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Introduction

1 Introduction

1.1 Motivation and Background

Real estate is considered the largest asset class worldwide (Kok et al. 2017), constituting
a substantial portion of both private and institutional net worth. This makes it not only a
primary driver of economic activity but also one of the most significant stores of economic
wealth. Implicit in this measurement of wealth is the market value of real estate, which
can be defined as the most probable price to be expected in an arm’s length transaction
between informed and willing buyers and sellers in a competitive and open market (Schulz

et al., 2014; Real Estate Lending and Appraisals, 2022).

Numerous stakeholders in the market rely on property valuations for various purposes such
as accounting, monitoring, reporting, governance, and informed decision making. Banks
and lenders require market values for loan underwriting, mortgage origination, equity
withdrawal, refinancing, risk management, and accounting. Corporates and institutional
investors depend on property appraisals for buy, hold, and sell decisions, financial
reporting, performance measurement and monitoring, financing, loan covenant
compliance, and portfolio transactions. Insurance companies further use market values to
determine insurance premiums, assess risks, and evaluate claims and resale values in the
event of a loss. For non-publicly traded real estate vehicles, market values are vital for
reporting to investors, managing portfolio strategies, and executing transactions. In the
private sector, homeowners or potential buyers have an interest to know the fair market
value of a property when making the decision to relocate. In the public sector, government
agencies utilize real estate market values to assess property taxes, determine land use
policies, and inform planning decisions related to public infrastructure and services (Schulz
et al.,, 2014; RICS, 2021). Although the purposes of property valuation are not limited to
these examples, they illustrate the scale and significance of the real estate appraisal

industry and stress the societal and economic importance of reliable market values.

In this context, accuracy, consistency, and timeliness of property appraisals have long been
the primary concern of both industry and academia. This is a cost-intensive and time-
consuming aim that requires considerable effort to achieve, as the value of real estate is
determined by numerous factors, and the relationships between these factors are obscured
and can vary significantly across markets and sectors. The high heterogeneity of properties
and information asymmetries between market participants further complicates the
identification of the relevant value drivers and their relationships. This issue is compounded
by the fact that real estate is a bulky and relatively illiquid asset class with high transaction

1
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costs, resulting in infrequent trades and a scarcity of comparable sales data. Consequently,
market mechanisms and pricing processes mirror incomplete information and noisy signals
which may further be distorted by the subjectivity of buyers and sellers and the individual
circumstances of a transaction, as pointed out by Quan and Quigley (1991) and Dunse and
Jones (1998). This does not only emphasize the complexity of property valuations but
implies that there is arguably more than one opinion of market value resulting from varying

judgements of price determinants.

As technological progress and increasing data availability have fostered digitization and
automation during the past decades, computer-aided methods offer novel solutions to
solve notorious problems. Particularly most recent advancements in the field of artificial
intelligence (Al) and machine learning (ML) are catalyzing transformations across many
sectors and innovate business processes that were once reserved for human intelligence.
Prominent applications include prediction, object and image detection, voice recognition,
and natural language processing (NLP). In healthcare, Al-powered systems are utilized for
tasks such as diagnostics, drug discovery, and personalized medicine; in transportation, Al
is employed for self-driving cars, traffic prediction, and logistics optimization; and in
finance, it is utilized for fraud detection, risk management, and portfolio optimization. The
latest generation of NLP models GPT-4 can generate human-like text in response to a given
query and is likely to change many text-heavy business operations such as media and
communication, marketing, e-commerce, human resource management, and customer
service at a rapid pace. These are just a few examples that demonstrate how fast Al is
evolving and becoming an increasingly vital tool for businesses and organizations to gain

a competitive edge by creating added value, increasing efficiency, and reducing costs.

The increasing pressure of disruption spurred by Al applications is also becoming evident
in the real estate appraisal industry, given the market’'s demand for more accurate, prompt,
and cost-efficient property valuations. Automated valuation models (AVMs) that are based
on hedonic models have been in use for a long time, providing ad-hoc property price
valuations and allowing the analysis of price determinants (see Malpezzi, 2002; Mayer et
al., 2019). However, the recent integration of Al and ML algorithms is currently marking
an “inflection point” in their practicality (RICS, 2021), as these tools have achieved an
unprecedented level of accuracy and precision. Yet, the widespread adoption of ML
methods in the real estate valuation industry is impeded by certain constraints and

limitations that need to be addressed before they can be implemented at scale.

First, these techniques have been criticized for ignoring “[...] the laws of economics [...]

as well as the limitations econometrics imposes on the models, leaving these systems free
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to make inferences from a combination of data”, as stated by Rico-Juan and Taltavull de
La Paz (2021). This refers to the capacity of ML algorithms to eliminate noise from the data
in an attempt to maximize predictive performance by detecting relationships between any
given input and output, irrespective of whether these relationships are reasonable (Kok et
al., 2017). Moreover, specific idiosyncrasies inherent in data structures can introduce
biases into the models that may be replicated unnoticed (Lorenz et al., 2022).
Incorporating economic and econometric theory is thus crucial to ensure the validity and

reliability of data-driven predictions and inference.

Second, data insufficiency in direct real estate markets imposes limitations on the use of
ML algorithms for automated valuation purposes, since these techniques rely on large
amounts of training data to produce robust results. As transaction data is scarce, appraisal
values and asking prices from online multiple listing systems (MLS) are the predominant
data sources used in this domain. Such data may incorporate inherent biases as shown by
Cannon and Cole (2011) and may not reflect market dynamics adequately (Downie and
Robson, 2007). This compromises the interpretability and reliability of the produced results
and entails the risk that AVMs may foster self-fulfilling prophecies and start leading the
market rather than reflecting it (RICS, 2021). In addition, ML applications concentrate
mostly on the housing sector, where data is less heterogeneous and easily accessible. In
contrast, the nature of commercial real estate is much more unique and structured data is
not yet readily available due to market intransparency. As of to date, little is known about
the performance and reliability of ML-based AVMs using transaction data, neither in the

housing sector, let alone in the commercial sector.

Third, machine learning algorithms are characterized as opaque “black boxes” due to their
complexity and consequential inability to facilitate an inherent interpretability and
explainability of the produced results (McCluskey et al., 2013; Mullainathan and Spiess,
2017; Adadi and Berrada, 2018). This impedes their acceptance and obstructs trust and
confidence in the methods because the algorithms’ decision making cannot be justified.
Ensuring fairness, consistency, and integrity of market valuations over time is crucial for
many applications such as lending, reporting, or taxation (Valier, 2020). To achieve this,
both regulators and market participants require transparency and comprehensibility of the

underlying methods.

Therefore, the primary objective of this dissertation is to contribute to the existing literature
on econometric and data-driven real estate valuation models and demonstrate how price
formation processes in direct real estate markets can be analyzed through the lens of

machine learning algorithms. In this context, the thesis sets out to raise awareness of the
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primary criticisms of ML methods for property valuation and shed light on their implications
from an empirical perspective. In response, methodological frameworks are proposed to
alleviate these concerns and translate the output of algorithmic approaches to property
valuation into more meaningful and interpretable results. This discussion together with the
proposed frameworks are intended to guide the development of data-driven methods in

this domain and contribute to their practicality and marketability.
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1.2 Course of Analysis and Research Questions

This section presents the course of analysis of the cumulative thesis and summarizes the
objectives and research questions investigated in each article. The three papers are
centered around the research field of property valuation and the identification of pricing
mechanisms in direct real estate markets, discussing distinct aspects of the broader topic.
More specifically, they set out to address the three major roadblocks to the practical use
of ML methods in property valuation and pricing analysis outlined in section 1.1:

econometric limitations, data scarcity, as well as model interpretability and explainability.

Paper 1: Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic

Models: A Spatial Cross-Validation Approach

Paper 1 addresses econometric limitations and peculiarities of data structures that require
consideration in the application of ML algorithms to direct real estate markets. More
precisely, the objective of this article is to raise awareness of the implications of spatial
dependence in housing markets for the workflow of non-parametric regression methods.
The paper investigates the role of spatial autocorrelation on the model selection and model
assessment of algorithmic hedonic models and proposes a technique named spatial cross-
validation to mitigate spatial dependence structures in housing data. The central research

guestions can thus be stated as such:

» How does spatial autocorrelation generally impact algorithmic approaches for the

estimation of property prices and rents?

= To what extent does spatial autocorrelation introduce bias in the model selection

and model assessment of algorithmic hedonic models?

= How does spatial autocorrelation affect the predictive performance of algorithmic

hedonic models in comparison to linear models?

» |s spatial cross-validation an adequate technique to account for spatial

autocorrelation in house prices and rents?

Paper 2: Boosting the Accuracy of Commercial Real Estate Appraisals: An

Interpretable Machine Learning Approach

Paper 2 addresses the issue of data scarcity and bridges the gap from the application of
ML in the housing market to commercial real estate markets using transaction data. First,
this article examines the accuracy and bias of market valuations in the U.S. commercial

real estate market. In light of the discussed data constraints, the objective of this paper is

5
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to explore the potential of ML techniques to provide a superior understanding of
commercial real estate market dynamics compared to state-of-the-art valuation methods.
In addition, the study sheds light on the determinants that are not adequately reflected in

current appraisal practices. The research questions are as follows:
* How accurate and reliable are traditional commercial real estate appraisals?

» Do residuals of traditional appraisals exhibit structured variation that machine

learning algorithms can exploit and further explain?

= |f structural bias is existent in appraisals, which determinants of commercial real

estate prices are not adequately reflected in current appraisal practices?

= Can machine learning algorithms close this gap and provide more dependable

valuations in commercial real estate markets?

Paper 3: Increasing the Transparency of Pricing Dynamics in the U.S. Commercial

Real Estate Market with Interpretable Machine Learning Algorithms

Lastly, Paper 3 addresses the concern over model interpretability and explainability in the
context of data-driven valuation and pricing methods. The primary objective of this study
is to demonstrate how ML can add to a deeper and more nuanced understanding of
pricing mechanisms in institutional investment markets and how this understanding can
guide the decision making of institutional investors. To achieve this, the paper proposes a
comprehensive framework for the practical use of AVMs in commercial real estate that
balances both precision and comprehensibility. More specifically, a model-agnostic
interpretation technique named Shapley Additive Explanations (SHAP) is employed to
investigate the value drivers of commercial real estate and their functional relationships

with the market value. The central research questions can be summarized as follows:

* How can machine learning be effectively applied for commercial property valuation
considering economic theory and the issues of data scarcity, market

intransparency, and property heterogeneity in the sector?

= Can model-agnostic interpretation methods, in particular SHAP, alleviate the

imbalance between the accuracy and interpretability of machine learning models?

= Do the inner workings of the applied machine learning algorithms follow an

economic rationale?

» How can the proposed methodological framework add to the understanding and

transparency of price formation processes in commercial real estate markets?
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1.3 Co-Authors, Submissions and Conference Presentations

This section provides an overview of co-authors, journal submissions, publication status,

conference presentations, as well as awards and funding for each of the three papers.

Paper 1: Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic

Models: A Spatial Cross-Validation Approach

Authors:

Juergen Deppner, PD Dr. Marcelo Cajias

Submission Details:
Journal:  The Journal of Real Estate Finance and Economics

Status:  Accepted (06/17/2022) and published online ahead of print (07/13/2022)

Conference Presentations:

This paper was presented at:
= the 27" Annual Conference of the European Real Estate Society (ERES) online
(2021)
= the 38" Annual Conference of the American Real Estate Society (ARES) in Bonita
Springs, USA (2022)
» the 28™ Annual Conference of the European Real Estate Society (ERES) in Milan,
Italy (2022)
» the 4" Artificial Intelligence and Finance Workshop of the Center of Finance (CoF)

at the University of Regensburg in Regensburg, Germany (2022)

Awards and Fundings:
This paper was awarded the “Manuscript Prize” in the category “Spatial Analytics/GIS
Applications” and the “Doctoral Program Manuscript Prize” at the 38" Annual Conference

of the American Real Estate Society

Paper 2: Boosting the Accuracy of Commercial Real Estate Appraisals: An

Interpretable Machine Learning Approach

Authors:
Juergen Deppner, Benedict von Ahlefeldt-Dehn, Prof. Eli Beracha (PhD), Prof. Dr. Wolfgang

Schaefers

Submission Details:
Journal:  The Journal of Real Estate Finance and Economics

Status:  Accepted (02/16/2023) and published online ahead of print (03/22/2023)
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Conference Presentations:

This paper was presented at:
* the 38™ Annual Conference of the American Real Estate Society (ARES) in Bonita
Springs, USA (2022)
» the 28™ Annual Conference of the European Real Estate Society (ERES) in Milan,
Italy (2022)
= the Doctoral Seminar of the Center of Finance (CoF) at the University of
Regensburg in Regensburg, Germany (2022)
* the 39™ Annual Conference of the American Real Estate Society (ARES) in San

Antonio, USA (2023)

Awards and Fundings:
This paper was awarded the “ALTUS Group Best Paper Award” at the 28™ Annual

Conference of the European Real Estate Society

Paper 3: Increasing the Transparency of Pricing Dynamics in the U.S. Commercial

Real Estate Market with Interpretable Machine Learning Algorithms

Authors:
Benedict von Ahlefeldt-Dehn, Juergen Deppner, Prof. Eli Beracha (PhD), Prof. Dr. Wolfgang

Schaefers

Submission Details:
Journal:  The Journal of Portfolio Management

Status:  Accepted (06/05/2023) and forthcoming in the 2023 Special Real Estate Issue

Conference Presentations:

This paper was presented at:
= the 2023 Doctoral Seminar of the Center of Finance (CoF) at the University of
Regensburg in Regensburg, Germany (2023)
» the 2023 Real Estate Research Institute (RERI) Conference in Chicago, USA (2023)

Awards and Fundings:
This paper was funded with a research grant by the Real Estate Research Institute (RERI),

a part of the Pension Real Estate Association (PREA)
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2 Accounting for Spatial Autocorrelation in
Algorithm-Driven Hedonic Models: A Spatial
Cross-Validation Approach

2.1 Abstract

Data-driven machine learning algorithms have initiated a paradigm shift in hedonic house
price and rent modeling through their ability to capture highly complex and non-
monotonic relationships. Their superior accuracy compared to parametric model
alternatives has been demonstrated repeatedly in the literature. However, the statistical
independence of the data implicitly assumed by resampling-based error estimates is
unlikely to hold in a real estate context as price-formation processes in property markets
are inherently spatial, which leads to spatial dependence structures in the data. When
performing conventional cross-validation techniques for model selection and model
assessment, spatial dependence between training and test data may lead to undetected
overfitting and overoptimistic perception of predictive power. This study sheds light on the
bias in cross-validation errors of tree-based algorithms induced by spatial autocorrelation
and proposes a bias-reduced spatial cross-validation strategy. The findings confirm that
error estimates from non-spatial resampling methods are overly optimistic, whereas
spatially conscious techniques are more dependable and can increase generalizability. As
accurate and unbiased error estimates are crucial to automated valuation methods, our
results prove helpful for applications including, but not limited to, mass appraisal, credit

risk management, portfolio allocation and investment decision making.

Keywords: Hedonic modeling, Machine learning, Spatial autocorrelation, Spatial

cross-validation, Mass appraisal, Automated valuation models

Acknowledgments: The authors especially thank PATRIZIA AG for contributing to this
study. All statements of opinions are those of the authors and do not necessarily reflect

the opinion of PATRIZIA AG or its associated companies.
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2.2 Introduction

Real estate markets feature a spatial dimension that is pivotal to price and rent
determination processes. The inherent spatial dependence in the economic value of assets
cannot be ignored in hedonic models, as this would lead to spurious and biased results
(Anselin, 1988; Can and Megbolugbe, 1997; Basu and Thibodeau, 1998). Guidance on
how to account for spatial dependence in linear regression models is vast and remains the

subject of many contributions to the hedonic and spatial econometric literature.

Moving from parametric hedonic regression techniques to the universe of non-parametric
statistical learning methods, the literature has brought forth a growing body of evidence
that machine learning algorithms can provide superior predictive performance for complex
spatial regression problems, including various applications to house price estimation (e.g.,
Kok et al., 2017; Mullainathan and Spiess, 2017; Mayer et al., 2019; Hong et al., 2020;
Pace and Hayunga, 2020; Bogin and Shui, 2020). To a great extent, the gains in
explanatory power can be attributed to the flexibility of such models. This provides
machine learning algorithms with the capability to exploit anisotropic and non-monotonic
structures across space, which is of particular benefit when the spatial domain under
investigation is a global one, as shown by Pace and Hayunga (2020). While this
characteristic is a blessing when reproducing sample data, it can be a curse when
predicting out-of-sample data since high flexibility is linked to overfitting, as demonstrated
by Mullainathan and Spiess (2017) and Bogin and Shui (2020). Any kind of dependence
structures in the data can exacerbate this problem, if not controlled for (Roberts et al.,
2017). Thus, all the more surprising, little attention has been paid to the implications of
spatial dependence in house prices and rents for the statistical validity of cross-validation
(CV) errors, which are widely used to select and assess non-parametric models. For CV
errors to be valid estimates of predictive performance, observations must be statistically
independent of each other (Bishop, 1995; Brenning, 2005; Varma and Simon, 2006). This
assumption is unlikely to hold in a real estate context (Bourassa et al., 2010) because “[...]
error variance is not equal to zero but may be a function of spatial proximity among

houses”, as explained by Can and Megbolugbe (1997).

Two main problems arise when applying random resampling techniques to spatially
dependent data. First, spatially structured variation in the residuals may be absorbed by
non-causal regressors, consequently leading to the selection of overly complex and
overfitted models that do not perform well with unseen data. Second, spatial
autocorrelation between training and test observations provides the predictor with

information that is assumed to be unavailable during model training, thus inflating
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estimates of predictive accuracy. In turn, this may hide the first problem as CV errors
appear to be legitimate (Brenning, 2012; Roberts et al., 2017). Using such models to
predict unseen data can result in substantially lower accuracy than is approximated by CV.
When furthermore applied in combination with model-agnostic interpretation techniques
to draw inference on the relation between housing value and property features, spurious

regression can result in the identification of meaningless relationships.

In response, researchers from geoscientific modeling fields have developed spatially
conscious resampling methods to address these problems. However, the adequacy of such
techniques for hedonic house price models cannot be blindly assumed since prediction
goals may differ. To the best of our knowledge, no research has thus far accounted for
spatial dependence in algorithmic hedonic models by applying spatial resampling
techniques. We believe that a sound understanding of the implications arising from spatial
dependence is of great importance when applying machine learning algorithms to hedonic
regression problems. Hence, this study aims to investigate the role of spatial
autocorrelation on resampling-based model selection and model assessment of
algorithmic hedonic methods, thereby evaluating the efficacy of spatial CV in contrast to
non-spatial (i.e., random) CV. By doing so, we demonstrate the pitfalls of resampling-based
performance evaluation and intend to raise awareness of the importance of spatially

conscious resampling techniques in hedonic house price modeling.

Based on a cross-section of apartment rents in Frankfurt, Germany, we train and evaluate
tree-based algorithms using spatial as well as non-spatial CV. We subsequently forecast
out-of-sample data to assess the bias in error estimates associated with spatial
autocorrelation. The results are put into a broader perspective by benchmarking our
machine learning algorithms against a non-spatial ordinary least squares (OLS) and a spatial
autoregressive framework, allowing for a relative comparison of bias and predictive
performance. Lastly, we analyze the residual spatial autocorrelation to detect signs of

overfitting to spatial structures in the data.

To make informed decisions, the precise estimation of house prices and rents is imperative
to parties in the real estate industry, such as investors, developers, lenders or regulators.
Since CV is commonly used as an “out-of-sample experiment” (Mullainathan and Spiess,
2017) to assess the predictive accuracy of algorithmic hedonic models, a systematic bias
in error estimates may have adverse effects on the allocation of both debt and equity (Kok
et al., 2017). The results of this study prove helpful in increasing the reliability and

generalizability of CV errors, thus containing valuable implications for mass appraisal
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practices, credit risk management, portfolio allocation as well as investment decision

making.

This paper is structured as follows: the section on "Hedonic Modeling of Spatially
Structured House Prices and Rents" elaborates the problems of spatially structured data
and their implications for hedonic analyses in the most commonly applied parametric as
well as non-parametric regression frameworks, thereby providing an overview of the
empirical literature on algorithmic hedonic approaches with a focus on applied resampling
strategies. In the "Data and Methodology" section, the dataset is presented, followed by
a description of the study design and the methodological approach. The empirical results
are presented and discussed in the "Results" section and the final "Conclusion" section

summarizes the findings of this study.

2.3 Hedonic Modeling of Spatially Structured House Prices and
Rents

In his 1970 study on urban growth in the Detroit region, W. R. Tobler invoked his well-
cited first law of geography, stating that the outcomes of nearby events correlate stronger
than those of more distant events. Transferred to a housing context, this implies that the
economic value of housing at any given location in geographic space depends, amongst
other aspects, on the value of housing in neighboring locations. This deduction is well
underpinned by spatial econometric as well as land economic theory for several reasons,
such as spatial spillover effects (i.e., adjacency effects) and neighborhood effects (Can,
1992). Moreover, spatial clustering of house prices and rents may originate from a high
correlation in the utility of the underlying houses derived from their structural
characteristics (Basu and Thibodeau, 1998) and their fixed location in geographic space
(Can and Megbolugbe, 1997; Osland, 2010), both of which determine the economic value

of housing.

This leads to the conclusion that space is a fundamental factor that drives price formation
processes in housing markets, subsequently resulting in two critical characteristics of
housing market data: First, spatial autocorrelation, which is spatial dependence in price
and rent determination processes; second, spatial heterogeneity, defined as the systematic
variation in the behavior of price and rent formation processes across space (Anselin, 1988;
Can and Megbolugbe, 1997). As stated by Osland (2010), one can assume that “[...] a
mixture of these effects will be present in all housing market cross-section data”. This
poses important methodological implications on both parametric and non-parametric

hedonic regression frameworks, which will be discussed below.
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2.3.1 Parametric Hedonic Models

The economic theory of hedonic pricing in a housing context dates to Rosen (1974), who
implemented the derivation of implicit prices of hedonic characteristics using a least
squares estimator. Due to their efficiency and ease of interpretability, least squares
estimators have established themselves as the standard econometric approach to hedonic
house price modeling. Likewise, the concept of hedonic price modeling has been
successfully transferred and applied to the determination of apartment rents (e.g., Sirmans

et al., 1989; Sirmans and Benjamin, 1991; Allen et al., 1995).

Implications of Spatial Dependence

Independent and identically distributed errors with a zero mean and constant variance are
crucial Gauss-Markov assumptions to produce consistent and efficient estimates in a least
squares context (Wooldridge, 2016). Spatial autocorrelation and spatial heterogeneity in
the residuals violate these assumptions, resulting in unreliable confidence intervals and
biased t-statistics, which lead to spurious statistical inference (Anselin, 1988; Basu and
Thibodeau, 1998). Depending on the underlying spatial processes causing spatial effects,
even point estimates might be biased and lead to erroneous results (Pace and LeSage,
2010).

Moreover, endogeneity is likely to occur due to omitted variable bias, measurement errors
in the independent variables or feedback loops induced by adjacency effects. The
explanatory power of spatial effects not explicitly reflected in the model specification is
picked up by the error term or by covarying explanatory variables instead, leading to biased
estimates and non-normality of the errors (LeSage and Pace, 2009). Even if spatial controls
are included in the regression equation, the assumption of linearity in the functional form
requires their relationship with the dependent variable to be constant across space.
However, in the real world, such relationships are seldom linear and monotonic nor
isotropic since slopes are likely to vary by distance and direction (Osland, 2010). Non-
stationarity across space will persist as spatial heterogeneity in the residuals, violating the

crucial OLS assumption of homogeneity in the errors.

It can be concluded that both theory, as well as empirical research, suggests that the
Gauss-Markov assumptions underlying traditional OLS estimators cannot be naturally
presumed in a real estate context (Can and Megbolugbe, 1997; Bourassa et al., 2010;
Cajias and Ertl, 2018), resulting in biased and inconsistent least squares estimates as well

as spurious inference.
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Accounting for Spatial Dependence

Spatial autoregressive models are the typical statistical instruments to consider spatial
effects in parametric frameworks. They control for spatial dependence by explicitly
incorporating the underlying correlation structures as spatial lags in their functional form
(see Cliff and Ord, 1973; Anselin, 1988; Cressie, 1993; Manski, 1993; Kelejian and Prucha,
1998; LeSage and Pace, 2009). As the necessity to account for spatial effects in linear
models is well understood, spatial autoregressive, as well as other spatial modeling
alternatives, are widely applied and discussed in a real estate context (e.g., Pace and Gilley,
1997; Case et al., 2004; Militino et al., 2004; Valente et al., 2005; Bourassa et al., 2007,
2010; Osland, 2010; Fuss and Koller, 2016; Cajias and Ertl, 2018). Although such methods
have been demonstrated to reduce residual spatial autocorrelation if applied carefully, the
models continue to be linear, limiting their ability to capture highly complex and multi-

dimensional relationships in the formation of house prices and apartment rents.

2.3.2 Non-Parametric Hedonic Models and Cross-Validation

As the real world can be more accurately described by logarithmic, exponential or step
functions, the increasing availability of data together with technical progress in
computational power has triggered the consideration of more flexible non-parametric
machine learning methods for the problem of hedonic house price and rent modeling. In
principle, such data-driven approaches do not rely on any a priori assumptions about the
distributions of the errors, nor the functional form f(x) that explains i house prices y;
using j regressors x;;, but approximate the shape of f(x) by fitting a spline to the data
(James et al., 2013). However, it is to mention that the lack of a pre-defined additive
functional form comes at the cost of inferential insights, as the prediction rules of the
algorithms are opaque and cannot be directly interpreted due to their complexity.
Moreover, their high flexibility makes them prone to overfitting, which is why modern
statistical tools rely on resampling methods for model selection (i.e., selecting an
appropriate level of regularization to approximate the shape of f(x) during
hyperparameter tuning) and for model assessment (i.e., assessing the test error rate of the

selected model f(x) to evaluate its performance).

Resampling is typically performed using cross-validation, during which observations are
randomly partitioned into mutually exclusive training and test subsets, whereby the
predictor is fitted on the training data and evaluated on the respective test data (Stone,
1974; Snee, 1977). This concept can be thought of as creating “[...] an out-of-sample

experiment inside the original sample”, as described by Mullainathan and Spiess (2017).
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In its most simple form, cross-validation randomly divides the data into two subsets, that
is a training set and a validation (i.e., holdout) set based on a given percentage split.
Subsequently, the model is fitted on the training sample, which is then used to predict the
responses from the validation sample. This holdout strategy has been widely applied in the
algorithmic hedonic house price literature. Worzala et al. (1995), Din et al. (2001), Peterson
and Flanagan (2009) as well as Chiarazzo et al. (2014) use this technique for model
assessment of artificial neural networks (ANNs), and Yoo et al. (2012), Kok et al. (2017) as
well as Pérez-Rave et al. (2019) to validate different tree-based algorithms such as
regression trees (RT), random forest regression (RFR), gradient tree boosting (GTB) and
extreme gradient boosting (XGB). Lam et al. (2009), Antipov and Pokryshevskaya (2012),
McCluskey et al. (2013) and Bogin and Shui (2020) benchmark different machine learning
approaches, including support vector regression (SVR), shrinkage estimators (e.g., LASSO)
as well as neural networks and tree-based methods using error estimates from a holdout
sample. The applied split ratios vary between 60 to 80% for the training data and 40 to
20% for the test data, respectively. Such holdout strategies are computationally
inexpensive and easy to implement. However, the test error rate may be heavily dependent
on which observations are held out for validation and used for training, resulting in a

potential bias in the error estimates (James et al., 2013).

To address this form of bias, k-fold cross-validation has been introduced to the statistical
community (Lachenbruch and Mickey, 1968; Efron, 1983). During k-fold cross-validation,
the data is partitioned into k mutually exclusive subsets of equal size. Subsequently, each
of the k folds is once used as a test set and the remaining k — 1 folds are used to calibrate
the model, consequently yielding k estimates of prediction error that are then averaged.
This strategy attempts to generate more robust and reliable approximations of out-of-
sample predictive performance. In a real estate hedonic context, k-fold cross-validation
has gained in popularity during the past decade. Park and Bae (2015), Gu and Xu (2017),
Ceh et al. (2018), Chin et al. (2020) as well as Pace and Hayunga (2020) apply k-fold cross-
validation to evaluate the performance of tree-based methods. Applications to a broader
spectrum of machine learning algorithms, including ANNs, SVR, k-nearest neighbors,
shrinkage estimators as well as ensembles of regression trees using boosting and bagging
techniques, can be found in Zurada et al. (2011), Mullainathan and Spiess (2017),
Baldominos et al. (2018), Mayer et al. (2019), Hu et al. (2019), Ho et al. (2021), Cajias et
al. (2021), as well as Rico-Juan and Taltavull de La Paz (2021). In all those studies, the
applied number of folds is either five or ten, except for Mullainathan and Spiess (2017),

who set k equal to eight.
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Machine learning algorithms excel parametric models in the identification of complex non-
linear relationships between the value of real estate and property characteristics, but they
are also criticized for their black box character as their inner workings are opaque and
comprehensibility as well as direct interpretation of the models are impeded by their
complexity. Although recent developments allow insights into these opaque black boxes
via model-agnostic interpretation techniques (see Rico-Juan and Taltavull de La Paz, 2021;
Lorenz et al., 2022), this constitutes a limitation for the use of machine learning in both,
academic research and practice. As stated by Rico-Juan and Taltavull de La Paz (2021),
data-driven models might not be consistent with theoretical expectations and may thus
have no economic meaning when identified relationships are spurious because “[...] the
laws of economics (and the explanatory models that show causality) as well as the
limitations econometrics imposes on the models [are ignored], leaving these systems free
to make inferences from a combination of data”. Spatial autocorrelation is one such
econometric constraint that is typically ignored in machine learning applications to house

price data.

Implications of Spatial Dependence

Although cross-validation proves to be decisive in reducing bias in error estimates, any kind
of resampling technique is subject to one central assumption. By conducting an out-of-
sample experiment that draws random observations from the data that are then used to
approximate prediction errors, CV attempts to simulate unseen data. For cross-validation
to yield unbiased prediction error estimates, statistical independence between training and
test observations is required (Bishop, 1995; Brenning, 2005; Varma and Simon, 2006).
Consequently, the meaningfulness of the resulting CV errors as a robustness test for out-
of-sample predictive performance is highly reduced in spatial modeling fields where the
independence assumption is violated (Le Rest et al., 2014). More specifically, spatial
dependence structures in the data cause two main problems in the workflow of machine

learning algorithms.

First, regressors are often covarying with unexplained spatial dependence structures in the
residuals. During hyperparameter tuning (i.e., model selection), the model may overfit
these spatial structures to non-causal, but covarying regressors in the attempt to optimize
model performance, thereby reducing or completely absorbing unexplained structured
covariation from the residuals. This may lead to a selection of overly complex models that
can reproduce the training data but may not generalize well to unseen data (Can and
Megbolugbe, 1997; Le Rest et al., 2014; Roberts et al., 2017; Meyer et al., 2019). Second,

when the sample from the validation fold is drawn from the same dependence structure
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as the training folds due to spatial proximity, the predictor may obtain information from
the spatially autocorrelated test data that is assumed to be unavailable to the model during
training. This unauthorized glimpse on the test data results in approximations of predictive
power (i.e., model assessment) that may be overly optimistic and thus not representative
for unseen data with different spatial structures (Picard and Cook, 1984; Hastie et al.,
2009; Le Rest et al., 2014; Trachsel and Telford, 2016; Roberts et al., 2017; Schratz et al.,
2019; Lovelace et al., 2019).

In a real estate context, such cases of poor out-of-sample predictive performance were,
for instance, reported by Mayer et al. (2019) for their random forest. Bogin and Shui (2020)
report significant overfitting using a random forest with a deviation of 22.1 percentage
points in the R? compared to in-sample cross-validation errors. Mullainathan and Spiess
(2017) demonstrated a similar bias in cross-validation errors for both bagging and boosting
with 39.6 percentage points discrepancy in the R? of the random forest and 8.7 percentage

points in the boosting trees.

This is problematic because, on the one hand, accuracy implied by cross-validation may
lead to unjustified confidence in a model’s predictive power that cannot be guaranteed
when making predictions with unseen data. On the other hand, identified relationships
may be spurious and can result in fallacious inferential conclusions when model-agnostic

interpretation techniques are applied to interpret the pricing processes of the algorithms.

Accounting for Spatial Dependence

One possible approach to account for spatial dependence structures in the selection and
assessment of non-parametric models is by using resampling techniques that split the data
strategically by considering spatial proximity among observations rather than randomly.
Spatial partitioning can be designed in many ways. However, the general concept is to
increase independence between training and test data by clustering or blocking the
individual folds across space or by removing training data within a specific distance band
of each test point, such that performance is evaluated on more distant events that tend to
be less correlated to the training sample (Tobler, 1970; Trachsel and Telford, 2016; Roberts
et al,, 2017). In a spatial context, such approaches have been introduced to the statistical
community under many different terms. These include “spatial cross-validation” (Brenning,
2005, 2012), “spatial leave-one-out cross-validation” (Le Rest et al., 2014), “h-block cross-
validation” (Trachsel and Telford, 2016), “spatial k-fold cross-validation” (Pohjankukka et

"moou

al., 2017), “spatial buffering”, “spatial blocking”, “environmental blocking” (Valavi et al.,
2018) and “leave-one-cluster-out cross-validation” (Meyer et al., 2019). Following the

methodology and terminology of Brenning (2012), we will continue naming this concept
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spatial cross-validation in the remainder of this study. The conceptual difference between
random and spatial partitioning of folds during cross-validation is visualized in Figure 2.1

based on an example with three folds.

Figure 2.1: Partitioning of Folds
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Notes: This figure depicts the conceptual difference between random partitioning and spatial partitioning of folds using k-
means clustering during cross-validation.

Since “[...] the adequacy of non-spatial partitioning techniques for spatial datasets can be
questioned” as stated by Schratz et al. (2019), spatial cross-validation methods are widely
used in scientific fields such as climatology (Trachsel and Telford, 2016), ecology (Bahn and
McGill, 2007; Schratz et al., 2019), remote sensing (Brenning, 2012; Meyer et al., 2019)
and geosciences (Brenning, 2005). The need for spatial resampling has been stressed
repeatedly in those fields, yet, its suitability and efficacy for real estate data has not been
investigated thus far. Findings from other disciplines cannot be easily transferred to a real
estate context since the objectives and circumstances under which predictive models are

designed may differ. Despite compelling arguments to use spatial cross-validation when
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modeling data in geographic space, there is good reason to be cautious when applying

such methods to a real estate hedonic context.

Spatial partitioning may hide entire ranges or functional relationships of regressors during
training, thereby introducing extrapolation to a model that is supposed to interpolate and
consequently resulting in overly pessimistic estimates of prediction errors during model
assessment (Snee, 1977; Roberts et al. 2017). However, the model can also be underfitted
when the selected level of regularization is too high which may result in poor predictions
(Kok et al., 2017). This dichotomy is particularly pronounced in real estate related
regression tasks where high levels of spatial dependence tend to exist between
observations but the prediction goal is usually dominated by the interpolation of existing
properties within a delineated market. In cases where both the degree of spatial
autocorrelation in the data and the extrapolation range are low, conventional cross-
validation techniques that split the data randomly may be appropriate for performance
optimization and evaluation. However, in situations where a model predicts outside the
spatial domain of the training data and correlation structures between the residuals and
non-causal regressors differ from the structures that were overfitted to non-causal
regressors, random partitioning may yield unsatisfactory results (Bahn and McGill, 2007

Roberts et al., 2017).

As shown by Grobel and Thomschke (2018) and Hong et al. (2020), prediction accuracy
also depends on the spatial density of the sample locations. This is in line with Bahn and
McGill (2007), who state that “[...] the sparser the existing coverage of sample locations
for the dependent variable, the worse the spatial interpolation will perform”. In other
words, non-spatial CV may perform well in samples with a high spatial density but not so
well if the distribution of observations across space is sparse, as this typically increases
extrapolation. Furthermore, this implies that bias in prediction accuracy may be a function
of distance from the city center since observations usually become sparser farther outside
where housing structures are less dense and markets tend to be less active (Grobel and
Thomschke, 2018).

Although many studies on hedonic machine learning approaches exist, spatial cross-
validation has so far not been applied to a real estate context, let alone to algorithmic
hedonic house price and rent estimation problems. Reported cross-validation errors are
almost consistently lower than errors of alternative parametric methods, such as least
squares or spatial autoregressive frameworks. In particular tree-based ensemble learners,
such as bagging (Breiman, 2001) and boosting (Friedman, 2001), have been shown to be

most promising for house price estimation compared to alternative machine learning

21



Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial
Cross-Validation Approach

methods (see Antipov and Pokryshevskaya, 2012; Kok et al.,, 2017; Mullainathan and
Spiess, 2017; Baldominos et al., 2018; Mayer et al., 2019, Hu et al., 2019; Ho et al., 2021).
Pace and Hayunga (2020) find evidence that the gains in explanatory power achieved by
boosting and bagging algorithms are mainly attributable to the exploitation of spatial
structures in the data. Consistent with the previously outlined logic presented by Bahn and
McGill (2007) as well as Grobel and Thomschke (2018), they find the error variance of
bagging to increase the farther the model extrapolates to a global domain which could
indicate that the model is overfitted to the spatial structures of more frequently observed
houses in central districts. This notion is in line with Bogin and Shui (2020) who found a
significant degree of overfitting in their random forest measured by a holdout strategy

using appraisal records of homes in rural areas.

The extensive scientific debate about spatial dependence in real estate together with the
concurrent, steadily growing corpus of literature on machine learning applications for
house price and rent predictions motivates us to assess the sign and magnitude of potential
bias associated with spatial dependence when using conventional CV methods for model
selection and model assessment. Moreover, we investigate whether spatial cross-validation
is an appropriate technique to account for spatial autocorrelation in apartment rents when
using predictive machine learning algorithms, although the primary intention is to

interpolate within a delineated spatial polygon.

2.4 Data and Methodology

We first train and cross-validate tree-based algorithms using a cross-section of apartment
rents, thereby applying random as well as spatial partitioning during the cross-validation
procedure for both, model selection and model assessment. With everything else
remaining equal, there should be no substantial difference in the selected hyperparameters
nor the cross-validation errors between spatial and non-spatial models if the assumption
of spatial randomness was fulfilled. In a second step, we calculate the out-of-sample
predictive performance of the models by estimating the data from a holdout sample one
quarter ahead. We then analyze the difference between in-sample cross-validation errors
and the true out-of-sample prediction errors to assess the bias associated with the
respective partitioning techniques. A non-spatial linear model, as well as spatial
autoregressive models, are used as points of reference. Third, we evaluate the deviation in
bias when excluding spatial control variables from the model specification. Based on the
hypotheses elaborated in section two, we would expect the bias to increase in non-spatial
modeling frameworks when spatial information is absent due to overfitting unexplained

spatial dependence structures in the data to covarying but non-causal regressors. This will

22



Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial
Cross-Validation Approach

be more closely evaluated in a fourth step by analyzing the residual spatial autocorrelation

in all model alternatives.

2.4.1 Data Description

Our sample consists of a pooled cross-section of apartment rents from the Frankfurt
residential market spanning the period from January 2019 through March 2020. The data
were sourced from German multiple listing systems (MLS) and are confined to apartment
rentals excluding single, semi-detached and terraced houses, student apartments, senior
living accommodations, furnished co-living spaces and shortstay apartments. Data
cleaning was performed to account for duplicates, missing values and erroneous data
points. The final sample comprises a total of 9,256 asking rents observed on a monthly
scale, including the properties’ most important structural attributes and equipment as well
as their coordinates. A typical way to reflect differences in demand for locations in
parametric models is to include district fixed effects by means of location dummies such
as pre-defined submarkets (e.g., Bourassa et al., 2003, 2007) or attractiveness zones (e.g.,
Doszyn, 2020) that are specified by real estate experts. In non-parametric machine learning
models, the inclusion of spatial coordinates (i.e., latitude and longitude) facilitates the
identification of relevant submarkets based on spatial patterns in the data without the
need to provide specific location zones. This allows a model to construct more local sub
models for the identified areas (see Pace and Hayunga, 2020). The use of continuous
coordinates is more efficient because it is computationally less expensive than a matrix of
location dummies while at the same time, coordinates have a finer resolution, so the
models are not forced into using pre-defined spatial polygons that limit their flexibility.
Also, having too many dummy variables or too few observations per location zone may
favor overfitting the models. Since our data only contain postcode areas that have very
limited economic meaning, we refrain from the inclusion of location zones and include the
observations’ coordinates by means of latitude and longitude. Moreover, distances to
nearby amenities were added using an Open Street Maps API to control for locational and

neighborhood effects.

The building age was calculated relative to the year 2018, and values with a construction
date before 1900 were trimmed to avoid disproportionate leverage of those observations.
The entry date was transformed into a decimal number in years, and logarithmic
transformations were used for the apartment rent and living area. The summary statistics
of the features univariate distributions is presented in Table 2.1. The number of entries in
each month is distributed uniformly throughout the sample period without a significant

time trend in apartment rents, as shown in Table 2.2.
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Table 2.1: Summary Statistics

Variable N Mean Median SD Min Max
Continuous
Rent per month [Euro] 9,256 1,088.77 940.00 647.97 190.00 10,000.00
Living Area [sqm] 9,256 75.20 70.00 35.07 10.00 440.00
Age [years] 9,256 44.59 46.00 39.34 -2.00 118.00
Entry date [years] 9,256 0.65 0.67 0.35 0.08 1.25
Latitude 9,256 50.12 50.12 0.02 50.08 50.21
Longitude 9,256 8.66 8.66 0.05 8.49 8.78
Discrete
Rooms 9,256 2.55 2.50 1.00 1.00 8.50
Floor 9,256 2.54 2.00 2.82 -0.50 39.00
Dummies [1=yes, 0=no]
Bathtub 9,256 0.53 1.00 0.50 0.00 1.00
Refurbished 9,256 0.22 0.00 0.41 0.00 1.00
Built-in kitchen 9,256 0.71 1.00 0.45 0.00 1.00
Balcony 9,256 0.65 1.00 0.48 0.00 1.00
Parking 9,256 0.48 0.00 0.50 0.00 1.00
Elevator 9,256 0.50 1.00 0.50 0.00 1.00
Terrace 9,256 0.13 0.00 0.34 0.00 1.00
Distances
NUTS centroid [km] 9,256 3.65 3.68 1.87 0.01 10.84
Bakery [km] 9,256 0.39 0.26 0.41 0.00 1.61
Bar [km] 9,256 0.73 0.52 0.64 0.00 2.54
Biergarten [km] 9,256 1.16 0.97 0.77 0.02 3.10
Café [km] 9,256 0.36 0.25 0.33 0.00 1.31
School [km] 9,256 0.31 0.28 0.17 0.02 0.75
Supermarket [km] 9,256 0.26 0.22 0.17 0.00 0.75
Bus station [km] 9,256 3.13 2.77 1.54 0.09 7.56

Notes: This table reports the univariate distributions of 9,256 asking rents of residential apartments listed between January
2019 and March 2020 in Frankfurt (Germany), and their observed characteristics after data cleaning. The entry date is
represented as a decimal number in years, the building age is calculated relative to the year 2018 and is trimmed for buildings
constructed before the year 1900, distances are calculated as the Euclidean distance to the apartment in kilometers, binary
variables indicate whether a characteristic is included in the apartment (1) or not (0). N: number of observations, SD: standard
deviation, Min: minimum value, Max: maximum value.

Table 2.2: Listings per Month

N o e e e
Jan-19 632.00 1,129.57 14.57
Feb-19 586.00 1,116.31 14.34
Mar-19 677.00 1,081.28 14.20
Apr-19 576.00 1,118.35 14.39
May-19 685.00 1,135.66 14.54
Jun-19 602.00 1,084.38 14.41
Jul-19 746.00 1,083.23 14.22
Aug-19 755.00 1,014.57 14.20
Sep-19 602.00 1,177.08 14.37
Oct-19 633.00 1,088.54 14.26
Nov-19 613.00 1,005.09 13.85
Dec-19 392.00 1,021.86 14.48
Jan-20 600.00 1,101.10 14.82
Feb-20 611.00 1,096.45 14.75
Mar-20 546.00 1,068.98 14.73

Notes: This table reports the occurrence of apartment listings throughout the sample period from January 2019 to March
2020 on a monthly scale with the respective mean absolute rent in Euro per month and the mean rent in Euro per square
meter per month. N: number of observations.
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Figure 2.2: Spatial Sample Distribution

Panel A: Spatial Distribution of Apartment Rents
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Panel B: Mean Apartment Rents on ZIP-code Level
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Notes: The upper map depicts the absolute monthly asking rent in Euro per month of each individual listing in our sample
of 9,256 listings between January 2019 and March 2020 in Frankfurt. The bottom map shows the respective mean asking
rents in Euro per month aggregated on a ZIP-code level.
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The spatial distribution of the data in Figure 2.2 Panel A does not seem to exhibit any
distinct location bias, albeit the spatial density of observations increases toward the city
center. As described by Grébel and Thomschke (2018), this is not surprising as building
structures are denser in central areas, which are moreover predominantly occupied by
younger and more mobile tenants, resulting in higher fluctuation rates and subsequently
more frequent rental offers compared to the outskirts. The average distances to the 1, 5,
10, 30, and 100-nearest neighbors amount to 0.02, 0.04, 0.06, 0.13 and 0.30 km
respectively. Aggregated on a ZIP-code level, Figure 2.2 Panel B indicates that more

expensive apartments tend to be clustered in the city center and along the north-south

Figure 2.3: Spatial Clustering of Apartment Rents

Panel A: Semi-variogram of the log Rent
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Notes: The empirical Matérn semi-variogram model suggest a spatial autocorrelation range of 0.58 kilometers, that is the
distance up to which spatial autocorrelation persists in the data. The histogram presents the distribution of neighbors within
the spatial autocorrelation range.

26



Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial
Cross-Validation Approach

axis. More formally, spatial clustering of apartment rents is confirmed by the semi-variance
of the log rent as depicted in Figure 2.3 Panel A. The empirical Matérn semi-variogram
model suggests a spatial autocorrelation range of 0.58 km, which is the distance up to
which spatial dependence between observations persists in the data (Cressie, 1993). In
other words, an apartment in our sample has on average 168 neighbors that do not satisfy
the assumption of independence. This number increases with spatial density and vice versa.
The distribution of neighbors within the spatial autocorrelation range is presented in Figure

2.3 Panel B.

2.4.2 Methodological Approach
Parametric Models

We use an ordinary least squares (OLS) estimator as a non-spatial parametric benchmark
model. Written in matrix notation, the multiple linear regression model follows a log-linear

functional form of the relationship stated in equation (2.1)
Y=a+XB+¢ 2.1)

with Y being the response vector with n observations of log-transformed apartment rents,
a being a fixed intercept, X representing the regressor matrix with n rows and p columns,
B being the corresponding n x 1 coefficient vector and & being the random error term

vector of length n.

Our modeling approach is based on the principle to avoid overfitting and bias in error
estimates to isolate the bias originating from spatial dependence. We thus follow Harrell
(2015) and Mayer et al. (2019) and exclude only regressors with almost no predictive
power from the hedonic equation but, at the same time, refrain from the inclusion of
interaction or quadratic terms to keep the models simple. We test the null hypothesis of
spatial randomness in the OLS residuals by calculating the Moran'’s / statistic (Cliff and Ord,

1973) and account for potential spatial dependence using the spatial econometric toolbox.

Opposed to the spatial cross-validation technique (where spatially autocorrelated
information is explicitly excluded from the model), the mechanism of spatial econometric
models works the exact opposite way by explicitly mapping spatial interactions among
neighboring observations as spatial lag terms in the functional form of the relationship.
The spatial weight matrix W formally defines the spatial relationship between
observations. To identify the source of the underlying processes causing spatial effects in
the data, a model specification search is conducted following the general to specific
approach advocated by LeSage and Pace (2009) and LeSage (2014) starting from the
Spatial Durbin Model (SDM) in equation (2.2)
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Y=a+pWY +XB+WX60+¢ (2.2)

as well as the Spatial Durbin Error Model (SDEM) in equations (2.3) and (2.4).
Y=a+XB+WX0+u (2.3)
u=AWu+e¢ (2.4)

Subsequently, we perform likelihood-ratio tests to challenge the relevance of the
autoregressive coefficients p, 8, and 1 from the SDM and the SDEM against more specific
spatial model alternatives that include only one out of the two interactions respectively
(Anselin, 1988; Anselin et al., 1996). As stated by LeSage and Pace (2009), this top-down
approach has the advantage that the SDM still produces unbiased coefficient estimates

even when the true data-generating process is a more specific model.

Non-Parametric Models

Among a wide variety of algorithmic hedonic methods evaluated in comparative studies,
ensembles of regression trees using bagging and boosting techniques have consistently
shown the most promising results concerning predictive power (see Antipov and
Pokryshevskaya, 2012; Kok et al., 2017; Baldominos et al., 2018; Mayer et al., 2019; Hu
etal., 2019; Ho et al., 2021; Bogin and Shui, 2020).

The idea behind a regression tree is to stratify the feature space into a set of M disjoint
intervals Ry, Ry, ..., Ry, €ach of which is assigned a constant ¢, as predicted value, being
referred to as the leaf or terminal node of the tree (Breiman et al., 1984). Intervals are
created by recursive binary partitioning at the nodes t,, choosing a split-point s of a
particular feature x; in the process of solving a minimization problem that can be expressed

as in equation (2.5)

min{min " Gr-c)?+min > (- c)’ 2.5)
1,s C1 Co
x; €R1(J,5) Xi € Ry(j,5)

under the conditions stated in equations (2.6) and (2.7)
R, (,s) = {X|X; < s} (2.6)
R,(,s) = {XIX; > s} 2.7)

following the notation of Hastie et al. (2009). Each observation is subsequently passed
down the tree branches by making binary decisions at each split following the feature

values until the data point has reached its final leaf. As single regression trees tend to
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overfit easily and do not perform well on unseen data, we focus on ensembles of
regression trees, more specifically the bagging-based random forest regression introduced
by Breiman (2001) and the extreme gradient boosting algorithm developed by Chen and
Guestrin (2016) which is an extension of the gradient tree boosting method dating to

Friedman (2001).

The bagging algorithm grows a forest of many individual but slightly different trees b using
bootstrapped training samples. Instead of pruning the trees, which is typically done to
counteract the overfitting of individual regression trees, the trees in a forest are grown
deeply, resulting in more terminal nodes with fewer observations being allocated to the
same constant c,, as the predicted value. The minimum node size min,,q4., Which is the
smallest possible number of observations in each leaf, determines the depth of the tree.
Deep trees can lead to overfitting, thus reacting very sensitively to changes in the training
sample, whereas shallow trees may not pick up information from the data adequately,
hence producing models which are underfitted (Kok et al., 2017). Consequently, the
relatively deep trees in a forest have a high variance but low bias. The variance is then
removed by averaging over the results of the b bootstrap trees to increase robustness
(Breiman, 1996; James et al., 2013). Unlike conventional forests, a random forest considers
only a randomly selected subset of m predictors from all available predictors p at each
split, thereby introducing an additional source of variation into the model to counteract

overfitting.

Boosting works somewhat similar, but unlike bagging, where trees are grown
simultaneously and independently, boosted trees are grown sequentially using the
residuals’ information content from preceding trees to continue learning. At each
sequence, a new regression tree is fitted to the residuals of the previous tree and is added
into the fitted function, thereby iteratively updating the model (James et al., 2013). Model
fit is improved with each iteration until the number of boosting rounds is exhausted. To
avoid overfitting boosted trees, a shrinkage parameter n, also referred to as learning rate,
is used to slow down the learning process by making the error corrections in each round
more conservative. Like the random forest, the extreme gradient boosting algorithm is a
more regularized alternative of the gradient boosting technique in the sense that it

attempts to decorrelate the individual trees by using only a randomly subsampled portion

%of features in each round to increase the robustness of the boosting trees.

Generally speaking, model fit tends to increase with higher flexibility, such as a lower
Mming,,qe, Or @ lower . However, this is tied to the risk of overfitting the training data,

subsequently resulting in poor generalizability of the models. Thus, a level of regularization
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has to be chosen to limit the flexibility of a model. As manual choice of these
hyperparameter combinations is arbitrary and unlikely to yield satisfactory results, model
selection is typically conducted using data-driven optimization by iteratively testing
different hyperparameter combinations within a pre-defined search space and evaluating
their performance based on cross-validation errors in the attempt to minimize a given loss
function. Eventually, the set of hyperparameters yielding the lowest cross-validation error
rate (that is, the best performance in the out-of-sample experiment) is chosen as the
optimal hyperparameter combination (James et al., 2013). This approach is called grid
search optimization and is a widely used algorithm for automated hyperparameter tuning.
For computational reasons, we restrict our search space to the three main tuning
parameters of each model described above. For the random forest, these are the number
of bootstrap trees b, the number of available features m at each split and the minimum

node size min, 4. in each terminal node. Likewise, the number of boosting rounds

Nyounds, the column subsample % and the shrinkage parameter 1 are equally important to

the boosting algorithm. As optimization criterion, we adopt the minimization of squared

residuals from the least squares estimator.

2.4.3 Performance Evaluation

We measure predictive performance (i.e., the true error rate) of our models by predicting
out-of-sample data from the first quarter of 2020, which is referred to as the “holdout
sample” in the remainder of this study. The remaining “in-sample” data of 2019 is used to
calibrate the models and approximate their out-of-sample predictive performance (i.e., the
expected error rate). The resampling strategies used for the steps of model selection as

well as model assessment are outlined below.

In the parametric world, model selection is performed manually by specifying a functional
form of the estimator a priori rather than following a data-driven approach to maximize
fit. Moreover, the flexibility of such models is usually restrained by linearity assumptions
that make overfitting less of a problem. Thus, prediction errors of linear models are
typically estimated by simple re-substitution of the data used for model fitting (Efron, 1983;
Simon, 2007). We follow this standard statistical approach to approximate the predictive
accuracy of the parametric benchmark models and calculate the true error rate by

regressing the holdout data using the estimated parameters.

As elaborated earlier, data-driven approaches require resampling methods such as cross-
validation to calculate fair estimates of predictive performance. To isolate the effects of

spatial dependence and allow for a fair comparison between random and spatial
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partitioning, the resampling strategy is designed with the principle to eliminate any bias
resulting from sources other than spatial autocorrelation that could potentially distort our
results. Thus, we perform k-fold cross-validation for model selection and model
assessment to avoid that error estimates are biased by chance due to a specific training or

validation set.

It is worth mentioning that the choice of k is associated with a bias-variance trade-off,
that is, the bias becoming smaller with each additional fold whereas the variance of the
error estimates increases at the same time due to a higher correlation of the training sets
(Hastie et al., 2009). As suggested by theory and empirical research, a k of five or ten
proves to be a reasonable compromise in this tradeoff, whereby a value of five is only
recommended for very large datasets to ensure enough observations for model training
(Breiman and Spector, 1992; Kohavi, 1995; Hastie et al., 2009; James et al., 2013). With
the primary aim to isolate the effect of spatial autocorrelation, we accept a higher error
variance in favor of lowering bias and therefore set k to ten, as was also done by Park and
Bae (2015), Chin et al. (2020), Hu et al. (2019) as well as Rico-Juan and Taltavull de La Paz
(2021).

Further following the logic that information flow between training and test observations
leads to biased cross-validation errors, we apply a nested resampling strategy that strictly
separates data used for model selection from data used for model assessment. This is
important since assessing model performance on the same data used for model selection
does not yield an unbiased estimate of prediction error but more of a re-substitution error
(Varma and Simon, 2006). Thus, nested resampling consists of two resampling loops, that
is the inner resampling loop for hyperparameter tuning (i.e., model selection), which is
wrapped within the outer resampling loop for performance evaluation (i.e., model
assessment) such that model selection and model assessment is repeatedly performed on
mutually exclusive subsamples, thereby simulating independent data throughout the entire

workflow of the algorithm (Simon, 2007).

Following this strategy, the resulting cross-validation errors should, at least in theory,
provide an unbiased picture of out-of-sample predictive performance to be expected from
the models if the assumption of spatial randomness was fulfilled, thus enabling us to

disentangle the effects of spatial dependence by using spatial CV.

To implement spatial partitioning in the cross-validation procedure, we apply a k-means
clustering algorithm as proposed by Brenning (2012). The k-means clustering method is a
universal and commonly used technique to detect a specified number of k clusters among

n observations based on a given set of features. In a first step, the algorithm randomly
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chooses k centroids in the multi-dimensional feature space. The initial clustering is
achieved by allocating each of n observation to the “nearest” centroid in the feature space
(i.e., by minimizing the Euclidean distance from the feature values to the centroid). The
positions of the cluster centroids are then adjusted by taking the mean feature values of
each grouping and the clustering is repeated. The clusters are iteratively adjusted until the
allocation doesn’t change anymore, so the within-cluster sum of squares is minimized

(James et al., 2013).

The goal of spatial cross-validation is to maximize the distance between training and test
folds. In this context, a cluster refers to a fold whereby k denotes the number of equally
sized folds to be partitioned and the point coordinates (latitude and longitude) represent
the features. The feature space is a two-dimensional scatterplot as depicted in Figure 2.1.
The algorithm arranges the folds in a way that minimizes the average distances within each
fold and maximizes the average distance between the folds. This effectively decreases

spatial autocorrelation between training and test data.

Using spatial and non-spatial partitioning, our nested resampling strategy provides four

alternatives to calculate cross-validation errors which are:

(1) non-spatial model selection + non-spatial model assessment,
(2) non-spatial model selection + spatial model assessment,
(3) spatial model selection + spatial model assessment, and

(4) spatial model selection + non-spatial model assessment.

The first alternative is the conventional “off-the-shelf” approach typically applied in the
hedonic literature, although nesting is not common yet. In contrast, the third option
describes a pure spatial approach that should reduce spatial dependence between training
and test observations to a minimum but may result in too pessimistic expectations of
predictive performance. As the prediction goal in a housing context is not a pure spatial
one, the second and fourth alternative could potentially provide a fair compromise in the
trade-off between reduction of spatial autocorrelation and the extrapolation range

introduced into the model.

To arrive at a final model that can predict the holdout data, all steps of the algorithm need
to be executed once again, whereby the cross-validation in the outer loop is replaced by
the holdout sample such that the full information from 2019 is used to train a model that
predicts apartment rents from the first quarter of 2020 (Varma and Simon, 2006; Simon,
2007). Analogous to the nested resampling for the estimation of prediction error, optimal
hyperparameters for the final prediction model are once again derived using spatial and

non-spatial grid search CV resulting in two alternatives for the true error rate.
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Based on the true error rates, we benchmark predictive performance and determine the
bias in error estimates. Model accuracy and precision are assessed using the coefficient of
determination (R?), the mean absolute error (MAE), the mean absolute percentage error
(MAPE), and the root mean squared error (RMSE). To measure variation in the residuals,
we calculate the interquartile range (IQR), the coefficient of dispersion (COD) and an error
bucket that includes the proportion of predictions within 10% of the true value (PE10).
The mean percentage error (MPE) is used as a measure of biasedness. Subsequently, the
asymptotic properties of all estimators are evaluated by comparing the distributions of
error estimates resulting from the respective resampling strategies to the distributions of

the true prediction errors.

2.5 Results

This section first presents the final model specifications and evaluates differences in
hyperparameters selected by the automated grid search CV. Second, the results of the
error-based model assessment are reported to determine the bias for the respective
resampling strategies, and the asymptotic behavior of the estimators is discussed. Third,
we investigate the residual spatial autocorrelation in each of the estimated models to draw
conclusions on whether differences in the selected levels of regularization and the related

model performance are linked to overfitting spatial structures in the data.

2.5.1 Model Selection

All variables listed in Table 2.1 were kept in the final model specification of the linear
model. Following the principle to avoid overfitting, only the squared term for the building
age and no interaction terms were additionally included. The resulting model specification
serves as a baseline for all subsequent model alternatives and is hereinafter referred to as
model specification “A”. We estimate an alternative model specification “B", which does
not consider locational and neighborhood characteristics in the regressor matrix, to see
how the results change in the absence of spatial controls. All remaining modeling decisions
for the linear models outlined below are based on specification A and were adopted for
specification B. If not stated otherwise, the presented results refer to specification A. The

respective regression outputs of the OLS estimator are shown in Appendix Table 2.6.

The Moran's / statistic of the OLS residuals rejects the null hypothesis of spatial randomness
in price formation processes at a close-to-zero level of significance. The likelihood-ratio
(LR) tests of a restriction of the SDM confirms the common factor hypothesis and implies
the presence of both endogenous as well as exogenous interaction effects, leading to the

acceptance of the SDM. The relevance of the SDEM was further investigated as an
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alternative spatial model. Again, the LR-tests reject a simplification of the SDEM with p-
values close to zero. We subsequently consider both the SDM as well as the SDEM as
spatially conscious linear model alternatives. As spatial density of observations tapers
toward the outskirts, we follow Pace et al. (2000) for the specification of W and choose a
k-nearest neighbors (k-nn) matrix where each observation has a fixed number of k
neighbors. After evaluating different values for k between 10 and 100, we eventually set
the number of neighbors to 30, as this yields fair error estimates without diluting spatial
effects in the lag terms. Overall, results remain robust for different choices of k as well as

for distance-based matrices with different boundaries.

The optimal hyperparameters selected by the grid search CV after 100 evaluations are
shown in Table 2.3. For the random forest, there are no structural differences in the
number of trees b nor the number of features m considered at each split, although spatial
tuning seems to favor slightly higher values of m. Notable deviations can be observed in
the minimum node size min,, 4. that determines the depth and, thus, the complexity of
the individual trees in the forest. The non-spatial grid search CV consistently prefers a
min,,q. between one and two, which is significantly lower compared to the spatial model
that has on average a minimum node size of five. A min,,4. 0Of one provides the trees
with the flexibility to have virtually infinite vertical growth, allowing them to remove all
noise from the data (Kok et al., 2017). Or as expressed by Mullainathan and Spiess (2017),
a tree which grows one leaf for each observation in the data “[...] will have perfect fit, but
of course this is really perfect overfit”, consequently yielding unsatisfactory predictions for

unseen data.

A similar pattern can also be observed for the XGB. Again, there are no remarkable

differences in the size of the column subsample %. However, the spatial instantiation of

the resample call in the inner loop requires on average only 405 boosting rounds versus
593 boosting rounds for the non-spatial CV. Although the rate n at which the boosting
algorithm learns at each round is more conservative in the nonspatial model, a higher
number of n,,,nas iNdicates excessive error corrections that may result in a model that
overfits the residuals. The selection of less complex models compared to the non-spatial
tuning persists for model specification B, although the higher complexity of the non-spatial
random forest is now even more distinct. These findings corroborate our hypotheses
derived from studies in other fields such as Le Rest et al. (2014), Roberts et al. (2017) as
well as Meyer et al. (2019), who state that non-spatial partitioning during resampling is
associated with the choice of overly complex models if the data exhibits spatial

dependence.
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Table 2.3: Optimal Hyperparameters selected by 10-fold Cross-Validation

Fold b b b b m m m m MiNnode MiNnode MiNnode MiNnode

(M @ ®3) ) M @ ®3) (€ M @ ®3) )

Panel A1: Random Forest including Spatial Controls

1 650 500 400 400 9 9 12 14 2 2 8 7
2 300 350 550 250 9 9 10 10 1 1 5 8
3 300 500 200 500 9 9 10 10 1 1 6 6
4 300 600 500 450 7 9 9 10 2 1 2 1
5 500 450 300 650 7 7 10 10 1 2 6 5
6 350 500 450 600 9 9 9 12 2 2 7 6
7 600 300 500 500 9 7 12 9 1 1 1 7
8 650 650 650 550 7 9 9 10 1 1 3 7
9 550 650 600 400 9 9 10 9 1 3 4 6
10 550 500 650 500 9 10 9 10 2 1 2 3
Panel B1: Random Forest excluding Spatial Controls
1 550 650 200 500 5 6 5 6 2 1 9 10
2 250 250 450 550 5 5 5 6 1 1 9 8
3 600 450 500 250 5 5 6 5 2 1 10 8
4 500 550 200 600 5 5 5 6 2 1 8 10
5 600 650 500 500 5 5 5 6 1 2 10 8
6 600 350 450 300 5 5 6 6 2 2 9 9
7 450 650 350 350 5 6 6 6 1 1 9 9
8 400 200 450 600 5 5 6 5 1 1 10 9
9 450 450 600 600 5 5 5 6 1 1 8 10
10 450 550 500 300 6 6 6 6 2 1 9 9
Fold Nrounds ~ Nrounds ~ Nrounds ~ Nrounds m/p m/p m/p m/p n n n n
(1 ) (3) 4) (1) ) (3) (4) (1) ) (3) 4)
Panel A2: Extreme Gradient Boosting Trees including Spatial Controls
1 600 550 250 400 72% 58% 65% 45% 0.06 0.07 0.04 0.05
2 650 600 550 250 38% 78% 65% 58% 0.06 0.1 0.02 0.06
3 650 550 200 300 58% 85% 52% 85% 0.1 0.07 0.08 0.05
4 550 600 500 350 78% 78% 58% 85% 0.08 0.08 0.02 0.02
5 600 600 200 550 72% 72% 78% 45% 0.07 0.08 0.04 0.02
6 600 600 450 450 65% 45% 45% 45% 0.07 0.09 0.06 0.03
7 650 550 550 300 72% 78% 45% 65% 0.08 0.09 0.09 0.04
8 500 650 450 350 52% 52% 78% 38% 0.08 0.09 0.02 0.07
9 650 650 500 650 58% 65% 78% 52% 0.05 0.06 0.02 0.02
10 500 550 400 450 78% 45% 72% 65% 0.07 0.08 0.03 0.03
Panel B2: Extreme Gradient Boosting Trees excluding Spatial Controls
1 500 650 500 600 72% 72% 65% 78% 0.07 0.06 0.01 0.01
2 500 400 300 200 78% 78% 72% 85% 0.05 0.07 0.02 0.03
3 650 650 250 550 58% 65% 72% 85% 0.04 0.04 0.02 0.01
4 650 650 550 250 72% 65% 58% 85% 0.05 0.06 0.01 0.02
5 650 600 550 600 65% 58% 72% 72% 0.04 0.07 0.01 0.01
6 550 600 200 500 65% 65% 85% 65% 0.05 0.05 0.03 0.02
7 400 600 600 550 78% 58% 72% 65% 0.09 0.08 0.01 0.01
8 450 350 500 500 52% 58% 72% 78% 0.07 0.07 0.01 0.01
9 450 650 200 300 78% 65% 72% 85% 0.06 0.04 0.03 0.02
10 450 450 500 600 65% 45% 65% 65% 0.07 0.06 0.01 0.01

Notes: This table reports the optimal hyperparameters for each fold of the inner loop in the four alternatives of the nested
resampling procedure: (1) non-spatial tuning + non-spatial validation, (2) non-spatial tuning + spatial validation, (3) spatial
tuning + spatial validation, (4) spatial tuning + non-spatial validation selected by an automated grid search using 10-fold
cross-validation. b: number of bootstrap trees, m: number of features in the column subsample, minnode: Minimum node
size, Nrounas: NUMber of boosting rounds, m/p: portion of all available features p in the column subsample, n: learning rate
(eta).
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2.5.2 Model Assessment

The subsequent section discusses how the differences in model selection affect model
accuracy and whether increased complexity is indeed linked to overfitting and vice versa.
Therefore, we analyze the bias and the asymptotic properties of our estimated models by
comparing the true one quarter ahead prediction error to the expected error rates resulting
from the respective resampling strategies outlined in the “Performance Evaluation”
section. Bias is measured as the difference between the true error rate and the expected

error rate. The aggregated performance measures are presented in Table 2.4.

The re-substitution errors from the linear models are significantly lower than the true error
rates on all accounts, which, however, is not surprising (Efron, 1983). Whereas this
overoptimism is smallest for the SDM, the error estimates of the SDEM are even more
biased than those of the OLS model. This is mainly attributable to the relatively weaker
predictive performance of the SDEM, since re-substitution errors of both spatial models
are only marginally different from each other. Having said that, it is worth mentioning that
spatial autoregressive models are primarily designed for statistical inference rather than

out-of-sample predictions.

For the non-parametric models, one can see an improvement in all performance measures
compared to the linear models, which is not surprising and in line with the literature (see
Antipov and Pokryshevskaya, 2012; Yoo et al., 2012; Gu and Xu, 2017; Kok et al., 2017;
Mullainathan and Spiess, 2017; Ceh et al., 2018; Bogin and Shui, 2020; Pace and Hayunga,
2020). With respect to predictive power, the XGB yields the most accurate results, closely
followed by the RFR. Interestingly, performance measures do not seem noticeably affected
by the resampling strategy in the inner loop for hyperparameter tuning despite the higher
levels of regularization in the spatial models. Hence, predictive power is almost identical

no matter whether spatial dependence has been accounted for during tuning or not.

Distinctive differences between spatial and non-spatial cross-validation can be observed
for the outer resampling loop though. Compared to the true predictive performance, non-
spatial CV errors are overly optimistic for both the RFR as well as the XGB. In contrast,
spatial CV consistently yields overly pessimistic but more reliable approximations of
prediction errors compared to non-spatial CV errors. It is, moreover, noteworthy that non-
spatial hyperparameter tuning combined with spatial performance evaluation results in the
most pessimistic cross-validation errors for all measures except the MAE and the MAPE of
the random forest. The understatement of predictive accuracy is not surprising in this case
since the model was trained with the objective to interpolate and subsequently validated

by extrapolating to a new spatial domain, thus yielding non-optimal results.
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Figure 2.4: Distribution of the Absolute Percentage Error

Panel A: Models including Spatial Controls Panel B: Models excluding Spatial Controls
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Notes: The density plots present the estimated distribution of the absolute percentage error resulting from the respective
resampling strategies in comparison to the true out-of-sample distribution of the absolute percentage error from the holdout
sample. The line type represents the resampling strategy used in the inner loop for model selection (non-parametric models
only) and the line color represents the resampling strategy applied in the outer loop for model assessment. The true out-of-
sample distribution is represented in black. The shaded areas depict the interquartile range, that is the area between the first
quartile and the third quartile of the true absolute percentage error with the middle line representing the median.

The bias in non-spatial cross-validation errors is even more distinctive in Panel B of Table
2.4. In contrast, the spatially conscious cross-validation errors now closely resemble the
true prediction errors, thereby reducing bias to a minimum. As already anticipated, the
results indicate that over-optimism in non-spatial CV is likely to originate from spatial
structures being overfitted to covarying but non-causal regressors during model training.
This is particularly noticeable when locational and neighborhood controls are missing such
that the spatial information content in the residuals is picked up by other attributes that
are structured in space. Accounting for spatial dependence in the inner resampling loop
had once again only a minor impact on both model accuracy and bias. Noteworthy, the

non-parametric models are now outperformed by the SDM in terms of predictive accuracy,
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which drops only marginally compared to specification A. This demonstrates the high
robustness of the SDM, which is able to capture spatial effects through the spatial lag
terms even in a scenario where locational control variables are not available. As stated by
Doszyn (2020), machine learning methods require a very good data basis to take
advantage of their flexibility, whereas less complex models are more robust in situations
where extensive data is not available. The superiority of the SDM in the specification
without spatial control variables moreover corroborates the findings of Pace and Hayunga
(2020) who demonstrate that most of the improvement in accuracy achieved by machine
learning models over parametric spatial models results from exploiting spatial structures in

the data by creating spatially disaggregated models.

Figure 2.4 presents the asymptotic distribution of the absolute percentage error. The
density plots reveal a higher variance and a lower kurtosis for prediction errors estimated
by spatial CV opposed to the true error distribution. In comparison, nonspatial CV
underestimates prediction errors, particularly in the lower tails of the distribution where
errors are close to zero. For both the RFR and the XGB, non-spatial error estimates are
centered around values that are considerably lower than the true means whereas spatial
error estimates are more dispersed. This is affirmed by both the higher deviation of spatial
error estimates from the median true error represented by the coefficient of dispersion as
well as their larger spread illustrated by the interquartile range. These findings again
confirm our expectations derived from literature in other spatial modeling fields (see Le
Rest et al., 2014; Roberts et al., 2017; Schratz et al., 2019).

2.5.3 Residual Spatial Autocorrelation

Finally, we analyze the spatial autocorrelation found in the residuals of the models after
calculating the Moran's [ statistic to investigate whether overfitting is related to the
exploitation of spatial dependence structures in the data. Since the relative magnitude of
the Moran’s / is only meaningful for identical spatial weight matrices, we also calculate the
Z-scores as a standardized measure, which allows us to compare the spatial
autocorrelation of in-sample and out-of-sample residuals (Anselin, 1995). The results are

presented in Table 2.5.

The spatial linear models successfully reduce spatial autocorrelation in the in-sample
residuals, although there is still spatial information content left, which is consistent with
the findings of Pace and Hayunga (2020). The non-spatial cross-validation errors of the
random forest exhibit spatial autocorrelation of roughly the same magnitude as the spatial
linear models. Interestingly, spatially cross-validated errors show a significantly higher

degree of spatial autocorrelation that even exceeds the Z-score of the simple OLS model.
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Table 2.5: Residual Spatial Autocorrelation

Panel A: Models including Panel B: Models excluding

Spatial Controls Spatial Controls
Method Resampling Strategy Morans'/  Z-score p-value  Morans'/ Z-score p-value
oLs holdout 0.17 55.44 0.00 0.29 95.36 0.00
re-substitution 0.27 19.30 0.00 0.39 27.48 0.00
SDM holdout 0.03 10.17 0.00 0.03 10.23 0.00
re-substitution 0.16 11.60 0.00 0.17 11.76 0.00
SDEM holdout 0.03 10.75 0.00 0.04 13.58 0.00
re-substitution 0.25 17.89 0.00 0.34 23.59 0.00
RFR holdout (non-spatial tuning) 0.17 11.75 0.00 0.33 23.45 0.00
holdout (spatial tuning) 0.17 11.70 0.00 0.32 22.59 0.00
(1) non-spatial/non-spatial 0.03 9.79 0.00 0.18 61.22 0.00
(2) non-spatial/spatial 0.19 64.70 0.00 0.26 87.78 0.00
(3) spatial/spatial 0.19 62.80 0.00 0.26 87.91 0.00
(4) spatial/non-spatial 0.03 9.97 0.00 0.19 63.13 0.00
XGB holdout (non-spatial tuning) 0.14 9.52 0.00 0.26 18.53 0.00
holdout (spatial tuning) 0.14 10.10 0.00 0.33 23.26 0.00
(1) non-spatial/non-spatial -0.01 -1.90 0.06 0.15 51.03 0.00
(2) non-spatial/spatial 0.16 54.67 0.00 0.23 75.07 0.00
(3) spatial/spatial 0.16 53.59 0.00 0.28 92.21 0.00
(4) spatial/non-spatial 0.01 2.55 0.01 0.21 71.22 0.00

Notes: This table reports the spatial autocorrelation found in the residuals of the models. A positive and significant Morans'
/ signals spatial clustering of similar values whereas a negative and significant Morans' / signals alternating values which
indicates the presence of spatial outliers and/or spatial heterogeneity. The Z-score serves as a standardized value for
comparison of the in-sample and out-of-sample statistics. It is calculated as the difference between the observed value of /
and the expected value of / divided by the standard deviation of /, whereby the expected value of / is the theoretical mean
defined as -1/(N-1), N being the number of observations.

The same applies to the boosted trees, although this method seems to understand spatial
structures in the data slightly better. This may seem counterintuitive at first but knowing
that non-spatial error estimates are biased downwards, the substantial differences in
residual spatial autocorrelation between the spatial and the non-spatial cross-validation
errors indicate that spatial partitioning in the outer resampling loop indeed prevents the
models from exploiting unexplained spatially autocorrelated information from the test data
during training. By and large, the outcomes are consistent for panel B but, unsurprisingly,
the magnitude of spatial autocorrelation is in general higher as opposed to specification
A, which further substantiates our hypotheses and underlines the importance of spatial
cross-validation. Consistent with the results from the “Model Assessment” section, the
SDM does have a superior understanding of spatial dependence structures in the data

compared to all other models when spatial variables are not considered.

2.6 Conclusion

Recent literature has brought forth an increasing body of evidence that demonstrates a
superior predictive performance of machine learning algorithms compared to parametric

models for complex spatial regression problems involving the estimation of house prices
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and rents. In non-parametric models, predictive performance is widely measured using
resampling techniques such as cross-validation, which can be thought of as an out-of-
sample experiment inside the original sample. This requires the statistical independence of
the data to yield unbiased and meaningful prediction error estimates that can be used for
model selection and model assessment. The inherent spatial dependence in house price
and rent formation processes gives reason to question the validity of cross-validation errors
in a hedonic context. Hence, this study investigates the adequacy of conventional k-fold
cross-validation for the purpose of model selection and model assessment in an algorithmic
hedonic context using tree-based boosting and bagging methods and proposes a spatially
conscious alternative that attempts to reduce bias in cross-validation errors by accounting

for the spatial proximity of observations.

Despite using a nested resampling strategy and applying column subsampling in our
bagging and boosting algorithms to prevent overfitting, our results demonstrate that
failing to account for spatial dependence during the cross-validation procedure still has
two undesirable consequences. First, hyperparameter tuning using nonspatial grid search
CV favors the selection of overly complex models that overfit spatial dependence structures
in the training data, thereby compromising the models’ generalizability. Second,
performance estimates are artificially inflated through the exploitation of spatial
dependence structures during model training, resulting in overly optimistic error estimates

when compared to the true prediction errors.

In nested resampling approaches these two problems go hand in hand since the selection
of overly complex models in the inner resampling loop is masked by overoptimistic
accuracy measures during model assessment in the outer resampling loop. This can lead
to spurious confidence in a model that overestimates predictive accuracy as nesting aims
to simulate unseen data throughout the entire workflow of an algorithm, therefore
suggesting unbiased error estimates (Varma and Simon, 2006). In contrast, spatial grid
search CV prefers a higher level of regularization, thereby introducing extrapolation into
the models, which results in error estimates that are slightly too pessimistic, yet closer to

the true error rates.

An analysis of the residual spatial autocorrelation provides evidence that the spatially
conscious CV technique hinders the algorithm from exploiting spatial dependence
structures, thereby preventing overfitting. To see how the results vary with the extent to
which spatial information is reflected in the feature space, we evaluate a second model
alternative that does not consider spatial control variables. In this scenario, over-optimism

in predictive accuracy is even more distinctive when spatial autocorrelation is not
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accounted for, whereas the spatial CV procedure yields almost unbiased estimates of the

true prediction error that converge asymptotically closer to the true error distribution.

Despite their flexibility and higher accuracy compared to traditional parametric methods,
machine learning techniques are often criticized for their black box character that impedes
direct model interpretation as well as for their high computational burden. To empirically
illustrate where the costs and benefits of these methods lie, a least squares model as well
as a linear spatial autoregressive framework are furthermore used as points of reference
to assess predictive accuracy. Whereas the boosting algorithm performs best when spatial
controls are reflected in the model, the spatial durbin model outperforms the non-
parametric model alternatives in the absence of spatial information in the regressor matrix,
which stresses the importance of considering parametric model alternatives besides non-

parametric models.

We conclude that in a real estate hedonic context, state-of-the-art CV does not yield
unbiased estimates of prediction error even when applying methods that intend to
counteract overfitting. Resulting CV errors should rather be interpreted as an estimate of
the lower bound of the true error rate. In contrast, spatial CV errors tend to be slightly too
pessimistic but more reliable estimates of prediction errors. Likewise, the more

conservative spatial CV errors can be regarded as an upper bound of prediction errors.

That being said, in scenarios where the study area is very small and clearly delineated so
that spatial dependence structures do not vary significantly (i.e., on the submarket or ZIP-
code level), spatial density of observations is high (i.e., CBD or city center), and spatial
control variables are numerous, random partitioning of folds may yield fair estimates of
predictive performance. However, for typical use cases (i.e., predictions on the city-level or
above) where spatial dependence structures and spatial density vary continuously across
space, spatial cross-validation should be preferred for model selection and model
assessment, since we believe that, in general, the cost of a slightly too pessimistic
perception of predictive accuracy is lower than having spurious confidence in a model’s
capability to predict unseen data. Overstatement of predictive accuracy may withhold
appraisers, underwriters, lenders, as well as portfolio and investment managers from
appropriately reflecting the uncertainties associated with appraised values in their decision

making and risk management, potentially leading to adverse effects in capital allocation.

Future research in this field may apply model-agnostic interpretation techniques and
analyze to what extent identified relationships are spurious when spatial dependence is
not accounted for to shed light on the role of spatial autocorrelation on the decision-

making of the algorithms.
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2.7 Endnotes

1. As modeling choices may differ depending on whether analysis or prediction is the main
objective of a study, we concentrate primarily on prediction and do not wish to draw any

causal inference or conclusions of the market under investigation.

2. Although the use of asking rents can been criticized since they may deviate from actual
contract rents, multiple listing systems (MLS) provide a valuable data source for statistical
learning applications due to their high frequency of occurrence and timely availability and
have been repeatedly used in the algorithmic hedonic literature (e.g., Chiarazzo et al.,
2014; Park and Bae, 2015; Baldominos et al., 2018; Grobel and Thomschke, 2018; Hu et
al., 2019; Pérez-Rave et al., 2019; Pace and Hayunga, 2020; Rico-Juan and Taltavull de La
Paz, 2021). Considering vacancy rates for dwellings in Frankfurt well below 1%, we can
follow the rationale of Grobel (2019) and assume that renters are price takers, such that
there should be no notable differences between asking and contract rents. Besides that,
deviations between asking and contract rents “[...] are not expected to lead to an error
bias”, especially when hedonic characteristics are controlled for, as stated by Cajias (2018).
We hence do not see any reason to question the validity of asking rents, especially in view

of the objective of our study.

3. The systematic variation of rent formation processes across space should not introduce
bias into cross-validation errors since machine learning algorithms do not assume fixed
hedonic pricing coefficients but have the flexibility to differentiate between spatially
heterogeneous environments. In this study, spatial heterogeneity is, therefore, put aside

and the focus lies on spatial autocorrelation only.

4. Evidently, housing data not only exhibit high levels of spatial but also temporal
dependence when pooled across time (Pace et al., 2000). In this study, we leave temporal

aspects aside for future research and focus solely on space.

5. One limitation of the selected k-means clustering cross-validation strategy (Brenning,
2012) is that full independence between training and test data can only be achieved if the
distance between each pair of training and test observation exceeds the spatial
autocorrelation range (Brenning, 2005; Le Rest et al., 2014). This is unlikely to be the case
for all observations in our resampling instantiation, especially for data points located at the
borders of the spatial clusters. Nonetheless, we believe that the number of observations in
each test fold is large enough to counteract structural overfitting, such that the impact on
aggregated results should be minor. Following the suggestion of Roberts et al. (2017), we

refrain from further reducing the number of k folds in the cross-validation procedure since
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this would withhold too much information during training and may introduce unnecessary

extrapolation into the models.

6. All analyses and model estimations were executed using the open-source statistical
programming language R under the version 4.0.4 (R Core Team, 2021). All machine
learning algorithms and resampling techniques were employed using the m/r3 framework
implemented by Lang et al. (2019), which is an ecosystem that facilitates a standardized
interface to many existing packages in the R environment. To obtain reproducible results
and to ensure that the instantiation of the resampling calls do not vary between the
different models, which could distort the results, all outputs were produced with the same

random number generator using the set.seed function in R.

7. Estimations were executed on a standard 1.80GHz processor with four cores, eight
logical processors and eight gigabytes of RAM using a 64-bit Windows operating system.
After parallelization, the in-sample estimation of the random forest required between 11
and 20 hours for each of the four estimated resampling alternatives, whereby spatial
tuning in the inner resampling loop reduced estimation time by up to 43%. The much
more efficient extreme gradient boosting algorithm needed only about 3 to 3.5 hours
respectively with the spatial tuner being slightly less time-consuming. During the one
quarter ahead prediction, where cross-validation only needs to be performed for
hyperparameter tuning in the inner loop, estimation time dropped to 3.5 hours for the
bagging algorithm and to approximately 30 minutes for the boosting algorithm. The
spatial linear models required less than 30 minutes each and the least squares estimator
less than a second. Estimation time was significantly lower for the alternative model

specification B for all models.
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2.8 Appendix

Table 2.6: OLS Regression Output

Variable Estimate Std. Error t-value p-value  Significance

Panel A: OLS Model including Spatial Controls

(Intercept) -74.91 5.92 -12.65 0.00 ***
Continuous
Living Area [log] 0.80 0.01 81.98 0.00  ***
Age [years] 0.00 0.00 -20.11 0.00  ***
Age? 0.00 0.00 19.59 0.00 ***
Entry date [monthly] -0.02 0.01 -2.12 0.03 *
Latitude 1.45 0.12 12.17 0.00 ***
Longitude 0.67 0.06 11.68 0.00 ***
Discrete
Rooms 0.04 0.00 10.05 0.00  ***
Floor 0.00 0.00 5.29 0.00  ***
Binary [1=yes, 0=no]
Bathtub -0.04 0.00 -9.78 0.00  ***
Refurbished 0.02 0.01 3.03 0.00 **
Built-in kitchen 0.1 0.01 21.65 0.00  ***
Balcony 0.02 0.00 3.84 0.00  ***
Parking 0.03 0.01 4.88 0.00 ***
Elevator 0.04 0.01 7.64 0.00  ***
Terrace 0.04 0.01 5.99 0.00 ***
Distances
NUTS centroid [km] -0.02 0.00 -13.02 0.00  ***
Bakery [km] -0.01 0.01 -1.22 0.22
Bar [km] -0.02 0.00 -3.73 0.00 ***
Biergarten [km] -0.05 0.00 -14.71 0.00 ***
Café [km] -0.02 0.01 2.1 0.03 *
School [km] -0.03 0.01 -2.35 0.02 *
Supermarket [km] 0.02 0.01 1.20 0.23
Bus station [km] -0.04 0.00 -17.16 0.00  ***

Panel B: OLS model excluding Spatial Controls

(Intercept) 3.12 0.04 83.32 0.00 ***
Continuous
Living Area [log] 0.84 0.01 76.62 0.00  ***
Age [years] 0.00 0.00 -18.16 0.00 ***
Age? 0.00 0.00 21.45 0.00 ***
Entry date [monthly] -0.02 0.01 -2.25 0.02 *
Discrete
Rooms 0.03 0.00 6.32 0.00  ***
Floor 0.01 0.00 6.43 0.00  ***
Binary [1=yes, 0=no]
Bathtub -0.05 0.00 -10.78 0.00  ***
Refurbished 0.03 0.01 4.53 0.00  ***
Built-in kitchen 0.15 0.01 26.57 0.00  ***
Balcony 0.02 0.01 2.94 0.00 **
Parking 0.01 0.01 1.52 0.13
Elevator 0.10 0.01 16.78 0.00  ***
Terrace 0.03 0.01 4.06 0.00 ***

Notes: This table reports the ordinary least squares (OLS) regression outputs for the model including spatial controls in panel
A and the model excluding spatial controls in panel B. The dependent variable is the log(rent), independent variables are
listed in the left column accordingly. Significance codes: p < 0.001 "***', p<0.01 "**', p<0.05 "*', p<0.1 "', p>0.1"". Std.
Error: standard error. Panel A: F-statistic 2245.00 (p-value: 0.0000), AIC -4450.02, BIC -4276.96. Panel B: F-statistic 2968.00
(p-value: 0.0000), AIC -2592.44, BIC -2488.61.
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3 Boosting the Accuracy of Commercial Real
Estate Appraisals: An Interpretable Machine
Learning Approach

3.1 Abstract

In this article, we examine the accuracy and bias of market valuations in the U.S.
commercial real estate sector using properties included in the NCREIF Property Index (NPI)
between 1997 and 2021 and assess the potential of machine learning algorithms (i.e.,
boosting trees) to shrink the deviations between market values and subsequent transaction
prices. Under consideration of 50 covariates, we find that these deviations exhibit
structured variation that boosting trees can capture and further explain, thereby increasing
appraisal accuracy and eliminating structural bias. The understanding of the models is
greatest for apartments and industrial properties, followed by office and retail buildings.
This study is the first in the literature to extend the application of machine learning in the
context of property pricing and valuation from residential use types and commercial
multifamily to office, retail, and industrial assets. In addition, this article contributes to the
existing literature by providing an indication of the room for improvement in state-of-the-
art valuation practices in the U.S. commercial real estate sector that can be exploited by
using the guidance of supervised machine learning methods. The contributions of this
study are, thus, timely and important to many parties in the real estate sector, including

authorities, banks, insurers and pension and sovereign wealth funds.
Keywords: Commercial real estate, Appraisal, Interpretable machine learning
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3.2 Introduction

Both institutional and private investors aim to diversify their portfolios with real estate. A
significant share of this is accounted for by investments in commercial real estate sectors,
which amount to around $32 trillion globally. The heterogeneity of commercial real estate
contributes well to diversification, but it is also accompanied by characteristics such as
illiquidity, opacity and unwieldiness that make it difficult to thoroughly understand market
dynamics. Consequently, the valuation of commercial properties involves a great deal of
effort that justifies an appraisal industry worth billions of dollars. Studies have repeatedly
demonstrated that commercial property appraisals do not always adequately represent
market dynamics and can differ significantly from actual sales prices (e.g., Cole et al., 1986;
Webb, 1994; Matysiak and Wang, 1995; Fisher et al., 1999; Edelstein and Quan, 2006;
Cannon and Cole, 2011). Despite the increasing complexity of pricing processes and more
rapidly changing markets, the principal methods used by the valuation industry have
largely remained unchanged for the past decades. However, this is slowly changing with
an increasing availability of data and the emergence of artificial intelligence fostering the

use of innovative technologies in the real estate sector.

In recent years, machine learning algorithms have been increasingly considered as a
suitable method for the estimation of house prices and rents, with a large corpus of
literature pointing to their high accuracy in the residential sector (e.g., Mullainathan and
Spiess, 2017; Mayer et al., 2019; Bogin and Shui, 2020; Hong et al., 2020; Pace and
Hayunga, 2020; Lorenz et al., 2022; and Deppner and Cajias, 2022). In the commercial
sector, on the other hand, the scope of analysis has thus far been limited to multifamily
assets and shows inconsistent results in terms of estimation accuracy (Kok et al., 2017).
One prerequisite for machine learning methods to provide accurate and reliable property
value estimates is the availability of substantial amounts of data with uniform property
characteristics. While these criteria are largely met for residential real estate where
property characteristics are considered relatively homogeneous, and data is widely
accessible on multiple listing services, the nature of commercial real estate is more complex
and heterogenous, and infrequent transactions and market opaqueness continue to hinder
data availability. Despite the enormous potential for the sector, this poses a challenge for
the application of data-driven valuation methods in commercial real estate and raises the
question to what extent machine learning algorithms can provide significant improvement
to the industry’s state-of-the-art appraisal practices. To the best of our knowledge, there

is no research in the current literature that investigates the usefulness of machine learning
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algorithms for the valuation of commercial properties other than multifamily buildings (see

Kok et al., 2017).

This article contributes to this field using 24 years of property-level transaction data of
commercial real estate from the NCREIF Property Index (NPI) provided by the National
Council of Real Estate Investment Fiduciaries (NCREIF). In a first step, we investigate the
deviation between actual sales prices observed in the market and the appraised values
before sale to assess the accuracy and bias associated with state-of-the-art valuation
methods that were last examined by Cannon and Cole (2011). Given the findings of
inaccuracy and structural bias of appraisals that the literature has reported over the past
decades, we hypothesize that the observed deviations between sales prices and appraisal
values exhibit structured information content that machine learning models can exploit to
further explain and shrink these residuals, thereby providing a superior ex-post
understanding of market dynamics. This is examined using a tree-based boosting
algorithm, measuring how much of the variation in the residuals can be explained. While
Pace and Hayunga (2020) follow a similar approach to benchmark machine learning
methods against spatial hedonic tools in a residential context, no research empirically
quantifies the potential of complementing traditional appraisal methods with data-driven
machine learning techniques, neither in residential nor commercial sectors. Lastly, we
apply model-agnostic permutation feature importance to reveal where improvements
originate and point to price determinants that are not adequately reflected in current

appraisal methods.

From a practical point of view, the application of machine learning can add to an enhanced
ex-ante understanding of pricing processes that may support valuers in the industry and
contribute to more dependable valuations in the future. By illustrating the potential and
pointing to the shortcomings of these methods, we aim to provide guidance, stimulate the
critical discussion, and motivate further research on machine learning approaches in the

context of commercial real estate valuation.

3.3 Related Literature

The estimation of market values is the primary concern of most real estate appraisal
assignments. According to federal financial institutions in the U.S., the market value is

defined as:

“[...] the most probable price which a property should bring in a competitive

and open market under all conditions requisite to a fair sale, the buyer and
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seller each acting prudently and knowledgeably, and assuming the price is

not affected by undue stimulus™’ (Real Estate Lending and Appraisals, 2022).

However, the accurate and timely estimation of commercial property prices is a complex
task, as direct real estate markets are characterized by high heterogeneity, illiquidity, and
information asymmetries that are accompanied by high search and transaction costs. Over
the past decades, many methods have been developed and refined to arrive at the most
probable transaction price of a property in the market. Pagourtzi et al. (2003) distinguish

between traditional (i.e., manual) and advanced (i.e., statistical) valuation approaches.

3.3.1 Traditional Valuation Methods

Traditional valuation models are characterized by a procedural approach (Mullainathan
and Spiess, 2017) that follows pre-defined economic rules. These procedures can be
thought of as “prediction rules” used to obtain appraised values of commercial real estate.
The most common procedures in current appraisal practices are the income approach, the
sales-comparison approach, and the cost approach as described by Fisher and Martin

(2004) and Mooya (2016).

As the industry’s preferred approach to commercial property valuation, the income
approach is based on the idea that the value of a property depends on the present value
of its future cash flows, and is thus determined by two main factors: the net operating
income and the capitalization rate. The latter incorporates all risks and upside potentials
of the income-producing property. However, the correct assessment of the capitalization
rate is not straightforward and depends on many assumptions. Hence, comparable
transactions of similar properties observed in the market are often used as a point of
reference. This is known as the sales-comparison approach and is based on the rationale
that the value of a property should equal the value of a similar property with the same
characteristics. Mooya (2016) finds this approach to be the most valid indicator of market
conditions as new market valuations are based on recently transacted properties.
However, comparable sales are scarce or outdated in very illiquid property sectors and
markets. In such cases, the cost approach can be used following the principle that an

informed investor would pay no more than for the substitute building as this would

" Implicit in this definition is the consummation of a sale as of a specified date and the passing of title from
seller to buyer under conditions whereby:

(1) Buyer and seller are typically motivated;

(2) Both parties are well informed or well advised, and acting in what they consider their own best interests;
(3) A reasonable time is allowed for exposure in the open market;

(4) Payment is made in terms of cash in U.S. dollars or in terms of financial arrangements comparable thereto;
and (5) The price represents the normal consideration for the property sold unaffected by special or creative
financing or sales concessions granted by anyone associated with the sale.

12 C.F.R. § 34.42 (2022).
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constitute an arbitrage opportunity. The market value of a property is thus derived from
the cost of constructing a similar property including the land value and adjusting for

physical and functional depreciation.

All these procedures have an economic justification and have served the industry well for
decades; however, as prediction rules, they also suffer from certain limitations. For
instance, the determination of the capitalization rate is subject to the discretionary scope
and the assumptions (i.e., the assessment of risks and upside potentials, e.g., growth
hypothesis versus risk hypothesis for vacant space in Beracha et al., 2019) of the individual
executing them to arrive at a market value. In turn, capitalization rates derived from
comparable sales may capture recent market dynamics but are inherently backwards
looking such that appraisals may significantly lag. Furthermore, the availability of similar
properties that have been sold recently is a limiting factor due to infrequent transactions
and high heterogeneity. This requires adjustments, which again depend on subjective
opinions of value, resulting in imprecise estimations. On the other hand, the cost approach
can indicate a property’s substitute value, but also allows a lot of room for subjectivity
given the uniqueness of each property and the numerous assumptions to be made for
adjustments and depreciation. Pagourtzi et al. (2003) note that “[...] price will be
determined not by cost, but by the supply and demand characteristics of the occupational
market” in case of scarcity, which is a typical characteristic of many real estate markets
due to geographic constraints and building regulations. In addition, Matysiak and Wang
(1995) raise the hypothesis that not all available data is considered at the time of valuation.
While each of the approaches mentioned above is limited to a certain set of information,
market intransparency may furthermore impose restrictions to the data that is available to

individual appraisers.

Cole et al. (1986) are the first in the literature to document the differences between real
estate appraisals and sales prices in the U.S. commercial real estate market. The authors
examine properties sold out of the NCREIF Property Index (NPI) between 1978 and 1984
and find a mean absolute percentage difference of around 9% in that period of rising
markets. In a similar study, Webb (1994) extends the sample of Cole et al. (1986) by
updating the period from 1978 to 1992, thereby covering different price regimes of rising,
stagnating, and falling markets. The author finds that the highest deviations occur during
rising markets averaging 13%, declining to 10% during flat markets and 7% during falling
markets. Fisher et al. (1999) update the studies of Cole et al. (1986) and Webb (1994) on
the reliability of commercial real estate appraisals in the U.S. and show that from 1978 to
1998, manual appraisals of NPI properties across multiple asset types deviate on average

between 9% and 12.5% from actual sales prices. This is in line with the findings of Cannon
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and Cole (2011) who analyzed NPI sales data from 1984 to 2009 and observed deviations
ranging between 11% and 13.5% over the entire sample period for the different asset
sectors. The authors find appraisals to consistently lag actual sales prices, falling short of
sales prices in bullish markets and remaining in excess of sales prices in bearish markets.
With respect to mean percentage errors, the findings of Cannon and Cole (2011) confirm
the hypothesis of Matysiak and Wang (1995), suggesting that appraisal errors do not solely
arise due to the time differences but also due to a systematic valuation bias. Kok et al.
(2017) take another look at appraisal errors in commercial real estate markets and propose
the use of advanced statistical techniques to reduce the deviations found in the previous

studies.

3.3.2 Advanced Valuation Methods

With an increasing data availability in real estate markets and the development of
econometric and statistical techniques, researchers have started to tackle existing tasks
empirically instead of procedurally (Mullainathan and Spiess, 2017). While a wide range of
empirical methods exists in the current literature, we focus on the most discussed

approaches for property valuation, that is hedonic pricing and machine learning.

The hedonic pricing model dates to Rosen (1974) who defines the value of a heterogenous
good as the sum of the implicit prices of its objectively measurable characteristics. The
most common econometric approach used to derive such implicit prices is multiple linear
regression or extensions thereof. In commercial real estate markets, hedonic pricing
models have been applied to disentangle price formation processes from an econometric
point of view (e.g., Clapp, 1980; Brennan et al., 1984; Glascock et al., 1990; Mills, 1992;
Malpezzi, 2002; Sirmans et al., 2005; Koppels and Soeter, 2006; Nappi-Choulet et al.,
2007; Seo et al.,, 2019). Hedonic models have proven useful in understanding price
determinants in real estate markets, but researchers have also pointed to the limitations
of the underlying methods such as their imposed linearity and fixed parameters, which
cannot be assumed to hold in reality (Dunse and Jones, 1998; Bourassa et al., 2010;
Osland, 2010). Although these models are efficient in generating predictions and easy to
interpret, their strong assumptions and need for manual specification carry the risk of bias,

subjectivity, and inconsistency, which is to be eliminated in the first place.

In contrast to linear hedonic approaches, algorithmic machine learning models follow a
purely data-driven approach and make use of stochastic rules to find the best possible
model fit. Over the past decades, many algorithms such as artificial neural networks
(Rumelhart et al., 1986), support vector regression (Smola and Schélkopf, 2004), and

bagging and boosting algorithms (i.e., random forest regression by Breiman, 1996, 2001;
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and gradient tree boosting by Friedman, 2001) that are based on ensembles of regression
trees (Breiman et al., 1984) have been developed and refined. These algorithms can
autonomously learn nonlinear relationships from the data without specifying them a-priori
or making any implicit assumptions of the relationship between the property’s price and
its features. This means that the models consider all available information at the time of
valuation and identify complex relationships based on patterns in the data. Since the
training process of machine learning algorithms is computationally expensive compared to
traditional econometric models, it took until this decade for technological progress to
enable sufficient computational capacity for the widespread application of such

techniques.

In recent years, a large corpus of literature has demonstrated the potential of machine
learning algorithms to accurately estimate prices and rents of houses and apartments in
the residential sector. This includes studies by McCluskey et al. (2013) for artificial neural
networks, Lam et al. (2009), Kontrimas and Verikas (2011), and Pai and Wang (2020) for
support vector regression, Levantesi and Piscopo (2020) for random forest regression and
van Wezel et al. (2005) and Sing et al. (2021) for gradient tree boosting algorithms. In
many comparative studies that document the accuracy of a broader range of model
alternatives, tree-based methods and, in particular boosting and bagging algorithms, have
shown superiority over other methods (e.g., Zurada et al., 2011; Antipov and
Pokryshevskaya, 2012; Mullainathan and Spiess, 2017; Baldominos et al., 2018; Hu et al.,
2019; Mayer et al., 2019; Bogin and Shui, 2020; Pace and Hayunga, 2020; Cajias et al.,
2021; Rico-Juan and Taltavull de La Paz, 2022; Lorenz et al., 2022; and Deppner and Cajias,
2022).

In academia and the industry, however, high demands are placed not only on accuracy
and consistency, but also on reliability and comprehensibility of the models. Hence,
machine learning methods have been criticized for lacking an economic justification and
having a black-box character (McCluskey et al., 2013; Mayer et al., 2019). Valier (2020)
argues that although data-driven machine learning models might produce equivalent or
even better results than traditional methods, too much variability comes with the flexibility
of these methods as they rely entirely on the input data and can change quickly. This makes
them “[...] difficult to use for public policies, where the evaluation process must guarantee
fairness of treatment for all the cases concerned and maintain the same efficiency over
time,” as stated by Valier (2020). While Pérez- Rave et al. (2019) and Pace and Hayunga
(2020) suggest to maintain interpretability by enhancing linear models with insights

generated by machine learning techniques, Rico- Juan and Taltavull de La Paz (2022) and

60



Boosting the Accuracy of Commercial Real Estate Appraisals: An Interpretable Machine
Learning Approach

Lorenz et al. (2022) apply model-agnostic interpretation techniques that allow ex-post

interpretability of the models to circumvent this problem.

Besides their sensitivity to changes in the data, the methods can quickly overfit the training
sample if applied without the necessary prudence and may thus not represent the true
relationship between the dependent variable and its regressors. This is especially
problematic when training data is scarce. For this reason, machine learning algorithms
require a reasonable number of observations of previous transactions and attributes that
adequately describe the respective properties to provide dependable and stable
estimations of property values. Hence, research in this field has largely focused on the
residential sector, where properties are considered relatively homogeneous, and data
availability has increased exponentially over the last years with the transition from offline
real estate offers to online multiple listing services. In turn, the high heterogeneity and
data scarcity in commercial real estate markets imposes challenges for the application of
machine learning techniques. Kok et al. (2017) are the first in the literature to apply
machine learning methods to estimate prices of commercial multifamily properties. The
authors benchmark tree-based boosting and bagging algorithms against a linear hedonic
model across different model specifications and find mixed results in terms of their
accuracy. While two different types of boosting provide error reduction in all cases tested,
the bagging algorithm does not offer any significant improvement and is even
outperformed by the ordinary least squares estimator in one case. To the best of our
knowledge, there is no research on the predictive performance of machine learning

methods for other property types in commercial real estate.

Although institutionally held multifamily properties are of residential use, the study of Kok
etal. (2017) indicates that previous findings of the accuracy of machine learning algorithms
in the residential sector cannot be easily transferred to a commercial real estate context,
given the known limitations of these techniques and the peculiarities of the sector as
discussed earlier. This raises the question to which extent algorithmic approaches can learn
market dynamics in commercial real estate to generate insights into pricing processes that
go beyond the understanding achieved with traditional valuation approaches, thus

providing potential improvement to the state-of-the-art.

3.4 Data and Methodology

The principal dataset used for this study was provided by the National Council of Real

Estate Investment Fiduciaries (NCREIF). It contains quarterly observations of all properties
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included in the NCREIF Property Index? (NPI) on the asset level spanning 1Q 1978 through
1Q 2021. To be included in the NPI, a property must be

i.  an operating apartment, hotel, industrial, office, or retail property,
ii. acquired, at least in part, by tax-exempt institutional investors and held in a
fiduciary environment?,
ii.  accounted for in compliance with the NCREIF Market Value Accounting Policy?,

iv.  appraised — either internally or externally — at a minimum every quarter.

A qualifying property is included in the NPI upon purchase and removed again upon sale.
The database contains all quarter-observations over that property’s holding period,
terminating with the sale quarter. For reasons of data scarcity in earlier years and in specific
sectors, we limit the initial sample to 24 years from 1Q 1997 through 1Q 2021, including
all asset sectors except for hotels. This is generally equivalent to the dataset in the study

of Cannon and Cole (2011), with the time span shifted 12 years ahead.

3.4.1 Data Pre-processing

We filter all properties that had been sold during that period, excluding partial sales and
transfers of ownership. This constitutes a sample of 12,956 individual assets for which we
observe the net sale prices, the corresponding appraisal values and a series of structural,

physical, financial, and spatial attributes recorded quarterly.

After examining the most recent appraisal values of the sold properties from the quarter
before the sale, we find that the appraised value equals the net sale price in 6,091 cases,
which corresponds to 47% of the entire sample. This is consistent with Cannon and Cole
(2011) and indicates that the sale price for those properties was determined at least three
months before a pending transaction. Since this price was used as the market value instead
of an independent appraisal, we are forced to use the appraisal values of the second
quarter before the sale to represent the properties’ most recent market value. However,
we still observe 587 properties where the market value equals the sale price and another
179 properties with missing data for that quarter, resulting in a reduced sample of 12,190
properties for which we have data on the sale prices and the market values. One possibility
to account for the time lag between the appraisal date and the sale date is to roll back the
sale prices as Cannon and Cole (2011) did for some properties in their sample. However,

the authors find that overall, the unadjusted differences are, in fact, better measures of

2The NPI is a quarterly index tracking the performance of core institutional property markets in the U.S.

3 This includes commingled real estate funds (open and closed-end), separate accounts, individual accounts,
private REITs, REOCs, and joint-venture partnerships.

4 For further details, refer to the NCREIF PREA Reporting Standards at www.reisus.org.
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appraisal accuracy. This is no surprise as transaction prices are often determined three to
six months before closing, known as due diligence lag. We subsequently do not adjust for

the time lag between appraisal and sale date but control for moving markets in that period.

Missing and erroneous data points of the relevant variables are accounted for as follows.
We remove observations with square footage and construction years reported as less than
or equal to zero. Likewise, occupancy rates less than zero or higher than one were also
regarded as erroneous data points. Furthermore, we omit observations with missing values
for the square footage, the property subtype, the construction year, the occupancy rate,
the appraisal type, the fund type, the metropolitan statistical area (MSA) code, the net
operating income (NOI), and the capital expenditures (Capex), which represent the main
explanatory variables collected from the raw, principal dataset. We further remove
observations where the deviation between the sale price and the appraisal value two
quarters before the sale is abnormally high, as this indicates a potential data error.> We
also remove extreme outliers in the sale price, the building area and the sale price per
square foot by cropping the upper and lower tails of the distributions.® After cleaning

erroneous and missing data, the sample was reduced to 8,427 individual properties.

In addition, we enrich the initial data with a set of new variables. To better control for
building quality, we calculate the building age as the difference between the year of sale
and the construction date trimmed at 100 years’ and the cumulative sum of a property’s
capital expenditures, that is the sum of all capital expenditures for building extensions and
building improvements over the holding period.? Since we observe that NOIs tend to
fluctuate materially in the quarters before sale, we also calculate the mean of the
properties’ annual NOIs over their holding period as a proxy for stabilized income. This
measure incorporates different market cycles and is less prone to speculation, which may
better capture a property’s intrinsic value. As demonstrated repeatedly in the literature,
the spatial dimension is an important driver of real estate prices. The dataset provides the
location zones of a property on the ZIP code level. However, we cannot ensure enough

observations for each ZIP code area in our sample, so we use the MSA level instead. That

> When we calculate the mean absolute percentage errors for the second quarter before sale, we observe
market values that deviate from sale prices by up to 377%. We crop the distribution of percentage errors at
the 99th percentile, thus allowing for deviations by up to 60%.

6 After data cleaning, we observe sale prices per square foot between $0.8 and $915,501.1 indicating potential
data errors. To keep data loss at a minimum, we crop the distributions at the lower 0.5th and the upper 99.5th
percentiles.

7 The sample includes 61 observations for which the building age takes values between 101 and 157 years,
most of which are unique. We assign those observations the value 100, thus effectively creating a partition for
buildings that are older than 100 years, so the trees cannot overfit single observations by using unique building
ages.

8 This excludes tenant improvements, lease commissions, and additional acquisition costs, which are incentives
or fees that do not affect the quality of a property.
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said, location dummies on the MSA level may capture global price differentials across
space, but they are not adequate to efficiently reflect complex pricing behaviors driven by
spatial considerations of buyers and sellers. To better assess appraisers’ understanding of
space, we geocode our sample observations using the property addresses. With the
Google Places API, we managed to geocode 93%° of the addresses and retrieve the
distances to relevant points of interest (POls). This includes transport linkages and
amenities that may produce spillover effects and thus cause positive or negative
externalities to their neighborhood. For example, an office building might benefit from the
proximity to a café, a gym or a laundry that serves white-collar workers, which translates
into a location premium. Lastly, we omit MSA codes that include less than ten properties

of the same asset class to counteract overfitting on the location dummies.

Our final sample contains 7,133 individual properties'® that meet all the previously outlined

criteria to be included in the study. Relative to the initial sample size this constitutes a

Table 3.1: Observations per Year

All Types Apartment Industrial Office Retail
(N=7,133) (N =1,904) (N =2,337) (N =2,056) (N =836)

Variable n Percent n Percent n Percent n Percent n Percent
Year

... 1997 68 0.95% 17 0.89% 31 1.33% 9 0.44% 11 1.32%
... 1998 84 1.18% 12 0.63% 26 1.11% 31 1.51% 15 1.79%
... 1999 94 1.32% 18 0.95% 18 0.77% 31 1.51% 27 3.23%
... 2000 201 2.82% 51 2.68% 49 2.10% 74 3.60% 27 3.23%
... 2001 174 2.44% 53 2.78% 50 2.14% 42 2.04% 29 3.47%
... 2002 187 2.62% 49 2.57% 63 2.70% 51 2.48% 24 2.87%
... 2003 251 3.52% 60 3.15% 78 3.34% 80 3.89% 33 3.95%
... 2004 337 4.72% 74 3.89% 117 5.01% 107 5.20% 39 4.67%
... 2005 472 6.62% 109 5.72% 135 5.78% 132 6.42% 96 11.48%
... 2006 298 4.18% 75 3.94% 84 3.59% 115 5.59% 24 2.87%
... 2007 381 5.34% 91 4.78% 139 5.95% 124 6.03% 27 3.23%
... 2008 155 2.17% 42 2.21% 54 2.31% 53 2.58% 6 0.72%
... 2009 160 2.24% 57 2.99% 54 2.31% 40 1.95% 9 1.08%
... 2010 182 2.55% 66 3.47% 56 2.40% 40 1.95% 20 2.39%
..2011 252 3.53% 68 3.57% 87 3.72% 50 2.43% a7 5.62%
... 2012 415 5.82% 112 5.88% 162 6.93% 100 4.86% 41 4.90%
... 2013 500 7.01% 149 7.83% 160 6.85% 122 5.93% 69 8.25%
... 2014 502 7.04% 112 5.88% 194 8.30% 137 6.66% 59 7.06%
... 2015 440 6.17% 130 6.83% 135 5.78% 126 6.13% 49 5.86%
... 2016 512 7.18% 154 8.09% 162 6.93% 146 7.10% 50 5.98%
... 2017 422 5.92% 126 6.62% 136 5.82% 123 5.98% 37 4.43%
... 2018 345 4.84% 119 6.25% 71 3.04% 140 6.81% 15 1.79%
... 2019 427 5.99% 90 4.73% 181 7.74% 110 5.35% 46 5.50%
... 2020 209 2.93% 60 3.15% 57 2.44% 59 2.87% 33 3.95%
.. 2021 65 0.91% 10 0.53% 38 1.63% 14 0.68% 3 0.36%

Notes: This table presents the distribution of observations across the sample period from 1Q 1997 through 1Q 2021.

® The remaining 7% result mainly from missing or incomplete addresses.
10 Of which 1,904 are apartments, 2,337 are industrial, 2,056 are office and 836 are retail.
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heavy data loss, which again emphasizes the problem of data availability as mentioned
earlier. Table 3.1 provides an overview of the number of observations across the sample

period.

We further follow Cannon and Cole (2011) in collecting macroeconomic data to control
for structural differences in property prices across time. That includes the four-quarter
percentage change in employment at the county-level sourced from the U.S. Bureau of
Labor Statistics, the four-quarter percentage change in the gross domestic product (GDP)
and the ten-year government bond yield sourced from the database of the Federal Reserve
Bank of St. Louis, and the four-quarter percentage change in construction costs by region
sourced from the U.S. Census Bureau. We further collect quarterly NPI data by property
type, that is, the quarterly change in market value cap rates, vacancy rates, NOI growth
rates and the quarterly number of sales of NPI properties. While all these variables capture
the period between the sale date and the first quarter before sale, we also provide the lags
of all macroeconomic and NPI index data for the period between the first and the second

quarter prior to sale to control for the time lag between the appraisal and the sales date.

3.4.2 Appraisal Error

NCREIF follows the definition of market value as stated in the "Related Literature" section
and adopted by the Appraisal Foundation as well as by the Appraisal Institute. According
to this definition, the market value of a property represents the best estimate of a
transaction price in the current market. Consequently, we assess the manual appraisals as
predictions of sales prices by examining the mean absolute percentage error (MAPE) and

the mean percentage error (MPE) as calculated in equations (3.1) and (3.2), respectively.

n
1 Sale Price; .o — Appraised Value; ,_
MAPE = — Z i,t0 : pp it—2 (3.1)
n i Appraised Value;,_,
1=
n
1 Sale Price; .o — Appraised Value; ,_
MPE = _Z i,t0 : pp it—2 (3.2)
n Appraised Value;,_,

i=1

The MAPE is used as a measure of accuracy, whereas the MPE can be understood as a
measure of biasedness. That is, the appraised value is considered an unbiased predictor of
sales prices, if the MPE is not significantly different from zero. This is examined using t-test

statistics.

" In a similar study by Cannon and Cole (2011), the authors start with 9,439 properties for a period of 25
years and, after filtering, end up with a sample of 7,214 sales. The relative data loss is higher in our case, as
we use substantially more covariates with missing entries that result in data leakage.
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The vector of appraisal errors Y used as the dependent variable in our models is calculated
as the difference between the vector of the log sale price per square foot (SP) and the
vector of the log appraisal (market) value per square foot (MV). This is stated in equation
(3.3), which corresponds to the log of the percentage appraisal error, however, keeping

the signs.
Y=[SP-MV] (3.3)

Sale Priceto)

SP = log( SqFt

Appraised Valuet_z)
SqFt

MV = log(
Figure 3.1 depicts the distribution of the dependent variable for the different property
types. We expect systematic differences between appraisal errors of the four property
types, so we conduct an analysis of variance (ANOVA) test with the null hypothesis that

there is no significant difference in the sample means of the respective groupings. The

Figure 3.1: Distribution of Appraisal Errors

Property Type

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5
Appraisal Error

Notes: The density plot shows the distribution of the raw residuals (appraisal errors) for all property types and for each
property type individually. The dotted horizontal line marks the null point on the x-axis.
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ANOVA test rejects the null at the 1% level of significance, indicating systematic

differences in the sample distributions of the four asset sectors.

3.4.3 Explanatory Variables

Matysiak and Wang (1995) state that appraisal errors are generally rooted in two
components. First, markets can change between the appraisal date and the sale date and
second, a pure valuation error (i.e., bias) can be incorporated. The latter could be ruled out
if the mean percentage error approaches zero, as positive and negative deviations should
cancel out. If this is not the case, appraisal errors are unlikely to be entirely random,
implying that some information content is left to be explained. To capture the two
components from which deviations between appraised values and sales prices originate
according to Matysiak and Wang (1995), we include a wide range of explanatory variables

in our models.

The first component a refers to the time difference between the appraisal and transaction
dates. That is, an appraisal error occurs due to a changing market environment during that
period. To control for moving markets, we include the market indicators My, and M;_,
from the NPI data (i.e., the quarterly change in market value cap rates, vacancy rates, NOI
growth rates and the quarterly number of sales of NPI properties as a proxy for market
liquidity) for both quarters before sale as well as the continuous transaction year as
temporal indicator T. However, a change in the value of a property could also result from
a change in the property fundamentals. Although cash flows from the quarters before sale
are backward-looking, and property values are inherently determined by future cash flows
that can be estimated with existing lease contracts and maintenance plans, we control for
the occurrence of unexpected events (such as rent defaults or repairs) by including the
cash flows C;q, C;—4 (that is the NOI and Capex) for both quarters before sale. The first

component a of regressors can be specified in matrix notation as in equation (3.4).
Xa=[MyoM 1T Cro Ceq] (3.4)

The second component b refers to the pure valuation bias and can have various causes
such as subjective opinions of value, varying risk appetite and assumptions of funds and
individual appraisers or appraisal smoothing. To capture these effects, we include several
structural (S), physical (P), financial (F), and locational (i.e., spatial) (L) property
characteristics as well as economic (E) indicators for both quarters before sale, as specified
in equation (3.5). This includes the fund type and the type of appraisal and the building
occupancy for S, the property subtype, the building area, and the building age for P, the
stabilized NOI and the cumulative sum of Capex for F, the MSA, latitude, longitude and
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distances to 18 POlIs for L, as well as the four-quarter percentage change in employment
on the county-level, the four-quarter percentage change in the GDP, the 10-year
government bond yield, and the four-quarter percentage change in construction costs by

region in both quarters prior to sale, corresponding to E;, and E;_; respectively.

Table 3.2: Descriptive Statistics of Numerical Variables

All Types (N = 7,133)

Variable Unit Mean Median Sd Min Max

[T] Year [Years] 2010.74 2012.00 6.18 1997.00 2021.00
[P] SqFt [k] 273.43 203.29 283.02 2.25 5,995.50
Building Age [Years] 22.68 19.00 16.23 -1.00 100.00

[S] Occupancy [%] 0.91 0.95 0.15 0.00 1.00
[F] CapEx Cumulative [$/SqFt] 14.45 3.36 188.43 0.00 15,518.44
Stabilized NOI [S/SqFt] 8.21 6.70 5.75 0.01 4554

[Cto] CapEx [$/SqFt] 0.72 0.04 2.86 0.00 77.85
NOI [$/SqFt] 1.32 0.92 2.07 -53.10 46.73

[Cii]l  CapEx (lag) [S/SqFt] 0.76 0.16 2.45 0.00 58.59
NOI (lag) [$/SqFt] 2.35 1.83 2.16 -8.55 31.79

[L] Longitude [°] -95.46 -93.27 17.19 -122.93 -70.49
Latitude [°] 36.69 37.38 5.21 25.60 47.94

Bank [km] 0.75 0.52 0.77 0.00 6.49

Bar [km] 0.73 0.51 0.69 0.00 5.86

Cafe [km] 0.59 0.42 0.59 0.00 5.18
Convenience Store [km] 0.66 0.53 0.54 0.00 5.91
Department Store [km] 1.92 1.39 1.87 0.00 8.68

Doctor [km] 0.37 0.23 0.44 0.00 6.65

Gas Station [km] 0.73 0.61 0.54 0.00 5.59

Gym [km] 0.62 0.43 0.62 0.00 5.85
Laundry [km] 0.71 0.53 0.65 0.00 5.92

Lawyer [km] 0.58 0.35 0.71 0.00 6.28

Park [km] 0.70 0.57 0.56 0.00 6.31

Parking [km] 0.82 0.56 0.88 0.00 8.48
Pharmacy [km] 0.71 0.51 0.68 0.00 6.48
Restaurant [km] 0.36 0.24 0.39 0.00 3.78

School [km] 0.43 0.32 0.40 0.00 4.20
Shopping Mall [km] 0.87 0.63 0.84 0.00 7.19
Supermarket [km] 1.37 1.02 1.30 0.00 8.66

Public Transport [km] 2.02 1.33 2.15 0.00 8.68

[Eto] GDP yoy [%] 0.02 0.02 0.01 -0.09 0.05
Bond Yield [%] 0.03 0.03 0.01 0.01 0.07
Construction Cost yoy [%] 0.04 0.04 0.04 -0.10 0.20
Employment yoy [%] 0.02 0.02 0.03 -0.18 0.27

[E1]  GDP yoy (lag) [%] 0.02 0.02 0.02 -0.09 0.05
Bond Yield (lag) [9%] 0.03 0.03 0.01 0.01 0.07
Construction Cost yoy (lag) [%] 0.04 0.04 0.04 -0.10 0.13
Employment yoy (lag) [%] 0.02 0.02 0.03 -0.20 0.26

[Mw] Cap Rate qog [9%] 0.00 0.00 0.00 0.00 0.00
Vacancy qoq [%] 0.00 0.00 0.01 -0.03 0.03

NOI Growth gqoq [%] 0.03 0.04 0.05 -0.33 0.18

Sold Properties [#] 617.46 665.00 178.90 182.00 907.00

[Me1]  Cap Rate qoq (lag) [%)] 0.00 0.00 0.00 0.00 0.00
Vacancy qoq (lag) [%] 0.00 0.00 0.01 -0.03 0.03

NOI Growth qoq (lag) [%] 0.03 0.04 0.05 -0.33 0.18

Sold Properties (lag) [#] 610.17 662.00 181.68 182.00 907.00

Notes: This table presents the summary statistics of numerical features.
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Table 3.3: Descriptive Statistics of Categorical Variables

All Types (N = 7,133)

Variable n Percent

[Pl Property Type

... Apartment 1,904 26.69%
... Industrial 2,337 32.76%
... Office 2,056 28.82%
... Retail 836 11.72%
Property Subtype

... Garden 1,295 18.16%
... High-rise 455 6.38%
.. Low-rise 154 2.16%
... Research and Development 120 1.68%
... Flex Space 412 5.78%
... Manufacturing 21 0.29%
... Other 40 0.56%
... Office Showroom 1" 0.15%
... Warehouse 1,733 24.30%
... Central Business District 450 6.31%
... Suburban 1,606 22.52%
... Community Center 265 3.72%
... Theme/Festival Center 1 0.01%
... Fashion/Specialty Center 30 0.42%
... Neighborhood Center 363 5.09%
... Outlet Center 2 0.03%
... Power Center 74 1.04%
... Regional Mall 34 0.48%
... Super-Regional Mall 22 0.31%
... Single-Tenant 45 0.63%

[S1  Appraisal

... External 2,485 34.84%
... Internal 3,079 43.17%
... Other 1,569 21.99%
Fund Type

... Closed-end Fund 1,370 19.21%
... ODCE Fund 1,699 23.82%
... Other 57 0.80%
... Open-end Fund 1,060 14.86%
.. Single Client Account 2,947 41.32%

Notes: This table presents the summary statistics of categorical features.
The covariates included in component b can thus be summarized as in equation (3.5).
X, =[SPFLEy Ei_1] (3.5)

Our models incorporate 50 explanatory variables reflecting the main information used in
the traditional appraisal methods discussed in the "Traditional Valuation Methods" section
(i.e., the income approach, the sales comparison approach, and the cost approach). The

input—output relationship is summarized in equation (3.6).
Y~ [Xq Xp | (3.6)

Table 3.2 provides a summary statistic of all numerical regressors, and Table 3.3 presents

the distributions of the categorical features. It should be mentioned that, aside from the
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components X, and X, following Matysiak and Wang (1995), appraisal values remain
estimates and can rationally deviate from transaction prices for several reasons that are
specific to the buyer or seller in the bargaining process and thus not foreseeable. However,
we do not expect anything systematic in deviations of this kind, so we do not consider

these random effects further.

3.4.4 Models

Non-parametric machine learning methods can identify interactions between the
covariates without the need to specify them a-priori. Hence, these methods are not limited
to any implicit assumptions of the relationship between X and Y and should be free of
manual bias and specification error. To assess whether such methods can add to the
understanding of pricing processes beyond the understanding achieved with traditional
methods, we attempt to explain the information content in the appraisal errors Y using
the extreme gradient boosting algorithm (i.e., boosting) by Chen and Guestrin (2016),

which is an ensemble of regression trees.

The general concept of a regression tree as introduced by Breiman et al. (1984) is to divide
the feature space into mutually exclusive intervals by creating binary decision rules for each
feature that contributes to a reduction in the variation of the dependent variable. Such a
decision rule is referred to as a split or node and can be thought of as a junction in the
process of growing a branch of the tree. This splitting process is continued until the
prediction error is minimized or a stopping criterion comes into effect. The resulting leaves
of each branch are subsequently referred to as the terminal nodes of the regression tree,
each representing a constant value as the final prediction rule. The entirety of these rules
can be thought of as the regression tree model. To optimize model performance (i.e.,
select the optimal hyperparameters for model regularization), a tree model is iteratively
trained (i.e., grown) using a training subsample and tested by passing the observations
from the respective test subsample down the branches of the tree following the decision
rules. Each observation is eventually assigned a terminal leaf corresponding to the final

property price prediction.

However, individual trees’ intuitiveness and flexibility are accompanied by the risk of
quickly overfitting the training sample, thus imposing limitations on unseen data. A more
dependable and robust approach is based on the idea of using many individual trees as
building blocks of a larger prediction model, known as ensemble learner. The gradient
boosting algorithm developed by Friedman (2001) is a prominent example of such
ensemble learners. As demonstrated repeatedly in the literature, boosting achieves high

accuracy and at the same time consistency for the prediction of property prices in the
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residential sector, while being comparatively efficient from a computational perspective

(e.g., Mayer et al., 2019; Deppner and Cajias, 2022; Lorenz et al., 2022).

In a boosting algorithm, a single regression tree is fitted as the base model and is then
iteratively updated by sequentially growing new regression trees on the residuals of the
preceding tree to continue learning and thereby “boosting” model accuracy. The final
boosting model consists of an additive expansion of regression trees. The extreme gradient
boosting algorithm by Chen and Guestrin (2016) only considers a randomly selected subset
from all available predictors at each split in the tree-growing process and is thus a more
regularized alternative of the gradient boosting algorithm by Friedman (2001). This
introduces an additional source of variation into the model to provide more generalizable

and robust estimations.

To further ensure the generalizability of the results, the performance of our models is
evaluated using k-fold cross-validation. Cross-validation is a resampling technique used to
counteract overfitting by partitioning the dataset into k mutually exclusive folds of the
same size. The model is trained k times on k — 1 folds and tested on the k™ fold,
respectively, such that the model performance is entirely evaluated on unseen data without

losing any observations.

By taking the appraisal error as our dependent variable, the manual appraisals from the
NPI can be thought of as the base model in our boosting algorithm. Following Pace and
Hayunga (2020), we use the standard deviation to measure the total variation in our
dependent variable, that is, the manual appraisal error as specified in equation (3.3), as
Oappraisal ANd the unexplained residual variation of our boosting estimator as og,esting:

shown in equations (3.7) through (3.9).

izale — &2 (3.8)

GBoosting -

o /M (3.7)
Appraisal — n
1’ n

e=y—79 (3.9

Our null hypothesis can thus be stated as:

Ho: "“The difference between manual appraisals and sales prices cannot be

explained by the existing covariates.”
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This is the case when the condition in equation (3.10) is fulfilled.

. OAppraisal. (3.10)

H, <1

GBoosting

In other words, this means that deviations between appraisals and sales prices follow a
random process, and the improvement provided by machine learning algorithms over
existing valuation approaches is not significantly different from zero. In contrast, the
alternative hypothesis implies there is structured information content in the deviations
between appraisals and sales prices, which machine learning models can exploit to explain
these residuals further. This would provide an improvement in the understanding of pricing

processes that goes beyond the understanding achieved with current appraisal methods:

Hi: “The difference between manual appraisals and sales prices can be explained

by the existing covariates.”

Following the rationale of Pace and Hayunga (2020), the Ho is rejected when the ratio of
the total variation to the residual variation exceeds the value of 1, satisfying the condition

in equation (3.11).

_Oappraisal (3.11)

H, >1

UBoosting

Considering the results of the ANOVA test, which indicates systematic differences in
appraisal errors across property types, we estimate separate models for each of the four
asset sectors. Additionally, we calculate one global model for all property types, including

the property type as an additional explanatory variable. In total, this results in five models.

After testing our hypotheses, we apply model-agnostic permutation feature importance
(Fisher et al., 2019) to all models where the null hypothesis is rejected to examine the
structure in appraisal errors. This method yields insights into the decision tree building
process of the models so that the features are ranked according to their relative influence
in reducing the variation between sales prices and market values and, thus, their

contribution to shrinking the appraisal error.

3.5 Empirical Results

This section features the empirical results of our analyses. First, we present the descriptive
statistics of the deviation between sales prices and appraisal values of commercial real

estate from the NPI. We then examine the variation in these appraisal errors using extreme
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gradient boosting trees. With respect to our research objectives, we analyze whether
appraisal errors contain structured information that tree-based ensemble learners can
exploit to further reduce appraisal errors. Subsequently, we discuss the features’ relative

importance to infer where the shrinkage in appraisal errors originates.

3.5.1 Descriptive Statistics

Following Cannon and Cole (2011), we investigate the accuracy and bias in appraisal values
as estimates of sales prices. Table 3.4 provides a summary of the absolute percentage
appraisal errors in our sample population and a disaggregated overview for each year and
property type. Overall, the MAPE in our sample is 11.1% across all property types and
years. This is smaller than the 13.2% reported by Cannon and Cole (2011) for the period
between 1984 and 2009 but roughly the same magnitude. On average, accuracy is highest
for apartments with an error of 8.6% and lowest for industrial sites with an error of 12.5%.
The t-statistic tests the null hypothesis that the MAPE is not significantly different from
zero in the respective groupings. The null can be rejected across all years, property types
and for the aggregated sample, indicating inaccurate appraisals. We also do not find any
evidence that the MAPE has significantly narrowed over the past decade compared to
previous years when disregarding the large deviations that occurred during the great

financial crisis in 2009.

Subsequently, we examine the signed percentage errors as a metric for bias, which is
presented in Table 3.5. Matysiak and Wang (1995) and Cannon and Cole (2011) state that,
on average, positive and negative deviations should cancel out, so appraisals are
considered unbiased if the null hypothesis of the t-statistic, that is, the MPE is not
significantly different from zero, is accepted. We find this to be the case for some individual
years, particularly during flat market phases such as in 2001 and 2002 after the burst of
the Dot-com bubble, in 2012 in the aftermath of the great financial crisis, between 2016
and 2017 when capital appreciation in U.S. commercial real estate markets was cooling
off, and from 2020 through 2021, when the Covid-19 pandemic caused uncertainty in
commercial markets, dampening growth. However, the null hypothesis is rejected for all
years in which markets were either in rising or falling regimes. We find that the MPE
averages 4.97% during rising markets, indicating a structural underestimation of property
prices, whereas this metric turns negative at 12.95% during the sharp downturn between
2008 and 2009, the only period of falling markets in our sample, indicating overestimation
of prices. This provides evidence that appraisal values tend to lag sales prices in moving
markets and strongly corroborates the findings by Cannon and Cole (2011) and previous

studies showing that market cycles have an impact on the reliability of appraisals.
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3.5.2 Residual Standard Deviation

After confirming the findings of inaccuracy and structural bias made by Cannon and Cole
(2011) for our sample period, we investigate the variation in the respective appraisal errors
(i.e., residuals). The results of the analysis were obtained by applying the extreme gradient
boosting algorithm (i.e., boosting) separately for each property type and to the aggregated
dataset. The models were repeatedly cross-validated by ten mutually exclusive folds to
avoid overfitting, such that each of the folds was used once as a test sample. The
hyperparameters of the boosting estimators were optimized via the root mean square error
using a grid search procedure. All error measures are reported as 10-fold cross-validation
errors, thus representing out-of-sample estimations. The results are displayed in Table 3.6.
By analogy to the study of Pace and Hayunga (2020), the last two columns depict the ratio
of the standard deviation from the dependent variable (i.e., total variation of appraisal
errors) to the residuals resulting from the machine learning estimations (i.e., unexplained
variation of appraisal errors). The ratio exceeds 1 for any case where the appraisal errors

can be further explained by the applied boosting procedure.

Table 3.6: Residual Standard Deviation

2 0_Appra.isal

0_Appra.isal GBuosting R Boosting GBuosting
All Types 0.15 0.13 0.26 1.17
Apartment 0.11 0.09 0.31 1.20
Industrial 0.16 0.14 0.28 1.18
Office 0.16 0.14 0.25 1.16
Retail 0.15 0.13 0.22 1.14

Notes: This table benchmarks the residual variation of manual appraisals against the residual variation of the boosting
algorithm, whereby o is the standard deviation of the respective residuals. A performance improvement occurs whenever
the ratio of 6ppraisat OVETr Opoosting €XCEds the value 1.

We find the results in Table 3.6 to be unequivocal in all four asset classes, as a reduction
in the variation of appraisal errors (i.e., residual variation) can be achieved in all cases. The
boosting algorithms yield considerable improvements, with coefficients taking values well
above 1. The reduction in the residual variation is highest for apartments with 20.5% and
lowest for retail properties with approximately 14.2%. By implication, such a reduction

signals that the appraisal error is systematic to some extent rather than purely random.

To formally test our hypothesis and rule out that improvements occur by pure chance, we
apply bootstrapping to create confidence intervals for the shrinkage of the residual
variation in our dependent variable. This is achieved by generating 1,000 random
bootstrap samples and repeatedly training and testing the models on each sample. Figure
3.2 presents the bootstrap distribution of the model performance for all five models. Based

on the bootstrap confidence intervals, the null hypothesis stated in equation (3.10) can be
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rejected at a 5% level of significance for the retail model and at a 1% level of significance

for all other models.

Figure 3.3 depicts the distributions of the residuals by asset class. Matysiak and Wang
(1995) and Cannon and Cole (2011) show appraisal errors to be biased in their samples.
That is, the mean of the error distribution was positive or negative and not around zero.
This can also be observed in Figure 3.3 for the median appraisal errors, which are
considerably above the horizontal null point line in all asset classes, indicating that most
properties are overvalued. In contrast, all machine learning models produce residuals close
to zero. This indicates that the estimated models are not biased and produce reliable
responses. Furthermore, the 25th and 75th percentiles of the boxplots show that the

dispersion of the residuals from boosting is smaller than the original appraisal errors for all

property types.

Figure 3.2: Bootstrap Distribution of Model Performance

15

Property Type

g All Types

| Apartment

10

Density

0.9 1.0 14 12 13 1.4
GAppra\sa\/GEluuslmg

Notes: The density plot shows the bootstrap distribution of the model performance for all five models using 1,000 random
bootstrap samples. A performance improvement occurs whenever the ratio ?Wﬂ > 1, as indicated by the dotted

Boosting

horizontal line. The area to the right of the dotted line can be interpreted as the confidence interval for which the null
hypothesis 222l < 1 can be rejected. The null hypothesis can be rejected at a 5% level of significance for all models and

OBoosting
at a 1% level of significance for all models except for the retail model. The respective ratios measured by 10-fold cross-

validation are presented in Table 3.6.
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Figure 3.3: Comparison of Residual Variation
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Notes: The boxplots show the distribution of the raw appraisal errors (solid line) in comparison to the boosted appraisal
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We also see a relationship between the homogeneity of asset classes and the performance
improvement. Relatively homogenous property types (i.e., apartments, industrial) benefit
more from machine learning than relatively heterogenous asset classes (i.e., retail, office).
The same applies to the sample size, as data-driven techniques require homogenous and

large samples to learn patterns from the data.

To test whether the reduction in the residual variation can also reduce bias in the actual
appraisals, we infer hypothetical appraisal values from the estimated percentage appraisal
errors by multiplying these by the original appraisal values. In analogy to the descriptive
statistics of the manual appraisal errors in the "Appraisal Error" section, Tables 3.7 and 3.8
present the adjusted appraisal values obtained by the boosting algorithms. Overall, the
MAPE presented in Table 3.7 is reduced for all asset classes. In the aggregated models, a
reduction from 11.12% to 9.25% is achieved. The highest absolute reduction in the MAPE
was achieved for industrial properties with 2.48 percentage points (i.e., 19.85%) by the
boosting model. The highest relative reduction in the MAPE was achieved for apartments

with 20.91% (i.e., 1.80 percentage points). The lowest absolute and relative improvement
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can be observed for office buildings. However, this is still 1.44 percentage points absolute
and above 12.32% relative. These figures confirm the findings of a significant reduction in
the residual variation (see Table 3.6) and support the hypothesis that machine learning
algorithms can exploit the structured covariance found in the residuals to further shrink

appraisal errors.

Compared to Table 3.5, the mean percentage errors in Table 3.8 reveal that the bias in
appraisal values could be successfully eliminated in most of the years and asset sectors.
The acceptance of the null hypothesis that the MPE is not significantly different from zero
for all the years except for the period between 2016 and 2018, in which the null could
only be rejected at the 10% confidence level, confirms that manual appraisal errors are
systematic. It also further supports previous findings in that the boosting estimator
provides unbiased estimates, although the mean percentage errors are negative for all
years except for 1997 and 2010, indicating a slight overestimation of the inferred appraisal

values.

Overall, we find that boosting can provide material improvements in increasing accuracy
and reducing structural bias in commercial appraisal values. However, it should also be
mentioned that machine learning methods are no crystal ball that can accurately predict
downturns such as during the great financial crisis without previously learning the effects
of varying economic conditions under transitioning market regimes. Moreover, external
shocks such as pandemics, wars, or any sort of crises are difficult to train since they occur

infrequently and can take on various forms.

3.5.3 Permutation Feature Importance

To draw conclusions about which features contribute most to the shrinkage of the residual
variation, we apply the model-agnostic permutation feature importance by Fisher et al.
(2019). Figure 3.4 provides a summary of the feature groupings introduced in the
"Explanatory Variables" section, decomposed according to their relative importance in
shrinking the appraisal error. Features that repeatedly appear at early splitting points of
the individual regression trees or show up more often in the tree-growing process have a
high importance score. Identifying these features provides insights into factors that are not
adequately reflected in current appraisal practices. This can offer constructive criticism to

improve the state-of-the-art (Pace and Hayunga, 2020).

The bar chart in Figure 3.4 shows that both components a and b have an evident influence

on appraisal errors, with component b dominating by about three-quarters. This indicates
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that the improvement achieved by the boosting algorithm is not solely due to the time lag

between appraisal and sale, but results to a great extent from valuation bias.

Figure 3.4: Relative Permutation Feature Importance

All Types Apartment Industrial Office Retail

100%

Component

75% ﬂ Xe

fffff

50%

Relative Importance

25%1 i

ooy, | O R :

Notes: The bar chart shows the relative permutation feature importance of both components X, and X5 (indicated by the
linetype) and the various feature clusters described in section 3.4.3 (indicated by the color) for each of the five models. The
relative importance on the y-axis indicates the relative contribution of each component and cluster to the reduction of the
prediction error. The order of groupings is arbitrary.

Overall, location (L) appears to be the most relevant cluster for explaining appraisal errors,
accounting for nearly 40% across all models. To a great extent, this is driven by the spatial
coordinates. When a regression tree splits on the latitude and longitude, it effectively
identifies new submarkets for which it generates individual models, indicating that spatial
considerations on the micro-level are not appropriately reflected in appraisal values. This
is consistent with Pace and Hayunga (2020), who find that the performance improvement
of boosting and bagging regression trees compared to linear hedonic models results to a
great extent from exploiting spatial structures in the residuals that cannot be captured with
location dummies, such as ZIP code or MSA code areas. However, this seems to be
different for industrial properties, as the resolution of MSAs appears to exploit spatial
structures in the residuals better than the coordinates, implying that locational factors on

the macro-level are overlooked in this sector.
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With respect to component a, we find Capex in the second quarter before the sale to be
the feature with the highest average impact on appraisal errors across all models. This is
surprising, as the appraiser should know Capex measures before they occur. However,
Beracha et al. (2019) find that in instances, appraisals are updated by simply adding Capex
to the market values. This is known as a stale appraisal and may not adequately reflect the

true intrinsic value of a building improvement.

For component b, the building occupancy is on average the most important feature driving
appraisal errors. As described by Beracha et al. (2019), the relation between vacant space
and commercial real estate value depends on the optionality of vacant space, which can
be based on either a growth hypothesis (i.e., assuming higher future NOI growth from the
potential of leasing up vacant space) or a risk hypothesis (i.e., assuming idiosyncratic
weaknesses and higher uncertainty in future NOI growth due to vacant space). Differences
between valuations and sales prices can occur depending on whether appraisers and
investors see vacant space as an upside potential related to rental growth or as a downside
potential associated with uncertainty. Consistent with our findings on the systematic
overvaluation of appraisals in the "Descriptive Statistics" section, Beracha et al. (2019)
demonstrate that, on average, the option value of vacant space is overvalued, as buyers

may incorporate more risks than sellers aiming to achieve a higher sale price.

Based on Cannon and Cole (2011), we also control for appraisal type and fund type. The
authors expect internal appraisals to be less accurate than external appraisals and
properties owned by open-end funds to be more accurate than those owned by closed-
end funds or separate accounts. This is because internal appraisers tend to be less objective
and more likely to smooth appraisals and open-end funds rely on higher appraisal accuracy
as investors can trade in and out based on the appraised values, thus allowing informed
investors to gain excess returns if the deviation between appraised values and market
values is too high (Cannon and Cole, 2011). The authors confirm that appraisal errors are
smaller for properties held in open-end funds than properties owned by closed-end funds
and separate accounts. However, they find no evidence that external appraisals from an
independent third party are significantly lower than internal appraisals. These findings are
consistent to our feature importance, as the fund type has a moderate average influence
in explaining appraisal errors, while the appraisal type is, on average, the least important

feature across all models, implying no significant impact on the predictions of the models.

3.6 Conclusion

Accurate and timely valuations are important to stakeholders in the real estate sector,

including authorities, banks, insurers as well as pension and sovereign wealth funds. They
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form the basis for informed decisions on financing, developing portfolio strategies and
undertaking transactions, as well as for reporting to boards, investors, and tax offices.
However, research has shown that, over the past 40 years, commercial real estate
appraisals have had a consistent tendency of structural bias and inaccuracy, while lagging
true market dynamics (Cole et al., 1986; Webb, 1994; Matysiak and Wang, 1995; Fisher
et al., 1999; Cannon and Cole, 2011). While traditional appraisal methods used in the
commercial sector have by and large remained the same for decades, statistical learning
methods have become increasingly popular. These methods have demonstrated their
potential to accurately capture quickly changing market dynamics and complex pricing
processes in the residential property sector. However, the transfer of such data-driven
valuation methods to commercial real estate faces significant challenges such as data
scarcity, heterogeneity, and opaqueness of the models. This poses the question of whether
machine learning algorithms can provide material improvement to state-of-the-art
appraisal practices in commercial real estate with respect to accuracy and bias of

valuations.

Using property-level transaction data from 7,133 properties included in the NCREIF
Property Index (NPI) between 1997 and 2021 across the United States, we analyze whether
deviations between appraisal values and subsequent transaction prices in the four major
commercial real estate sectors (apartment, industrial, office, and retail) contain structured
variation that can be further explained by advanced machine learning methods. We find
that extreme gradient boosting trees can substantially decrease the variation in appraisal
errors across all four property types, thereby increasing accuracy and eliminating structural
bias in appraisal values. Improvements are greatest for apartments and industrial
properties, followed by office and retail buildings. To clarify where the improvements
originate, we employ model-agnostic permutation feature importance and show the
features’ relative importance in explaining appraisal errors. We find that especially spatial
and structural covariates have a dominant influence on appraisal errors, while only one-
fourth of the explained variation can be attributed to the time lag between the appraisal

and sale date.

The results of our study indicate that current appraisal practices leave room for
improvement, which machine learning methods can exploit to provide additional guidance
for commercial real estate valuation. The use of such algorithms can make valuations more
efficient and objective while being less susceptible to subjectivity and receptive to a wider
range of information. Moreover, these methods offer regulatory bodies and central banks

the opportunity to quickly analyze and forecast real estate price developments to detect
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early signs of price bubbles, stress-test the banking system'’s stability in shock scenarios or

assess the impact of interest rate decisions and rent controls.

Despite their potential for many areas in the industry, machine learning algorithms also
encounter limitations that should be carefully considered before their use, as they are not
a panacea for all problems in the sector. While algorithms can reduce bias and increase
objectivity, they are still developed and trained by humans and thus, remain subject to bias
to some extent. In this context, data availability is currently one of the most critical
problems for the use of machine learning in the commercial real estate sector, since the
complex architectures of the models require substantial amounts of representative training
data to produce unbiased and reliable results. Moreover, it should be mentioned that,
although the methods can produce accurate predictions of property values by finding
patterns between input and output data, they do not consider the laws of economics and
thus, cannot justify the rationale behind these patterns or determine causality in the
relation between input and output data. This issue is amplified by the lack of inherent
interpretability of these models, as they are opaque black boxes that do not provide
inference. Although this can be partly circumvented with model-agnostic interpretation
techniques, these methods have their very own limitations and pitfalls, and high

computational expense can be another limiting factor for their practical implementation.

That said, algorithms can excel humans in quickly learning relationships from large
amounts of data, but they have no economic justification and cannot consider aspects that
require reasoning. If applied prudently, these methods can add to an enhanced ex-ante
understanding of pricing processes that may support valuers in the industry and contribute
to more dependable and efficient valuations in the future. Yet, we do not believe that
machine learning algorithms can substitute the profession of appraisers any time soon due

to the restrictions mentioned above as well as regulatory and ethical challenges.

Having demonstrated the potential of machine learning for many areas of the industry,
while at the same time raising awareness for the limitations of these techniques, we hope
to stimulate further research that contributes to the development of algorithmic
approaches in this field. Such research may, for instance, address the exact relations

between features and property prices to offer further guidance for the appraisal industry.
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3.7 Endnotes

1. Estimations were executed on a standard 1.80 GHz processor with four cores, eight
logical processors and eight gigabytes of RAM using a 64-bit Windows operating system.
Hyperparameter tuning for optimization of the boosting models required between 25 and
64 hours for each of the four property types, running in parallel. The model including all
four property types required 116.5 hours of computation time. Hyperparameter tuning
was performed via a grid search procedure with 1,000 evaluations and 10-fold cross-
validation. The training and testing of the optimized boosting models via 10-fold cross-
validation took between 1.5 and 3.8 minutes for each of the four property types and 7

minutes for the aggregated model.

2. We have considered and tested a random forest regression (i.e., bagging) next to the
extreme gradient boosting algorithm (i.e., boosting) and found no material difference in
the explanatory power between the boosting and bagging estimators (referring to Table
3.6, Opagging Was on par With oggosting UP to the second decimal place for all models and
up to the third decimal place for all models except for office with a deviation of 0.001).
However, computation time for bagging was up to twice as long as that for boosting. For

reasons of brevity, the results for the bagging estimator were not reported in the paper.
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4 Increasing the Transparency of Pricing
Dynamics in the U.S. Commercial Real Estate
Market with Interpretable Machine Learning
Algorithms

4.1 Abstract

Machine learning (ML) algorithms have sown an unprecedented accuracy in estimating
house prices, given an abundance of data recorded by multiple listing services and the
development of increasingly sophisticated methods. Despite the potential that such
methods offer for automated valuation models (AVMs), their adoption in the institutional
sector is progressing slowly. In contrast to the residential sector, little is known about the
usefulness of data-driven methods in commercial real estate markets as the availability of
structured data is limited due to market intransparency and property heterogeneity.
Moreover, practitioners and regulators are reluctant to rely on these techniques as their
mechanisms are black boxes in the sense that an inherent comprehensibility of their
predictions is impeded by the complexity of their architectures. The objective of this study
is to propose a holistic framework for the practical use of AMVs in a commercial real estate
context that considers both accuracy and interpretability. We train a deep neural network
(DNN) on a unique sample of more than 400,000 property-quarter observations from the
NCREIF Property Index and perform model-agnostic analysis using “Shapley Additive
exPlanations" (SHAP) to provide ex-post comprehensibility of the algorithm’s prediction
rules. In doing so, we furthermore assess to which extent the inner workings of the DNN
follow an economic rationale and set out how the proposed methods can add to the
understanding of pricing processes in institutional investment markets. By addressing the
caveats and illustrating the potential of ML in the field of commercial real estate, this article

represents another important pillar in the practical use of AVMs.

Keywords: Automated valuation models, Commercial real estate, Interpretable machine

learning
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4.2 Background

Estimating real estate prices and identifying relevant price determinants remains complex
due to the inherent heterogeneity of properties and the diversity of factors that influence
their values. As stated by Quan and Quigley (1991), market mechanisms are obfuscated by
“[...] a noisy signal, reflecting incomplete information as well as the conditions of sale,”
given that real estate markets are illiquid, opaque and individual agents in the market are
only infrequently engaged in transactions. Appraisers must extract meaningful information
(i.e., the signal) from irrelevant data (i.e., the noise) using their expert knowledge about
the market, based on their experience observing past transactions. Consequently, pricing
processes must be disentangled based on limited information and subjective judgments of
price determinants that a valuer considers relevant, resulting in imprecise and biased

valuations (Dunse and Jones, 1998; Cannon and Cole, 2011).

This gave rise to hedonic pricing models introduced by Rosen (1974) as the prevalent
framework to analyze the mechanisms behind property pricing more objectively from an
econometric point of view. Parametric hedonic models, such as those proposed by Mills
(1992), Sirmans and Guidry (1993), or Lockwood and Rutherford (1996), utilize linear
regression methods to estimate property prices based on intrinsic property characteristics
(e.g., location, size, amenities). Literature has demonstrated the hedonic models’ efficiency

and ease of interpretability in revealing relevant property price determinants.

However, these models are built on strict assumptions which are unlikely to hold and
require a fixed additive functional form between the property value and the explanatory
variables that needs to be specified a-priori. This entails a high risk of misspecification. As
Dunse and Jones (1998) explained, hedonic prices may vary across space and time and can
thus not be assumed to be constant. Other concerns refer mainly to the non-linearity of
pricing processes that cannot be adequately captured with linear models. Studies by
Grether and Mieszkowski (1974), Do and Grudnitski (1993), and Goodman and Thibodeau
(1995) identify significant non-linearities between property prices and the building age as
well as the square footage, demonstrating that complex relationships between property

prices and features cannot be reduced to a single, invariant beta coefficient.

As data becomes more readily available and artificial intelligence (Al) continues to advance,
industry and academia have witnessed a shift towards more adaptable machine learning
(ML) techniques for determining property values. This shift has become evident in
automated valuation models (AVMs), which have gained importance in the sector,
particularly in residential real estate, given the increased flexibility in the underlying models.

In the literature, ML-based AVMs have repeatedly demonstrated unprecedented accuracy
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in their predictions. They also do not require judgment concerning the model’s functional
form as they are designed to autonomously find complex non-linear relationships in the

data to optimize model fit.

However, the adoption of ML in industry, and particularly in the institutional sector, is
facing critical issues. First, ML techniques rely on large amounts of data to produce reliable
and consistent results, as demonstrated by Worzala et al. (1995). In contrast to the
residential domain, data availability is still limited in the commercial sector, which is
particularly problematic due to the high heterogeneity of commercial property types
(Deppner et al.,, 2023). Second, the models are criticized for lacking an economic
justification and do not foresee any form of intrinsic interpretability (e.g., Din et al., 2001;
McCluskey et al., 2013; Valier, 2020). This refers to the fact that these models are purely
data-driven, allowing them to make predictions from any combination of data (Rico-Juan
and Taltavull de La Paz, 2021), while their complex and opaque architectures impede
understanding of how the algorithm arrived at a particular valuation, and how the input
factors have affected the outcome. This hampers the comprehensibility of the models and
prohibits drawing inferences on price determinants, making it difficult for practitioners to
trust and rely on AVMs, particularly given that regulators and authorities demand

transparency in estimating market values.

The current state of research suggests three ways to address this. The first is to reduce the
complexity of the applied models to such an extent that their interpretability is preserved.
However, this makes the models more sensitive to changes in the data and increases the
tendency of overfitting, resulting in poor out-of-sample performance (Kok et al., 2017;
Pace and Hayunga, 2020; Lorenz et al., 2022). Second, ML can be used to provide
constructive criticism, such as in the variable selection, model specification (e.g., Yoo et
al., 2012; Perez-Rave et al., 2019), or model selection (e.g., Pace and Hayunga, 2020),
which can help to improve upon traditional models. However, this means giving up the
flexibility and accuracy of ML models for the sake of interpretability. The third alternative
is to apply model-agnostic interpretation techniques that can decipher the black box of
ML models, thus enabling ex-post interpretability while maintaining accuracy and
precision, as shown by Levantesi and Piscopo (2020), Rico-Juan and Taltavull de La Paz

(2021), Lorenz et al. (2022) as well as Potrawa and Teterava (2022).

This study aims to expand upon this discussion by proposing a novel and comprehensive
framework for utilizing AVMs in commercial real estate that balances both precision and
comprehensibility. To achieve this, we train four deep neural networks (DNNs) on a large

data sample comprising over 400,000 property-quarter observations from the asset sectors
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apartment, industrial, office and retail. We then apply model-agnostic analysis using
“Shapley Additive exPlanations” (SHAP) to provide clear insight into the prediction rules of
the algorithms. In doing so, we further assess to which extent the inner workings of the
DNNs follow economic principles. We also set out how the proposed methods can add to
a deeper and more nuanced understanding of pricing mechanisms in institutional
investment markets by revealing non-linear and three-dimensional relationships in the

value drivers of commercial real estate.

The study’s contributions are relevant and timely for academia and practice for several
reasons. While we do not believe that AVMs have developed to the point where they can
substitute manual appraisers in the foreseeable future, the underlying technology still
exhibits high disruptive potential. It is likely to reshape the multi-billion-dollar valuation
industry in the future (Kok et al., 2017). Especially in the commercial domain, where
valuations are more complex and need to be executed frequently, these techniques can
generate valuable insights to support data-driven decision-making and thus leverage
efficiency in both markets and business processes by increasing the speed and scale of
valuations, reducing the cost of transactions and, ultimately, increasing transparency in
pricing processes. Market participants that incorporate such technologies into their
business processes earlier than their competitors will be able to streamline their processes

and gain a competitive edge.

4.3 Data

The National Council of Real Estate Investment Fiduciaries (NCREIF) provided the data for
this study. The principal study data comprises quarterly, property-level observations of all
properties included in the NCREIF Property Index (NPI) from the first quarter of 1978 to
the first quarter of 2021. The NPI is the oldest and most widely followed commercial real
estate investment index in the United States. It covers institutionally owned commercial
real estate properties across the asset sectors apartment, hotel, industrial, office and retail.
The properties included in the index fluctuate over time as properties enter the database
upon purchase and leave the database upon sale. This constitutes an initial unbalanced
sample of 648,098 property-quarter observations across 30,254 individual properties, for
which we record the corresponding market values, a series of structural and physical
attributes, and cash flows. Due to limited data availability, we excluded non-operating

properties and hotels from the initial sample.

We account for missing and erroneous data as follows. Observations with market values,
square footage and construction years reported as less than or equal to zero are regarded
as data errors and are dropped. Likewise, observations with occupancy rates taking values
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below zero or higher than one are removed. Furthermore, observations with missing values
for the square footage, the construction year, the occupancy rate, the net operating
income (NOI), the capital expenditures (CapEx), and the property subtype were omitted,
as these represent the main explanatory variables from the raw NCREIF dataset. After
scaling market values, NOI, and CapEx by the property’s square footage, we note that the
remaining errors and anomalies in the data seem concentrated at the tails of the market
values per square foot distribution. For this reason, we follow Calainho et al. (2022) and

cut off the lower and upper percentile of the distribution for each property type.

We subsequently enrich the cleaned data with a set of new variables. First, we calculate
the building age as the difference between the valuation date and the construction date,
as well as the cumulative sum of a property’s capital expenditures scaled by square footage
as a proxy for building quality. We also note that NOIs can fluctuate materially over the
holding period and in individual quarters. Since the average property in our sample has a
five-year holding period, we use the eight-quarter moving average of the properties’ NOIs

as a proxy for stabilized income.

Table 4.1: Clustering of POIs

Category POI Source
Public Transport Bus Station Google
Subway Station Google
Light Rail Station Google
Train Station Google
Public Transport OSM
Negative Externalities Prison OosM
Graveyard OosM
Gas Station Google, OSM
Food Establishments Restaurant Google, OSM
Cafe Google, OSM
Healthcare Provider Pharmacy Google, OSM
Doctor Google
Retail Stores Shopping Mall Google, OSM
Department Store Google, OSM
Food Stores Supermarket Google, OSM
Convenience Store Google, OSM
Nightlife Venue Bar Google, OSM
Nightclub Google, OSM
Educational Institutions Kindergarten OSM
School Google, OSM
Cultural Institutions Museum OosM
Attraction OSM
Service Establishments Bank Google, OSM
Post Office Google, OSM
Fitness Gym Google, OSM
Fitness Centre OsSM
Park Park Google, OSM

Notes: This table presents the POI categories and how they were clustered. Google corresponds to the POIs sourced from
the Google Places APl and OSM corresponds to POIs sourced from Open Street Maps.
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As demonstrated repeatedly in the literature, location is an important determinant of real
estate values. We geocode our sample using the property addresses to retrieve the
distances to relevant points of interest (POIs). Around 12.1% of the addresses could not
be geocoded because of missing or incomplete addresses, so we omitted those
observations. For the remaining properties, we source a set of relevant POls that are
expected to cause either a premium or a discount to their surrounding area. For optimal
data coverage, we use both Google Places and Open Street Maps (OSM) to retrieve the
data and calculate the shortest distance from each property to the respective POls. We
subsequently cluster POIs that are similar into categories. This helps avoid missing data and
reduce the dimensionality of the regressor matrix, making the models more interpretable

and more efficient. Table 4.1 provides a summary of the POI clusters.

In addition, we collect macroeconomic data to control for market cycles and varying
economic conditions. This includes the ten-year government bond yield as well as the four-

quarter percentage change in the gross domestic product (GDP) at the state level retrieved

Table 4.2: Descriptive Statistics of Numerical Variables
All Property Types (N = 402,490)

Variable Unit Mean Sd Min 1'Q.  Median 34Q. Max
Market Value [$/SqFt] 189.54 198.54 18.57 71.60 125.40 229.63 2,634.53
SqFt [k] 283.08 371.09 1.50 109.50 200.64 341.25 22,119.56
Building Age [Years] 20.77 16.78 0.00 10.00 17.00 27.00 156.00
Occupancy [%)] 0.92 0.12 0.00 0.90 0.96 1.00 1.00
NOI [$/SqFt] 2.62 2.45 -48.58 1.13 1.90 3.43 73.74
NOI Stabilized [$/SqFt] 2.60 2.28 -19.69 1.14 1.89 3.39 56.26
CapEx [S/SqFt] 0.77 2.91 0.00 0.00 0.14 0.59 311.02
CapEx Cumulative Sum [$/SqFt] 13.20 40.51 0.00 0.41 3.34 11.65 1,802.37
Longitude [°] -96.14 17.66 -158.12 -117.53 -93.24  -80.36 -68.75
Latitude [°] 36.85 5.27 19.63 33.58 37.48 40.72 61.56
Public Transport [km] 1.70 2.00 0.00 0.32 1.06 2.29 12.99
Negative Externalities [km] 0.76 0.59 0.00 0.36 0.62 1.00 7.95
Food Establishments [km] 0.36 0.44 0.00 0.07 0.22 0.50 7.20
Healthcare Provider [km] 0.42 0.65 0.00 0.08 0.22 0.51 11.93
Retail Stores [km] 0.92 1.05 0.00 0.24 0.61 1.23 12.93
Food Stores [km] 0.61 0.55 0.00 0.21 0.46 0.84 8.45
Nightlife Venue [km] 0.78 0.95 0.00 0.20 0.51 1.06 12.36
Educational Institutions [km] 0.49 0.52 0.00 0.17 0.35 0.63 8.25
Cultural Institutions [km] 2.12 1.96 0.00 0.77 1.65 2.84 12.96
Service Establishments [km] 0.70 0.74 0.00 0.18 0.47 1.00 8.16
Fitness [km] 0.69 0.84 0.00 0.19 0.44 0.90 12.85
Park [km] 0.79 0.84 0.00 0.30 0.59 1.00 12.85
GDP yoy [%] 0.02 0.03 -0.11 0.01 0.02 0.04 0.22
Gov. Bond Yield [%] 0.03 0.02 0.01 0.02 0.03 0.04 0.08
Construction Cost yoy [%] 0.03 0.05 -0.10 0.01 0.04 0.05 0.20
Employment yoy [%] 0.01 0.03 -0.50 0.00 0.01 0.03 1.10
Market Cap Rate qoq [%] 0.06 0.01 0.04 0.05 0.06 0.07 0.10
Market Vacancy qoq [%)] 0.08 0.03 0.03 0.06 0.07 0.10 0.17
Market NOI Growth goq [%)] 0.01 0.03 -0.32 -0.01 0.01 0.02 0.14

Notes: This table presents the summary statistics of numerical features.
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Table 4.3: Descriptive Statistics of Categorical Variables
All Property Types (N = 402,490)

Variable n Percent
Property Type

... Apartment 88,442 21.97%
... Industrial 151,109 37.54%
... Office 99,271 24.66%
... Retail 63,668 15.82%
Property Subtype

... Garden 55,566 13.81%
... High-rise 26,889 6.68%
... Low-rise 5,987 1.49%
... Research and Development 6,049 1.50%
... Flex Space 17,054 4.24%
... Manufacturing 729 0.18%
... Other 2,328 0.58%
... Office Showroom 440 0.11%
... Warehouse 124,509 30.93%
... Central Business District 23,114 5.74%
... Suburban 76,157 18.92%
... Community Center 17,757 4.41%
... Theme/Festival Center 167 0.04%
... Fashion/Specialty Center 2,951 0.73%
... Neighborhood Center 23,511 5.84%
... Outlet Center 113 0.03%
... Power Center 6,776 1.68%
... Regional Mall 4,843 1.20%
... Super-Regional Mall 4,319 1.07%
... Single-Tenant 3,231 0.80%
Market Cycle

... 1991Q1-1994Q1 (Gulf Crisis) 6,324 1.57%
... 1994Q2-2001Q3 47,506 11.80%
... 2001Q4-2002Q2 (Dotcom Crisis) 8,310 2.06%
... 2002Q3-2008Q1 80,138 19.91%
... 2008Q2-2010Q1 (Subprime Crisis) 35,742 8.88%
... 2010Q2-2020Q1 201,418 50.04%
... 2020Q2 (Covid-19 Pandemic) 5,565 1.38%
... 2020Q3-2021Q1 17,487 4.34%

Notes: This table presents the summary statistics of categorical features.

from the database of the Federal Reserve Bank of St. Louis, the four-quarter percentage
change in construction costs by region retrieved from the U.S. Census Bureau, and the
four-quarter percentage change in employment at the county-level retrieved from the U.S.
Bureau of Labor Statistics. We also collect quarterly real estate market data by property
type from NCREIF: market value cap rates, market vacancy rates and market rental growth
rates. Furthermore, we include a dummy indicator for different market cycles during the
sample period to better control for shocks and the effect of cyclical movements in the
overall market. Market cycles are defined as periods of consecutive positive (i.e., rising
markets) or negative (i.e., falling markets) quarterly capital appreciation returns derived
from the NCREIF Property Index (NPI).

97



Increasing the Transparency of Pricing Dynamics in the U.S. Commercial Real Estate
Market with Interpretable Machine Learning Algorithms

In the last step, we exclude CBSA codes with fewer than ten properties of the same
property type to prevent overfitting. The final study sample consists of 402,490 quarterly
market value observations across 18,286 individual properties and is balanced across 30
explanatory variables that are presented in the summary statistics in Table 4.2 and Table
4.3. Missing and erroneous data seem concentrated in the early years of the initial sample,
as the final study data ranges from the first quarter of 1991 to the first quarter of 2021,

covering 30 years.

4.4 Methodology

The basic workflow behind machine learning algorithms is illustrated in Figure 4.1
following Lang et al. (2019). A supervised ML model works by learning patterns from the
data and improving on past experiences (i.e., model errors). This process starts by dividing
the data into a training and a test subsample. The starting point of each ML model is
training a selected algorithm (i.e., learner) on the subjective training sample. Such
algorithms learn patterns from the training data to create prediction rules. Based on
previous model errors, these rules are assessed and refined in an iterative process. Once
the out-of-sample performance of the model is sufficient, it can be applied to an

independent test dataset (i.e., unseen or future data) to make predictions.

Figure 4.1: General Overview of the Machine Learning Process

Training Set Test Set Performance
Measure
-
Learner [ Model Prediction
J

Notes: This figure depicts the basic workflow of a machine learning algorithm.

To understand pricing processes in commercial real estate markets, it is crucial that the
selected models (i.e., learners) and the resulting prediction rules adequately capture
relationships in the data but are still generalizable enough to predict well out-of-sample.
Studies that compare different learners show that particularly artificial neural networks
(ANNs) produce robust and accurate predictions when applied in combination with
sufficient data (e.g., Peterson and Flanagan, 2009; Zurada et al., 2011; Antipov and
Pokryshevskaya, 2012; Baldominos et al., 2018; Mayer et al., 2019; Hu et al., 2019).
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4.4.1 Machine Learning Approach — Artificial Neural Networks

An ANN imitates the structure and function of the human brain. It is created of many
artificial neurons, called nodes, that are interconnected in layers to process information
and learn from experience. In many ways, this corresponds to how the human brain learns
from experience and adapts its expectations. When new information is processed, the
actual outcome of an event is compared with the expected (i.e., predicted) outcome, which
is fed by knowledge and experience. An error signal is generated in case of discrepancies
between the expected and the actual outcome. The brain adjusts the strength of the
connections between its neurons (i.e., synapses) to better represent the new information.
The stronger a synapse develops, the more likely it is that connected neurons will fire in
response to an incoming signal released by other neurons. Eventually, our final predictions
and expectations result from how stimulations are translated to chemical signals and
propagated through the network of neurons in our brain. In this way, the adjustment of
the connections marks the learning process such that previous errors are mitigated, and

the structure is constantly adapted to new information.

Figure 4.2: Structure of Neural Networks

Panel A: Single-layer ANN Panel B: Multi-layer DNN

Input Layer Output Layer Input Layer Hidden Layer 1 Hidden Layern  Output Layer

x:2:

& o

=3

&
l

wi

91010
<
2/

&

Notes: This figure depicts the conceptual structure of a neural network.

Analogously, an ANN learns by adjusting the weights of the connections between each
node in an iterative process. The optimal model fit is found by minimizing a loss function
that measures the distance from the actual to the predicted values, thus improving the

accuracy of the network’s prediction.
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In its simplest form, an ANN consists of only one input and one output layer (i.e., single-
layer ANN) and uses a linear activation function f, as depicted in Figure 4.2, Panel A. This
type of network can be compared to a linear regression. The bias b and the weights w; of
the input values x; represent the intercept and the beta coefficients in an ordinary least
squares (OLS) regression model and formulate the prediction y as exhibited in equation

4.1).

2

The more complex the input, the more sophisticated the structure becomes to adequately
process the information. This is achieved by adding more hidden layers with multiple nodes
and choosing other than linear activation functions in the model. This will introduce
interaction effects and non-linearity to the model and is referred to as a deep neural

network (DNN), as depicted in Figure 4.2, Panel B.

4.4.2 Model Agnostic Analysis — Shapley Additive Explanations

Interpretable machine learning (IML) methods are model-agnostic techniques for
explaining and interpreting opaque ML models to achieve ex-post transparency. This
facilitates understanding of how and why the model produces a specific outcome. One
such technique is named “Shapley Additive exPlanations” (SHAP), introduced by Lundberg
and Lee (2017). It is conceptually based on Shapley values, a method used in coalitional
game theory to determine the marginal contributions of each player to the outcome of a
collaborative game (Shapley, 1953). Transferred to an ML context, Shapley values can be
thought of as the average marginal contribution of a feature (i.e., “player”) in an ML model
(i.e., “"game”) on its prediction (i.e., “outcome”), as described by Molnar (2020). Shapley
values are derived by repeatedly simulating different combinations of input features (i.e.,
“coalitions”) and assessing how changes to the coalitions correspond to the final model
predictions. This is done for each possible coalition in the model, so that a feature’s impact
on the model prediction is eventually calculated as the average marginal contribution to

the overall model score.

4.4.3 Model Estimation

We estimate a separate DNN for each property type due to the peculiarities of the different
sectors. The process of model estimation can generally be divided into two parts. The first
involves data transformation, training, and optimization of the model. The second involves

out-of-sample performance testing to ensure the generalizability of the results.
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First, the initial sample is split into three subsets: 60% training data, 20% validation data
and another 20% test data. Subsequently, all numerical explanatory variables are z-score
standardized. Each model is trained as a sequential feedforward DNN with a variable
number of hidden layers and neurons. Bayesian optimization is used to determine the best
combination of hyperparameters such as the number of layers, neurons, dropout and
learning rate. Subsequently, the model with the best hyperparameter combination is
trained on the whole training set (i.e., training and validation data aggregated), and out-
of-sample performance is assessed on the remaining 20% test subsample. To evaluate the
performance of the DNN in the application context, we estimate a linear regression model
as a point of reference. The estimation and performance evaluation of the DNN is then
complemented using SHAP. This facilitates the interpretability and comprehensibility of the

model’s prediction rules.

4.4.4 Performance Evaluation

Model performance is assessed using the mean absolute percentage error (MAPE), the
mean percentage error (MPE), the mean absolute error (MAE), the mean squared error
(MSE), the root mean squared error (RMSE) and the coefficient of determination (R?). The
error buckets (PE10) and (PE20) show the proportion of absolute percentage errors below
10% and 20%, respectively. MAPE and MAE are direct measures of accuracy (i.e., absolute
distance). MSE and RMSE are used to assess the models’ performance for exceedingly high
values in the test data as high errors are penalized more (i.e., squared distance). MPE
measures the biasedness of the model (i.e., whether the model’s predictions generally tend
to be higher or lower than the actual values), and R? is utilized to measure overall model
fit. Lastly, the error buckets show how reliable the models are in relation to certain error
thresholds (i.e., errors between 10% to 20% is commonly considered a tolerable range in

valuation practices).

4.5 Empirical Results

This section features the empirical results of the analysis. First, model performance in
estimating market values is assessed. Concerning the research objective, we discuss the
results from the model-agnostic analysis with SHAP and draw conclusions on the features’

functional relationships with the dependent variable.

4.5.1 Model Performance

Table 4.4 depicts the out-of-sample performance metrics of the DNN and the OLS,

respectively. The DNN is highly accurate in estimating market values per square foot, with
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the MAPE between 9.29% and 10.98% and the corresponding MAE between 7.56 and
25.54 dollars per square foot. The MSE and RMSE show that the apartment, office, and
retail models generally produce higher errors that are penalized stronger than in the
industrial model, as market values are generally lower in this sector. Across all property
types, over 85% of the market value predictions of the DNN are estimated within a MAPE
of 20%. In the OLS estimation, only 55% of predictions fall within this range. The OLS

generally shows a considerably lower model fit than the DNN.

Table 4.4: Model Performance Metrics

Method R2 MAPE MPE MAE MSE RMSE PE10 PE20

Unit [%] [%] [%] [$/SqFt] [$/SqFt] [S/SqFt] [%] [%]

Panel A: Apartment

oLs 0.77 0.26 0.04 43.61 7,959.58 89.22 0.31 0.55
DNN 0.97 0.09 -0.03 18.88 1,177.55 34.32 0.65 0.91

Panel B: Industrial

oLs 0.73 0.24 0.06 17.53 659.82 25.69 0.30 0.56
DNN 0.95 0.11 0.04 7.56 128.04 11.32 0.62 0.87

Panel C: Office

oLs 0.76 0.32 0.07 64.99 9,351.87 96.71 0.26 0.48
DNN 0.96 0.11 -0.03 25.54 1,490.37 38.61 0.58 0.87

Panel D: Retail

oLs 0.81 0.30 0.07 62.19 15,125.86 122.99 0.31 0.54
DNN 0.97 0.10 0.03 22.94 2,139.41 46.25 0.67 0.88

Notes: This table reports the performance measures of the linear models and the DNN. R2: coefficient of determination,
MAPE: mean absolute percentage error, MPE: mean percentage error, MAE: mean absolute error, MSE: mean squared error,
RMSE: root mean squared error, PE10 and PE20: error bucket of estimates within 10% and 20% of the true value
respectively. Absolute values are reported in dollars per square foot.

4.5.2 Global Model Interpretability

In traditional property valuation, market values of income-generating properties are
determined with the income approach, which consists of two primary elements, rental
income and the capitalization rate. However, alternative methods such as the sales
comparison approach and the cost approach consider various other factors, including
locational, physical, financial, and macroeconomic characteristics (see Pagourtzi et al.,
2003) that are not necessarily reflected in the income approach. Our research focuses on
a data-driven methodology grounded in economic theory. We use a comprehensive set of
physical and structural property attributes, neighborhood characteristics, macroeconomic
and real estate market indicators, and cash flows to capture all relevant price-determining

attributes.
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Figure 4.3: SHAP Summary Plot (Top 15 Features)
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Notes: This figure depicts the feature importance for the top 15 (i.e., most important) features. The x-axis depicts the feature
impact on the estimated market value in dollars per square foot. The y-axis shows the top 15 features by property type.
Color indicates whether the contribution of a feature to the final prediction is positive or negative.
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To review the relations of employed features in our models, we analyze the features’
marginal influences that are presented in Figure 4.3. In the respective summary plots, three
dimensions can be explored, with the features arranged in a specific order that reflects
their relative importance in the model predictions. The stabilized net operating income
appears to be the most crucial feature for all sectors. The plot also illustrates the
characteristics of the features in the second and third dimensions by indicating whether
the contribution of a feature to the final prediction is positive or negative and which value

the feature takes (as indicated by color).

We use the SHAP summary plot to identify the critical value drivers and relate them to their
economic meaning to bridge the gap between economic theory and the data-driven
machine learning approach. It is important to note that our models do not incorporate
inferential assumptions that can determine causal relationships. That is, the significance of
the features is determined solely by the statistical relationships that the model identifies.
Ideally, the statistical relationships determined by the model are consistent with economic
principles and thus contribute to understanding price formation process in commercial
property markets. As Lorenz et al. (2022) discuss, a feature importance plot can be utilized
to evaluate the relevance of variables for a given predictive task. This method allows insight
into the reliability of an algorithmic hedonic model and its ability to capture a plausible

understanding of the economic context.

In line with economic theory, Figure 4.3 depicts the stabilized NOI and the market
capitalization rate as the most crucial feature in the prediction process of the model across
all property types. Furthermore, the location expressed by the geo-coordinates, the
physical condition proxied with building age, and the current NOI appear to be equally
important across all asset sectors and strongly influence the model predictions. Moreover,
it becomes clear that each property sector has individual value drivers, such as the presence
of a garden in the case of apartment properties or the location of an office building in the
central business district (CBD). As alluded to previously, SHAP can be used to draw
conclusions about the functional relationship between explanatory variables and the
dependent variable. This is particularly beneficial in real estate valuation, where
understanding pricing processes is paramount. Figure 4.4 shows the relationships of four

explanatory variables with SHAP partial dependence plots.

Figure 4.4, Panel A depicts the dependence plots of stabilized NOI and its impact on the
market value prediction. A positive linear relationship for values greater than zero can be
observed across all asset sectors, as expected market values increase with an increasing

stabilized NOI. A negative stabilized NOI shows a non-linear pattern that will be interpreted
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Figure 4.4: SHAP Partial Dependence (1)
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Notes: This figure depicts the partial dependence of selected features. The x-axis shows the values of the respective features.
The y-axis shows the model impact on the estimated market value in dollars per square foot.

with further analysis below. The second most important feature in the prediction of market
values is the market capitalization rate. Figure 4.4, Panel B depicts the relation of this
feature to the impact on the market value, and it takes the expected relationship in all four
property types. As the capitalization rate is a proxy of risk and return in the real estate
market, market values generally decrease with increasing capitalization rates. Notably, the
plot for industrial properties deviates from the other property types, but this is due to the
mean value of industrial properties in the sample being significantly smaller. Concerning a

property’s physical condition, we focus on the impact of property age. Lorenz et al. (2022)
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show that, in line with economic theory, the age of an apartment exhibits a U-shaped

pattern;

Panel C,

that is, the newest and oldest buildings generate the highest rents. In Figure 4.4,

we observe that this is also the case for the apartment sample and the office and

retail properties. This U-shape seems to be less pronounced for industrial properties. The

plot of industrial properties generally shows a lower building age, which can be attributed

to the nature of heavy industry use and the limited usability by third parties.

Figure 4.5. SHAP Partial Dependence (2)
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Notes: This figure depicts the partial dependence of selected features. The x-axis shows the values of the respective features.
The y-axis shows the model impact on the estimated market value in dollars per square foot.
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While Figure 4.4 shows features with similar impacts across the four property types, Figure
4.5 depicts features that behave differently concerning market values across the property
types. Figure 4.5, Panel A illustrates the relationship between CapEx and its impact on the
expected market value. Generally, CapEx increases market values, whereby the marginal
effect varies across property types. A dollar of CapEx per square foot appears to have the
most decisive impact on the market value per square foot for apartment properties. In

contrast, industrial properties exhibit the lowest marginal effect.

Figure 4.5, Panel B depicts the impact of proximity to a cultural institution (i.e., museum,
entertainment facilities or attractions) on the model’'s prediction of the market value,
Interestingly, retail properties close to cultural institutions experience a higher premium
than all other property types. This could be related to increased pedestrian flows generated
by cultural institutions, which drive market values of retail properties. In contrast, the

proximity to cultural institutions does not affect industrial properties’ market values.

Figure 4.5, Panel C shows the impact of a property’s proximity to public transport on the
market value. Whereas the impact seems low for industrial properties, retail, apartment
and office properties show strong relations to this POI. Interestingly, retail and apartment
properties experience a positive impact on the market values when near public transport
but barely see negative impacts when public transport is located farther away. However,
in the office sector, public transport seems particularly interesting as larger distances are
related to negative impacts on the predictions. Hence, there seems to be a sweet spot up

to which the presence of POIs matters.

Figures 4.4 and 4.5 present multiple instances where a feature can take values that result
in both a positive and negative model impact. The factors contributing to such attributions
can be examined more closely with the interaction effects for the respective variable. For
example, the stabilized NOI in Figure 4.4, Panel A shows negative values leading to both
positive and negative model impacts. We expect such behavior to be related to structural
characteristics of the related properties and thus analyze the interaction effects of the

stabilized NOI with both capital expenditures and occupancy, illustrated in Figure 4.6.

Panel A of Figure 4.6 displays the interaction effect between occupancy and stabilized NOI,
while Panel B shows the interaction effect between cumulative CapEx and stabilized NOI.
The blue color on the graphs indicates low interaction feature values, while the red color
indicates high interaction feature values. We observe that in cases where negative NOI
contributes negatively to the model prediction and thus leads to the expectation of lower
market values, both occupancy and CapEx tend to be low, indicating high vacancy and

potentially lower building quality compared to other properties. On the other hand,
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observations with negative NOI that contribute to the model’'s prediction positively are
characterized by higher occupancy and high CapEx that increase the quality of a building

and, thus, its value.

Figure 4.6: SHAP Partial Dependence with Interaction Effects (Financial)
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Notes: This figure depicts interaction effects in the partial dependence of the stabilized NOI. The x-axis shows the stabilized
NOI in dollars per square foot. The left y-axis shows the model impact on the estimated market value in dollars per square
foot. The right y-axis shows the respective feature value of the interaction feature.

In Figure 4.7 we analyze the observed U-shaped pattern in the building age by inspecting
interaction effects with both location (Panel A) and income (Panel B). In suburban areas,
the building age generally shows a negative relationship, as seen in Figure 4.7, Panel A.
That is, older properties in suburban areas tend to have lower market values. From Figure
4.7, Panel B, we can deduce that properties for which high building ages are positively
related to market value and high NOIs tend to be clustered in CBDs. Osland (2010)
summarizes the main rationale behind early land economic theories and concludes that

overcoming space in any form is costly and, therefore, needs to be economized. Thus, the

Figure 4.7: SHAP Partial Dependence with Interaction Effects (Structural)
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Notes: This figure depicts interaction effects in the partial dependence of the building age. The x-axis shows the building
age in years. The left y-axis shows the model impact on the estimated market value in dollars per square foot. The right y-
axis shows the respective feature value of the interaction feature.
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highest centrality in the CBD of a city creates high demand that generally leads to high
market values. Of course, the centrality of a property cannot only be described by its
location in the CBD or a suburban area. It can also be formulated as the sum of multiple
characteristics that define the location of a property. Can (1992) mentions neighborhood
effects that refer to characteristics that drive demand for real estate in a specific location

(i.e., neighborhood) and should materialize in the price function.

Figure 4.8: SHAP Partial Dependence with Interaction Effects (POls)
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Notes: This figure depicts interaction effects in the partial dependence of selected POls. The x-axis shows the distance to the
respective POl in meters. The left y-axis shows the model impact on the estimated market value in dollars per square foot.
The right y-axis shows the respective feature value of the interaction feature.

Such trends are not only seen for the market value but generally for the price level when
observing the interaction effect of the stabilized NOI and the proximity to public transport
or food establishments. This is demonstrated in Figure 4.8 — the larger the distances to
public transport or food establishments, the lower the stabilized NOI that is paid for a
property. Notably, the turning points for the positive effects on the models diverge
between the two POIs. Figure 4.8, Panel A shows that public transport links located within
approximately 750 meters of a property show a positive impact. In comparison, food
establishments only show positive neighborhood characteristics within a radius of

approximately 150 meters, as depicted in Figure 4.8, Panel B.

4.5.3 Local Model Interpretability

Shapley values are calculated for each observation individually, which offers the possibility
to draw inference on both a global (i.e., aggregated) and a local (i.e., disaggregated) level.
That is, each dot on the SHAP summary and partial dependence plots shown earlier
represents a single prediction and can be explained locally on the property level. SHAP
force plots visualize the decomposition of a specific prediction into the respective features.

This makes each single market value estimate comprehensible and transparent. The sum
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of all feature contributions represent the difference between the actual prediction and the
mean prediction (base value) in the sample. It is important to note that feature effects can

behave differently for different observations due the imposed non-linearity.

Figure 4.9 shows the composition of a market value prediction for an office property in
Boston, Massachusetts. The expected market value for this property is 494.18 $/SqFt. The
mean prediction (base value) of office market values in the sample is 258.53 $/SgFt. It can
be considered the “best guess” for the market value without knowing anything about the
specific property. The features that mainly drive the expectation from the base value of
258.53 $/SqFt to the predicted value of 494.18 $/SqFt are the stabilized NOI, location,

market cap rate and building age.

Figure 4.9: SHAP Force Plot
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Notes: This figure depicts the SHAP Force Plot, which presents the local decomposition of a selected prediction into the
respective model features. The x-axis shows the estimated market value in dollars per square foot given the contributions
of the individual features.

The property is newly built (building age = 2 years), located in the CBD and has a stabilized
NOI of 5.23 $/SqFt, well above the sample average of 2.50 $/SqFt, thus increasing the
prediction relative to the base value. The positive contribution of the stabilized NOI to the
prediction increases the expected value by 149.58 $/SqFt. Additionally, the building age
contributes 46.85 $/SqFt, its CBD location 38.65 $/SqFt and the market value cap rate of
5% in the quarter of observation contributes 54.99 $/SqFt. In sum, these four features
contribute 290.07 $/SqFt to the expected value. Starting from the base value of 258.53
$/SqFt, this leads to an expected value of 548.59 $/SqFt. However, the negative
contributions have been left aside so far. In this example, the property’s square footage of
38,500 square foot reduces the expected market value as it is smaller than the average
office building of 281,403 square foot. As highlighted in blue color, the size of the property
pushes against the other features, thus reducing the expected market value by 30.63
$/SqFt. In sum, the remaining features add up to a negative 23.78 $/SqFt, leading to the
final predicted market value of 494.18 $/SqFt.
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4.6 Summary and Discussion

The objective of this study was to introduce an effective and comprehensive framework
for the practical utilization of ML-based automated valuation models (AMVs) in the domain
of commercial real estate that seeks to strike a balance between the accuracy and
interpretability of the estimation method without compromising either one. To illustrate
this, we trained a deep neural network (DNN) using a unique sample of more than 400,000
property-quarter observations from the NCREIF Property Index (NPI). We then applied a
model-agnostic “Shapley Additive exPlanations” (SHAP) to shed light on the algorithm's
prediction rules, offering ex-post interpretability. It could disentangle value drivers on an

aggregated global level and a disaggregated local level for each property individually.

The used methodological framework achieves high accuracy in estimating commercial real
estate market values across all four asset sectors. SHAP demonstrates that the inner
workings of data-driven techniques are generally consistent with economic theory and
mainly follow the traditional income approach by using the net operating income and
market capitalization rates as the key explanatory features. Moreover, the location
expressed by the geo-coordinates, the distance to points of interest and the properties’
physical condition proxied with CapEx and building age strongly influenced the models’
predictions. Deviations in the feature importance across property types were observed,
predominantly in sector-specific characteristics. Furthermore, non-linear and three-
dimensional relationships between market values and features were revealed and
confirmed previous findings in the literature. For instance, it could be shown that the
relation between market value and building age follows a U-shaped function, which can
be explained by the bid-rent curve, as older buildings tend to be concentrated in city
centers and CBDs, as well as a sample selection bias as good-quality buildings prevail while
outdated or stranded assets leave the market to make room for new developments. On
the local level of interpretation, SHAP furthermore showed that the effect of individual
features could differ significantly across properties due to non-stationarity across space
and time. This is one of the main advantages of machine learning techniques compared to
linear hedonic models, as the latter reduces feature effects to a single, fixed beta

coefficient that does not differentiate complex interactions between regressors.

In summary, our study demonstrates that machine learning algorithms can obtain both
estimation accuracy and interpretability while following economic logic and being
consistent with the current understanding of pricing processes in the literature. Moreover,
these techniques can add to the existing knowledge by providing a deeper and more

nuanced understanding of pricing processes in institutional investment markets.
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That said, the findings of this study should be interpreted in light of certain limitations
within both data and methods. Although the NPI is the most widely used commercial real
estate price index in the United States, it is appraisal-based. Cannon and Cole (2011) as
well as Deppner et al. (2023) find evidence that appraisal values tend to lag market
dynamics and can be subject to bias. Moreover, the NPI is derived from a relatively small
data sample of prime institutional properties. The findings may thus not be generalizable

to all types of commercial real estate properties or investors.

While our main objective is to illustrate the potential of ML in increasing the understanding
of pricing mechanisms in commercial real estate by providing valuable insights into price
formation processes, a more comprehensive sample of transaction data is required to
derive fully undistorted and generalizable results that are free of appraisal bias. This could
be achieved by limiting the used NCREIF sample to sales data in conjunction with other
data sources such as CoStar, CompStak or Real Capital Analytics. However, this is
challenging as different data sources record different property characteristics. Merging
these sources to increase the length of the data matrix comes at the cost of reducing its’

width (i.e., property characteristics) or having to impute missing data.

The issue of data availability is linked to the limitations of machine learning techniques,
which should be considered carefully next to the choice of data sources to ensure that the
results are dependable and free from bias. As with any data-driven approach, ML methods
are sensitive to the input data, which may exacerbate the issue of robustness and
generalizability. More robust, universal, and reliable results can be expected with increased

training data.

Despite their powerful applications, ML methods are not a panacea that can solve all real-
world problems. However, if applied prudently, they could provide an answer to several
problems and may become an indispensable tool for many tasks. With immense amounts
of data being recorded every day and the development of quantum computing, machine-
learning applications are about to experience a steep improvement in scale and efficiency.
However, with these advances taking at least another five to ten years, applying
interpretable AVMs in the commercial real estate sector is a milestone on a path yet to be
traveled. By pointing to the caveats and illustrating the potential of these methods, our
contribution represents a further step along this path and will hopefully motivate further

research in this field.
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5 Conclusion

5.1 Executive Summary

This section provides a concise overview of the three scientific articles that comprise the
cumulative thesis. It summarizes the objectives of each study, the data and methodologies
employed, as well as the main outcomes and their implications for both the scientific

community and practical applications.

Paper 1: Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic

Models: A Spatial Cross-Validation Approach

Problems and Objective

In the past decade, machine learning (ML) techniques have seen increasing application for
hedonic house price regression problems. In this context, literature has brought forth a
growing body of evidence highlighting the superior predictive performance of ML
compared to traditional statistical models (e.g., Mayer et al., 2019; Pace and Hayunga,
2020; Bogin and Shui, 2020). The measurement of predictive performance in ML methods
is commonly based on resampling techniques such as cross-validation (CV) that implicitly
assume statistical independence of the data (Bishop, 1995; Brenning, 2005; Varma and
Simon, 2006). However, direct real estate markets feature a spatial dimension that causes
inherent spatial dependence structures in the underlying price determination processes
(Anselin, 1988; Can and Megbolugbe, 1997; Basu and Thibodeau, 1998). Applying such
methods to direct real estate data without accounting for these dependence structures
may lead to undetected overfitting and over-optimistic perception of predictive power
(Roberts et al., 2017; Lovelace et al., 2019; Schratz et al., 2019). The meaningfulness and

statistical validity of the resulting performance measures are therefore compromised.

The objective of this research paper is to investigate the role of spatial autocorrelation on
the model selection and accuracy assessment of algorithmic regression methods and to
assess the adequacy of conventional cross-validation errors in the context of hedonic house
price modeling. In addition, this study proposes a spatial cross-validation strategy that can

account for spatial dependence and reduce bias in error estimates.

Data and Methodology

The sample used for this study comprises a pooled cross-section of 9,256 asking rents from

the Frankfurt residential market spanning the period from January 2019 through March
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2020 on a monthly scale. The data stem from Empirica and were originally sourced from

German multiple listing systems.

Tree-based algorithms are trained on a subsample and evaluated using spatial as well as
non-spatial CV. Subsequently, out-of-sample data is forecasted to assess the bias in error
estimates associated with spatial autocorrelation. The results are put into a broader
perspective by benchmarking the applied ML algorithms against a non-spatial ordinary
least squares (OLS) and a spatial autoregressive framework, allowing for a relative
comparison of bias and predictive performance. Lastly, the residual spatial autocorrelation

is analyzed to detect signs of overfitting to spatial structures in the data.

Results and their Contribution to Science and Practice

This study is the first in the literature to shed light on the bias in cross-validation errors of
algorithmic hedonic approaches induced by spatial autocorrelation. To address this issue
it proposes a spatial cross-validation strategy that reduces the bias. The findings confirm
that error estimates from non-spatial resampling methods are overly optimistic, whereas
spatially conscious techniques are more dependable and can increase generalizability. The
results prove useful for increasing the robustness of algorithmic approaches to hedonic

regression problems.

The precise estimation of property prices and rents is imperative to inform the decisions of
many parties in the real estate industry, such as investors, developers, lenders or regulators.
Since CV is commonly used as an “out-of-sample experiment” (Mullainathan and Spiess,
2017) to assess the predictive accuracy of algorithmic hedonic models, a systematic bias
in error estimates may have adverse effects on the allocation of both debt and equity (Kok
et al.,, 2017). This study helps increase the reliability and generalizability of algorithmic
hedonic models, thus containing valuable implications for mass appraisal practices, credit

risk management, portfolio allocation as well as investment decision making.

Paper 2: Boosting the Accuracy of Commercial Real Estate Appraisals: An

Interpretable Machine Learning Approach

Problems and Objective

Commercial real estate markets are characterized by a high degree of heterogeneity,
intransparency, and illiquidity, that complicate a thorough understanding of market
dynamics and pricing mechanisms. State-of-the-art commercial real estate appraisals are
therefore based on the experience and knowledge of experts, but they remain “[...] a

subjective opinion of value [which] is based on an assessment of influences that a valuer
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considers relevant [...]", as stated by Dunse and Jones (1998). Consequently, commercial
real estate appraisals have been subject to criticism for smoothing out market fluctuations,
lagging behind actual market dynamics, incorporating systematic biases, and frequently
deviating from actual transaction prices, as pointed out by Matysiak and Wang (1995),

Geltner et al. (2003), Cannon and Cole (2011), and Kok et al. (2017).

In theory, statistical regression models can address most of the issues concerning
subjectivity, structural bias, and outdated valuations, provided that they are specified
correctly. In this context, so-called “intelligent” statistical learning methods have been
extensively discussed in the residential real estate sector and have demonstrated
remarkable results in accurately estimating prices and rents of houses and apartments
(e.g., Mayer et al., 2019; Bogin and Shui, 2020; Pace and Hayunga, 2020; Pai and Wang,
2020; Ho et al., 2021). However, bridging the gap from their application in the housing
sector to the commercial real estate sector seems to be more intricate, given the specifics
of the markets. The aforementioned heterogeneity, intransparency, and illiquidity of
commercial real estate markets hamper the availability of structured data. This, in turn,
restricts the application of machine learning (ML) algorithms for valuation purposes, as
these techniques rely on substantial amounts of information to learn relationships and

generate reliable results.

The objective of this article is to extend the application of ML for property valuation and
pricing analysis to a commercial real estate context. In addition, this contribution aims to
explore the capacity of data-driven ML algorithms to adequately capture price formation
processes in commercial property markets and provide a superior understanding of market
dynamics that goes beyond traditional valuation methods. The study also examines
structural bias in appraisals and points to the determinants that are not adequately

reflected in current appraisal practices.

Data and Methodology

The principal dataset was provided by the National Council of Real Estate Investment
Fiduciaries (NCREIF) and contains quarterly appraisal values and transaction prices of
commercial properties across the United States that are included in the NCREIF property
index (NPI). The sample spans the period from 1Q 1997 through 1Q 2021 and contains a
series of financial and physical characteristics of the individual properties. These are
enriched with locational attributes from Google Places, real estate market data from the
NPI, and macroeconomic variables from the Federal Reserve Bank of St. Louis, the U.S.
Census Bureau, and the U.S. Bureau of Labor Statistics. First, the deviation between actual

sales prices observed in the market and the pre-sale appraised values of the properties in
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the sample is examined. Second, an extreme gradient boosting (XGB) algorithm is applied
to investigate the information content found in the residuals between appraised values
and transaction prices with the aim to assess how much of the variation in these residuals
can be explained. Finally, model-agnostic permutation feature importance is employed to

shed light on the determinants that were not adequately reflected in appraisals.

Results and their Contribution to Science and Practice

This study breaks new ground in the literature by expanding the scope of ML applications
in the context of property appraisals to commercial real estate markets. The findings show
that the applied extreme gradient boosting trees could significantly decrease the variation
in appraisal errors of commercial properties, thereby increasing accuracy and eliminating
structural bias in appraisal values. The greatest improvements were observed for
apartments and industrial properties, followed by office and retail buildings. This order
coincides with both decreasing homogeneity and smaller sample size of the respective
property types. The study also identified spatial and structural covariates as the primary

factors influencing appraisal errors.

The results suggest that the application of machine learning methods has the potential to
improve current appraisal practices, leading to more efficient and objective valuations that
can consider a broader range of evidence. Analyzing transaction data through the lens of
interpretable machine learning algorithms can furthermore add to a superior ex-ante

understanding of pricing processes that may support practitioners in their decision making.

Paper 3: Increasing the Transparency of Pricing Dynamics in the U.S. Commercial

Real Estate Market with Interpretable Machine Learning Algorithms

Problems and Objective

The advent of machine learning has brought new approaches to property valuation to the
fore. ML-supported automated valuation models (AVMs) show promising results in terms
of accuracy but lack inherent interpretability. This precludes their use in an institutional
context as well as in regulatory and government applications. The aim of this study is to
propose an integrated framework for the practical use of AMVs in a commercial real estate
context that achieves high levels of precision and full ex-post interpretability of the models’
prediction rules. Based on this, the article further aims to assess the consistency of the
applied models with economic principles and showcases how the proposed methods can
add to the understanding of pricing mechanisms in institutional real estate investment

markets. By pointing to the caveats and illustrating the potential of these methods, this
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contribution is intended to advance the application of AVMs in the commercial real estate

sector and motivate further research in this field.

Data and Methodology

The principal dataset used in this study was provided by the National Council of Real Estate
Investment Fiduciaries (NCREIF) and comprises quarterly property-level observations of
appraisal values and property characteristics across four commercial property types (i.e.,
apartment, industrial, office, and retail) observed over a period of 30 years from Q1 1991
through Q1 2021. Furthermore, real estate market data from the NCREIF Property Index
(NPI), macroeconomic data from the Federal Reserve Bank of St. Louis, the U.S. Census
Bureau, and the U.S. Bureau of Labor Statistics, as well as spatial data from Open Street

Maps and Google Places were added.

First, a deep neural network (DNN) was trained and calibrated for each property type
individually. Second, an advanced model-agnostic methodology named Shapley Additive
Explanations (SHAP) was applied to mitigate the trade-off between accuracy and
interpretability and provide ex-post comprehensibility of the algorithms’ prediction rules.
Third, non-linear relationships as well as three-dimensional interaction effects were
analyzed. In addition, a linear multiple regression analysis was conducted to serve as a

point of reference.

Results and their Contribution to Science and Practice

This study is the first in the literature to extend the application of data-driven AVMs, let
alone model-agnostic interpretation techniques such as SHAP, to commercial property
types. The proposed methodological framework demonstrates high accuracy in the
estimation of market values across all four asset sectors. Furthermore, significant non-
linear and three-dimensional relationships in price determinants could be revealed. In
summary, the relevant price determinants and the identified relationships follow an
economic rationale and are in line with both hedonic literature and traditional valuation

methods. Deviations across sectors are observed predominantly in sector specific features.

Since comprehensibility and interpretability are essential for the acceptance and
operationalization of ML-driven AVMs in the industry, this study provides a valuable
contribution to enhancing their practicality and marketability. In the long term, the
proposed methods have the potential to leverage efficiency in both real estate markets
and business processes by increasing the speed and scale of valuations, reducing costs,

and ultimately increasing transparency of real estate pricing processes.
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5.2 Final Remarks

The Royal Institution of Chartered Surveyors (RICS), a professional organization dedicated

to promoting and regulating international standards of property valuation, states that

“[the] valuation of property has long been characterilzled as both an art
and a science: an art because of the need to make value judgments
concerning the intangible features that attract certain buyers; a science
because it is possible to establish trends and analy[zle how these are
interpreted by buyers and sellers, including the value placed on particular

property characteristics” (RICS, 2021).

The appraisal profession is assigned with the task to strike the balance between the art
and the science of property valuation by extracting relevant signals and trends from
irrelevant noise in the data. This exercise is typically performed by considering a small set
of previously transacted comparable properties that possess similar attributes to the
property being valued and adjusting for property-specific differences and intangible
characteristics (Kok et al., 2017). The distinction between noise and signal in the underlying
data is based on a valuer’s subjective judgements and discretion that are grounded by their
expert knowledge gained from observing past transactions in the market (Quan and
Quigley, 1991; Dunse and Jones, 1998). The heterogeneity, intransparency, and illiquidity
of real estate markets further complicate this process and hamper a thorough
understanding of market dynamics and pricing mechanisms. This makes property valuation

a challenging, time-consuming, and costly business.

While explaining and predicting the noise that is inherent in comparable sales will most
likely remain an art for itself that involves a great deal of subjectivity and allows a wide
margin of discretion, this dissertation has demonstrated that science can help to identify
patterns and extract meaningful insights (i.e., the signals and trends) from large and
complex data in an objective and structured manner. This ability becomes increasingly
relevant in a world with enormous amounts of information being recorded every day and
the evolution of computer-aided scientific techniques that enable efficient analysis of these
data. In this context, statistical models, and in particular machine learning algorithms,
exhibit significant potential in accurately modeling real estate markets, adequately
capturing price formation processes, and estimating property prices precisely and promptly

on a large scale.

The systematic analysis of real estate data using statistical learning models can help to
reduce discretionary scope and mitigate the issues arising from subjective involvement in
property appraisals, while simultaneously increasing efficiency and reducing costs. By
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automating some of the more tedious and time-consuming aspects of the valuation
process, such as data collection and analysis, statistical approaches can accelerate
decision-making processes and offer increased accuracy and objectivity of valuations. This
promotes transparency and confidence in the valuation process while benefiting real estate
owners, including public and private pension plans, insurance companies, banks, and their
respective stakeholders and customers, who ultimately have to bear the costs associated

with property appraisals (Kok et al., 2017).

That said, caution is required when drawing conclusions based on a machine’s output. ML
algorithms may be perceived as intelligent and have accomplished impressive results in
detecting complex patterns and relationships to solve real-life problems such as extracting
the signal from noisy transaction prices, but they have no intellect that allows them to
think, let alone to truly understand the problems they are solving. That is why artificial
intelligence still relies on the supervision of human agents to motivate analyses and to

make sense of the data.

This thesis has addressed the most critical limitations of data science techniques and in
particular data-driven machine learning algorithms in the context of property valuation
and pricing. In doing so, it has contributed to the complementation of these methods with
the required economic and methodological frameworks to translate the produced outputs
into more meaningful results. Nonetheless, this work does not claim to offer an all-
encompassing solution to the challenges of using data-driven methods for the analysis of
direct real estate markets. Alternative approaches and aspects need to be considered to
further enhance the understanding and transparency of property pricing mechanisms.
Moreover, it is important to note that the results presented in each of the articles are based
on rather specific and limited data samples. Despite the aim to make the findings as
generalizable as possible, the sensitivity of data-driven techniques to changes in training

data means that the reported results may not be universally applicable.

With respect to Paper 1, it may be worthwhile to extend the analysis beyond spatial
dependence structures and consider the temporal dimension as well to capture spatio-
temporal dependencies in the data. This can provide a more comprehensive solution to
the problem at hand, particularly if the methods are applied in a prediction context.
Regarding Paper 2, the analysis could be expanded to consider more varied and extensive
data, allowing the results to be more generalizable to other property and investor types
beyond the institutional prime sector. To achieve this, the collection and integration of
unstructured data from different sources will be necessary to mitigate the issue of data

scarcity. The same applies to Paper 3. In addition, further research is needed in the field of
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interpretable machine learning to increase the consistency and reliability of the produced
results. Although model-agnostic interpretation techniques are often portrayed as a
panacea that provides an appealing answer to the complexity and opaqueness of data-
driven algorithms, it is important to recognize that these methods come with their very
own limitations and pitfalls. One such limitation is the presence of collinearity and
dependencies between input features, which can cause bias and compromise inferential
analyses (Molnar et al., 2022). This closes the circle to Paper 1, given the presence of spatial
dependence in real estate markets. Proper consideration of the hidden assumptions in both
machine learning and model-agnostic interpretation techniques is thus of crucial

importance to ensure a reliable and robust output.

Having demonstrated the potential and pointed to the limitations of using statistical
learning methods to examine price formation processes in direct real estate markets, this
thesis aims to provide guidance, stimulate critical discourse, and motivate further research

in this field.
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