proves (6.6.24).
Combining (6.6.20)–(6.6.24), we conclude from (6.6.19) that

ϑ0 · (ej − ei) = 0,

for all i, j = 1, . . . , N , meaning that all components of ϑ0 are equal. Since ϑε ∈ TΣN in
(6.3.32), we also assume ϑ0 ∈ TΣN . This implies that ϑ0 = 0 and thus, (6.6.18) can be
rewritten as

0 = −γ∂zzΦ0 + γPT Σ
[
ψ′

0(Φ0)
]

− Λ0 − µ0. around Γij (6.6.27)

Let now z̃ ∈ R be arbitrary. Multiplying (6.6.27) by ∂zΦ0 and integrating with respect
to z̃ from −∞ to z̃, we obtain

ˆ z̃

0

1
2

d
dz |∂zΦ0|2 dz =

ˆ z̃

0

d
dz [ψ0(Φ0)] dz − 1

γ

ˆ z̃

0
(Λ0 + µ0) · ∂zΦ0 dz.

Here, the last equality holds because of (6.6.22) and (6.6.24). By the fundamental theorem
of calculus, we thus have

|∂zΦ0(z̃)|2 − 2ψ0(Φ0(z̃)) = |∂zΦ0(0)|2 − 2ψ0(Φ0(0))
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for all z̃ ∈ R. We further know from the matching condition (6.5.9) that the left-hand
side vanishes as z̃ → ±∞. This entails

|∂zΦ0(0)|2 − 2ψ0(Φ0(0)) = 0, (6.6.28)

and thus, we arrive at

|∂zΦ0(z)|2 = 2ψ0(Φ0(z)) for all z ∈ R. (6.6.29)

In order to obtain further information, we next show that (6.6.27) can be interpreted as
the first-order optimality condition of a particular optimization problem that is similar
to the minimization of the one-dimensional Ginzburg–Landau energy. Therefore, we first
assume that

σij := inf
{ˆ 1

−1

√
2ψ0(θ(t))

∣∣θ′(t)
∣∣ dt

∣∣∣∣∣ θ ∈ C0,1([0, 1];RN ), θ ∈ G point-wise,
θ(1) = ej and θ(−1) = ei

}
(6.6.30)

possesses a minimizer, which we call θij . This means that θij is a geodesic with respect
to the degenerate metric induced by the potential ψ0 that connects the values ei and ej .
Now, proceeding as in [148, proof of formula (15)], this geodesic can be used to construct
a minimizer Φ of the problem

inf


ˆ +∞

−∞
|∂zΦ|2 + 2ψ0(Φ) dz

∣∣∣∣∣∣
Φ ∈ C0,1([0, 1];RN ), Φ ∈ G point-wise,
lim

z→∞
Φ(z) = ej and lim

z→−∞
Φ(z) = ei

 . (6.6.31)

This means that Φ describes an optimal transition between the values ei and ej . As
in [148, proof of formula (15)], we further see that Φ solves (6.6.27) and (6.6.29), where
Λ0 + µ0 is the Lagrange multiplier for the Gibbs–Simplex constraint. Consequently,
choosing Φ0 = Φ we have found a solution of (6.6.27) and (6.6.29). Moreover, [148,
formula (15)] states that 2σij is exactly the value of the minimum sought in (6.6.31).
As the minimizer Φ0 = Φ of (6.6.31) satisfies (6.6.29), we further conclude

σij =
ˆ ∞

−∞
|∂zΦ0|2 dz = 2

ˆ ∞

−∞
ψ0(Φ0) dz < ∞, (6.6.32)

which will be important for later purposes.
Finally, we now consider (6.6.14) to the order O (1). Using (6.4.26) to reformulate the
Laplacian, the O(1)-contribution of the term γε∆φ reads as

γ (∂zzΦ1 − κ̂∂zΦ0) .

For the O(1)-contribution of the term γ
εPT Σ[ψ′

0(φ)], we obtain

γPT Σ
[
ψ′′

0(Φ0)Φ1
]
.

Recalling that (6.6.17) holds analogously for C′(Φ0) and using (6.6.8), we infer that the
term

l∑
r=1

(
[∂λnr

Ψ](λε
n1 , . . . , λ

ε
nl

)PT Σ
[
C′(φε)

]
E
(
wε

nr

)
: E
(
wε

nr

))
,
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has the O(1)-contribution

l∑
r=1

(
[∂λnr

Ψ](λ0,n1 , . . . , λ0,nl
)

· C′(Φ0)
(
∇ΓW0 + ∂zW1 ⊗ ν

)sym :
(
∇ΓW0 + ∂zW1 ⊗ ν

)sym)
.

Moreover, the O(1)-contribution of

l∑
r=1

(
[∂λnr

Ψ](λε
n1 , . . . , λ

ε
nl

)λε
nr
PT Σ

[
ρ′(φε)

] ∣∣wε
nr

∣∣2) ,
reads as

l∑
r=1

(
[∂λnr

Ψ](λ0,n1 , . . . , λ0,nl
)λ0,nrρ

′ (Φ0) |W0,nr |2
)
.

Hence, dividing both sides resulting from (6.6.14) through γ we obtain

1
γ

(Λ1 + ϑ1 + µ1) + ∂zzΦ1 − PT Σ
[
ψ′′

0(Φ0)Φ1
]

= κ̂∂zΦ0 + 1
γ

l∑
r=1

{
[∂λnr

Ψ](λ0,n1 , . . . , λ0,nl
)

·
[
C′(Φ0)(∇ΓW0,nr + ∂zW1,nr ⊗ ν)sym : (∇ΓW0,nr + ∂zW1,nr ⊗ ν)sym

− λ0,nrρ
′(Φ0) |W0,nr |2

]}
around Γij , .

(6.6.33)

We now multiply this equation by ∂zΦ0 and integrate with respect to z from −∞ to ∞.
Let us consider each term of the resulting equation separately. Analogously to (6.6.22)
and (6.6.23), we obtain

ˆ ∞

−∞
Λ1 · ∂zΦ0 dz = 0 and (6.6.34)

ˆ ∞

−∞
ϑ1 · ∂zΦ0 dz = ϑ1 · (ej − ei) . (6.6.35)

Considering the Lagrange multiplier µ, we recall (6.6.25),

µε
i ∇xφ

ε
i = 0 a.e. in Ω. (6.6.36)

Due to (6.4.20), its contribution of leading order O(1) in inner coordinates is given by

µi
1∂zΦi

0ν + µi
0∇ΓΦi

0 + µi
0∂zΦi

1ν = 0 around Γij ,

for all i ∈ {1, . . . , N}. Multiplying this identity by ν and integrating the resulting equation
with respect to z, we infer

ˆ ∞

−∞
µ1 · ∂zΦ0 dz = −

ˆ ∞

−∞
µ0 · ∂zΦ1 dz. (6.6.37)
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Furthermore, applying integration by parts twice and using that due to the matching
condition (6.5.4) all derivatives of Φ0 with respect to z tend to 0 as z → ±∞, we obtainˆ ∞

−∞
∂zzΦ1 · ∂zΦ0 dz =

ˆ ∞

−∞
∂zz (∂zΦ0) · Φ1 dz. (6.6.38)

As ∂zΦ0 attains its values only in TΣN , we deduceˆ ∞

−∞
PT Σ

[
ψ′′

0(Φ0)Φ1
]

· ∂zΦ0 dz =
ˆ ∞

−∞
ψ′′

0(Φ0) ∂zΦ0 · Φ1 dz (6.6.39)

due to the symmetry of the Hessian matrix. Moreover, recalling that W0 is independent
of z due to (6.6.8), a simple computation yieldsˆ ∞

−∞
ρ′(Φ0)∂zΦ0 |W0|2 dz =

ˆ ∞

−∞

[ d
dz ρ(Φ0)

]
|W0|2 dz

=
ˆ ∞

−∞

d
dz
[
ρ(Φ0) |W0|2

]
dz.

(6.6.40)

Furthermore, by the definition of the dyadic product, it holds

(∇ΓW0 + ∂zW1 ⊗ ν)sym ν · ∂zzW1

= (∇ΓW0 + ∂zW1 ⊗ ν)sym : (∂zzW1 ⊗ ν)sym .

Now we use (6.6.8) (which directly entails ∂z∇ΓW0 = 0), (6.6.10) and ∂zν = 0 to deduceˆ ∞

−∞
C′(Φ0)∂zΦ0 (∇ΓW0 + ∂zW1 ⊗ ν)sym : (∇ΓW0 + ∂zW1 ⊗ ν)sym dz

=
ˆ ∞

−∞

[ d
dzC(Φ0)

]
(∇ΓW0 + ∂zW1 ⊗ ν)sym : (∇ΓW0 + ∂zW1 ⊗ ν)sym dz

=
ˆ ∞

−∞

d
dz
[
C(Φ0) (∇ΓW0 + ∂zW1 ⊗ ν)sym : (∇ΓW0 + ∂zW1 ⊗ ν)sym

]
dz

− 2
ˆ ∞

−∞

d
dz
[
C(Φ0) (∇ΓW0 + ∂zW1 ⊗ ν)sym ν · ∂zW1

]
dz

(6.6.41)

by means of the product rule and integration by parts.
Collecting (6.6.34)–(6.6.41) and recalling (6.6.32), we eventually obtain

ϑ1 · (ej − ei)

+
ˆ ∞

−∞

(
∂zz (∂zΦ0) − ψ′′

0 (Φ0) ∂zΦ0
)

· Φ1 dz −
ˆ ∞

−∞
µ0 · ∂zΦ1 dz

= − 1
γ

l∑
r=1

[∂λnr
Ψ] (λ0,n1 , . . . , λ0,nl

)λ0,nr

(ˆ ∞

−∞

d
dz
(
ρ(Φ0) |W0,nr |2

)
dz
)

+ σij κ̂+ 1
γ

l∑
r=1

{
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)

·
[ˆ ∞

−∞

d
dz
(
C(Φ0)(...)sym : (...)sym

)
dz

− 2
ˆ ∞

−∞

d
dz
(
C(Φ0)(...)symν · ∂zW1,nr

)
dz
]}

(6.6.42)
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on Γij , where (...)sym abbreviates
(
∇ΓW0,nr + ∂zW1,nr ⊗ ν

)sym. Next, we want to show
that

ˆ ∞

−∞

(
∂zz(∂zΦ0) − ψ′′

0(Φ0)∂zΦ0
)

· Φ1 dz −
ˆ ∞

−∞
µ0 · ∂zΦ1 dz = 0. (6.6.43)

Differentiating (6.6.27) with respect to z, multiplying by Φ1 and integrating the resulting
equation with respect to z, we deduce

ˆ ∞

−∞

(
∂zz(∂zΦ0) − ψ′′

0(Φ0)∂zΦ0
)

· Φ1 dz = −
ˆ ∞

−∞
[∂z(Λ0 + µ0)] · Φ1 dz.

Thus, in order to prove (6.6.43), it suffices to show
ˆ ∞

−∞
[∂z(Λ0 + µ0)] · Φ1 dz +

ˆ ∞

−∞
µ0 · ∂zΦ1 dz = 0. (6.6.44)

By means of integration by parts and the product rule, the left-hand side can be refor-
mulated as

ˆ ∞

−∞
[∂z(Λ0 + µ0)] · Φ1 dz = −

ˆ ∞

−∞
(Λ0 + µ0) · ∂zΦ1 dz

+
ˆ ∞

−∞

d
dz [(Λ0 + µ0) · Φ1] dz.

Now as Φ1, ∂zΦ1 ∈ TΣN point-wise, we know as in (6.6.22)

Λ0 · ∂zΦ1 = Λ0 · Φ1 = 0.

Thus, as we want to prove (6.6.44), it remains to show
ˆ +∞

−∞

d
dz [µ0 · Φ1] dz = 0. (6.6.45)

Recalling once more formula (6.3.31), we infer

[µε]i[φε]i = 0 a.e. in Ω

for all i ∈ {1, . . . , N}. Hence, for the O(1)-contribution and the O(ε)-contribution of the
inner expansions, we obtain the relations

µi
0(z) Φi

0(z) = 0 and µi
1(z) Φi

0(z) = −µi
0(z) Φi

1(z), (6.6.46)

respectively, for all i ∈ {1, . . . , N} and z ∈ R. Now, the first equation in (6.6.46) implies
that for any z ∈ R with Φi

0(z) ̸= 0, we have µi
0(z) = 0 and thus also µi

0(z)Φi
1(z) = 0. On

the other, for all z ∈ R with Φi
0(z) = 0, we infer from the second equation in (6.6.46) that

µi
0(z)Φi

1(z) = 0. Combining both statements, we conclude

µi
0(z) Φi

1(z) = 0 for all i ∈ {1, . . . , N} and z ∈ R.

This proves (6.6.45). By the above considerations, this verifies (6.6.44) which in turn
implies equation (6.6.43).
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To conclude this section, we recall the definition of the jump, see (6.5.11). Moreover, we
recall from (6.4.27) that the mean curvature of Γij is given by κij = −∇Γij · nΓij . Using
the matching conditions (6.5.8), (6.6.9) and (6.6.12), we finally infer from (6.6.42) that

(
ϑj

1 − ϑi
1
)

= σijκij − 1
γ

l∑
j=1

[∂λnr
Ψ] (λ0,n1 , . . . , λ0,nl

)λ0,nr

[
ρ |w0,nr |2

]j
i

+ 1
γ

l∑
r=1

{
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)

·
([
CE(w0,nr ) : E(w0,nr )

]j
i

− 2
[
CE(w0,nr )ν · ∇w0,nr ν

]j
i

)}
(6.6.47)

on Γij for all i, j ∈ {1, . . . , N − 1}. In the case j = N and i ̸= N , equation (6.6.42)
simplifies to

(
ϑj

1 − ϑi
1
)

= σijκij + 1
γ

l∑
r=1

[∂λnr
Ψ] (λ0,n1 , . . . , λ0,nl

)λ0,nr ρ
i |(w0,nr )i|2

− 1
γ

l∑
r=1

[∂λnr
Ψ] (λ0,n1 , . . . , λ0,nl

)CiEi(w0,nr ) : Ei(w0,nr )
(6.6.48)

on ΓiN by the matching in (6.6.13) and (6.6.5).
To conclude this section we note that according to [32, Section 5.3] or [46, Section 2.4]
equation (6.6.27) induces a further solvability condition, namely an angle condition for
triple junctions. So let us assume that the regions Ωi,Ωj ,Ωk meet at a triple point mijk

where k ∈ {1, . . . N} \ {i, j}. Then the angle condition is expressed via the normals of the
three meeting interfaces as follows

σijnΓij + σjknΓjk
+ σkinΓki

= 0 in mijk. (6.6.49)

This relation immediately implies the angle condition
sin(θij)
σij

= sin(θjk)
σjk

= sin(θki)
σki

,

where θij denotes the angle between nΓij . For the choice ψ0(φ) = 1
2(1 − φ · φ) we deduce

that the transition energy encoded by σij , σjk, σki is always identical by exploiting the
symmetry of this potential in (6.6.30). Thus, in this case we obtain that triple junctions
occur always at a 120◦ contact angle.

6.7. The sharp-interface problem

Now we are in a position to state the complete problem that is obtained from (SEε) and
(GIε) in the sharp-interface situation.

6.7.1. The sharp-interface limit of the state equation

Therefore, we recall that the domain Ω is partitioned into N regions Ωi for i = 1, . . . , N
representing the presence of the i-th material (i < N) or void (i = N) in its pure form.
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Those regions are separated by interfaces Γij . Furthermore we have chosen ηΓij
to be the

unit normal vector field on Γij pointing from Ωi into the region Ωj . This means that

x+ δηΓij
(x) ∈ Ωj and x− δηΓij

(x) ∈ Ωi x ∈ Γij and δ > 0.

To capture the behavior of a function v across the interface Γij , we defined its jump by

[v]ji (x) := lim
δ↘0

(
v
(
x+ δηΓij

(x)
)

− v
(
x− δηΓij

(x)
))
,

for all x ∈ Γij , see (6.5.11).
Combining the equations (SEi

0) derived in Claim 6.4.1 and the jump conditions obtained
in (6.6.9) and (6.6.13), we obtain the system

−∇ ·
(
CiE(w0,nr )

)
= λ0,nrρ

iw0,nr in Ωi,[
CE(w0,nr )nΓij

]j
i

= 0 on Γij ,

[w0,nr ]ji = 0 on Γij ,

CiEi(w0,nr )nΓiN
= 0 on ΓiN ,

CiE(w0,nr )n = 0 on Γ0 ∩ ∂Ωi,

w0,nr = 0 on ΓD ∩ ∂Ωi,

(SEij
r )

for i, j = 1, . . . , N − 1 and r = 1, . . . , l, as the sharp-interface limit of the state equa-
tion (SEε). Here, w0,nr is normalized in the material regions, i.e.,

1 =
N−1∑
i=1

ˆ
Ωi

ρi |w0,nr |2 dx. (6.7.1)

Furthermore, we infer from (6.6.13) that

[w0,nr ]Ni = 0 on ΓiN (6.7.2)

for all i ∈ {1, . . . , N−1} and each r ∈ {1, . . . , l}. However, this condition does not provide
any additional information as we do not know how w0,nr behaves in the void region. In
particular, we see that by interpreting (SEij

r ) as one system of PDEs in the material region⋃N−1
i=1 Ωi, the homogeneous Neumann boundary condition in the fourth line of (SEij

r ) is
enough to obtain a closed system.
Combining the Neumann type jump condition on Γij stated in the second line of (SEij

r )
with the normality condition (6.7.1), we are able to obtain the beautiful relation

ˆ
ΩM

CM E(w0,nr ) : E(w0,nr ) dx = λ0,nr , (6.7.3)

with

ΩM :=
N−1⋃
i=1

Ωi and CM :=
(

N−1∑
i=1

Ci 1Ωi

)
,
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where 1Ωi denotes the characteristic function on Ωi. This means that the eigenvalue λ0,nr

in the sharp-interface setting is indeed solely determined by an eigenvalue equation on the
material region ΩM but does not have any contribution from the void region.
To verify (6.7.3), we test (SEij

r ) with w0,nr and integrate by parts. This yields
ˆ

Ωi

CiE(w0,nr ) : E(w0,nr ) dx−
ˆ

∂Ωi

CiE(w0,nr )nΓi · w0,nr dΓ = λ0,nr

=
ˆ

Ωi

ρi |w0,nr |2 dx,
(6.7.4)

for all i ∈ {1, . . . , N − 1}, where nΓi stands for the outer unit normal vector field of
∂Ωi. Noticing that the outer unit normal vector simply switches its sign on neighboring
boundaries, we now use the second and the fourth line of (SEij

r ) to infer

N−1∑
i=1

ˆ
∂Ωi

CiE(w0,nr )nΓi · w0,nr dΓ = 0.

Thus, summing the equations (6.7.4) from i = 1 to N − 1 and using property (6.7.1), we
conclude

N−1∑
i=1

ˆ
Ωi

CiE(w0,nr ) : E(w0,nr ) dx = λ0,nr .

By the linearity of the integral, this directly proves (6.7.3).

Remark 6.7.1. As a refinement of Remark 6.4.2 (a), we now see that as long as at least
one of the material regions Ω1, . . . ,ΩN−1 shares a sufficiently nice part of its boundary
with ΓD, we can apply Korn’s inequality in order to deduce that all λ0,nr are strictly
positive. From a physical point of view, this is reasonable since if the material region
ΩM of the structure is not attached to some fixed boundary the shape can freely move
within the design domain just by translation without exhibiting any vibrations, see also
Remark 2.2.3.

6.7.2. The sharp-interface limit of the first-order optimality condition

Now let us turn to the limit of the gradient inequality (GIε). For the sake of completeness,
let us restate our final results from the previous section, i.e., (6.6.47) and (6.6.48). We
have

0 = γσijκij −
l∑

j=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)λ0,nr

[
ρ |w0,nr |2

]j
i

+ γ
(
ϑi

1 − ϑj
1
)

+
l∑

r=1

{
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)

·
([
CE(w0,nr ) : E(w0,nr )

]j
i

− 2
[
CE(w0,nr )ν · ∇w0,nr ν

]j
i

)} (6.7.5)



6.7. THE SHARP-INTERFACE PROBLEM 235

on Γij for all i, j = 1 . . . , N − 1, and

0 = γσiNκiN +
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)λ0,nr ρ

i |(w0,nr )i|2 + γ
(
ϑi

1 − ϑN
1
)

−
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)CiEi(w0,nr ) : Ei(w0,nr )

(6.7.6)

on ΓiN for all i = 1 . . . , N − 1 if j = N .
Here σij is defined as in (6.6.30) and stands for the total energy of a transition across
the interface Γij . The vector ϑ1 ∈ RN denotes the O(ε)-contribution of the Lagrange-
multiplier resulting from the integral constraint

ffl
Ω φε dx = m that is hidden in the

condition φε ∈ Gm (cf. Theorem 6.3.12). Recalling (6.6.49), we additionally have the
triple junction condition at any junction point mijk with i, j, k = 1, . . . , N

σijnΓij + σjknΓjk
+ σkinΓki

= 0 in mijk.

6.7.3. The sharp-interface optimality system in the case of one material

We now want to state above equations for the simplest case of only one single material
(i.e., N = 2) as this is the scenario we further study in the subsequent sections.
In this case, we have Ω = ΩM ∪ ΩV , where ΩM and ΩV denote the material and the
void parts of the domain, respectively. We now denote the interface separating the two
phases by ΓMV , its outer unit normal vector field by nΓMV

and its mean curvature by
κMV = −∇ΓMV

· nΓMV
. Using the notation ΓM

D := ΓD ∩ ∂ΩM and ΓM
0 := Γ0 ∩ ∂ΩM , we

obtain from (SEij
r ), (6.7.1) and (6.7.2) the state equation

−∇ ·
(
CM E(w0,nr )

)
= λ0,nrρ

M w0,nr in ΩM ,

CM EM (w0,nr ) nΓMV
= 0 on ΓMV ,

w0,nr = 0 on ΓM
D ,

CM E(w0,nr ) n = 0 on ΓM
0 ,

(SEMV
r )

for r = 1, . . . , l, along with the first-order necessary optimality condition

0 = γ σMV κMV +
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)λ0,nrρ

M |(w0,nr )M |2

−
l∑

r=1
[∂λnr

Ψ] (λ0,n1 , . . . , λ0,nl
)CM EM (w0,nr ) : EM (w0,nr ) + γ

(
ϑ1

1 − ϑ2
1

) (6.7.7)

on ΓMV . This means that the functions w0,nr are eigenfunctions to the eigenvalues λ0,nr

which essentially solve the eigenvalue problem for the elasticity equation subject to a
homogeneous Neumann boundary condition on the shape ΩM .

Remark 6.7.2. Note that, in general, one cannot predict the behavior of solutions to
(SEMV

r ). If ΩM is merely a set of finite perimeter that does not have a Lipschitz boundary
or if ΓMV ∩ ΓM

D = ∅, the classical spectral theory from Theorem 2.2.8 does not necessarily
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provide us with an infinite sequence of positive eigenvalues. Nevertheless, as we want
to consider a well-posed minimization problem and want to calculate shape derivatives
associated to this problem, we assume that these issues do not occur. In particular, we
always assume ΩM to be sufficiently smooth and ∂ΩM to have a suitably nice intersection
with ΓM

D such that an infinite sequence of positive eigenvalues actually exists (see also
Remark 6.7.1).

6.8. Relating the first-order optimality condition to classical
shape calculus

We now want to compare the above results, especially (6.7.7), to the results in [5], which
were obtained using shape calculus. Our goal is to justify that the gradient equality (6.7.7)
is indeed the first-order condition of a sharp-interface eigenvalue optimization problem,
which is formally the limit of the diffuse-interface problem we started with. Therefore,
we need to fit the notation of [5] to our setting.
As above consider the situation N = 2, i.e., Ω = ΩM ∪ ΩV . Denote with PΩ(ΩM ) the
relative perimeter of the shape ΩM , which is given by the Hausdorff measure Hd−1(∂ΩM ∩
Ω) provided that ΩM is non-empty and sufficiently smooth, see Section 2.2.4. Furthermore,
we consider a prescribed mass m =

∣∣ΩM
∣∣ < |Ω|. In order to be consistent with the notation

used in the previous chapters, we choose m = (m1,m2)T ∈ Σ2 with m1 = m|Ω|−1 and
m2 = 1 − m1. Then the sharp-interface structural optimization problem that we intend
to approximate via our diffuse-interface problem (Pε

l ) reads as


min J(ΩM ) := Ψ(λn1 , . . . , λnl
) + γ σMV PΩ(ΩM ),

over Uad =
{

ΩM ⊂ Ω :
∣∣ΩM

∣∣ = m
}
,

s.t. (SEMV
r )



−∇ ·
(
CM E(wnr )

)
= λnrρ

M wnr in ΩM ,

CM EM (wnr ) nΓMV
= 0 on ΓMV ,

CM E(wnr ) n = 0 on ΓM
0 ,

wnr = 0 on ΓM
D ,

for all r ∈ {1, . . . , l}.

(P0
l )

This problem is the sharp-interface limit problem associated to the diffuse-interface prob-
lem (Pε

l ), where the side condition is exactly the sharp-interface state equation (SEMV
r )

and the perimeter σMV PΩ(ΩM ) is the rigorous Γ-limit of the Ginzburg–Landau energy,
see [23]. We recall that the constant σMV we obtained in (6.6.30) is exactly the one
obtained in [23] in terms of the rigorous Γ-limit, which is denoted by d(ei, ej) there. In
particular, σMV is independent of the shape ΩM .
In cases an ambiguity might arise, we indicate the shape dependency explicitly in the
eigenfunctions and eigenvalues, i.e., we write (λnr (ΩM ),wnr (ΩM )) for r = 1, . . . , l.
Now, we want to apply the calculus of shape derivatives from [5, Theorem 2.5] to our
situation. We obtain the following statement.
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Theorem 6.8.1. Let ΩM be a smooth bounded open set and let θ ∈ W 1,∞(Rd,Rd) with

θ · nΓ
∂ΩM

= 0 on ∂ΩM \ΓMV .

We further assume that for r = 1, . . . , l, the eigenfunctions wnr (ΩM ) in (SEMV
r ) are

sufficiently smooth, say wnr (ΩM ) ∈ H2(ΩM ;Rd).
Then, if the involved eigenvalues λnr for r = 1, . . . , l are all simple, the shape derivative
of J at the shape ΩM in the direction θ fulfills the equation

J ′(ΩM )(θ) =
l∑

r=1

{
[∂λnr

Ψ](λn1(ΩM ), . . . , λnl
(ΩM ))

·
[ˆ

ΓMV

CM E(wnr (ΩM )) : E(wnr (ΩM ))θ · nΓMV
dHd−1

− λnr (ΩM )
ˆ

ΓMV

ρM
∣∣wnr (ΩM )

∣∣2θ · nΓMV
dHd−1

]}

−
ˆ

ΓMV

γσMV κMV θ · nΓMV
dHd−1.

(6.8.1)

Here, the shape derivative of J at a shape ΩM is defined as the Fréchet-derivative of the
functional

W 1,∞(Rd;Rd) → R, ζ 7→ J
(
(Id + ζ)ΩM)

evaluated at ζ = 0.

Remark 6.8.2.

(a) Note that the simplicity of eigenvalues is crucial here. Only then it is guaranteed
that the eigenvalues and eigenfunctions depend on the domain ΩM in a differentiable
way, see also the discussion in Section 5.4.2. For a comprehensive overview over the
differentiability of spectral quantities with respect to the domain we refer to [110,
Section 5.7].

(b) For ζ ∈ W 1,∞(Rd;Rd) the application

Tζ : Rd → Rd, x 7→ (Id + ζ)(x),

is invertible if ∥ζ∥W 1,∞ < 1, and it holds (Id + ζ)−1 − Id ∈ W 1,∞(Rd;Rd) with∥∥∥(Id + ζ)−1 − Id
∥∥∥

W 1,∞
≤ ∥ζ∥W 1,∞ (1 − ∥ζ∥W 1,∞)−1.

This means the family (Tζ)ζ∈W 1,∞ describes diffeomorphic perturbations of ΩM

“close” to ΩM if ∥ζ∥W 1,∞ is small, motivating the definition of the shape deriva-
tive above. For a detailed discussion of this concept, we refer to [110, Section 5.2].

Proof. We proceed analogously to [5, Theorem 2.5]. In the following, Ωζ = (Id+ζ)(ΩM )
denotes the perturbation of ΩM associated with a sufficiently small ζ ∈ W 1,∞(Rd;Rd).
First of all, for vnr ∈ H1(Rd;Rd) with r = 1, . . . , l, we introduce the Lagrangian

L(Ωζ ,vn1 , . . . ,vnl
)
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= Ψ

´
Ωζ

CM E(vn1) : E(vn1) dx´
Ωζ
ρM |vn1 |2 dx

, . . . ,

´
Ωζ

CM E(vnl
) : E(vnl

) dx´
Ωζ
ρM |vnl

|2 dx


+ γσMV P (Ωζ) ds.

For the partial Fréchet-derivatives of the Lagrangian with respect to vnr for r = 1, . . . , l
at the point (Ωζ ,wn1(Ωζ), . . . ,wnl

(Ωζ)), we obtain

∂vnr
L
(
Ωζ ,wn1(Ωζ), . . . ,wnl

(Ωζ)
)

= 0. (6.8.2)

This is simply due to the fact, that the derivative of the Rayleigh quotient

Rζ : H1(Rd;Rd) → R, v 7→

´
Ωζ

CM E(v) : E(v) dx´
Ωζ
ρM |v|2 dx

,

evaluated at an eigenfunction wn = wn(Ωζ) reads as

R′
ζ(wn)v =

2
´

Ωζ
CM E(wn) : E(v) dx

´
Ωζ
ρM |wn|2 dx

(
´

Ωζ
ρM |wn|2 dx)2

−
2
´

Ωζ
CM E(wn) : E(wn) dx

´
Ωζ
ρM wn · v dx

(
´

Ωζ
ρM |wn|2 dx)2

and this vanishes due to (SEMV
r ).

On the other hand, recalling the definition of J in (P0
l ), we obviously have

J(Ωζ) = L(Ωζ ,wn1(Ωζ), . . . ,wnl
(Ωζ))

as the eigenvalues can be expressed by the corresponding Rayleigh quotients. Note that
due to the differentiability of eigenfunctions as discussed in Remark 6.8.2, we can now
apply the chain rule. Thus, using (6.8.2) we infer that the shape derivative is given by

J ′(ΩM ) = d
dζ

[J((Id + ζ)(ΩM ))]ζ=0

= d
dζ

[L((Id + ζ)(ΩM ),wn1(ΩM ), . . . ,wnl
(ΩM ))]ζ=0

Applying the formulas for shape derivatives in [5, Lemma 2.3], we deduce

J ′(ΩM )(θ) =
l∑

r=1

{
[∂λnr

Ψ](λn1(ΩM ), . . . , λnl
(ΩM ))

·
[ˆ

∂ΩM

CM E(wnr (ΩM )) : E(wnr (ΩM ))θ · n∂ΩM dHd−1

− λnr (ΩM )
ˆ

∂ΩM

ρM
∣∣wnr (ΩM )

∣∣2θ · n∂ΩM dHd−1
]}

−
ˆ

∂ΩM

γσMV κM θ · n∂ΩM dHd−1.
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where κM denotes the mean curvature of ∂ΩM . By the assumption θ · n∂ΩM = 0 on
∂ΩM \ΓMV , the boundary integrals vanish on ∂ΩM \ΓMV and we thus arrive at (6.8.1).
Note that in [5], the mean curvature is defined as κ = ∇∂ΩM ·n∂ΩM , whereas (in accordance
with (6.4.27)) our mean curvature is given by κ = −∇∂ΩM · n∂ΩM . This explains the
negative sign of our term involving κM .

Remark 6.8.3. The preceding theorem shows that using the approach of classical shape
calculus and additionally taking the volume constraint

∣∣ΩM
∣∣ = m into account, we recover

the gradient equality (6.7.7) since the volume constraint produces a Lagrange multiplier as
in our previous analysis. This justifies our formal approach from the viewpoint of classical
shape calculus since (6.7.7) can be interpreted as the first-order necessary optimality
condition of the shape optimization problem (P0

l ).

6.9. Numerical examples

In the following, we present numerical results that illustrate the applicability of our ap-
proach to find optimal topologies. After a brief introduction of the numerical method, we
investigate the dependence of solutions on the parameter ε in Section 6.9.1. Therefore,
we study a particular setting of an elastic beam that is known from literature (cf. [5]). In
Section 6.9.2, we consider a joint optimization of λ1 and λ2 for this beam setup, and in
Section 6.9.3, we investigate an extended optimization problem to not only optimize the
shape and topology of this beam with respect to its first eigenvalue but also its compliance.
As in Subsection 6.7.3 and Section 6.8, we restrict ourselves to the case of only two phases,
i.e., material and void. In this situation, the vector-valued phase-field φ = (φ1, φ2) can
be represented by a scalar order parameter

φ := φ1 − φ2 ∈ H1(Ω) ∩ L∞(Ω).

This means that φ attains its values in [−1, 1], where „1“ represents the material and
„−1“ represents the void. The elastic tensor C(φ) now is defined as

C(φ)E(w) := α(φ)
(
2µ E(w) + ℓ tr

(
E(w)

)
I
)

(6.9.1)

for Lamé parameters µ, ℓ > 0 and the quadratic interpolation function α(φ) satisfying
α(1) = 1, α(−1) = αε2, and α′(−1) = 0 for some constant α. The eigenvalue equation is
given by

−∇ · [C(φ)E(w)] = λβ(φ)ρw, (6.9.2)

with the quadratic interpolation function β(φ) satisfying β(+1) = 1, β(−1) = βε2 and
β′(−1) = 0 as well as an additional density ρ that might depend on the spatial variable.
If not stated differently, we use α = 10−2 and β = 10−4.

Remark 6.9.1. Recall the discussion about spurious eigenmodes in Section 6.4.2 which
motivates the choice of the model in this numerical section. A slight difference compared
to the setting proposed in Claim 6.4.3 is the scaling of the void components C̃N and ρ̃N

here reflected by α(−1) and β(−1) respectively. Here the relatively lower scaling of α
versus β in void regions is guaranteed by the prefactors α and β. Noting that in the
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ε 80·10−3 40·10−3 20 ·10−3 10 ·10−3 5 ·10−3 2.5 ·10−3 1.25 ·10−3

γEε(φ) 0.00119 0.00120 0.00117 0.00115 0.00114 0.00114 0.00114
λ1 0.01577 0.01626 0.01658 0.01678 0.01692 0.01699 0.01703

Table 6.1: Scaled Ginzburg–Landau energy γEε(φ) and principal eigenvalue λ1 of the
optimal beam shape for decreasing values of ε. This indicates that the values Eε(φ) and
λ1 converge as ε decreases.

computations below ε is of order 10−2 one could absorb one ε into α and arrive at the
setting from Section 6.4.2, namely

α = β = 10−4 and α(−1) = αε, β(−1) = βε2.

Numerical Solution Method. The numerical implementation is based on linear finite
elements for all functions provided by the finite element package FEniCs [9,120] together
with the PETSc linear algebra backend [21, 22]. For the eigenvalue problem, we use the
package SLEPc [112]. The optimization problem is solved by the VMPT method that
is proposed in [36]. In our case, it can be understood as an extension of the projected
gradient method into the space H1(Ω) ∩ L∞(Ω). We refer to [36, 98] and Chapter 3 for
more details.

6.9.1. Numerical investigation of the sharp-interface limit ε → 0

In this section, to illustrate the sharp-interface limit, we present numerical results for a
sequence of decreasing values of ε.
We use the setup from [5, Sec. 7.1] to find a cantilever beam with maximal first eigenvalue,
i.e., we choose Ψ(λ1) = −λ1. Our computational domain is given by Ω = (0, 2) × (0, 1).
The Young’s modulus is E = 1 and Poisson’s ratio is ν = 0.3 leading to µ ≈ 0.38 and
ℓ ≈ 0.58. We define the subset Ωρ = (1.9, 2.0) × (0.45, 0.55) and set ρ(x) = 1 if x ̸∈ Ωρ

and ρ(x) = 100 if x ∈ Ωρ. We also fix φ(x) = 1 for all x ∈ Ωρ. The beam is supposed to
be attached to the wall at the left boundary of Ω, i.e., at ΓD = {(0, η) | η ∈ (0, 1)} ⊂ ∂Ω.
This leads to the boundary condition w = 0 on ΓD. We further set Γ0 = ∂Ω \ ΓD and we
fix γ = 10−4 and

´
Ω φ = 0.

Similar as in [5, Sec. 7.1], we start our optimization process with a checkerboard type
initial function given by φ0(x) = sign

(
v(x)

) ∣∣v(x)∣∣0.3 with v(x) = cos(3πx1) cos(4πx2) for
all x ∈ Ω. We want to emphasize that this problem is expected to have many local minima
and thus, the choice of initial function can significantly influence the shape and topology
of the local minimizer found by our numerical method.
We now solve the optimization problem for a decreasing sequence of values of ε. In Ta-
ble 6.1, we present the values of ε together with the corresponding value of the Ginzburg–
Landau energy Eε(φ) =

´
Ω

ε
2 |∇φ|2 + 1

2ε(1 − φ2) dx (i.e., the regular part is given as
ψ0(s) = 1

2(1 − s2)) and the eigenvalue λ1. Recall here that the values of the Ginzburg–
Landau energy converge to a weighted perimeter of the shape in the sharp-interface limit
ε → 0. In Figure 6.1, we present the zero level lines of the (locally optimal) shapes we
obtain for different values of ε. Here we started with ε = 0.08 and used the local optimum
as initial value for subsequent simulations.



6.9. NUMERICAL EXAMPLES 241

Figure 6.1: The zero level lines of the beam for the ε → 0 test for all tested ε. The
darker the line is, the smaller is ε. We observe that the interface seems to stabilize with
decreasing values of ε and that it only mildly depends on ε.

Figure 6.2: The optimal beam for Ψ(λ1) = −λ1, i.e., maximization of the principal
eigenvalue for γ = 10−4 (left) and γ = 10−5 (right) with ε = 0.02. We clearly observe
finer structures for smaller γ. We obtain λ1 = 1.68 ·10−2 for γ = 10−4 and λ1 = 1.72 ·10−2

for γ = 10−5. Thus, as expected, with less regularization we reach a larger value for λ1.

6.9.2. Optimization of a beam

As a first test, we illustrate the influence of the regularization strength γ on the found
structure. The parameter γ acts as a weight for the penalization of the length of the
interface between void and material. Thus a smaller value of γ is expected to lead to
thinner structures which contain more braces. Using the same setup as before, we solve
again the optimization problem for the cantilever beam, but this time we fix ε = 0.02.
We perform two simulations with γ ∈ {10−4, 10−5}. The smaller γ is chosen, the finer
structures we expect. We also expect that we reach a larger value for λ1, because less
regularization is used.
In Figure 6.2, we present the found structures for these parameters. On the left we present
the result for γ = 10−4 and on the right for γ = 10−5. As expected, it is clearly visible
that the structure obtained for the smaller value of γ is finer and contains more braces.
Additionally, decreasing γ also leads to sharper corners.
In a second test for the beam setup, we compare the numerical results for different choices
of Ψ(λ1, λ2) as a linear combination of λ1 and λ2. We set γ = 10−4 and use the solution
shown in Figure 6.2 as the initialization of the optimization method. In Figure 6.3, we
present numerical results for this setting with the choice Ψ(λ1, λ2) = −λ1 − αλ2 for
α ∈ {10−2, 2 ·10−2, 6 ·10−2, 10−1}. Moreover, in Table 6.2 we list the corresponding values
of λ1 and λ2. Here, α = 0 corresponds to the result shown in Figure 6.2 on the left.
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Figure 6.3: Optimization of the cantilever beam for γ = 10−4 and Ψ(λ1, λ2) = −λ1 −αλ2,
where α ∈ {10−2, 2 · 10−2, 6 · 10−2, 10−1} (left to right). We observe that increasing the
weight of λ2 above a certain value reduces the amount of fine structures.

α 0 1 · 10−2 2 · 10−2 6 · 10−2 1 · 10−1

λ1 1.677 · 10−2 1.662 · 10−2 1.606 · 10−2 1.521 · 10−2 1.508 · 10−2

λ2 9.181 · 10−2 11.874 · 10−2 15.178 · 10−2 17.663 · 10−2 18.047 · 10−2

Table 6.2: The first and second eigenvalue (λ1 and λ2) for the optimal topologies for the
beam example and Ψ(λ1, λ2) = −λ1 − αλ2. As expected, for larger weights α we reach a
lower value for λ1 and a larger value for λ2.

6.9.3. Joint optimization of compliance and principal eigenvalue

In this subsection, we extend the problem by using a linear combination of compliance
and the first eigenvalue as objective, see Section 2.1.12. Recall that the state equation in
the compliance problem asks for a displacement field u ∈ H1(Ω;Rd) satisfying

−∇ · (C(φ)E(u)) = 0 in Ω,
uc = 0 on ΓD ⊂ ∂Ω,

[C(φ)E(u)] · n = g on Γg ⊂ ∂Ω,
[C(φ)E(u)] · n = 0 on Γ0 ⊂ ∂Ω,

(6.9.3)

which minimizes the objective
´

Γg
g · u dx. Thus in the notation of Section 2.1.12 we

choose the interior force f = 0 in Ω and ΓC = ΓD.
Combining this with our eigenvalue optimization problem for Ψ(λ1) = −αλ1 for some
α > 0, we arrive at

min J(u, λ1) = −αλ1 +
ˆ

Γg

g · u dx+ γEε(φ)

s.t. u solves the compliance equation (6.9.3),
λ1 is the first eigenvalue of (SEε).

(6.9.4)

This means that we are looking for a structure that simultaneously minimizes the com-
pliance with respect to a given boundary force g and maximizes the first eigenvalue λ1.
We use the same setup as in Section 6.9.2 for the beam example and fix γ = 1 · 10−3.
Moreover, the exterior force is g = (0,−1)T and acts on Γg = {(2.0, y) | y ∈ (0.45, 0.55)}.
Note that Γg belongs to the boundary of the domain Ωρ on which we assume a higher
value of the density ρ.
In Figure 6.4, we show numerical result for this setting for different values of α. We
observe that the structures become finer when we increase the influence of the principal
eigenvalue. In Table 6.3, we present the corresponding values for compliance and λ1 for
these shapes. As expected, we achieve a larger compliance when we increase the weight α
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Figure 6.4: Numerical results for joint optimization of compliance and principle eigenvalue
with weight α ∈ {10, 100, 500} (left to right). We observe that increasing the weight α of
the first eigenvalue leads locally to a finer structure.

α 10 100 200 500
Compliance 0.5507 0.5629 0.5676 0.5769

λ1 0.0164 0.0170 0.0172 0.0173

Table 6.3: Values of compliance and principal eigenvalue λ1 for joint optimization of
compliance and principle eigenvalue with weight α ∈ {10, 100, 200, 500}. We observe that
increasing α leads, as expected, to larger values of the principal eigenvalue and larger
values for the compliance.

of the principal eigenvalue. Simultaneously, we also obtain larger values for the principal
eigenvalue. It is worth mentioning that these results compare very well with the ones
obtained in [5], where a level-set method was used to directly tackle the sharp-interface
problem (see especially Fig. 2 and Fig. 5 in [5]).
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