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Abstract: The Cl−-transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to
have more in common than initially suspected, as they all participate in the pathogenic process and
clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate
on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR,
SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis
and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize
recent evidence indicating that CFTR is the only relevant secretory Cl− channel in airways under basal
(nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the
expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR.
In addition, there is evidence that the Cl− transporter SLC26A9 expressed in the airways may have a
reabsorptive rather than a Cl−-secretory function. In the renal collecting ducts, bicarbonate secretion
occurs through a synergistic action of CFTR and the Cl−/HCO3

− transporter SLC26A4 (pendrin),
which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease
(ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated,
whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent
new pharmacological targets for the treatment of polycystic kidney disease.

Keywords: TMEM16A; TMEM16F; anoctamin; SLC26A9; CFTR; pendrin

1. Introduction

Cystic fibrosis (CF) is a genetic disorder caused by variants in the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene that affects approximately 90,000 people
worldwide. The absence or impaired function of the CFTR protein is associated with
dysfunction in several organs, particularly the respiratory and gastrointestinal tracts. Au-
tosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited
nephropathy. It is characterized by the development and enlargement of renal cysts due
to increased cell proliferation, extracellular matrix abnormalities, and increased CFTR-
mediated transepithelial fluid secretion. CFTR is also required for the excretion of bicarbon-
ate in the renal collecting ducts. A defect in renal bicarbonate excretion can lead to systemic
alkalosis.

A large number of reports describe various functional changes induced either by the
knockout or knockdown or the overexpression of CFTR. Although CFTR is the essential
Cl− channel for transepithelial Cl− secretion, many of the morphological and functional
changes that occur when CFTR expression is altered are thought to be caused indirectly by
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the up- or downregulation of intracellular signaling pathways or by metabolic changes that
affect the function of other, independent proteins. In this context, physical protein–protein
interactions leading to functional coupling with partner proteins (e.g., the epithelial Na+

channel ENaC or the Cl−/HCO3
− exchanger pendrin) are reported to control ion transport

and other cell and tissue functions. Large “interactomes” for CFTR now exist, leading to
the somewhat provocative question of whether CFTR “interacts with everything” [1–6].
Indeed, CFTR is a true hub for kinases and the crosstalk of cAMP and Ca2+ [7,8]. In this brief
review, we focus specifically on the interplay of CFTR with the Cl− transporter SLC26A9,
the Ca2+-activated Cl− channel anoctamin 1 (ANO1), and the phospholipid scramblase
anoctamin 6 (ANO6) in the airways and kidneys.

2. CFTR Causes Constitutive Basal Cl− Secretion in the Airways

The airways show basal Cl− secretion in the absence of secretagogues, i.e., cAMP-
or Ca2+-dependent stimulation, raising the question which of the above Cl− channels
and transporters are actually responsible for basal secretion. It should be noted that no
spontaneous basal CFTR activity was observed in patch clamp recordings in the absence
of PKA- or PKC-dependent stimulation. Previous studies provided conflicting data on
the origin of basal Cl− secretion. While some studies suggested spontaneous activity
of CFTR as the cause of basal Cl− secretion [9–12], other studies proposed SLC26A9 as
the responsible transporter [13–17]. Until now, separating the two pathways (CFTR and
SLC26A9) has been difficult because (i) there have been no specific inhibitors for SLC26A9,
(ii) CFTR inhibitors do not target specifically [18], and (iii) intracellular transport and
activity of SLC26A9 depend on the expression and function of CFTR [16,19–22].

In the study by Jo et al., the SLC26A9 inhibitor S9-A13 had no inhibitory effect on
airway Cl− transport either in vitro or ex vivo, whereas CFTRinh172 inhibited both basal
and cAMP-induced Cl secretion [23]. Interestingly, neither inhibition of adenosine receptors
nor inhibition of adenylate cyclase blocked basal Cl− secretion, raising questions about
additional mechanisms for the activation of CFTR. Thus, it is possible that increased protein
kinase C (PKC) activity, e.g., through ATP release and binding to purinergic receptors,
keeps part of the CFTR active at basal cAMP levels and PKA phosphorylation [24–27]. The
Hanrahan lab has also recently demonstrated expression of SLC26A4 (Pendrin) in primary
nasal and bronchial ciliated epithelial cells, which enhances Cl− secretion through the
stimulation of CFTR [28]. The molecular mechanism of STAS/R domain interaction has
been previously shown for the activation of CFTR by SLC26A6 [29]. As discussed in the
next section, the Ca2+-activated Cl− channel ANO1 may contribute to the maintenance of
basal CFTR activity through a Ca2+-dependent mechanism.

3. Relationship between CFTR and Anoctamins

Early studies showed cAMP/PKA and increases in intracellular Ca2+ as two indepen-
dent second messenger pathways that lead to epithelial Cl− secretion [30]. The pharma-
cological tools used to discriminate between both Cl− conductances, however, are rather
non-specific, and thus our team could not clearly keep these conductances apart [31,32].
We and others also reported that CFTR seemingly “inhibits” endogenous Ca2+-activated
Cl− currents (CaCC) in Xenopus oocytes, bovine pulmonary artery endothelium cells and
isolated parotid acinar cells [33–37]. After molecular identification of the Ca2+-activated
Cl− channel (CACC) as anoctamin 1 (ANO1), it was found that CFTR does not inhibit
ANO1 and that ANO1 currents and CFTR currents are not additive, i.e., they do not add
up to the sum of both currents [38,39].

In fact, Ca2+-enhancing agonists such as purinergic or muscarinic ligands mostly
activate CFTR-dependent secretion in the airways [24,40,41], while ANO1 currents rapidly
inactivate it due to the mechanisms outlined in previous reports [42–45]. Therefore, after
inhibition or in the absence of CFTR, CACC is very short-lived, and in the intestine, there is
not even an apical CACC (ANO1) [45–48]. The rapid inactivation of ANO1 is reasonably
well understood [42,49] and raises the question as to whether direct pharmacological
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activation of ANO1 by the synthetical compound ETX001 (called ETD-002 in the clinical
trial) can be successful in restoring Cl secretion in the airways of CF patients [50,51]. It
should also be noted that ANO1 is expressed at only very low levels in the airways [52].

The activation of ANO1 in CF may even be counterproductive, as ANO1 is a proin-
flammatory factor which enhances mucus production and mucus secretion (at least in
our hands) and supports pain sensation [53–57]. Moreover, during inflammatory airway
diseases such as asthma and CF, ANO1 is upregulated in pulmonary arterial vessels, where
it supports airway constriction [52,58–65]. Finally, ANO1 supports the release of inflamma-
tory cytokines such as IL-8 and the accumulation of pulmonary CD-45 positive cells [53].
A phase 1 clinical trial with the ANO1-activator ETD-002 finished more than a year ago,
but so far, no outcome has been reported. Because of the partially conflicting studies,
further studies are required in animals with clear pulmonary inflammation and increased
expression of ANO1. While pure cell culture studies are insufficient, the F508del-piglet
model might be very helpful in determining the true role of ANO1 in human airways,
particularly under inflammatory conditions.

4. Crosstalk between CFTR and ANO1

The previous section provokes the question whether there exists a crosstalk between
CFTR and ANO1. Studies reported attenuated expression of ANO1 in the apical membrane
of airway epithelial cells, when coexpressed with F508del-CFTR [31,66]. We found evidence
for an interaction between ANO1 and CFTR through PSD-95/Dlg/ZO-1 (PDZ) domain
proteins, as described for SLC26A9 [16]. The functional interaction between ANO1 and
CFTR is based on the crosstalk of intracellular Ca2+ and the intracellular cAMP signaling
pathway. Crosstalk is facilitated by exchange proteins directly activated by cAMP (EPAC1)
and Ca2+-sensitive adenylate cyclase type 1 (ADCY1). The assembly of such a local signalo-
some also depends on the presence of G-protein coupled receptors (GPCRs) [32,67,68]. In
the next chapter, we will show that a functional interaction of CFTR and ANO1 also exists
at the level of the membrane expression of CFTR.

5. Reduced Plasma Membrane Expression of CFTR in the Absence of ANO1

Cell-specific knockout of ANO1 in ciliated airway epithelial cells abolished Ca2+-
activated Cl− currents and largely reduced Ca2+-dependent Cl− secretion in mouse air-
ways. Moreover, Ca2+-dependent Cl− transport was abolished in intestinal epithelial cells
from epithelial-specific ANO1-knockout mice [31]. However, we reported the surprising
observation that in parallel to the loss of ANO1-dependent transport, CFTR-dependent
Cl− transport was also lost in these ANO1-knockout animals [31] (Figure 1). In both the
airways and the intestine, we found that the expression of CFTR in the apical membrane
was largely attenuated, if not abolished. It should be noted that the expression of ANO1 in
mouse airways is very low, while clear expression of ANO1 is detected in colonic epithelial
cells, mainly located in the basolateral membrane [69,70].

How are these findings explained? From earlier studies, we know that ANO1 tethers
the endoplasmic reticulum (ER) near the plasma membrane (PM) via binding to the inositol
trisphosphate receptor (IP3R). Due to this, IP3-mediated Ca2+-release from the ER and
store-operated Ca2+ influx are strongly improved in airway sub-apical or colonic sub-
basolateral membrane compartments (please note that in the large intestine, ANO1 is
located primarily near or in the basolateral membrane [71–73]). Along this line, it is of
note that extended synaptotagmin-1 (ESYT1), another ER-PM tether, was found to further
enhance PM expression of ANO1 and Ca2+ signaling [74]. PM expression of CFTR requires
exocytosis, which is enhanced by the higher local sub-membranous Ca2+ levels facilitated
by ANO1 [75]. Moreover, exocytosis also depends on ANO6 [75,76]. In knockout mice for
ANO1 and ANO6 and in a number of human cell lines, we and others showed that both
ANO1 and ANO6 are important for the PM insertion and activation of CFTR [52,53,75–80].
In this context, Ca2+-dependent activation of PKC could play a role [24,81,82]. Enhanced
sub-membranous Ca2+ may further support CFTR activity via Ca2+- activated adenylate
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cyclases and EPAC. Finally, both anoctamins are equally important for mucus secretion by
goblet cells and the release of lysozyme and other antimicrobial factors by Paneth cells. We
speculate that ANO1 facilitates local Ca2+ signaling and not, or at least not primarily, Cl−

secretion. Evidence for this will be provided in the next chapter outlining data obtained
from the first two patients that lacked expression of functional ANO1.
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Figure 1. Attenuated CFTR-dependent Cl− secretion in mice with intestinal epithelial knockout
of Ano1. (A) Original Ussing chamber recordings obtained from colonic epithelia under open
circuit conditions, as described in [31]. Stimulation of colonic epithelia with IBMX and forskolin
(I/F; 100 µM/2 µM) induced a pronounced voltage deflection in normal mouse colonic epithelium
(Ano1+/+), indicating pronounced cAMP-activated secretion. The voltage deflection, i.e., Cl−

secretion, was strongly attenuated in a colonic tissue obtained from a mouse lacking expression of
Ano1 (Ano1−/−). (B) Calculated equivalent short circuit currents (Isc) indicate strongly attenuated
CFTR-dependent (I/F-stimulated) as well as Ca2+-dependent (100 µM ATP-stimulated) Cl− secretion
in mouse colon lacking epithelial expression of Ano1 (−/−), when compared to wild-type colons
(−/−). Mean ± SEM (number of experiments for +/+ and −/−). § Significantly reduced when
compared to basal Isc in +/+ tissues (ANOVA). # Significantly reduced when compared to stimulated
Isc in +/+ tissues (ANOVA). For methods, see [31].

6. A Loss of Function Mutation of ANO1 in Patients Also Abolished CFTR-Mediated
Cl− Transport

The first two patients expressing the ANO1-variant c.897 + 3_897 + 6delAAGT were
reported recently. These patients expressed a dysfunctional ANO1 and lack of Ca2+-
activated Cl− currents [83]. The two reported siblings presented in early infancy with
reduced intestinal peristalsis and recurrent episodes of hemorrhagic diarrhea. Analysis
of isolated primary airway epithelial cells obtained from one of the patients reproduced
the results obtained earlier in tissue-specific ANO1-knockout mice [31]. Apart from the
absence of Ca2+-activated Cl− transport, CFTR Cl− currents were also completely absent,
possibly due to a lack of expression of CFTR in the apical membrane. Moreover, analysis
of cells obtained from a heterozygous sibling showed reduced Cl− secretion [83]. Rather
surprisingly, the patients did not show a CF-like lung phenotype, although sweat tests
were positive, indicating defective CFTR Cl− conductance. This is even more surprising
given the fact that both Ca2+-activated ANO1 and cAMP-activated CFTR Cl− conductances
were absent. Cytokine levels measured in sputum samples obtained from one of the ANO1
patients were largely reduced when compared to the cytokine levels measured in samples
from two CF patients (Figure 2). While this may provide further evidence for the pro-
inflammatory role of ANO1 [57], it also raises questions regarding the true contribution of
apical Cl− conductance for CF pathology [54].
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Figure 2. Cytokines in a sputum sample from a patient carrying the ANO1 loss-of-function variant
c.897 + 3_897 + 6delAAGT are strongly reduced when compared to samples from CF patients. Sputum
samples were obtained from a healthy volunteer, the patient carrying the ANO1 variant c.897 + 3_897
+ 6delAAGT, and from two CF patients, and concentrations of the cytokines IL-8 and IL-1ß were
determined. Although the ANO1 patient lacks CFTR function in addition to the defect in ANO1
Ca2+-dependent Cl− secretion, cytokines were strongly reduced when compared to CF patients
carrying known CFTR mutations. Mean ± SEM (number of measurements). # Significantly enhanced
when compared to the healthy volunteer (ANOVA). $ Significantly enhanced when compared to the
ANO1 patients (ANOVA). For methods see [84].

7. Contribution of CFTR and ANO1/ANO6 to Regulated Cell Death

In previous chapters, we reported the functional relationship between CFTR and
ANO1. Here, we will elaborate on the relationship between CFTR and ANO6, a Ca2+-
activated phospholipid scramblase that is also permeable to ions [85]. Prior to the era of
CFTR, the so-called intermediate conductance outwardly rectifying Cl− channel ICOR
(ORCC, ORDIC) was shown in many reports to be the essential epithelial secretory Cl− chan-
nel that is absent in cystic fibrosis [86–92], while others identified the ICOR as a patch clamp
artifact occurring during membrane excision [93]. After its identification in 1989 [94–96],
CFTR was considered to be the real secretory Cl− channel [81], and later it became clear
that there was a regulatory relationship between CFTR and ICOR/ORCC [97,98]. ORCC
has since been described as an apoptosis-related Cl− channel, but its molecular identity still
remains unclear [99]. After the identification of the anoctamin family, we reported CFTR
as being an activator of ANO6, and we demonstrated that ANO6 is a core component of
ICOR involved in apoptotic cell death [85,100]. Thus, the phospholipid scramblase ANO6
found a role in CFTR-dependent cell death and a place within the pathogenic relationships
of CFTR with other proteins [101].

CFTR has been proposed to release glutathione (GSH) from airway epithelial cells to be
enriched in the apical airway surface liquid, which will neutralize reactive oxygen species
(ROS) [102–104]. Apparently, GSH efflux does not change cytosolic GSH content [105],
and we were therefore unable to detect different ROS levels depending on the expression
of CFTR [106]. However, we observed an enhanced activity of ANO6 in the presence of
wtCFTR. As in most other cell types, ANO6 is also expressed in airway epithelial cells,
where it can scramble plasma membrane phospholipids, which leads to cell death [85].
The importance of ANO6 for regulated cell death is also demonstrated in ANO6 knockout
mice. In these animals, the number of apoptotic cells within the intestinal epithelium was
drastically reduced [106].

In vivo inoculation with P. aeruginosa or Staphylococcus aureus induced lipid peroxida-
tion in the lungs of CFTR-knockout mice and in wild-type animals. Exposure of human
airway epithelial cells to P. aeruginosa induced an increase in reactive oxygen species (ROS)
and caused lipid peroxidation and cell death. P. aeruginosa-induced cell death was inde-
pendent of expression of wt-CFTR or F508del-CFTR [107]. In contrast, knockout of ANO1
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clearly reduced cell death, possibly because ANO1 supports Ca2+-dependent activation
of ANO6 and thus phospholipid scrambling [108]. Notwithstanding these results, good
evidence exists for enhanced oxidative stress in the lungs of people with CF, while ROS
have been shown to directly activate ANO1 and ANO6, providing another functional link
between a lack of CFTR function, anoctamins and cell death [44,109,110].

8. Airway Secretion of Bicarbonate (HCO3
−) by CFTR

Disruption of CFTR in mice causes organ diseases typical of cystic fibrosis (CF), such as
meconium ileus, distal intestinal obstructions with mucus accumulation, blockage of pan-
creatic ducts and lacrimal gland dilatation, along with some developmental defects [111].
These initial studies were confirmed in a number of subsequent transgenic models for cystic
fibrosis [112,113]. However, a central aspect of CF pathology, namely the chronic inflamma-
tory airway disease, was hardly detectable in CF mice, and pH values in the airway surface
liquid were not different [113]. However, in a number of studies with a CF pig model,
the human CF pathology could be nicely reproduced [114,115]. In contrast to transgenic
F508del-cftr mice, CF pigs demonstrated reduced airway surface pH, impaired bacterial
killing and adhesive mucus that disrupts mucociliary transport [116–119]. It was concluded
that dysfunctional CFTR leads to a lack of HCO3

− secretion, thus causing acidification of
the airway surface liquid (ASL), followed by mucus abnormalities, attenuation of airway
defenses, inflammation and a typical CF lung phenotype [118–120]. However, in another
porcine CFTR-knockout model, acidic ASL pH could not be detected [12,121]. In this
study, micro pH-electrode measurements were used to assess ASL pH directly in the small
airways of lung sections from acutely sacrificed newborn piglets [12]. Pathological changes
in these CFTR−/− lungs were not detected. Along this line, another study reported mucus
accumulation preceding pulmonary infection in children with CF [122]. Moreover, using a
novel luminescent technology integrated with fiberoptic probes, an acidic airway surface
liquid pH could not be detected in children with cystic fibrosis [123]. Taken together, these
findings may provoke the question as to whether HCO3

− does also use another secretory
pathway that is different to CFTR.

9. SLC26A9 Is Expressed in the Apical Membrane of Airways from CFTR-Knockout
Piglets, but Not in Airways Expressing CFTR-F508del

SLC26A9 is one out of eleven proteins of the SLC26A family of anion transporters. It
is expressed in the gastrointestinal tract, the respiratory system, male tissues and skin, and
may have different functions depending on the organ in which it is expressed. Variants
of SLC26A9 were associated with an increased incidence of meconium ileus and diabetes
in patients with cystic fibrosis (CF) [124–129]. While there is good evidence for the role of
SLC26A9 in gastrointestinal transport, it remains unclear whether it affects CF lung disease
severity and airway responses to CFTR therapeutics [130,131]. Recently, the expression of
the Cl−/HCO3

− exchanger SLC26A9 was found to be absent in the apical membrane of
human F508del-CFTR/F508del-CFTR airways [132], which corresponds to the well-known
inhibitory effect of F508del-CFTR on the membrane expression of SLC26A9 [16,21]. In con-
trast, SLC26A9 was found to be well expressed in the apical membrane of airway epithelial
cells in non-CF lungs and in lungs from CFTR-knockout piglets [132]. Plasma membrane
expression of SLC26A9 in the absence of CFTR was also shown in cell cultures, whereas
coexpression with F508del-CFTR abrogates the biosynthesis, trafficking and function of
SLC26A9 [14,16,21]. We therefore speculate that the normal ASL pH measured in airways of
CFTR−/− piglets is due to the normal location and function of SLC26A9, which suggests
that HCO3

− can be secreted by SLC26A9 to the luminal side of the airways.
The transport of HCO3

− by SLC26A9 has been proposed in some studies [133–135],
but was not found by other laboratories [13,136–138]. Additional species-specific tissue
factors like epithelial polarization or coexpression with additional proteins like CFTR may
affect SLC26A9 transport function. Along this line, the vast majority of SLC26A9 expressed
in non-polarized cells remains in the cytosol, while it is nicely expressed in the apical
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membrane of polarized cells [23]. Coexpression with wtCFTR or the complete absence of
CFTR (CFTR knockout piglets) allows the proper plasma membrane location of SLC26A9,
in contrast to the airways of CF-patients expressing a F508del-CFTR allele [132]. Like other
SLC26A proteins (SLC26A3,4,6,8), SLC26A9 may also interact physically with CFTR via R
(regulatory) and STAS (Sulphate Transporter and AntiSigma factor antagonist) domains,
and probably through PDZ-domain interaction [13,29,139–143]. A recent study showed
a contribution of SLC26A9 to airway bicarbonate secretion using the novel SLC26A9
inhibitor S9-A13. Online recordings of ASL pH in primary human nasal epithelial cells
under thin film conditions indicated a sustained decrease in ASL pH caused by S9-A13,
while subsequent activation of CFTR was unable to re-alkalinize ASL pH [23]. These
initial results require confirmation by additional studies in vivo to clearly define the role of
SLC26A9-dependent bicarbonate transport in airways (Figure 3). It will also be interesting
to learn to what extent SLC26A9 contributes to airway HCO3

− secretion when compared
to SLC26A4 (pendrin), which probably secretes the most HCO3

−, particularly during
inflammation [28]. In conclusion, the main task of SLC26A9 in the airways and particularly
in the alveoli could actually be the reabsorption of Cl− rather than Cl− secretion (reviewed
in [144]).
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Figure 3. Proposed modified scheme for Cl− and HCO3
− secretion in airways. Cl− and HCO3

−

ions are taken up on the basolateral site of airway epithelial cells by the Na+/K+/2Cl− cotransporter
NKCC1, NBCe1, and AE2, respectively. The Na+/K+-ATPase and the basolateral K+ channels
KCNQ1/KCNE3 and KCNN4 provide the driving force for luminal anion secretion. Luminal secretion
of Cl− occurs essentially through CFTR, with only a negligible contribution of ANO1. ANO1 supports
Cl− secretion through tethering of the endoplasmic reticulum near the apical compartment and an
increase in the subapical Ca2+ concentration that facilitates activation and membrane expression
of CFTR. CFTR also provides a recycling pathway for Cl− that allows the secretion of HCO3

− by
SLC26A4 and probably SLC26A9.

10. Bicarbonate Is Secreted in Renal Collecting Ducts, Which Requires CFTR, Pendrin
and Possibly ANO1

CFTR is also expressed in the tubular epithelial cells of the human kidneys, where
it affects different transport functions. Early studies suggested a role of CFTR for renal
bicarbonate (HCO3

−) transport [145,146], which was later confirmed for many other ep-
ithelial organs [147–149]. HCO3

− excretion was found to be largely reduced in people with
CF, particularly when patients were challenged with the hormone secretin, which binds
to its receptor and increases intracellular cAMP. A defect in renal bicarbonate excretion
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can lead to metabolic alkalosis occasionally observed in CF patients. Detailed studies in
mice lacking expression of CFTR or the HCO3

− transporter SLC26A4 (pendrin) finally
uncovered the molecular mechanism [150,151]. Physical interaction of CFTR with pendrin
and/or Cl− recycling via CFTR drives the tubular release of HCO3

− through apical pendrin
and urinary excretion. This process takes place in ß-intercalated cells of the renal collecting
duct, which coexpress CFTR, pendrin and receptors for secretin [150]. ANO1 is colocalized
together with pendrin (and CFTR) in the apical membrane of renal ß-intercalated cells and
may support the activity of CFTR [150] (Figure 4).
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Figure 4. ANO1 is colocalized with pendrin in the apical membrane of ß-intercalated cells. (A) Im-
munocytochemistry demonstrating colocalization of ANO1 and pendrin in the apical membrane
of ß-intercalated cells of mouse collecting ducts. For methods, see [150]. (B) Model showing the
molecular mechanisms for HCO3

− excretion by collecting duct ß-intercalated cells. Blood HCO3
−

is taken up into ß-intercalated cells and is transported by pendrin into the collecting duct lumen in
exchange with Cl−, which is recycled via colocalized CFTR. In addition, CFTR may directly interact
with SLC26A4. Colocalized ANO1 tethers the endoplasmic reticulum (ER) to the apical membrane
and facilitates efficient Ca2+ signaling in the apical compartment, which supports insertion of CFTR
into the apical membrane and its activation. An increase in blood secretin leads to the activation
of basolateral secretin receptors (SCTR), which further activates CFTR and HCO3

− excretion. For
methods, see [150].

11. CFTR and ANO1 in Polycystic Kidney Disease: Which One Counts?

While CF and CF-associated metabolic alkalosis are rare, autosomal dominant poly-
cystic kidney disease (ADPKD) is the most common monogenic kidney disease, affecting
approximately 1 in 1000 individuals, often resulting in end-stage renal disease [152]. Muta-
tions in either the PKD1 (~78%) or PKD2 (~15%) gene [153] cause the formation of multiple
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renal cysts which originate from renal tubule epithelial cells, predominantly the principal
cells of the collecting duct [154,155]. The cysts grow continuously over years and cause
compression of the adjacent intact nephrons, resulting in a decline of renal function [156].
Two key features are identified for cyst growth: a change from an absorptive to a secretory
epithelium and the abnormal proliferation of cyst epithelial cells [157]. It is assumed that
the major secretory force for cyst fluid secretion is apical cAMP-dependent Cl− secretion,
and several studies have suggested CFTR as the essential Cl− channel [158–160].

However, recently, Cabrita et al. demonstrated that cyst growth in ADPKD is pre-
vented by pharmacological and genetic inhibition of the calcium-activated chloride channel
ANO1 [161]. Loss of PKD1 increased the expression of ANO1 and CFTR and induced
Cl− secretion in murine kidneys. Importantly, upregulated ANO1 enhanced intracellular
Ca2+ signaling and the proliferation of PKD1-deficient renal epithelial cells. In contrast,
increases in Ca2+ signaling, cell proliferation and CFTR expression were not observed
in PKD1/ANO1 double knockout mice. In a sophisticated renal collecting duct M1 cell
organoid model and in primary renal epithelial cells, cell proliferation and Cl− secretion
were also dependent on enhanced expression of ANO1 [162,163]. Knockdown of PKD1
or PKD2 increased basal intracellular Ca2+ levels and enhanced purinergic Ca2+ release
from the endoplasmic reticulum. Ca2+ signals, proliferation, and Cl− secretion were largely
reduced via the knockdown or blockade of ANO1. ANO1 is therefore central to enhanced
Ca2+ release from IP3-sensitive ER Ca2+ stores, and is a central player in ADPKD caused by
mutations in PKD1 and PKD2. The data strongly suggest that pharmacological inhibition
of ANO1 slows down the progression of ADPKD.

Concerning disease progression, male gender is a major risk factor [164,165]. Talbi
et al. found that kidneys from PKD1 knockout mice had a more pronounced phenotype
in males compared to females. The proliferation of cells from the cyst epithelium was
enhanced in male when compared to female kidneys. This was paralleled by higher basal
intracellular Ca2+ concentrations in cells isolated from PKD1 knockout males. These results
again suggest enhanced intracellular Ca2+ levels contributing to enhanced proliferation
and cyst development in male kidneys. Notably, the incubation of renal cells with di-
hydrotestosterone enhanced basal Ca2+ levels and ATP-stimulated ANO1 currents [166].
Similar results were obtained in a mouse model for autosomal recessive polycystic kid-
ney disease (ARPKD) [157,167]. Finally, polycystic kidneys are under constant oxidative
stress, which causes lipid peroxidation and the activation of ANO1 and ANO6 [44,110,168].
Therefore, inhibition of anoctamins may be a new avenue for therapeutic intervention
in ADPKD.

12. Targeting ANO1 or CFTR in ADPKD?

Inhibitors of Cl− currents such as diphenylamine-2-carboxylate and knockdown
of CFTR by antisense oligo-nucleotides inhibited cAMP-activated Cl− currents in cyst
cells [169]; 8807590). CFTRinh-172 or Ph-GlyH-101 reduced the cyst growth of renal
MDCK cells in a metanephric mouse kidney model and a rapidly progressive neonatal
Pkd1 knockout mouse model [159,160]. In three CF patients with concomitant ADPKD,
disease progression was delayed when compared to their siblings without CF [170,171].
However, the ADPKD-protective effect provided by CF was not confirmed in a subsequent
report [172], and CFTR expression in isolated ADPKD cyst cells was shown to be very
heterogeneous [158,169,173]. It is therefore not entirely clear whether inhibiting CFTR slows
down cyst progression. Moreover, both CFTRinh-172 or Ph-GlyH-101 have pronounced
off-target effects and affect intracellular Ca2+ signals which actually inhibit ANO1 [18].

Initial studies showed that Ca2+-activated ANO1 Cl− currents contribute to cyst
growth [174]. ATP is released by cyst cells, accumulates in the cyst lumen and activates
ANO1 via the stimulation of purinergic receptors [155,174,175]. By contrast, the scavenging
of ATP by apyrase, the P2Y2 receptor antagonist suramin, and the knockdown of P2Y2
inhibited cyst growth [155]. These studies and the subsequent work outlined above [161,
162] suggested ANO1 as the relevant pharmacological target to inhibit in ADPKD.
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Taken together, in mouse studies, ANO1 is a dominant driver of secretion-dependent
cyst enlargement, while we also found that knockout of CFTR had no significant impact
on cyst growth [176] (Figure 5). Nevertheless, it is important to keep in mind that the
physiological contribution of ANO1 in mice is probably greater while the contribution
of CFTR is lower than in humans. In mice, CFTR shows lower activity in the airways
but has a more pronounced contribution to intestinal transport [177]. In the kidneys of
healthy mice, CFTR is only clearly expressed in ß-intercalated cells, where it controls
HCO3

− secretion [150]. Interestingly, a recent report showed that the application of the
CFTR-corrector VX-809 (Lumacaftor) in a Pkd1 knockout and the Pkd1RC/RC mouse model
reduced cyst growth [178,179]. These findings were explained by a cellular translocalization
of CFTR and the Na+/H+ exchanger 3. A clinical phase 2 placebo-controlled randomized
trial investigated the efficacy and safety of the CFTR corrector GLPG2737 in ADPKD
patients (NCT04578548) [180]. More studies are required to analyse the contribution of
ANO1 to cyst formation in human tissue. The central aspects of ANO1 include its obvious
pro-proliferative and de-differentiating properties [101], which after all may have a larger
impact on cyst progression than fluid secretion.
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Figure 5. Knockout of Cftr does not affect cyst growth in an ADPKD mouse model. KspCreERT2;
Pkd1lox;lox mice (Pkd1−/−; n = 10) and KspCreERT2; Pkd1lox;lox/Cftrlox;lox mice (Pkd1−/−/Cftr−/−;
n = 15) received daily intraperitoneal injections of tamoxifen (2 mg/kg body weight dissolved in 5%
ethanol and 95% neutral oil at postnatal days 20–22) to induce tubule-specific deletion of Pkd1 or
co-deletion of Pkd1 and Cftr. Non-induced KspCreERT2; Pkd1lox;lox mice (Pkd1+/+; n = 8) served
as controls. Analyses were performed 10 weeks after induction with tamoxifen. (A) Representative
kidney sections at the end of the experiment. For methods, see [161]. (B) Analysis of the cystic indices
defined as the ratio of the cortical cystic area divided by the whole cortex area. (C) Two-kidney weight
per body weight ratio. No significant effect of CFTR-knockout was found [161]. Bars show means
± SEM, and dots indicate individual values. * Significant increase compared to Pkd1+/+ (p < 0.05;
one-way ANOVA). For methods, see [176].

13. Inhibitors of ANO1

Given the promising results obtained through the genetic and pharmacological in-
hibition of ANO1, ANO1 qualifies as a potential target for the treatment of ADPKD.
ANO1 function can be addressed by drugs that have already been approved for other
indications, like niclosamide or benzbromarone [161]. Niclosamide is an essential oral
anthelminthic drug used for decades to treat parasitic infections, but it is meant for short-
term use [181]. Benzbromarone is a uricosuric drug that has been used in the treatment
of gout over the last 30 years. Although withdrawn by Sanofi for safety reasons after
reports of hepatotoxicity, it is still marketed in several countries by other drug companies
(drugs.com/international/benzbromarone.html (accessed on 27 June 2023)). Hepatotoxic-
ity is rare and occurs in 1 in 17,000 patients [182]. For comparison, the only drug approved
for treatment of ADPKD, the vasopressin-2-receptor antagonist tolvaptan, has a hepatotoxic
risk of 1 in 3000. Therefore, many experts in the field have questioned the withdrawal of
benzbromarone [182].

drugs.com/international/benzbromarone.html
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14. Conclusions

This review summarizes recent findings on CFTR, SLC26A9, and anoctamin 1 and 6 in
the airways and kidneys. It becomes clear that these ion channels and transports do not
stand alone, but rather operate in a functional and metabolic network and should therefore
be analyzed in the context of their molecular and functional interactions. However, data
obtained in different animal and cell culture models often cause confusion due to the
differential expression of proteins in the different species, tissues or cell lines. This is
particularly evident for the differences in CFTR expression in human, piglets and mice,
and even more so for ANO1, which is almost absent in native airways but abundant in
cultured airway cells. The authors believe that progress in understanding cystic fibrosis and
polycystic kidney disease can only be achieved by considering data from animal studies.

The current trend towards over-regulated and lengthy animal welfare applications
should be corrected. Pure cell culture studies, even when performed on primary cells in
differentiated culture, carry the risk of misinterpretation. This is particularly important in
the development of new pharmacological strategies. Because of the increasingly complex
pathogenic relationships, new therapeutic strategies must first be thoroughly evaluated in
animal studies before they can be applied in humans.
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