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Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum
of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis
(MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis
within MASLD is critical for disease development; therefore, the identification of fibrosis-driving
factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC
ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expres-
sion in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed
in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression
was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for
patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for
IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correla-
tion was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20
expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced
mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated
by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of
oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation
of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion,
cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20,
both known to trigger inflammation and fibrosis.

Keywords: MASLD; NAFLD; MASH; NASH; steatosis; interleukin 32; chemokine CC ligand 20;
oxidative stress; saturated fatty acid; MAPK pathway

1. Introduction

A higher standard of living in Global Northern countries results in improved living
conditions, but it has also led to a rise of lifestyle-associated diseases. Among others, the
prevalence of obesity and associated diseases such as type 2 diabetes and further mani-
festations of the metabolic syndrome are severely increasing [1]. Metabolic dysfunction-
associated steatotic liver disease (MASLD) [2], formerly termed as non-alcoholic fatty
liver disease (NAFLD), which has a global prevalence of 30%, is the hepatic manifestation
of the metabolic syndrome and has therefore become the leading cause of chronic liver
diseases worldwide [3]. MASLD is caused by the abnormal or excessive accumulation of
lipid droplets in hepatocytes [1]. It covers a range of liver disorders encompassing simple
steatosis, metabolic dysfunction-associated steatohepatitis (MASH) [2], formerly termed
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as non-alcoholic steatohepatitis (NASH), and its progression toward hepatic cirrhosis [3].
Numerous studies have analyzed differential gene and protein expression in MASLD;
however, the precise underlying mechanisms of the pathogenesis of MASH in the steatotic
liver have just begun to be understood [4–6].

According to the multiple-hit hypothesis of development and progression of MASLD,
steatosis, lipo-toxicity and inflammation play an important role [4]. Hepatic steatosis,
especially the accumulation of saturated free fatty acids (FFAs) such as palmitic acid (PA)
and cholesterol, leads to lipo-toxicity, which causes a change in behavior of liver cells. It
is mediated via various pathways including the modification of mitochondrial function,
oxidative stress and the activation of signaling pathways and death receptors [5]. Thereby,
transcription factors, such as NF-kB, are activated, resulting in enhanced expression and re-
lease of pro-inflammatory mediators like tumor necrosis factor (TNF) and interleukins [4,5].
TNF mediates liver damage by inducing the production of reactive oxygen species (ROS),
which in turn triggers inflammation and fibrogenesis [5]. Steatosis, MASH and early liver
fibrosis are reversible manifestations of MASLD. However, if fibrogenesis progresses, the
disease may proceed to irreversible forms such as advanced fibrosis, cirrhosis or hepa-
tocellular carcinoma (HCC) [7]. Thus, if the state of fibrosis is defining for the progno-
sis and mortality of MASLD patients, it is indispensable to identify the driving factors
of fibrogenesis [8].

MASH is a multifactorial liver disorder and knowledge about the impact of each
factor driving disease progression is limited. Inflammatory and fibrogenic signaling events
play major roles for the pathogenesis of MASLD and its progression [6]. In a preliminary
study, we identified differentially expressed genes (DEGs) in liver samples of patients with
MASH such as interleukin-32 (IL-32) and chemokine CC ligand 20 (CCL20), which are
associated with fibrogenesis and MASLD. IL-32 is known to be the pivotal regulator of
liver inflammation caused by obesity [9]. CCL20, also called macrophage inflammatory
protein-3alpha, contributes to chronic liver inflammation and fibrosis by mediating the
chemotaxis of immune cells [10]. Less is known about the molecular mechanism of their in-
duction under conditions of MASLD. Fatty acids, in particular saturated fatty acids, play an
important role in the pathogenesis of MASLD and have been shown to induce lipo-toxicity,
resulting in the expression of genes induced by stress [4,5,11]. Furthermore, a predisposing
pro-steatotic genetic risk factor is patatin-like phospholipase domain-containing protein
3 (PNPLA3 or adiponutrin), which is highly expressed in liver tissue. PNPLA3 is a lipid
droplet-associated protein with hydrolase activity for triglycerides and retinyl esters. Its
I148M variant is known to be involved in the pathogenesis of MASLD. By impairing the
metabolism of lipid droplets and inducing the expression of cytokines and chemokines,
the PNPLA3 I148M variant contributes to liver inflammation, fibrosis and cirrhosis [12].
Consequently, we analyzed the gene expression of IL-32 and CCL20 in the liver tissue of
controls and patients as well as the effect of fatty acids on their expression in hepatoma
cells. Furthermore, we analyzed the impact of the PNPLA3 I148M variant on the expression
of the aforementioned genes.

In the current study, we show that these pro-inflammatory factors are linked to
the progression of MASH and fibrosis in human liver samples. In vitro experiments
demonstrate that the expression of IL-32 and CCL20 can be induced by PA, a saturated fatty
acid and well-known risk factor for lipo-toxicity [4,5,11]. Furthermore, we show that a high
expression of IL-32 and CCL20 caused by saturated FFAs can be mitigated by oleic acid
(OA), which is an unsaturated FFA. Finally, we identify some of the underlying signaling
pathways that induce the expression of IL-32 and CCL20 in liver cells.

2. Results
2.1. IL-32 and CCL20 mRNA Expression Is Enhanced in MASLD

In a preliminary micro-array study [13], mRNA expression in liver tissue was com-
pared between a control group (N or normal liver), patients with steatosis (S) and a cohort
suffering from MASH (SH). Differentially expressed genes (DEGs) that are involved in liver
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injury and tissue repair/regeneration were identified. In this study, these findings were
validated in a larger cohort (n = 121) using quantitative real-time PCR (qRT-PCR) analysis.
By comparison of the relative mRNA expression of the three groups, N, S and SH, we
confirmed a significant upregulation in MASH patients of genes involved in liver injury and
regeneration, namely Interleukin-32 (IL-32) [14] and chemokine CC ligand 20 (CCL20) [15]
(Figure 1A,B). Additionally, aldo-keto reductase family 1 member B10 (AKR1B10), which is
a known biomarker for steatohepatitis [16], was significantly enhanced (Supplementary
Figure S1A). Furthermore, the upregulation of IL-32 expression was observed in liver sam-
ples in parallel with histological steatosis grade (Figure 1A). Moreover, IL-32 and CCL20
levels were increased in tissue samples with more progressed fibrosis (Figure 1A,B).
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Adiponutrin (PNPLA3) is a lipid droplet-associated lipogenic and lipolytic enzyme, 
which is regulated by carbohydrates. Its common protein variant I148M (rs738409) repre-
sents the most important pro-steatotic genetic risk factor and is consequently a marker for 
fibrosis, cirrhosis and hepatocellular carcinoma [12]. We analyzed our sample cohort for 
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Figure 1. mRNA expression of IL-32 and CCL20 in liver samples from patients with MASLD.
(A) IL-32 and (B) CCL20 mRNA expression was analyzed in liver tissue samples from patients with
MASH (SH, n = 43), hepatic steatosis (S, n = 46) and normal liver tissue (N, n = 32) by qRT-PCR.
Expression levels were plotted regarding their histologically proven steatosis grade (0 = 32, 1 = 25,
2 = 44, 3 = 21) and fibrosis grade (0 = 76, 1–2 = 27, 3–4 = 16) (for sample characteristics see Table S1).
YWHAZ mRNA expression was determined for normalization. Statistical differences were analyzed
by Kruskal–Wallis test with post hoc Bonferroni correction. * p < 0.05, ** p < 0.01.

Adiponutrin (PNPLA3) is a lipid droplet-associated lipogenic and lipolytic enzyme,
which is regulated by carbohydrates. Its common protein variant I148M (rs738409) repre-
sents the most important pro-steatotic genetic risk factor and is consequently a marker for
fibrosis, cirrhosis and hepatocellular carcinoma [12]. We analyzed our sample cohort for
the presence of PNPLA3 (I148M) variant carriers and identified a correlation between the
variant carrier (CG/GG) with steatosis and steatohepatitis as well as with steatosis grade
(Supplementary Figure S2). Stratification for the PNPLA3 I148M variant revealed signifi-
cantly increased IL-32 mRNA expression in steatotic and MASH samples solely in PNPLA3
I148M (CG/GG) variant carriers, not in non-carriers (CC) (Supplementary Figure S3A). In
contrast to this, significantly increased CCL20 mRNA expression in MASH samples was
irrespective of PNPLA3 I148M variant status (Supplementary Figure S3B). Interestingly, a
positive correlation between steatosis grade and the expression of CCL20 was observed
in non-carriers of the I148M variant (Supplementary Figure S3B). Furthermore, there was
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no significant change in IL-32 expression observed, regarding fibrosis scores and PNPLA3
status. Contrary to this, CCL20 was differentially expressed; however, it was independent
of the carrier status (Supplementary Figure S3A,B). In summary, hepatic IL-32 and CCL20
expression is increased in MASH samples with progressed activity (intense steatosis and
moderate-to-severe fibrosis), and enhanced IL-32 expression was found to be related to the
PNPLA3 I148M variant.

2.2. Treatment with Palmitic Acid Leads to Fat Deposition and Induction of IL-32
and CCL20 Expression

Cellular lipid accumulation is a major hallmark of MASLD, and therefore in vitro
models of steatosis, based on primary hepatocytes or hepatoma cell lines, are useful to
analyze fatty acid-associated cell stress and damage [17]. To shed light on the role of cellular
steatosis for the expression of IL-32 and CCL20 in MASLD, we treated two hepatoma cell
lines, HepG2 and Huh7, with palmitic acid (PA, C16:0), known to induce cellular lipid
accumulation, lipo-apoptosis and lipo-toxicity [18]. After 24 h of treatment with PA, distinct
intracellular lipid droplets were observed in both cell lines, as reported earlier [18]. They
increased in a positive correlation with higher PA concentrations (0, 0.2 and 0.4 mM) and
longer treatment (24 and 48 h). We analyzed the mRNA expression of IL-32 and CCL20
in the aforementioned treated cells and found enhanced expression of both genes using
0.4 mM PA for 24 h (Figure 2A) or for up to 48 h of treatment (Figure 2B). We confirmed
these findings for protein expression, showing increased IL-32 and CCL20 protein levels by
Western blotting (Figure 2C). Thus, we were able to show that treatment with the saturated
FFA PA can induce the expression of IL-32 and CCL20, which are known to be involved in
inflammation and fibrogenesis and are therefore important for liver injury.
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Figure 2. Palmitic acid (PA) induces mRNA expression of IL-32 and CCL20 in vitro. (A) HepG2 and
Huh7 cells were treated without (control) or with indicated concentrations of PA for 24 h. (B) HepG2
and Huh7 cells were treated with 0.4 mM PA for indicated times (control, no treatment). The mRNA
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levels were analyzed and normalized to YWHAZ (three independent experiments, mean ± SD).
* p < 0.05 differs from control, # p < 0.05 differs from control and 0.2 mM PA. (C) HepG2 and Huh7
cells were incubated without (-) or with indicated concentrations of PA for 24 h followed by isolation
of total protein extracts. Western blot analysis using specific anti-IL-32 and anti-CCL20 antibodies
was performed with β-actin as loading control. Western blots from HepG2 cell experiments were
analyzed for relative protein abundance by densitometric analysis and normalized to loading control
and untreated cells (control). Data presented as mean ± SEM, * p < 0.05 differs from control.

2.3. Monounsaturated Oleic Acid Compared to Palmitic Acid Does Not Induce IL-32
and CCL20 Expression

Monounsaturated fatty acids have been shown to attenuate PA-mediated lipo-apoptosis
and cyto-toxicity [19,20]. Therefore, we analyzed the impact of oleic acid, OA (C18:1), on
the MASH-related genes IL-32 and CCL20. HepG2 cells incubated with 0.4 mM PA for
24 h showed a significant upregulation of IL-32 and CCL20 (Figure 3A,B). Treating the cells
with a mixture of 0.4 mM PA/OA (1/2) did not result in increased mRNA expression of
the analyzed genes (Figure 3A). Western blotting revealed a reduction in IL-32 and CCL20
protein levels upon addition of OA (PA/OA, mixture 1/2) compared to PA alone (0.4 mM)
(Figure 3B). Therefore, the presented data highlight the protective role of OA by reducing
the expression of factors known to play a key role in inflammation and fibrogenesis.
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Figure 3. Unsaturated oleic acid (OA) reduces PA-induced expression of IL-32 and CCL20 in vitro.
(A) HepG2 cells were incubated either with 0.4 mM PA or with 0.4 mM PA/OA (1/2) for indicated
times (control, no treatment). The mRNA levels were analyzed and normalized to YWHAZ (three
independent experiments, mean± SD). * p < 0.05 differs from control. (B) HepG2 cells were incubated
without PA, with 0.4 mM PA or 0.4 mM PA/OA (1/2) for 24 h followed by isolation of total protein
extracts. Western blot analysis using specific anti-IL-32 and anti-CCL20 antibodies was performed
with β-actin as loading control. Immunoblots were analyzed by densitometry and normalized to
loading control and untreated cells (control). Data presented as mean ± SEM, * p < 0.05 differs from
control, # p < 0.05 differs from PA treatment.

2.4. Palmitic Acid-Induced Gene Expression Is Mediated via Stress-Induced Pathways

FFAs have been shown to induce cell stress and thereby mediate the expression
of a variety of genes. To elucidate the signaling pathways induced by PA, we treated
HepG2 or Huh7 cells with PA and specific inhibitors of the PKC and MAPK (Erk1/2 and
p38) pathways. PA-induced expression of IL-32 and CCL20 was significantly reduced
by inhibition of the Erk1/2 and p38 pathways (Figure 4B). Notably, PA-induced IL-32
and CCL20 mRNA expression was diminished by the inhibition of the p38 but not of the
Erk1/2 pathway in Huh7 cells (Figure 4A). Inhibition of PKC did not change CCL20 mRNA
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(Figure 4A) or protein expression (Figure 4B). IL-32 protein expression was not reduced by
PKC blockade in both cell lines (Figure 4B), although mRNA expression was reduced in
Huh7 cells (Figure 4A). Overall, the PA-induced expression of IL-32 and CCL20 is mainly
mediated by Erk1/2 and p38 MAPK.
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Figure 4. PA-induced expression of IL-32 and CCL20 is mediated by Erk1/2 and p38 MAPK.
(A) Huh7 cells were treated with 0.4 mM PA for 24 h, and without (no inhibition) or with
(1.5 h prior to PA) addition of specific inhibitors: PD098059 (PD, 10 µM) for Erk1/2, SB203580
(SB, 10 µM) for p38 MAPK or GF109203X (GX, 10 µM) for PKC signaling. The mRNA levels were
analyzed and normalized to YWHAZ (three independent experiments, mean ± SD). * p < 0.05 differs
from control, # p < 0.05 differs from no inhibition. (B) Huh7 and HepG2 cells were treated without
or with 0.4 mM PA for 24 h, and with or without PD, SB or GX as described above (A) followed by
isolation of total protein extracts. Western blot analysis using specific anti-IL-32 and anti-CCL20 anti-
bodies was performed with β-actin as loading control. Immunoblots were analyzed by densitometry
and normalized to loading control and untreated cells (control). Data presented as mean ± SEM,
* p < 0.05 differs from control, # p < 0.05 differs from no inhibition.

3. Discussion

In the present study, we analyzed the expression of liver injury-related genes in
patients with MASLD and could demonstrate a significant upregulation of IL-32 and
CCL20 in MASH samples with progressed activity (intense steatosis and moderate-to-severe
fibrosis). The in vitro experiments involved treating hepatoma cells with FFAs to induce
steatosis and lipo-toxicity, both of which are known to correlate with the severity of MASLD.
Gene and protein expression was induced by PA, and this PA-mediated upregulation was
attenuated by OA. Finally, we were able to provide evidence and shed light on the molecular
mechanisms and signaling pathways involved in the differential expression of these genes.

Elevated serum levels of FFAs have been shown to be associated with the progression
of MASLD [21]. In addition, FFAs and their metabolites have been proven to be important
mediators of lipo-toxicity (including ROS-stress), leading to hepatocellular injury and
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the progression of MASLD [21]. While the overabundance of saturated fatty acids, such
as PA, increases the lipo-toxicity, and therefore lipo-apoptosis and the activation of ER-
stress response pathways in liver cells [18], unsaturated fatty acids mitigate these effects.
Monounsaturated OA has been shown to be less lipo-toxic and abate the saturated (e.g., PA)
FFA-induced lipo-toxicity by inhibiting ER-stress in hepatic cells [19,22,23]. The induction
of ER- and ROS-stress by PA activates signaling pathways such as PKC, JNK and MAPK
(Erk1/2, p38), resulting in the translocation of transcription factors NFκB, AP1 and SP1,
which are well-recognized for their importance in inflammation [24,25].

IL-32 has been initially described as a pro-inflammatory cytokine, which is expressed
by immune cells such as monocytes, natural killer (NK) and T-cells, as well as by various
non-immune cells including endothelial and epithelial cells [26]. IL-32, when secreted,
can induce inflammatory cytokines including TNF, IL-6 and IL-1β as well as macrophage
inflammatory protein-2 (MIP-2) and is associated with several diseases and inflammatory
conditions [26]. Elevated IL-32 serum levels have been reported in chronic obstructive
pulmonary disease [27], type 2 diabetes [28], HIV infection [29] and MASLD [9]. Although
the secretory pathway of IL-32 and its cell surface receptor for signal transduction is still
not completely understood, it has been reported that overexpressed or induced IL-32 is
not secreted from hepatoma cells or hepatocytes infected with hepatitis B virus (HBV) [30].
Correspondingly, in our in vitro experiments we analyzed IL-32 in cell culture supernatant
using ELISA and only found levels below the detection limit of the assay, irrespective of
treatment with PA.

The expression of IL-32 is upregulated by several cytokines, including TNF and IL-1β,
as well as by infection, pathogen-associated molecular patterns (PAMPs) and oxidative
stress [26]. Hypoxia-induced ROS have been shown to increase IL-32 expression in breast
cancer cells [31]. Furthermore, is has been reported that the stability of the IL-32 protein is
regulated by the deoxygenation of the N-terminal cysteine by a thiol oxidase [32], which
highlights the role of oxygen-sensing systems in regulating IL-32 expression in response
to oxidative stress. Consistent with this, we have shown increased IL-32 expression in
hepatoma cells upon treatment with PA, known to generate ROS, which is mitigated by
OA [22,23]. As reported elsewhere [9,33], in this study we found enhanced IL-32 expression
in the liver tissue of patients with MASH. This may be caused by ROS-stress, which is
induced by the accumulation of saturated fat in hepatocytes [21]. In addition, we present
data that indicate the involvement of activated MAPK (Erk1/2, p38) cascades in IL-32
expression, which has been shown to be stimulated by ROS-stress [34] and further points
to the important role of ROS in IL-32 regulation under steatotic conditions. The activation
of these signaling pathways may lead to nuclear translocation of NFκB, c-Jun (AP1) and
SP1 and subsequently to the activation of their respective target genes. The IL-32 promoter
harbors an SP1 binding site, as well as contains binding sites for fatty acid-sensitive
transcription factors, such as PPARγC1α and RXRα, indicating a potential direct impact of
FFAs on IL-32 expression [9].

Beside the effect of secreted IL-32 on cytokine expression, and consequently on the
induction of inflammation, cellular IL-32 expression shows a variety of molecular inter-
ventions. Increased IL-32 expression has been found in hepatocytes of patients suffering
from chronic HBV [30] or HCV [35] infection. Interestingly, the overexpression of IL-32 in
hepatoma cells in vitro revealed a potent antiviral effect against HBV [36], but on the other
hand had no influence on HCV virus replication in [35]. Damen et al. reported a role of
IL-32 in hepatic cholesterol homeostasis by regulating the lipid regulatory receptor LXRα,
lipid transporters ABCA1 and ABCG1 as well as the fatty acid carrier ApoA1 in liver cells,
which is followed by a reduction in intracellular lipid levels [37]. In addition, increased
IL-32β expression has been reported to decrease intracellular lipid concentrations in hep-
atoma cells, which may be mediated by reduced PPARγ expression and elevated AMPK
activity [38]. In summary, increased IL-32 expression under MASLD conditions or upon
treatment with FFAs may be a cellular response to minimize lipo-toxicity. Furthermore,
IL-32 levels have been reported to be associated with obesity-related inflammation [39]
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and a correlation with disease severity in MASLD has been observed [9]. In agreement
with this study, we observed a positive correlation between hepatic IL-32 expression and
steatosis as well as fibrosis grade in the MASLD patients, albeit only a weak correlation
with inflammation and obesity (Supplementary Table S2).

Stratification by PNPLA3 gene variant status, which has been shown to influence
liver disease from simple steatosis to MASH, fibrosis and hepatocellular carcinoma [12],
revealed a clear correlation between IL-32 and disease severity of MASH in PNPLA3
variant carriers, which is in agreement with a report by Baselli et al. [9]. Moreover, IL-32
expression and PNPLA3 gene variant were not found to be dependent on fibrosis stage
in our cohort, contrary to previous reports [9]. The observed discrepancies in the results
could be due to a difference in study population and design; for example, we performed
RT-PCR compared to gene array technology [9]. However, as a common conclusion as
well as validation of our study, we and other similar studies found a significant increase in
AKR1B10 expression in patients with steatohepatitis [9,16]. Furthermore, AKR1B10 did
not correlate with steatosis grade, but did significantly with fibrosis score (Supplementary
Figure S1B,C), indicating that AKR1B10 is a marker of MASH progression. Additionally,
it has been shown that AKR1B10 is upregulated by oxidative and ER-stress, and that the
PNPLA3 gene variant did not control discrete AKR1B10 expression [40], which is in line
with our results (Supplementary Figure S1).

CCL20 is a pro-inflammatory chemokine, which can be induced in a variety of cells
by lipopolysaccharide, TNF and IL-1β, and consequently attracts chemokine receptor
6 positive cells. CCL20 has been described to substantially augment inflammation and
fibrogenesis in patients suffering from alcoholic hepatitis [41]. Furthermore, it was reported
that CCL20 is upregulated in hepatocytes upon injury and improves hepatic fibrosis by
recruiting γδT cells in CCl4 mouse models [10]. Upregulated CCL20 expression has been
observed under conditions of hepatic fibrosis in patients with chronic liver diseases, such as
hepatitis C virus infection, alcoholic steatohepatitis or primary biliary cirrhosis [10] and in
patients with MASH [42]. The data presented in our study are consistent with these reports
by indicating a significant increase in CCL20 expression in MASH livers, irrespective of
PNPLA3 carrier status. Additionally, CCL20 expression did not correlate with steatosis
grade, but with fibrosis stage and tissue inflammation status (inflammatory cells). This
supports the role of CCL20 in the pathogenesis of fibrosis and hepatic inflammation, while
being independent of the PNPLA3 carrier group (Supplementary Table S2). Contradictory
data have been reported regarding CCL20 mRNA induction by FFAs. Some show no
effect of lipid loading with PA or OA treatment [40], while others indicate increased
CCL20 expression in HepG2 cells in response to PA [42]. Our data show enhanced CCL20
mRNA and protein expression in HepG2 and Huh7 cells induced by saturated PA, which is
diminished by the addition of monounsaturated OA and aligns our IL-32 data. Interestingly,
Baselli et al. found CCL20 mRNA expression to be co-regulated with IL-32 in livers from
patients with severe obesity [9], suggesting a common regulatory mode. As previously
described for IL-32, oxidative stress caused by PA treatment, TNF and IL-1β, induces CCL20
expression via activation of MAPK (Erk1/2, p38) pathways and the nuclear translocation
of NFκB, c-Jun (AP1) and SP1 [34]. The CCL20 promoter harbors binding sites for NFkB,
AP1 and SP1 [43], hence making it most likely to be induced by ROS.

MASLD encompasses a continuous spectrum of liver diseases, ranging from non-
alcoholic fatty liver to MASH, which increases the risk of developing fibrosis, cirrhosis and
HCC [3]. Changes in the expression patterns of genes associated with liver regeneration
have been identified in steatotic livers, leading to compromised functional recovery after
tissue loss [44]. Here, we present data showing increased expression of IL-32 and CCL20 in
patients with MASH, as well as their induction by PA in hepatoma cells, likely mediated
by oxidative stress and cellular lipid loading. This enhanced expression may represent a
dichotomous result, indicating on one hand a response to liver injury, which consequently
triggers inflammation and wound healing (fibrogenesis), but on the other hand also an
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attempt to maintain metabolic homeostasis. These factors are important for inflammation
and fibrosis and must therefore be evaluated for potential therapeutic interventions.

4. Materials and Methods

Study Subjects and Collection of Samples: Human liver tissues samples of patients without
MASLD (n = 32), patients with simple liver steatosis (n = 46) and patients with MASH
(n = 43) were examined and analyzed as described previously [13] (for tissue characteristics
see Supplementary Table S1). The experimental procedures were performed according
to the guidelines of the charitable state-controlled foundation HTCR (Human Tissue and
Cell Research, Regensburg, Germany), with written informed consent from patients. The
study and the consent form were approved by the local ethical committee of the University
of Regensburg (ethics statement 12-101-0048, University of Regensburg, Germany). All
experiments involving human tissues and cells have been carried out in accordance with
The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Cell culture and treatments: The human hepatoma cell line HepG2 was obtained from
American Type Culture Collection (HB-8065, ATCC, Manassas, VA, USA) and Huh7 cells
(ECACC 01042712) from European Collection of Authenticated Cell Cultures (ECACC) (Sal-
isbury, UK). Cells were grown at 37 ◦C, 5% CO2 in DMEM (BioWhittaker, Verviers, Belgium)
supplemented with penicillin (100 units/mL), streptomycin (10 µg/mL) and 10% fetal calf
serum (Biochrom, Berlin, Germany). Cells were seeded at a density of 5 × 104 cells/cm2,
in 6-well plates, cultivated for 24 h, and after an additional 24 h of starvation (serum free
culture medium DMEM) the cells were treated with indicated concentrations of either
palmitic acid (PA) or with a mixture of palmitic and oleic acid (ratio 1:2) (PA/OA) for 24 or
48 h. Free fatty acids (OA, #01008-5G, PA #P0500-10G) were obtained from Sigma-Aldrich
(Deisenhofen, Germany) and dissolved in isopropanol. Specific inhibitors (10 µM each)
were added 1.5 h before application of PA for blocking signaling pathways known to be
activated by FFAs: PD098059 (#P215-1MG; Erk1/2 inhibitor) and SB203580 (#S8307-1MG;
p38 MAPK inhibitor), purchased from Sigma-Aldrich, as well as GF109203X (#0741; pro-
tein kinase C inhibitor) obtained from Tocris Bio-Techne GmbH (Wiesbaden-Nordenstadt,
Germany), were dissolved in DMSO.

RNA isolation, reverse transcription, qRT-PCR and genotyping: Total RNA was isolated
using RNeasy Mini Kit (Qiagen, Hilden, Germany). One µg of total RNA was reverse-
transcribed using the Reverse-Transcription System (Qiagen, Hilden, Germany). Following
primers were used (Metabion, Martinsried, Germany): IL-32 Fwd.: 5′-tcaaagagggctacctggag-
3′, IL-32 Rev.: 5′-tttcaagtagaggagtgagctctg-3′. CCL20 Fwd.: 5′-ctggctgctttgatgtcagtgct-3′,
CCL20 Rev.: 5′-gcagtcaaagttgcttgctgcttc-3′. YWHAZ Fwd.: 5′-gcaattactgagagacaacttgaca-3′,
YWHAZ Rev.: 5′-tggaaggccggttaatttt-3′. Transcript levels were quantified using real-
time PCR technology (Roche, Penzberg, Germany). PCR products were verified by se-
quence analysis and each quantitative PCR was performed in triplicates. Genotyping for
rs738409C>G in PNPLA3 gene was performed using genomic DNA and a predeveloped
assay C_7241_10 on a TaqMan 7900HT device (Thermo Fischer Scientific, Dreieich, Ger-
many) according to manufacturer’s instructions. Genotype results did not deviate from
Hardy–Weinberg equilibrium.

SDS-PAGE and immunoblotting: Total proteins were isolated and subjected to Western
blot analysis as described [45]. Briefly, 30 µg protein per lane were separated by 12%
SDS-PAGE (Biorad, Hercules, CA, USA) under reducing conditions, and proteins were
transferred onto PVDF membranes (Biorad, Hercules, CA, USA), incubated with specific
antibodies and developed using enhanced chemiluminescence reagent (Thermo Fisher
Scientific, Darmstadt, Germany). The following antibodies were used: IL-32 (ab172339) was
obtained from Abcam (Cambridge, UK), CCL20 (LS-C104608) from BIOZOL Diagnostica
(Eching, Germany) and ß-actin (#4970) was obtained from Cell Signaling (Danvers, MA,
USA). Secondary goat HRP-conjugated antibodies (anti-rabbit #P0448 and anti-mouse
#P0447) were obtained from Dako (Hamburg, Germany).
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Statistical analysis: mRNA expression results of patient samples were evaluated for
normality distribution by a Shapiro–Wilk test. Data presented as box plots displaying me-
dian values, lower and upper quartiles and the range of the values. Statistical differences
between two groups were analyzed by a two-tailed Mann–Whitney U Test or a Student’s
unpaired t-test (in vitro) and between several groups (data from human samples) by a
Kruskal–Wallis Test with post hoc Bonferroni correction where appropriate. Values of
p < 0.05 were considered significant (SPSS Statistics 25.0 program, IBM, Leibniz Rechen-
zentrum, München, Germany). Each experiment was performed at least in triplicates and
results were expressed as means ± SD (standard deviation) or SEM (standard error of the
mean) as indicated.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms241713222/s1.
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