
Received 22 June 2023, accepted 8 August 2023, date of publication 10 August 2023, date of current version 18 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3304270

System for Cross-Domain Identity Management
(SCIM): Survey and Enhancement With RBAC
THOMAS BAUMER 1, MATHIS MÜLLER 2, AND GÜNTHER PERNUL 2, (Member, IEEE)
1Nexis GmbH, 93053 Regensburg, Germany
2Chair of Information Systems, Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany

Corresponding author: Thomas Baumer (Thomas.Baumer@nexis-secure.com)

ABSTRACT System for Cross-domain Identity Management (SCIM) is a schema and protocol to exchange
identity data across cloud-based applications utilizing a Representational State Transfer (REST) Application
Programming Interface (API). Since it quickly gained decent vendor adoption, it is considered a relevant
industry standard for Identity Management (IdM) and related systems. The Request for Comments (RFC)
of SCIM primarily focuses on identity data but has opening points for Role-Based Access Control (RBAC).
E.g., sets for roles and entitlements are specified for a user entity. However, the RFC family does not detail
RBAC further, which leads to some proliferation and anomalies. E.g., the role and entitlement sets for the
user are implemented in ‘‘freestyle’’ notations by vendors, and information on orphan roles or entitlements
is not accessible. Moreover, some vendors and recent extensions add role and entitlement (and some other)
endpoints leading to vendor-specific dialects for SCIM, which hampers simplicity and interoperability. This
work contributes by proposing a RBAC profile for SCIM utilizing Design Science Research Methodology
(DSRM).We thus look at present knowledge about API design, Access Control Models (ACMs), IdM and its
APIs. Furthermore, we conduct a literature review on SCIM, including its specification documents, scientific
contribution, and vendor implementations. An artifact combines this knowledge and improves SCIM with
a RBAC profile. An open-source Swagger prototype showcases the API design. Finally, design principles
formulate essential insights to guide future RBAC REST APIs.

INDEX TERMS API, design principles, IAM, IdM, RBAC, REST, SCIM.

I. INTRODUCTION
Effective creation and utilization of standards might restrict
individual freedom but facilitates a safe and sound integra-
tion when multiple technologies are involved. Well-known
authorities for the standardization of technologies are the
National Institute of Standards and Technology (NIST), the
Organization for the Advancement of Structured Information
Standards (OASIS) or the Internet Engineering Task Force
(IETF). These organizations’ standards have strongly influ-
enced technologies utilized nowadays.

System for Cross-domain Identity Management (SCIM)
is an IETF standard for exchanging Identity Management
(IdM) data. The Request for Comments (RFC) family
(RFC 7642-7644) [1], [2], [3] details on this. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonathan Rodriguez .

specifications include a protocol and resources for users,
groups, and an extension for enterprise users. Utilizing a
Representational State Transfer (REST) Application Pro-
gramming Interface (API), SCIM targets interoperability,
security, and scalability while emphasizing simplicity. The
data model of SCIM derives from present protocols, like
Portable Contacts [4], vCards [5], or Lightweight Direc-
tory Access Protocol (LDAP) [6]. However, it also allows
extensions for custom resources and attributes. Regarding
its scope, SCIM enables application provisioning and depro-
visioning in an independent context from authentication.
This separation allows for more flexible, automated, and
comprehensive provisioning, especially for centralized and
federated IdM models. SCIM thus solves issues of authen-
tication mixed up with just-in-time provisioning, as done by
Security AssertionMarkup Language (SAML) [7] or OpenID
Connect [8]. The identity lifecycle highlights the benefits of

86872 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0157-3057
https://orcid.org/0000-0002-5562-1280
https://orcid.org/0000-0003-1338-9003
https://orcid.org/0000-0001-9829-0955


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

independence. On the one hand, an application can process
a joining identity before its first authentication, allowing
for early interactions. On the other hand, as an identity is
moving or leaving an application, SCIM can enforce updates
or deprovisioning. Although its relatively recent release in
2015, SCIM has already gained decent vendor adoption [9].
Surprisingly, SCIM is barely scientifically discussed but is a
hot topic for standardization efforts, see Section III-B [10].

Although SCIM focuses on identity data like users and
groups, it has rudiment preparations for exposing Role-Based
Access Control (RBAC) [11] data. Thus, a user resource
has one collection for roles and one for entitlements. How-
ever, the RFC does neither specify a convention for these
collections nor independent endpoints for these resources.
This ambiguity leaves some room for interpretation by imple-
mentors and recent extensions [12]. Section III gives an
overview of the different approaches. These limitations fail
some premises of SCIM, like emphasizing simplicity or
interoperability. Additionally, RBAC features like Mutually
Exclusive Roles (MERs) are not covered.

Application scenarios and technical merits for incorporat-
ing RBAC in SCIM are evident. Because its already present
vendor-adoptions SCIM prove its feasibility, especially in
terms of scalability, performance, and practicability. Building
upon SCIM thus utilizes present approaches and experiences,
easing a real-world impact of the extension. The same also
applies to RBAC. In terms of application scenarios, com-
bining a comprehensive REST API design like SCIM and a
comprehensive RBAC model allows for a broad variety of
use cases. Especially interesting for the latest advances in
access control might be add-on architectures [13], which rely
on excellent connectivity. A universally adopted exchange
protocol and data scheme for RBAC in practice allows rapid
integration of scientific approaches like for data quality [13],
access reviews [14], or role mining and engineering [15],
[16], [17].

This work contributes by utilizing a Design Sci-
ence Research Methodology (DSRM), according to [18],
[19], and [20]. The primary contributions comprise:

• An overview of SCIM including a literature review
on SCIM, a summary of its specification documents,
scientific contributions and vendor implementations
(see Table 4).

• An integration of the SCIM and RBAC data models,
leading to an open-source general-purpose RBACREST
API (see Figures 6 and 7).

• A derivation of design principles guiding future RBAC
REST APIs (see Figure 9).

The following Sections II and III focus on a knowledge
base for API design, RBAC, and SCIM. Afterward, the
DSRM is introduced in Section IV to describe, implement
and evaluate a prototype for a RBAC SCIM API in the
Sections V and VI. Section VII describes the lessons learned
by working with the prototype and states design principles to
guide present and future IdM data exchange systems utilizing
RBAC. Section VIII concludes.

II. RELATED WORK AND BACKGROUND
This Section introduces relevant work for IdMAPIs to collect
a knowledge base in the sense of Hevner et al. [20]. Relevant
topics encompass a sound API design (see Section II-A),
Identity Management (IdM) (see Section II-B), Access Con-
trolModels (ACMs) (see Section II-C), andAPIs for IdM (see
Section II-D).

A. APPLICATION PROGRAMMING INTERFACES
APIs are a cornerstone for modern software engineering and
encompass software libraries, frameworks, and web services
based on REST or Simple Object Access Protocol (SOAP).
It is no surprise that millions of APIs are thus available on
Maven, PiYI, or npm. The rise of interconnected systems also
makes APIs based on web services a common foundation
of modern software engineering. Since SCIM is a REST
API, we will introduce the basics of general API design and
specifics for REST APIs in this Section [21].
Research interest in API design and its evolution covers

maintenance, usability, documentation, performance, secu-
rity, testing, verification, and integration [21]. Achieving
perfection is challenging and rare, which is also evident in
API design. Creators and consumers of APIs thus need to
have in mind that APIs require maintenance. On the one
hand, missing API updates might render it outdated or even
vulnerable over time. On the other hand, frequent breaking
updates impede code maintenance for API consumers. API
designers thus need to act with foresight when creating or
updating their APIs to keep breaking changes or ambiguities
at aminimum [21]. Furthermore, from a usability perspective,
multiple parties use the API. An API thus should facilitate
its usage with good documentation, like providing efficient
access to relevant content, giving an initial entry point for
the API, or supporting different learning and development
strategies [22].

In terms of APIs security and performance based on
web services, APIs require protection from unauthorized
access by enforcing proper authentication, authorization,
geofencing, fuzzing protection, and avoidance of plain text
passwords, debugging modes, or auto-incrementing identi-
fiers. APIs also utilize timestamps and throttling to protect
themselves from being overwhelmed by frequent and large
requests. Given these conditions, strict input checks on the
transmitted data protect the API. From a functional perspec-
tive, APIs must also be comprehensively tested and verified
to ensure well-known and potential use cases. A proper API
also provides tools for insights, including audit logs or best
practice response codes (like [23] for REST) [24].

Since SCIM is a REST API, this work recites core
principles for this API type in greater detail. These core
principles encompass resource addressability, resource rep-
resentations, uniform interface, statelessness, and hyperme-
dia [25]. (i) Resource addressability denotes that resources
of REST APIs are uniquely addressable utilizing Hypertext
Transfer Protocol (HTTP) concepts like Uniform Resource

VOLUME 11, 2023 86873



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

Identifiers (URIs) [26]. (ii) A resource is considered as a
representation. It means that resources are independent of
the implementing parties’ internal entities. Common nota-
tions like JavaScript Object Notation (JSON) specified in
RFC8259 [27] or eXtensible Markup Language (XML) spec-
ified in RFC3076 [28] often serialize resources. (iii) An
uniform interface utilizes semantically valid HTTP methods.
It includes using POST requests for creating resources, GET
for reading, PUT or PATCH for updating, and DELETE
for deleting. Additionally, HTTP response codes express a
semantically valid outcome of the request, like returning
the status 201 on creating resources alongside the success-
fully created resource. Following common considerations of
RFC9110 [23] thus allows for uniform access and manipula-
tion of resources. (iv) REST APIs do not store a shared state
between multiple requests. This statelessness thus allows for
independent requests when manipulating data. (v) The hyper-
media concept denotes navigation and resource discovery by
providing links to further related resources [25].

Finally, Swagger (https://swagger.io/) is a powerful tool for
documenting, presenting, describing, and generating REST
API code for popular programming languages, like Java,
Python, JavaScript, or C#. This work uses Swagger to specify
the API design and to precisely and conveniently communi-
cate the API. Developers use Swagger to generate large parts
of their REST API code.

B. IDENTITY MANAGEMENT: BASICS AND DISTINCTIONS
Despite some controversies between computer science and
other disciplines like philosophy, an identity describes a
human being. From a philosophical perspective developed
via a centuries-long and nuanced discussion, this includes
the entirety of attributes of a person, either perceived by
the person itself or by others. From the computer science
perspective, however, a (digital) identity only needs to sat-
isfy identification: Therefore, an identity defines as a set of
attributes to identify a subject within any set of subjects.
Any further identity attributes are optional but yet often also
present. For the remainder of this work, we thus refer to a
(digital) identity interchangeably with the terms user and sub-
ject. Also, the term partial identity refers to representations
of a (digital) identity for a specific context, like an account
within an application [29].

The term Identity Management (IdM) refers to managing
(digital) identities and controlling their access to resources.
The IdM hence targets controls for identities in the domain
the IdM instantiates. An IdM system provides technologies
to realize IdM, like a repository, an authentication provider,
access control, auditing, provisioning, or Single Sign On
(SSO). (i) The repository stores logical data about the man-
aged identities and the applied Access Control Policy (ACP).
(ii) The authentication provider performs the authentication
of an identity. (iii) Access control for modeling policies and
assigning them to identities. Section II-C details further on
access control. (iv) Auditing for tracking any updates for

entities within the repository. This tracking enables forensic
analysis for IdM incidents and is required by several com-
pliance regulations, like Sarbanes-Oxley Act (SOX) [30].
(v) Provisioning refers to automating all parts of the iden-
tity lifecycle, like identifier creation, linkage to authenti-
cation providers, configuring identity attributes or policy
assignments, propagation of repository data to connected
systems (Service Providers (SPs)), or identity deprovisioning.
(vi) SSO provides a single centralized authentication inter-
face to access several managed applications [29], [31], [32].
The general idea for operating an IdM system is a user

sending an authentication request for accessing resources of a
Service Provider (SP). The SP checks whether the authentica-
tion request can be granted by forwarding this authentication
request to the Identity Provider (IdP). The IdP stores and
maintains identity data (e.g., the identities themselves, their
credentials, and further attributes) and Access Control Poli-
cies (ACPs) to determine access grants. Regarding the deci-
sion of the IdP, the SP grants or denies the access request. The
deployment of IdM distinguishes roughly into three models:
the isolated, centralized, and federated model [33]. Figures 3,
2, and 3 depict the models side-by-side.

(i) For the isolated IdM model a SP fulfills its own role
as SP and the role of the IdP at the same time. The SP thus
needs to store its own identity data and ACP to decide the
authentication requests. Figure 3 depicts the isolated IdM
model. Multiple SP are also possible for this IdM model.
While this approach allows for a simplistic and stand-alone
SP deployment, managing identities for multiple SP without
a centralized IdP quickly becomes cumbersome. For exam-
ple, users must remember many passwords, or administrators
struggle to keep the identities of the SPs current.

(ii) Centralized IdM models solve issues of isolated IdM
models by establishing a centralized IdP for a given domain.
The SPs no longer need to provide IdP functionalities by
themselves and can forward authentication requests to the
centralized IdP. The IdP then sends back an authentication
response, on which basis the SP grants or denies access.1

Figure 2 depicts a centralized IdMmodel, which is oftentimes
applied to organizations like enterprises. This IdM model
allows for centralized management and SSO technologies,
which ease administration and boost user experience. How-
ever, the centralized IdP imposes a single point of failure,
privacy issues, and low support on cross-domain access.

(iii) In contrast, the federated IdM model also integrates
other domains, creating virtually a unique global domain.
The federation hence equals a federated trust domain binding
together SPs by agreements, standards, and technologies.

1In addition to Cao and Yang [33], we want to point out that some SPs still
need to cache relevant IdP data for themselves, despite the centralized model.
Some advanced SP provide complex and customizable services, requiring
personalization and more fine-grained ACPs. E.g., some SAP systems can
fine-grain customization down to single buttons for specific ACPs of users.
Without caching, every UI reload might trigger several requests for the IdP,
causing performance bottlenecks. Furthermore, SP might add further SP-
specific attributes to the identities without the need for synchronization to
the IdP.

86874 VOLUME 11, 2023

https://swagger.io/


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

FIGURE 1. Isolated IdM.

FIGURE 2. Centralized IdM.

In this IdM model, SPs can maintain their individual repos-
itories, and authentication requests can use credentials from
trusted domains. Thus, a user can utilize SSO technologies for
a single domain and the trusted domains integrated by the fed-
eration. Figure 3 depicts the federated IdMmodel. Challenges
of federated IdM models are privacy, attribute consistency,
provisioning, or trust between the integrated domains.

C. ACCESS CONTROL: BASICS AND MODELS
The basic idea for access control follows a simple opera-
tional process: A user (subject) sends an access request to
a reference monitor (also called an access control mecha-
nism), deciding to grant or deny access to an object based on
the available Access Control Policies (ACPs). Besides this
operational process, access control requires an administra-
tive process to determine the ACPs. Admins thus create and
maintain the ACPs the reference monitor utilizes. Thereby,
ACPs follow the syntax and notation of their respective
Access Control Model (ACM) understood by the reference
monitor. Common and widely acknowledged examples for
ACMs are Discretionary Access Control (DAC), Manda-
tory Access Control (MAC), RBAC, and Attribute-Based
Access Control (ABAC) [34], [35], [36]. The semantics for
the ACPs root in the organizations’ security policies and
its security model: while security policies define high-level
rules for access control, the security model formally collects
and represents security policies. The admins thus combine
the security model (semantics) with the ACM (syntax) to
create a (machine-processable) ACP set for the reference
monitor. Figure 4 depicts these essential building blocks for

FIGURE 3. Federated IdM.

FIGURE 4. Basic building blocks for access control.

access control. A dotted line shows the distinction between
the operative and administrative parts [34].

The most common Access Control Models (ACMs)
encompass DAC, MAC, RBAC, and ABAC [4], [34],
[35], [36], which we detail on in the following paragraphs.
Besides these common ACM, latest research also covers
Norm-Based [37], Activity-Centric [38], Rule-Based [39] or
Relationship-Based Access Control [40], [41], [42], [43].

Discretionary Access Control (DAC) [44], [45] is the most
straightforward approach for access control. The reference
monitor grants (or denies) access based on an explicit triple
(S,O,A), whereas S represents a set of subjects desiring
access, O represents objects accessed by the subjects, A rep-
resents the allowed actions for a S and O pair (e.g., rwx for
read, write, and execute). An access matrix model depicts the
(S,O,A) triples, for which S forms its rows andO its columns
while the entry A[s, o] provides the allowed actions. E.g., if a
given subject s desires access with the action a to an object o
which is in A[s, o], the access is granted [34].

Mandatory Access Control (MAC) uses access classifica-
tions for subjects and objects to realize access control. Access
classes have two parts: a security level and a category set.
For example, the security levels Top Secret (TS) > Secret
(S) > Confidential (C) > Unclassified (U) define a dominance

VOLUME 11, 2023 86875



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

over each other, whereas a subject with the TS clearance
can access all objects of its category and one with a C-level
clearance only objects of the C and U classes. The category
set refines this model by separating domains from each other,
as subjects with a TS clearance for an engineering category
might not access other TS-level objects of another category
(e.g., the back office). In this sense, two properties must
be fulfilled for confidentiality (Bell-LaPadula Model [46]):
(i) no-read-up of a lower security level to read (confidential)
information of a higher one, and (ii) no-write-down for a
higher security level to write (confidential) information in
a lower one. For integrity, it is the other way around (Biba
Model [47]): (i) no-read-down as objects written by subjects
with a lower clearance might lack integrity, implying that
a subject can only read objects from the same or higher
clearance, and (ii) no-write-up as a subject with a lower
clearance cannot produce objects with higher level integrity
but can write objects for its or lower security levels. MAC
is especially beneficial for controlling the information flow
within an organization [34].
Role-Based Access Control (RBAC) [11], [35] introduces

roles R with semantic meaning, as an intermediate between
users U and permissions P.2 The roles’ R many-to-many
assignments to P and U are denoted PA ⊆ P × R for
permissions and UA ⊆ U × R for users. Users activate
the roles via sessions S, which grants them access following
the assigned permissions via PA. Furthermore, the RBAC
family also introduces Hierarchical and Constrained RBAC.
For Hierarchical RBAC, the assignment RH ⊆ R×R denotes
a role hierarchy, allowing for the inheritance of roles (and
ultimately permissions). For Constrained RBAC, constraints
might restrict every aspect of RBAC. For example, a role
might allow only certain permissions, and a Separation of
Duty (SoD) might define prohibited combinations of specific
roles. SoDs are enforced either statically for modifying the
model itself or dynamically for adding a role to a session.
RBAC is the most common ACM for enterprises [48], [49].
For example, in an enterprise context, an employee’s job
position reflects this semantic meaning. RBAC decreases the
total number of assignments as roles bundle direct user to
permission assignments to some degree. Various approaches
like role mining, role engineering or hybrids generate role
sets reflecting an organization’s security policies [15], [17].
Overall, it facilitates more simplicity.

Attribute-Based Access Control (ABAC) [36] takes advan-
tage of the subject and object attributes. Therefore, policies
represent rules defining attribute conditions that a subject,
an object, or the environment must fulfill to grant or deny
access. ABAC utilizes multiple logical components (points)
for realizing the concept. Thus a subject requests access to
an object by a Policy Enforcement Point (PEP) that handles
incoming requests and enforces the access decisions made
by the Policy Decision Point (PDP). The primary task of

2Permissions P are further formalized as operations OPS on objects OBS
usually perceived as one unit [35].

the PDP is to query the relevant policies from the repository
and check them against the subject, object, and environ-
mental attributes provided by the Policy Information Point
(PIP). Finally, administrators create and maintain policies
via the Policy Administration Point (PAP). ABAC’s primary
benefits are flexibility and dynamics, as policies can use
any desired and dynamically resolved attributes. Its flex-
ibility goes so far that ABAC can emulate RBAC. This
emulation, however, comes with drawbacks in simplicity and
maturity, making RBAC still the most adopted ACM for
enterprises [49], [50], [51].

D. IDENTITY MANAGEMENT STANDARDS AND APIS
Identity Management APIs target an efficient and standard-
ized data exchange for the concepts presented in the previous
Sections. These APIs include (non-exhaustive) LDAP [6],
vCards [5], Portable Contacts [4], SAML [7], Service Provi-
sioning Markup Language (SPML) [52], OAuth [53], eXten-
sible Access Control Markup Language (XACML) [54],
[55], or SCIM. The standards frequently exchange similar
entities [56].

Lightweight Directory Access Protocol (LDAP) [6] stan-
dardizes means to query and maintain directory services.
These directory services provide information about managed
network resources, like users, groups, devices, Etc. Along
further attributes, LDAP Data Interchange Format (LDIF)
represents LDAP entries by featuring a Distinguished Name
(DN) as a unique identifier, a Common Name (CN) as a
display name, Organizational Units (OUs) as organizational
units, or Domain Component (DC) as part of the entry
domain. An example, for a DN is ‘‘dn: cn = John Doe, ou =

security, dc = myorg, dc = org’’. Besides the data exchange,
users authenticate via LDAP’s bind operation.

vCard [5] specifies a representation of contact information,
like names, addresses, emails, telephone numbers, Etc. Its
primary use case is to standardize the exchange of elec-
tronic business cards, like email or smartphone contacts. For
example, a vCard can be attached to an email message by a
file with the registered .vcf or .vcard filename extensions or
use the Multipurpose Internet Mail Extension (MIME) type
text/vcard.

Portable Contacts [4] builds upon contact information
standards, like vCard [5]. The design unifies contact informa-
tion and improves data retrieval via authorization, discovery,
query, and response functionalities. Therefore, the RFC tar-
gets managing a user’s address book across his distributed
services comprehensively. Concepts of Portable Contacts
strongly influence the design of SCIM.

System for Cross-domain Identity Management (SCIM)
[1], [2], [3] is the focus of this study. Its RFC7642 [1]
provides a general overview and concepts of SCIM, while
RFC7643 [2] and RFC7644 [3] introduce its data schema
and protocol. The primary scenario for SCIM is identity
provisioning for centralized and federated IdM models. This
focus on provisioningmeans that an IdP executes Create Read

86876 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

Update Delete (CRUD) operations for its managed identities
to synchronize with its SPs. The data exchange happens
separately from authentication. It prepares its SPs for future
authentication requests or, e.g., updates identity attributes not
required by authentication, like an added telephone num-
ber. LDAP, vCard, and Portable Contacts influence SCIM’s
schema, while its protocol designs a HTTP REST API with
similarities to Portable Contacts. Section III provides a deep
dive into SCIM.

Service Provisioning Markup Language (SPML) [52] is
a similar standard to SCIM and covers the provisioning of
users and services. Via SPML, SPs receive information on
the active users and their authorizations in a different context
to authentication. The SPML core functions cover CRUD
operations, while additional features include async, batch,
password, or search capabilities. Due to a consensus of ven-
dors on some concerns regarding SPML [57], vendors moved
on by redesigning a provisioning standard, leading to the
SCIM standard.

Security Assertion Markup Language (SAML) [7] speci-
fies a standardized data exchange for security assertions for
authentication or authorization. Its primary use case is Web
Browser SSO: When a user attempts to request a resource of
a SP via its web browser (user agent), the SP calls for a SSO
service at the IdP. If the user is not yet authenticated, the IdP
prompts the user for its credentials. With a valid authentica-
tion, the IdP responds with a SAML assertion. Finally, the
user agent uses the SAML assertion to retrieve the protected
resource of the SP. Since the SPs trust the IdP, the users
only require a Single Sign On (SSO), avoiding unnecessary
credentials and their prompts.

Open Authorization (OAuth) 2.0 [53] enables users to
authorize third-party access without sharing credentials. For
example, a user can authorize a third-party service to access
its master data, like its birthday or name. The third-party
service thus asks the user for an authorization grant (con-
taining the user’s credentials), which the authorization server
converts to an access token. The third-party service can use
the access token to access the authorized data until its expi-
ration. Possessing an OAuth 2.0 access token is sometimes
confused with an indirect authentication, although it is just
authorization. To mitigate this confusion, OpenID Connect
(OIDC) 1.0 [8] adds an identity layer on top of OAuth
2.0 to authenticate the user for authorization workflows.
OIDC (and SAML) do not provide comprehensive provision-
ing, and SPs rather ‘‘cache’’ their received identity data as
accounts. SP thus might operate with outdated identity data:
While outdated contact data needs inconvenient repeated
maintenance for each SP, accounts may become outdated
themselves when an identity leaves the organization. These
outdated accounts (also called orphan accounts) also impose
a security risk as these might still provide access to sensitive
resources.

eXtensible Access Control Markup Language (XACML)
[54] specifies an architecture and a language for ABAC poli-
cies. XACML thus realizes processing and administration for

ABAC policies by utilizing functional points. Upon a user’s
access request, the PEP receives the request and forwards it to
the PDP. The PDP then decides the access request using the
policies from the PAP and the subject, object and environment
attributes provided by the access request or PIP. Finally, the
PEP receives the response for further fulfillment. Besides
ABAC, XACML theoretically can emulate RBAC [55], but
some requirements like SoDs, understandability, delegation,
scalability, or auditability remain unclear [51] in comparison
with a more mature RBAC [48].

In summary, SCIM is an evolution of multiple standards
in the field. SCIM supersedes SPML, while it builds upon
standards for identity data like vCards, Portable Contacts, and
LDAP. Because of SCIM’s focus on provisioning, it comple-
ments seamlesslywith authentication standards like SAMLor
OIDC as a provider for synchronized identity data. SCIM has
some loose preparations for permission and role provisioning,
like done for policies with XACML, but does not excel. How-
ever, complex applications like SAP or Active Directory can
provide their own permission and role structures in advanced
domains like large enterprises, requiring effective RBAC pro-
visioning. This work’s API design tackles the provisioning
for RBAC entities.

III. SCIM: STANDARDIZATION, LITERATURE & PRACTICE
In addition to Section II with its analysis of related work
and background, this Section takes a deep dive into System
for Cross-domain IdentityManagement (SCIM) itself, further
adding to a knowledge base in the sense of Hevner et al. [20].
We thus execute a structured literature review described in
Section III-A. The following Sections present the result of
the literature review divided into specification documents
(see Section III-B), scientific literature (see Section III-C),
and practice-relevant vendor-driven implementations (see
Section III-D). Finally, Section III-E summarizes present
work on SCIM and points out open research gaps.

A. METHOD FOR THE LITERATURE REVIEW
This Section collects relevant literature for SCIM and its
extensions. This review includes specification documents,
scientific literature, and practice-relevant vendor implemen-
tations to get a comprehensive SCIM overview. We apply a
three-stage process to obtain these sources. Table 1 depicts
an overview of the utilized search terms and results for the
specification documents and scientific literature. The follow-
ing enumeration summarizes the three-stage search process:

1) Search for SCIM specifications at IETF.
2) Search for literature at scientific libraries.

a) Search at scientific libraries.
b) Refine results with Google Scholar.

3) Search for practice-relevant implementations.
In the 1) stage, we queried SCIM specifications (of ver-

sion 2.0) directly at the IETF by searching for ‘‘scim’’.3

3https://datatracker.ietf.org/doc/search?name=scim
&rfcs=on&activedrafts=on&olddrafts=on

VOLUME 11, 2023 86877

https://datatracker.ietf.org/doc/search?name=scim&rfcs=on&activedrafts=on&olddrafts=on
https://datatracker.ietf.org/doc/search?name=scim&rfcs=on&activedrafts=on&olddrafts=on


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

We include the RFCs and active & expired Internet-Drafts
(also known as extensions) and did not consider superseded
Internet-Drafts.

In the 2a) stage, we queried the high-quality online
libraries IEEE Xplore,4 AISeL,5 ACM,6 ScienceDirect,7 and
SpringerLink.8 Table 1 depicts the utilized input fields, search
terms, and raw & relevant results. We only included peer-
reviewed contributions after the publication date of the SCIM
RFCs. Results with poor quality, like an unclear contribution,
were excluded.

In the 2b) stage, we refined the yielded results with Google
Scholar.9 Weused the same search term as in the 2a) stage and
executed a forward search based on the RFCs 7642, 7643,
and 7644. We also applied the same quality considerations
as in the 2a) stage to include only high-quality publications.
Table 1 depicts the input fields, search terms, and raw & rel-
evant results. Please note that we only marked not previously
found results as relevant during this refinement stage to avoid
duplicates. While the regular search at Google Scholar still
refined the literature catalog by 14 results, a forward search
using the ‘‘cited by’’ functionality based on the RFCs yielded
no further publications. Therefore, we assume all relevant
scientific publications for SCIM were found.

In the 3) stage, we searched for practice-relevant and
vendor-driven SCIM implementations. While no official
registry for SCIM implementations exists, a community
effort, fortunately, at least loosely maintains an overview
of 70 implementations of SCIM [9]. To ensure practice-
relevancy, we map these implementations to successful ven-
dors on the market, which utilize and improve the SCIM
API. Therefore, we consider vendors with at least 50 rat-
ings from large enterprises (with a company size of more
than 10B USD) at Gartner10 and a documented SCIM server
implementation with further improvements besides standard
SCIM. This leads to two relevant vendor implementations:
SailPoint11 and Oracle.12

As summarized in Table 1, this brief literature review on
SCIM yielded 64 relevant results. These results include 28
(3 RFCs and 25 Internet Drafts) specification documents at
the IETF. Furthermore, we identify 34 scientific publications.
IEEE is the leading publisher for scientific contributions on
SCIM. Finally, we also consider 2 practice-relevant vendor
implementations of SCIM of SailPoint and Oracle.

For the specification documents and scientific literature,
we tracked the publication year and contribution type regard-
ing SCIM. The contribution type distinguishes publications

4https://ieeexplore.ieee.org/search/advanced
5https://aisel.aisnet.org/do/search/
6https://dl.acm.org/
7https://www.sciencedirect.com/search
8https://link.springer.com/search
9https://scholar.google.de/
10https://www.gartner.com/reviews/market/identity-governance-

administration
11https://developer.sailpoint.com/iiq/api/identityiq-scim-rest-api/
12https://docs.oracle.com/cd/E52734_01/oim/OMDEV/ scim.htm

FIGURE 5. Publication over time for the specification documents and
scientific literature on SCIM. A continuous flow of publications connected
to SCIM with spikes in 2015, 2017, and 2019 is present.

with SCIM background references (622 results), publica-
tions actively using SCIM (612 results), and specifica-
tion documents creating or improving SCIM (628 results).
Figure 5 depicts the publications’ contribution type over time.
Starting in 2012, the IETF community published specifica-
tion documents, leading to a continuous flow of publications
ever since. The plot visualizes spikes in 2015, 2017, and 2019.

B. SCIM IN STANDARDIZATION
The IETF is the driving standardization authority for SCIM.
Besides its RFCs family [1], [2], [3], Internet Drafts for SCIM
(also known as extensions) are present. This Section details
these specification documents.

The SCIM RFC family includes three documents:
RFC7642 [1] introduces SCIM and gives an overview of use
cases and concepts. The specification shows the intended
provisioning usage of SCIM to move identities in, out, and
around centralized or federated IdM models. RFC7643 [2]
defines the SCIM data model covering the resources (enti-
ties) User and Group. A User (digital identity) represents
a human being and has single-value attributes like user-
Name or nickName or multi-value attributes like emails,
phoneNumbers, and addresses. SCIM additionally speci-
fies multi-value attributes of a User for assigned groups,
entitlements (permissions), and roles. The Group resource
bundles a single-value attribute displayName and a multi-
value attribute members, which either contains references to
Users or to recursively nested Groups. Other SCIM resources
are the ServiceProviderConfig, ResourceType, and Schema.
The ServiceProviderConfig determines SCIM settings, the
ResourceType for retrieving all available resource types like
User, Group, Etc., and the Schema provides information
on each resource’s available (custom) attributes. Finally,
RFC7644 [3] specifies the sophisticated SCIM protocol,
including REST methods, HTTP response codes, filtering,
and pagination.

At the IETF, the SCIM community published 25 exten-
sions (Internet Drafts). For this work, we traced their primary
contribution. As a first step, we categorized the extensions
based on their contribution to the respective RFCs as use case
(RFC7642), schema (RFC7643), or protocol (RFC7644).
With this initial rough categorization, we derived more

86878 VOLUME 11, 2023

https://ieeexplore.ieee.org/search/advanced
https://aisel.aisnet.org/do/search/
https://dl.acm.org/
https://www.sciencedirect.com/search
https://link.springer.com/search
https://scholar.google.de/
https://www.gartner.com/reviews/market/identity-governance-administration
https://www.gartner.com/reviews/market/identity-governance-administration
https://developer.sailpoint.com/iiq/api/identityiq-scim-rest-api/
https://docs.oracle.com/cd/E52734_01/oim/OMDEV/scim.htm


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

TABLE 1. Search terms for the literature review on SCIM in three stages: 1) specification documents at the IETF are the foundation for SCIM. Therefore,
we include the IETF document types RFCs, active Internet-Drafts, and expired Internet-Drafts. 2a) scientific literature from high-quality online libraries on
SCIM has to be in English, published after the SCIM RFCs since 2015, and must have undergone a peer-review process. 2b) Google Scholar refines the
results from stage 2a) if these were not yet found by stage 2a). 3) We also include vendor-driven SCIM implementations with high practice-relevancy.

sophisticated categories: use case, discovery, mapping, con-
straint, event, pagination, and search. (i) Use case extension
discuss SCIM applications on a higher level. (ii) Discov-
ery extensions are tools to discover SCIM functionalities.
(iii) Mapping extensions define mappings or integration of
SCIM to other formats. (iv) Constraint extensions restrict
SCIM attributes or assignments. (v) Event extensions cover
communicating SCIM events between IdPs or SPs, like added
or changed identities. (vi) Pagination extensions refer to
breaking large requests into smaller ones to enhance the per-
formance and resilience of the API. (vii) Search extensions
cover advanced search and filter approaches. Table 2 maps
the SCIM extensions with these categories. The following
paragraphs detail on advances of each category.

(i) The use case category primary highlights SCIM appli-
cation scenarios. Li [62] and Hunt et al. [63] mainly cover
general SCIM provisioning use cases to move identities in,
out, and around centralized and federated IdM models. Hunt
and Ansari [74] present pushing and polling scenarios for
SCIM events between SCIM servers and clients to notify each
other about provisioning events (like CRUD operations on
resources).

(ii) The discovery category primarily covers one exten-
sion [71] that describes a best-practice approach for dis-
covering SCIM services. It utilizes the ‘‘/.well-known’’
mechanism, which supports WebFinger queries to discover
SCIM services.

(iii) The mapping category refers to mapping or integrating
SCIM with other specifications or models. Hunt et al. [60]
closer integrate OAuth 2.0 with SCIM by adding a Client
resource to automatically assign an OAuth client id and client
secret via SCIM to an on-boarded application using OAuth.
Hunt and Wilson [68] propose a password management

extension with schemas and endpoints supporting the iden-
tity lifecycle. The proposal includes schemas for password
policies, password reset & validation requests, and user-
name generation, validation & recovery requests. Greeven-
bosch and Sun [64] map the vCard standard with SCIM.
Shahzad et al. [81] propose schema extensions that allow the
provisioning of a wide array of (Internet of Things (IoT))
devices. Hunt [61] specifies a mapping of SCIM to LDAP to
enable directory services via SCIM. Grizzle et al. [73] define
schemes for integrating with Privileged Access Management
(PAM) software. Finally, Zollner [12] designs an extension
for role and entitlement (permission) resources, including
cardinalities and hierarchies of these resources. This exten-
sion is the most relevant for this work but still has several
drawbacks: The roles and entitlements attributes of the user
resource are still unspecified, the assignment between roles
and entitlements are not covered, and advanced RBAC fea-
tures like SoDs and sessions are not included.

(iv) The constraints category includes restrictions for inter-
acting with SCIM resources. Ansari and Hunt [66] restrict
the deletion of SCIM resources by distinguishing between a
soft and hard deletion. Zollner [77] specifies an extension
for verified domains, e.g., to constraint domains for email
addresses. Zollner [12] also defines cardinalities within his
roles and entitlement extension as a constraint type. Finally,
the referential value location extension of Zollner [78] spec-
ifies accepted values tied to other resources. E.g., a user’s
manager needs to refer to a valid and present user identifier.

(v) The events category collects extensions covering
means to push or poll events raised by SCIM. Hunt and
Ansari [74] specify essential use cases for pushing and
polling events. As the earliest proposal on SCIM events,
Wahl [65] adds an extension allowing SCIM IdPs to notify

VOLUME 11, 2023 86879



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

TABLE 2. Internet Draft specification documents which extend SCIM. This overview tracks the extension types by the categories use case, discovery,
mapping, constraint, event, pagination, and search. The RFCs themselves are not depicted.

its SP about changed resources. Later, Wahl [75] also spec-
ifies the other way around, allowing the SP to notify the
IdP about changes. McMurtry [72] takes this idea further
and enables tracing changes with watermarks to poll them
periodically. Hunt et al. [67] propose subscription, event,
and feed schemes and endpoints. They also define basic
events improved by subsequent proposals of Hunt et al. [70]
and Hunt and Cam-Winget [80]. The latest definition of
events [80] distinguishes between feed events (add and
remove), provisioning events (create, patch, put, delete,
activate, and deactivate), signal events (authMethod and
pwdReset), and miscellaneous events (asyncResp).

(vi) The pagination category refers to extensions improv-
ing a mechanism to break down large requests into several
smaller ones to enhance the performance and resilience of the
SCIM API. Hunt et al. propose two competing approaches
to improve pagination in combination with querying the
SCIM API. One extension [58] covers paginated search
requests by utilizing a token that refers to an overarch-
ing search of paginated requests. The other extension [59]
requires an additional endpoint /Searches allowing for cre-
ating a search request (like a database view) and querying
this search request. Hunt [76] also extends pagination and

filtering to multi-value attributes. This extension allows fil-
tering and paging through assignments of SCIM resources,
which is especially useful for resources with many assign-
ments. Finally, Peterson and Zollner [79] specify cursor-
based pagination as an alternative since SCIM only covers
index-based pagination.

(vii) The search category includes extensions that allow
sophisticated search requests. Hunt et al. propose two com-
peting search methods (token-based [58] vs. an endpoint
to store searches [59]). Hunt also takes part in an IETF
discussion about adding a new HTTP method SEARCH
(instead of modeling it with GET or POST), which would
simplify and streamline sophisticated SCIM queries [69].
The event polling extension of [72] also allows advanced
search for changed resources. Finally, the multi-value filter-
ing extension of Hunt [76] enables searching for assignment
attributes.

The active community around SCIM at IETF highlights the
practice-relevance of SCIM. The extensions target real-world
issues of deployed software strengthening the standard. The
extensions, however, also imply that the current specification
of SCIM is not yet optimal, requiring ongoing improvement
efforts like this work.

86880 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

TABLE 3. Results of the literature review on approaches actively using SCIM. We trace the categories architecture, application domain, and use case.

C. SCIM IN LITERATURE
The literature review revealed 34 scientific publications on
SCIMwith sufficient quality. We skimmed these publications
and categorized their relationship to SCIM as background ref-
erence or active SCIM usage. In summary, 22 publications13

refer to SCIM in a background reference, and 12 contribu-
tions actively use SCIM. Since the background references
provide only limited insights for SCIM, we focus on the con-
tributions actively using SCIM in this Section. Table 3 sum-
marizes these contributions by tracing their general SCIM
use case, application domain, and utilized architecture. The
following paragraphs detail on these categories.

(i) Use cases for SCIM distinguish between provisioning
(8 papers), identity harmonization (2 papers), and Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) (2 papers).
Provisioning is thereby an essential IdM process allowing for
synchronizing centralized identity data of an IdP with its SPs.
Identity harmonization builds upon provisioning by linking
heterogeneous identities of SPs or federated IdPs. Thereby,
it obtains an aggregated identity with harmonized attributes
which is looped back to the other IdPs and SPs. Since pro-
visioning (and identity harmonization) are the primary use
cases for SCIM, scientific contributions mostly use it the
intended way. Another 2 approaches utilze SCIM to solely
obtain identity attributes for CP-ABE which is especially
useful for privacy-preserving encryption based on attribute
claims.

(ii) Application domains for SCIM cover eHealth
(1 paper), eScience (3 papers), IoT (7 papers), 5G (4 papers),
and manufacturing (1 paper). For the eHealth domain, SCIM
serves as an eHealth attribute provider and provisioning
engine. The eScience contributions focus on collaborative
science infrastructures requiring IdM systems. These systems
require provisioning and identity harmonization, because of

13Background references: [31], [49], [56], [82], [83], [84], [85], [86], [87],
[88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100].

the heterogeneous SP systems in use. For IoT domains, two
approaches use SCIM as an attribute provider for CP-ABE.
Further approaches use SCIM as an enabler to provision
managed devices with a notable overlap with 5G (or cellular
networks in general) and manufacturing. Despite the contri-
butions’ distinct application domains, SCIM serves as a back-
bone for general-purpose provisioning API. Domain-specific
and general IdM systems can utilize SCIM provisioning.

(iii) Architectures using SCIM are shaped by their
application domain. The FI-STAR architecture is driven
by a research project for eHealth implementing IdM
functionalities. In this context, a notable contribution of
Thanh et al. [101] is a suggestion for eHealth attribute map-
ping for SCIM users. Two contributions for the INDIGO-
Datacloud use SCIM identity harmonization approaches
for scientific computing. The eScience contribution of
Nakandala et al. [103] also discusses common eScience
architectures. The FIWARE architecture of the IoT domain
is used for showcasing CP-ABE. Another IoT architecture is
NIMBLE as the predecessor of eFactory of themanufacturing
domain. Both use SCIM for provisioning use cases. For the
5G domains, four contributions utilize SCIM with two archi-
tectures (Open5GMTC and 5G4IoT). For Open5GMTC the
Home Subscriber Server (HSS) was extended with SCIM to
provision users, while 5G4IoT connects the HSS to a stan-
dalone IdM system implementing SCIM. Both Open5GMTC
and 5G4IoT, however, extend the SCIM user attributes to
include domain-specific attributes, like International Mobile
Subscriber Identitys (IMSIs) and InternationalMobile Equip-
ment Identitys (IMEIs).

D. SCIM IN PRACTICE
While writing this paper, 70 implementations, including well-
known vendors like Omada, Oracle, SailPoint, Salesforce,
or Saviynt, are present [9]. The amount of implementations
is probably even higher due to unreported usages, which

VOLUME 11, 2023 86881



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

TABLE 4. Comparison of SCIM APIs (C: SCIM core, O: Oracle, S: SailPoint, Z: Zollner [12]).

leverages SCIM to a vital industry standard despite its
comparatively recent publication in 2015. In the following,
we look closely at two leading vendors for SCIM with
advances for extending SCIM. This highlights the prolifer-
ation faced in practice working with SCIM. Table 4 thus
depicts resources, endpoints, and HTTPmethods designed by
the SCIM core (C), Oracle (O), and SailPoint (S). Because of
its relevance, this work also includes the Roles and Entitle-
ments extension by Zollner [12] (Z).

The overview given in Table 4 reflects SCIM: it reveals
areas of expansion based on practical needs, theoretical short-
comings, and design strengths and flaws. First, none of the
consideredAPIs comprehensively implements the SCIM core
specification. While the APIs cover CRUD operations on the
user resource (besides some ambiguity on PUT and PATCH),
the support lacks groups as a core resource. Also, utility end-
points like retrieving the requester’s data (Me), bulk, or search
operations are missing or not implemented as specified.
One can identify two major expansion streams based on the
extended endpoints of Oracle and SailPoint. On the one hand,
Oracle primarily extends SCIM to provide tools supporting

the identity lifecycle. On the other hand, SailPoint primarily
provides additional endpoints to disclose information about
their policies which supports the policy lifecycle. For roles
and entitlement resources, SailPoint and Zollner [12] propose
extensions, which differ in their attributes and structure. E.g.,
SailPoint further distinguishes between business and IT roles.
Surprisingly, none of the APIs provides a way to inspect
or manage role-entitlement relationships. Our analysis finds
further ambiguities for groups, organizations, and roles. The
SCIM core API defines the group resource, which allows
both Users and nested Groups as members to enable bundling
of Users and enhanced access control. As mentioned ear-
lier, present APIs do not support groups, which also blur
with the organization and role resources defined by Oracle
and SailPoint. While Oracle’s organizations model organiza-
tional structures like departments in enterprises with further
relevant attributes and no roles or entitlements assigned,
SailPoint’s roles can express with a type attribute to be
an organization. Another aspect are SoDs which SailPoint
only covers. While SailPoint provides no direct representa-
tion of SoDs, simulations or checks for violations regarding

86882 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

granting access are available. Finally, note that this analysis of
SCIM only scratches surface level. On the one hand, it cov-
ers reported SCIM implementations with advanced towards
extending SCIM, while unreported SCIM APIs might be
available. On the other hand, the attributes of the presented
resources differ fundamentally, which renders a detailed anal-
ysis out of scope for this work. Despite these limitations,
this section puts across a sound foundation, challenges, and
potentials of SCIM.

E. RESEARCH GAPS AND POSITIONING OF THIS WORK
Section III took a deep dive into SCIM by conducting a
structured literature review based on SCIM specification
documents, scientific literature utilizing SCIM, and practice-
relevant vendor SCIM implementations. We identified sev-
eral research gaps and opportunities to improve SCIM.

One research opportunity thus comprises SCIM extensions
for specific application domains. Extensions for attributes
managed by SCIM or even new resources might be suitable
or required. Thanh et al. [101] already suggest a mapping
for patient data and approaches for the 5G domain sug-
gest attributes like IMSIs or IMEIs. The SCIM specification
defines an enterprise user extension for an enterprise domain.
Shahzad et al. [81] also suggest an extension for devices,
which applies for the IoT domain. Rigorous research can
identify relevant resources and attributes for these and further
application domains.

Another research opportunity is consolidating the current
specification extensions and vendor-driven implementations.
As discussed for the vendor implementations of SCIM,
unconsolidated extensions lead to incompatible approaches
modeling the same concepts.

Finally, two expansion streams for SCIM based on ven-
dors and extensions can be identified: For example, Oracle
expands SCIM with functionalities for the identity lifecycle,
while SailPoint focuses on a policy lifecycle. A careful anal-
ysis of both lifecycles can identify further improvements for
SCIM.

Based on this SCIM analysis and these research opportu-
nities, this work contributes by consolidating RBAC features.
We derive an integrated SCIM RBAC model based on the
standardized NIST RBAC model [35], the SCIM roles and
entitlements extension of Zollner [12], and SCIM vendor
implementations. By designing a general-purpose RBAC
REST API, provisioning use cases based on a policy lifecycle
are covered.

IV. RESEARCH METHODOLOGY
This work follows a Design Science Research Methodology
(DSRM) like proposed by Hevner et al. [20]. The approach
requires an analysis of both the environment and the knowl-
edge base (see Sections II and III) to design a problem-
solving artifact (see Section V), which loops back insights
to environment and knowledge base.

As Gregory and Hevner [18] point out with their design
science research knowledge contribution framework, nothing

is really novel because everything builds upon something
else. The terms problem and solution maturity distinguish
the situation more precisely. E.g., a sign of high solution
maturity is the presence of adopted standards or guidelines.
Therefore, we have already a high solution maturity for
RBAC [35], REST API design [22], [23], [25], or SCIM
itself (regarding to exchanging identities) [1], [2], [3]. These
standards try to solve well-understood problem domains for
access control, data, and identity exchange, indicating a high
problem maturity for each domain individually. This work is
thus not re-inventing RBAC, REST, or SCIM. Instead, the
goal of this work is to tackle the low solution maturity of
their combination (as discussed in Sections II and III) while
keeping the benefits of each standard. In terms of Gregory
and Hevner [18], this work classifies into two contribution
types regarding the taken perspective. On the one hand, from
a SCIM perspective, combining it with RBAC is an exapta-
tion because a well-known solution (RBAC) is adapted for a
new problem (the half-hearted specification of RFC7643 [2]
towards RBAC). On the other hand, from the perspective of
the currently weak advances of SCIM towards RBAC (see
Section III), this work classifies into an improvement because
present approaches especially lack a valid RBAC integration
although RBAC’s maturity.

Following this positioning based on Gregory and
Hevner [18], we derive a valid combination of the RBAC
and SCIM data models in Section V-A while considering the
needs of present SCIM APIs and extensions. This combined
RBAC SCIM data model is applied to SCIM in Section V-B.
Afterward, Section V-C presents the design for interacting
with the combined and applied data model. Section V-D
complements the artifact design by showcasing an open-
source and prototypical implementation utilizing Swagger.
The evaluation in SectionVI demonstrates the artifact’s valid-
ity, utility, quality, and efficacy. Finally, Section VII discusses
insights on the iterative development, design principles [19]
for future RBAC REST APIs, and limitations.

V. DESIGNING A RBAC PROFILE FOR SCIM
This section covers the design of an artifact for a RBAC
profile for SCIM. First, it includes deriving a RBAC data
model based on the knowledge base. A REST API based
on SCIM wraps this data model. Finally, we implement the
resulting RBAC profile for SCIM with Swagger and make it
open-source on GitHub.14

A. DERIVATION OF A RBAC MODEL FOR SCIM
The data model is the foundation of a RBAC profile for
SCIM. This section derives this data model and depicts it in
Figure 6. Please note that this work uses the following terms
preferred by the SCIM community without further notice
(we do not discuss the differences between the terms). These
terms include the usage of the term user for (digital) identity

14https://rbac4scim.github.io/api, https://github.com/ThomasBaumer/
RBAC_4_SCIM (long-term link)

VOLUME 11, 2023 86883

https://rbac4scim.github.io/api
https://github.com/ThomasBaumer/RBAC_4_SCIM
https://github.com/ThomasBaumer/RBAC_4_SCIM


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

FIGURE 6. A derived data model for a RBAC profile for SCIM. The numbers on the arcs denote cardinalities as min and max. The
abbreviations hint the grounding for the resource (C: SCIM core, O: Oracle, S: SailPoint, Z: Zollner [12], R: RBAC [11], [35]).

or employee, entitlement for permission, or application for
target system or SP.

The SCIM core data schema [2] defines user and group
entities. Groups hierarchically bundle users and nested
groups to model structures like teams or departments.
A group may have one parent group while several users
and nested groups are assigned. Additionally, a user has a
many-to-many relationship with groups. SCIM also suggests
role and entitlement entities as (seemingly) many-to-many
relationships with users. The standard, however, does not
elaborate on the design of these relationships or entities,
which is a source for serve inconsistencies of implemented
SCIMAPIs seen in Section III. As a recent extension, Zollner
(Microsoft) [12] proposes schemata for roles and entitlements
covering RBAC cardinalities and many-to-many hierarchies
for roles and entitlements. The proposed data model takes
these into account. The user to role, user to entitlement, and
role to entitlement relationships are still not specified.

From a theoretical point of view [11], [14], [35], [56],
SCIM is thus incomplete in achieving a RBAC data model.
Building on the role and entitlement extension, we add
a many-to-many relationship for roles and entitlements
to cover RBAC. Furthermore, entitlements and accounts
are application-specific, which implies some considera-
tions. (i) The derived data model also should consider an
application entity. (ii) An account represents a user for
a specific application. A user thus relates to accounts in
an optional one-to-many relationship. In terms of RBAC,
a user activates roles, which are broken down into sev-
eral application-specific accounts and entitlements. (iii) An
application-specific entitlement is unique for the application.
E.g., an application duplicates its entitlements if the same
second application also runs on other stages (e.g., within
development and production environments). (iv) Even within
an application, there might be scopes making an entitlement
type attribute reasonable [2]. The data model thus should
incorporate an application entity and one-to-many relation-
ships to entitlements and accounts. Adding a many-to-many
account to entitlement relationship also allows for directly

granted access, which is in line with the present design of
common IdM APIs [14], [56].

Constraints are an advanced concept of RBAC to model
cardinalities or SoDs. Cardinalities are already sufficiently
covered by the extension of Zollner [12]. SoD coverage of
present SCIM APIs is rare because only SailPoint offers
utility endpoints to check SoD violations. A SoD is a restric-
tion in which roles and entitlements are mutually exclusive
and thus covers many-to-many relationships for the excluded
entities. From a practical point of view, SoDs need to provide
many-to-many allowlists which exceptionally let selected
groups, users, or accounts stay unaffected by a SoD. More-
over, restrictions of SoD might block static model changes
or a dynamic activation of exclusive roles or entitlements
during a session requiring a type attribute (static or dynamic).
Dynamic SoDs thus imply the presence of sessions of Core
RBAC [11], [35]. Sessions are (de-)activated based on the
user’s required roles and entitlements, which also requires a
check for dynamic SoD violations. Consequently, a session
should cover a many-to-many relationship for activated roles
and entitlements and an one-to-many relationship with the
user, which activates its entitlements by his accounts.

Additional to the proposed data model in Figure 6 for a
SCIM RBAC profile, the data model uses utility entities of
SCIM like ServiceProviderConfig, Schema, or ResourceType
without structural changes. This data model encompasses all
relevant entities of the proposed NIST standard [35]. Section
VI-A of the evaluation elaborates further on the validity of
the data model.

B. REPRESENT RBAC ENTITIES AS REST RESOURCES
REST APIs utilize representations of entities, usually called
resources, for an adequate exposure. This resource represen-
tation [25] highlights the difference between the application
data model and represented API data model. While the appli-
cation data model stays inside an application and includes
application-specific and internal attributes, the represented
data model is exchanged between applications and provides

86884 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

simplicity and flexibility for custom attributes. We thus
refer to represented entities as resources and relationships as
assignments. This section elaborates on details for both of
them for the proposed resources in Figure 6.
In general and in close alignment with the SCIM core spec-

ification [2], a resource has three essential attributes: an id in
Universally Unique Identifier (UUID) format [113], an exter-
nalId, and a complex attribute called meta. The id uniquely
identifies a resource across the whole set of resources
managed by the SCIM service provider. The externalId is
for the client’s convenience to query its own (application-
specific) resources. The meta attribute holds metadata about
the resource, including the resourceType of the resource
(e.g., User, Group, Etc.), a URI location of the resource, its
version, and two timestamps created and lastModified. Addi-
tional to the SCIM core, we add a type attribute as the analysis
in Section III revealed a common usage of types to categorize
entities further. E.g., SailPoint adds a type attribute to roles to
indicate a business or IT role, the SCIM core suggests the
attribute for entitlements, and Zollner [12] also suggests
the attribute for roles and entitlements. Please note, that
the resourceType attribute distinguishes resources themselves
from each other while the type attribute allows for sub-types
of resources. The specific resources exposed by the REST
API inherit all of the attributes from the general resource
to ensure consistent behavior. Additionally, assignments
utilize the general resource definition to ensure resource
addressability and support the hypermedia concept of
REST APIs.

Because of their semantic meaning, some resources need
additional attributes and considerations discussed in this
section. For the User and Group resources, using SCIM
core attributes minimizes breaking changes. Especially for
the User resource, this includes a wide range of name
attributes and contact information [2]. The Role and Enti-
tlement resources cover attributes to specify cardinalities,
including limitedAssignmentsPermitted (not aware of hier-
archical assignments), totalAssignmentsPermitted (aware of
hierarchical assignments), and totalAssignmentsUsed. More-
over, various APIs like SailPoint, the SCIM core [2], or the
extension by Zollner [12] suggest the type attribute to cat-
egorize resources further. For SoD, the type should denote
whether its enforcement happens during the access modeling
or when sessions are activated. For Groups, we suggest using
the type to categorize an organizational meaning. Addition-
ally, the ServiceProviderConfig should specify the utilization
of RBAC features. These features include hierarchies of roles
and entitlements or constraints based on cardinalities, static
and dynamic SoDs [35].

C. PROTOCOL DESIGN
Accessing the resources of the data model is a crucial part of
the REST API, including HTTP methods, status codes, and
authorization. Please note, that the proposed API aims for
general purpose: therefore, we do not impose a specific use
case or application scenario. The API thus needs a general

description of CRUD operations for all considered resources
depicted in Figure 6.

For all HTTP methods (esp. GET, POST, PUT, PATCH,
and DELETE) and resources (depicted in Figure 6), the
REST API design ensures a typical RESTful behavior. This
behavior aligns with HTTP semantics [23] and the SCIM
protocol [3]. The HTTP response codes 200, 201, 204, 307,
308, 400, 401, 403, 404, 409, 412, 413, 500, and 501 are
used in accordance to their semantic meaning [23].Moreover,
400 returns specific API errors with the attribute scimType,
which describes the error type in greater detail. E.g., we sug-
gest returning sodViolation as scimType for violated SoDs.
For requests altering the state of the SCIM service provider,
non-writable attributes are omitted, asserted, or replaced with
defaults. Additionally for specifying assignments, only the
id attribute of the assignee needs to be provided by the
request. [3]
For creating a resource, we specify a POST request for

every resource, which returns for a successful operation the
status code 201 and the created resource with its id set by the
SCIM service provider.

For reading resources, SCIM [3] already provides a gen-
eral POST search request. Additionally for each resource,
SCIM specifies a specific POST search request, a GET end-
point to retrieve a known resource by its id, and another
GET endpoint to execute a filtered query. The requests
can configure pagination, sorting, and included attributes of
the demanded resources and return the status code 200 on
success.

For updating a resource, SCIM [3] defines a replace oper-
ation (PUT) and a partial update (PATCH). For PUT, a full
representation of the updated resource is expected. On suc-
cess, the status code 200 returns. For PATCH, SCIM specifies
add, remove, and replace operations by using a path and the
new value for the altered attribute. This behavior enables
specific modifications without knowing the full representa-
tion of the resource. On success, the status code 200 returns.
On errors with the path, the response will indicate the path
error. [3]

For deleting a resource, SCIM [3] specifies DELETE end-
points with a path parameter for id attribute. On success, the
API returns the HTTP status code 204 without a response
body since the resource is no longer available. Upon querying
the deleted resource with GET, the API must return the HTTP
status code 404. A deleted resource does not cause the status
code 409 during create operations [3].
Finally, for every CRUD operation of the API resources a

specific authorization enables fine-grained control over the
REST API. In this sense, both PUT and PATCH HTTP meth-
ods are accessible by an update authorization. Regardless of
a filter, GET requests are available using a read authoriza-
tion for the given entity. Finally, POST requests are secured
by a create authorization (except the search request) and
DELETE requests by one for deleting a resource. Failures
in performing authentication result in the status code 401,
and missing permissions result in the status code 403. For the

VOLUME 11, 2023 86885



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

API prototype, we suggest the usage of OAuth2 [53], but any
suitable mechanism for authorization might replace it.

D. PROTOTYPE IMPLEMENTATION (OPEN-SOURCE)
With the presented REST API design for SCIM, we devel-
oped a Swagger API prototype open-source available on
GitHub.15

→ https://rbac4scim.github.io/api

It documents the API and allows for live try-out interac-
tions. Figure 7 showcases a collection of role HTTP REST
methods. The API details each HTTP REST method and its
utilized resource. On the one hand, this includes the payload
resources, like Users, Groups, Roles, Entitlements, Accounts,
Applications, Sessions, and SoDs. On the other hand, utility
or configuration resources, like ResourceType, Schemas, Ser-
viceProviderConfig, and Bulk, are also available.

FIGURE 7. Role excerpt of the Swagger documentation for the SCIM REST
API. See live on https://rbac4scim.github.io/api.

Furthermore, powerful open-source Swagger tools16 are
capable of automated code generation for a broad range
of common client and server programming languages and
libraries. On the one hand, this includes Java, Kotlin, Python,
ASP.NET, Node.js, or Scala for servers. On the other hand,
available client code generation encompasses C#, Dart, Go,
HTML, Java, JavaScript, Kotlin, PHP, Python, R, Ruby,
Scala, Swift, or TypeScript. Implementers of the proposed
RBACSCIMAPI only need tomap their ownCRUDmethods
for their data model with the specified HTTPmethods and the
data model shown in Figure 6 to use the API.

15https://github.com/ThomasBaumer/RBAC_4_SCIM (long-term link)
16https://editor.swagger.io/

VI. EVALUATION
Gregor and Hevner [18] suggest evaluating an artifact devel-
opedwith aDSRMby its validity, utility, quality, and efficacy.
The following sections consider these.

A. VALIDITY BASED ON RBAC FUNCTIONALITIES
The first evaluation aspect for the SCIM RBAC API is its
validity, utilizing the proposed NIST standard for RBAC [35].
RBAC functionalities thus include administrative functions,
supporting system functions, and review functions. Like in
Section V, this section uses terms the SCIM community
prefers. Furthermore, we omit special functions for opera-
tions and objects since applications usually manage these
internally and represent them as entitlements.

Administrative functions encompass creating and main-
taining RBAC resources. For simplicity, we focus on func-
tions named by the proposed NIST standard for RBAC [35].
For Core RBAC, these include creating and deleting users
and roles. Entitlements are perceived as predefined by the
application and thus need no specific function except dis-
covery. Core RBAC requires adding and removing function-
alities for role to entitlement and role to user relationships.
Hierarchical RBAC requires adding or deleting inheritance
relationships and adding ascendants or descendants. For Con-
strainedRBAC creating and deleting static and dynamic SoDs
or altering their cardinalities are required. Moreover, func-
tions for adding and removing role assignments for SoDs
are needed. In summary, the designed RBAC REST API for
SCIM fully covers administrative functions for Core, Hierar-
chical, and Constrained RBAC. An administrator can manage
resources by utilizing the proposed HTTP methods POST,
PUT, PATCH, and DELETE [35].
Supporting system functions assist RBAC. For Core

RBAC, these include creating a session resource, adding or
removing role to session relationships, and checking access.
While Ferraiolo et al. [35] make some remarks on details for
Hierarchical and Constrained RBAC, these functions remain
the same. The RBAC SCIMAPI covers all of these functions.
It is possible to create sessions via POST, alter its assignments
via PUT or PATCH, and check access by querying the user
session via GET [35].
Review functions let an administrator query the current

resources. For Core RBAC, the role to user assignment needs
a query function based on the respective user and role. The
API also requires query functions to retrieve a user’s entitle-
ments and roles or active roles and entitlements of a session.
For Hierarchical RBAC, additional functions for querying
role to user assignments must also resolve their hierarchies.
For Constrained RBAC, functions for querying static and
dynamic SoDs, their assigned roles, and cardinalities are
mandatory. All the required functions are present by utilizing
GET HTTP methods, including their filters. However, some
of the functions for Hierarchical RBAC might need multiple
requests to resolve recursion [35].

86886 VOLUME 11, 2023

https://rbac4scim.github.io/api
https://rbac4scim.github.io/api
https://github.com/ThomasBaumer/RBAC_4_SCIM
https://editor.swagger.io/


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

FIGURE 8. Simplified overview for the considered use case evaluation.

In summary, all functions suggested by the RBAC stan-
dard [35] are considered for the RBAC SCIM API. The
proposed RBAC SCIM API is thus a valid API to cover
RBAC.

B. UTILITY BASED ON A ROLE MODELING USE CASE
The design of the proposed RBAC SCIM API has no specific
use case in mind to establish a general purpose RBAC REST
API. This is especially beneficial since it allows multiple use
cases based on the actual organizational needs. For a utility
evaluation, however, we arbitrarily pick a role modeling use
case similar to connecting an external PAP. Other possible
use cases are application provisioning or add-on systems [13]
for data quality, access reviews, or SoD firewalls. Figure 8
illustrates a simplified overview for this use case.

Let’s consider an external, hybrid role modeling tool [13],
[15], which is capable of role mining and role engineer-
ing. This role modeling tool thus needs to know the man-
aged users, present roles, constraints like SoDs, and the
application-specific accounts and entitlements. Each of the
named resources has custom attributes, which are special for
the organization applying the RBAC SCIM API. This data is
available at the IdM system, which implements the proposed
RBAC SCIM API on the server side. The add-on role model-
ing tool thus can query resources of the API from the client
side. Imports and exports are triggered by the role modeling
tool, which synchronizes the models comprehensively with
nightly jobs. This case serves as a simplistic example for
connecting said role modeling tool with an IdM system.More
advanced cases, like incremental synchronizations, are also
feasible. The following paragraphs consider the setup of the
system, importing data from the IdM system, and returning
generated roles to the IdM system.

On setup of this system, the custom attributes of each
resource need consideration. SCIM allows for configur-
ing custom attributes for each resource (or even custom
resources). For example, configurations of these attributes
include information about their type, mutability, uniqueness,
or required and return specification. The Schema endpoint
of the SCIM API returns the specification of each attribute
and resource. These attribute configurations are the basis for
using attribute restrictions and filtering. Let’s assume for the
use case a custom role attribute ‘‘factory’’ with the allowed
values ‘‘A’’, ‘‘B’’, or ‘‘C’’, which enhances the semantic
meaning for the role. The attribute is mutable, not-required
and returned on request.

After the setup phase, the role modeling tool can import
data from the IdM system. This import includes present users,
roles, entitlements, accounts, applications, or SoD constraints
alongside their assignments. The RBAC SCIM API allows
reading these resources by a search request via POST or
GET. These requests are paginated to prevent cumbersome or
heavy requests for the API. Additionally, filters and attribute
restrictions allow for specifying the required resources and
their attributes even further. For example, requests may be
restricted to only active users. The role modeling tool can
thus transfer a comprehensive data RBAC data model with
the means provided by the proposed API.

LISTING 1. Example for a GET request for the first two roles with the
attributes id, displayName and factory. The roles are sorted ascending by
their displayName.

LISTING 2. Example for the response of the GET request of listing.

Listing 1 is an example for a GET request for roles.
It demands roles sorted ascending by their displayName
(sortBy and sortOrder parameters), starting with the first two
roles (startIndex and count parameter), and the attributes
id, displayName, and factory need to be returned while
the attributes schema and meta are excluded (attributes
and excludedAttributes parameters). The returned JSON in
Listing 2 contains some steering attributes and the demanded

VOLUME 11, 2023 86887



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

role list. The totalResults attribute denotes that 543 roles
are present, while the startIndex and itemsPerPage attributes
determine the current page for the pagination mechanism.
TheResource attribute lists the demanded roles and attributes.
In real application scenarios, we expect larger request (more
attributes and more resources for each request) for all pro-
vided entities, which is configurable by raising the count
parameter for more returned roles or by including more
attributes with the attributes parameter.

Finally, after the role modeling tool has read the required
data and can start to generate roles. When these roles are
finalized, an export back to the IdM system is required.
Basically, three operations need consideration: create, update,
and delete. As described in Section V-C, the API offers
HTTP methods for each operation: POST for creating,
PUT (replace) or PATCH (partial update) for updating, and
DELETE for deleting. Furthermore, a Bulk request allows
for bundling multiple of these operations into one HTTP
request raising its efficacy. After the export, both systems are
in sync again, allowing for another iteration of hybrid role
mining [15].

LISTING 3. Example for a POST request to create a new role. On success
only the generated id of the role returns. The body of the request
contains a JSON with the displayName and factory for the new role.

LISTING 4. Example for the response of the POST request of listing .

Listing 3 show a simplistic example for a POST request to
create a new role. The role instantiates with a displayName
and a factory but no assignments yet. On a successful creation
of the role, only its id returns. The Listing 4 shows the
successful response with the id.

In summary, the RBAC SCIMAPI is capable of supporting
an add-on role modeling tool. The flexible setup of SCIM
allows for custom attributes to match the given use case
within organizations. Endpoints for querying resources sup-
port fine-grained filtering to only receive required resources
and attributes. Exporting the generated roles is also possible
by utilizing create, update, and delete operations.

C. QUALITY BASED ON PROPER REST API DESIGN
For a quality evaluation of the RBAC SCIM API, we closely
examine realized REST API concepts, documentation, main-
tainability, and security considerations.

High-quality RESTAPIs realize REST concepts, including
resource addressability, resource representations, uniform

interface, statelessness, and hypermedia. (i) Resource
addressability is provided by enforcing and consistently uti-
lizing the id attribute in URI format as a unique address for
the resource. (ii) Resource representations are implemented
since entities of the implementing systems are represented as
resources for the API. The Sections V-A and V-B elaborate
on this distinction. (iii) Uniform interface is part of the RBAC
SCIM profile since it uses standard HTTP methods and
status codes in their semantic sense to manipulate resources.
(iv) Statelessness is provided as the interactions are inde-
pendent of other HTTP requests. (v) The API fully supports
hypermedia as assigned resources come with a location
attribute in its meta object, which allows additional navi-
gation and discovery of related resources. In summary, the
proposed REST API for RBAC internalized REST concepts,
providing a high-quality REST API.

Guidelines for API documentation design cover three
heuristics: efficient access to relevant content, an initial entry
point for the API, and support for different learning strate-
gies [22]. We examine these heuristics with the Swagger
prototype described in Section V-D. (i) Efficient access to
relevant content is provided by a consistent organization
and navigation of the endpoints based on their resource and
presenting conceptional information about the SCIM RFC
family in the general description of the API. The suggested
powerful search functions for the API are not present as these
are a limitation of Swagger itself. (ii) An initial entry is given
since the API documentation generates code examples and a
recognizable API visualization. Additionally, the prototype
provides a link with an overview for further background
information for every API resource. (iii) Finally, different
strategies for learning are supported. The documentation
allows for learning about different resources independently,
retrieving general and resource-based information, and pro-
viding try-out functionality for every endpoint. In summary,
this prototype achieves sound documentation by utilizing
Swagger’s REST API documentation features.

API maintenance is a relevant topic when creating a
new API or changing a present one. Changes to an API
are challenging since implementing software might update
only slowly or never to the latest version. It implies that
API designers should avoid or carefully consider breaking
changes. The RBAC profile for SCIM followed this advice
however needed to apply some breaking changes tomigrate to
a more comprehensive data model of RBAC for SCIM. These
breaking changes mainly include assignments. On the one
hand, the user to entitlement assignment got removed due to
the consideration of accounts. On the other hand, the internal
structure of the assignments got modified to support a cleaner
internalization of the hypermedia concept for REST APIs.
However, other changes are additive and thus do not break
the current data model and protocol of SCIM. In summary,
breaking changes for the proposed API are carefully consid-
ered and only taken to extend the data model or internalize
REST concepts [21].

86888 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

From a security perspective, all entities depicted in Figure 6
are accessible by CRUD operations leading to a need for fine-
grained permissions for the API. The assigned permissions
and the suggestion to utilize OAuth2 for the API effectively
protect against unauthorized access or fuzzing. Furthermore,
SCIM provides tools to throttle both inbound and outbound
traffic. These tools include restricting the returned amount
of resources and attributes or capping bulk operations. Addi-
tional security considerations include geofencing and audit
logs covered by implementing parties [24].

D. EFFICACY BASED ON EMULATING SCIM
SCIM emphasizes simplicity and scalability by various
means. These include the usage of JSON [27] serialization,
a pagination mechanism, attribute restrictions, filtering, bulk
requests, or HTTP PATCH operations. (i) JSON serialization
allows for efficient data exchange, especially in comparison
to XML. (ii) A pagination mechanism splits big requests into
multiple smaller requests (for example, max. 1,000 resources
for a single request) and reduces efficacy risks for each
request. Large requests may thus cause long processing
times for servers and clients. Additionally, large requests
tend to fail (exhausted memory, Etc.), raising processing
and recovering times even more. (iii) Attribute restrictions
contribute to efficacy twofold. On the one hand, query param-
eters allow restricting response attributes. On the other hand,
SCIM servers can also restrict attributes’ default visibility.
(iv) Queries for each resource also allow for filtering by
query parameters or a POST search request. Therefore, only
required resources can be queried, which reduces unneces-
sary responses from the REST API. (v) Bulk requests enable
bundling requests, which modify the state of the managed
resources of the SCIM server. Avoiding atomic requests sup-
ports the SCIM server in processing bundled requests more
efficiently. (vi) Finally, PATCH operations allow for decreas-
ing the size of requests. The PATCH method only describes
the required modification without requiring to send or even
know all attributes of the resource itself.

At the time of writing, 70 implementors [9] adopted SCIM.
Among these are big IdM vendors, like SailPoint, NetIQ,
Oracle, Etc., which use SCIM in practice. These adoptions are
evidence for sufficient real-world efficacy of the SCIM Core.
The described means for the efficacy of the SCIM core are
also considered for the SCIM extension of this work, allowing
to expect the same efficacy as for the SCIM Core. In fact,
the efficacy of the proposed API is primarily driven by the
implementing systems, distorting an empirical evaluation of
the API. These systems have to perform the querying and
processing of modifications, while network conditions are a
further external bias to the efficacy of the API.

VII. DISCUSSION
The discussion for the RBAC profile for SCIM covers three
aspects. First, this work discloses the development cycles
to show the trajectory and iterative nature of the develop-
ment, as suggested by Hevner et al. [20]. Afterward, design

principles formulate the insights generated by this work [19]
to guide future designs of RBAC REST APIs. Finally,
we present limitations of this work.

A. DISCLOSURE ON DEVELOPMENT CYCLES
As Hevner et al. [20] suggest, the development cycle is an
iterative process. This work thus discloses this iterative pro-
cess by outlining this project’s trajectory and learning curve.
Initially, this project intended no publication, nor was it tar-
geting a full RBAC extension for SCIM. The plan was to wire
up an advanced role modeling tool with an IdM system uti-
lizing SCIM. The IdM system maintains about 30,000 users,
300,000 entitlements, 300 roles, and 10 applications. The
project took on and off about 2.5 years for the productive
go-live, measuring from the export step.

At first glance, an import seemed a trivial task as end-
points for crucial resources, including roles and entitlements,
were present for this SCIM implementation. From a limited
perspective, the missing role to entitlement relationship was
considered a bug that was sloppily fixed with a database
view. However, this database view was a source for various
issues down the line. Despite other issues, converting from
internal entities to external resources was a non-trivial task
for outsiders. In this case, the root problems were uncovered
REST concepts and an invalid RBAC model. On the one
hand, the assignment’s resource addressability and resource
representation were not given. On the other hand, the RBAC
model was invalid since the role to entitlement relationship of
RBAC was missing.

The next step was exporting generated roles back to the
IdM system. Since both the SCIM core and the implementa-
tion of SCIM lack comprehensive functionality to manipulate
roles, we designed a custom plugin. This custom plugin
covered a single POST endpoint which included all required
functionalities at the time. The server plugin interpreted
the request body to perform the desired actions. This logic
violated nearly all REST concepts and merely applied for
the lowest maturity for a REST API available [25]. Over
time additional features and bug fixes were added. Some
of the initial developers and API designers were no longer
available or got replaced within a multi-national development
team spanning over four involved companies. At some point,
static code analysis provided more answers to questions
than looking for them in the documentation. This situation
eventually led to a well-documented redesign of the custom
plugin followingmost REST concepts, improving quality and
maintainability drastically. Lessons learned are boiled down
to (i) a consequent utilization of REST concepts, (ii) clean and
unambiguous documentation of REST APIs, and (iii) consid-
ering maintainability to avoid breaking changes for present
APIs (backward) and future designs of the API (forward).

After this project, we decided to take the issue further
and designed the API as described in this paper. Utilizing
a theoretical background, past experiences, and a DSRM,
a valid contribution to theory and practice originated.

VOLUME 11, 2023 86889



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

B. GENERALIZATION BY DESIGN PRINCIPLES
Following a DSRM, the design of an artifact should loop
back insights to the knowledge base and the environment.
In addition to the contributions, design principles carefully
formulate considerations for future RBAC REST APIs. The
goal of this section is to highlight characteristics of RBAC
RESTAPIs based on the insights of this work but independent
of SCIM or the proposed artifact. Figure 9 illustrates the three
identified design principles flexibility, validity, and simplicity
while suggesting their interdependence. These design princi-
ples and their competing interdependence are discussed in the
following [19].

FIGURE 9. Design principles for future RBAC REST APIs.

Validity Design Principle: Provide a RBAC REST API
with a valid RBAC [11], [35] data model as derived in
Figure 6 and a valid REST API design, including REST and
HTTP semantics [23], [25], security considerations [24],
and documentation [22] in order for developers to build on
previous knowledge of these technologies and rely on a valid
grounding based on theoretical suggestions, practical needs,
and standardization, given that the implementing systems
are interconnected, capable of processing RBAC data, and
benefit from exchanging RBAC data.
Evidence: The SCIM Core schema considers the presence

of assignments users to entitlements or roles in a freestyle
notation but fails in providing a comprehensive and valid
RBAC model. The freestyle notation also fails a consistent
resource addressability as a REST design principle. Further-
more, standalone role and entitlement endpoints are missing.
Some vendors add these, but these also fail in providing, e.g.
the role to entitlement assignment or further RBAC features,
like sessions or (SoD) constraints. Violating validity leads to
issues, e.g. missing but required RBAC resources or CRUD
operation, which block certain use cases.
Simplicity Design Principle: Provide a RBAC REST API

with minimal overhead regarding the resources and their
attributes, including simple and efficient means to modify
resources and restrictions on the returned resources and
attributes in order for developers to securely and efficiently
share RBAC data without driving development expenses or
complexity for organizations, given that all mandatory RBAC
functions and resources are covered for the organization
applying the RBAC REST API.

Evidence: A focus of SCIM is simplicity which drives its
success in practice. It’s thus reasonable to adopt this sim-
plicity for a RBAC REST API. Violating simplicity leads to
unused features of the API, raising complexity and expenses
for development. Resources, attributes, and HTTP endpoints
thus should only be added based on shared reasoning for them
across the connected applications.
Flexibility Design Principle: Provide a RBAC REST

API with flexible reusable HTTP methods allowing exten-
sions regarding resources and their attributes to real-
ize organization-specific, application-specific, or vendor-
specific use cases in order for developers to efficiently extend
and modify the RBAC REST API while simultaneously avoid-
ing breaking changes to present or future extensions, given
that these use cases and configurations are relevant and cover
an application scenario for RBAC.
Evidence: The presence of vendor-specific or even

organization-specific SCIMAPIs highlights the need for flex-
ibility. On the one hand, vendors might focus on different
aspects. An example of this is Oracle vs. SailPoint, which
align their extensions on the identity or policy lifecycle.
On the other hand, organizations (and vendors) also might
need specific custom attributes which might not be reason-
able for other organizations but crucial for the organization
itself. Additionally, flexibility should not hamper progress
by introducing breaking changes. SCIM specifies especially
for this means to safely add custom attributes and resources.
Violations of flexibility can lead to inabilities to enable
vendor-specific or organization-specific use cases, breaking
changes, or hampered adoption of the RBAC REST API.
Validity x Simplicity Interdependence: From the validity

perspective, RBAC and REST are required, although sim-
plicity restricts them to their basics. E.g., advanced but not
yet adopted RBAC features might be relevant for certain use
cases. However, for simplicity reasons, these features should
be omitted for a general RBAC REST API and rather treated
in dedicated extensions. From the simplicity perspective, the
RBACRESTAPI should not be simpler as validity allows for.
E.g., omitting specific CRUD operations or RBAC entities
invalidates the API for its purpose. Finally, a valid and simple
RBACREST API fosters lower development expenses, while
covering essential RBAC.
Validity x Flexibility Interdependence: From the validity

perspective, RBAC and REST concepts require their usage as
intended. Examples of this are repurposing roles for modeling
organizational structures (like department trees) or violating
validity by a different usage of HTTP semantics [23], like
not using the methods POST for creating, GET for read-
ing, PUT/PATCH for updating, or DELETE for deleting.
From the flexibility perspective, a valid RBAC data model
for the API needs opening points for configuration. Espe-
cially, organization-specific or vendor-specific RBAC use
cases might require additional resources, attributes, or even
further endpoints without violating its validity. As depicted
in Table 4, vendors need and utilize this flexibility. Finally,
a valid and flexible RBAC REST API fosters vendor-specific

86890 VOLUME 11, 2023



T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

or organization-specific application scenarios or use cases,
while benefiting from the usage of valid groundings.
Simplicity x Flexibility Interdependence: From the sim-

plicity perspective, simple and specified opening points for
flexible extensions are required. Utilizing flexibility for adap-
tions thus should not bother the overall simplicity of the API.
From the flexibility perspective, simplicity should not block
flexibility in general, as vendor-specific or organization-
specific use casesmight not be covered by the essential design
of the API. Finally, a simple and flexible RBAC REST API
allows for efficient adaption for custom application scenarios
and use cases.

C. LIMITATIONS
One methodological and one contentwise issue summarize
the limitations of this work. This summary highlights open
questions or current shortcomings of the proposed API
design.

The methodological issue relates to Table 4. This work
compares a few SCIM APIs with extensions for SCIM.
Since unreported SCIM implementations may exist, further
requirements may thus still lay undetected. Additionally, this
work focuses on RBAC and thus rather a policy lifecycle.
However, as seen for Oracle, we also detected a stream of
extensions toward the identity lifecycle. Future work might
further advance this identity lifecycle or ABAC.

The contentwise limitation is breaking changes. Although
this work tries to avoid and minimize breaking changes, some
are unavoidable in achieving a proper RBAC REST API,
covering the RBAC data model or the inherent situation of
present breaking vendor implementations. Breaking changes
are thus mainly present for assignments or resources imple-
mented differently by vendors. Furthermore, future exten-
sions might add dynamic rules for determining assignments
as this profile utilizes static assignments.

VIII. CONCLUSION
According to Gartner [10], SCIM runs through the Trought
of Disillusionment reaching early mainstream. This state
relentlessly reveals a clash of expectations and reality for the
RFC family. In this sense, a literature discussion of SCIM is
overdue. As seen in this work, a more scientific and method-
ological approach to design a RBAC profile for SCIM is
helpful. Especially as it seems that the SCIM community tries
to find a proper way to provide RBAC functionalities. Recent
activities on SCIM, like the role and entitlement extension of
Zollner [12] or extensions of SCIM by vendors, thus highlight
shortcomings of SCIM for RBAC.

This work contributes with a RBAC profile for SCIM.
Research on proper (REST) API design, SCIM specifica-
tions, literature, and implementations ensures consideration
of relevant aspects. The data model (depicted in Figure 6) for
the REST SCIM API is derived by RBAC and the present
design of SCIM, its extensions, and implementations. Com-
prehensive HTTP methods allow a fine-grained management
of RBAC resources covering standard RBAC functions [35].

Additionally, insights generated by this work are formulated
as design principles in Section VII-B to pass them on for
future RBAC API designs.

REFERENCES
[1] K. Li, P. Hunt, B. Khasnabish, A. Nadalin, and Z. Zeltsan, System for

Cross-domain Identity Management: Definitions, Overview, Concepts,
and Requirements, document RFC 7642, Sep. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7642

[2] P. Hunt, K. Grizzle, E. Wahlstroem, and C. Mortimore, System for Cross-
domain Identity Management: Core Schema, document RFC 7643, Sep.
2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7643

[3] P. Hunt, K. Grizzle, M. Ansari, E. Wahlstroem, and C. Mortimore, System
for Cross-domain Identity Management: Protocol, document RFC 7644,
Sep. 2015. [Online]. Available: https://www.rfc-editor.org/info/rfc7644

[4] J. Smarr. (Dec. 2008). Portable Contacts: A Common Format and
Protocol for Accessing Contacts. Internet Engineering Task Force.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-smarr-
vcarddav-portable-contacts-00

[5] S. Perreault, vCard Format Specification, document RFC 6350,
Aug. 2011. [Online]. Available: https://www.rfc-editor.org/info/rfc6350

[6] K. Zeilenga, Lightweight Directory Access Protocol (LDAP): Directory
InformationModels, document RFC 4512, Jun. 2006. [Online]. Available:
https://www.rfc-editor.org/info/rfc4512

[7] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen,
and T. Scavo. (Mar. 2008). Security Assertion Markup
Language (SAML) V2.0 Technical Overview. [Online]. Available:
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-
tech-overview-2.0-cd-02.pdf

[8] N. Sakimura, J. Bradley, M. B. Jones, B. de Medeiros, and
C. Mortimore. (Nov. 2014). OpenID Connect Core 1.0 incor-
porating Errata Set 1. [Online]. Available: https://openid.net/
specs/openid-connect-core-1_0.html

[9] S. Erdtman. (2023). System for Cross-Domain Identity Management.
[Online]. Available: https://scim.cloud/#Implementations2

[10] F. Gaehtgens, ‘‘Hype cycle for digital identity, 2022,’’ Gartner, Stamford,
CT, USA, Tech. Rep. G00770428, Jul. 2022.

[11] R. S. Sandhu, ‘‘Role-based access control,’’ Adv. Comput., vol. 46,
pp. 237–286, 1998. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0065245808602065

[12] D. Zollner. (Dec. 2022). SCIM Roles and Entitlements
Extension. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-scim-roles-entitlements/00/

[13] A. Puchta, S. Groll, and G. Pernul, ‘‘Leveraging dynamic information for
identity and access management: An extension of current enterprise IAM
architecture,’’ in Proc. 7th Int. Conf. Inf. Syst. Secur. Privacy. Setúbal,
Portugal: SciTePres, 2021, pp. 611–618.

[14] S. Groll, S. Kern, L. Fuchs, and G. Pernul, ‘‘Monitoring access reviews
by crowd labelling,’’ in Trust, Privacy and Security in Digital Busi-
ness, S. Fischer-Hübner, C. Lambrinoudakis, G. Kotsis, A. M. Tjoa, and
I. Khalil, Eds. Cham, Switzerland: Springer, 2021, pp. 3–17.

[15] L. Fuchs and G. Pernul, ‘‘Hydro–hybrid development of roles,’’ in
Information Systems Security, R. Sekar and A. K. Pujari, Eds. Berlin,
Germany: Springer, 2008, pp. 287–302.

[16] L. Fuchs, G. Pernul, and R. Sandhu, ‘‘Roles in information security—
A survey and classification of the research area,’’ Comput. Secur.,
vol. 30, no. 8, pp. 748–769, Nov. 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016740481100099X

[17] B. Mitra, S. Sural, J. Vaidya, and V. Atluri, ‘‘A survey of role min-
ing,’’ ACM Comput. Surveys, vol. 48, no. 4, pp. 1–37, May 2016, doi:
10.1145/2871148.

[18] S. Gregor and A. R. Hevner, ‘‘Positioning and presenting design science
research for maximum impact,’’MIS Quart., vol. 37, no. 2, pp. 337–356,
Jun. 2013, doi: 10.25300/MISQ/2013/37.2.01.

[19] L. Chandra, S. Seidel, and S. Gregor, ‘‘Prescriptive knowledge in IS
research: Conceptualizing design principles in terms of materiality,
action, and boundary conditions,’’ in Proc. 48th Hawaii Int. Conf. Syst.
Sci., Honolulu, HI, USA, Jan. 2015, pp. 4039–4048.

[20] R. H. Von Alan, S. T. March, J. Park, and S. Ram, ‘‘Design science in
information systems research,’’ MIS Quart., vol. 28, no. 1, pp. 75–105,
2004.

VOLUME 11, 2023 86891

http://dx.doi.org/10.1145/2871148
http://dx.doi.org/10.25300/MISQ/2013/37.2.01


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

[21] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, ‘‘A systematic review of
API evolution literature,’’ ACMComput. Surveys, vol. 54, no. 8, pp. 1–36,
Oct. 2021, doi: 10.1145/3470133.

[22] M.Meng, S. M. Steinhardt, and A. Schubert, ‘‘Optimizing API documen-
tation: Some guidelines and effects,’’ in Proc. 38th ACM Int. Conf. Design
Commun. New York, NY, USA: Association for Computing Machinery,
Oct. 2020, pp. 1–10, doi: 10.1145/3380851.3416759.

[23] R. T. Fielding, M. Nottingham, and J. Reschke, HTTP Semantics,
document RFC 9110, Jun. 2022. [Online]. Available: https://www.rfc-
editor.org/info/rfc9110

[24] A. Lamba, ‘‘API design principles & security best practices–accelerate
your business without compromising security,’’ Cyber-
nomics, vol. 1, no. 3, pp. 21–25, 2019. [Online]. Available:
https://ssrn.com/abstract=3535436

[25] C. Rodríguez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali,
and G. Percannella, ‘‘Rest APIS: A large-scale analysis of compliance
with principles and best practices,’’ in Web Engineering, A. Bozzon,
P. Cudre-Maroux, and C. Pautasso, Eds. Cham, Switzerland: Springer,
2016, pp. 21–39, doi: 10.1007/978-3-319-38791-8_2.

[26] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, Uniform Resource
Identifier (URI): Generic Syntax, document RFC 3986, Jan. 2005.
[Online]. Available: https://www.rfc-editor.org/info/rfc3986

[27] T. Bray, The JavaScript Object Notation (JSON) Data Interchange
Format, document RFC 8259, Dec. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8259

[28] J. Boyer, Canonical XML Version 1.0, document RFC 3076, Mar. 2001.
[Online]. Available: https://www.rfc-editor.org/info/rfc3076

[29] A. Pfitzmann andM.Hansen, ‘‘A terminology for talking about privacy by
data minimization: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management,’’ TU Dresden, Dresden,
Germany, Tech. Rep. 0.34, 2010. [Online]. Available: https://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf

[30] Sarbanes-Oxley Act of 2002. Corporate responsibility, United States
Congr., Washington, DC, USA, 2002.

[31] J. Carretero, G. Izquierdo-Moreno, M. Vasile-Cabezas, and
J. Garcia-Blas, ‘‘Federated identity architecture of the European
eID system,’’ IEEE Access, vol. 6, pp. 75302–75326, 2018.

[32] M. Just and C. Adams, Identity Management. Berlin, Germany:
Springer, 2019, pp. 1–3. [Online]. Available: https://link.springer.com/
referenceworkentry/10.1007/978-3-642-27739-9_78-2

[33] Y. Cao and L. Yang, ‘‘A survey of identity management technology,’’ in
Proc. IEEE Int. Conf. Inf. Theory Inf. Secur., Dec. 2010, pp. 287–293.

[34] P. Samarati and S. C. de Vimercati, ‘‘Access control: Policies, models, and
mechanisms,’’ inFoundations of Security Analysis andDesign, R. Focardi
and R. Gorrieri, Eds. Berlin, Germany: Springer, 2001, pp. 137–196.

[35] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, ‘‘Proposed NIST standard for role-based access control,’’ ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001, doi:
10.1145/501978.501980.

[36] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone, ‘‘Guide to attribute based access control (ABAC)
definition and considerations,’’ U.S. Dept. Commerce, Washington,
DC, USA, Tech. Rep., Tech. Rep. NIST SP 800-162, Jan. 2014, doi:
10.6028/nist.sp.800-162.

[37] O. Ulusoy and P. Yolum, ‘‘Norm-based access control,’’ in Proc.
25th ACM Symp. Access Control Models Technol. New York, NY,
USA: Association for Computing Machinery, Jun. 2020, pp. 35–46, doi:
10.1145/3381991.3395601.

[38] M. Gupta and R. Sandhu, ‘‘Towards activity-centric access control for
smart collaborative ecosystems,’’ in Proc. 26th ACM Symp. Access Con-
trol Models Technol. New York, NY, USA: Association for Computing
Machinery, Jun. 2021, pp. 155–164, doi: 10.1145/3450569.3463559.

[39] A. Masoumzadeh, P. Narendran, and P. Iyer, ‘‘Towards a theory for
semantics and expressiveness analysis of rule-based access control mod-
els,’’ in Proc. 26th ACM Symp. Access Control Models Technol. New
York, NY, USA: Association for Computing Machinery, Jun. 2021,
pp. 33–43, doi: 10.1145/3450569.3463569.

[40] P. Iyer and A. Masoumzadeh, ‘‘Generalized mining of relationship-
based access control policies in evolving systems,’’ in Proc. 24th
ACM Symp. Access Control Models Technol. New York, NY, USA:
Association for Computing Machinery, May 2019, pp. 135–140, doi:
10.1145/3322431.3325419.

[41] T. Bui, S. D. Stoller, and H. Le, ‘‘Efficient and extensible policy mining
for relationship-based access control,’’ in Proc. 24th ACM Symp. Access
Control Models Technol. New York, NY, USA: Association for Comput-
ing Machinery, May 2019, pp. 161–172, doi: 10.1145/3322431.3325106.

[42] P. Iyer and A. Masoumzadeh, ‘‘Active learning of relationship-based
access control policies,’’ inProc. 25th ACMSymp. Access ControlModels
Technol. New York, NY, USA: Association for Computing Machinery,
Jun. 2020, pp. 155–166, doi: 10.1145/3381991.3395614.

[43] P. Iyer and A. Masoumzadeh, ‘‘Effective evaluation of relationship-based
access control policy mining,’’ in Proc. 27th ACM Symp. Access Con-
trol Models Technol. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 127–138, doi: 10.1145/3532105.3535022.

[44] B.W. Lampson, ‘‘Protection,’’ ACM SIGOPSOperating Syst. Rev., vol. 8,
no. 1, pp. 18–24, Jan. 1974, doi: 10.1145/775265.775268.

[45] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, ‘‘Protection in operating
systems,’’ Commun. ACM, vol. 19, no. 8, pp. 461–471, Aug. 1976, doi:
10.1145/360303.360333.

[46] D. E. Bell and L. J. LaPadula, ‘‘Secure computer systems: Mathematical
foundations,’’ MITRE, Bedford, MA, USA, Tech. Rep. AD0770768,
1973.

[47] K. J. Biba, ‘‘Integrity considerations for secure computer systems,’’
MITRE, Bedford, MA, USA, Tech. Rep. ADA039324, 1977.

[48] S. Parkinson and S. Khan, ‘‘A survey on empirical security analysis
of access-control systems: A real-world perspective,’’ ACM Comput.
Surveys, vol. 55, no. 6, pp. 1–28, Dec. 2022, doi: 10.1145/3533703.

[49] S. Kern, T. Baumer, S. Groll, L. Fuchs, and G. Pernul, ‘‘Optimization
of access control policies,’’ J. Inf. Secur. Appl., vol. 70, Nov. 2022,
Art. no. 103301. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2214212622001533

[50] A. Puchta, F. Böhm, and G. Pernul, ‘‘Contributing to current challenges
in identity and access management with visual analytics,’’ in Data and
Applications Security and Privacy XXXIII. Cham, Switzerland: Springer,
2019, pp. 221–239, doi: 10.1007/978-3-030-22479-0_12.

[51] D. Servos and S. L. Osborn, ‘‘Current research and open problems in
attribute-based access control,’’ ACM Comput. Surveys, vol. 49, no. 4,
pp. 1–45, Jan. 2017, doi: 10.1145/3007204.

[52] G. Cole. (Sep. 2005). OASIS Service Provisioning Markup Language
(SPML) Version 2. OASIS. [Online]. Available: https://docs.oasis-
open.org/provision/spml-2.0-cd-01/pstc-spml2-cd-01.pdf

[53] D. Hardt, The OAuth 2.0 Authorization Framework, document RFC 6749,
Oct. 2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6749

[54] E. Rissanen, eXtensible Access Control Markup Language (XACML)
Version 3.0, OASIS, OASIS StandardXACML-V3.0, Jan. 2013. [Online].
Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.pdf

[55] OASIS. (Oct. 2014). XACML v3.0 Core and Hierarchical Role Based
Access Control (RBAC) Profile Version 1.0. [Online]. Available:
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/xacml-3.0-rbac-v1.0.pdf

[56] M. Kunz, A. Puchta, S. Groll, L. Fuchs, and G. Pernul, ‘‘Attribute
quality management for dynamic identity and access management,’’
J. Inf. Secur. Appl., vol. 44, pp. 64–79, Feb. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214212618301467

[57] M. Diodati. (Aug. 2010). Consensus on the Future of
Standards-Based Provisioning and SPML. [Online]. Available:
https://blogs.gartner.com/mark-diodati/2010/08/20/consensus-on-
the-future-of-standards-based-provisioning-and-spml/

[58] P. Hunt, K. Grizzle, M. Ansari, and D. Olds. (Dec. 2012) SCIM 2.0 Token
Search Extension. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-scim-tokensearch/00/

[59] Internet Engineering Task Force. (Dec. 2012). SCIM 2.0 Extended
Search. [Online]. Available: https://datatracker.ietf.org/doc/draft-hunt-
scim-xsearch/00/

[60] P. Hunt, M. Ansari, and A. Nadalin. (Jul. 2013). OAuth 2.0 SCIM Client
Registration Profile. Internet Engineering Task Force. [Online]. Avail-
able: https://datatracker.ietf.org/doc/draft-hunt-oauth-scim-client-reg/00/

[61] P. Hunt. (Aug. 2013). SCIM Directory Services. Internet Engineer-
ing Task Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-
hunt-scim-directory/01/

[62] K. Li. (Jan. 2013). SCIM User Scenarios. Internet Engineering Task
Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-li-scim-
user-scenarios/00/

[63] P. Hunt, B. Khasnabish, A. Nadalin, Z. Zeltsan, and K. Li. (Aug. 2013).
SCIM Use Cases. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-zeltsan-scim-use-cases/02/

86892 VOLUME 11, 2023

http://dx.doi.org/10.1145/3470133
http://dx.doi.org/10.1145/3380851.3416759
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1145/501978.501980
http://dx.doi.org/10.6028/nist.sp.800-162
http://dx.doi.org/10.1145/3381991.3395601
http://dx.doi.org/10.1145/3450569.3463559
http://dx.doi.org/10.1145/3450569.3463569
http://dx.doi.org/10.1145/3322431.3325419
http://dx.doi.org/10.1145/3322431.3325106
http://dx.doi.org/10.1145/3381991.3395614
http://dx.doi.org/10.1145/3532105.3535022
http://dx.doi.org/10.1145/775265.775268
http://dx.doi.org/10.1145/360303.360333
http://dx.doi.org/10.1145/3533703
http://dx.doi.org/10.1007/978-3-030-22479-0_12
http://dx.doi.org/10.1145/3007204


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

[64] B. Greevenbosch and R. Sun. (Dec. 2014). SCIM and vCard
Mapping. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-greevenbosch-scim-vcard-
mapping/04/

[65] M. Wahl. (May 2014). SCIM Profile For Enhancing Just-In-Time
Provisioning. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-wahl-scim-jit-profile/02/

[66] M. Ansari and P. Hunt. (Mar. 2015). SCIM Soft Delete. Internet Engineer-
ing Task Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-
ansari-scim-soft-delete/00/

[67] P. Hunt, M. Ansari, and I. Glazer. (Mar. 2015). SCIM Event
Notification. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-scim-notify/00/

[68] P. Hunt and G. Wilson. (Mar. 2015). SCIM Password Manage-
ment Extension. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-scim-password-mgmt/00/

[69] P. Hunt. (May 2015). SCIM HTTP Search Method Exten-
sion. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-scim-search/00/

[70] P. Hunt, W. Denniss, and M. Ansari. (Mar. 2016). SCIM Event
Extension. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-idevent-scim/00/

[71] P. Hunt. (Feb. 2016). System for Cross-Domain Identity Manage-
ment: Discovery. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-scim-discovery/00/

[72] C. McMurtry. (Apr. 2016). SCIM Polling Protocol. Internet Engineer-
ing Task Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-
mcmurtry-scim-polling/01/

[73] K. Grizzle, B. Yoder, J. Jones, P. Lieberman, and E. Nunez. (Oct. 2017).
SCIM Extension for Privileged Access Management. Internet Engineer-
ing Task Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-
grizzle-scim-pam-ext/01/

[74] P. Hunt and M. Ansari. (Jul. 2017). SCIM Use Cases for
SECEVENTS. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-hunt-secevent-usecases/00/

[75] M. Wahl. (Jun. 2019). SCIM Profile for Provisioning Users Into Relying
Party Applications. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-wahl-scim-profile/00/

[76] P. Hunt. (Oct. 2021). SCIM Protocol: Multi-Value Filtering Exten-
sion. Internet Engineering Task Force. [Online]. Available: https://
datatracker.ietf.org/doc/draft-hunt-scim-mv-filtering/00/

[77] D. Zollner. (Oct. 2021). SCIM Verified Domains Extension. Internet
Engineering Task Force. [Online]. Available: https://datatracker.ietf.org/
doc/draft-zollner-scim-domain-extension/00/

[78] Internet Engineering Task Force. (Jul. 2022). SCIM Referential Value
Location Extension. [Online]. Available: https://datatracker.ietf.org/
doc/draft-zollner-scim-referential-value-location/01/

[79] M. Peterson and D. Zollner. (Feb. 2023). Cursor-based Pagination of
SCIM Resources. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-scim-cursor-pagination/00/

[80] P. Hunt and N. Cam-Winget. (Jan. 2023). SCIM Profile for Security
Event Tokens. Internet Engineering Task Force. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-scim-events/01/

[81] M. Shahzad, H. Iqbal, and E. Lear. (Apr. 2023). Device Schema
Extensions to the SCIM Model. Internet Engineering Task Force.
[Online]. Available: https://datatracker.ietf.org/doc/draft-shahzad-scim-
device-model/04/

[82] A. Sahi, D. Lai, and Y. Li, ‘‘A review of the state of the art in privacy and
security in the eHealth cloud,’’ IEEE Access, vol. 9, pp. 104127–104141,
2021.

[83] E. Bertino and K. Brancik, ‘‘Services for zero trust architectures—A
research roadmap,’’ in Proc. IEEE Int. Conf. Web Services (ICWS),
Sep. 2021, pp. 14–20.

[84] R. Shere, S. Srivastava, andR. K. Pateriya, ‘‘A review of federated identity
management of OpenStack cloud,’’ in Proc. Int. Conf. Recent Innov.
Signal Process. Embedded Syst. (RISE), Oct. 2017, pp. 516–520.

[85] T. H. Vo, W. Fuhrmann, and K.-P. Fischer-Hellmann, ‘‘How to adapt
authentication and authorization infrastructure of applications for the
cloud,’’ in Proc. IEEE 5th Int. Conf. Future Internet Things Cloud
(FiCloud), Aug. 2017, pp. 54–61.

[86] K. Dodanduwa and I. Kaluthanthri, ‘‘Trust-based identity sharing for
token grants,’’ in Proc. 3rd Int. Conf. Cryptography, Secur. Privacy.
New York, NY, USA: Association for Computing Machinery, Jan. 2019,
pp. 168–173, doi: 10.1145/3309074.3309078.

[87] V. Beltran and E. Bertin, ‘‘Unified communications as a service and
WebRTC: An identity-centric perspective,’’ Comput. Commun., vol. 68,
pp. 73–82, Sep. 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0140366415002492

[88] A. Costa, E. Sciacca, F. Vitello, U. Becciani, P. Massimino, S. Riggi,
and D. Sanchez, ‘‘An integrated workspace for the Cherenkov
telescope array,’’ Future Gener. Comput. Syst., vol. 94, pp. 811–819,
May 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17309585

[89] R. Kumar and R. Goyal, ‘‘On cloud security requirements,
threats, vulnerabilities and countermeasures: A survey,’’
Comput. Sci. Rev., vol. 33, pp. 1–48, Aug. 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S1574013718302065

[90] H. Nacer, N. Djebari, H. Slimani, and D. Aissani, ‘‘A distributed
authentication model for composite web services,’’ Comput.
Secur., vol. 70, pp. 144–178, Sep. 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404817301153

[91] A. Majeed and A. Al-Yasiri, ‘‘Consolidate the identity management
systems to identify the effective actor based on the actor relationship for
the Internet of Things,’’ in Proc. 3rd Int. Congr. Inf. Commun. Technol.,
X.-S. Yang, S. Sherratt, N. Dey, and A. Joshi, Eds. Singapore: Springer,
2019, pp. 755–765.

[92] A. Ceccanti, E. Vianello, and F. Giacomini, ‘‘BeyondX.509: Token-based
authentication and authorization in practice,’’ in Proc. EPJ Web Conf.,
vol. 245, 2020, p. 03021, doi: 10.1051/epjconf/202024503021.

[93] P. Djerasimović, ‘‘Geographic dependency of identity-associated
data,’’ Automatika, vol. 59, nos. 3–4, pp. 340–348, Oct. 2018, doi:
10.1080/00051144.2018.1530827.

[94] D. Haddon and P. Bennett, The Emergence of Post COVID-19 Zero Trust
Security Architectures. Cham, Switzerland: Springer, 2021, pp. 335–355,
doi: 10.1007/978-3-030-72120-6_13.

[95] A. A. Mahdi, ‘‘Offensive threats,’’ J. Univ. Babylon, vol. 25, no. 2,
pp. 364–370, 2017.

[96] P. Marillonnet, M. Ates, M. Laurent, and N. Kaaniche, ‘‘An effi-
cient user-centric consent management design for multiservices plat-
forms,’’ Secur. Commun. Netw., vol. 2021, pp. 1–19, Jun. 2021, doi:
10.1155/2021/5512075.

[97] H. Sato, ‘‘Authorization by documents,’’ J. Inf. Process., vol. 25,
pp. 766–774, Jun. 2017.

[98] R. Shere, S. Shrivastava, and R. Pateriya, ‘‘CloudSim framework for fed-
eration of identity management in cloud computing,’’ Int. J. Comput. Eng.
Res. Trends, vol. 4, no. 6, pp. 269–276, Jun. 2017. [Online]. Available:
http://ijcert.org/ems/ijcert_papers/V4I6011.pdf

[99] H. Truong, J. L. Hernández-Ramos, J. A. Martinez, J. B. Bernabe,
W. Li, A. M. Frutos, and A. Skarmeta, ‘‘Enabling decentralized and
auditable access control for IoT through blockchain and smart con-
tracts,’’ Secur. Commun. Netw., vol. 2022, pp. 1–14, Jun. 2022, doi:
10.1155/2022/1828747.

[100] A. Ashish, A. Millar, T. Mkrtchyan, P. Fuhrmann, G. Behrmann,
M. Sahakyan, O. S. Adeyemi, J. Starek, D. Litvintsev, and A. Rossi,
‘‘DCache, towards federated identities & anonymized delegation,’’ J.
Phys., Conf. Ser., vol. 898, no. 10, Oct. 2017, Art. no. 102009, doi:
10.1088/1742-6596/898/10/102009.

[101] T. Q. Thanh, S. Covaci, B. Ertl, and P. Zampognano, ‘‘An integrated
access control service enabler for cloud applications,’’ in Future Network
Systems and Security, R. Doss, S. Piramuthu, and W. Zhou, Eds. Cham,
Switzerland: Springer, 2015, pp. 101–112.

[102] B. Ertl, U. Stevanovic, A. Hayrapetyan, B. Wegh, and M. Hardt, ‘‘Iden-
tity harmonization for federated HPC, grid and cloud services,’’ in
Proc. Int. Conf. High Perform. Comput. Simul. (HPCS), Jul. 2016,
pp. 621–627.

[103] S. Nakandala, H. Gunasinghe, S. Marru, and M. Pierce, ‘‘Apache airavata
security manager: Authentication and authorization implementations for
a multi-tenant escience framework,’’ in Proc. IEEE 12th Int. Conf. e-
Science (e-Science), Oct. 2016, pp. 287–292.

[104] J. B. Bernabé, J. L. Hernandez-Ramos, and A. F. Gómez-Skarmeta,
‘‘Holistic privacy-preserving identity management system for the Internet
of Things,’’Mobile Inf. Syst., vol. 2017, Aug. 2017, Art. no. 6384186, doi:
10.1155/2017/6384186.

[105] A. Ceccanti, M. Hardt, B. Wegh, A. Millar, M. Caberletti, E. Vianello,
and S. Licehammer, ‘‘The INDIGO-datacloud authentication and autho-
rization infrastructure,’’ J. Phys., Conf. Ser., vol. 898, Oct. 2017,
Art. no. 102016, doi: 10.1088/1742-6596/898/10/102016.

VOLUME 11, 2023 86893

http://dx.doi.org/10.1145/3309074.3309078
http://dx.doi.org/10.1051/epjconf/202024503021
http://dx.doi.org/10.1080/00051144.2018.1530827
http://dx.doi.org/10.1007/978-3-030-72120-6_13
http://dx.doi.org/10.1155/2021/5512075
http://dx.doi.org/10.1155/2022/1828747
http://dx.doi.org/10.1088/1742-6596/898/10/102009
http://dx.doi.org/10.1155/2017/6384186
http://dx.doi.org/10.1088/1742-6596/898/10/102016


T. Baumer et al.: SCIM: Survey and Enhancement With RBAC

[106] J. Innerbichler, S. Gonul, V. Damjanovic-Behrendt, B. Mandler, and
F. Strohmeier, ‘‘NIMBLE collaborative platform: Microservice architec-
tural approach to federated IoT,’’ in Proc. Global Internet Things Summit
(GIoTS), Jun. 2017, pp. 1–6.

[107] J. L. Hernández-Ramos, S. Pérez, C. Hennebert, J. B. Bernabé, B. Denis,
A. Macabies, and A. F. Skarmeta, ‘‘Protecting personal data in IoT
platform scenarios through encryption-based selective disclosure,’’ Com-
put. Commun., vol. 130, pp. 20–37, Oct. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366418302123

[108] A. A. Corici, Y. Shashi, M. Corici, R. Shrestha, and D. Guzman,
‘‘Enabling dynamic IoT security domains: Cellular core network and
device management meet authentication framework,’’ inProc. Global IoT
Summit (GIoTS), Jun. 2019, pp. 1–6.

[109] B. de Matos Patrocínio dos Santos, B. Dzogovic, B. Feng, V. T. Do,
N. Jacot, and T. Van Do, ‘‘Towards achieving a secure authentication
mechanism for IoT devices in 5G networks,’’ in Proc. 6th IEEE Int.
Conf. Cyber Secur. Cloud Comput. (CSCloud)/ 5th IEEE Int. Conf. Edge
Comput. Scalable Cloud (EdgeCom), Jun. 2019, pp. 130–135.

[110] B. Santos, B. Dzogovic, B. Feng, V. T. Do, N. Jacot, and T. Van Do,
‘‘Cross-federation identities for IoT devices in cellular networks,’’ in
Proc. 24th IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2019, pp. 1745–1751.

[111] N. Selvanathan, D. Jayakody, and V. Damjanovic-Behrendt, ‘‘Feder-
ated identity management and interoperability for heterogeneous cloud
platform ecosystems,’’ in Proc. 14th Int. Conf. Availability, Rel. Secur.
New York, NY, USA: Association for Computing Machinery, Aug. 2019,
doi: 10.1145/3339252.3341492.

[112] A. A. Corici, M. Corici, E. Troudt, B. Riemer, and T. Magedanz, ‘‘Frame-
work for trustful handover of M2M devices between security domains,’’
in Proc. 23rd Conf. Innov. Clouds, Internet Netw. Workshops (ICIN),
Feb. 2020, pp. 102–109.

[113] P. Leach, M. Mealling, and R. Salz, A Universally Unique IDentifier
(UUID) URN Namespace, document RFC 4122, Jul. 2005. [Online].
Available: https://www.rfc-editor.org/info/rfc4122

THOMAS BAUMER received the M.Sc. degree
(Hons.) from the Honors Elite Program, University
of Regensburg, in 2020. He is currently pursuing
the Ph.D. degree with the University of Regens-
burg, with a research focus on maintaining an
IT security level in a changing environment by
grasping synergies from research and practice.
He studied management information systems with
a specialization in IT security with the University
of Regensburg and KU Leuven. Since 2020, he has

been a Software Engineer with Nexis GmbH, a spin-off from the Chair of
Information Systems I (Prof. Dr. Günther Pernul, University of Regensburg)
specializing in identity and access governance and analytics.

MATHIS MÜLLER received the bachelor’s degree
in management information systems from the Uni-
versity of Regensburg, where he is currently pursu-
ing the M.Sc. degree in management information
systems. After graduating from his master’s stud-
ies, he will start the Ph.D. degree with the Chair
of Information Systems I, University of Regens-
burg. Before the master’s studies, he had already
completed an apprenticeship as an IT Specialist
with Vodafone Germany. He is with Nexis GmbH,

a spin-off from the Chair of Information Systems I (Prof. Dr. Pernul, Univer-
sity of Regensburg). His main focus in the study is on IT security. He was
able to substantiate this focus not only from a research point of view but
through several internships also from a practical point of view.

GÜNTHER PERNUL (Member, IEEE) received
the Diploma and Ph.D. degrees (Hons.) in busi-
ness informatics from the University of Vienna,
Austria. He is currently a Professor with the
Department of Information Systems, University
of Regensburg, Germany. Previously, he held
positions with the University of Duisburg–Essen,
Germany; the University of Vienna; the University
of Florida, Gainesville, FL, USA; and the College
of Computing, Georgia Institute of Technology,

Atlanta, GA, USA. His research interests include data and information
security aspects, data protection and privacy, data analytics, and advanced
data-centric applications.

86894 VOLUME 11, 2023

http://dx.doi.org/10.1145/3339252.3341492

