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Abstract

Motivation: Mixed molecular data combines continuous and categorical features of the same samples,
such as OMICS profiles with genotypes, diagnoses, or patient sex. Like all high dimensional molecular
data it is prone to incorrect values that can stem from various sources as for example the technical
limitations of the measurement devices, errors in the sample preparation or contamination. Most anomaly
detection algorithms identify complete samples as outliers or anomalies. However, in most cases, not
all measurements of those samples are erroneous but only a few one-dimensional features within the
samples are incorrect. These one-dimensional data errors are continuous measurements that are either
located outside or inside the normal ranges of their features but in both cases show atypical values given
all other continuous and categorical features in the sample. Additionally, categorical anomalies can occur
for example when the genotype or diagnosis was submitted wrongly.
Results: We introduce ADMIRE (Anomaly Detection using MIxed gRaphical modEls), a novel approach for
the detection and correction of anomalies in mixed high dimensional data. Hereby, we focus on the detection
of single (one-dimensional) data errors in the categorical and continuous features of a sample. For that the
joint distribution of continuous and categorical features is learned by Mixed Graphical Models, anomalies
are detected by the difference between measured and model-based estimations and are corrected using
imputation. We evaluated ADMIRE in simulation and by screening for anomalies in one of our own metabolic
data sets. In simulation experiments ADMIRE outperformed the state-of-the-art methods Local Outlier
Factor, stray and Isolation Forest.
Availability: All data and code is available at https://github.com/spang-lab/adadmire. ADMIRE is
implemented in a python package called adadmire which can be found at https://pypi.org/project/adadmire.
Contact: wolfram.gronwald@ukr.de
Supplemental information: Supplemental data are available at Bioinformatics online.
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1 Introduction
Molecular data is error prone. Systematic errors in e.g. sample collection
or preparation can affect large sets of features and need to be corrected
using normalization methods. Additionally, technical problems can affect
individual measurements. Due to the different molecular properties of
the measured features, it is often the case that a sample shows only in
a few of its measured features abnormalities while the rest of them are
inconspicuous. Also, not all samples might be affected in the same way as
each sample is usually processed separately and therefore is exposed to a
different kind of error source. Consequently, molecular data sets contain
individual data errors that can affect each measured feature in each sample
in a different way. These one-dimensional data errors are especially hard to
detect in the setting of high-dimensional molecular data sets. Furthermore,
they might present themselves as univariate outliers, with measured values
exceeding the range of the features by multiple orders. But they also appear
as anomalies when a value fits well into the univariate distribution of its
feature, but not into the joint distribution of all features. For example, if
a gene shows expression values between 4-6 in men and between 8-14 in
women, a value of 12 in a man is suspicious.
More formally, a given value xij of a feature j in a sample i might
be a typical value for the marginal distribution of feature j, but not for
its conditional distribution given all other features of sample i. These
anomalies can only be detected when the information given by the
categorical, phenotypic information is taken into consideration as well.
But this data can also contain anomalies. Data entry errors or a mix-up
during the experimental procedure can lead to artefacts in the phenotypical
information of a data set. Samples are then assigned for example to the
wrong treatment class, a female participant is considered as a male, etc.
The literature knows numerous methods for detecting uni-variate outliers
in molecular data (Grubbs, 1969) and for detecting multi-variate anomalies
in continuous (Korn, F. et al, 2001; DeCoste and Levine, 2004; Hodge and
Austin, 2004; Ando, 2007) as well as in discrete data (John, 1995). A
common approach to anomaly detection is using the k nearest neighbors
to detect anomalies within this neighborhood as done by the Local outlier
factor (LOF) (Breunig et al., 2000) and the Search and TRace AnomalY
(stray) algorithm (Talagala et al., 2021), or to use random forests to isolate
anomalous samples (see Isolation Forest (Liu et al., 2008)). Unlike our
method which aims at the detection of anomalies in individual entries of the
data matrix, those algorithms however confine themselves to identifying
suspicious samples, see supplement.
Most data sets in molecular biology are mixed. Continuous OMICS
data is complemented by discrete phenodata like patient characteristics
(sex, diagnosis, treatment), experimental conditions (experimental groups,
controls) or technical designs (batches, repetitions). Therefore, we
developed a novel approach to anomaly detection based on Mixed
Graphical Models (MGMs). MGMs (Lee and Hastie, 2015, Cheng et al.,
2017) are well established generalisations of Gaussian Graphical Models
(GGMs) ( Lauritzen, 1996, Meinshausen and Bühlmann, 2006) to mixed
data. Beyond anomaly detection MGMs have been succesfully used
for studying the structure of metabolic, proteomic or transcriptomic
networks (Chun et al., 2013, Wang, T. et al, 2016, Zhao and Duan, 2019,
Altenbuchinger, M. et al, 2020 ). We briefly review the concept of MGMs,
describe how ADMIRE detects anomalies, handles missing values,
validate it in simulation experiments, compare it to alternative approaches
and demonstrate its power in the contexts of finding experimental artefacts
in a state of the art metabolomics data set.

2 Methods
In a nutshell: ADMIRE fits for each sample in a leave one out approach
a MGM to the mixed data set. From this MGM we derive the conditional

Fig. 1. A Mixed Graphical Model. The nodes include both continuous features (blue), and
discrete features (green). A missing edge between two nodes denotes their conditional
independence given all other variables. The node and edge weights correspond to the
couplings and potentials in equation (1).

distribution of a feature given all other features. We then compare an actual
observation of a specific feature in a specific sample with its corresponding
conditional distribution. If the value is far away from what can be expected
from the model given all other features of the same sample, we flag it as
anomaly and the user may choose to replace it by a model based imputation.

2.1 Mixed Graphical Models

Like Gaussian Graphical Models, their continuous counterpart, MGMs
learn the conditional independence structure of a given set of features
together with parameters that define the joint distribution of both
continuous and discrete variables (Lee and Hastie, 2015). The conditional
independence structure is encoded in an undirected graph where nodes
represent features and edges the conditional dependencies between them.
The conditional distribution of a node (feature) xj given all other nodes
(features) x\j only depends on the values of the nodes that are directly
connected toxj . More formally, the data is modelled as a pairwise Markov
random field with density

p(x,y;Θ) ∝ exp

(
p∑

j=1

p∑
s=1

− 1
2
βjsxjxs+

p∑
j=1

αjxj

+
p∑

j=1

q∑
s=1

ρjs(ys)xj+
q∑

j=1

q∑
s=1

ϕjs(yj ,ys)

)
,

(1)

where x1, . . . , xp are continuous features. y1, . . . , yq discrete features
where yj has Lj distinct states. Together the xj and the yj form the nodes
of the networks. The remaining parameters are node and edge weights
(couplings) that jointly define how the distribution of a node depends on the
values of its direct neighbors. βjs are couplings between two continuous
nodes, αj are continuous node potentials, ρsj(yj) are continuous-discrete
couplings and ϕsj(ys, yj) are discrete-discrete couplings. We denote the
complete parameter set by Θ = {{βjs}, {αj}, {ρjt}, {ϕrt}, j, s ∈
{1 . . . p}, r, t ∈ {1 . . . q}}. Figure 1 visualizes the roles of individual
parameters.
To simplify notations we will omit the index i of the sample whenever
the focus is on the features xj in the continuous and yj in the discrete
case. Single data points in our data matrix are realizations of the random
variables xj or yj and are denoted by xij or yij respectively.
Equation (1) defines the full joint distribution of both discrete and
continuous features. To judge whether a specific continuousxij or discrete
yij data point fits to all other observed data points in the same sample, we
need to calculate the conditional distribution of a node given all its direct
neighbors. Following (Lee and Hastie, 2015) the conditional distribution
of a continuous variable xj given all other continuous variables x\j and
discrete variables y is Gaussian with

xj |(x\j , y; Θ) ∼ N (x̂j , β
−1
jj ) (2)
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where the linear regression

x̂j = αj +
∑
s

ρjs(ys)−
∑
s ̸=j

βjsxs (3)

yields the mean and the variance is given by β−1
jj .

The conditional distribution of a discrete variable yj with Lj states
has the probability mass function

p(yj |y\j ,x;Θ) =

exp(
∑

s ρsj(yj)xs+Φjj(yj,yj)+
∑

s ̸=j Φjs(yj,ys))∑Lj
l=1

exp(
∑

s ρsj(l)xs+Φjj(l,l)+
∑

s ̸=j Φjs(l,ys))

(4)

which corresponds to a multiclass logistic regression. Together, the
conditional distributions (2) and (4) describe the conditional independence
structure via the regression coefficient of a variable on all others. We denote
the conditional distribution (2) of a continuous feature xj in a sample i by
Qij and the conditional distribution of a discrete feature yj in sample i

by pij .

2.2 Detection of data anomalies in continuous features

ADMIRE builds on the discrepancies between the original observations
xij from their model based conditional distributions and the resulting
linear predictions x̂ij . The estimated means x̂ij from the conditional
distribution (2) serve as a regression based re-estimation of a continuous
feature based on all other features see (Altenbuchinger, M. et al, 2019).
Furthermore, the conditional distribution describes how well an observed
data point fits to the rest of the data. More specifically, it tells us the
probability of observing a specific feature value given all other continuous
and categorical features for the same sample. Let xij be the observed,
measured value, x̂ij the estimated mean and ϵ = |xij− x̂ij | the deviation
of the observed value from the estimated mean. Then the probability p of
observing a deviation greater or equal ϵ is given by

p = P(x ≤ x̂− ϵ) + P(x ≥ x̂+ ϵ) = 2 ∗ F (x̂− ϵ), (5)

where F is the cummulative distribution function of x ∼ N (x̂ij , β
−1
jj ).

We apply (5) to all entries xij in the data matrix and rank them according
to their probability. Entries at the top of this list have a low probability
and are most likely anomalies. Mind that the same ranking is achieved,
when instead of the probabilities the scores soij =

|xij−x̂ij |√
β−1
jj

are used for

ranking. Data entries with a high deviation from the estimated mean rank
at the top of the list.

We threshold this list by comparing the observed scores with anomaly-
free scores simulated from the estimated distribution (2). For every
observed data pointxij , letQij be its model based conditional distribution
given all other features k ̸= j of sample i defined in (2). We generate
random data by drawing one random value rij from each Qij , resulting
in as many random data points as original continuous observations. Note
that this data does not contain anomalies, since every simulated data point
was drawn from its proper conditional distribution. Let srij =

|rij−x̂ij |√
β−1
jj

be the score of rij . The joint distribution of the srij represents a score
distribution for data in which no anomalies exist. Next, we sort the lists
of observed scores soij and random scores srij and compare them rank
by rank. If the real data contains anomalies, the scores of top ranking
data points are higher than rank matching random scores. This results
in different score distributions for highly ranking scores. To stabilize the
distribution of random scores, we draw repeatedly from the distributions
Qij and compute srij by averaging the resulting scores rank by rank. The
first random score that exceeds its matched observed score is chosen for
thresholding the lists and we flag all data points with an observed score
higher than this threshold value as anomalies.

2.3 Detection of discrete anomalies

Similar to the continuous case, we can calculate for each discrete data entry
yij a score depending on the conditional distribution (4) and compare the
resulting ranked list to anomaly-free scores generated from the estimated
distribution.
Let yij = k be the j-th discrete feature in sample i with observed state
k. Then the discrete observed score is defined as soij = − log

(
pij(k)

)
where pij(k) is the conditional probability (4) of observing state k in
feature yj for sample i given all other features (discrete and continuous).
If the probability of observing yij = k is low, the score soij is high and
the discrete feature is most likely erroneous. For thresholding we draw for
each observed discrete value yij a random value rij from the conditional
distribution pij . If the observation yij = k is an anomaly, the probability
pij(k)of observing statek should be low, resulting in a realization rij ̸= k

with a different state. We define random scores by srij = − log(pij(rij)).
The random scores contain no anomalies. Again, we draw multiple times
from the distribution and average over the repeated scores rank by rank.
In line with the continuous case, we match observed and random scores
rank by rank and set the threshold as the first random score that is higher
as its observed counterpart.

2.4 Imputation of missing values

ADMIRE imputes missing values by a two step procedure. If the value
of feature j is missing in sample i, ADMIRE pre-imputes it in step 1 by
the value of j in the sample i′, which has the smallest euclidean distance
to i among all samples where the value of j is not missing. After the
pre-imputation, feature j is re-scaled in the entire data set. In step 2,
an MGM is fitted on the pre-imputed data set including calibration of
the regularization parameter. Finally, all pre-imputed missing values are
re-estimated, as described in section 2.2 and 2.3.

2.5 Implementation and model training

ADMIRE estimates the parameter setΘ = {{βjs}, {αj}, {ρjt}, {ϕrt},
j, s ∈ {1 . . . p}, r, t ∈ {1 . . . q}} which defines the node and
edge weights and hence specifies the joint probability distribution (1)
together with the conditional distributions (2) and (4). Let {xj}j=1,...p

be the standardized continuous features with mean 0 and variance 1
across samples and {yj}j=1,...q the discrete features. Then, following
(Altenbuchinger, M. et al, 2019, Lee and Hastie, 2015) we minimize the
negative pseudo log-likelihood

l̃(Θ|x, y) =

−
p∑

j=1

log(Q(xj |x\j , y; Θ))−
q∑

j=1

log(p(yj |x, y\j ; Θ)) + λ ∥Θ∥1

(6)

to estimate Θ. The pseudo-likelihood (6) consists of the product of
all conditional distributions where Q(xs|x\s, y; Θ) is the conditional
distribution of a continuous variable given all other variables (2) and
p(yr|x, y\r; Θ) is the distribution of a discrete variable conditioned
on all other variables (4). The term λ ∥Θ∥1 corresponds to the lasso
penalty with an additional weighting scheme to adjust for group sizes and
variances of the features, see (Altenbuchinger, M. et al, 2019). Following
(Altenbuchinger, M. et al, 2019) the minimization is done using a proximal
gradient descent algorithm (O’Donoghue and Candès, 2013).
The sparseness parameterλ is calibrated by leave-one-out cross-validation.
More precisely, let λ = (λ1, . . . , λm) be a sequence of values and
i ∈ {1, . . . n}. For every λk and every i we fit a MGM leaving out
the i-th sample. The resulting parameters Θi(λk) are used to re-estimate
the continuous features xij via equation (3). For every λk we get a matrix
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x̂ij with the same dimension as the continuous input data. We choose the
λk with smallest mean squared error between original and re-estimated
data as the optimal sparseness parameter. The corresponding parameters
Θi(λk) and the cross-validated estimators x̂ij are finally used for anomaly
detection.
Note that x̂ij and ŷij are estimated given all other features in the sample
and thus can be affected by other anomalies in the same sample. To
compensate this effect, we check for each estimated data point x̂ij in
the continuous case or ŷij in the discrete case, if its regressors xik and
yik , k ̸= j, are potential anomalies (probability (5) of less than 5%). If
a continuous estimator xik is flagged as a potential anomaly, we replace
it by the group mean x̄lk where l corresponds to the samples with the
same discrete states as sample i. If a discrete estimator yik is flagged as an
anomaly we replace its state by the state with highest estimated probability.
The resulting adjusted estimators then are used in (3) and (4) to predict
x̂ij and ŷij .
ADMIRE is implemented in a easy-to-use python package called adadmire
which is listed in the python package index PyPi.

3 Simulations

Fig. 2. Observed and random scores for the data set containing artificial discrete anomalies
and estimated probabilities for the categorical variables split in the respective binary states
across the according samples.
A) Highest ranking observed and random scores, artificial anomalies are marked in red, the
threshold is marked in green.
B) Estimated probabilities for behavior (C/S or S/C)
C) Estimated probabilities for genotype (control/trisomic)
D) Estimated probabilities for treatment with treatment either Memantine or Saline

We studied the performance of ADMIRE by simulating artificial anomalies
in a proteomics data set (Higuera et al., 2015). The data set consists of
protein expression levels from the brains of mice with and without Down
syndrome. In total 77 proteins (continuous features) were measured using
reverse phase protein arrays (RPPA) in several groups of mice that can
be characterized by three discrete features: genotype (normal/trisomic),
treatment (saline/memantine) and behavior: a protocol used to stimulate

Fig. 3. Influence of the parameter ϵ on the strength of the anomalies in protein pNR2A_N.
Black dots indicate introduced anomalies.

Fig. 4. Precision-Recall curves for the simulations with 2.5% and 5% contamination:
A) PR curves of ADMIRE on log-transformed data without correcting for intrinsic outliers
B) PR curves of ADMIRE on log-transformed simulations corrected for intrinsic outliers

learning (shock-context/context-shock). In total, 72 mice were analyzed
with 3 replicates in a five-point dilution series resulting in 1,080
measurements per protein. Each measurement can be considered as an
independent sample. Since the focus of this study is the evaluation of
ADMIRE’s anomaly detection and correction we excluded 12 proteins
because they contained missing values. Extensive performance evaluation
of ADMIRE’s imputation routine can be found in the supplement.
Furthermore, we sub-sampled 400 samples such that each of the 8 different
groups of mice was represented by 50 samples. This resulted in a data set
of 400 samples, 68 continuous features, 3 discrete features and 400*68 =
27,200 continuous and 3*400 = 1200 discrete data points. In the following
analyses we used the log-transformed protein measurements. Further
information on the data set can be found in the supplement.

3.1 Anomaly Detection

To validate the detection of discrete anomalies, we introduced artificial
anomalies by changing the original states of the discrete features. For each
feature we chose two samples and swapped the according states, e.g. a
sample with original treatment "Saline" was assigned to the other treatment
state "Memantine". Thereby, we introduced six artificial anomalies in the
data set.
ADMIRE detects among the 1200 discrete data points 10 anomalies.
Figure 2A) reports the 12 discrete data points with highest ranking
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observed scores. Additionally, we reported for each rank the corresponding
calculated random score. In green we marked the threshold for anomaly
detection, where the random score exceeds the equally ranking observed
score. The rows marked in red correspond to the artificially introduced
anomalies. As can be seen, all six artificially introduced anomalies are
detected by ADMIRE. The other detected anomalies cannot be verified
since the data set was not generated by us. Figure 2B-D additionally show
the estimated probabilities for the three features split in their corresponding
states. Overall, high probabilities (low scores) were computed for all data
points, except for the samples where the state was swapped (marked in
red).

To study anomaly detection in continuous data points we introduced
artificial anomalies similar as in (Steinbuss and Böhm, 2017). We randomly
choose na data points and perturb them by adding random shifts. The
size of the shifts is relative to the normal range of the feature and can
be calibrated by a parameter ϵ. For ϵ < 1 the perturbed data does not
exceed the range of the feature and thus does not present an outlier. For
larger values of ϵ, the perturbations can introduce outlier values as well. In
addition, our simulation ensures that every chosen data point is perturbed
by at least 15%. Details on the simulation can be found in the supplement.
For illustration, Figure 3 shows the distribution of artificial anomalies
introduced in the data of the protein pNR2A_N for different values of ϵ. We
run 10 simulation scenarios varying the number of introduced anomalies
and their strengths ϵ. We either introduced 2.5% anomalies (corresponding
to 680 perturbed data points) or 5% (corresponding to 1360 perturbed
data points) and also varied the strength ϵ of the introduced anomalies. In
Supplemental Table 2 we summarized the 10 simulations.

The algorithm shows good performance in the detection of anomalies
with an area under the curve of 0.890 for a contamination level of 2.5%
and of 0.912 for 5% contamination and ϵ set in both cases to 1.4. With
decreasing ϵ (1.2 - 0.6) the magnitude of the anomalies decreases and the
number of hidden anomalies increases. Therefore, the anomalies are harder
to detect, which is reflected in lower AUCs. Nevertheless the detection of
anomalies remains good with AUCs ranging from 0.864 to 0.584 for 2.5%
contamination and 0.899 to 0.688 for 5% of contamination (see Figure 4A).
Note, that we did not adjust the proteomics data for intrinsic anomalies
that might exist in addition to the simulated ones. If we did identify these
anomalies using ADMIRE and adjust the PR curves for them (see Figure
4B), the performance increases further, with AUCs now ranging from
0.978 to 0.854 for 2.5 % of contamination and 0.966 to 0.861 for 5 %
contamination. Further information on the detection of intrinsic anomalies
can be found in the supplement.
Finally, we compared ADMIRE to three competing outlier detection
algorithms: Isolation Forest (Liu et al., 2008), LOF (Breunig et al., 2000)
and stray (Talagala et al., 2021) in the context of the 10 simulations
described above. Since these methods aim at finding anomalous instances
in a data set, we applied them feature-wise. Our algorithm outperforms
all methods, which reached only maximal AUCs of 0.63 and 0.747 for
2.5% and 5% contamination (stray) and 0.701 and 0.789 (LOF) on the
log-transformed simulations. Isolation Forest performed best on the scaled
raw data with AUCs up to 0.828 for 2.5% and 0.888 for 5% contamination.
Further information on how Isolation Forest, LOF and stray were applied
can be found in the supplement, together with the precision recall curves
after correcting for the intrinsic anomalies.

3.2 Anomaly Correction

Here we study how ADMIRE performs in correcting detected anomalies.
For the 10 simulations described above, we calculated anomaly thresholds
and corrected all data points by replacing them with their re-estimated
values (3). We next compared both the uncorrected (perturbed) and
corrected data to the original data (ground truth) and calculate mean

Data set ϵ # Introduced # Detected TP MAPEi MAPEc

S1 ϵ = 0.6 680 856 504 1.047% 0.823%
S2 ϵ = 0.6 1360 1244 927 2.073% 1.22%
S3 ϵ = 0.8 680 812 566 1.396% 0.747%
S4 ϵ = 0.8 1360 1244 1040 2.763% 1.139%
S5 ϵ = 1.0 680 763 596 1.746% 0.676%
S6 ϵ = 1.0 1360 1241 1103 3.454% 1.119%
S7 ϵ = 1.2 680 729 606 2.095% 0.65%
S8 ϵ = 1.2 1360 1198 1093 4.145% 1.23%
S9 ϵ = 1.4 680 666 578 2.444% 0.73%
S10 ϵ = 1.4 1360 1072 1008 4.836% 1.473%

Table 1. Summary of the corrected data sets. The table shows the strength of the
simulation (ϵ), the number of introduced anomalies (column "# Introduced"),
the number of detected continuous anomalies (column "# Detected") and the
number of true positive anomalies among the detected ones (TP), the by the
anomaly simulation introduced mean average percentage error (MAPEi) and
the mean average percentage error after correcting the data sets with ADMIRE
(MAPEc).

absolute percentage errors for both (Table 1). Anomaly correction reduced
theses errors strongly, showing that the algorithm automatically can
improve the quality of data sets significantly. Note that correction was
applied to all detected anomalies including the falsely detected ones,
suggesting that in case of false positive detections the corrections do not
compromise the data very much.

4 Anomaly detection in metabolomics data

Fig. 5.
A) Scaled, originally measured concentrations of sample 7 (red) with all other samples
in the same MYC group (green), detected anomalies are marked as black diamonds. The
features (metabolites) on the x-axis are ordered according to the different quantification
methods.
B) Scaled, originally measured concentrations of sample 92 (red) with all other samples
in the same MYC group (green), detected anomalies are marked as black diamonds.. The
features (metabolites) on the x-axis are ordered according to the different quantification
methods.

We used ADMIRE to investigate anomalies in one of our own
metabolomics data sets (Feist, M. et al., 2018). This data was generated
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to study the metabolism of B-cells in response to stimuli from a tumor
micro-environment. In particular, we were interested how the responses
changed when the oncogene MYC was activated. MYC activation is a
hallmark of many B-cell lymphomas. We used human P493/6 B-cells that
contain an inducible MYC-construct and stimulated them with different
cocktails of micro-environmental factors. Their metabolism responded to
these stimuli and we profiled these changes using both nuclear magnetic
resonance (NMR) spectroscopy and mass spectrometry (MS) applied to the
cell cultures’ supernatants and cell pellets, which were both independently
measured. Note that in the previous paper by Feist et al., 2018 only cell
pellet data were evaluated, while the present contribution focuses on the
data obtained from the corresponding supernatants.

Continuous features consist of 49 metabolites that were quantified in a
total of 100 samples. 11 features were measured using NMR and 38 using
MS. The discrete features are the MYC status (high/low) of the B-cells
and the 10 batches in which the samples were processed.

We run ADMIRE on the full data set including both continuous and
discrete variables. First, we checked for discrete anomalies. These could
be manual data entry mistakes such as misassignments of either the MYC-
status or one of the batches. Supplemental Figure 8A shows observed
scores next to rank matching random scores for the 10 top scoring discrete
data points. No observed score exceeds the random score and we conclude
that all discrete features are correct. Artificially introduced errors, similar
to section 3, were detected correctly, see supplement.

Next, we studied potential anomalies in the continues metabolite
measurements. Our algorithm flaged 46 out of 4,900 continuous data points
as anomalies (0.94%). The flagged anomalies are distributed uniformly
across the 49 features with mostly only one anomaly per feature, indicating
that there are no globally conspicuous features. However, if we mapped
anomalies to samples, a different distribution was observed. Supplemental
Figure 9 shows that while most samples contain only a small number of
anomalies (75% of the sample do not even have an anomaly at all), two
samples show significantly more. In sample 7, ADMIRE flagged 11 out of
the 49 continuous features as anomalies and in sample 92 a total number
of 7 features were flagged.

Figure 5A shows sample 7 (red) together with all samples of the
same MYC state (green lines). The black diamonds are the anomalies
detected by ADMIRE. All anomalies are in the first two blocks, which
correspond to the metabolites that where quantified by mass spectrometry
(MS). All of them were amino acids. To verify that the detected anomalies
are genuine errors, we quantified them again using NMR, a completely
independent method. This was possible for 10 out of 11 flagged features.
Only for cystine NMR signals were too low and highly overlapping such
that no NMR measurement was possible. For the remaining 10 metabolites
NMR confirmed that the MS based measurements were in fact incorrect,
deviating by more than 15% from the corresponding NMR measurements.
We suspect that a pipetting mistake in the probe preparation for amino
acid mass spectrometry is responsible for the anomalies ADMIRE found.
Metabolites were quantified relative to added internal standards with
different separate standard mixes for amino acids and tryptophan and
therefore, any pipetting error in the standard will falsify results for this
specific measurement type. Further note that for each measurement method
such as the amino acid method or the tryptophan method a separate internal
standard mix was used. As a consequence, a pipetting error can be detected
using NMR as a validation method since it uses a different internal standard
and is, therefore, not affected. This shows nicely the potential of the MGM
for detecting true anomalies and also patterns of anomalies within a sample.
For the validation of the anomaly correction, we calculated the mean
absolute percentage error for the 11 anomalies of sample 7 with clear NMR
signals. Hereby we used for cystine, that could not be validated by NMR,
the originally measured concentration. The MAPE between the originally
measured and validated values is reduced from 76.63 to 12.27 when the

Sample Metabolite Score Corrected Original Validated
31 Hippuric acid 21.05 5.52e-05 3.20e-03 4.31e-04
29 Spermidine 13.81 1.08e-05 9.30e-05 9.30e-05
7 Aspartate 12.178 -1.14e-02 -7.30e-02 8.77e-05

92 Anthranilic acid 11.27 8.076e-07 -2.12e-05 -2.12e-05*
7 Glutamate 10.19 0.128 -0.151 0.142

90 Acetone 10.16 -9.37e-04 4.73e-03 3.91e-03
93 Succinic acid 8.73 -3.88e-03 2.05e-02 -1.47e-02
7 Glycine 8.70 -1.91e-02 -8.25e-02 -6.25e-02

92 Kynurenic acid 8.39 -2.41e-06 -7.35e-06 -7.35e-06*
7 Proline 8.22 0.103 -2.95e-02 0.137
7 Asparagine 8.09 -5.29e-02 -1.43e-01 -2.31e-02

99 Succinic acid 6.25 -3.88e-03 1.57e-02 -1.49e-02
89 4-Hydroxyproline 5.70 -8.32e-03 -2.79e-02 1.48e-04
92 Indole-lactic acid 5.69 -7.28e-06 2.93e-08 2.93e-08*
7 Cystine 5.55 -2.44e-02 -4.26e-02 -4.26e-02*
7 Tyrosine 5.17 -7.50e-02 -0.102 -6.45e-02
7 Leucine 5.10 -0.190 -0.261 -0.211

92 Kynurenine 4.77 -3.15e-04 -7.93e-04 -7.93e-04*
80 3-Hydroxyanthranilic acid 4.56 2.11e-05 3.84e-05 3.84e-05*
89 Acetone 4.47 -7.967e-04 2.46e-03 1.71e-03
80 Adenosine 4.22 2.37e-05 4.80e-05 4.80e-05*
92 Indole-3-acetic acid 4.21 6.01e-06 4.03e-06 4.03e-06*
29 S-Adenosylmethionine 4.14 1.51e-05 3.89e-05 3.89e-05*
15 Ornithine 3.93 -2.31e-02 2.56e-02 2.56e-02
3 Kynurenic acid 3.90 1.12e-07 2.28e-06 2.28e-06*

64 Ornithine 3.83 -5.03e-03 3.00e-02 -1.58e-02
7 Glutamine 3.75 -0.762 -1.16 -0.87

66 Formic acid 3.74 6.33e-02 3.80e-02 6.98e-02
7 Isoleucine 3.72 -0.183 -0.237 -0.17

64 Tryptophan 3.66 -2.83e-03 6.14e-04 -1.84e-03
92 Succinic acid 3.65 -3.60e-04 -1.25e-02 -1.25e-02
2 Putrescine 3.56 2.52e-04 3.99e-04 3.99e-04*

74 Ornithine 3.35 -5.84e-03 2.51e-02 -6.45e-03
98 Putrescine 3.25 2.09e-04 3.44e-04 2.90e-04
92 Ornithine 3.21 6.69e-03 3.70e-02 1.52e-02
84 S-Adenosylmethionine 3.16 2.48e-05 4.21e-05 4.21e-05*
18 Phenylalanine 3.12 1.15e-02 6.0e-02 2.89e-02
56 5-Methylthioadenosine 3.09 5.51e-07 2.12e-06 2.12e-06*
87 5-Hydroxy-indole-acetic acid 3.07 7.35e-06 -3.20e-06 -3.20e-06*
52 Adenosine 2.98 2.72e-05 4.48e-05 4.48e-05*
73 3-Hydroxyanthranilic acid 2.98 1.27e-05 -4.19e-07 -4.19e-07*
7 Valine 2.93 -0.117 -0.145 -0.112

32 Adenosine 2.78 3.14e-05 4.81e-05 4.81e-05*
3 Lysine 2.72 -1.70e-02 1.24e-02 -1.350e-02

13 Ornithine 2.69 1.22e-02 1.33e-02 1.33e-02
79 5-Methylthioadenosine 2.63 9.264e-07 2.27e-06 2.27e-06*

Table 2. Detected anomalies ordered according to their scores. Rows marked in
green are anomalies that could be validated as true anomalies. Red corresponds
to measurements that either show no conspicuous MS spectra but could not be
validated by an independent method (marked with *) or false positives where
the original measurement is correct. Yellow corresponds to the anomalies in
sample 92 that could not be validated by an independent method and purple to
anomalies where the original data contained a large amount of imputed values.
All concentration values are given in mM.

originally measured values were replaced by the corrections proposed by
ADMIRE.

The sample with the second highest amount of anomalies is sample
92. In this sample ADMIRE detected seven anomalies. Only two of these
could be quantified by NMR (one false positive and one true anomaly).
For the other metabolites NMR signals were too low and overlapping for
accurate quantification. Figure 5B shows sample 92 together with all other
samples of the same MYC state. The anomalies are mostly located in the
tryptophan group of measurements, which was independently measured
employing a dedicated MS method (see supplement for details). Again,
this points to a possible pipetting error during sample preparation. Most
probably, the sample volume used for the tryptophan method was incorrect.

For the remaining flagged anomalies we inspected the raw spectra and
searched for deviations or errors in the integration of the single spectra.
Whenever possible, we validated MS measurements by reanalyzing
the correspondent NMR spectra. This is only possible for metabolites

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad501/7243154 by U

niversitaetsbibliothek R
egensburg user on 24 August 2023



ADMIRE 7

with concentrations up to a lower limit of micromolecular range. For
smaller concentrations the sensitivity of the NMR is not sufficient enough
to quantify reliably. Table 2 reports all 46 anomalies sorted by their
anomaly score. The last three columns show the corrections proposed
by ADMIRE, the originally measured value (original) and the validated,
true measurement (validated), respectively. All anomalies that could be
unambiguously validated as anomalies are highlighted in green. For them,
the difference between the original and the verified value was at least 15%.
False positives, where ADMIRE detected an anomaly but the verification
showed no erroneous measurement or other peculiarity are marked in red.
Note that we treated metabolites that couldn’t be verified by an independent
method and whose spectra showed no abnormalties also as false positives.
These anomalies are marked with an asterisk. The rows highlighted in
yellow correspond to the anomalies of sample 92 which all belong to
the tryptophan measurement group. Here, we couldn’t verify an error
in the measurement, but a mishap during sample generation similar to
sample 7 is likely. Two anomalies belonging to the features Spermidine
and 3-Hydroxyanthranilic acid are marked in purple. We included these
two features although both contained a large number of imputed values
and measurements below the lower limit of quantification. Note that
these values were not imputed by ADMIRE but preprocessed using the
laboratory’s own pipeline.

We calculated for the 46 validated data points in Table 2 the
MAPE between the original measured concentrations and the validated
concentrations and compared it to the MAPE between the corrections
proposed by ADMIRE and the validated ones. Using the corrected
concentrations the MAPE decreased from 23.015 to 10.802, which is an
almost 2.5 fold improvement. Again, the false positive anomalies were
included in the calculation of the MAPE. This shows once more that even
if ADMIRE detects a false positive anomaly, its correction is still close to
the original, true value.

5 Discussion
Incorrect data points make data analysis invalid, even if they are infrequent.
In large data sets they are hard to detect manually, but easier to detect
automatically because they are inconsistent with the inherent structure of
the rest of the data. Here we describe ADMIRE, an algorithm that combines
Mixed Graphical Models and cross validated re-estimation of data points
to detect data anomalies in large mixed molecular data sets. The MGM
learns inherent data structure, the CV based re-estimation checks whether
individual data points are consistent with this data structure.

Outliers are a special instance of anomalies. An outlier is a value
of a feature that is suspiciously higher or lower than all other values of
the same feature. In general, they are more easily detected. Although
we can in principal detect them feature by feature independently from all
other features, the use of conditional distributions can nevertheless support
the process. Importantly, anomalies do not need to present as univariate
outliers and in fact many of the anomalies we detected did not.

ADMIRE was primarily designed for molecular data sets that combine
continuous features such as abundance of certain molecules (OMICS data)
with discrete features that for example describe experimental designs or
patient characteristics. Here, incorrect data in continuous features can
result from experimental artifacts, while incorrect discrete data can be
caused by incorrect manual data entry. However, ADMIRE can be used
for any large data set continuous, discrete or mixed.

ADMIRE does not only detect anomalies, it also has routines to correct
them thus generating more consistent data sets. In this way it can be used
as a pre-processing or data normalization routine as well. Additionally,
the adadmire package offers a testing routine that allows the user to test
ADMIRE in simulations with their own data. Finally, anomalies do not

need to be incorrect data points. They can also be observations that are
rare, unusual but correct. Such oddities can be scientifically interesting
and ADMIRE can be used to spot them for further investigation. In this
way it can be used as a data mining tool as well.
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