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Abstract

In this thesis, we study systems of nonlinear partial differential equations from applied science
by mathematical analysis tools.

First, we focus on the local well-posedness of a series of fluid-structure interaction problems
(FSI), which arise from plaque formation during the stage of the atherosclerotic lesion in human
arteries. The blood is modeled by the incompressible Navier–Stokes equation, while the motion
of the vessel is captured by nonlinear elasticity. The growth occurs when both cells in fluid and
solid react, diffuse, and transport across the interface, resulting in the accumulation of foam
cells, which are exactly seen as the plaques. We consider the following situations:

• A fluid-structure interaction problem with growth (FSIG) in a smooth domain with a kind
of linearized Kelvin–Voigt viscoelasticity, including biochemical interactions and growth
effects.

• A fluid-structure interaction problem with growth (FSIG) in a cylindrical domain, where
fixed ninety-degree contact angles are concerned, leading to more difficulties for the anal-
ysis.

• A quasi-stationary fluid-structure interaction problem with growth (QFSIG) in a smooth
domain, where the elasticity is assumed to be an equilibrium for each time, and the lin-
earized system is a parabolic-elliptic mixed-type problem.

The proofs rely on a fixed-point argument, where the most crucial part is the analysis of the
linearized systems, which causes remarkable differences and technical difficulties in different cases.

In the last part, we establish the existence of global weak solutions to a diffuse interface
model of incompressible viscoelastic flows, which is in fact, a model proposed originally to han-
dle the problem of fluid-structure interaction. More specifically, the fluids are assumed to be
macroscopically immiscible, but with a small transition region, where the two components are
partially mixed. Considering the elasticity of both components, one ends up with a coupled
Oldroyd-B/Cahn–Hilliard type system, which describes the behavior of two-phase viscoelastic
fluids. In particular cases by choosing suitable coefficients, one can recover the fluid-phase and
elastic-phase respectively. We prove the existence of weak solutions to the system in two dimen-
sions for general (unmatched) mass densities, variable viscosities, different shear moduli, and
a class of physically relevant and singular free energy densities that guarantee that the order
parameter stays in the physically reasonable interval. To this end, we propose a novel regular-
ization of the original system and a new hybrid implicit time discretization for the regularized
system, while new compactness arguments are used to pass to the final limit.





Zusammenfassung

In dieser Arbeit untersuchen wir Systeme nichtlinearer partieller Differentialgleichungen aus
den angewandten Wissenschaften mit Methoden der mathematischen Analysis.

Zunächst konzentrieren wir uns auf die lokale Wohlgestelltheit einer Reihe von Fluid-Struktur-
Interaktionsproblemen (FSI), die sich aus der Plaquebildung während des Stadiums der atheros-
klerotischen Läsion in menschlichen Arterien ergeben. Das Blut wird durch die inkompressible
Navier–Stokes-Gleichung modelliert, während die Bewegung des Gefäßes durch eine nichtlineare
Elastizitätsgleichung erfasst wird. Das Wachstum tritt auf, wenn sowohl Zellen in Flüssigkeit als
auch in festem Material reagieren, diffundieren und über die Grenzfläche transportiert werden,
was zu einer Ansammlung von Schaumzellen führt, die in Form von Plaque zu sehen sind. Wir
betrachten die folgenden Situationen:

• Ein Fluid-Struktur-Interaktionsproblem mit Wachstum (FSIG) in einem glatten Gebiet mit
einer Art linearisierter Kelvin–Voigt-Viskoelastizität, einschließlich biochemischer Wechsel-
wirkungen und Wachstumseffekte.

• Ein Fluid-Struktur-Wechselwirkungsproblem mit Wachstum (FSIG) in einem zylindrischen
Gebiet, bei dem feste Neunzig-Grad-Kontaktwinkel betrachtet werden, was zu größeren
Schwierigkeiten bei der Analyse führt.

• Ein quasistationäres Fluid-Struktur-Interaktionsproblem mit Wachstum (QFSIG) in einem
glatten Gebiet, bei dem die Elastizität für jede Zeit als Gleichgewicht angenommen wird
und das linearisierte System ein parabolisch-elliptisches Problem gemischten Typs ist.

Die Beweise beruhen auf einem Fixpunktargument, wobei der wichtigste Teil die Analyse der
linearisierten Systeme ist, die in verschiedenen Fällen bemerkenswerte Unterschiede aufweisen
und zu technischen Schwierigkeiten führen.

Im letzten Teil wird die Existenz globaler schwacher Lösungen für ein diffuses Grenzflächen-
modell für inkompressible viskoelastische Strömungen nachgewiesen. Genauer gesagt wird davon
ausgegangen, dass die Flüssigkeiten makroskopisch nicht mischbar sind, jedoch mit einem kleinen
Übergangsbereich, in dem die beiden Komponenten teilweise vermischt sind. Berücksichtigt man
die Elastizität beider Komponenten, so erhält man ein gekoppeltes System vom Typ Oldroyd-
B/Cahn–Hilliard, das das Verhalten zweiphasiger viskoelastischer Fluide beschreibt. In bes-
timmten Fällen kann man durch die Wahl geeigneter Koeffzienten die flüssige und die elastische
Phase beschreiben. Wir beweisen die Existenz schwacher Lösungen des Systems in zwei Dimensio-
nen für allgemeine (verschiedene) Massendichten, variable Viskositäten, verschiedene Schermod-
ule und eine Klasse physikalisch relevanter, singulärer freier Energiedichten, die garantieren, dass
der Ordnungsparameter im physikalisch sinnvollen Intervall bleibt. Zu diesem Zweck schlagen
wir eine neuartige Regularisierung des ursprünglichen Systems und eine neue hybride implizite
Zeitdiskretisierung für das regularisierte System vor, während neue Kompaktheitsargumente ver-
wendet werden, um letztendlich zur Grenze überzugehen.
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Introduction

This thesis focuses on the study of nonlinear partial differential equations, which arise from
physics, biology, and materials sciences, in particular, fluid mechanics, elasticity, and their in-
teractions. Fluid-structure interactions involving the coupling of fluid mechanics and solid me-
chanics have been studied intensively by engineers, physicists, and also mathematicians, due
to a broad range of applications in various areas, for example, hydro- and aero-elasticity, or
biomechanics [BGN14, Dow15, GR10, Kal+18, Pai14, Ric17]. In this thesis, we investigate fluid-
structure interaction problems that couple incompressible viscous flow, (visco-) morphoelasticity,
biochemical processes, as well as the interactions on the interface.

Motivation from Biology

Atherosclerosis, a chronic disease of the arterial wall, has been a major cause of cardiovascu-
lar disease with high mortality rates worldwide for many years. Various compelling hypotheses
regarding the pathophysiology of atherosclerotic lesion formation and complications such as my-
ocardial infarction and stroke were proposed by constant research from medicine and biomedical
engineering into the disease. The motivation for this thesis was triggered by the developed pro-
cess of atherosclerotic lesions. In particular, we focus on a specific stage plaque formation during
atherosclerosis, including the adhesion of blood leukocytes to an activated endothelial cell mono-
layer, the targeted migration of the bound leukocytes (white blood cells) into the intima, the
maturation of monocytes (the most numerous of the leukocytes recruited) into macrophages, and
their uptake of lipid, producing foam cells [LRH11]. This procedure is referred to as the concept
of atherogenesis.

Mathematical Modeling: Free Boundary Problems

Before exploring detailed analysis, let us explain the processes briefly by means of partial
differential equations in a domain as sketched in Figure 0.1, which is roughly a three-dimensional
vertical section of half of the artery. The specific derivation from continuum mechanics is given
in Chapter 1, while the original idea was developed in [Yan+16].

Ωt
f

Ωt
s

Γt

Figure 0.1: A two-dimensional sketch of a segment of artery

As shown in Figure 0.1, the blood flows in the upper part Ωt
f and the vessel moves in the

lower part Ωt
s, while they are disjointly separated by a sharp interface Γt. Here the blood and
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the vessel are both assumed to be homogeneous, meaning that there is no stratification of the
vessel (e.g. intima, medial, adventitia). This is rather a simplifying assumption to make the first-
step analysis. The sharp interface Γt is referred to as the endothelial layer, where the targeted
migration of monocytes (e.g. leukocytes) takes place through Γt.

Free interface – when fluid meets solid. Free boundary problems arise when the domain
on which systems are solved changes with time t, such that the dynamics of the domain are
determined by some unknowns. Physically, this occurs e.g. when a free interface between the
fluid and its medium is present. Such situations are very common, for example, the ocean-
atmosphere interface on earth, the elastic walls of blood vessels, or the surface of a star, where
at least one side of them is modeled as a fluid. Thus, particularly in our case, it is reasonable
and physical to consider the interface between blood and vessel to be free, indicated by t.

Blood – incompressible viscous fluid. The blood flow is assumed to be modeled by the
classical incompressible Navier–Stokes system in Ωt

f , t > 0, see also Section 1.3 and [BF13],{
ρ(∂t + v · ∇)v +∇p = µ∆v,

div v = 0.

where ρ is the material density, the unknowns v(x, t) ∈ Rd and p(x, t) ∈ R are the Eulerian
velocity and pressure respective. Here the system describes the motion of an incompressible
homogeneous viscous Newtonian fluid, by the momentum balance and mass conversation.

Vessel – incompressible morphoelastic solid. The vessel is regarded to as an incompress-
ible hyperelastic solid involving volumetric growth in Ωt

s, t > 0, in other word, volumetric
morphoelasticity, see also Sections 1.4 and 1.6, and [Gor17, Part IV],

F = FeFg,

∂tρ+ div(ρv) = ργ,

ρ(∂t + v · ∇)v +∇p = divT,
T⊤ = T,

T =
∂W

∂Fe
F⊤
e − pI,

where F = ∇ϕ is the induced deformation gradient by the motion ϕ, which is assumed further
to satisfy a multiplicative decomposition (the first identity above). Similar to the fluid, ρ, v,
p are the density, Eulerian velocity and pressure of the solid material, and the movement is
captured by conservation of mass and momentum balance. Note that a growth rate function ργ
contributes to the continuity equation due to volumetric growth and the stress tensor T for the
hyperelastic solid is endowed with a general form of the stored energy density function W in
terms of Fe, which is exactly the evidence of the change of mechanical properties of the vessel
due to the influence of foam cells.

In particular, we will further partially employ the incompressible Neo-Hookean material with
stored energy density W satisfying

W (Fe) =
µ

2
tr(FeF

⊤
e − I).
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Mathematical Modeling: Free Boundary Problems

Cells – advection-reaction-diffusion processes. The biochemical processes take place both
in the blood and vessel, where the cells dynamics are depicted by the advection-reaction-diffusion
equations, see Section 1.5, namely,

∂tcf + v · ∇cf + div(Df∇cf ) = 0,

∂tcs + v · ∇cs + div(Ds∇cs) = −βcs,
∂tc

∗ + v · ∇c∗ = βcs,

where Df , Ds are the diffusion coefficients of cells in blood and vessel respectively, and β is a
constant. In the blood, we only consider the concentration of monocytes denoted by cf , such as
leukocytes (white blood cells), while inside the vessel macrophages with concentration cs uptake
nutrients and lips, and produce foam cells whose concentration is indicated by c∗. The above
equations can be interpreted as conservations of the concentrations of species, with change rate
of cells which are determined by the transported amount of material, the diffusion in space, as
well as the reactions between them. Here the accumulation of foam cells in the vessel turns to
be the main source of plaque growth.

Coupling – interactions on interface. So far we only see separate partial differential equa-
tions on each domain. The coupling mechanism arise on the interface, where we have:

• Fluid-structure interaction:
– Kinematic condition: The velocity of the fluid and the velocity of the solid are con-

tinuous on the interface.
– Dynamic condition: The normal stresses of fluid and solid are continuous on the

interface.
• Cells interaction (transmission conditions):

– The normal concentration fluxes are continuous on the interface
– The difference of cell concentrations across the interface is entailed by the concentra-

tion flux entering or leaving the blood domain and by the permeability of the vessel
wall.

In addition to the coupling on the interface, there is a basic geometric condition for the free
interface: we always assume that the interface does not develop singularities in the sense of
self-intersection or boundary contact.

A diffuse interface approximation. An alternative method to model such multi-phase cou-
pling free boundary problems is the so-called phase-field approach (also called diffuse-interface
model). Alike classical free boundary models, it employs a continuum perspective to describe the
evolution of each phase. Compared to sharp interface models, an advantage of diffuse interface
models is that they allow for topology changes like break up and coalescence of interfaces, which
is rather difficult and tricky for analysis encountering sharp interfaces. In addition, phase-field
methods can be used numerically without an explicit tracking of the interface, saving much of
the effort for numerical schemes.

The basic idea of phase-field models is to approximate the sharp interface by a small tran-
sition region with a certain small thickness, where the two components are partially mixed, see
Figure 0.2. This can be realized by the Ginzburg–Landau free energy

E =

ˆ
Ω

σ̃
( ε
2
|∇φ|2 + 1

ε
W (φ)

)
dx,

3
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where σ̃ is a coefficient related to the surface tensor and ε > 0 is proportional to the thickness of
the interface. The quantity φ is the order parameter indicating the different phases for the value

H

Sharp interface

⇝

Diffuse interface

Figure 0.2: Approximation of the sharp interface

{φ ≷ ±1∓ δ} for some small δ > 0, while lies in the interval (δ− 1, 1− δ) in the small transition
region, whose diagram of values looks like the function tanh(s), see Figure 0.3. The function W
denotes the potential, which is typically endowed with the shape of “double-well”, which is an
approximation of the interfacial energy. Note that the first term in the Ginzburg–Landau energy
penalizes the jumps of φ.

φ
1

−1

ε

W (r)

r0−1 1

Figure 0.3: Typical shapes of φ (left) and W (right)

When including the kinetic energy and elastic energy of the solid, the total energy of the
diffuse interface model becomes

E :=

ˆ
Ω

ρ(φ)

2
|u|2 dx︸ ︷︷ ︸

Kinetic energy

+

ˆ
Ω

µ(φ)

2
tr(B− lnB− I) dx︸ ︷︷ ︸

Elastic energy

+

ˆ
Ω

σ̃
( ε
2
|∇φ|2 + 1

ε
W (φ)

)
dx︸ ︷︷ ︸

Free energy

,

where ρ(φ) and µ(φ) depending on φ are the density and elastic shear modulus of the material.
The function u denotes the volume-averaged velocity and B is the Eulerian left Cauchy–Green
stress tensor. For more detailed derivation of the model and explanations, see Section 1.8.

Goals and Rough Ideas

This thesis is devoted to studying the existence of solutions for such systems. Specifically,
the local well-posedness of the sharp interface models and the global existence of weak solutions

4



Structure of the Thesis

to the diffuse interface model will be explored.
For the sharp interface models, as the interface is free, it is usually convenient to perform

the transformation to Lagrangian coordinates to get a quasilinear system with fixed interfaces.
Then one is able to prove the short existence via the Banach fixed-point argument, for which we
linearize the nonlinear problem around the initial state, and proceed with Lipschitz estimates for
nonlinear parts in terms of the solution. The linear analysis relies on the maximal Lp-regularity
theory, from which there are different difficulties depending on scenarios.

For the diffuse interface model, we will consider the case of unmatched densities, different
viscosities and shear moduli, and a large type of logarithmic potential, which is rather physical
and reasonable. The idea to show the existence of weak solutions is to use a regularization
and weak convergence methods for nonlinear PDEs. More precisely, a hybrid time-discretization
scheme is proposed to approximate the regularized system, and weak/weak∗ compactness argu-
ments are employed for the time-averaged sequences. Then by good uniform estimates in terms
of the regularization, one passes to the limit of the regularized system via weak convergence
methods.

We shall state the main features and technical analysis with more details in each chapter.

Structure of the Thesis

This thesis is organized as follows. In Chapter 1, we recall the fundamental framework of
continuum mechanics and derive the mathematical models we will deal with. The kinetics of
continua is provided first, as well as several conservation laws. The specific cases of fluids and
solids are discussed subsequently, and the morphoelasticity with respect to growth is pointed
out since biochemical processes are considered. Then we couple the system at a free interface
by certain interfacial conditions. Moreover, a thermodynamically consistent derivation of a
diffuse interface model is presented for a two-phase incompressible viscoelastic flow. Finally, we
summarize notations and results from basic tensor analysis.

In Chapter 2, we introduce some necessary function spaces with their properties that will be
frequently used throughout the thesis. In addition, a short introduction of maximal Lp-regularity
theory is enclosed.

From Chapter 3 to 5, we solve the fluid-structure interaction problems in different cases
by a standard Banach fixed-point argument, while the linear analysis and nonlinear estimates
distinguish a lot from each other. More specifically, a fluid-structure interaction problem in a
smooth domain for plaque growth including viscoelasticity is solved in Chapter 3, where for the
linearized system we prove the well-posedness of a two-phase Stokes problem with mixed bound-
ary condition. Furthermore, in Chapter 4, we consider the situation when the fluid encounters
a ninety-degree contact angle interacting with the solid, for which a localization procedure and
reflection arguments are employed. Additionally in Chapter 5, a more realistic model consisting
of a non-stationary system for an incompressible viscous fluid and a quasi-stationary system for
a hyperelastic solid is carried out, which is motivated by the different time scales of the move-
ment of fluid and solid. In this case, the system is of parabolic-elliptic type and one can make
use of a lower-order anisotropic Bessel potential space for the solid displacement to ensure the
regularities of solutions are compatible with the dynamic condition on the surface. In the end of
each chapter, we include some necessary analysis of auxiliary problems.

Finally in Chapter 6, the global existence of weak solutions to a diffuse interface model
for incompressible two-phase viscoelastic flows is shown via a regularization argument. More
precisely, the well-posedness of an Oldroy-B type tensor-valued equation is proved by means of
a standard Galerkin approximation and an entropy regularization. Combining a compactness
argument, a hybrid time-discretization scheme is proposed to deal with the regularized system.

5
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Disclaimer

The results of Chapters 3 to 6 are contained in [AL23a], [AL23b], [AL23c], and [LT22]
respectively. In particular, all work contained in Chapters 3 to 5 is joint work with Helmut
Abels, while the work in Chapter 6 is joint work with Dennis Trautwein.
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Chapter 1

Mathematical Models

In this chapter, we briefly sketch the mathematical models of this thesis, including the
necessary basis from continuum mechanics, cf. [BF13, Cia88, EGK17, GFA10, Gor17, KR19,
Ric17].

Conventions of notations. Throughout this chapter, we, if applicable, employ the Einstein
summation convention according to which summation over the range 1, ..., d is applied for any
index that is repeated twice in any term. For example, in the expression Sijuj , the subscript i
is free, because it is not summed over, while j is a dummy subscript, which can be replaced by
any other symbol.

Overview of This Chapter

1.1. Kinematics of Continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3. Incompressible Viscous Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4. Elastic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5. Biochemical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 1. Mathematical Models

1.1. Kinematics of Continua

1.1.1. Motion of a body. In general, a body is modeled as an (open) subset of Euclidean
space Rd, which consisting of uncountably infinitely many other particles. It is identified with a
regular domain Ω ⊂ Rd, occupied in some fixed configuration, called a reference configuration,
which is arbitrarily chosen. We call a point in such body, described by its position X ∈ Ω, a
material point.

X x = ϕ(X, t)

ϕ(·, t)

Ω Ωt

Figure 1.1: A depiction of deformation

Definition 1.1 (Motion of a body). A motion of a body Ω is a smooth function ϕ : Ω ×
[0,∞)→ Rd that assigns to each material point X and the time t a point

x = ϕ(X, t).

Here x is referred to as the spatial point occupied by X at time t.
We call ϕt := ϕ(·, t), the function of X, the deformation at time t ≥ 0. It is assumed

as an orientation-preserving C1-diffeomorphism onto its image in continuum mechanics, which
descriptively means the body cannot penetrate itself. In some contexts, e.g. fluid mechanics, it is
also identified with flow map with suitable regularity. Note that orientation-preserving property
implies that the volumetric Jacobian (also called Jacobian determinant) J(X, t) of the mapping
ϕt at the material point X is strictly positive, i.e.,

J(X, t) := det∇ϕt(X) > 0 for all X ∈ Ω, t ≥ 0. (1.1)

Then we write Ωt := ϕt(Ω) as the domain consisting of all the points x at time t, which is called
deformed configuration (also called current configuration in some context). For a depiction of
the motion, see Figure 1.1.

We now introduce the notion of Lagrangian and Eulerian coordinates. The motivation
behind Lagrangian and Eulerian coordinates is that the former correspond to coordinates in the
continuum’s reference configuration Ω whilst the latter correspond to coordinates in an observer’
s frame of reference where the complete history of the trajectory of each point of the continuum
is not kept track of.

Definition 1.2 (Lagrangian and Eulerian coordinates). Depending on the observing posi-
tions, we have:

(1) (X, t) ∈ Ω × [0,∞) is called Lagrangian coordinates: one considers a material point and
follows its evolution.

8



1.1. Kinematics of Continua

(2) (x, t) ∈ Ωt × [0,∞) is called Eulerian coordinates: one considers a fixed point in space and
in general one will observe different material points at this point in space at different times.

In view of the setting above, we continue by introducing the velocity and acceleration in
different configurations.

Definition 1.3 (Velocity and acceleration). Let Ω, Ωt and ϕ be as above. Define ψt(x) :=
ψ(x, t) = ϕ−1(x, t) for all x ∈ Ωt and t ≥ 0.

(1) ∂tϕ : Ω × [0,∞) → Rd and ∂2t ϕ : Ω × [0,∞) → Rd are the Lagrangian (material) velocity
and acceleration.

(2) (∂tϕ) ◦ ψt :
⋃

t≥0 Ω
t × {t} → Rd and (∂2t ϕ) ◦ ψt :

⋃
t≥0 Ω

t × {t} → Rd are the Eulerian
(spatial) velocity and acceleration.

By the definition of Eulerian velocity in terms of ϕ, we introduce the so-called material time
derivative for any function defined in the Eulerian coordinates.

Definition 1.4 (Material time derivative). Let Ω, Ωt and ϕ be as above and v be the
corresponding Eulerian velocity, i.e., ∂tϕ = v ◦ ϕ. For any differentiable function f :

⋃
t≥0 Ω

t ×
{t} → RN , N ∈ N, we write

Dtf = (∂t + v · ∇)f

as the material time derivative of f , where ∇ = ∇x.

The material time derivative describes the change in time of the quantity f observed at a
material point which at time t has the position x and the velocity v(x, t). Now by virtue of the
different descriptions, we are able to establish the derivatives of functions that defined in terms
of the motion ϕ.

Proposition 1.5. Let Ω, Ωt and ϕ be as above and v be the corresponding Eulerian velocity,
i.e., ∂tϕ = v ◦ ϕ. Let f :

⋃
t≥0 Ω

t × {t} → RN , N ∈ N be a function, which is differentiable in
both space and time. Then the derivatives of f induced by the motion (flow) ϕ is given as

d
dt (f ◦ ϕ) =

(
(∂t + v · ∇)f

)
◦ ϕ. (1.2)

Moreover, the volumetric Jacobian J = det∇ϕ satisfies

d
dtJ =

(
(div v) ◦ ϕ

)
J. (1.3)

Proof. A detailed computation shows that

d
dt (f ◦ ϕ)(X, t) =

d
dtf(ϕ(X, t), t) = ∂tf ◦ ϕ(X, t) + (∇f ◦ ϕ)(X, t) · ∂tϕ(X, t),

which finishes the proof of (1.2) combining ∂tϕ = v ◦ ϕ.
To derive (1.3), on noting the derivative of determinants, i.e., (1.61) below, we have

d
dtJ =

d
dt det∇ϕ = tr

(
(∇ϕ)−1

∂t∇ϕ
)
J.

With the definition of v and chain rule, one calculates

∂t∇ϕ = ∇(∂tϕ) = ∇(v ◦ ϕ) = (∇v ◦ ϕ)∇ϕ.

9



Chapter 1. Mathematical Models

Then
∂t∇ϕ(∇ϕ)−1

= (∇v ◦ ϕ)∇ϕ(∇ϕ)−1
= (∇v ◦ ϕ)(∇ϕ(∇ϕ)−1

) = ∇v ◦ ϕ,

implying
tr
(
(∇ϕ)−1

∂t∇ϕ
)
= tr

(
∂t∇ϕ(∇ϕ)−1

)
= div v ◦ ϕ,

which completes the proof of (1.3).

Corollary 1.6. Under the assumptions of Proposition 1.5, the local change of volume is
denoted by

d
dt
∣∣Ωt
∣∣ = ˆ

Ωt

div v dx for all t ≥ 0.

Proof. By definition and transformation formula, the volume is∣∣Ωt
∣∣ = ˆ

Ωt

1dx =

ˆ
Ω

J dX for all t ≥ 0.

Then in light of (1.3),

d
dt
∣∣Ωt
∣∣ = d

dt

ˆ
Ωt

1dx =

ˆ
Ω

d
dtJ dX =

ˆ
Ω

(
(div v) ◦ ϕ

)
J dX =

ˆ
Ωt

div v dx for all t ≥ 0.

Theorem 1.7 (Reynolds’ Transport Theorem). Let U ⊆ Rd be open, and ϕ : U×[0,∞)→ Rd

be the motion defined in U , such that ϕt := ϕ(·, t) is an orientation-preserving C1-diffeomorphism.
Define U(t) := ϕt(U) and v as the corresponding Eulerian velocity, i.e., ∂tϕ = v ◦ ϕ. For any
sufficiently regular field f :

⋃
t≥0 U(t)× {t} → R, it holds

d
dt

ˆ
U(t)

f(x, t) dx =

ˆ
U(t)

(
∂tf + div(fv)

)
dx for all t ≥ 0. (1.4)

Proof. With the help of integration by substitution (Proposition 1.17) and Proposition 1.5, one
obtains

d
dt

ˆ
U(t)

f dx =
d
dt

ˆ
U
(f ◦ ϕ) det∇ϕ dX

=

ˆ
U

(
(∂t + v · ∇)f

)
◦ ϕdet∇ϕ dX +

ˆ
U
(f ◦ ϕ)

(
(div v) ◦ ϕ

)
det∇ϕ dX

=

ˆ
U

(
∂tf + div(fv)

)
◦ ϕ det∇ϕdX =

ˆ
U(t)

(
∂tf + div(fv)

)
dx for all t ≥ 0.

Remark 1.8. By the Gauß Theorem, we know the second term on the right-hand side of (1.4) is
equipped with the form

ˆ
U(t)

div(fv) dx =

ˆ
∂U(t)

f(v · n) dHd−1 for all t ≥ 0.

which accounts for the change of volumes of U(t). Here ∂U(t) is the boundary of U(t) and n is
the outer unit normal at ∂U(t) for all t ≥ 0.

10



1.1. Kinematics of Continua

Remark 1.9. Let u : U(t)× [0,∞)→ Rd be a sufficiently regular vector. Then the identity (1.4)
is still valid with the form

d
dt

ˆ
U(t)

u dx =

ˆ
U(t)

(
∂tu+ div(u⊗ v)

)
dx for all t ≥ 0. (1.5)

In the following, we will discuss about the incompressibility of the material through the de-
formation ϕt = ϕ(·, t) with ϕ given in Definition 1.1. First recall the definition of incompressibile
and volume-preserving motion.

Definition 1.10 (Incompressible flow). We say that a motion (flow) ϕ is incompressible if
its Eulerian velocity v is divergence free, i.e., div v = 0.

Definition 1.11 (Locally volume-preserving motion). Let Ω ⊂ Rd be a regular domain, ϕ
be a motion regarding Ω. For any measurable subset U ⊆ Ω, we define U(t) := ϕt(U). We say
the motion ϕ is locally volume-preserving, if for all t ≥ 0,

|U| = |U(t)| for all measurable U ⊆ Ω.

Proposition 1.12 (Locally volume-preserving and incompressibility). Let ϕ be a motion
(flow). The following are equivalent:

(1) ϕ is locally volume-preserving.

(2) J = det(∇ϕ) ≡ 1.

(3) ϕ is incompressible.

Proof. (1) ⇔ (2): The proof is a direct computation for any measurable U ⊂ Ω:
ˆ
U
1dX =

ˆ
U(t)

1dx =

ˆ
U
J dX for all t ≥ 0.

(2) ⇒ (3): On noting (1.3) and J = 1, one concludes

div v ◦ ϕ = 0,

which proves the assertion.
(2) ⇐ (3): In view of (1.3) and div v = 0, one concludes

d
dtJ = 0 for all X ∈ Ω, t ≥ 0.

Then using the fact ϕt|t=0 = id, we have J = 1.

1.1.2. Deformation gradient. In continuum mechanics, we study the behavior of moving and
deforming continua Ωt over time.

Definition 1.13 (Deformation gradient). Let ϕ be the motion as above. Then the defor-
mation gradient is defined as the matrix (tensor of order 2)

F = ∇ϕ, i.e., Fij =
∂ϕi

∂Xj
for all i, j = 1, ..., d. (1.6)
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By the orientation-preserving assumption, i.e., (1.1),

J = detF > 0.

In the following we describe the relative change of positions.
Definition 1.14. Let ϕ be a motion and F be its deformation gradient as above. The

displacement u : Ω× [0,∞)→ Rd is defined for all X ∈ Ω and t ≥ 0 as

u(X, t) = ϕt(X)−X,

whilst the displacement gradient reads

∇u = F − I,

where I is the identity matrix in Rd×d.
Very often, it will be necessary to rapidly switch between different viewpoints on the same

physical problem. Sometimes, it is appropriate to consider the material in reference configuration
Ω, while sometimes the Eulerian viewpoint of the current configuration Ωt is better suited. In
the following, we derive corresponding rules to map between both coordinate frames. Let ϕ be
a motion with corresponding Eulerian velocity v, deformation gradient F = ∇ϕ and volumetric
Jacobian J = detF .

Proposition 1.15 (Material and spatial descriptions of functions). Let f :
⋃

t≥0 Ω
t×{t} →

R and u :
⋃

t≥0 Ω
t × {t} → Rd be a scalar function and a vector-valued function defined in

spatial (Eulerian coordinates) that are continuously differentiable both in space and time, and the
respecting material functions (Lagrangian coordinates) are defined by ρ := f ◦ ϕ, w := u ◦ ϕ with
a motion ϕ. Then it follows

∂tf ◦ ϕ = (∂t − (F−1(v ◦ ϕ)) · ∇)ρ,
(∇f) ◦ ϕ = F−⊤∇ρ, (∇u) ◦ ϕ = ∇wF−1,

(divu) ◦ ϕ = F−⊤ : ∇w,

where F = ∇ϕ is the associated deformation gradient.

Proof. The last one follows from (divu) ◦ ϕ = tr(∇u) ◦ ϕ = tr(∇wF−1) = F−⊤ : ∇w, while
others are the consequences of direct computations.

Moreover, concerning the surface deformation, we have the following propositions.
Proposition 1.16 (Deformation of normals). Consider a sufficiently smooth surface Γt with

Γt = ϕt(Γ), with a motion ϕ. Let n be the unit outward normal to Γt in the current configuration,
and N be the unit outward normal to Γ in the reference configuration. Then it follows

n =
F−⊤N

|F−⊤N |
.

Proof. See e.g. [KR19, Remark 1.1.11].

Proposition 1.17 (Deformation of volume and area). Under the assumptions of Proposi-
tion 1.16, it follows

dHd−1⌞Γt = J
∣∣F−⊤N

∣∣ dHd−1⌞Γ,
where Hd−1 is the d− 1 dimensinal Hausdorff measure and

(Hd−1⌞A)(B) = Hd−1(A ∩B) for all A,B ⊆ Rd Borel measurable subsets.

12



1.1. Kinematics of Continua

Proof. See e.g. [GFA10, Section 8.2 & 8.3].

Proposition 1.18 (Nanson’s formula). Under the assumptions of Proposition 1.16 it follows

n dHd−1⌞Γt = JF−⊤N dHd−1⌞Γ.

Proof. This is a direct consequence of Propositions 1.16 and 1.17.

1.1.3. Stretch and strain. In this section, we give the description of the strain in terms of
the deformation gradient. First let us introduce the well-known Polar Decomposition Theorem:

Theorem 1.19 (Polar Decomposition Theorem [Cia88, GFA10, KR19]). Let F ∈ Rd×d be
an invertible matrix with detF > 0. Then there are unique positive-definite symmetric matrices
U, V ∈ Rd×d and a unique proper orthogonal matrix R ∈ Rd×d such that

F = RU = V R.

Here U and V are referred to as right stretch tensor and left stretch tensor, which are endowed
with the explicit representations

U =
√
F⊤F,

V =
√
FF⊤.

In particular, V = RUR⊤, B = RCR⊤, and

C = U2 = F⊤F,

B = V 2 = FF⊤,

are called right and left Cauchy–Green tensor. Note that U , V , C, B are symmetric and positive-
definite.

For F the deformation gradient in Definition 1.13, a particular application is the Green–
St. Venant strain tensor

E =
1

2
(F⊤F − I) = 1

2
(C − I) = 1

2
(U2 − I).

Being symmetric and positive-definite, U and V admit spectral representations of

U =

d∑
i=1

λiri ⊗ ri, V =

d∑
i=1

λili ⊗ li,

where

• λi, i ∈ {1, ..., d}, the principal stretches, are the eigenvalues of U and V ;

• ri and li, i ∈ {1, ..., d}, the right and left principal directions, are the eigenvectors of U and
V respectively satisfying

Uri = λiri, V li = λili.
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Chapter 1. Mathematical Models

1.2. Conservation Laws

The fundamental equations of continuum mechanics are based on conservation laws for mass,
(linear) momentum, angular momentum and energy. We will formulate these conservation laws
in Eulerian coordinates in both global and local form. In the following we will consider

• U(t) = {x : x = ϕ(X, t), X ∈ U} ⊆ Ωt for any U ⊆ Ω, where ϕ is the motion defined in
Definition 1.1 with Ω the reference configuration.

• v, defined by v ◦ ϕ = ∂tϕ, the corresponding Eulerian velocity.

• ρ, the Eulerian mass density.

1.2.1. Mass conservation. Without any source, for any spatial domain U , the mass inside is
conserved with the evolution of the body. Then the conservation of mass is given by

d
dt

ˆ
U(t)

ρdx = 0 for all t ≥ 0.

A direct application of Reynolds’ Transport Theorem tells us the intergral balance of mass
ˆ
U(t)

(
∂tρ+ div(ρv)

)
dx = 0.

Since U ⊆ Ω is arbitrary and ϕ(·, t) is diffeomorphism, it follows that the equation holds for
arbitrary volume U(t) ⊆ Ωt as before. Then for continuously differentiable ρ and v, we obtain
an equivalent local formulation for all (x, t)

∂tρ+ div(ρv) = 0, (1.7)

which is called continuity equation.
Remark 1.20. By integration by substitution and a same localization procedure, one reaches

d
dt
(
J(ρ ◦ ϕ)

)
= 0.

If we define the density in Lagrangian coordinates ρ0(X, t), then the mass conservation in the
reference configuration is simply

ρ0 = J(ρ ◦ ϕ), ∂tρ0 = 0.

1.2.2. Momentum conservation. Within the framework of continuum mechanics, the ba-
sic balance laws for linear and angular momentum assert that, given any spatial region U(t)
convecting with the body,

(1) the net force on U(t) is balanced by temporal changes in the linear momentum of U(t);

(2) the net moment on U(t) is balanced by temporal changes in the angular momentum of
U(t).

First, let us recall the linear and angular momentum of U(t) respectively by

`(U(t)) =
ˆ
U(t)

ρvdx, a(U(t)) =
ˆ
U(t)

(x− x0)× (ρv)dx,
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where x0 ∈ Rd is fixed. The momentum balances are hence written as

d
dt

ˆ
U(t)

ρv dx =

ˆ
U(t)

ρf dx+

ˆ
∂U(t)

b dHd−1,

and
d
dt

ˆ
U(t)

(x− x0)× (ρv) dx =

ˆ
U(t)

(x− x0)× (ρf) dx+

ˆ
∂U(t)

(x− x0)× b dHd−1,

for any given U(t) ⊆ Ωt sufficiently smooth as before, a force density f(x, t) ∈ Rd per unit mass
defined in U(t), and a surface force density (traction) b(n, x, t) ∈ Rd defined for each outer unit
normal n, x ∈ ∂U(t) and each t.

Theorem 1.21 (Cauchy stress tensor). A consequence of the momentum balance is that there
exists a spatial tensor field T = (Tij)

d
i,j=1, called Cauchy stress tensor, such that the traction

b(n) depending on n can be represented by

b(n) = Tn =

 d∑
j=1

Tijnj

d

i=1

.

Proof. For the proof, we refer to e.g. [BF13, Theorem I.3.1] or [EGK17, Theorem 5.5].

Now the linear and angular momentum balance are

d
dt

ˆ
U(t)

ρv dx =

ˆ
U(t)

ρf dx+

ˆ
∂U(t)

Tn dHd−1,

and
d
dt

ˆ
U(t)

(x− x0)× (ρv) dx =

ˆ
U(t)

(x− x0)× (ρf) dx+

ˆ
∂U(t)

(x− x0)× (Tn) dHd−1.

To derive the local momentum balance, employing the Reynolds’ Transport Theorem (Re-
mark 1.9) and the Gauß Theorem, one obtains

ˆ
U(t)

(
∂t(ρv) + div(ρv ⊗ v)

)
dx =

ˆ
U(t)

(ρf + divT ) dx,

which holds for arbitrary subsets U(t) ⊆ Ωt sufficiently smooth as before, since U ⊆ Ω sufficiently
smooth is arbitrary and ϕ(·, t) is a diffeomorphism. Then for sufficiently smooth ρ, v, T , f , it
follows the pointwise PDE as the local form of momentum balance

∂t(ρv) + div(ρv ⊗ v) = divT + ρf. (1.8)

In particular, combining with the local form of continuity equation (1.7), one concludes

ρ∂tv + ρdiv(v ⊗ v) = divT + ρf. (1.9)

Now we give a fundamental property for T from the angular momentum balance.
Theorem 1.22 (Symmetry of Cauchy stress tensor). Let us assume that the density field ρ,

the velocity field v, and the body forces field f are smooth. Then the stress tensor T acting on
the body in the motion (flow) is symmetric.
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Proof. For the proof we take the 3D case as an example. Let Λ be any skew symmetric matrix,
for which by Proposition 1.55 below, there is a unique axial vector λ ∈ R3 such that

Λ = λ× = (εikjλk)
3
i,j=1, Λw = λ× w for all w ∈ R3.

Applying the Reynolds’ Transport Theorem (Remark 1.9) and multiplying the conservation of
angular momentum with λ imply that

λ ·
ˆ
U(t)

(x− x0)×
(
∂t(ρv) + div(ρv ⊗ v)

)
dx

= λ ·
ˆ
U(t)

(x− x0)× (ρf) dx+ λ ·
ˆ
∂U(t)

(x− x0)× (Tn) dHd−1.

With the help of the identify a · (b× c) = (a× b) · c for a, b, c ∈ R3, as well as the Gauß Theorem,
we have ˆ

U(t)

(Λ(x− x0)) ·
(
∂t(ρv) + div(ρv ⊗ v)− ρf

)
dx

=

ˆ
∂U(t)

Λ(x− x0) · (Tn) dHd−1 =

ˆ
U(t)

div
(
T⊤(Λ(x− x0))) dx (1.10)

=

ˆ
U(t)

(
Λ(x− x0)

)
divT dx+

ˆ
U(t)

∇
(
Λ(x− x0)

)
: T dx.

Note that
∇
(
Λ(x− x0)

)
= Λ⊤ : ∇(x− x0) + (x− x0) · divΛ⊤ = Λ,

where the second term vanishes due to

divΛ⊤ = 0, as λk is constant.

Substituting the local balance of linear momentum conservation (1.8) into (1.10) yields
ˆ
U(t)

Λ : T = 0.

In view of the arbitrariness of U(t) as above, one has the pointwise identity

Λ : T = 0 for all Λ ∈ R3×3
skew,

where R3×3
skew := {A ∈ R3×3 : A = −A⊤}, which means the Cauchy stress tensor T must be

symmetric due to Proposition 1.60, i.e.,

T = T⊤, Tij = Tji,

since Λ is an arbitrarily chosen skew tensor.

1.2.3. Energy conservation. In order to formulate the conservation of energy we introduce a
specific internal energy density e = e(x, t), a heat flux q = q(x, t) and heat sources g(x, t) which
are defined per unit mass. The total energy denoted by E now reads

E =

ˆ
U(t)

ρ

(
1

2
|v|2 + e

)
dx,
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which consists of the kinetic energy
´
U(t)

ρ
2 |v|

2 dx and the internal energy
´
U(t)

ρe dx. The balance
of energy records as

d
dt

ˆ
U(t)

ρ

(
1

2
|v|2 + e

)
dx

=

ˆ
U(t)

ρf · v dx+

ˆ
∂U(t)

Tn · v dHd−1 +

ˆ
U(t)

ρg dx−
ˆ
∂U(t)

q · n dHd−1.

Here the first and second term on the right-hand side describe the work caused by volume
and surface forces, while the third term denotes the changes of the energy due to outer heat
sources and the last term accounts for the heat gain or loss from heat flux across outer boundary.
Analogously, by the Reynolds’ Transport Theorem and the Gauß Theorem, we derive

ˆ
U(t)

(
∂t

(ρ
2
|v|2 + ρe

)
+ div

(ρ
2
|v|2 v + ρev

))
dx

=

ˆ
U(t)

(
ρf · v + div(T⊤v) + ρg − div q

)
dx.

Using the face that U is arbitrary, whence U(t) is arbitrary, one obtains the local balance of
energy in a form of piecewise PDE

∂t

(ρ
2
|v|2 + ρe

)
+ div

(ρ
2
|v|2 v + ρev

)
= ρf · v + div(T⊤v) + ρg − div q,

which by hands of the continuity equation implies

ρ∂t

(1
2
|v|2 + e

)
+ ρv · ∇

(1
2
|v|2 + e

)
= ρf · v + div(T⊤v) + ρg − div q,

Now recalling the conservation of linear momentum, we are able to eliminate the kinetic energy
and get the balance of internal energy

ρ(∂t + v · ∇)e− T : ∇v + div q = ρg, (1.11)

where the identity
div(T⊤v) = v · divT + T : ∇v,

is employed

1.2.4. Mixture conservation laws. For mixtures consisting of several components we have in
addition a conservation law for each component. The composition of the mixture can be described
by a concentration per unit mass ci of the component i ∈ {1, . . . ,M}, M ∈ N. Moreover, we
define a flux ji of component i and a rate function ri with which component i is produced or
consumed. Then the conservation law of species i is

d
dt

ˆ
U(t)

ρci dx =

ˆ
U(t)

ρri dx−
ˆ
∂U(t)

ji · n dHd−1.

Here ji · n describes how much mass of component i flows through a unit surface with normal n
per unit time. By virtue of the Reynolds’ Transport Theorem and the Gauß Theorem, it follows

ˆ
U(t)

(
∂t(ρci) + div(ρciv)− ρri + div ji

)
dx = 0.
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Hence the local version of mixture conservation now reads

∂t(ρci) + div(ρciv)− ρri + div ji = 0.

Finally, canceling with the continuity equation gives birth to the conservation of the species

ρ(∂t + v · ∇)ci + div ji = ρri for i = 1, . . . ,M. (1.12)

Remark 1.23. By means of (1.9), (1.11), (1.12), we are able to describe a large class of continuum
bodies independently of their specific material characteristics, including fluids and solids. To
close the system of equations, constitutive relationships between stress, deformation gradient,
rate of deformation, and density must be imposed to characterize the particular material under
consideration.

1.3. Incompressible Viscous Fluids

In this section, we would like to derive the constitutive equation for the flow of an incom-
pressible viscous fluid in the Eulerian coordinates. Let ϕ be the motion in Definition 1.1 and v
be its Eulerian velocity. [BF13]

1.3.1. Newton’s hypothesis. We start by recalling one of the fundamental properties of fluid.
In a fluid at rest, the stress acting on a surface element of a fluid element acts in the direction
opposite to the one of the outward normal of the surface. Moreover, the modulus of this stress
is independent of direction. It is denoted as p and referred to as the hydrostatic pressure of the
fluid. Then the stress at all points is −pn, resulting the form of stress tensor as

T = −pI.

When the fluid is in motion, the effects due to pressure and to motion are separated by expressing
the stress tensor in the form

T = S − pI,

where the new symmetric tensor S ∈ Rd×d is called the viscous stress tensor.
Now we want to specify the viscous stress tensor S. For the velocity v of the fluid, the strain

rate tensor is defined by the following.

Definition 1.24 (strain rate tensor). The tensor Dv = 1
2 (∇v+∇v

⊤) is known as the strain
rate tensor for the flow.

Note that by Definition 1.56, Dv is the symmetric part of ∇v. Then the Newton’s rheology
hypothesis is concluded as follows.

Definition 1.25 (Newtonian fluid). A fluid is said to be a Newtonian fluid if

(1) The viscous stress tensor S in a flow depends only on the strain rate tensor Dv.

(2) The dependence of S on Dv is linear.

(3) The relation linking S and Dv is isotropic.

Remark 1.26. Here we include isotropic assumption in Definition 1.25(3). In practice, the vis-
cosity coefficients can be a constant tensor in front of the symmetric gradient.
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Proposition 1.27. For a Newtonian fluid, the law giving the viscous stress tensor as a
function of the strain rate tensor is necessarily in the form

S = 2µDv + λ div vI,
where µ is called shear viscosity and the quantity µ+ 2

3λ is called bulk viscosity.

Proof. For the proof, we refer to [BF13, Proposition I.4.4].

Remark 1.28. In elasticity theory µ and λ are called Lamé coefficients.
Consequently, we obtain the general form of the stress tensor for a Newtonian fluid

T = S − pI = 2µDv + (λ div v − p)I.

1.3.2. Incompressible and homogeneous fluid. With the constitutive relationship in the
last subsection, we are able to establish a general system for the fluid. For further applications,
we assume that the fluid described by the flow ϕ is incompressible, in the sense of Definition
1.10. Then its Eulerian velocity v is divergence free, i.e.,

div v = 0.

Proposition 1.29. Let ρ be the density of the fluid. Then the fluid is incompressible if and
only if the density ρ is constant along the trajectories associated with the velocity field v.

Proof. Recall the continuity equation,
∂tρ+ div(ρv) = 0,

that is,
Dtρ+ ρdiv v = 0,

where Dt is the material derivative portrayed by Definition 1.4. Then one observes that
div v = 0⇔ Dtρ = 0,

as long as ρ does not vanish. In fact, equivalence above exactly expresses that the incompress-
ibility (by definition, divergence free condition on v) is equivalent to the fact that the density ρ
is constant along the characteristic curves of v.

Remark 1.30. By Proposition 1.29, a flow can be incompressible even if the density is not con-
stant. It is only required that the density of a particle of fluid remain constant during the
evolution.

Furthermore, we consider that the fluid is homogeneous, which roughly means the density
does not depend on the material point, i.e.,

ρ ≡ constant.
With Proposition 1.29, one infers a corollary simultaneously.

Corollary 1.31. For incompressible flows, if the density ρ is homogeneous at initial time,
then the density remains constant

ρ = ρ0 for all t ≥ 0.

In summary, for an incompressible homogeneous viscous fluid, the system consists of con-
tinuity equation (1.7) and momentum equation (1.9) reduces to the so-called incompressible
Navier–Stokes equation

ρ(∂t + v · ∇)v +∇p = µ∆v + ρf,

div v = 0.
(1.13)
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1.4. Elastic Solids

Note that the balance of energy provides restrictions on the form of constitutive relationships
between stress, deformation gradient, rate of deformation, and density. In this section, we
turn our attention to elastic solids. In particular, we are devoted to introducing the general
mathematical model for hyperelastic materials.

1.4.1. Alternative stress measures. When working with solids, the use of a purely spa-
tial description sometimes could be problematic. On the other hand, solids typically possess
stress-free reference configurations with respect to which one may measure strain and develop
constitutive equations. Therefore, it is often useful to measure contact forces with respect to
areas measured initially in the reference configuration.

In this section, we consider

• U(t) = {x : x = ϕ(X, t), X ∈ U} ⊆ Ωt for any U ⊆ Ω, where ϕ is the motion defined in
Definition 1.1 with Ω the reference configuration.

• F , the deformation gradient of ϕ with its volumetric Jacobian J := detF .

• T , the Cauchy stress tensor acting on ∂U(t).

• P , the stress measured per unit area in the reference body.

• n, the unit outer normal on ∂U(t).

• N , the unit outer normal on ∂U .

• Tn, PN , the tractions on ∂U(t) and ∂U respectively.

In view of the invariant of the stress, see e.g. Figure 1.2, it follows from Propositions 1.16 and 1.18
that ˆ

∂U
PNdHd−1 =

ˆ
∂U(t)

TndHd−1 =

ˆ
∂U
JT ◦ ϕF−⊤NdHd−1.

U

PN
N

U(t)

n
Tn

ϕt

Figure 1.2: Quantities used in the definition of stress measures

By the arbitrariness of ∂U , we give the first stress measure.
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Definition 1.32 (First Piola–Kirchhoff stress tensor). We call P the first Piola–Kirchhoff
stress tensor if it satisfies

P = JT ◦ ϕF−⊤,

where T is the corresponding Cauchy stress tensor in deformed configuration, and J , F are
defined above. Moreover, P⊤ = JF−1T ◦ ϕ is the nominal stress tensor.

Let us notice that P is not symmetric in general, whilst the tensor τ defined by

τ = PF⊤ = JT ◦ ϕ,

is symmetric obviously, which is called the Kirchhoff stress tensor.

Definition 1.33 (Second Piola–Kirchhoff stress tensor). We call S the second Piola–Kirchhoff
stress tensor if it satisfies

S = F−1P = JF−1(T ◦ ϕ)F−⊤.

As a consequence of Definition 1.33, we know the second Piola–Kirchhoff stress tensor is
symmetric.

Definition 1.34 (Piola transformation). Let ϕ be a motion, and F be its deformation
gradient. Given any tensor T defined in the deformed domain Ωt. Then we define P as the Piola
Transformation of T in the reference configuration Ω by

P := J(T ◦ ϕ)F−⊤.

Now we record the property by the Piola transformation for smooth tensors.

Theorem 1.35 (Piola transformation [Cia88, KR19]). Let ϕ be a motion. For a stress tensor
T in the deformed configuration Ωt, and the corresponding first Piola–Kirchhoff stress tensor P
in the reference configuration Ω, we have:

divP = J(divT ) ◦ ϕ,ˆ
∂U
PNdHd−1 =

ˆ
∂U(t)

TndHd−1,

for all U ⊆ Ω and U(t) = ϕt(U) ⊆ Ωt, with N , n the corresponding unit outer normal to ∂U and
U(t), respectively.

In the following, we present a useful identify, which will be frequently employed.

Lemma 1.36 (Piola’s identity). For a smooth motion ϕ with F = ∇ϕ and J = det∇ϕ, it
follows

div(JF−⊤) = 0. (1.14)

Proof. See e.g. [Cia88, EGK17].

Remark 1.37. Piola transformation and Piola’s identity provide us an efficient way to switch
tensors defined by a certain smooth mapping between two different configurations, which is not
necessarily a motion.
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1.4.2. Conservation of elastic energy. The general principle for the balance of energy states
that for any part of a body U(t) = {x : x = ϕ(X, t), X ∈ U} ⊆ Ωt for any U ⊆ Ω, described by a
motion ϕ with Ω the reference configuration, the rate of change of the total mechanical energy
E is balanced by the power of the forces P. If we ignore heat dissipation, the total energy for an
elastic material is the sum of the kinetic energy and an internal elastic energy, that is,

E =

ˆ
U(t)

1

2
ρ |v|2 dx+

ˆ
U(t)

(J−1W ) ◦ ϕ−1 dx,

where W is the internal elastic energy density per unit reference volume.
The power of the forces acting on U is given by

P =

ˆ
U(t)

ρf · v dx+

ˆ
∂U(t)

Tn · v dHd−1,

In view of the energy balance, i.e.,
d
dtE = P,

employing the same localization procedure as in Section 1.2, together with Reynolds’ Transport
Theorem, Gauß Theorem, continuity equation and linear momentum equation, gives birth to the
equation

dW
dt =

(
J(T ◦ ϕ)F−⊤) : Ḟ = P : Ḟ , (1.15)

pointwisely defined in the reference configuration, with Ḟ := ∂tF = ∇(v ◦ ϕ), and P the first
Piola–Kirchhoff stress tensor.

1.4.3. Hyperelasticity. In this section, we discuss about the hyperelastic material, namely,
Definition 1.38 (Hyperelasticity). A material is said to be hyperelastic, if the internal

energy density W is a function of F alone.
Explicitly, with a little abuse of notation we posit that

W (X, t) =W (F (X, t)).

whence, W is referred to as the strain energy function (also called stored energy function in some
contexts). Then the time derivative of W is

d
dtW (F ) =

∂W

∂F
: Ḟ .

Hence (1.15) is then endowed with the form of(
∂W

∂F
− P

)
: Ḟ = 0. (1.16)

Since this identity holds for all motions pointwisely, one concludes from Lemma 1.59 that the
contitutive relationship for the strain energy density W in terms of the deformation gradient F

∂W

∂F
= P = J(T ◦ ϕ)F−⊤,

that is
T ◦ ϕ = J−1 ∂W

∂F
F⊤,

regarding to the Cauchy stress tensor T for compressible solids.
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1.4.4. Incompressible material. In the case of an incompressible material, say, all the de-
formations are locally volume-preserving, it follows from Proposition 1.12 that

J = detF = 1.

A simple way to ensure that a constraint holds is to introduce a Lagrangian multiplier p = p(X,t)
and modify accordingly the energy density W → W − p(J − 1) so that Equation (1.16) reads
now (

∂

∂F
(W − p(J − 1))− P

)
: Ḟ = 0,

leading to
∂W

∂F
− p ∂J

∂F
= P = (T ◦ ϕ)F−⊤.

This implies the constitutive equation for incompressible hyperelastic materials

T ◦ ϕ =
∂W

∂F
F⊤ − pI, (1.17)

where by the Jacobi’s formula,

∂J

∂F
=

∂

∂F
detF = JF−⊤ = F−⊤.

Recalling that a hydrostatic pressure is a stress that is a multiple of the identity, we can identify
the reaction stress in (1.17) with a hydrostatic pressure. Physically, we see that a pressure p is
required to enforce locally the conservation of volume.

1.4.5. Choice of strain energy functions. In this section, we will present several typical
choices of strain energy function densities. A basic principle underlying most of physics is that
physical laws should be independent of the frame of reference, which is usually called frame-
indifference or objectivity [GFA10]. For hyperelastic materials, the principle of frame-indifference
implies the following.

Definition 1.39 (Frame-indifference). A hyperelastic material with strain energy density W
is frame-indifferent or objective, if

W (QF ) =W (F ) for all Q ∈ SO(d),

where SO(d) := {A ∈ Rd×d : A⊤A = I, detA = 1} denotes the set of all proper orthogonal
matrices.

As we can always find a unique polar decomposition F = RU with U2 = F⊤F , a consequence
of the frame-indifference is

W (F ) =W (QF ) =W (QRU) =W (QR
√
C) = Ŵ (C), (1.18)

if one takes Q = R⊤. One observation from (1.18) is that the first Piola–Kirchhoff stress tensor
in fact can be expressed by the energy density regarding the right Cauchy–Green tensor C.

Proposition 1.40. Let W be frame-indifferent as above. Then we have

P =
∂W (F )

∂F
= 2F

∂Ŵ (C)

∂C
. (1.19)
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Proof. By definition,
∂W (F )

∂Fij
=
∂Ŵ (C)

∂Ckm

∂Ckm

∂Fij
.

On noting that C = (Ckm)dk,m=1 = (FlkFlm)dk,m=1, we find

∂Ckm

∂Fij
=
∂Flk

∂Fij
Flm + Flk

∂Flm

Fij
= δliδkjFlm + Flkδliδmj = δkjFim + Fikδmj .

Then

∂Ŵ (C)

∂Ckm

∂Ckm

∂Fij
=
∂Ŵ (C)

∂Ckm
δkjFim +

∂Ŵ (C)

∂Ckm
Fikδmj

=
∂Ŵ (C)

∂Cjm
Fim +

∂Ŵ (C)

∂Ckj
Fik = 2F

∂Ŵ (C)

∂C
,

where the symmetry of C is employed, which finishes the proof.

Note that Proposition 1.40 entails the formulation of second Piola–Kirchhoff stress tensor in
terms of C by

S = F−1P = 2
∂Ŵ (C)

∂C
.

The second principle is the so-called isotropy, which means that at a given point of our
material its response is the same in all directions, i.e., isotropy is directional uniformity, cf.
[KR19]. Then for hyperelastic materials, we give the definition as follows.

Definition 1.41 (Isotropy). A hyperelastic material with the strain energy function W is
isotropic if

W (F ) =W (FQ) for all Q ∈ SO(d).

Then one sees that the stored energy density W of a hyperelastic isotropic frame-indifferent
material satisfies

W (RFQ) =W (FQ) =W (F ) for all R,Q ∈ SO(d). (1.20)
Thus by (1.18) and (1.20), we conclude that

Ŵ (C) =W (F ) =W (RFQ) = Ŵ (Q⊤F⊤R⊤RFQ) = Ŵ (Q⊤CQ) for all R,Q ∈ SO(d).

In three dimensional case, the previous identity implies that W (F ) = Ŵ (C) can be expressed in
terms of principal invariants, i.e., for some function W̃ we have

W (F ) = W̃ (I1, I2, I3),

where

I1 = trC = λ21 + λ22 + λ23,

I2 =
1

2
((trC)2 − tr(C2)) = λ22λ

2
3 + λ23λ

2
1 + λ21λ

2
2,

I3 = detC = λ21λ
2
2λ

2
3,

and λ2i are eigenvalues of the right Cauchy–Green tensor C = F⊤F or alternatively of left
Cauchy–Green tensor B = FF⊤. Equivalently, it implies that W only depends on F through its
principal stretches λ1, λ2, λ3 (the square roots of the principal values of C or B).
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St. Venant–Kirchhoff material. The simplest hyperelastic material model is the Saint Venant–
Kirchhoff model which is just an extension of the geometrically linear elastic material model to
the geometrically nonlinear regime.

W (F ) =
λ

2
(trE)2 + µ |E|2 ,

where λ, µ are Lamé constants (µ is also called shear modulus), and E = 1
2 (C − I) is the

Green–St. Venant strain tensor. Then we have

S = 2
Ŵ (C)

∂C
= λ trE + 2µE.

Mooney–Rivlin material. Mooney–Rivlin material is a hyperelastic material, where the
strain energy density function W is a linear combination of two principal invariants:

W (F ) =
C1

2
(I1 − 3) +

C2

2
(I2 − 3) =

C1

2
tr(C − I) + C2

2

(1
2
((trC)2 − tr(C2))− 3

)
,

where C1 + C2 = µ denotes the shear modulus. Then we have

P =
W (F )

∂F
= 2F

Ŵ (C)

∂C
= C1F + C2F ((trC)I − C).

Neo-Hookean material. As a special case of the Mooney–Rivlin material with C2 = 0, we
arrive at

W (F ) =
µ

2
(I1 − 3) =

µ

2
tr(C − I),

and the first Piola–Kirchhoff stress tensor

P = µF.

It is generally known that Neo-Hookean material model does not predict accurate phenomena at
large strains.

Ogden material. For modeling rubbery and biological materials at even higher strains, the
more sophisticated Ogden material model has been developed. It is shown as a general expansion
with N terms of the form

W (F ) =W (λ1, λ2, λ3) =

N∑
i=1

µi

αi
(λαi

1 + λαi
2 + λαi

3 − 3).

Here µi, αi are material constants, which are related to the shear modulus µ of small deformations
by

2µ =

N∑
i=1

µiαi.

Remark 1.42 (Our choice). In particular, we will choose the Neo-Hookean material as our solid
to perform the analysis later. We comment that in Chapter 5, an even more general nonlinear
hyperelastic strain energy density function is considered.
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1.4.6. A glance at viscoelasticity. In solid mechanics, the viscous nature of the material
is a typical phenomenon. A basic example of rheological models that describe the viscoelastic
response of materials is the so-called Kelvin–Voigt material, schematically depicted by an ar-
rangement of a spring and a damper parallelly so that the stresses sum up [KR19], see Figure
1.3. More specifically, the solid is equipped with the total stress tensor

T = Te + Tv,

where Te is exactly the stress tensor due to elasticity as the T in last sections, and Tv denotes
the stress tensor caused by the viscous damping.

Te

Tv

Figure 1.3: The simplest viscoelastic solid rheological model: Kelvin–Voigt model

For the Kelvin–Voigt model, the energy balance becomes

d
dtE +D = P,

where E and P are given in Section 1.4.2, D is the dissipation

D =

ˆ
U(t)

(J−1Φ) ◦ ϕ−1 dx,

where Φ denotes the specific dissipation rate that can be identified with the form in terms of Ḟ

Φ(X, t) = Φ(F (X, t), Ḟ (X, t), X) =
∂φ(F, Ḟ )

∂Ḟ
: Ḟ ,

with a slightly abuse of notation. Here φ is the dissipative potential to be determined. By the
same argument as in Section 1.4.2, one obtains

tr
((

∂W

∂F
− P⊤ +

∂φ(F, Ḟ )

∂Ḟ

)
Ḟ

)
= 0.

That is
∂W

∂F
− P⊤ +

∂φ(F, Ḟ )

∂Ḟ
= 0. (1.21)

Recall from hyperelasticity that Te ◦ ϕ = J−1 ∂W
∂F F

⊤. Then (1.21) reduces to

∂φ(F, Ḟ )

∂Ḟ
= J(Tv ◦ ϕ)F−⊤,
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leading to the viscous stress tensor

Tv ◦ ϕ = J−1 ∂φ(F, Ḟ )

∂Ḟ
F⊤.

Now it remains to determine φ so that one can close the system. We will only present the
linear case in the sense that Ḟ 7→ ∂Ḟφ(F, Ḟ ) is linear. A simple choice of dissipative potential
for linear Kelvin–Voigt models is

φ(F, Ḟ ) =
ν

2

∣∣∣Ḟ + Ḟ⊤
∣∣∣2 ,

such that
∂φ(F, Ḟ )

∂Ḟ
= ν(Ḟ + Ḟ⊤).

Then the viscous stress tensor reads

Tv ◦ ϕ = νJ−1(Ḟ + Ḟ⊤)F⊤. (1.22)

Remark 1.43. The introduction of viscoelasticity not only initiated from physics, but also due
to analytical reasons. In fact, when it comes to viscous dissipations, the system turns out to
possess parabolic properties due to the higher-order regularity. For instance, in the case above,
substituting Tv back into the momentum equation leads to the term of

ν div(Ḟ + Ḟ⊤) = ν div
(
∇(v ◦ ϕ) +∇(v ◦ ϕ)⊤

)
= ν∆(v ◦ ϕ),

for an incompressible solid in reference configurations. This term is of higher-order compared to
elasticity (at least for a short time), and brings us hope to get the parabolic regularity of v ◦ ϕ,
in view of the structure

∂t(v ◦ ϕ)− ν∆(v ◦ ϕ) = lower order terms

1.5. Biochemical Processes

One of the main problem in this thesis we want to discuss is the plaque formation, which
is usually caused by the accumulation of foam cells resulting from biochemical processes in the
blood flows and vessels, see the discussions in the Introduction. In particular, we will simply
consider the dynamics of monocytes in the blood, and of macrophages and foam cells in the
vessels. These are based on the assumptions in [Yan+16].

1.5.1. Advection-(reaction)-diffusion equations. Let ϕ, v, U(t) ⊆ Ωt be defined above.
Let ci be as in Section 1.2.4, the concentration of the i-th component, and ri be a source function
for the i-th component, which may depend on any ck. Recall the local form of conservation of
species (1.12) in Section 1.2.4

ρ(∂t + v · ∇)ci + div ji = ρri.

Concerning the concentration flux, we assume that ji possesses the simplest constitutive rela-
tionship

ji = −Di∇ci,
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with a diffusion coefficient Di > 0, which may depend on ρ, ci. This is similar to the Fourier’s
law in thermodynamics, meaning diffusion leads to a flux from areas with a high concentration
to areas with a low concentration, which can also be derived using stochastic analysis where a
large quantity of “random walkers” are used to describe diffusion. Then we end up with the
advection-reaction-diffusion equation

ρ(∂t + v · ∇)ci − div(Di∇ci) = ρri.

Now we specify each component. Concerning the monocytes, say, identified with a super-
script i = f , we assume there is no extra source in a volume of the domain rf = 0. Then it
follows an advection-diffusion equation

ρ(∂t + v · ∇)cf − div(Df∇cf ) = 0.

When it comes to the macrophages and foam cells together in the vessels with associated quan-
tities denoted by a superscript i = s and a subscript ∗ respectively, we have an assumption that
the concentration of foam cells produced only by the macrophages, and macrophages diffuse
in the media and are consumed by foam cells in a volume of the domain. Thus, we have the
equations

ρ(∂t + v · ∇)cs − div(Ds∇cs) = −ρrs,

and
ρ(∂t + v · ∇)c∗ = ρrs,

where rs is a function that may depend on ρ, v, cs.
In a particular situation, say, the density of material does not change, i.e., ρ = constant > 0,

the diffusion coefficient Di has the form of ρD̃i, and the reaction function rs is imposed with a
simple linear dependence on cs, i.e., rs = βcs, one rewrites all the equations for the cells in a
simple form with D̃i still denoted by Di,

∂tcf + v · ∇cf − div(Df∇cf ) = 0, (1.23)
∂tcs + v · ∇cs − div(Ds∇cs) = −βcs, (1.24)

∂tc
∗ + v · ∇c∗ = βcs, (1.25)

where coefficient β may easily depend on some other quantities in chemical reactions.
Remark 1.44. Here we establish all the cells dynamics in a single body Ω with a velocity v. Note
that this will be distinguished later when we couple the whole system together. Namely, the
monocytes are involved in the blood, while the macrophages and foam cells are included in the
vessel, transported by the fluid velocity and solid velocity respectively.

1.6. Growth in Continua

Aspects of growth and remodeling occur during the entire life of an organism. Therefore,
growth fulfills many purposes and, accordingly, is associated with qualitatively different processes.
Traditionally, a first classification is obtained by considering the way growth alters a body, either
by changing its volume, its material properties, or by rearranging the relative position of material
points. For example, the growth, which by itself refers to a change in mass, the remodeling, during
which tissues may become stiffer or softer in the process of aging. We will not explore more about
them here, and we refer to [Gor17] for more discussions. In this thesis, we will consider the so-
called Morphogenesis, which is a biological process that causes a tissue or organ to develop its
shape by controlling the spatial distribution of cells.
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Concerning the plaque growth, it is not hard to see that during the processes the plaque
(mainly of foam cells) becomes larger, ruptures and blocks the blood flow [LRH11]. So we assume
that the growth is referred to as the change of local volume, say, volumetric growth (or bulk
growth). Volumetric growth is typical of many developmental, physiological, and pathological
processes and has been particularly well documented in arteries, muscles, solid tumors, and
the heart [Cow04, Hum03, Tab95]. We mention that there are also other kinds of growth,
through which the tissue grows on the boundary (surface), such as tip growth and accretive
growth [Gor17]. Therefore, the next step is to describe the dynamics of this kind of volumetric
growth in a hyperelastic material, by certain assumptions.

1.6.1. Kinematics of growth. Let Ω be a hyperelastic body with corresponding deformed
configuration Ωt, described by a motion ϕ with associated deformation gradient F , and Eulerian
velocity v.

F = FeFg

Ω

Fe

Ωt

Fg

Figure 1.4: The multiplicative decomposition

In this thesis, we assume that the body Ω under consideration has a residual stress field,
and does not rely on the existence of a global zero-stress state, which allows us to further
define a virtual configuration, cf. [RHM94, Gor17]. Then we are able to assume a multiplicative
decomposition of the deformation gradient as

F = FeFg, (1.26)

where Fe is the elastic deformation tensor without growth, and Fg denotes the local growth
deformation tensor (growth tensor) describing the change of shape and volume at all positions
in the body due to growth. More precisely, for any point p in Ω with position X ∈ Ω, the growth
tensor Fg maps the tangential space TpΩ at p to the linear space TpΩg of a virtual state Ωg for
the same material point, that is,

Fg : TΩ→ TΩg.
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See Figure 1.4. The virtual state Ωg is called natural configuration, which consist of all the stress-
released parts from deformed configuration Ωt. Hence, it is locally stress free and describes
the body after unconstrained growth. Such process is guaranteed by the residual stress field
assumption above.
Remark 1.45. Note that the natural configuration in fact does not exist in Euclidean space. It
is not a domain formulated after some transformation from Ω and is artificial for picturing the
decomposition.

This idea has been employed and developed in the field of biomechanics, since the seminal
work of Rodriguez–McCulloch–Hoger [RHM94]. Later on, the morphoelasticity systems with
elastic equation and growth tensor were established in [AM02, JC12, Gor17, Yan+16] for different
applications.
Remark 1.46 (Non-uniqueness of the decomposition [Gor17]). Given a deformation gradient F ,
the elastic and growth tensor Fe and Fg are not uniquely prescribed. Indeed, if Fe, Fg are such
that F = FeFg, then the tensors

F̃e = FeR, and F̃g = R⊤Fg for all R ∈ SO(d)

also provide a possible decomposition as F = F̃eF̃g.

1.6.2. Balance laws including growth. We follow the evolution of a subset U(t) ⊆ Ωt of
a body Ω. In view of the conservation laws in Section 1.2, one further assumes that growth
can occur through volumetric growth as above, which is identified by a growth rate function ργ,
where γ may depends on the quantities during the biochemical processes. Namely, we have the
conservation of mass involving volumetric growth:

d
dt

ˆ
U(t)

ρdx =

ˆ
U(t)

ργ dx.

In a same fashion as in Section 1.2.1, one ends up with the local version of the continuity equation
for a growing continuum:

∂tρ+ div(ρv) = ργ. (1.27)
Now we would like to describe the growth rate function in terms of the growth tensor Fg. To
this end, one first rewrites the local continuity equation (1.27) in the reference configuration as

d
dt (Jρ) = Jργ, (1.28)

where J = detF is the total volumetric Jacobian related to the motion ϕ. Moreover, by the
multiplicative decomposition of the deformation gradient, one knows

J = detF = det(FeFg) = det(Fe) det(Fg) =: JeJg for all X ∈ Ω, t ≥ 0,

which accounts for both elastic deformation and growth deformation. Furthermore, let ρg be the
density defined in Ω with respect to the growing process without any stress. The invariance of
mass during elastic process tells us that

ˆ
U
ρgdX =

ˆ
U(t)

ρdx =

ˆ
U
ρJedX for all t ≥ 0,

implying
ρg = ρJe for all X ∈ Ω, t ≥ 0.
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Hence, the equation (1.28) becomes

d
dt (ρgJg)(X, t) = ρgJgγ(X, t) for all X ∈ Ω, t ≥ 0.

On noting (1.61), one records

d
dtρg(X, t) + ρg tr(F−1

g ∂tFg)(X, t) = ρgγ(X, t) for all X ∈ Ω, t ≥ 0. (1.29)

By the formulation, it is obviously that the differential equation (1.29) is not solvable since
neither the density ρg nor the growth tensor Fg is known. Thus, it is necessary to reduce (1.29)
to some particular cases. There are two important limits when either the density or the volume
does not change with growth.

• Constant-density. In this case, the density is unchanged by the growth process, which by
the assumption of an incompressible tissue implies ρ = ρg = constant. Then (1.29) is
reduced to

tr(F−1
g ∂tFg) = γ for all X ∈ Ω, t ≥ 0. (1.30)

• Constant-volume. In this case, there is no change in volume, meaning Jg = 1. Then the
tissue growth occurs by densification only, with

d
dtρg = ρgγ for all X ∈ Ω, t ≥ 0. (1.31)

where γ becomes a rate of densification, adding mass to the system without changing its
volume.

Remark 1.47. Here the equations for either Fg or ρg are all defined in the reference configurations.
In addition to mass conservation, the balance of momentum is modified to take into account

the possible contributions by growth. Here we do assume that there is no non-compliant sources
acting to the system, which ensures that the added source possesses the same properties as
the material itself [Gor17, JC12]. This is roughly a consequence of the so-called slow-growth
assumption that the material is hyperelastic on short-time scales, due to the time scales of
growth processes are much larger than any other time scales, see [Gor17, Section 13.1] for more
discussions. Then conservation of linear momentum involving volumetric growth becomes

d
dt

ˆ
U(t)

ρv dx =

ˆ
U(t)

ρf dx+

ˆ
∂U(t)

b dHd−1 +

ˆ
U(t)

ργv dx,

as well as the conservation of angular momentum

d
dt

ˆ
U(t)

(x− x0)× (ρv) dx =

ˆ
U(t)

(x− x0)× (ρf) dx+

ˆ
∂U(t)

(x− x0)× b dHd−1

+

ˆ
U(t)

(x− x0)× (ργv) dx.

Employing the same argument as in Section 1.2.2, it holds the local version of momentum balance
as

ρ∂tv + ρdiv(v ⊗ v) = divT + ρf, (1.32)
with

T = T⊤. (1.33)
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Analogously, the energy balance under the non-compliant assumption is endowed with the
form of

d
dt

ˆ
U(t)

ρ

(
1

2
|v|2 + e

)
dx =

ˆ
U(t)

ρf · v dx+

ˆ
∂U(t)

Tn · v dHd−1

+

ˆ
U(t)

ρg dx−
ˆ
∂U(t)

q · n dHd−1

+

ˆ
U(t)

ργ

(
1

2
|v|2 + e

)
dx,

where the last term on the right-hand side is the compliant energy contribution. Proceeding in a
same manner as in Section 1.2.3 yields the local version of the energy balance

ρ(∂t + v · ∇)e− T : ∇v + div q = ρg, (1.34)

Remark 1.48. We observe that apart from possible non-compliant sources of energy, this balance
(1.34) is the one that we would expect for a non-growing material. This is the same as for the
momentum balances (1.32) and (1.33).

1.6.3. Elastic constitutive relationships. As discussed in the last section, the material is
hyperelastic thanks to the slow-growth assumption. Moreover, we consider an isothermal situa-
tion. Thus, there is an internal energy density that depends only on the elastic tensor Fe, such
that the total elastic energy has the form

ˆ
U(t)

J−1
e Wdx,

for any sufficiently smooth U(t) ⊆ Ωt, where W = W (Fe) denotes the strain-energy density per
unit volume (of the virtual nature configuration). Then arguing as in Sections 1.4.3 and 1.4.4
gives the Cauchy stress tensor

T ◦ ϕ = J−1
e

∂W (Fe)

∂Fe
F⊤
e − pI.

If the material is elastically incompressible, we know Je = 1 and p is the hydrostatic pressure,
and for an elastically compressible material p = 0.
Remark 1.49. Here we have a slight abuse of notation, since Fe, p on the right-hand side above
are defined in the natural configuration, while the Cauchy stress tensor T is involved in deformed
configuration and it is mapped to the reference configuration if composed with ϕ. However, we
keep it consistent with the formulation in Section 1.4.3, when there is no danger of confusion.

1.6.4. Growth constitutive relationships. The growth tensor adds a kinematic descriptor
to the theory of elasticity. Therefore, it requires a corresponding set of constitutive laws. In this
section, we discuss how the growth tensor evolves, with some specific dynamics. Before that,
we point out that in general, the evolution of the growth may depend on a large amount of
phenomenon during the biochemical or physical processes. So one can write an equation for the
growth as

∂tFgF
−1
g = G(T, F, Fg, f, t,X, x) for all X ∈ Ω, t ≥ 0.

where G is a function of the stress tensor T , the deformation gradient F , the growth tensor itself
Fg, the initial or current position, or any other chemical, biochemical, or physical field f . In
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1.6. Growth in Continua

actual applications, it is sometimes more convenient to possess the growth with more suitable
assumptions.

Concerning the hyperelasticity, we have the following proposition.
Proposition 1.50. The elastic energy density W of a growing isotropic hyperelasticity ma-

terial only depends on the symmetric part of the growth tensor Fg.

Proof. Observe that by the polar decomposition, there exist a proper orthogonal matrix Rg ∈
SO(d) and a symmetric matrix Ug such that Fg = RgUg. Then in view of the isotropy of the
material, one arrives at

W (Fe) =W (FF−1
g ) =W (FU−1

g R⊤
g ) =W (FU−1

g R⊤
g Q).

Choosing Q = Rg gives rise to
W (FF−1

g ) =W (FU−1
g ),

which means that the elastic energy of a growing isotropic material only depends on the sym-
metric part of the growth tensor.

As discussed in Remark 1.46, the decomposition of F is not unique generally. Then it is
motivated from non-uniqueness of decomposition and Proposition 1.50 that we may choose a
non-relabeled growth tensor Fg to be symmetric. In the following, we record several typical
types of symmetric growth law from particular applications. For more discussions, we refer to
Goriely [Gor17].

• Orthotropic growth.

Fg = g0I + (g1 − 1)γ1 ⊗ γ1 + (g2 − 1)γ2 ⊗ γ2.

Here g0 represents the isotropic contribution to the growth process and gi, i ∈ {1, 2} are
the anisotropic contributions, and γ1, γ2 are two unit vectors in the initial configuration.

• Transversely isotropic growth.

Fg = g0I + (g1 − 1)γ ⊗ γ.

In this case, growth takes place isotropically in the directions normal to a unit vector γ.

• Pure fiber growth. If we further restrict growth along a single fiber we obtain

Fg = I + (g − 1)γ ⊗ γ.

• Area growth. The particular case of in-plane growth obtained as a reduction of transversely
isotropic growth is interesting as it provides a simple characterization for problems of
growing plates and membranes

Fg =
√
gI + (1−√g)γ ⊗ γ.

• Isotropic growth. The simplest nontrivial form for the growth tensor is to take it as a
multiple of the identity, that is,

Fg = gI,

with g : Ω× [0,∞)→ R the growth metric function. Particularly, ĝ indicates the resorption
of materials for 0 < ĝ < 1, while ĝ > 1 implies the growth. Moreover, we have

Jg = gd,
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representing the isotropic change of a volume element. Now one can link g to the growth
rate function γ directly through (1.30)

∂tg =
γ

d
g for all X ∈ Ω, t ≥ 0, (1.35)

under the constant-density growth assumption.

1.7. Coupled Systems with Free Sharp Interfaces

In this section, we are devoted to presenting the final coupled systems we will concern, which
includes the fluid dynamics, solid mechanics, biochemical processes, and growth.

First, let us record the main couplings of quantities between the fluid region and solid region,
i.e., interfacial couplings. To begin with, we suppose that a spatial domain Ωt — a bounded
domain in Rd with smooth boundary — is filled with fluids and solids that occupy the regions
Ωt

f and Ωt
s respectively. There is an interface between fluid and solid, which can be interpreted

as the endothelial layer in a blood vessel that is supposed to be a sharp interface. The interface
Γt separating these two phases will depend on time t. Here we assume that the fluid domain Ωt

f

is surrounded by the solid domain Ωt
s in general. The outer unit normal at Γt with respect to

Ωt
f will be denoted by nΓt , which depends on the points on Γt as well as on t.

For a quantity f , the double brackets JfK denotes the jump of values defined on Ωt
f and Ωt

s

across Γt, namely, JfK (x) := lim
θ→0

f(x+ θnΓ(x))− f(x− θnΓ(x)), ∀x ∈ Γt,

where nΓ is the unit outer normal at Γt pointing from Ωt
f to Ωt

s.
Remark 1.51. We will not specify the outer boundaries and the boundary conditions here, since
they vary a little bit in different contexts.

1.7.1. Interface conditions — couplings. On the interface Γt, we have two principles con-
cerning mechanics:

• Kinetic condition (continuity of velocities):JvK = 0,

meaning that there is no-slip between fluid velocity and solid velocity.

• Dynamical condition (continuity of normal stresses):JT KnΓt = 0,

namely, the traction (normal stress tensor) on the interface is continuous.
Concerning the cells concentrations, the penetration of monocytes from the blood flow into

the vessel wall is modeled by transmission conditions for the concentration of monocytes cf and
of macrophages cs on the interface Γt

• Continuity of the normal fluxes: JD∇cK · nΓt = 0.

• Concentration difference:
ζ JcK = Ds∇cs · nΓt ,

which means the flux is related to the difference of concentrations across the interface. The
coefficient ζ describes the permeability of the interface Γt with respect to the monocytes.
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1.7.2. FSIG in a smooth domain. To distinguish the quantities in Ωt
f and Ωt

s, we specify
them with a superscript f and s respectively. Particularly, the outer boundary is a smooth
boundary denoted by Γt

s = ∂Ωt, which is a free boundary as well. Moreover, we assume that

• the blood is assumed to be an incompressible homogeneous viscous fluid.

• the vessel consists of an incompressible Neo-Hookean material with linear Kelvin–Voigt
viscoelasticity.

• the reaction function rs in Section 1.5.1 depends on macrophages cs linearly, i.e., rs = βcs
[AM02, JC12, Yan+16].

• the plaque forms with constant-density growth.

• the growth evolves in an isotropic way, with the grow rate function endowed with the form
of γβcs for constant γ > 0, meaning that the mass of solid increases at a particular rate of
macrophages reactions [AM02, JC12, Yan+16].

• the deformation gradient of the solid can be decomposed as in (1.26): Fs = Fs,eFs,g = gFs,e.

Now we summarize our first model in a smooth domain for T > 0:

ρf (∂t + vf · ∇) vf = divTf , in Ωt
f , t ∈ (0, T ), (1.36a)

div vf = 0, in Ωt
f , t ∈ (0, T ), (1.36b)

ρs (∂t + vs · ∇) vs = divTs, in Ωt
s, t ∈ (0, T ), (1.36c)

ρs div vs = γβcs, in Ωt
s, t ∈ (0, T ), (1.36d)

∂tcf + vf · ∇cf − div(Df∇cf ) = 0, in Ωt
f , t ∈ (0, T ), (1.36e)

∂tcs + vs · ∇cs − div(Ds∇cs) = −βcs, in Ωt
s, t ∈ (0, T ), (1.36f)

∂tc
∗
s + vs · ∇c∗s = βcs, in Ωt

s, t ∈ (0, T ), (1.36g)

∂tg + vs · ∇g =
γβcs
dρs

, in Ωt
s, t ∈ (0, T ), (1.36h)

JvK = 0, JT KnΓt = 0, on Γt, t ∈ (0, T ), (1.36i)JD∇cK · nΓt = 0, ζ JcK−Ds∇cs · nΓt = 0, on Γt, t ∈ (0, T ), (1.36j)
TsnΓt

s
= 0, Ds∇cs · nΓt

s
= 0, on Γt

s, t ∈ (0, T ), (1.36k)
v|t=0 = v0, c|t=0 = c0, c∗s|t=0 = c0∗, g|t=0 = g0, (1.36l)

where ρi are the densities and vi are the velocities for i ∈ {f, s}. The tensor Tf = −πf I+2νfDvf
denotes the Cauchy stress tensor of the fluid, the function πf is the unknown fluid pressure and
the constant νf represents the fluid viscosity. The tensor Ts is the Cauchy stress tensor of the
solid that includes incompressible Neo-Hookean elastic and viscoelastic effects. As discussed in
Sections 1.4.4, 1.4.6 and 1.6.3, Ts = T e

s + T v
s satisfying

T e
s ◦ ϕ = µs(Fs,eF

⊤
s,e − I)− πsI, T v

s ◦ ϕ = νsJ
−1
s (Ḟs + Ḟ⊤

s )F⊤
s .

In addition, cf , cs, c∗s denote the concentrations of the monocytes, the macrophages and the
foam cells, respectively. The constants Di > 0, i ∈ {f, s} are the diffusion coefficients in the
blood and vessel, which are assumed to be constants.
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1.7.3. FSIG in a cylindrical domain. Based on the assumptions in Section 1.7.2, our second
model is defined in a cylindrical domain, where the boundary is no longer smooth anymore.
Namely, the boundary has ninety-degree contact angles and moving contact lines on the cross
sections. This is a rather realistic model to describe the blood flow surrounded by the vessels.
More precisely, let Ωt := Ωt

f ∪Ωt
s∪Σt ⊂ R3 (see Figure 4.1), with three disjoint parts, where Ωt

f ,
Ωt

s are piece-wise smooth domains for fluid and solid respectively, while Σt is a two dimensional
sub-manifold of R3 with boundary ∂Σt. In particular, ∂Ωt = Gt ∪ S, ∂Ωt

f = Gt
f ∪ Σt and

∂Ωt
s = Gt

s ∪ Σt ∪ S, where Gt := Gt
1 ∪ Gt

2 ∪ ∂Σt is a hypersurface with Gt
β := Gt

1,β ∪ Gt
2,β ,

β ∈ {f, s}, Gt
i = Gt

i,f ∪Gt
i,s, Gt

i,f ⊂ Gt
i, i ∈ {1, 2}, and S denotes the fixed surrounding surface,

which is supposed to be perpendicular to Gt at ∂S. Moreover, Σt is assumed to be perpendicular
to Gt at ∂Σt as well. In such setting, the domain is endowed with the fixed contact line ∂S and
moving contact line ∂Σt with ninety-degree contact angles for a short time.

The system in the domain is same as (1.36), while the boundary and interface conditions
read as

JvK = 0, JT KnΣt = 0, on Σt, t ∈ (0, T ), (1.37a)JD∇cK · nΣt = 0, ζ JcK−Ds∇cs · nΣt = 0, on Σt, t ∈ (0, T ), (1.37b)
vs = 0, on S, t ∈ (0, T ), (1.37c)

Ds∇cs · nS = 0, on S, t ∈ (0, T ), (1.37d)
PGt(v) = 0, (TnGt)nGt = 0, on Gt \ Σt, t ∈ (0, T ), (1.37e)

D∇c · nGt = 0, on Gt \ Σt, t ∈ (0, T ), (1.37f)

where PGt := I − nGt ⊗ nGt denotes the tangential projection onto Gt.

1.7.4. QFSIG in a smooth domain. Note that the first two models all include artificial
viscoelastic effects, which promote the regularity of solutions to the system. Now we introduce
our third model in a smooth domain, which consists of an incompressible homogeneous viscous
fluid and a general hyperelastic solid equation in equilibrium at each time, as well as the same
biochemical processes as (1.36) and (1.37). Specifically, we neglect the kinetic energy of the solid
reasonably, since the time-scale of the movement of the vessels is usually much larger than that
of the blood. In this case, we do not require any viscous regularization any more and consider a
general incompressible hyperelastic material with a nonlinear strain energy density function W
in terms of F . The model is presented as

ρf (∂t + vf · ∇) vf = divTf , in Ωt
f , t ∈ (0, T ), (1.38a)

div vf = 0, in Ωt
f , t ∈ (0, T ), (1.38b)

divTs = 0, in Ωt
s, t ∈ (0, T ), (1.38c)

ρs div vs = γβcs, in Ωt
s, t ∈ (0, T ), (1.38d)

∂tcf + vf · ∇cf − div(Df∇cf ) = 0, in Ωt
f , t ∈ (0, T ), (1.38e)

∂tcs + vs · ∇cs − div(Ds∇cs) = −βcs, in Ωt
s, t ∈ (0, T ), (1.38f)

∂tc
∗
s + vs · ∇c∗s = βcs, in Ωt

s, t ∈ (0, T ), (1.38g)

∂tg + vs · ∇g =
γβcs
dρs

, in Ωt
s, t ∈ (0, T ), (1.38h)

JvK = 0, JT KnΓt = 0, on Γt, t ∈ (0, T ), (1.38i)JD∇cK · nΓt = 0, ζ JcK−Ds∇cs · nΓt = 0, on Γt, t ∈ (0, T ), (1.38j)
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TsnΓt
s
= 0, Ds∇cs · nΓt

s
= 0, on Γt

s, t ∈ (0, T ), (1.38k)
vf |t=0 = v0f , us|t=0 = u0s, c|t=0 = c0, c∗s|t=0 = c0∗, g|t=0 = g0. (1.38l)

In particular, the Cauchy stress tensor Ts of the solid has the general form of

Ts ◦ ϕ = J−1
s,e

∂W (Fs,e)

∂Fs,e
F⊤
s,e − πsI,

with certain assumptions on the strain energy density function W , which we will specify for
analysis in Section 5.1.1.

1.8. A Diffuse Interface Model for Two-Phase Flows

In this section, we provide the main arguments for a thermodynamically consistent derivation
of a diffuse interface model for a two-phase incompressible viscoelastic flow, which particularly
can describe a fluid-structure interaction problem. The general idea is to start from physical
balance laws in a closed, isothermal system. After that, we state phenomenological assumptions
such that the system fulfills the second law of thermodynamics. At that point, there are some
general frameworks that can be used for the constitutive assumptions, such as the Local Dissi-
pation Inequality and the Lagrange Multiplier Approach developed by Liu [Liu72], the Onsager’s
variational principle [Ons32] or the General Equation for Non-Equilibrium Reversible-Irreversible
Coupling (GENERIC) framework of Gmerla–Öttinger [GO97, OG97]. We also refer to [GKL18,
MP18]. In our case, we will follow [AGG12] and use the Local Dissipation Inequality and the
Lagrange Multiplier Approach.

1.8.1. Local mass and momentum conservation laws. We suppose that every function is
smooth enough for our arguments. We consider the time evolution of two fluids (indexed with
i = 1, 2) in a smooth domain Ω ⊂ Rd with d ∈ {2, 3} on a time interval [0, T ] with T > 0.
Note that here in fact, two fluids should be a fluid and a solid, while the solid is described as a
fluid. Let ρi : Ω × (0, T ) → R be the mass density of the corresponding fluid i. The local mass
conservation (1.7) read as

∂tρi + div(ρiui) = 0, (1.39)

with ui be the velocity of fluid i. Let now φi : Ω × (0, T ) → R be the volume fraction of two
fluids. Concerning the specific constant mass densities ρ̃i of the pure phase of fluid i, the volume
fraction is introduced by

φi =
ρi
ρ̃i
, i = 1, 2.

The assumption that the excess volume is zero leads to

φ1 + φ2 = 1. (1.40)

Define the order parameter φ by the difference of volume fractions

φ = φ2 − φ1.

Moreover, we choose the volume averaged velocity u of the mixture as

u = φ1u1 + φ2u2 =
ρ1
ρ̃1

u1 +
ρ2
ρ̃2

u2,
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which satisfies the “natural” divergence-free condition

div u = div
(
ρ1
ρ̃1

u1

)
+ div

(
ρ2
ρ̃2

u2

)
= −∂t

(
ρ1
ρ̃1

+
ρ2
ρ̃2

)
= −∂t1 = 0, (1.41)

in view of the continuity equation (1.39) and (1.40). Denote by Ji = ρiui − ρiu the mass flux of
fluid i related to the velocity u. Then the continuity equation (1.39) becomes

∂tρi + div(ρiu) + div Ji = 0, (1.42)

By definitions, it follows

∂tφ+ div(φu) + div Jϕ = 0, (1.43)

where Jϕ = J2

ρ̃2
− J1

ρ̃1
is a diffusive flux.

The balance law of linear momentum (1.9) reads

∂t(ρu) + div(ρu⊗ u) = div T̃, (1.44)

where ρ = ρ1+ρ2 = 1−ϕ
2 ρ̃1+

1+ϕ
2 ρ̃2 is the total mass and T̃ is the full stress tensor of the system,

which is symmetric due to the balance law of angular momentum. For simplicity, we assume
that no external forces are present.
Remark 1.52. By the definition of ρ, one can rewrite the continuity equation (1.42) as

∂tρ+ div(ρu) + div J̃ = 0, (1.45)

with J̃ = J1 + J2. Subsequently equation (1.44) can be transferred to a non-conservative formu-
lation by eliminating (1.45).

1.8.2. Deformation gradient and Cauchy–Green stress tensor. We consider the Eulerian
deformation gradient F : Ω × (0, T ) → Rd×d of the mixture, which by Definitions 1.3 and 1.13
entails

∂tF+ u · ∇F = ∇uF. (1.46)

For the derivation of the Oldroyd-B model with relaxation, we assume a virtual multiplicative
decomposition of the deformation gradient into one part capturing the irreversible, dissipative
processes and another part for the total elastic response of the material, i.e.,

F = FeFd, (1.47)

also see [MP18]. Then, the left Cauchy–Green tensor associated with the elastic part of the total
mechanical response B := FeF⊤

e is the sought quantity for our model. Introducing the tensorial
quantity Ld := (∂tFd + u · ∇Fd)F−1

d , one can obtain with a simple calculation, using (1.46) and
(1.47), that

∂tFe + u · ∇Fe = ∇uFe − FeLd,

which gives for B = Be : Ω× (0, T )→ Rd×d
sym

∂tB+ u · ∇B = ∇uB+ B∇u⊤ − Fe(Ld + L⊤
d )F⊤

e . (1.48)

Later, the dependence on Dd := 1
2 (Ld + L⊤

d ) will be removed with a constitutive relation.
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1.8.3. Local energy dissipation laws. Assuming a general energy density of the form

e = ê(φ,∇φ,B) + 1

2
ρ(φ) |u|2 ,

composed of a (general) free energy density and the kinetic energy density of the system, the
second law of thermodynamics for a closed physical system in the isothermal case gives

d
dt

ˆ
U(t)

e(φ,∇φ, u,B)dx ≤ −
ˆ
∂U(t)

Je · n dHd−1 +

ˆ
∂U(t)

(T̃n) · u dHd−1,

where U(t) ⊆ Ω is an arbitrary open set, n is the outer unit normal to ∂U(t) and Je is a
dissipative energy flux yet to be determined. Roughly speaking, the change of the total energy
in a test volume U(t) cannot exceed the change of energy due to diffusion and the working due
to macroscopic stresses.

1.8.4. Lagrange multiplier and final model. With the help of Reynolds’ Transport Theo-
rem and Gauß Theorem, and as the test volume U(t) ⊂ Ω is arbitrary, one can obtain a local
inequality for the dissipation by

−D := (∂•t e+ e div u + div Je)− div(T̃) · u− T̃ : ∇u− q(∂•t φ+ φ div u + div Jϕ) ≤ 0,

where ∂•t := ∂t + (u · ∇) denotes the material derivative and q is a Lagrange multiplier for
the balance law of mass (1.43) for the order parameter φ. Note that in general the unknowns
u, Je, T̃, φ, Jϕ, q (and their derivatives appearing in the local dissipation inequality) can attain
arbitrary values for a given point in space and time. It can be checked with a straightforward
computation, using (1.41), (1.44), (1.48) and various reformulations (see, e.g., [AGG12, Section
2.2] for a diffuse interface model for a two-phase flow of incompressible viscous fluids and, e.g.,
[MP18, Section 4.4] for the viscoelastic part) that this local dissipation inequality holds true if
the following constitutive assumptions are applied:

Je = qJϕ + ∂•t φ
∂ê

∂∇e
− 1

2
J |u|2 , J = ρ′(φ)Jϕ, Jϕ = −m(φ)∇q,

q =
∂ê

∂φ
− div ∂ê

∂∇φ
, Dd =

1

λ̃(φ)
F−1
e

∂ê

∂B
Fe,

T̃ = S− pI− (u⊗ J)− ∂ê

∂∇φ
⊗∇φ, S = ν(φ)(∇u +∇u⊤) + 2

∂ê

∂B
B,

where m(φ), λ̃(φ), ν(φ) are positive functions corresponding to a mobility, a relaxation and a
viscosity, respectively. Here, also a relative mass flux J and the viscoelastic stress tensor S were
introduced, also see [AGG12, MAA18].

The constitutive system of equations (with a general energy density) reads

∂t(ρ(φ)u) + div(ρ(φ)u⊗ u) + div(u⊗ J) +∇p

− div
(
S(∇u,B, φ)

)
= − div

( ∂ê

∂∇φ
⊗∇φ

)
,

(1.49a)

div u = 0, (1.49b)

∂tB+ u · ∇B+
2

λ̃(φ)

∂ê

∂B
B = B∇u⊤ +∇uB, (1.49c)

∂tφ+ u · ∇φ = div(m(φ)∇q), (1.49d)

q =
∂ê

∂φ
− div ∂ê

∂∇φ
. (1.49e)
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Here, the local dissipation is given by

D =
ν(φ)

2

∣∣∇u +∇u⊤∣∣2 +m(φ) |∇q|2 + 2

λ̃(φ)

∣∣∣∣F⊤
e

∂ê

∂B
Fe

∣∣∣∣2 ≥ 0.

We note that the system (6.1) below can be recovered from (1.49) with the specific choice of the
free energy density

ê(φ,∇φ,B) = σ̃ε

2
|∇φ|2 + σ̃

ε
W (φ) +

µ(φ)

2
tr(B− lnB− I),

and a rescaling of the relaxation function λ̃(φ) = λ(φ)µ(φ)/α(φ). In this case, cf. [MAA18], the
(visco)elastic solid can be modeled by letting α = 0, λ > 0, the viscous fluid is described with
α > 0, λ = 0, while a fluid-structure interaction problem can be recovered with α > 0 and λ > 0.

1.9. Appendix: Scalars, Vectors, and Tensors

In this section, we recall and introduce some necessary algebra and analysis of functions,
which can be a scalar f(x, t) ∈ R (density, temperature), a vector v(x, t) ∈ Rd (velocity, accel-
eration, force), or a matrix F (x, t) ∈ Rd×d (deformation gradients or stress and strain tensors).
In general, these different functions can all be understood as tensors of different orders. By
definition, a scalar field is a tensor of order 0, a vector field is a first-order tensor, and a matrix
is a tensor of order 2. Higher order tensors require the definition of the tensor product.

1.9.1. Algebra. Now we recall the fundamental algebraic relationships of different functions.
Definition 1.53 (Products of vectors). Let u = (ui)

d
i=1, v = (vi)

d
i=1 be vectors. We define

the cross product for d = 3 by

u× v = (εijkujvk)
3
i=1 ∈ R3,

where εijk is the permutation symbol (Levi–Civita symbol). Moreover, the tensor product is given
by

u⊗ v = (uivj)
d
i,j=1 ∈ Rd×d.

Here the Levi–Civita symbol is defined as

εijk =


1, if (i, j, k) is an even permutation,
− 1, if (i, j, k) is an odd permutation,
0, if (i, j, k) is not a permutation.

(1.50)

For convenience, we give the so-called epsilon-delta identities.
Lemma 1.54 (Epsilon-delta identities). The following identities hold:

εijkεipq = δjpδkq − δjqδkp, εijkεijl = 2δkl.

Proposition 1.55 (Axial vector of a skew tensor [GFA10]). Given any Ω ∈ R3×3
skew, there is

a unique vector ω, called the axial vector of Ω, such that

Ω = ω×, i.e. Ωij = εikjwk (1.51)

and, hence, such that
Ωu = ω × u for all vectors u.
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Proof. The uniqueness follows from

a× v = b× v for all vectors v if and only if a = b.

To establish the existence of such a vector, if suffices to show that ω defined by

ωi = −
1

2
εijkΩjk (1.52)

satisfies (1.51). By (1.52) and the epsilon-delta identity,

εipqωi = −
1

2
εipqεijkΩjk = −1

2
(δjpδkq − δjqδkp)Ωjk = −1

2
(Ωpq − Ωqp) = Ωqp.

Thus, Ωqp = εipqωi, which implies (1.51).

Definition 1.56 (Symmetric and skew tensors). Let T = (Tij)
d
i,j=1 be a matrix. We say it

is symmetric or skew if
T = T⊤ or T = −T⊤,

and we refer symT and skewT respetively to the symmetric part and skew part of T , defined by

symT =
1

2

(
T + T⊤) , skewT =

1

2

(
T − T⊤) ,

Definition 1.57 (Products of tensors). Let T = (Tij)
d
i,j=1, S = (Sij)

d
i,j=1 be matrices. We

define the inner product of them by

T : S = tr(T⊤S) = tr(TS⊤) = TijSij .

The inner product is also called Frobenius product and its induced modulus is defined by

|T | =
√
T : T .

As a consequence, we have the following proposition.

Proposition 1.58. Let T = (Tij)
d
i,j=1 be a matrix. Then

skew(symT ) = sym(skewT ) = 0,

and it is endowed with a unique decomposition such that

T = symT + skewT. (1.53)

Moreover, let S = (Sij)
d
i,j=1 be another matrix, then

T : S = (symT ) : (symS) + (skewT ) : (skewS). (1.54)

In particular, S = T implies
|T |2 = |symT |2 + |skewT |2 .

If additionally S is symmetric and W is a skew matrix, then

S : T = S : T⊤ = S : (symT ), (1.55)
W : T = −W : T⊤ =W : (skewT ). (1.56)
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Proof. The first two assertions hold true directly by verifying the definition as above, while the
third one follows from

4 symT : skewS = (T + T⊤) : (S − S⊤) = T : S − T⊤ : S⊤ + T⊤ : S − T : S⊤ = 0,

4 skewT : symS = (T − T⊤) : (S + S⊤) = T : S − T⊤ : S⊤ − T⊤ : S + T : S⊤ = 0.

Now we prove the last two identities. If S is symmetric, then S = S⊤, which implies

S : T = S⊤ : T = S : T⊤.

Moreover, S = symS and skewS = 0. Then inserting it into (1.54) yields (1.55). (1.56) follows
similarly.

In view of the Frobenius product, it follows that
Lemma 1.59. Let T be a matrix. If T : S = 0, for all S ∈ Rd×d, then

T = 0.

Proof. We simply take S = T , then T : T = |T |2 = 0, meaning T = 0.

Proposition 1.60. Let S be a matrix. If T : S = 0, for all skew (resp. symmetric) tensors
T , then S is symmetric (resp. skew).

Proof. By (1.55) (resp. (1.56)), we have 0 = T : S = T : symS (resp. = T : skewS), which
implies symS = 0 (resp. skewS = 0) due to Lemma 1.59. Then S = symS (resp. S = symS) is
skew (resp. symmetric) in view of (1.53).

Now we give an expansion of the determinant of matrices.
Proposition 1.61. For a matrix A = (Aij)

d
i=1 and ε > 0,

det(I + εA) = 1 + ε trA+

d∑
ℓ=2

εℓMℓ(A), (1.57)

where Mℓ(A) is a homogeneous polynomial of degree ` in the entries of A.

Proof. The first part is obvious and we refer to [GFA10]. To prove (1.57), we first consider the
Leibniz formula

det(I + εA) =
∑
π∈Sd

sgn(π)
d∏

i=1

(δi,π(i) + εAi,π(i))

where sgn is the sign function of permutations in the permutation group Sd, which returns +1,
−1 for even and odd permutations, respectively. Expanding the product and rearranging the
terms by the exponent of the factor εℓ and thus by the number of terms εℓAi,π(i) directly yield
the homogeneous polynomial Mℓ(A). Namely,

det(I + εA) =

d∑
ℓ=0

εℓMℓ(A).

For the order of ε0, it is necessary that π(i) = i since otherwise the product will be zero, while
for the order ε1, the same idea applies for εAii-term. Therefore, M0(A) = 1 and M1(A) =∑d

i=1Aii = trA. The same argument can be found in [BKS23, Lemma A.1].
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Then one reaches the following corollary.
Corollary 1.62. Let T = (Tij)

d
i,j=1, S = (Sij)

d
i,j=1 be invertible tensors and ε > 0. Then

det(T + εS) = detT (1 + ε tr(T−1S) +O(ε2)). (1.58)

Proof. By Proposition 1.61, we have

det(T + εS) = det(T (I + ε(T−1S)) = detT det(I + ε tr(T−1S))

= detT (1 + ε tr(T−1S) +O(ε2)),

where the last identity follows from (1.57).

1.9.2. Differentiation of scalar-, vector- and matrix-valued functions. With the nota-
tion ∂j := ∂xj

:= ∂
∂xj

(sometimes mixed-used them depends on the context), and ∂t :=
∂
∂t , now

we turn to the derivatives of different fields.
Definition 1.63. Let U ⊆ Rd be an open set. Let f : U → R be a scalar-valued function,

v : U → Rd be a vector-valued function, and T : U → Rd×d be a matrix-valued function, that
are sufficiently differentiable. Then

(1) The gradient of f refers to a vector defined by its coordinates in any orthonormal basis of
Rd by

∇f =

(
∂f

∂xj

)d

j=1

.

(2) The gradient of v refers to a matrix in Rd×d, and the divergence of v refers to the scalar
field, respectively by

∇v =

(
∂vi
∂xj

)d

i,j=1

, div v =

d∑
j=1

∂vj
∂xj

.

In the following, we will simply write ∇v⊤ := (∇v)⊤.

(3) In the case d = 3, the curl of v refers to a vector denoted as curl v, defined by

curl v = ∇× v =

(
εijk

∂vk
∂xj

)3

i=1

,

where εijk is the permutation symbol defined as above.

(4) The gradient and divergence of T are defined by

∇T =

(
∂Tij
∂xk

)d

i,j,k=1

, divT =

 d∑
j=1

∂Tij
∂xj

d

i=1

,

where the gradient of T is a tensor of oder 3, i.e., ∇T ∈ Rd×d×d.

(5) The Laplacian of f , v and T are given by

∆f = div(∇f) =
d∑

j=1

∂2f

∂x2j
, ∆v = div(∇v) =

 d∑
j=1

∂2vi
∂x2j

d

i=1

, ∆T =

(
d∑

k=1

∂2Tij
∂x2k

)d

i,j=1

.
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Moreover, we define the following product of vectors and matrices.
Definition 1.64. Let u = (ui)

d
i=1 be a vector and T = (Tij)

d
i,j=1, S = (Sij)

d
i,j=1 be matrices.

Then we define

u⊗ T = (uiTjk)
d
i,j,k=1 , u · ∇T = (uk∂kTij)

d
i,j=1 ,

(u⊗ T ) : ∇S = uiTjk∂iSjk, ∇T : ∇S = ∂iT : ∂iS = ∂iTjk∂iSjk.

Based on the definition, one gives the following proposition providing counterparts, for func-
tions, of the standard product rule for scalar functions of a scalar variable.

Proposition 1.65 (Product rules). Let U ⊆ Rd be an open set. Let f : U → R be a scalar-
valued function, u, v : U → Rd be vector-valued functions, and T : U → Rd×d be a matrix-valued
function, that are sufficiently differentiable. Then

∇(fv) = f∇v + v ⊗∇f,
∇(u · v) = ∇u⊤v +∇v⊤u,
∇(u× v) = (u×)∇v − (v×)∇u,

div(fv) = f div v + v · ∇f,
div(u⊗ v) = div vu−∇uv,

div(Tv) = T⊤ : ∇v + v · divT⊤,

div(fT ) = f divT + T∇f.

Proof. For the proof, we refer to [GFA10]. In fact, one can easily verify them by expressing them
in terms of components and following the definition of the derivatives in Definition 1.63.

1.9.3. Differentiation of a scalar function of a matrix-valued function. We start with
the definition.

Definition 1.66. Let U ⊆ Rd×d be an open set. Let W : U → R be a differentiable scalar
function. The derivative of W in terms of F refers to a matrix defined by

DW (F ) =
∂W (F )

∂F
=

(
∂W (F )

∂Fij

)d

i,j=1

for all F ∈ U .

In some places, we will alternatively use the notation ∂FW with the same definition. Moreover,
let G = (Gij)

d
i,j=1, we define the “directional derivative” of W (F ) in the “direction” G by

∂W (F )

∂F
: G =

∂

∂ε
W (F + εG)

∣∣∣∣
ε=0

.

Remark 1.67 ([GFA10]). In computing this derivative, care must be taken to respect the matrix
space within which the domain of W lies. For example, if U ∈ Rd×d

sym , then, DW (F ) ∈ Rd×d
sym for

all F ∈ U .
As a consequence of Definition 1.66, we have
Lemma 1.68 (Jacobi’s formula). If W (F ) = detF with det : GLd ⊂ Rd×d → R, where

GLd := {A ∈ Rd×d : A is invertible}. Then

∂ detF
∂F

= (detF )F−⊤ for all F ∈ GLd. (1.59)
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Proof. In view of (1.58), for each matrix G ∈ Rd×d

∂ detF
∂F

: G =
∂

∂ε
det(F + εG)

∣∣∣∣
ε=0

= detF tr(F−1G) +O(ε)
∣∣
ε=0

= (detF )F−⊤ : G.

Then Lemma 1.59 implies the desired assertion.

Based on Definition 1.66 and Lemma 1.68, one has following proposition.

Proposition 1.69 (Time derivative). Let W : Rd×d → R be differentiable and F = (Fij)
d
i,j=1 :

M ⊆ R→ Rd×d depending on t ∈M with M open, be differentiable. Then we have

d
dtW (F ) =

∂W (F )

∂F
: Ḟ for all t ∈M, (1.60)

where Ḟ = ∂tF . In particular, if F (t) is invertible,

d
dt (detF ) = (detF ) tr

(
F−1 ∂F

∂t

)
for all t ∈M, (1.61)

d
dtF

−1 = −F−1

(
d
dtF

)
F−1 for all t ∈M. (1.62)

Proof. By means of the chain rule

d
dtW (F ) =

∂W (F )

∂Fij

∂Fij

∂t
=
∂W (F )

∂F
: Ḟ for all t ∈M.

Equation (1.61) follows from Jacobi’s formula and (1.60). (1.62) can be derived easily by

0 =
d
dt I =

d
dt (FF

−1) =
d
dtFF

−1 + F
d
dtF

−1 for all t ∈M.
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Chapter 2

Function Spaces and Maximal Regularity Theory

2.1. Function Spaces

2.1.1. Notations. We denote by N0 := N ∪ {0}. For metric spaces X, BX(x, r) denotes the
open ball with radius r > 0 around x ∈ X. For normed spaces X,Y over K = R or C, the set of
bounded, linear operators T : X → Y is denoted by L(X,Y ) and in particular, L(X) = L(X,X).
Moreover, a subset Ω ⊆ Rn, n ∈ N is called “domain”, if Ω is open, nonempty and connected.
We simply write K(M)N to be K(M ;RN ) for K ∈ {Lp,W k

p ,H
k
p }, N ∈ N. Sometimes we will

mix the use of W k
p and Hk

p , as there are equivalent for k ∈ N and 1 ≤ p ≤ ∞, to make the
notations consistent.

Throughout the thesis, unless we give a special declaration, the letter C will denote a generic
positive constant that may change its value from line to line, or even in the same line.

2.1.2. Continuous and continuously differentiable functions. Let Ω ⊆ Rn be a domain
and X be a Banach space over K = R or C. The space of continuous functions f : Ω → X is
denoted by C0(Ω;X) or C(Ω;X), and analogously we define C(Ω;X) as functions in C(Ω;X)
that can be extended continuously to Ω. Moreover, Cw(Ω;X) is defined as the space of functions
that are continuous on I with respect to the weak topology of X. For k ∈ N we define

Ck(Ω;X) := {f : Ω→ X : ∂αf ∈ C(Ω;X) for all |α| ≤ k},
Ck

b (Ω;X) := {f ∈ Ck(Ω;X) : ∂αf is bounded on Ω for all |α| ≤ k},
Ck(Ω;X) := {f ∈ Ck(Ω;X) : ∂αf has a unique continuous extension to Ω for all |α| ≤ k},
Ck

b (Ω;X) := {f ∈ Ck
b (Ω;X) : ∂αf has a unique continuous extension to Ω for all |α| ≤ k},

where

∂αf := ∂α1
x1
· · · ∂αn

xn
:=

∂|α|f

∂α1
x1 · · · ∂αn

xn

,

for a multi-index α = (α1, . . . , αn) ∈ Nn
0 with |α| :=

∑n
i=1 αi and ∂xjf : Ω→ X is defined as

∂xj
f(x) := lim

σ→0

f(x+ σej)− f(x)
σ

∈ X for all x ∈ Ω.

The infinitely differentiable function spaces C∞(Ω) are defined with intersections of all Ck(Ω),
k ∈ N. Moreover, C∞

0 (Ω) is the set of f ∈ C∞(Ω;R) with compact support supp f ⊆ Ω. In
addition, C∞

0 (Ω) := {f |Ω : f ∈ C∞
0 (Rn)}.

The Hölder spaces C0,γ(Ω;X), γ ∈ (0, 1] consists of all functions in C0
b (Ω;X), which has a

finite γ-th Hölder seminorm, i.e.,

[f ]C0,γ(Ω;X) := sup
x,y∈Ω,x ̸=y

‖f(x)− f(y)‖X
|x− y|γ

<∞.
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In particular, the functions in C0,1(Ω;X) are called Lipschitz continuous. For k ∈ N0, we define

Ck,γ(Ω;X) = {f ∈ Ck
b (Ω;X) : [∂αf ]C0,γ(Ω;X) <∞ for all |α| ≤ k}.

Moreover, we introduce the concept concerning the regularity of domains, which is necessary
for the definition of some function spaces in domains, as well as regularity theories in domains.

Definition 2.1 (Regularity of domains [Alt16, AF03, Leo17]). Let k ∈ N0 and Ω ⊂ Rn,
n ∈ N be a domain. We say Ω is of class Ck, if for all x0 ∈ ∂Ω there exist r > 0 and a Ck

function γ : Rn−1 → R such that – upon relabeling and reorienting the coordinates axes if
necessary – we have

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, . . . , xn−1)}.

In some contexts, we also say the boundary ∂Ω is Ck, if Ω is Ck. It is usually called Lipschitz
domain if γ is a Lipschitz function. Moreover, the domain Ω is of class C∞, if it is Ck for all
k ∈ N0, and Ω is smooth if it is of C∞.

2.1.3. Lebesgue and Sobolev spaces. Let (M,A, µ) be a σ-finite, complete measure space
and X be a Banach space over K = R or C with norm ‖·‖X . Then one can define the notions of
(µ- or strongly-) measurable and (Bochner-) integrable functions f :M → X and the Bochner(-
Lebesgue)-Integral through simple functions, see Adams–Fournier [AF03, Chapter 1], Amann–
Escher [AE09, Chapter X], Leoni [Leo17, Chapter 8] for the definitions and properties. In
particular, the Lebesgue spaces Lp(M ;X) for 1 ≤ p ≤ ∞ are defined by

Definition 2.2 (Lebesgue space). Let (M,A, µ) be a measure space and X be a Banach
space, and let 1 ≤ p ≤ ∞. Then

Lp(M ;X) := {f :M → X : f is strongly measurable , ‖f‖Lp(M ;X) <∞},

where for 1 ≤ p <∞

‖f‖Lp(M ;X) :=

(ˆ
M

‖f‖pX dµ
) 1

p

,

while if p =∞,

‖f‖L∞(M ;X) = esssup
M
‖f‖X := inf{t ≥ 0 : ‖f‖X for µ-a.e. x ∈M}.

If M = (a, b), we write for simplicity Lp(a, b;X). By simple computation, we have

‖f‖Lp(a,b;X) ≤ |a− b|
1
p ‖f‖L∞(a,b;X) . (2.1)

Additionally in the case ofX = R, we omitX in the notation, i.e., Lp(M) = Lp(M ;R). Moreover,
a function f : M → [−∞,∞] is said to belong to Lp

loc(M) if f ∈ Lp(K) for every compact set
K ⊆M .

Now, it is necessary to introduce the definition of weak derivative of a function [AF03, AE09,
Leo17], to define the Sobolev spaces.

Definition 2.3 (Weak derivative). Given an open set Ω ⊆ Rn, a multi-index α ∈ Nn, and
1 ≤ p ≤ ∞. We say that a function u ∈ L1

loc(Ω;Rn) admits a weak or distributional α-th
derivative in Lp(Ω;Rn) if there exists a function vα ∈ Lp(Ω;Rn) such thatˆ

Ω

u∂αφ dx = (−1)|α|
ˆ
Ω

vαφ dx for all φ ∈ C∞
0 (Ω).

Then function vα is denoted by ∂αu or ∂|α|u
∂xα .
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Definition 2.4 (Sobolev space). Given an open set Ω ⊆ Rn, n, k ∈ N, and 1 ≤ p ≤ ∞. The
Sobolev space W k

p (Ω) is defined by

W k
p (Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) for all |α| ≤ k}.

Namely, the space of all functions f ∈ Lp(Ω), which admit weak derivatives ∂αf ∈ Lp(Ω) for
every α ∈ Nn with |α| ≤ k. The space W k

p (Ω) is endowed with the norm

‖f‖Wk
p (Ω) := ‖f‖Lp(Ω) +

∑
1≤|α|≤k

‖∂αf‖Lp(Ω) .

In particular, W 0
p (Ω) = Lp(Ω).

Let Ω ⊆ Rn be a domain, we set

Wm
p,0(Ω) = C∞

0 (Ω)
Wm

p (Ω)
, W−m

p (Ω) := [Wm
p′,0(Ω)]

′,

Wm
p,(0)(Ω) =Wm

p (Ω) ∩ Lp
(0)(Ω), W−m

p,(0)(Ω) := [Wm
p′,(0)(Ω)]

′,

where p′ is the conjugate exponent to p satisfying 1
p + 1

p′ = 1, and [·]′ means the dual space.
Here Lp

(0)(M) is the mean value zero Lebesgue space Lp
(0)(M) :=

{
f ∈ Lp(M) :

´
M
fdµ = 0

}
if

|M | <∞. Furthermore, we set the Sobolev space associated with Γ ⊆ ∂Ω as

Wm
p,Γ(Ω) =

{
ψ ∈Wm

p (Ω) : ψ|Γ = 0
}
, W−m

p,Γ (Ω) := [Wm
p′,Γ(Ω)]

′.

2.1.4. Vector-valued Sobolev, Slobodeckij, Besov and Bessel potential spaces. Now
we record the vector-valued Sobolev, Slobodeckij and Bessel potential spaces, as well as their
properties. For the properties of scalar-valued versions, we refer to [Tri78] for a complete theory.

By weak derivatives, one can establish the vector-valued Sobolev space as
Definition 2.5 (Vector-valued Sobolev space). Let Ω ⊆ Rn be either a bounded domain

or Rn for n ∈ N, k ∈ N be integer, X be a Banach space, and 1 ≤ p ≤ ∞. The Sobolev space
W k

p (Ω;X) is defined by

W k
p (Ω;X) := {f ∈ Lp(Ω;X) : ∂αf ∈ Lp(Ω;X) for all |α| ≤ k}.

Namely, the space of all functions f ∈ Lp(Ω;X), which admit weak derivatives ∂αf ∈ Lp(Ω;X)
for every α ∈ Nn with 1 ≤ |α| ≤ k. The space W k

p (Ω;X) is endowed with the norm

‖f‖Wk
p (Ω;X) := ‖f‖Lp(Ω;X) +

∑
1≤|α|≤k

‖∂αf‖Lp(Ω;X) .

In particular, we have W 0
p (Ω;X) = Lp(Ω;X).

Remark 2.6. Another equivalent norm which we will sometimes use is given by

‖f‖Wk
p (Ω;X) :=

‖f‖pLp(Ω;X) +
∑

1≤|α|≤k

‖∂αf‖pLp(Ω;X)

 1
p

,

for 1 ≤ p <∞, and
‖f‖Wk

∞(Ω;X) := max
{
‖∂αf‖L∞(Ω;X) : |α| ≤ k

}
,

for p =∞.
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For a non-integer s > 0, we define the Sobolev–Slobodeckij space (for short Slobodeckij space,
also called fractional Sobolev space) W s

p (Ω;X) with Ω being either a bounded domain or Rn.

Definition 2.7 (Sobolev–Slobodeckij space). Let Ω ⊆ Rn be either a bounded domain or
Rn for n ∈ N, s > 0 be non-integer, X be a Banach space, and 1 ≤ p <∞. Then

W s
p (Ω;X) := {f ∈W ⌊s⌋

p (Ω;X) : [f ]W s
p (Ω;X) <∞},

where bsc = max{k ∈ Z : k ≤ s}, and

[f ]W s
p (Ω;X) :=

∑
|α|=⌊s⌋

(ˆ
Ω

ˆ
Ω

(
‖∂αf(x)− ∂αf(y)‖X

|x− y|s−⌊s⌋

)p
dxdy
|x− y|n

) 1
p

.

It is easy to see that the Sobolev–Slobodeckij space W s
p (Ω;X) is a Banach space endowed

with the norm
‖·‖W s

p (Ω;X) := ‖·‖W ⌊s⌋
p (Ω;X)

+ [·]W s
p (Ω;X) .

In particular, for 0 < s < 1 and Ω = (0, T ) with T > 0, we have

W s
p (0, T ;X) := {f ∈ Lp(0, T ;X) : [f ]W s

p (0,T ;X) <∞},

with

[f ]W s
p (0,T ;X) :=

(ˆ T

0

ˆ T

0

(
‖f(t)− f(τ)‖X
|t− τ |s

)p dtdτ
|t− τ |

) 1
p

.

Now we introduce the vector-valued Besov space and Bessel potential space in Rn [Ama09,
Hyt+16, Men21, MV12]. Let ψ ∈ C∞

0 (Rn) with ψ(ξ) = 1 for |ξ| < 1 and ψ(ξ) = 0 for |ξ| > 2.
Put

ψk(ξ) := ψ(2−kξ)− ψ(2−k+1ξ) for ξ ∈ R, k ∈ N,

and ψk(D) := F−1ψkF , where F denotes the Fourier transformation on the space of all X-
valued tempered distributions defined by S ′(Rn;X) = L(S (Rn), X) with S (Rn) the Schwartz
space of rapidly decreasing smooth functions on Rn. Then the Besov space is defined as follows.

Definition 2.8 (Besov space in Rn). Let X be a Banach space, s ∈ R, 1 ≤ p < ∞. The
Besov space Bs

pq(Rn;X) is defined as

Bs
pq(Rn;X) := {f ∈ S ′(Rn;X) : ‖f‖Bs

pq(Rn;X) <∞},

where if 1 ≤ q <∞

‖f‖Bs
pq(Rn;X) :=

( ∞∑
k=0

2skq ‖ψk(D)f‖qLp(Rn;X)

) 1
q

,

while for q =∞
‖f‖Bs

pq(Rn;X) := sup
k∈N0

2sk ‖ψk(D)f‖Lp(Rn;X) .

In terms of the Fourier transformation, we give the Bessel potential space.
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Definition 2.9 (Bessel potential space in Rn). Let X be a Banach space, s ∈ R, 1 ≤ p <∞.
The Bessel potential space Hs

p(Rn;X) is defined as

Hs
p(Rn;X) := {f ∈ S ′(Rn;X) : Jsf ∈ Lp(Rn;X)},

where Js is the standard Bessel potential defined by

Jsf := F−1[(1 + |·|2) s
2 Ff ] ∈ S ′(Rn;X).

The space is equipped with the norm

‖f‖Hs
p(Rn;X) := ‖Jsf‖Lp(Rn;X) .

For scalar-valued spaces, embeddings and interpolations hold well [Tri78], however, one can
not generalize them to the vector-valued spaces directly. Instead, we need some more geometric
assumptions on the spaces. Throughout we assume that the Banach space X is a so-called
UMD space (Unconditionality of Martingale Differences), or equivalently, of class HT . We refer
to [Ama95, Sections III.4.3–5] and references therein for the definition and properties of such
spaces. We note that Hilbert spaces are of classHT , as well as the reflexive Lebesgue and Sobolev
(–Slobodeckij) spaces. Now we give an equivalent characterization of Sobolev–Slobodeckij space
by Bessel potential space and Besov space.

Theorem 2.10. Let s > 0, 1 < p <∞, and X be a UMD space. Then

W s
p (Rn;X) =

{
Hs

p(Rn;X), if s ∈ N,
Bs

pp(Rn;X), if s ∈ R+ \ N,

with equivalent norms.

Proof. See e.g. Zimmermann [Zim89] or [Hyt+16, Theorem 5.6.11] for the case of s ∈ N, while
for the case of s ∈ R+ \ N we refer to Amann [Ama97].

In the following, we present a theorem on the characterizations of Besov and Bessel potential
spaces by real and complex interpolations of Sobolev spaces, respectively.

Theorem 2.11 (Equivalent norms in Rn). Let n ∈ N, 1 < p <∞, s > 0 be non-integer and
X be a UMD space. Then

Bs
pp(Rn;X) = (W ⌊s⌋

p (Rn;X),W ⌊s⌋+1
p (Rn;X))s−⌊s⌋,p,

Hs
p(Rn;X) = [W ⌊s⌋

p (Rn;X),W ⌊s⌋+1
p (Rn;X)]s−⌊s⌋,

with equivalent norms.

Proof. For the scalar-valued versions of them all, we refer to [Tri78, Chapter 2]. Concerning the
vector-valued case of Bs

pp(Rn;X), we refer to [Ama97] for the discussions on the vector-valued
Besov spaces and real interpolations of Sobolev spaces. For Hs

p(Rn;X), see e.g. [Hyt+16, Theo-
rem 5.6.9] for the complex interpolation of Bessel potential spaces, combined with Theorem 2.10
of the case s ∈ N.

As we already established the spaces for functions in Rn, now we turn to functions in domains,
by means of restrictions. We refer to [Tri78, Chapter 4] for the discussion of scalar-valued spaces
defined in domains.
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Definition 2.12 (Besov space). Let Ω ⊂ Rn, n ∈ N be a domain. Given s ∈ R, a Banach
space X, and 1 ≤ p, q < ∞. Then Bs

pq(Ω;X) is defined as the restriction of Bs
pq(Rn;X) to Ω,

i.e.,
Bs

pq(Ω;X) := {g|Ω : g ∈ Bs
pq(Rn;X)},

which is endowed with the norm

‖f‖Bs
pq(Ω;X) := inf

{
‖g‖Bs

pq(Rn;X) : g|Ω = f, g ∈ Bs
pq(Rn;X)

}
.

Here g|Ω ∈ [C∞
0 (Ω;X)]′ denotes the restriction of g ∈ C∞

0 (Rn;X) to Ω in the sense of distribu-
tion.

Similarly, one can define the Bessel potential space in domains.

Definition 2.13 (Bessel potential space). Let Ω ⊂ Rn, n ∈ N be a domain. Given s ∈ R, a
Banach space X of UMD, and 1 ≤ p <∞. Then Hs

p(Ω;X) is the restriction of Hs
p(Rn;X) to Ω,

Hs
p(Ω;X) := {g|Ω : g ∈ Hs

p(Rn;X)},

which is endowed with the norm

‖f‖Hs
p(Ω;X) := inf

{
‖g‖Hs

p(Rn;X) : g|Ω = f, g ∈ Hs
p(Rn;X)

}
.

In the following, we introduce the extensions for the vector-valued spaces defined in domains.

Theorem 2.14 (Extension theorem for smooth domains). Let Ω ⊂ Rn be a bounded smooth
domain and X be a Banach space. Then for all 1 ≤ p ≤ ∞ there exists a continuous linear
operator E : Lp(Ω;X) → Lp(Rn;X) such that E|Wk

p
∈ L(W k

p (Ω;X),W k
p (Rn;X)) for all k ∈ N,

E(f)|Ω = f for a.e. x ∈ Ω, and for all f ∈W k
p (Ω;X),

‖E(f)‖Lp(Rn;X) ≤ C ‖f‖Lp(Ω;X) ,

‖∂αE(f)‖Lp(Rn;X) ≤ C
α∑

i=0

∥∥∂if∥∥
Lp(Ω;X)

,

for every multi-index α ∈ Nn
0 with 1 ≤ |α| ≤ k, where C depends on the Lipschitz constant of the

boundary.

Proof. We refer to e.g., [Men21, Theorem B.17].

Theorem 2.15 (Equivalent norms). Let Ω ⊂ Rn, n ∈ N be a smooth domain, 1 < p < ∞,
s > 0 be non-integer and X be a Banach space of UMD. Then

Bs
pp(Ω;X) = (W ⌊s⌋

p (Ω;X),W ⌊s⌋+1
p (Ω;X))s−⌊s⌋,p,

Hs
p(Ω;X) = [W ⌊s⌋

p (Ω;X),W ⌊s⌋+1
p (Ω;X)]s−⌊s⌋,

with equivalent norms.

Proof. Let E be the extension operator in Theorem 2.14 for Ω and R :W k
p (Rn;X)→W k

p (Ω;X),
k ∈ N be the restriction operator defined by Rf = f |Ω for a.e. x ∈ Ω, which is obviously a linear
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bounded operator. By Theorem 2.14, E is injective, and hence R, which is left-inverse to E and
does not depend on k, is surjective. Therefore, one derives

Bs
pp(Ω;X) = R(Bs

pp(Rn;X))

= R
(
(W ⌊s⌋

p (Rn;X),W ⌊s⌋+1
p (Rn;X))s−⌊s⌋,p

)
= (W ⌊s⌋

p (Ω;X),W ⌊s⌋+1
p (Ω;X))s−⌊s⌋,p,

where the last identity follows from [Tri78, Theorem 1.2.4] such that R is an isomorphic mapping
from (W

⌊s⌋
p (Rn;X),W

⌊s⌋+1
p (Rn;X))s−⌊s⌋,p to (W

⌊s⌋
p (Ω;X),W

⌊s⌋+1
p (Ω;X))s−⌊s⌋,p. This proves

the first assertion. For the Bessel potential space, it follows analogously by means of complex
interpolation, on noting that [Tri78, Theorem 1.2.4] holds true for any kinds of interpolation
functor.

Theorem 2.16. Let Ω ⊂ Rn, n ∈ N be a smooth domain, s > 0, 1 < p < ∞, and X be of
UMD. Then

W s
p (Ω;X) =

{
Hs

p(Ω;X), if s ∈ N,
Bs

pp(Ω;X), if s ∈ R+ \ N,
with equivalent norms.

Proof. In the case of s ∈ R+ \N, we refer to [Ama00, Corollary 4.3] for the details. If s = k ∈ N,
we first claim that each f ∈ W k

p (Ω;X) is the restriction of some g ∈ W k
p (Rn;X), i.e., g|Ω = f .

To this end, we define the restriction map R : W k
p (Rn;X)→ W k

p (Ω;X). By Theorem 2.14, the
restriction map R is surjective (onto), since R ◦ E = id on W k

p (Ω;X). Then one proceeds as

W s
p (Ω;X) = R(W s

p (Rn;X)) = R(Hs
p(Rn;X)) = Hs

p(Ω;X) for s ∈ N,

which finishes the proof.

In applications, one natural class of function spaces associated with parabolic systems is
given by the so-called anisotropic function spaces, particularly, anisotropic Sobolev–Slobodeckij
and Bessel potential spaces. To make it compatible with the thesis, we introduce them here.

Definition 2.17 (Anisotropic function spaces). Let I ⊆ R be an interval and Ω ⊆ Rn, n ∈ R
be a domain. For r, s ≥ 0 and 1 ≤ p < ∞, the anisotropic function spaces Kr,s

p , K ∈ {W,H} is
defined as

Kr,s
p (Ω× I) := Lp(I;Kr

p(Ω)) ∩Ks
p(I;L

p(Ω)), (2.2)
which is equipped with the norm

‖·‖Kr,s
p (Ω×I) := ‖·‖Lp(I;Kr

p(Ω)) + ‖·‖Ks
p(I;L

p(Ω)) .

2.1.5. Continuous embeddings. In this section, we record some embedding results for (an-
isotropic) (vector-valued) Sobolev–Slobodeckij spaces and Bessel potential spaces Ks

p(Ω;X), K ∈
{W,H}, in particular the case of Ω is a finite interval.

First we introduce two important properties of Sobolev–Slobedeckij and Bessel potential
spaces, that is, multiplication and composition.

Proposition 2.18 (Multiplication). Let Ω ⊂ Rn, n ∈ N, be a bounded Lipschitz domain.
For f, g ∈ Ks

p(Ω) and sp > d with s > 0, 1 < p <∞, we have

‖fg‖Ks
p(Ω) ≤Mp ‖f‖Ks

p(Ω) ‖g‖Ks
p(Ω) ,

where Mp is a constant depending on p, but independent of f and g.
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Proof. See [RS96, Theorem 4.6.1/1 (5)] for the case K = H with q = q1 = q2 = 2 therein, [RS96,
Theorem 4.6.1/2 (18)] for the case K =W with p = q = q1 = q2 therein.

Proposition 2.19 (Composition properties). Let Ω ⊂ Rn, n ∈ N, be a bounded domain
with boundary of C1 class. Let N ∈ N, 0 < s ≤ 1 and 1 ≤ p < ∞ with s > d/p. Then for
all f ∈ C1(RN ) and every R > 0 there exists a constant C > 0 depending on R such that for
all u ∈ Ks

p(Ω)
N with ‖u‖Ks

p(Ω)N ≤ R, it holds that f(u) ∈ Ks
p(Ω) and ‖f(u)‖Ks

p(Ω) ≤ C(R).
Moreover, if f ∈ C2(RN ), then for all R > 0 there exists a constant L > 0 depending on R such
that

‖f(u)− f(v)‖Ks
p(Ω) ≤ L(R) ‖u− v‖Ks

p(Ω)N

for all u, v ∈ Ks
p(Ω)

N with ‖u‖Ks
p(Ω)N , ‖v‖Ks

p(Ω)N ≤ R.

Proof. The first part follows from Runst–Sickel [RS96, Theorem 5.5.1/1]. We note that in [RS96],
the function spaces act on the full space Rn. Here we just need to employ suitable extensions
for Ω so that we can reduce to the case of a full space. For the second part, let u, v be arbitrary
two functions in Ks

p(Ω)
N with ‖u‖Ks

p(Ω)N , ‖v‖Ks
p(Ω)N ≤ R. By a simple calculation, one obtains

(f(u)− f(v))(x) =
ˆ 1

0

Df(tu+ (1− t)v)(x) dt · (u− v)(x), (2.3)

where [Df(u)]j := ∂uj
f(u), j = 1, 2, ..., N . Now let g(u, v) :=

´ 1
0
Df(tu + (1 − t)v)(x) dt, we

have g(u, v) ∈ C1(RN × RN ;RN ) since f(u) ∈ C2(RN ). Then the first part implies that

‖g(u, v)‖Ks
p(Ω)N ≤ C(R),

which completes the proof with (2.3) and the multiplication property Lemma 2.18 with s > d/p.
For the case s = 1, we refer to [RS96].

Now we recall several embedding results and properties for vector-valued spaces that will be
frequently used later, especially concerning the parabolic problems with time embeddings.

Lemma 2.20. Suppose 0 < r < s ≤ 1 and 1 ≤ p <∞. X is a Banach space and I = (0, T ) ⊂
R is a finite interval for 0 < T <∞. Then Ks

p(I;X) ↪→W r
p (I;X) and for some δ > 0

[f ]W r
p (I;X) ≤ |I|

δ
[f ]Ks

p(I;X) for all f ∈ Ks
p(I;X).

In particular, we have
W 1

p (I;X) ↪→W θ
p (I;X) for all 0 < θ < 1

and
[f ]W θ

p (I;X) ≤ T
1−θ ‖∂tf‖Lp(I;X) for all f ∈W 1

p (I;X).

Proof. The case K =W was shown in Simon [Sim90, Corollary 17]. For the case K = H, taking
t, satisfying r < t < s, one has

[f ]W r
p (I;X) ≤ C |I|

t−r
[f ]W t

p(I;X) ≤ C |I|
t−r

[f ]Ks
p(I;X) ,

where C > 0 is uniform in I, and the last inequality follows from the complex interpolations
with Theorem 2.15, see e.g. [MS12]. The second assertion can be easily derived by means of the
observation

f(t)− f(t− h) = h

ˆ 1

0

∂tf(t+ (τ − 1)h)dτ

and the definition of Sobolev–Slobodeckij space.
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For convenience, with T > 0 we define the corresponding space with vanishing initial trace
at t = 0 as

0K
s
p(0, T ;X) =

{
f ∈ Ks

p(0, T ;X) : f |t=0 = 0
}

for s > 1

p
.

Then for Ks
p(I;X), K ∈ {W,H}, it follows an embedding to continuous Banach space-valuned

space
Proposition 2.21. Let 0 < s < 1, 1 < p < ∞ satisfying sp > 1, X be a Banach space and

I = (0, T ) ⊂ R be a bounded interval for 0 < T <∞. Then

Ks
p(I;X) ↪→ C(Ī;X).

Moreover, for some δ > 0 and all f ∈ 0K
s
p(I;X),

‖f‖C(Ī;X) ≤ CT
δ ‖f‖Ks

p(I;X) ,

where C is independent of I.

Proof. By Meyries–Schnaubelt [MS12, Proposition 2.10] with µ = 1 there, one has the first
assertion and for K =W , 1/p < r < s,

‖f‖C(Ī;X) ≤ C ‖f‖0Kr
p(I;X) ,

where C is independent of I. Then it follows from Lemma 2.20 that

‖f‖C(Ī;X) ≤ C ‖f‖0Kr
p(I;X) = C

(
‖f‖Lp(I;X) + [f ]

0Kr
p(I;X)

)
≤ C |I|δ [f ]Ks

p(I;X) ,

for some δ > 0.

Proposition 2.22 (Trace spaces by real interpolation). Let X1, X0 be two Banach spaces
and X1 ↪→ X0. Define XT = Lp(0, T ;X1) ∩W 1

p (0, T ;X0) for all 1 < p < ∞ and 0 < T < ∞.
Then

XT ↪→ C ([0, T ];Xγ) ,

where
Xγ = (X0, X1)1− 1

p ,p
= {u|t=0 : u ∈ XT }

is the trace space. Moreover, if XT is endowed with the norm

‖u‖XT
:= ‖u‖Lp(0,T ;X1)

+ ‖u‖W 1
p ([0,T ];X0)

+ ‖u|t=0‖Xγ
,

then there is some C > 0 independent of T such that for T ∈ [0,∞) and u ∈ XT ,

‖u‖C(0,T ;Xγ)
≤ C ‖u‖XT

.

In particular, let Ω ⊂ Rn, n ≥ 2, be a bounded domain, n < p < ∞, and if X1 = W 2
p (Ω),

X0 = Lp(Ω), then Xγ =W
2− 2

q
p (Ω) and

W 2,1
p (Ω× (0, T )) ↪→ C([0, T ];W

2− 2
p

p (Ω)) ↪→ C([0, T ];W 1
p (Ω)), (2.4)

together with
‖u‖C([0,T ];W 1

p (Ω)) ≤ C(‖u‖W 2,1
p (Ω×(0,T )) + ‖u0‖

W
2− 2

p
p

),

‖u− v‖C([0,T ];W 1
p (Ω)) ≤ C ‖u− v‖W 2,1

p (Ω×(0,T )) ,

for u, v ∈W 2,1
p (Ω× (0, T )) with u|t=0 = v|t=0 = u0.
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Proof. We refer to [Ama95, Chapter III, Theorem 4.10.2] for the first assertion, while the par-
ticular case holds in view of the real interpolation (Lp,W 2

p )1− 1
p ,p

=W
2− 2

p
p .

Lemma 2.23. Let Σ be a compact sufficiently smooth hypersurface. For 1 < p <∞, 1
p < α ≤ 1

and 0 < T <∞, define XT := Lp(0, T ;W 2α
p (Σ)) ∩Wα

p (0, T ;L
p(Σ)), then

XT ↪→ C ([0, T ];Xγ) ,

where
Xγ = {u|t=0 : u ∈ XT } =W

2α− 2
p

p (Σ).

Moreover, if XT is endowed with the norm

‖u‖XT
:= ‖u‖Lp(0,T ;X1)

+ ‖u‖Wα
p (0,T ;X0)

+ ‖u|t=0‖Xγ
,

then there is some C > 0 independent of T such that for all u ∈ XT ,

‖u‖C([0,T ];Xγ)
≤ C ‖u‖XT

.

Proof. See e.g. [PS16, Section 3.4.6].

Adapting from Meyries–Schnaubelt [MS12, Proposition 3.2] and Prüss–Simonett [PS16, Sec-
tion 4.5.5], we use the following time-space embedding results.

Proposition 2.24. Let 1 < p <∞, 0 < α, s < 2 and 0 < r < s , we have the embeddings

Hs
p(0, T ;L

p) ∩ Lp(0, T ;Kα
p ) ↪→ Hr

p(0, T ;K
α(1− r

s )
p ).

In particular,

H
1
2
p (0, T ;L

p) ∩ Lp(0, T ;W 1
p ) ↪→ H

1
4
p (0, T ;H

1
2
p ),

W 1
p (0, T ;L

p) ∩ Lp(0, T ;W 2
p ) ↪→ H

1
2
p (0, T ;W

1
p ).

All these assertions remain true if one replaces W - and H- spaces by 0W - and 0H- spaces
respectively, and the embedding constants in this case does not depend on T > 0.

In the following, an anisotropic trace lemma is introduced for a fractional order space.
Lemma 2.25 (Anisotropic trace on the boundary). Let 1 < p <∞ and Ω ⊂ Rn, n ∈ N, be a

bounded domain with Γ := ∂Ω of class C1, T > 0, and

XT := H
1
2
p (0, T ;L

p(Ω)) ∩ Lp(0, T ;W 1
p (Ω)).

Then there is a trace operator

γ : XT → Xγ,T :=W
1
2−

1
2p

p (0, T ;Lp(Γ)) ∩ Lp(0, T ;W
1− 1

p
p (Γ)),

such that γf = f |Γ for f ∈ XT ∩ C([0, T ]× Ω) and

‖γf‖Xγ,T
≤ C ‖f‖XT

,

where C > 0 is independent of T and f . Moreover, it is surjective and has a continuous
right-inverse.

Proof. By means of a coordinate transformation and a partition of unity of Ω, one can easily
reduce it to case of a half-space Rd−1 ×R+. Then thanks to [MS12, Theorem 4.5] with s = 1/2,
m = 1, µ = 1 (see also [PS16, Proposition 6.2.4] with m = 1, µ = 1 there), one completes the
proof.
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2.1.6. Temporal extensions. In this section, we are intended to construct an extension op-
erator from W s

p (0, T ;X) to W s
p (0,∞;X), where s ∈ ( 1p , 1] and X is a Banach space. The main

feature is that the operator norms can be bounded independently of T > 0, compared to the
extension theorem for general Sobolev-Slobodeckij spaces. The reason we made such modifica-
tion here is that if the constant depends on T , then the extended norm may blow up for small
T , which is the case we address in the following. For example, in the proof of Theorem 5.4 in
[DNPV12], the extension from W s

p (Ω) to W s
p (Rn) with 0 < s < 1, several smooth functions ψj

satisfying 0 ≤ ψj ≤ 1 and
∑k

j=0 ψj = 1 are chosen to construct the extension operator. In the
case |Ω| → 0, we have ∇ψj → ∞, which means that the extension is not valid. To avoid such
problem, we employ an even extension and make use of the embedding results in Simon [Sim90].
Now, we give the extension theorem.

Theorem 2.26. Let p ≥ 1, s = 0, or s ∈ ( 1p , 1], T > 0 and X be a Banach space. Then there
exists an extension operator ET : 0W

s
p (0, T ;X) → W s

p (0,∞;X), where 0W
s
p (0, T ;X) = {u ∈

W s
p (0, T ;X) : u|t=0 = 0, if s > 1

p}, such that ET (u)|[0,T ] = u and

‖ET (u)‖W s
p (0,∞;X) ≤ C ‖u‖0W s

p (0,T ;X) ,

where C > 0 depends on s, p and does not depend on T .

Proof. The proof is divided into three cases, namely, s = 0, 1
p < s < 1 and s = 1.

Case 1: s = 0. In this situation, W s
p (0, T ;X) is just the Lebesgue space Lp(0, T ;X), which

does not contain any time regularity. Hence for any function u ∈ Lp(0, T ;X), we can take the
extension by zero.
Case 2: s = 1. With u|t=0 = 0, we apply an even extension to u in [0, T ] around T to [0, 2T ]
and zero extension for T > 2T . Then the extended function ū is weakly differentiable with

∂tū(t) =


∂tu(t), if 0 ≤ t ≤ T,
− ∂tu(2T − t), if T < t ≤ 2T,

0, if t > 2T.

Then we have

‖ū‖W 1
p (0,∞;X) = 2

1
p ‖u‖W 1

p (0,T ;X) .

Case 3: 1
p < s < 1. With the same extension as in Case 2, we define the same function

ũ. Now we are in the position to show ũ ∈ W s
p (0,∞;X), for which we only need to prove

[ũ]W s
p (0,∞;X) ≤ C [u]W s

p (0,T ;X), where C is independent of T . From the definition of Sobolev–
Slobodeckij space,

[ũ]
p
W s

p (0,∞;X)

=

ˆ T

0

ˆ T

0

‖u(t)− u(τ)‖pX
|t− τ |1+sp dtdτ +

ˆ 2T

T

ˆ 2T

T

‖u(2T − t)− u(2T − τ)‖pX
|t− τ |1+sp dtdτ

+ 2

ˆ T

0

ˆ 2T

T

‖u(t)− u(2T − τ)‖pX
|t− τ |1+sp dτdt+ 2

ˆ 2T

0

ˆ ∞

2T

‖ũ(t)‖pX
|t− τ |1+sp dτdt =:

4∑
i=1

Qi.

It is clear that

Q1 +Q2 = 2 [u]
p
W s

p (0,T ;X) .
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Since |t− τ | ≥ |t− (2T − τ)| with t ∈ [0, T ] and τ ∈ [T, 2T ], we have

Q3 ≤ 2

ˆ T

0

ˆ T

0

‖u(t)− u(h)‖pX
|t− h|1+sp dhdt = 2 [u]

p
W s

p (0,T ;X) .

Noticing that ũ|t=2T = 0 due to the even extension, we get

Q4 =
2

sp

ˆ 2T

0

‖ũ(2T − h)− ũ(2T )‖pX
hsp

dh

≤ 2

sp

ˆ 2T

0

(
‖ũ(· − h)− ũ(·)‖L∞(h,2T ;X)

hs−
1
p

)p
dh
h

=
2

sp
[ũ]

p

B
s− 1

p
∞,p (0,2T ;X)

,

where the seminorm of Bs
p,(0, T ;X) is given by

[f ]Bs
p,q(0,T ;X) =

(ˆ T

0

(
‖∆hf(t)‖Lp(h,T ;X)

hs

)q
dh
h

) 1
q

for 0 < s < 1 and 1 ≤ p, q ≤ ∞. From Theorem 10 in Simon [Sim90], we know that for 1
p < s < 1

and p ≥ 1,

[f ]
B

s− 1
p

∞,p (0,T ;X)
≤ 3θ

s− 1
q

[f ]Bs
p,p(0,T ;X) =

3θ

s− 1
p

[f ]W s
p (0,T ;X) , ∀ f ∈W s

p (0, T ;X),

where θ = 31−(s−1/p). Hence,

Q4 ≤
6θ

sp(sp− 1)
[ũ]

p
W s

p (0,2T ;X) ≤
24θ

sp(sp− 1)
[u]

p
W s

p (0,T ;X) .

Combining the estimates of Qi, i = 1, . . . , 4, one obtains

[ũ]W s
p (0,∞;X) ≤ C [u]W s

p (0,T ;X) ,

where C =
(
4 + 24θ

sp(sp−1)

)1/p
.

Now, let ET (u) = ũ. Then ET (u) is well-defined from 0W
s
p (0, T ;X) to W s

p (0, T ;X) as well
as ET (u)|[0,T ] = u and

‖ET (u)‖W s
p (0,∞;X) ≤ C ‖u‖0W s

p (0,T ;X) ,

where C > 0 depends on s, p and does not depend on T .

Next, we give an extension theorem for general functions.
Theorem 2.27. Let X1, X0 be two Banach spaces and X1 ↪→ X0. For 1 < p < ∞ and

0 < T <∞, define XT := Lp(0, T ;X1) ∩W 1
p (0, T ;X0) endowed with the norm

‖u‖XT
:= ‖u‖Lp(0,T ;X1)

+ ‖u‖W 1
p (0,T ;X0)

+ ‖u|t=0‖Xγ
,

where Xγ = (X0, X1)1−1/p,p. Then there exists an extension operator E ∈ L(XT , X∞) satisfying
E(u)|[0,T ] = u, for all u ∈ XT . Moreover, there is a constant C > 0, independent of 0 < T <∞,
such that

‖E(u)‖X∞
≤ C ‖u‖XT

, (2.5)
for all u ∈ XT .
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Proof. First of all, we consider the case u|t=0 = 0. Let E be the extension operator as in
Theorem 2.26. Define ũ = E(u). Then we have ũ|[0,T ] = u and

‖ũ‖X∞
≤ C ‖u‖XT

,

where C does not depend on T .
Let u0 := u|t=0 ∈ Xγ . Since Xγ = (X0, X1)1−1/p,p, the trace method of interpolation implies

that there exists a function v ∈ X∞ such that v|t=0 = u0, see e.g. [Lun18, Proposition 1.13].
Moreover, it follows from the norm of XT that there is a constant C > 0 such that

‖v‖X∞
≤ C ‖u|t=0‖Xγ

≤ C ‖u‖XT
.

Now for general u ∈ XT , we define w := u − v. Then w is reduced to the case w|t=0 = 0 and
can be extended to E(w) in X∞ like ũ. Now we define the extension operator as E(u) := w+ v.
Then one obtains E(u)|[0,T ] = u and there is a constant, independent of T , such that

‖E(u)‖X∞
≤ C ‖w‖X∞

+ C ‖v‖X∞
≤ C ‖u‖XT

,

for all u ∈ XT , which completes the proof.

With a similar argument, we have the following extension theorem for functions in W 2α,α
p .

Theorem 2.28. Let Σ be a compact sufficiently smooth hypersurface. For 1 < p < ∞,
1/p < α ≤ 1 and 0 < T < ∞, let W 2α,α

p (Σ × (0, T )) := Lp(0, T ;W 2α
p (Σ)) ∩Wα

p (0, T ;L
p(Σ)) be

endowed with norm

‖g‖W 2α,α
p (Σ×(0,T )) := ‖g‖Lp(0,T ;W 2α

p (Σ)) + ‖g‖Wα
p (0,T ;Lp(Σ)) + ‖g|t=0‖

W
2α− 2

q
p (Σ)

.

Then for g ∈W 2α,α
p (Σ× (0, T )), there exists an extension operator

E ∈ L(W 2α,α
p (Σ× (0, T )),W 2α,α

p (Σ× (0,∞)))

satisfying E(g)|[0,T ] = g. Moreover, there is a constant C > 0, independent of 0 < T <∞, such
that

‖E(g)‖W 2α,α
p (Σ×(0,∞)) ≤ C ‖g‖W 2α,α

p (Σ×(0,T )) . (2.6)

Remark 2.29. The proof is similar to the part in Theorem 2.27, which relies on Theorem 2.26
for 1/q < α < 1 and the trace method interpolation, namely,

W
2α− 2

p
p (Σ) =

{
g(0) : g ∈ Lp(0, T ;W 2α

p (Σ)) ∩Wα
p (0, T ;L

p(Σ))
}
,

see e.g., Lemma 2.23 or [PS16, Example 3.4.9(i)]. These results can also be extended to more gen-
eral anisotropic Sobolev-Slobodeckij spaces with general trace theorem, see e.g., [PS16, Theorem
3.4.8].

2.2. Maximal Lp-regularity Theory

Throughout the thesis, we will proceed the analysis in the framework of the so-called maximal
regularity. Thus, in this section, we follow [DHP03, PS16] to briefly introduce the maximal Lp-
regularity theory. Note that here we specify with Lp, the Lebesgue space. There is also maximal
regularity theory concerning the Hölder space C0,γ , for which we refer to e.g. [Lun95].
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Let X be a Banach space, and A : D(A) ⊆ X → X be a linear operator with domain D(A).
If A is closed, then D(A) equipped with the graph norm of A, ‖x‖A = ‖x‖+ ‖Ax‖, is a Banach
space, for which the symbol XA is employed. Let J = R+ or (0, a) for some a > 0 and let
f : J → X. We consider the inhomogeneous initial value problem

∂tu(t) +Au(t) = f(t) for all t ∈ J, u(0) = u0, (2.7)

with f ∈ Lp(J ;X).
Definition 2.30 (Maximal Lp-regularity). Suppose A : D(A) ⊂ X → X is closed and

densely defined. Then A is said to belong to the class MRp(J ;X) – and we say that there is
maximal Lp-regularity for (2.7) – if for each f ∈ Lp(J ;X) there exists a unique u ∈ H1

p (J ;X) ∩
Lp(J ;XA) satisfying (2.7) a.e. in J , with u0 = 0.

The closed graph theorem implies then that there exists a constant C > 0 such that

‖u‖Lp(J;X) + ‖∂tu‖Lp(J;X) + ‖Au‖Lp(J;X) ≤ C ‖f‖Lp(J;X) .

In view of the trace method of interpolation, for u0 ∈ Xγ there is a v ∈ E1(J) such that v(0) = u0.
Let w = u− v. We know w is the unique solution of

∂tw(t) +Aw(t) = f̃(t), for all t ∈ J, w(0) = 0,

where f̃ = f − ∂tv −Av ∈ Lp(J ;X). Then we have

‖u‖Lp(J;X) + ‖∂tu‖Lp(J;X) + ‖Au‖Lp(J;X) ≤ C
(
‖u0‖(X,XA)1−1/p,p

+ ‖f‖Lp(J;X)

)
.

Let X0 := X, X1 := XA, and

E0(J) := Lp(J ;X0), E1(J) := H1
p (J ;X0) ∩ Lp(J ;X1), Xγ := (X0, X1)1−1/p,p.

Then we have the following proposition concerning the isomorphism of an evolution problem
operator depending on t, in view of the MRp-class operators, cf. [PS16, Proposition 3.5.6].

Proposition 2.31 (Isomorphism). Suppose that A ∈ C(J,L(X1, X0)) and A(t) ∈MRp(J,X0)
for each t ∈ J = [0, a]. Then(

d
dt +A(·), tr

)
∈ Isom(E1(J),E0(J)×Xγ),

where Isom(X,Y ) denotes the set of all linear isomorphisms between X and Y . In particular,
the non-autonomous problem

∂tu+A(t)u = f(t), t ∈ J, u(0) = u0,

admits for each (f, u0) ∈ E0(J)×Xγ a unique solution u ∈ E1(J).
Corollary 2.32. Let J = [0, a]. If (2.7) admits a unique solution u ∈ H1

p (J ;X)∩Lp(J ;XA)
for all f ∈ Lp(J ;X) and u0 ∈ Xγ , then(

d
dt +A, tr

)
∈ Isom(E1(J),E0(J)×Xγ).

Proof. By Definition 2.30, A ∈ MRp(J ;X). Moreover, A ∈ C(J ;L(XA, X)), since A does not
depend on t. Then Proposition 2.31 yields the assertion.
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Chapter 3

Fluid-Structure Interaction Problem with Growth in
Smooth Domain

We study a free-interface fluid-structure interaction problem for plaque
growth with additional viscoelastic effects, which arises from the plaque
formation in blood vessels. The fluid is described by the incompressible
Navier–Stokes equations, while the structure is considered as a viscoelas-
tic incompressible neo-Hookean material. Moreover, the growth due to
the biochemical process is taken into account. Applying the maximal
regularity theory to a linearization of the equations, along with a de-
formation mapping, we prove the well-posedness of the full nonlinear
problem via the contraction mapping principle.

Overview of This Chapter
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Notations. In this chapter, we consider specifically the following notations.

• Ωt = Ωt
f ∪ Ωt

s ∪ Γt, where Ωt ⊂ Rn with n ∈ N is divided by the interface Γt into two
disjoint parts, fluid domain Ωt

f and solid domain Ωt
s. Γt

s denotes the outer boundary of Ωt.
See Figure 3.1.

• v, the Eulerian velocity
• v̂, the Lagrangian velocity
• c, ĉ, cell concentrations
• c∗, ĉ∗ foam cell concentration
• g, ĝ, growth metrics
• F̂, the deformation gradient in terms of v̂
• F, the inverse deformation gradient

When there is no danger of confusion, we specify the quantities with a subscript “f” and “s”
to identify those defined in fluid domain and solid domain respectively. In addition, without a
special statement, the quantities or operators with a hat “̂·” will indicate those in Lagrangian
coordinates.



Chapter 3. FSIG in Smooth Domain

3.1. Introduction

In this chapter, we consider a free-interface fluid-structure interaction problem with growth,
which is used to describe the plaque formation in a human artery. The motion of the blood
is assumed to be represented by the incompressible Navier–Stokes equations and the artery is
modeled by an elastic equation with viscosity. The model was derived in Chapter 1 in the
framework of continuum mechanics.

Ωt
f

Ωt
s

Γt

Γt
s

Figure 3.1: Domain Ωt of the problem.

Here we consider the problem in a smooth bounded domain Ωt ⊂ Rn, n ≥ 2. See Figure 3.1.
For convenience, we present the PDE system (1.36) again as follows.

ρf (∂t + vf · ∇) vf = divTf , in Ωt
f , t ∈ (0, T ), (3.1a)

div vf = 0, in Ωt
f , t ∈ (0, T ), (3.1b)

ρs (∂t + vs · ∇) vs = divTs, in Ωt
s, t ∈ (0, T ), (3.1c)

ρs div vs = γβcs, in Ωt
s, t ∈ (0, T ), (3.1d)

∂tcf + vf · ∇cf − div(Df∇cf ) = 0, in Ωt
f , t ∈ (0, T ), (3.1e)

∂tcs + vs · ∇cs − div(Ds∇cs) = −βcs, in Ωt
s, t ∈ (0, T ), (3.1f)

∂tc
∗
s + vs · ∇c∗s = βcs, in Ωt

s, t ∈ (0, T ), (3.1g)

∂tg + vs · ∇g =
γβcs
nρs

, in Ωt
s, t ∈ (0, T ), (3.1h)

JvK = 0, JTK nΓt = 0, on Γt, t ∈ (0, T ), (3.1i)JD∇cK · nΓt = 0, ζ JcK−Ds∇cs · nΓt = 0, on Γt, t ∈ (0, T ), (3.1j)
TsnΓt

s
= 0, Ds∇cs · nΓt

s
= 0, on Γt

s, t ∈ (0, T ), (3.1k)
v|t=0 = v0, c|t=0 = c0, c∗s|t=0 = 0, g|t=0 = 1, (3.1l)

where ρf/s are the densities and vf/s are the velocities of the fluid and the solid respectively,
the stress tensor Tf (vf , πf ) := −πf I + νf (∇vf +∇v⊤

f ) denotes the Cauchy stress tensor of the
fluid, πf is the unknown fluid pressure and νf represents the fluid viscosity, while Ts is the
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Cauchy stress tensor of the solid that includes viscoelastic effects. In addition, cf , cs, c∗s denote
the concentrations of the monocytes, the macrophages and the foam cells, respectively. The
constant Df/s > 0 are the diffusion coefficients in the blood and vessel, which are assumed to
be constants. frs is the reaction functions, modeling the rate of conversion from macrophages cs
into foam cells c∗s.

Moreover, on the boundary nΓt stands for the outer unit normal vector on Γt pointing from
Ωt

f to Ωt
s and nΓt

s
is the unit outer normal vector on Γt

s = ∂Ωt. The constant ζ denotes the
permeability of the interface Γt between blood and vessel regarding the cells.

Subsequently, let Ω = Ωf ∪ Γ ∪ Ωs be the initial configuration of Ωt, ϕ be the motion in it,
and v be its Eulerian velocity. We denote by F̂ the deformation gradient as in (1.6):

F̂ =
∂

∂X
ϕ(X, t) = ∇̂ϕ(X, t) = I+

ˆ t

0

∇̂v̂(X, τ) dτ, ∀X ∈ Ω, (3.2)

with initial deformation F̂|t=0 = I and by Ĵ = det F̂ its determinant. Conversely, the inverse
deformation gradient is defined by F = F̂−1.

As discussed in Section 1.4, especially in Sections 1.4.5 and 1.4.6, the solid is assumed to be
an incompressible viscous Neo-Hookean material, whose constitutive relationship of Ts is defined
as Ts := Te

s + Tv
s with

Te
s = −πsI+ µs

(
F−1
s,eF−⊤

s,e − I
)
,

Tv
s = νsJ

−1
s

(
∂tF−1

s + ∂tF−⊤
s

)
F−⊤
s ,

where the tensor Fs,e is the inverse elastic deformation gradient under the assumption of growth,
which is discussed in Section 1.6. Here πs is the unknown solid pressure, µs denotes the Lamé
coefficient and νs represents the solid viscosity, which are all positive constants. We consider
not only the elastic stress tensor Te

s, but also the viscoelastic stress tensor Tv
s , which could be

deduced by linearizing the Kelvin-Voigt stress tensor, see Section 1.4.6, and Mielke–Roubíček
[MR20].
Remark 3.1. For short time existence, the Kelvin–Voigt viscous stress tensor Tv

s we introduced
brings the parabolicity to the system for the solid, which dominates the regularity of solutions.
Moreover, after linearization one obtains a two-phase Stokes type problem, which allows us to
get the solvabilities and regularities of fluid and solid velocities by maximal regularity theory. In
a recent work [BG21], a similar stress tensor of the solid part was also considered to investigate
weak solutions of the interaction between an incompressible fluid and an incompressible immersed
viscous-hyperelastic solid structure.
Remark 3.2. In [Yan+16, Tan+04], some numerical simulations are carried out by considering
that µs depends on the concentration of some chemical species, and hence varies from healthy
vessel to plaque area. In the case of viscoelasticity, νs may also vary over the solid domain.
However, to simplify the model for the analysis, we assume that these coefficients are constant
over the solid domain.

The interaction between the fluid and solid is modeled by transmission conditions (3.1i) on
the interface Γt, which consists of the continuity of velocity and the balance of normal stresses.
Moreover, to ensure the compatibility between growth and incompressibility, the boundary con-
dition on Γt

s is assumed to be the so-called “stress-free” boundary condition (3.1k).
Remark 3.3. We choose the “stress-free” boundary condition for the velocity in (3.1k) to obtain
physical compatibility. Since we consider the growth of the solid part and both the fluid and
solid are incompressible, one can not impose some types of boundary conditions. For example,
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Chapter 3. FSIG in Smooth Domain

the no-slip condition vs = 0 on Γt
s (correspondingly, vs = ∂tus = 0 on Γt

s with us being the solid
displacement) is incompatible with the incompressible growth assumption (see later in Section
3.1.1). Namely,

0 =

ˆ
∂Ωt

vs · n dσ =
d
dt

ˆ
Ωt

dx︸ ︷︷ ︸
by the Reynolds’ Transport Theorem

=
d
dt
∣∣Ωt
∣∣ = ˆ

Ωt
s

divvs dx =

ˆ
Ωt

s

γβcs/ρs dx 6= 0,

due to growth.
Remark 3.4. In this thesis, the fluid part is supposed to be surrounded by the solid part. In fact,
if the solid is immersed in the fluid domain, there will be no essential difference in our framework
of analysis. Specifically, the outer boundary will still be a Neumann-type boundary, which is a
“do-nothing” outer boundary condition for fluid.
Remark 3.5. In general, the right-hand sides of (3.1d), (3.1e) and (3.1f) can be more general
reaction functions that may depend on any quantities of the system. If we impose the Lipschitz
condition for f in terms of c, the local well-posedness will not change too much. Thus, here for
the sake of simplicity, we just assume a linear relation.
Remark 3.6. In addition to the process inside the fluid or solid domain, one needs to specify
the interfacial laws for the cell interactions in (3.1j). The first one denotes the balance of the
normal concentration flux at the interface, while due to the flux, cells move across the interface
(penetration), which is the second equation in (3.1j). Here the permeability ζ of the interface
Γt in general should depend on the hemodynamical stress Tf · nΓt , which, however, is supposed
to be a constant for simplicity. The outer concentration flux is assumed to vanish on Γt

s as in
(3.1k).

3.1.1. A recall of growth. In this section, we record the growth assumption, as introduced
in Section 1.6. The first assumption is that we can always have the multiplicative decompostion
of the deformation gradient F̂s, namely,

F̂s = F̂s,eF̂s,g.

Moreover, with constant-density growth hypothesis, one ends up with (see (1.30) for the deriva-
tion)

tr(F̂−1
s,g∂tF̂s,g) = γβcs, in Ωs,

and then the continuity equation of solid reduces to
ρs div vs = γβcs in Ωt

s.

In addition, the growth is assumed to be isotropic, i.e.,
F̂s,g = ĝI, in Ωs,

where ĝ = ĝ(X, t) is the metric of growth, a scalar function depending on the concentration of
macrophages. Hence,

F̂s,e =
1

ĝ
F̂s, Ĵs,g = ĝn,

where n is the dimension of space. As mentioned in [AM02], ĝ describes the deformation state of
the material, either growing if ĝ > 1 or resorbing if 0 < ĝ < 1. Consequently, under the assump-
tion of constant-density growth, one deduces the equation for growth in Lagrangian coordinates

∂tĝ =
γβĉs
nρ̂s

ĝ, in Ωs. (3.3)

This shows the specific dependence of ĝ on ĉs.
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3.1.2. Literature. During the last decades, fluid-structure interaction problems attracted much
attention from mathematicians due to their strong applications in various areas, e.g., biomechan-
ics, hemodynamics, aeroelasticity and hydroelasticity. Studies can be divided into two types
depending on the dimensions of the fluid and the solid. They are for example 3d-3d coupled
and 3d-2d coupled systems, where the solid is contained in the fluid and one part of the fluid’s
boundary, respectively.

In the case of 3d-3d model, the existence and uniqueness of strong solutions of such kind
of models was firstly established by Coutand–Shkoller [CS05], where they investigated the in-
teraction of the Navier–Stokes equation and a linear Kirchhoff elastic material. The results
were extended to the quasilinear elastodynamics case by them in [CS06], where they regularized
the hyperbolic elastic equation by a particular parabolic artificial viscosity and then obtained
the existence of strong solutions by the a priori estimates. Subsequently, systems coupled the
incompressible Navier–Stokes equation and the wave equation were continuously analyzed by
Ignatova–Kukavica–Lasiecka–Tuffaha [Ign+14, Ign+17]. More specifically, In [Ign+14], a wave
equation with several damping terms was considered and exponential decay of the energy was
obtained. Later, they proved that the energy still decay without the boundary friction by intro-
ducing the tangential and time-tangential energy estimates. The coupling of the Navier–Stokes
equation and the Lamé system was studied by Kukavica–Tuffaha [KT12a] with initial regularity
(v0, w1) ∈ H3(Ωf ) × H2(Ωs), while Raymond–Vanninathan [RV14] further obtained the same
results by a weaker initial regularity (v0, w1) ∈ H3/2+ε(Ωf )×H1+ε(Ωs), ε > 0 arbitrarily small,
with periodic boundary conditions. Recently, Boulakia–Guerrero–Takahashi [BGT19] showed a
similar result for the Navier–Stokes–Lamé system in a smooth domain with reduced demand of
the initial regularity.

Besides the standard models above, we refer to [BG10], for compressible fluid coupled
with elastic bodies, where Boulakia and Guerrero addressed the short time existence and the
uniqueness of regular solutions with the initial data (ρ0, u0, w0, w1) ∈ H3(Ωf ) × H4(Ωf ) ×
H3(Ωs)×H2(Ωs). Kukavica–Tuffaha [KT12b] improved the result by a weaker initial regularity
(ρ0, u0, w1) ∈ H3(Ωf ) × H3/2+r(Ωf ) × H3/2+r(Ωs), r > 0. More recently, Shen–Wang–Yang
[SWY21] considered the magnetohydrodynamics (MHD)-structure interaction system, where the
fluid is described by the incompressible viscous non-resistive MHD equation and the structure is
modeled by the wave equation with superconductor material. They solved the existence of local
strong solutions with penalization and regularization techniques.

As for 3d-2d/2d-1d systems, numerous models and results were established during the last
twenty years. The widely investigated case is the fluid-beam/plate systems where the beam/plate
equations were imposed with different mechanical mechanism (rigidity, stretching, friction, ro-
tation, etc.), readers are refer to e.g. [Cha+05, Gra08, MČ13, TW20] for weak solution results.
Considering strong solutions, one can find related results in e.g. [Vei04, DS20, GHL19, Leq11,
Leq13, MT21, Mit20] and the references therein. Moreover, the fluid-structure interaction prob-
lems with linear/nonlinear shells were studied in e.g. [BS18, LR14, MČ15] for weak solutions
and in e.g. [CCS07, CS10, MRR20] for strong solutions respectively. It is worth mentioning
that in recent works [DS20, MT21], a maximal regularity framework, which requires lower initial
regularity and less compatibility conditions compared to the energy method, was employed.

3.1.3. Mathematical strategy and features. The new difficulties arise from the plaque
formation in the blood vessels, along with the interaction between the fluid and the solid separated
by a free interface, the reaction and the diffusion of different cells and the growth of the vessel
wall. Numerical computations were carried out in recent years [FRW16, Yan+16, Yan+17] to
simulate the plaque formation and test the effects of different parameters. To our best knowledge,
this is the first work concerning the existence of strong solutions to the fluid-structure interaction
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problems with growth. Unlike most of the literature above, where L2-Sobolev spaces and energy
methods are used, we establish our local strong solutions in the framework of maximal Lq-
regularity for any space dimension (n ≥ 2). The method is based on the Banach fixed-point
theorem, for which we rewrite the free boundary problem established in Eulerian coordinates in
Lagrangian coordinates, linearize the system at the initial configuration, construct a contraction
mapping in a suitable ball and show the local existence and uniqueness of strong solutions.
Throughout the proof, we point out the following features:

i) We adapt the maximal Lq-regularity theory for the Stokes system to solve our problem.
Hence, there will be no “regularity loss” from the data to the solution spaces and only a
few compatibility conditions are needed.

ii) The growth is considered to be of constant-density type. Then under the assumption of
isotropy, the growth will be described by the metric function ĝ. An ordinary differential
equation for ĝ provides the regularity of ĝ needed for the solid velocity and the concentration
of macrophages.

iii) The Kelvin–Voigt viscous stress tensor Tv
s , we introduced, brings parabolicity to the solid

equation. For the linearization, we can use a two-phase Stokes type problem for the fluid-
structure interaction problem. This ensures that we can get the solvabilities and regularities
of fluid and solid velocities by maximal Lq-regularity theory.

iv) The transformed two-phase Stokes problem is endowed with a stress-free (Neumann-type)
outer boundary condition, cf. Remark 3.3. One of our aims is to obtain the solvability of
such system. To this end, reduction and truncation arguments are applied. More specif-
ically, we first reduce the inhomogeneous linear system to a semi-homogeneous problem
(with inhomogeneous boundary terms), in order to obtain the pressure regularities. Then
by choosing a cutoff function (see (3.21)) which is supported in a subset U ⊆ Ω and im-
posing an artificial vanishing Dirichlet boundary on Γs = ∂Ω, one obtains the solvability
of the linear system since the two-phase Stokes problem with Dirichlet boundary is solved
in Section 3.5.1.

3.1.4. Outline of the chapter. In Section 3.2 we transform the system in deformed configura-
tion to the reference configuration by means of the Lagrangian coordinates, and present the main
theorem for the transformed system. Section 3.3 is devoted to the analysis of the underlying
linear problems, where three separate parts of the analysis are treated. The main results of this
section are the maximal Lq-regularities for these linear problems. The first one is the two-phase
Stokes problems with Neumann boundary conditions, to which reduction and truncation (local-
ization) arguments are applied. The second problem consists of two reaction-diffusion systems
with Neumann boundary conditions due to the decoupling of the transmission problem, while the
last one is an ordinary differential equation for the growth of the foam cells. In Section 3.4, we
first give some estimates related to the deformation gradient, which are of much importance when
proving that the constructed nonlinear terms are well-defined and Lipschitz continuous. Then
the full nonlinear system is shown to be well-posed locally in time via the Banach fixed-point
theorem. Moreover, the cell concentrations are proved to be always nonnegative, provided that
the initial data is nonnegative. Additionally, we introduce some necessary maximal Lq-regularity
results of several linear systems in Section 3.5.
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3.2. Linearization and Main Result

3.2. Linearization and Main Result

In this section, we transform the free-interface fluid-structure problem with growth from
deformed configuration to a fixed reference configuration and state the main result. For quantities
in different configurations, we define

v̂(X, t) = v(x, t), π̂(X, t) = π(x, t), T̂(X, t) = T(x, t),
ρ̂(X, t) = ρ(x, t), µ̂(X, t) = µ(x, t), ν̂(X, t) = ν(x, t),

(3.4)

for all x = ϕ(X, t), X ∈ Ω and t ≥ 0. For the fluid part, it follows from Proposition 1.12 that

Ĵf = 1, in Ωf . (3.5)

For the solid part, since the deformation from the natural configuration Ωg
s to the deformed

configuration Ωt
s conserves mass, incompressibility yields Ĵs,e = 1 and hence

Ĵs = Ĵs,g = ĝn, in Ωs.

Now combining Propositions 1.12, 1.15 and 1.65, and Theorem 1.35, we rewrite the fluid–
structure interaction problem (3.1) in the reference configuration Ω.

ρ̂f∂tv̂f − d̂iv
(
T̂f F̂−⊤

f

)
= 0

F̂−⊤
f : ∇̂v̂f = 0

∂tĉf − D̂f d̂iv
(

F̂−1
f F̂−⊤

f ∇̂ĉf
)
= 0

 in Ωf × (0, T ), (3.6a)

ρ̂s∂tv̂s − Ĵ−1
s d̂iv

(
ĴsT̂sF̂−⊤

s

)
= 0

F̂−⊤
s : ∇̂v̂s −

γβ

ρ̂s
ĉs = 0

∂tĉs − D̂sĴ
−1
s d̂iv

(
ĴsF̂−1

s F̂−⊤
s ∇̂ĉs

)
+ βĉs

(
1 +

γ

ρ̂s
ĉs

)
= 0

∂tĉ
∗
s − βĉs +

γβ

ρ̂s
ĉsĉ

∗
s = 0, ∂tĝ −

γβ

nρ̂s
ĉsĝ = 0


in Ωs × (0, T ), (3.6b)

Jv̂K = 0,
r
T̂F̂−⊤

z
n̂Γ = 0,

r
D̂F̂−1F̂−⊤∇̂ĉ

z
n̂Γ = 0

ζ JĉK− D̂sF̂−1
s F̂−⊤

s ∇̂ĉs · n̂Γ = 0

 on Γ× (0, T ), (3.6c)

T̂sF̂−⊤
s n̂Γs = 0, D̂sF̂−1

s F̂−⊤
s ∇̂ĉs · n̂Γs = 0 on Γs × (0, T ), (3.6d)

v̂|t=0 = v̂0, ĉ|t=0 = ĉ0 in Ω \ Γ, (3.6e)
ĉ∗s|t=0 = 0, ĝ|t=0 = 1 in Ωs, (3.6f)

where the corresponding stress tensors are

T̂f = −π̂f I+ ν̂f

(
F̂−1
f ∇̂v̂f + ∇̂v̂⊤

f F̂−⊤
f

)
, T̂s = T̂e

s + T̂v
s ,

T̂e
s = −π̂sI+ µ̂s

(
F̂s,eF̂⊤

s,e − I
)
= −π̂sI+ µ̂s

(
1

(ĝ)2
F̂sF̂⊤

s − I
)
,

T̂v
s = ν̂sJ

−1
s

(
∇̂v̂s + ∇̂v̂⊤

s

)
F̂⊤
s .
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For the maximal Lq-regularity setting, we assume

v̂0 ∈ B1−1/q
q,q (Ω)n ∩B2(1−1/q)

q,q (Ω̃)n, ĉ0 ∈ B2(1−1/q)
q,q (Ω̃),

that is,
v̂0 ∈W 1−1/q

q (Ω)n ∩W 2(1−1/q)
q (Ω̃)n =: D1

q , ĉ0 ∈W 2(1−1/q)
q (Ω̃) =: D2

q ,

where we define Ω̃ = Ωf ∪ Ωs. The space Dq := D1
q × D2

q will be the initial space for velocities
and concentrations. Moreover, we introduce the compatibility conditions for q > n + 2, which
were also used in e.g. Abels [Abe05], Prüss–Simonett [PS16], Shibata–Shimizu [SS08], Shimizu
[Shi08]:

d̂iv v̂0 = 0,
q
v̂0

y∣∣
Γ
= 0,

r
Pn̂Γ

(
ν̂
(
∇̂v̂0 + (∇̂v̂0)⊤

)
n̂Γ

)z∣∣∣
Γ
= 0,

Pn̂Γs

(
ν̂
(
∇̂v̂0 + (∇̂v̂0)⊤

)
n̂Γs

)∣∣∣
Γs

= 0,
(3.7)

and (
ζ

q
ĉ0

y
− D̂s∇̂ĉ0s · n̂Γ

)∣∣∣
Γ
= 0,

r
D̂∇̂ĉ0

z
· n̂Γ

∣∣∣
Γ
= 0, D̂s∇̂ĉ0s · n̂Γs

∣∣∣
Γs

= 0, (3.8)

where Pn̂ denotes the tangential part on the surface, namely, Pn̂ = (I− n̂⊗ n̂)·. Besides this, we
define the solution space for (v̂, π̂, ĉ, ĉ∗s, ĝ) as YT = Y 1

T × Y 2
T × Y 3

T × Y 4
T × Y 4

T , where

Y 1
T = Lq(0, T ;W 2

q (Ω̃)
n ∩W 1

q (Ω)
n) ∩W 1

q (0, T ;L
q(Ω)n),

Y 2
T =

π̂ ∈ L
q(0, T ;W 1

q (Ω)) : Jπ̂K ∈W 1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0, T ))

π̂|Γs
∈W 1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T ))

 ,

Y 3
T = Lq(0, T ;W 2

q (Ω̃)) ∩W 1
q (0, T ;L

q(Ω)),

Y 4
T =W 1

q (0, T ;W
1
q (Ωs)),

equipped with norms

‖v̂‖Y 1
T
= ‖v̂‖Lq(0,T ;W 2

q (Ω̃)n∩W 1
q,0(Ω)n) + ‖v̂‖W 1

q (0,T ;Lq(Ω)n) ,

‖π̂‖Y 2
T
= ‖π̂‖Lq(0,T ;W 1

q (Ω)) + ‖Jπ̂K‖
W

1− 1
q
, 1
2
(1− 1

q
)

q (Γ×(0,T ))

+
∥∥ π̂|Γs

∥∥
W

1− 1
q
, 1
2
(1− 1

q
)

q (Γs×(0,T ))
,

‖ĉ‖Y 3
T
= ‖ĉ‖Lq(0,T ;W 2

q (Ω̃)) + ‖ĉ‖W 1
q (0,T ;Lq(Ω)) ,

‖ĉ∗s‖Y 4
T
= ‖ĉ∗s‖W 1

q (0,T ;W 1
q (Ωs))

, ‖ĝ‖Y 4
T
= ‖ĝ‖W 1

q (0,T ;W 1
q (Ωs))

.

Moreover, we set Y v
T := Y 1

T × Y 2
T .

Remark 3.7. These spaces are constructed from the problem and the maximal regularity the-
ory, endowed with the natural norms. In particular, Jπ̂K and π̂|Γs

are determined by the
regularities of the Neumann trace of v̂ on Γ and Γs respectively. Hence, we add the norm
of ‖ Jπ̂K ‖

W
1−1/q,(1−1/q)/2
q (Γ×(0,T ))

and ‖π̂|Γs‖W 1−1/q,(1−1/q)/2
q (Γs×(0,T ))

in Y 2
T -norm correspondingly.

One can easily verify that all spaces are Banach spaces.
Now the main result in this chapter is given as follows.
Theorem 3.8 (Main theorem). Let q > n+2. Assume that Γ, Γs are hypersurfaces of class

C3, (v̂0, ĉ0) ∈ Dq, such that the compatibility conditions (3.7) and (3.8) hold, then there is a
positive T0 = T0(v̂0, ĉ0) < ∞ such that there exists a unique strong solution (v̂, π̂, ĉ, ĉ∗s, ĝ) ∈ YT0

to system (3.6). Moreover, ĉ ≥ 0 and ĉ∗s, ĝ > 0, if ĉ0 ≥ 0.
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Remark 3.9. In this work, the boundary of the domain is supposed to be C3. We remark here
that if the domain is not smooth enough, for example, with boundary contact, it is still an open
problem. We considered a similar model with ninety degree contact angles in Chapter 4.

The proof of Theorem 3.8 relies on the Banach fixed-point theorem. To this end, we need to
linearize the nonlinear system (3.6). Since we consider a nonzero initial reference configuration,
a standard perturbation method is applied to (3.6), for which we linearize the system at the
initial deformation and move all remainder terms to the right-hand side, namely,

ρ̂f∂tv̂f − d̂iv S(v̂f , π̂f ) = Kf

d̂iv v̂f = Gf

}
in Ωf × (0, T ), (3.9a)

ρ̂s∂tv̂s − d̂iv S(v̂s, π̂s) = K̄s + Kg
s =: Ks

d̂iv v̂s −
γβ

ρ̂s
ĉs = Gs

 in Ωs × (0, T ), (3.9b)

Jv̂K = 0, JS(v̂, π̂)K n̂Γ = H1 on Γ× (0, T ), (3.9c)
S(v̂s, π̂s)n̂Γs

= H2 on Γs × (0, T ), (3.9d)
v̂|t=0 = v̂0 in Ω̃, (3.9e)

∂tĉf − D̂f �̂ ĉf = F 1
f in Ωf × (0, T ), (3.9f)

∂tĉs − D̂f �̂ ĉs = F̄ 1
s + F g

s =: F 1
s in Ωs × (0, T ), (3.9g)

D̂f ∇̂ĉf · n̂Γ = D̂s∇ĉs · n̂Γ + F̄ 2
f =: F 2

f

D̂s∇̂ĉs · n̂Γ = ζ JĉK + F̄ 2
s =: F 2

s

}
on Γ× (0, T ), (3.9h)

D̂s∇̂ĉs · n̂Γs
= F 3 on Γs × (0, T ), (3.9i)

ĉ|t=0 = ĉ0 in Ω̃, (3.9j)

∂tĉ
∗
s − βĉs = F 4 in Ωs × (0, T ), (3.9k)

ĉ∗s|t=0 = 0 in Ωs, (3.9l)

∂tĝ −
γβ

nρ̂s
ĉs = F 5 in Ωs × (0, T ), (3.9m)

ĝ|t=0 = 1 in Ωs, (3.9n)

where S(v̂, π̂) = −π̂I+ ν̂
(
∇̂v̂ + ∇̂v̂⊤

)
in Ω̃ and

Kf = d̂iv K̃f , K̄s = d̂iv K̃s, Kg
s = −

(
T̂sF̂−⊤

s

) n∇̂ĝ
ĝ

,

G = −
(

F̂−⊤ − I
)
: ∇̂v̂, H1 = −

r
K̃

z
· n̂Γ, H2 = −K̃s · n̂Γs

,

F 1
f = d̂iv F̃f , F̄ 1

s = d̂iv F̃s, (3.10)

F g
s = −βĉs

(
1 +

γ

ρ̂s
ĉs

)
− n∇̂ĝ

ĝ
·
(
D̂sF̂−1

s F̂−⊤
s ∇̂ĉs

)
,

F̄ 2
f = −

r
F̃

z
· n̂Γ, F̄ 2

s = −F̃s · n̂Γ, F 3 = −F̃s · n̂Γs ,

F 4 = −γβ
ρ̂s
ĉsĉ

∗
s, F 5 = − γβ

nρ̂s
ĉs (ĝ − 1) ,
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with

K̃f = −π̂f
(

F̂−⊤
f − I

)
+ νf

(
F̂−1
f ∇̂v̂f + ∇̂v̂⊤

f F̂−⊤
f

)(
F̂−⊤
f − I

)
+ νf

((
F̂−1
f − I

)
∇̂v̂f + ∇̂v̂⊤

f

(
F̂−⊤
f − I

))
,

K̃s = −π̂s
(

F̂−⊤
s − I

)
+ µs

(
1

ĝ2

(
F̂s − I

)
+

(
1

ĝ2
− 1

)
I−

(
F̂−⊤
s − I

))
,

F̃ = D̂
(

F̂−1F̂−⊤ − I
)
∇̂ĉ.

Then we analyze system (3.9), which is exactly (3.6).
Remark 3.10. It follows from the Piola identity (1.14) that

d̂iv
(
Ĵ F̂−⊤

)
= 0.

Then from Proposition 1.65,
Ĵ F̂−⊤ : ∇̂v̂ = d̂iv

(
Ĵ F̂−1v̂

)
.

Hence, G possesses the form

Gf = − d̂iv
((

F̂−1
f − I

)
v̂f

)
, Gs = − d̂iv

((
F̂−1
s − I

)
v̂s

)
+ v̂s · d̂iv F̂−⊤

s . (3.11)

Remark 3.11. The system (3.9f)–(3.9j) for the concentrations of monocytes and macrophages can
be considered as a transmission problem in Ωf and Ωs with a common boundary Γ. However,
if we use the concentration and stress jump condition as boundary condition on Γ, we will meet
a regularity problem due to the high order term Ds∇̂ĉs · n̂Γ in (3.9h)2. More precisely, in our
further perturbation argument, all perturbed or unrelated terms will be moved to the right-hand
side of the equation and the regularities of both sides should coincide. The point is that in such
argument, the right-hand side of (3.9h)2 contains Ds∇̂ĉs · n̂Γ, which leads to a lower regularity,
provided the same regularity of ĉ on the both side.

Therefore, to avoid such awkward situation, we rewrite the transmission conditions as two
Neumann type boundary conditions. Then the transmission problem can be decoupled into two
separate parabolic system, which are both imposed with Neumann boundary and defined in Ωf

and Ωs respectively. This is why we treat the boundary conditions on Γ as the form shown in
(3.9h).

Consequently, given data (K, G,H1,H2, F 1, F 2, F 3, F 4, F 5) with suitable regularities, exis-
tence and uniqueness of (v̂, π̂, ĉ, ĉ∗s, ĝ) in the associated spaces will be obtained by the well-
poesdness of linear systems in the next section.

3.3. Analysis of the Linear Systems

As seen in (3.9), the linearized system can be seen as a two-phase Stokes type problem
(3.9a)–(3.9e), two separate reaction-diffusion systems (3.9f)–(3.9j) and two ordinary differential
equations (3.9k)–(3.9n) (equation for foam cells and growth, respectively). In this section, thanks
to the maximal Lq-regularity theory, we establish the existence of strong solutions to these
systems with prescribed initial data and source terms in appropriate spaces.

Let Ω be a bounded domain satisfying Ω = Ωf ∪Γ∪Ωs with Ωf ⊂ Ω, Γ = ∂Ωf a C3 interface,
and a boundary Γs := ∂Ω of class C3.

70



3.3. Analysis of the Linear Systems

3.3.1. Two-phase Stokes problems with Neumann boundary condition. Observing
that (K, G,H1,H2)|t=0 = 0, one replaces (K, G,H1,H2) in (3.9a)–(3.9e) by known functions
(k, g, h1, h2) with (k, g, h1, h2)|t=0 = 0 in (3.9b). Then we get the problem addressed in this
subsection.

ρ∂tv− div S(v, π) = k in Ω \ Γ× (0, T ),

div v = g in Ω \ Γ× (0, T ),JvK = 0 on Γ× (0, T ),JS(v, π)K nΓ = h1 on Γ× (0, T ),

S(vs, πs)nΓs = h2 on Γs × (0, T ),

v|t=0 = v0 in Ω \ Γ,

(3.12)

where S(v, π) = −πI + ν(∇v + ∇v⊤). ρ, ν > 0 are the constant density and viscosity. nΓ, nΓs

denotes the unit outer normal vectors on Γ, Γs respectively. Now, we will prove the following
theorem, namely, existence of unique solution to a two-phase Stokes problem with outer Neumann
boundary condition.

Theorem 3.12. Let q > n + 2, T > 0, Ω a bounded domain as before with Γs ∈ C3, Γ a
closed hypersurface of class C3. Assume that (k, g, h1, h2) are known functions with regularity

k ∈ Fk(T ) := Lq(0, T ;Lq(Ω \ Γ)n),

g ∈ Fg(T ) :=


g ∈ Lq(0, T ;W 1

q (Ω \ Γ)) ∩W 1
q (0, T ;W

−1
q (Ω)) :

g|Γ ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0, T )),

g|Γs
∈W 1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T ))

 .

h1 ∈ Fh1(T ) :=W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0, T ))n,

h2 ∈ Fh2(T ) :=W
1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T ))n.

Then two-phase Stokes equation (3.12) admits a unique strong solution (v, π) ∈ E(T ) := Ev(T )×
Eπ(T ) where

Ev(T ) := Lq(0, T ;W 2
q (Ω \ Γ)n) ∩W 1

q (0, T ;L
q(Ω)n),

Eπ(T ) :=

π ∈ L
q(0, T ;W 1

q (Ω \ Γ)) : JπK ∈W 1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0, T ))

π|Γs
∈W 1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T )).


In addition, the initial value v0 ∈ Xγ := W

1−1/q
q (Ω)n ∩W 2(1−1/q)

q (Ω \ Γ)n with compatibility
conditions

div v0 = g|t=0 ,
q
v0

y∣∣
Γ
= 0,

q
PnΓ

(
ν
(
∇v0 + (∇v0)⊤

)
nΓ

)y∣∣
Γ
= 0,

PnΓs

(
ν
(
∇v0 + (∇v0)⊤

)
nΓs

)∣∣
Γs

= 0.

Then the Stokes problem (3.12) admits a unique strong solution (v, π) in E(T ). Moreover, there
exist a time T0 > 0 and a constant C = C(T0) > 0 such that for 0 < T ≤ T0,

‖(v, π)‖E(T ) ≤ C
∥∥(k, g, h1, h2, v0)

∥∥
0F(T )×Xγ

, (3.13)

71



Chapter 3. FSIG in Smooth Domain

where 0F(T ) has vanishing initial trace and F(T ) := Fk(T )× Fg(T )× Fh1(T )× Fh2(T ), endowed
with the norms

‖k‖Fk(T ) = ‖k‖Lq(0,T ;Lq(Ω\Γ)n) ,

‖g‖Fg(T ) = ‖g‖Lq(0,T ;W 1
q (Ω\Γ)) + ‖g‖W 1

q (0,T ;W−1
q (Ω))

+ ‖trΓ(g)‖
W

1− 1
q
, 1
2 (1− 1

q )
q (Γ×(0,T ))

+ ‖trΓs
(g)‖

W
1− 1

q
, 1
2 (1− 1

q )
q (Γs×(0,T ))

,∥∥h1
∥∥
Fh1 (T )

= ‖h‖
W

1− 1
q
, 1
2 (1− 1

q )
q (Γ×(0,T ))n

,
∥∥h2
∥∥
Fh2 (T )

= ‖h‖
W

1− 1
q
, 1
2 (1− 1

q )
q (Γs×(0,T ))n

.

Reductions. To simplify the proof of Theorem 3.12, we reduce (3.12) to the case (k, g, v0) = 0.
First of all, we define v̄ as the solution of the parabolic transmission problem

ρf∂tv̄− div S(v̄, 0) = k in Ω \ Γ× (0, T ),Jv̂K = 0 on Γ× (0, T ),JS(v̄, 0)K nΓ = 0 on Γ× (0, T ),

S(v̄s, 0)nΓs
= 0 on Γs × (0, T ),

v̄|t=0 = v0 in Ω \ Γ,

(3.14)

with k ∈ Lq(Ω \ Γ× (0, T )) and v0 ∈ Xγ . Since the Lopatinskii–Shapiro conditions are satisfied,
(3.14) is uniquely solvable in W 2,1

q (Ω× (0, T )), thanks to [PS16, Theorem 6.5.1].
Now, we are in the position to reduce g to zero. To this end, we introduce an elliptic

transmission problem with Dirichlet boundary

∆φ = g − div v̄ =: g̃ in Ω \ Γ,JρφK = 0 on Γ,J∇φK · nΓ = 0 on Γ,

ρsφs = 0 on Γs,

(3.15)

with g̃ ∈ Lq(Ω \ Γ). Then (3.15) is uniquely solvable by Proposition 3.23. In addition, with the
regularity of g and v, the solution satisfies ∇φ ∈ Ev(T ). Employing the decomposition

(v, π) = (v̄ +∇φ+ ṽ,−ρ∂tφ+ ν∆φ+ π̃), (3.16)

we know that (ṽ, π̃) solves system (3.12) with (k, g, v0) = 0 and modified nonvanishing data
(h1, h2) (not to be relabeled) in the right regularity classes having a vanishing trace at t = 0.
Thus, we will focus on the reduced system in the case (k, g, v0) = 0.
Remark 3.13. Because of the decomposition (3.16), the regularity of π given in Eπ(T ) indicates
that ∂tφ and ∆φ must be contained in Eπ(T ). Since ∇φ ∈ Ev(T ) = Lq(0, T ;W 2

q (Ω \ Γ)n ∩
W 1

q (Ω)
n) ∩W 1

q (0, T ;L
q(Ω)n), it is clear that ∂tφ,∆φ ∈ Lq(0, T ;W 1

q (Ω \ Γ)). Moreover:

i) The vanishing Dirichlet boundary conditions of φ on Γ and Γs lead to J∂tφK|Γ = ∂tφ|Γs
= 0,

which naturally satisfy the boundary regularity

W 1−1/q,(1−1/q)/2
q (Γ× (0, T )), and W 1−1/q,(1−1/q)/2

q (Γs × (0, T )).

Hence ∂tφ ∈ Eπ(T ).
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ii) For ∆φ = g̃ = g− div v̄, the boundary regularity for div v̄ is not a problem due to the zero
Neumann boundary of v̄. Thus, to ensure the validation of the regularity for π̂, we add
trace regularities on Γ and Γs for g in Fg(T ). Namely,

trΓ(g) ∈W 1−1/q,(1−1/q)/2
q (Γ× (0, T )), trΓs

(g) ∈W 1−1/q,(1−1/q)/2
q (Γs × (0, T )).

Consequently, ∆φ ∈ Eπ(T ).

Proof of Theorem 3.12. As stated in the last section, we analyze the reduced system of (3.12)
with (k, g, v0) = 0. Due to the outer Neumann boundary condition, the proof is proceeded by a
truncation (localization) argument, based on the results given in Appendix 3.5. More precisely,
with a suitable cutoff function, we decompose the system into a two-phase Stokes problem with
Dirichlet boundary conditions and a one-phase nonstationary Stokes problem, which are uniquely
solvable as in Section 3.5.1 and Abels [Abe10, Theorem 1.1] respectively.

Proof of Theorem 3.12. Step 1. The first step is finding (v1, π1) to solve

ρ∂tv1 − div S(v1, π1) = 0 in Ω \ Γ× (0, T ),

div v1 = 0 in Ω \ Γ× (0, T ),q
v1

y
= 0 on Γ× (0, T ),q

S(v1, π1)
y

nΓ = h1 on Γ× (0, T ),

v1 = 0 on Γs × (0, T ),

v1
∣∣
t=0

= 0 in Ω \ Γ,

(3.17)

where h1 ∈ Fh1(T ) with h1
∣∣
t=0

= 0. Since v1
∣∣
t=0

= 0, the compatibility conditions (3.40) hold
true and then (3.17) admits a unique solution (v1, π1) ∈ E(T ), thanks to Proposition 3.39. In
addition, we have the estimate ∥∥(v1, π1)

∥∥
E(T )
≤ C

∥∥h1
∥∥
Fh1 (T )

, (3.18)

for some C > 0 independent of v1, π1, h1.
Step 2. Now, we construct (v2

s, π
2
s) to solve the Stokes problem with Neumann boundary

condition, which reads

ρs∂tv2
s − div S(v2

s, π
2
s) = 0 in Ωs × (0, T ),

div v2
s = 0 in Ωs × (0, T ),

S(v2
s, π

2
s)nΓ = 0 on Γ× (0, T ),

S(v2
s, π

2
s)nΓs = h2 on Γs × (0, T ),

v2
∣∣
t=0

= 0 in Ωs,

(3.19)

where h2 ∈ Fh2(T ) with h2
∣∣
t=0

= 0. Thanks to Theorem 1.1 in Abels [Abe10] with Γ1 = ∅,
(3.19) admits a unique solution (v2, π2) in W 2,1

q (Ω\Γ)×Lq(0, T ;W 1
q (Ω\Γ)). Due to v2

s

∣∣
t=0

= 0,
all the compatibility conditions are satisfied. Moreover,∥∥(v2, π2)

∥∥
W 2,1

q (Ω\Γ)×Lq(0,T ;W 1
q (Ω\Γ)) ≤ C

∥∥h2
∥∥
Fh2 (T )

, (3.20)
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for some C > 0 independent of v2, π2, h2.
Step 3. Finally, we combine the regularity results above by truncation. Specifically, let ψ ∈
C∞

0 (Ω) be a cutoff function over Ω such that

ψ(x) =

{
1, in a neighborhood of Ωf ,

0, in a neighborhood of Γs.
(3.21)

We define

ṽ := ψv1 + (1− ψ)v2, π̃ := ψπ1 + (1− ψ)π2.

Then (ṽ, π̃) ∈ E(T ) solves

ρ∂tṽ− div S(ṽ, π̃) = R1 in Ω \ Γ× (0, T ),

div ṽ = R2 in Ω \ Γ× (0, T ),JṽK = 0 on Γ× (0, T ),JS(ṽ, π̃)K nΓ = h1 on Γ× (0, T ),

S(ṽs, π̃s)nΓs = h2 on Γs × (0, T ),

ṽ|t=0 = 0 in Ω \ Γ,

(3.22)

where R1 and R2 vanish in Ωf , while in Ωs,

R1 = −S(v1
s − v2

s, π
1
s − π2

s)∇ψ
− 2νs

(
∆ψ

(
v1
s − v2

s

)
+
(
∇v1

s −∇v2
s

)
∇ψ +∇2ψ

(
v1
s − v2

s

))
,

R2 = ∇ψ ·
(
v1
s − v2

s

)
.

Since the embedding
0W

2,1
q (Ωs × (0, T )) ↪→ 0W

1
2
q

(
0, T ;W 1

q (Ωs)
)

holds, we know v̂i ∈ 0W
1
2
q (0, T ;W 1

q (Ωs)), i = 1, 2. For the reduced system, Proposition 8.2.1
and 7.3.5 in Prüss–Simonett [PS16] imply that π1 and π2

s enjoys extra time regularities π1 ∈
0W

α
q (0, T ;L

q(Ω)) and π2
s ∈ 0W

α
q (0, T ;L

q(Ωs)) respectively for 0 < α < 1
2 (1−

1
q ). Hence

R1 ∈ 0W
α
q (0, T ;L

q(Ωs)) ∩ Lq(0, T ;W 1
q (Ωs)),

for some fixed 0 < α < 1
2 (1−

1
q ).

To complete the proof, we still need to prove that the right-hand side terms of (3.22) can
be in fact substituted by the right-hand side terms of (3.12) in appropriate spaces. Since the
regularity of v̂i

s and π̂i
s, i = 1, 2, are not enough to control R1 and R2 for small times, we are

going to remove the inhomogeneities R1 and R2. For R1, we construct a φ̄ solving the problem

φ̄f = 0 in Ωf ,

∆φ̄s = div R1 in Ωs,

φ̄s = 0 on Γ,

φ̄s = 0 on Γs.

(3.23)

Then we obtain ∇φ̄|t=0 = R1|t=0 = 0. By elliptic theory and regularity of R1, (3.23) admits a
unique solution φ̄ satisfying 0W

α
q (0, T ;W

1
q (Ωs))∩Lq(0, T ;W 2

q (Ωs)). For R2, we find a φ solving
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the elliptic transmission problem

∆φf = 0 in Ωf ,

∆φs = R2 in Ωs,JρφK = 0 on Γ,J∇φK · nΓ = 0 on Γ,

ρsφs = 0 on Γs.

(3.24)

Then we have φ|t=0 = 0. Since v1
s − v2

s ∈ 0W
2,1
q (Ωs × (0, T ))n, R2 ∈ 0W

2,1
q (Ωs × (0, T )) ↪→

0W
1/2
q (0, T ;W 1

q (Ωs)). Together with Proposition 3.23, one concludes that (3.24) admits a solu-
tion such that ∇φ is unique, with regularity

∇φ ∈ E0 := 0W
1
q(0, T ;W

1
q (Ω \ Γ)n) ∩ 0W

1
4
q (0, T ;W

2
q (Ω \ Γ)n).

For its traces on Γ and Γs, we have

J∇φK ∈ E1 := 0W
1
q(0, T ;W

1− 1
q

q (Γ)n) ∩ 0W
1
4
q (0, T ;W

2− 1
q

q (Γ)n),

∇φs ∈ Es
1 := 0W

1
q(0, T ;W

1− 1
q

q (Γs)
n) ∩ 0W

1
4
q (0, T ;W

2− 1
q

q (Γs)
n).

Besides, q
ν∇2φ

y
∈ E2 := 0W

1− 1
2q

q (0, T ;Lq(Γ)n×n) ∩ 0W
1
4
q (0, T ;W

1− 1
q

q (Γ)n×n),

νs∇2φs ∈ Es
2 := 0W

1− 1
2q

q (0, T ;Lq(Γs)
n×n) ∩ 0W

1
4
q (0, T ;W

1− 1
q

q (Γs)
n×n).

Moreover, the following estimate holds for a constant C, independent of 0 < T < T0,

‖∇φ‖E0
+ ‖J∇φK‖E1

+ ‖∇φs‖Es
1

+
∥∥qν∇2φ

y∥∥
E2

+
∥∥νs∇2φ

∥∥
Es
2
≤ C

∥∥v1
s − v2

s

∥∥
W 2,1

q (Ωs×(0,T ))n
.

Finally, define

v♯ := ṽ−∇φ, π♯ := π̃ + ρ∂tφ− φ̄− 2ν∆φ.

Since JρφK |Γ, ρsφ|Γs
= 0, we have Jρ∂tφK |Γ, ρs∂tφ|Γs

= 0. Then (v♯, π♯) solves

ρ∂tv♯ − div S(v♯, π♯) = R1 −∇φ̄ =: R0 in Ω \ Γ× (0, T ),

div v♯ = 0 in Ω \ Γ× (0, T ),q
v♯

y
= R′ on Γ× (0, T ),q

S(v♯, π♯)
y

nΓ = h1 + R3 on Γ× (0, T ),

S(v♯
s, π

♯
s)nΓs

= h2 + R4 on Γs × (0, T ),

v♯
∣∣
t=0

= 0 in Ω \ Γ,

(3.25)

where

div R0 = 0, R′ = − J∇φK ,
R3 =

q
2ν∇2φ

y
nΓ − J2νs∆φK nΓ, R4 = 2νs∇2φsnΓs

− 2νs∆φsnΓs
.
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R0 can be seen as a Helmholtz projection of R1 and

R0 ∈ 0W
α
q (0, T ;L

q(Ωs)
n) ∩ Lq(0, T ;W 2α

q (Ωs)
n), for all 0 < α <

1

2
− 1

2q
.

By Lemma 2.23,
R0 ∈ C([0, T ];W 2α− 2

q
q (Ωs)

n) ↪→ C([0, T ];Lq(Ωs)
n)

holds for 1
q < α < 1

2 −
1
2q . Hence, for R0|t=0 = (∇φ̄−R1)|t=0 = 0,∥∥R0

∥∥
Fk(T )

≤ CT
1
q

∥∥R0
∥∥
C([0,T ];Lq(Ωs)n)

≤ CT
1
q

∥∥R0
∥∥

0Wα
q (0,T ;Lq(Ωs)n)∩Lq(0,T ;W 2α

q (Ωs)n)

≤ CT
1
q

(
max
i=1,2

∥∥(vi, πi)
∥∥
E(T )

)
≤ CT

1
q

∥∥(k, g, h1, h2, v0)
∥∥
F(T )×Xγ

,

for 0 < T < T0. According to Appendix 3.5, the regularity space of R′ is defined as F′(T ) :=

W
2− 1

q ,1−
1
2q

q (Γ× (0, T )). Then with Lemma 2.20 and W s
q (0, T ;X) ↪→ C([0, T ];X) for sq > 1,

‖R′‖F′(T ) ≤ C
(
‖J∇φK‖

Lq(0,T ;W
2− 1

q
q (Γ))n

+ ‖J∇φK‖Lq(0,T ;Lq(Γ))n + [J∇φK]
W

1− 1
2q

q (0,T ;Lq(Γ))n

)
≤ CT

1
q ‖J∇φK‖

0W
1
4
q (0,T ;W

2− 1
q

q (Γ))n
+ CT

1
2q [J∇φK]

0W 1
q(0,T ;W

1− 1
q

q (Γ))n

≤ CT
1
2q

(
max
i=1,2

∥∥(vi, πi)
∥∥
E(T )

)
≤ CT

1
2q

∥∥(k, g, h1, h2, v0)
∥∥
F(T )×Xγ

.

Since Γ and Γs are of class C3, nΓ and nΓs
are contained in C2. Then we obtain∥∥R3

∥∥
Fh1 (T )

≤ C
(∥∥q∇2φ

y∥∥
Lq(0,T ;W

1− 1
q

q (Γ)n×n)

+
∥∥q∇2φ

y∥∥
Lq(0,T ;Lq(Γ)n×n)

+
[q
∇2φ

y]
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n×n)

)
≤ CT

1
q

∥∥q∇2φ
y∥∥

0W
1
4
q (0,T ;W

1− 1
q

q (Γ)n×n)
+ CT

1
2

[q
∇2φ

y]
0W

1− 1
2q

q (0,T ;Lq(Γ)n×n)

≤ CT
1
q

(
max
i=1,2

∥∥(vi, πi)
∥∥
E(T )

)
≤ CT

1
q

∥∥(k, g, h1, h2, v0)
∥∥
F(T )×Xγ

,

with the help of Lemma 2.20. Similarly,∥∥R4
∥∥
Fh2 (T )

≤ CT
1
q

(
max
i=1,2

∥∥(vi, πi)
∥∥
E(T )

)
≤ CT

1
q

∥∥(k, g, h1, h2, v0)
∥∥
F(T )×Xγ

.

Taking T0 sufficiently small such that CT
1
2q

0 ≤ 1
2 , we have∥∥R0(y)

∥∥
Fk(T )

+ ‖R′(y)‖F′(T ) +
∥∥R3(y)

∥∥
Fh1 (T )

+
∥∥R4(y)

∥∥
Fh2 (T )

≤ 1

2
‖y‖F(T )×Xγ

,

for y = (k, g, h1, h2, v0)⊤. By a Neumann series argument,

Φ : ỹ 7→ ỹ + (R0, 0,R′,R3,R4, 0)⊤(ỹ)
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is invertible for ỹ = (k, g, 0, h1, h2, v0)⊤. Consequently, replacing ỹ by Φ−1(ỹ) in (3.22) yields the
solvability of (3.25) for 0 < T < T0 ≤ 1/(2C)2q. Solving (3.12) iteratively on [0, T0], [T0, 2T0],
. . . , with initial values v0, v0|t=T0 , . . . , one obtains the solvability for any T0 > 0. Additionally,
estimate (3.13) is a result of (3.18) and (3.20). This completes the proof.

Remark 3.14. For c ∈ Lq(0, T ;W 2
q (Ω\Γ))∩W 1

q (0, T ;L
q(Ω)), one can easily verify that c ∈ Fg(T ).

Hence, we replace g in (3.12) by g + γβ
ρs
cs with the same existence and regularity results to the

original linear system. To be more precise, we find (v̄, π̄) ∈ E(T ) to solve

ρ∂tv̄− div S(v̄, π̄) = 0 in Ω \ Γ× (0, T ),

div v̄ =
γβ

ρs
cs in Ω \ Γ× (0, T ),

Jv̄K = 0 on Γ× (0, T ),JS(v̄, π̄)K · nΓ = 0 on Γ× (0, T ),

S(v̄s, π̄s) · nΓs
= 0 on Γs × (0, T ),

v̄|t=0 = 0 in Ω \ Γ,

with c ∈ Fg(T ), thanks to Theorem 3.12. Then (v+ v̄, π+ π̄) solves the original linear system of
(3.9a)–(3.9e).

3.3.2. Parabolic equations with Neumann boundary conditions. Thanks to the general
maximal regularity theory for parabolic problems, for example, Prüss–Simonett [PS16, Section
6.3], we obtain the solvability of parabolic systems with Neumann boundary conditions. Let
T > 0, Ω ⊂ R3 be a bounded domain with ∂Ω of class C3−. ν denotes the unit outer normal
vectors on ∂Ω. Consider the problem

∂tu−D∆u = f, in Ω× (0, T ),

D∇u · ν = g, on ∂Ω× (0, T ),

u|t=0 = u0, in Ω,

(3.26)

where D > 0 is a constant. u : Ω× (0, T )→ R stands for the system unknown, for example, the
temperature or the concentration.

Theorem 3.15. Let 3 < q < ∞ and T0 > 0. Assume that u0 ∈ W
2−2/q
q (Ω) with the

compatibility condition D∇u0|∂Ω = g|t=0 holds. Given known functions (f, g) with regularity

f ∈ Ff (T ) := Lq(0, T ;Lq(Ω)),

g ∈ Fg(T ) :=W
1
2−

1
2q

q (0, T ;Lq(∂Ω)) ∩ Lq(0, T ;W
1− 1

q
q (∂Ω)).

Then the parabolic equation (3.26) admits a unique strong solution u ∈ E(T ) where

E(T ) := Lq(0, T ;W 2
q (Ω)) ∩W 1

q (0, T ;L
q(Ω)).

Moreover, there is a constant C > 0 independent of f, g, u0, T0, such that for 0 < T < T0

‖u‖E(T ) ≤ C
(
‖f‖Ff (T ) + ‖g‖Fg(T ) + ‖u0‖W 2−2/q

q (Ω)

)
. (3.27)

Proof. This theorem can be easily shown by means of Prüss–Simonett [PS16, Theorem 6.3.2],
for which we need to extend the right-hand sides just as in the proof of Proposition 3.21 and
construct a solution solving (6.45) in [PS16]. This can be done since we established general
extension theorems in Section 2.1.6.
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3.3.3. Ordinary differential equations for foam cells and growth. Let Ω be the domain
defined in Section 3.3.2. Given a function f ∈ F(T ) := Lq(0, T ;W 1

q (Ω)), a constant γ > 0 and a
function u0 ∈W 1

q (Ω), u0 ≥ 0, by ordinary differential equation theory,

∂tu− γw = f, in Ω× (0, T ),

u|t=0 = u0, in Ω.
(3.28)

admits a unique solution
u ∈ E(T ) :=W 1

q (0, T ;W
1
q (Ω)),

provided w ∈ Lq(0, T ;W 2
q (Ω)) ∩ W 1

q (0, T ;L
q(Ω)). Moreover, for every T0 > 0, there exists a

constant C > 0 independent of f, u0, T0, such that for 0 < T < T0

‖u‖E(T ) ≤ C
(
‖f‖F(T ) + ‖w‖Lq(0,T ;W 2

q (Ω))∩W 1
q (0,T ;Lq(Ω)) + ‖u0‖W 1

q (Ω)

)
. (3.29)

3.4. Local in Time Existence

This section is intended to prove Theorem 3.8.

3.4.1. Some key estimates. Before showing Theorem 3.8, let us give some useful estimates
with regard to the deformation gradient F̂−1 and the Slobodeckij space W 1/2−ε

q (0, T ;Lq(Ω)).
Lemma 3.16 (Estimates on deformation gradient). Let q > n, n ≥ 2 and F̂(v̂) be the defor-

mation gradient defined in (3.2) corresponding to a function v̂ ∈ Y 1
T . Then for every R > 0,

there are a constant C = C(R) > 0 and a finite time 0 < TR < 1 depending on R such that for
all 0 < T < TR, F̂−1 exists and

(1)
∥∥∥F̂−1

∥∥∥
L∞(0,T ;W 1

q (Ω̃)n×n)
≤ C,

∥∥∥∂tF̂−1
∥∥∥
Lq(0,T ;W 1

q (Ω̃)n×n)
≤ C ‖v̂‖Y 1

T
;

(2)
∥∥∥F̂−1 − I

∥∥∥
L∞(0,T ;W 1

q (Ω̃)n×n)
≤ CT

1
q′ ‖v̂‖Y 1

T
;

(3) sup
0≤t≤T

ˆ t

0

∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥q
W 1

q (Ω̃)n×n

h
1+ q

2q′
dh


1
q

≤ CT
1

2q′ ‖v̂‖Y 1
T

;

(4)
[
F̂−1 − I

]
W

1
2 (1− 1

q )
q (0,T ;W 1

q (Ω̃)n×n)

≤ CT
1
q+

1
2q′ ‖v̂‖Y 1

T
,

for all ‖v̂‖Y 1
T
≤ R, where ∆hf(t) := f(t)− f(t−h) is a difference of the time shift for a function

f . Moreover, for another û ∈ Y 1
T with ‖û‖Y 1

T
≤ R and v̂|t=0 = û|t=0, we have

(5)
∥∥∥F̂−1(û)− F̂−1(v̂)

∥∥∥
L∞(0,T ;W 1

q (Ω̃)n×n)
≤ CT

1
q′ ‖û− v̂‖Y 1

T
;∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

≤ CT
1
q−

1
r ‖û− v̂‖Y 1

T
;

(6) sup
0≤t≤T

ˆ t

0

∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥q
W 1

q (Ω̃)n×n

h
1+ q

2q′
dh


1
q

≤ CT
1

2q′ ‖û− v̂‖Y 1
T

;
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(7)
[
F̂−1(û)− F̂−1(v̂)

]
W

1
2 (1− 1

q )
q (0,T ;W 1

q (Ω̃)n×n)

≤ CT
1
q+

1
2q′ ‖û− v̂‖Y 1

T
,

where r = q2

n .

Proof. Recall from (3.2) the definition of F̂ that

F̂(X, t) = I+
ˆ t

0

∇̂v̂(X, τ)dτ, ∀X ∈ Ω.

Then we have

sup
0≤t≤T

∥∥∥F̂− I
∥∥∥
W 1

q (Ω̃)n×n
= sup

0≤t≤T

∥∥∥∥ˆ t

0

∇̂v̂(X, τ)dτ
∥∥∥∥
W 1

q (Ω̃)n×n

≤ CT
1
q′R,

for all ‖v̂‖Y 1
T
≤ R. Choosing TR > T so small that CT

1
q′

R R ≤ 1
2Mq

, we know

sup
0≤t≤T

∥∥∥F̂− I
∥∥∥
W 1

q (Ω̃)n×n
≤ 1

2Mq
,

where Mq is the constant of multiplication in W 1
q (Ω̃), see Proposition 2.18. According to the

Neumann series (see [Alt16, Section 5.7]), F̂−1 does exist and

F̂−1 =
(

F̂− I+ I
)−1

=
(
I−

(
I− F̂

))−1

=

∞∑
k=0

(
I− F̂

)k
.

Then from Proposition 2.18, one obtains

sup
0≤t≤T

∥∥∥F̂−1
∥∥∥
W 1

q (Ω̃)n×n
≤ sup

0≤t≤T

∞∑
k=0

∥∥∥∥(I− F̂
)k∥∥∥∥

W 1
q (Ω̃)n×n

≤ 1

Mq

∞∑
k=0

(
Mq sup

0≤t≤T

∥∥∥I− F̂
∥∥∥
W 1

q (Ω̃)n×n

)k

≤ 1

Mq

∞∑
k=0

(
1

2

)k

=
2

Mq
,

Consequently, it follows from (1.62) and Proposition 2.18 that∥∥∥∂tF̂−1
∥∥∥
Lq(0,T ;W 1

q (Ω̃)n×n)

≤M2
q

∥∥∥F̂−1
∥∥∥2
L∞(0,T ;W q

q (Ω̃)n×n)

∥∥∥∇̂v̂
∥∥∥
Lq(0,T :W 1

q (Ω̃)n×n)
≤ C ‖v̂‖Y 1

T
,

for all 0 < T < TR and∥∥∥F̂−1 − I
∥∥∥
L∞(0,T ;W 1

q (Ω̃)n×n)
≤
ˆ T

0

∥∥∥∂tF̂−1(·, τ)
∥∥∥
W 1

q (Ω̃)n×n
dτ ≤ CT

1
q′ ‖v̂‖Y 1

T
,

where C = C(R) depends on R. These estimates prove the first two statements.
For the third and fourth statements, we have∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥
W 1

q (Ω̃)n×n
≤
ˆ t

t−h

∥∥∥∂tF̂−1(·, τ)
∥∥∥
W 1

q (Ω̃)n×n
dτ ≤ Ch

1
q′ ‖v̂‖Y 1

T
,
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which can be used to deduce

sup
0≤t≤T

ˆ t

0

∥∥∥∆h

(
F̂−1 − I

)
(·, t)

∥∥∥q
W 1

q (Ω̃)n×n

h
1+ q

2q′
dh


1
q

≤ C sup
0≤t≤T

(ˆ t

0

h
−1+ q

2q′ dh
) 1

q

‖v̂‖Y 1
T
= C2q′ sup

0≤t≤T
t

1
2q′ ‖v̂‖Y 1

T
≤ CT

1
2q′ ‖v̂‖Y 1

T
,

and therefore from (2.1) and the definition of Sobolev–Slobodeckij space,[
F̂−1 − I

]
W

1
2 (1− 1

q )
q (0,T ;W 1

q (Ω̃)n×n)

≤ CT
1
q+

1
2q′ ‖v̂‖Y 1

T
.

For the rest statements, we notice from (3.2) that

F̂(û)− F̂(v̂) =
ˆ t

0

(
∇̂û− ∇̂v̂

)
(X, τ)dτ.

Then for all 0 < T < TR,

sup
0≤t≤T

∥∥∥F̂(û)− F̂(v̂)
∥∥∥
W 1

q (Ω̃)n×n
≤ CT

1
q′ ‖û− v̂‖Y 1

T
.

Since

F̂−1(û)− F̂−1(v̂) = −F̂−1(û)
(

F̂(û)− F̂(v̂)
)

F̂−1(v̂),

it follows from the multiplication property of W 1
q (Ω̃) again that for all 0 < T < TR,

sup
0≤t≤T

∥∥∥F̂−1(û)− F̂−1(v̂)
∥∥∥
W 1

q (Ω̃)n×n

≤M2
q sup

0≤t≤T

∥∥∥F̂−1(û)
∥∥∥
W 1

q (Ω̃)n×n

∥∥∥F̂−1(v̂)
∥∥∥
W 1

q (Ω̃)n×n

∥∥∥F̂(û)− F̂(v̂)
∥∥∥
W 1

q (Ω̃)n×n

≤ CT
1
q′ ‖û− v̂‖Y 1

T
.

Moreover, by (1.62)

∂tF̂−1(û)− ∂tF̂−1(v̂) = −∂tF̂−1(û)
(

F̂(û)− F̂(v̂)
)

F̂−1(v̂) (3.30)

− F̂−1(û)∂t
(

F̂(û)− F̂(v̂)
)

F̂−1(v̂)− F̂−1(û)
(

F̂(û)− F̂(v̂)
)
∂tF̂−1(v̂).

Hence ∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

≤
∥∥∥∂tF̂−1(û)

(
F̂(û)− F̂(v̂)

)
F̂−1(v̂)

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

+
∥∥∥F̂−1(û)

(
∇̂û− ∇̂v̂

)
F̂−1(v̂)

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

+
∥∥∥F̂−1(û)

(
F̂(û)− F̂(v̂)

)
∂tF̂−1(v̂)

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

=: F1 + F2 + F3.
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From the embedding (2.4), we know that for v̂ ∈ Y 1
T ,

sup
0≤t≤T

∥∥∥∇̂v̂
∥∥∥
Lq(Ω̃)n×n

≤ C
(
‖v̂‖Y 1

T
+ ‖ v̂|t=0‖W 1

q (Ω̃)

)
.

The Gagliardo–Nirenberg inequality tells us∥∥∥∇̂v̂
∥∥∥
L∞(Ω̃)n×n

≤ C
∥∥∥∇̂v̂

∥∥∥1−n
q

Lq(Ω̃)n×n

∥∥∥∇̂v̂
∥∥∥n

q

W 1
q (Ω̃)n×n

.

For r = q2

n > q, we obtain∥∥∥∇̂v̂
∥∥∥
Lr(0,T ;L∞(Ω̃)n×n)

≤ C
∥∥∥∇̂v̂

∥∥∥1−n
q

L∞(0,T ;Lq(Ω̃)n×n)

∥∥∥∇̂v̂
∥∥∥n

q

Lq(0,T ;W 1
q (Ω̃)n×n)

≤ C(R).

Then, ∥∥∥∇̂v̂
∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

≤ T
1
q−

1
r

∥∥∥∇̂v̂
∥∥∥
Lr(0,T ;L∞(Ω̃)n×n)

≤ C(R)T
1
q−

1
r ,

and also, for û ∈ Y 1
T , ‖û‖Y 1

T
≤ R,∥∥∥∇̂v̂− ∇̂û
∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

≤ C(R)T
1
q−

1
r ‖v̂− û‖Y 1

T
. (3.31)

Consequently, with W 1
q (Ω̃) ↪→ L∞(Ω̃) for q > n,

F1 ≤
∥∥∥∂tF̂−1(û)

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

×
∥∥∥F̂(û)− F̂(v̂)

∥∥∥
L∞(0,T ;L∞(Ω̃)n×n)

∥∥∥F̂−1(v̂)
∥∥∥
L∞(0,T ;L∞(Ω̃)n×n)

≤
∥∥∥∇̂û

∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

∥∥∥F̂−1(û)
∥∥∥2
L∞(0,T ;L∞(Ω̃)n×n)

×
∥∥∥F̂(û)− F̂(v̂)

∥∥∥
L∞(0,T ;L∞(Ω̃)n×n)

∥∥∥F̂−1(v̂)
∥∥∥
L∞(0,T ;L∞(Ω̃)n×n)

≤ CT
1
q−

1
r ‖û− v̂‖Y 1

T
.

Similarly,

F2 ≤ CT
1
q−

1
r ‖û− v̂‖Y 1

T
, F3 ≤ CT

1
q−

1
r ‖û− v̂‖Y 1

T
.

Thus, ∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T ;L∞(Ω̃)n×n)

≤ CT
1
q−

1
r ‖û− v̂‖Y 1

T
.

Moreover, we can also conclude from (3.30) that∥∥∥∂tF̂−1(û)− ∂tF̂−1(v̂)
∥∥∥
Lq(0,T ;W 1

q (Ω̃)n×n)
≤ C ‖û− v̂‖Y 1

T
.
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Using that
(

F̂−1
0 (û)− F̂−1

0 (v̂)
)
= 0,∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥
W 1

q (Ω̃)n×n

≤
ˆ t

t−h

∥∥∥∂t (F̂−1(û)− F̂−1(v̂)
)
(·, τ)

∥∥∥
W 1

q (Ω̃)n×n
dτ ≤ Ch

1
q′ ‖û− v̂‖Y 1

T
.

Therefore, for all 0 < T < TR,

sup
0≤t≤T

ˆ h

0

∥∥∥∆h

(
F̂−1(û)− F̂−1(v̂)

)
(·, t)

∥∥∥q
W 1

q (Ω̃)n×n

h
1+ q

2q′
dh


1
q

≤ C sup
0≤t≤T

t
1

2q′ ‖û− v̂‖Y 1
T
= CT

1
2q′ ‖û− v̂‖Y 1

T
.

Again with the help of (2.1) and the definition of Sobolev–Slobodeckij space, one obtains the
last statement. This completes the proof.

Lemma 3.17. Under the assumption of Lemma 3.16, there exist a constant C = C(R) > 0
and a finite time TR > 0 depending on R such that for all 0 < T < TR and for two arbitrary
functions f ∈ Lq(0, T ;W 1

q (Ω̃)) and f ∈ Lq(0, T ;W 2
q (Ω̃)

n),

(1)
∥∥∥(F̂−1(v̂)− I

)
f
∥∥∥
Lq(0,T ;W 1

q (Ω̃)n)
≤ CT

1
q′ ‖f‖Lq(0,T ;W 1

q (Ω̃)) ‖v̂‖Y 1
T

;∥∥∥(F̂−1(v̂)− I
)(
∇̂f
)∥∥∥

Lq(0,T ;W 1
q (Ω̃)n×n)

≤ CT
1
q′ ‖f‖Lq(0,T ;W 2

q (Ω̃)n) ‖v̂‖Y 1
T

;

(2)
∥∥∥(F̂−1(û)− F̂−1(v̂)

)
f
∥∥∥
Lq(0,T ;W 1

q (Ω̃)n)
≤ CT

1
q′ ‖f‖Lq(0,T ;W 1

q (Ω̃)) ‖û− v̂‖Y 1
T

;∥∥∥(F̂−1(û)− F̂−1(v̂)
)(
∇̂f
)∥∥∥

Lq(0,T ;W 1
q (Ω̃)n×n)

≤ CT
1
q′ ‖f‖Lq(0,T ;W 2

q (Ω̃)n) ‖û− v̂‖Y 1
T

;

(3)
∥∥∥(F̂−1(û)− F̂−1(v̂)

)(
∇̂fF̂−1(û)

)∥∥∥
Lq(0,T ;W 1

q (Ω̃)n×n)

≤ CT
1
q′ ‖f‖Lq(0,T ;W 2

q (Ω̃)n) ‖û− v̂‖Y 1
T

.

Proof. The key point to deduce these estimates is to use the multiplication property of W 1
q (Ω̃)

with q > n, which was given in Proposition 2.18. Then Lemma 3.16 implies these results.

Lemma 3.18. Let 1 < q < ∞, T0 > 0 and Ω ⊆ Rn, n ≥ 2, be a bounded domain with C1,1

boundary. Then [
∇̂v̂
]
W

1
2
−ε

q (0,T ;Lq(Ω)n×n)
≤ CT ε

0 [v̂]W 2,1
q (Ω×(0,T ))n ,

for every v̂ ∈W 2,1
q (Ω× (0, T ))n, ε ∈ (0, 12 ) and 0 < T < T0. Here C depends on ε.

Proof. The lemma can be easily proved by using the arguments in [Abe05, Lemma 4.2], where
a layer-like domain with C1,1 boundary is considered. Besides, it can be seen as a corollary of
Lemma 2.20.
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3.4.2. Proof of Theorem 3.8. In this subsection, we prove Theorem 3.8 by applying the
strategy of a fixed-point procedure, along with the Lipschitz estimates.

To this end, we define the function spaces for nonlinear terms ZT := Π4
j=1Z

j
T , where

Z1
T := Lq(0, T ;Lq(Ω̃)n),

Z2
T :=


g ∈ Lq(0, T ;W 1

q (Ω̃)) ∩W 1
q (0, T ;W

−1
q (Ω)) :

trΓ(g) ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Γ× (0, T )),

trΓs(g) ∈W
1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T ))

 ,

Z3
T :=W

1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0, T ))n, Z4
T :=W

1− 1
q ,

1
2 (1−

1
q )

q (Γs × (0, T ))n.

We set w = (v̂, π̂, ĉ, ĉ∗s, ĝ), w0 := (v̂, ĉ, ĉ∗s, ĝ)|t=0 = (v̂0, ĉ0, 0, 1) and reformulate the initial and
boundary value problem (3.9) as an abstract equation:

L (w) = N (w,w0), for all w ∈ YT , (v̂0, ĉ0) ∈ Dq, (3.32)

where YT , Dq are defined in Section 3.2.

L (w) :=



∂tv̂− d̂iv S(v̂, π̂)

d̂iv (v̂)− γβ

ρ̂s
ĉs

JS(v̂, π̂)K · n̂Γ

S(v̂s, π̂s) · n̂Γs

∂tĉ− D̂ �̂ ĉ
D̂∇̂ĉ · n̂Γ

D̂s∇̂ĉs · n̂Γs

∂tĉ
∗
s − βĉs

∂tĝ −
γβ

nρ̂s
ĉs

(v̂, ĉ, ĉ∗s, ĝ)|t=0



, N (w,w0) :=



K(w)

G(w)

H1(w)

H2(w)

F 1(w)

F 2(w)

F 3(w)

F 4(w)

F 5(w)

w0



.

In the sequel, we focus on (3.32). For L , we have the following proposition.

Proposition 3.19. Let L be defined as in (3.32). Then L is an isomorphism from YT to
ZT ×Dq.

Proof. As L ∈ L(YT , ZT × Dq), it suffices to show that L is bijective, thanks to the bounded
inverse theorem.

Injective. Take any w1,w2 ∈ YT . Then, from (3.13), (3.27) and (3.29), we have∥∥L (w1)−L (w2)
∥∥
ZT×Dq

≤ C
∥∥w1 − w2

∥∥
YT
,

which implies the injectivity of L .
Surjective. The existence of (3.12), (3.26) and (3.28) immediately yields the surjectivity of

L .
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To employ the contraction mapping principle to (3.32), we investigate the dependence and
contraction property of (K, G,H1,H2, F 1, F 2, F 3, F 4, F 5) on (v̂, π̂, ĉ, ĉ∗s, ĝ). To this end, we define

M (w) :=
(
K(w), G(w),H1(w),H2(w), F 1(w), F 2(w), F 3(w), F 4(w), F 5(w)

)⊤
,

where the elements are given by (3.10). Then it is still needed to show that M : YT → ZT is
well-defined for w = (v̂, π̂, ĉ, ĉ∗s, ĝ) ∈ YT and to verify that M possesses the contraction property.

Proposition 3.20. Let q > n and R > 0. Assume w = (v̂, π̂, ĉ, ĉ∗s, ĝ) ∈ YT with ‖w‖YT
≤ R,

then there exist a constant C = C(R) > 0, a finite time TR > 0 depending on R and δ > 0 such
that for 0 < T < TR, M : YT → ZT is well-defined and bounded along with the estimates:

‖M (w)‖ZT
≤ C(R)T δ

(
‖w‖YT

+ 1
)
. (3.33)

Moreover, for w1 = (v̂1, π̂1, ĉ1, ĉ∗s
1, ĝ1),w2 = (v̂2, π̂2, ĉ2, ĉ∗s

2, ĝ2) ∈ YT with w1 6= w2, ĉi|t=0 = ĉ0,
ĉ∗s|t=0 = 0, ĝi|t=0 = 1 and

∥∥wi
∥∥
YT
≤ R (i = 1, 2), there exist a constant C = C(R) > 0, a finite

time TR > 0 depending on R and δ > 0 such that for 0 < T < TR,∥∥M (w1)−M (w2)
∥∥
ZT
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
. (3.34)

Proof. First of all, we prove the second part. To this end, for
∥∥wi

∥∥
YT
≤ R, i = 1, 2 we estimate

the following terms respectively∥∥K(w1)−K(w2)
∥∥
Z1

T

,
∥∥G(w1)−G(w2)

∥∥
Z2

T

,∥∥Hj(w1)−Hj(w2)
∥∥
Zj+2

T

,
∥∥F k(w1)− F k(w2)

∥∥
Zk+4

T

,
∥∥F 5(w1)− F 5(w2)

∥∥
Z8

T

,

where j ∈ {1, 2}, k ∈ {1, 2, 3, 4}. If 0 < T ≤ 1, we have T s < T s′ for s > s′ > 0. In the sequel,
we set a universal constant δ = min{ 1

2q′ ,
1
q −

1
r}, where q′ = q

q−1 , r = q2

n .
Estimate of ‖K(w1)−K(w2)‖Z1

T
. For Kf = d̂iv K̃f from (3.10), with the help of Proposi-

tion 2.18, Lemmas 3.16 and 3.17, we derive that∥∥∥K̃f (w1)− K̃f (w2)
∥∥∥
Lq(0,T ;W 1

q (Ωf )n×n)

≤
∥∥∥π̂1

f

(
F̂−⊤
f (v̂1

f )− F̂−⊤
f (v̂2

f )
)
+
(
π̂1
f − π̂2

f

) (
F̂−⊤
f (v̂2

f )− I
)∥∥∥

Lq(0,T ;W 1
q (Ωf )n×n)

+ νf

∥∥∥(F̂−1
f (v̂1

f )∇̂v̂1
f + (∇̂v̂1

f )
⊤F̂−⊤

f (v̂1
f )
)(

F̂−⊤
f (v̂1

f )− F̂−⊤
f (v̂2

f )
)∥∥∥

Lq(0,T ;W 1
q (Ωf )n×n)

+ 2νf

∥∥∥((F̂−1
f (v̂1

f )− F̂−1
f (v̂2

f )
)
∇̂v̂1

f + F̂−1
f (v̂2

f )
(
∇̂v̂1

f − ∇̂v̂2
f

))
×
(

F̂−⊤
f (v̂2

f )− I
)∥∥∥

Lq(0,T ;W 1
q (Ωf )n×n)

+ 2νf

∥∥∥(F̂−1
f (v̂1

f )− F̂−1
f (v̂2

f )∇̂v̂1
f

)(
F̂−1
f (v̂2

f )− I
)(
∇̂v̂1

f − ∇̂v̂2
f

)∥∥∥
Lq(0,T ;W 1

q (Ωf )n×n)

≤ CT
1
q′
(∥∥π̂1

f

∥∥
Y 2
T

∥∥v̂1
f − v̂2

f

∥∥
Y 1
T

+
∥∥π̂1

f − π̂2
f

∥∥
Y 2
T

∥∥v̂2
f

∥∥
Y 1
T

)
+ CT

1
q′
∥∥v̂1

f

∥∥
Y 1
T

∥∥v̂1
f − v̂2

f

∥∥
Y 1
T

+ CT
2
q′
∥∥v̂1

f

∥∥
Y 1
T

∥∥v̂1
f − v̂2

f

∥∥
Y 1
T

∥∥v̂2
f

∥∥
Y 1
T

+ CT
1
q′
∥∥v̂1

f − v̂2
f

∥∥
Y 1
T

∥∥v̂2
f

∥∥
Y 1
T

+ CT
1
q′
(∥∥v̂1

f

∥∥
Y 1
T

∥∥v̂1
f − v̂2

f

∥∥
Y 1
T

+
∥∥v̂1

f − v̂2
f

∥∥
Y 1
T

∥∥v̂2
f

∥∥
Y 1
T

)
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
.
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Let ĝ ∈ W 1
q (0, T ;W

1
q (Ωs)) with ĝ|t=0 = 1. Now we claim that there exists a time TR > 0 such

that for 0 < T < TR, ĝ ≥ 1
2 > 0. Let ĝ be such a function with ‖ĝ‖W 1

q (0,T ;W 1
q (Ωs))

≤ R for some
R > 0. Then for 0 < t < T ,

‖ĝ(t)− 1‖L∞(Ωs)
≤ C

∥∥∥∥ˆ t

0

∂tĝ(X, τ)dτ
∥∥∥∥
W 1

q (Ωs)

≤ CT
1
q′R ≤ 1

2
,

where we choose TR > 0 small enough such that T 1/q′

R ≤ 1
2CR . Hence,

ĝ ≥ 1

2
> 0.

For Ks = d̂iv K̃s + K̄g
s , the first part can be estimated similarly using∥∥∥K̃s(w1)− K̃s(w2)

∥∥∥
Lq(0,T ;W 1

q (Ωs)n×n)
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
.

For the second part it follows from (2.1), Lemma 3.16 and 3.17 that∥∥K̄g
s(w1)− K̄g

s(w2)
∥∥
Lq(0,T ;Lq(Ωs)n×n)

≤

∥∥∥∥∥(T̂s(v̂1
s, π̂

1
s , ĝ

1)F̂−⊤
s (v̂1

s)− T̂s(v̂2
s, π̂

2
s , ĝ

2)F̂−⊤
s (v̂2

s)
) n∇̂ĝ1

ĝ1

∥∥∥∥∥
Lq(0,T ;Lq(Ωs)n×n)

+

∥∥∥∥∥T̂s(v̂2
s, π̂

2
s , ĝ

2)F̂−⊤
s (v̂2

s)

(
n∇̂ĝ1

ĝ1
− n∇̂ĝ2

ĝ2

)∥∥∥∥∥
Lq(0,T ;Lq(Ωs)n×n)

=: N1 +N2.

From the definition of T̂s and ĝ ≥ 1/2,

N1 ≤ C
∥∥∥∇̂ĝ1∥∥∥

L∞(0,T ;Lq(Ωs)n)
N1

1 ≤ C(R)T
1
q′N1

1 ,

where

N1
1 :=

∥∥∥π̂1
s

(
F̂−⊤
s (v̂1

s)− F̂−⊤
s (v̂2

s)
)∥∥∥

Lq(0,T ;L∞(Ωs)n×n)

+
∥∥∥(π̂1

s − π̂2
s

)
F̂−⊤
s (v̂2

s)
∥∥∥
Lq(0,T ;L∞(Ωs)n×n)

+ ν̂s

∥∥∥∇̂v̂1
s − ∇̂v̂2

s

∥∥∥
Lq(0,T ;L∞(Ωs)n×n)

+ µ̂s

(∥∥∥∥ 1

(ĝ1)2

(
F̂s(v̂1

s)− F̂s(v̂2
s)
)∥∥∥∥

Lq(0,T ;L∞(Ωs)n×n)

+

∥∥∥∥( 1

(ĝ1)2
− 1

(ĝ2)2

)
F̂s(v̂2

s)

∥∥∥∥
Lq(0,T ;L∞(Ωs)n×n)

+
∥∥∥F̂−⊤

s (v̂1
s)− F̂−⊤

s (v̂2
s)
∥∥∥
Lq(0,T ;L∞(Ωs)n×n)

)
≤ CT

1
q′
∥∥π̂1

s

∥∥
Y 2
T

∥∥v̂1
s − v̂2

s

∥∥
Y 1
T

+ C
∥∥π̂1

s − π̂2
s

∥∥
Y 2
T

+ C
∥∥v̂1

s − v̂2
s

∥∥
Y 1
T

+ µ̂s

(
CT

1
q′
∥∥v̂1

s − v̂2
s

∥∥
Y 1
T

+ CT
1
q′
∥∥ĝ1 − ĝ2∥∥

Y 4
T

∥∥v̂2
s

∥∥
Y 1
T

(∥∥ĝ1∥∥
Y 4
T

+
∥∥ĝ2∥∥

Y 4
T

)
+CT

1
q′
∥∥v̂1

s − v̂2
s

∥∥
Y 1
T

)
≤ C(R)

∥∥w1 − w2
∥∥
YT
.
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Then we get
N1 +N2 ≤ C(R)T

1
q′
∥∥w1 − w2

∥∥
YT
.

Consequently, ∥∥K(w1)−K(w2)
∥∥
Z1

T

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
. (3.35)

Estimate of ‖G(w1)−G(w2)‖Z2
T

. From the definition of Z2
T , we need to verify that G(w1)−

G(w2) is contained both in Lq(0, T ;W 1
q (Ω̃)) andW 1

q (0, T ;W
−1
q (Ω)), as well as the trace regularity

trΓ(G(w1)−G(w2)) ∈W 1− 1
q ,

1
2 (1−

1
q )

q (Γ× (0, T )),

trΓs
(G(w1)−G(w2)) ∈W 1− 1

q ,
1
2 (1−

1
q )

q (Γs × (0, T )).

For the first regularity it follows easily from (3.10), Lemmas 3.16 and 3.17 that∥∥G(w1)−G(w2)
∥∥
Lq(0,T ;W 1

q (Ω̃))

≤ CT
1
q′
∥∥v̂1
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂2
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

≤ CT δR
∥∥w1 − w2

∥∥
YT
.

From the approximation argument in [AM18, Page 15], we know that a weak derivative with
respect to time does exist for G. Hence, substituting G by the form (3.11) and using integration
by parts, we have

〈∂tG(·, t), φ〉W−1
q ×W 1

q′,0
=

d
dt 〈G(·, t), φ〉W−1

q ×W 1
q′,0

=
d
dt

(〈(
F̂−1 − I

)
v̂, ∇̂φ

〉
Lq×Lq′

−
〈

v̂s · d̂iv F̂−⊤
s , φ

〉
Lq×Lq′

)
=

ˆ
Ω

((
∂tF̂−1

)
v̂ +

(
F̂−1 − I

)
∂tv̂
)
· ∇̂φdX

+

ˆ
Ωs

(
∂tv̂s · d̂iv F̂−⊤

s + v̂s · d̂iv ∂tF̂−⊤
s

)
· φdX

=

ˆ
Ωf

(
∂tF̂−1

f

)
v̂f · ∇̂φdX +

ˆ
Ω

((
F̂−1 − I

)
∂tv̂
)
· ∇̂φdX

+

ˆ
Ωs

(
∂tv̂s · d̂iv F̂−⊤

s + ∂tF̂−⊤
s : ∇̂v̂s

)
· φdX,

for every φ ∈W 1
q′,0(Ω), where 〈·, ·〉X×X′ denotes the duality product between a dual pair of spaces

X and X ′. Then according to (1.62), the Sobolev embedding W 1
q (Ω) ↪→ C0,1−n/q(Ω) ↪→ L∞(Ω)

and Lemma 3.16, one obtains∥∥∂tG(w1)− ∂tG(w2)
∥∥
Lq(0,T ;W−1

q (Ω))

≤
∥∥∥(∂tF̂−1

f (v̂1)− ∂tF̂−1
f (v̂2

f )
)

v̂1
f + ∂tF̂−1

f (v̂2
f )
(
v̂1
f − v̂2

f

)∥∥∥
Lq(0,T ;Lq(Ω)n)

+
∥∥∥(F̂−1(v̂1)− F̂−1(v̂2)

)
∂tv̂1 +

(
F̂−1(v̂2)− I

) (
∂tv̂1 − ∂tv̂2

)∥∥∥
Lq(0,T ;Lq(Ω)n)

+
∥∥∥∂tv̂1

s ·
(
d̂iv F̂−⊤

s (v̂1)− d̂iv F̂−⊤
s (v̂2

s)
)∥∥∥

Lq(0,T ;Lq(Ωs))

+
∥∥∥(∂tv̂1

s − ∂tv̂2
s

)
· d̂iv F̂−⊤

s (v̂2
s)
∥∥∥
Lq(0,T ;Lq(Ωs))
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+
∥∥∥(∂tF̂−⊤

s (v̂1
s)− ∂tF̂−⊤

s (v̂2
s)
)
: ∇̂v̂1

s

∥∥∥
Lq(0,T ;Lq(Ωs))

+
∥∥∥∂tF̂−⊤

s (v̂2
s) :

(
∇̂v̂1

s − ∇̂v̂2
s

)∥∥∥
Lq(0,T ;Lq(Ωs))

≤ CT
1
q−

1
r

∥∥v̂1 − v̂2
∥∥
Y 1
T

(
1 + T

1
q′
∥∥v̂1
∥∥
Y 1
T

)
+ CT

1
q′
∥∥v̂2
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂1 − v̂2

∥∥
Y 1
T

∥∥v̂1
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂2
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂1
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂1 − v̂2

∥∥
Y 1
T

∥∥v̂2
∥∥
Y 1
T

+ CT
1
q−

1
r

∥∥v̂1 − v̂2
∥∥
Y 1
T

∥∥v̂1
∥∥
Y 1
T

+ CT
1
q′
∥∥v̂2
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
.

Then we are in the position to prove trΓ(G(w1)−G(w2)) ∈W 1−1/q,(1−1/q)/2
q (Γ× (0, T )). We

first write the norm explicitly:∥∥trΓ (G(w1)−G(w2)
)∥∥

W
1− 1

q
, 1
2 (1− 1

q )
q (Γ×(0,T ))

=
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
Lq
(
0,T ;W

1− 1
q

q (Γ)
)

+
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 − ∇̂v̂2

)∥∥∥
Lq
(
0,T ;W

1− 1
q

q (Γ)
)

+
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ))

+
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 − ∇̂v̂2

)∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ))

=:

4∑
i=1

Ii.

According to the trace theorem from W 1
q (Ω̃) into W 1− 1

q
q (Γ), Proposition 2.18, 3.16 and 3.17,

I1 ≤ C
∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
: ∇̂v̂1

∥∥∥
Lq(0,T ;W 1

q (Ω̃))
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
,

I2 ≤ C
∥∥∥(F̂−⊤(v̂2)− I

)
:
(
∇̂v̂1 − ∇̂v̂2

)∥∥∥
Lq(0,T ;W 1

q (Ω̃))
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
.

It follows from the definition of vector valued Sobolev–Slobodeckij spaces, Lemma 3.16 and 3.18
that

I3 ≤

ˆ T

0

ˆ t

0

∥∥∥∆h

(
F̂−⊤(v̂1)− F̂−⊤(v̂2)

)
(t) : ∇̂v̂1(t− h)

∥∥∥q
Lq(Γ)

h1+
q
2 (1−

1
q )

dhdt


1
q

+

ˆ T

0

ˆ t

0

∥∥∥(F̂−⊤(v̂1)− F̂−⊤(v̂2)
)
(t) : ∆h

(
∇̂v̂1

)
(t)
∥∥∥q
Lq(Γ)

h1+
q
2 (1−

1
q )

dhdt


1
q

≤ sup
0≤t≤T

ˆ t

0

∥∥∥∆h

(
F̂−⊤(v̂1)− F̂−⊤(v̂2)

)∥∥∥q
L∞(Γ)n×n

h1+
q
2 (1−

1
q )

dh


1
q ∥∥∥∇̂v̂1

∥∥∥
Lq(0,T ;Lq(Γ)n×n)
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+ sup
0≤t≤T

∥∥∥F̂−⊤(v̂1)− F̂−⊤(v̂2)
∥∥∥
W 1

q (Ω̃)n×n

[
∇̂v̂1

]
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n×n)

≤ C
(
T

1
2q′
∥∥v̂1
∥∥
Y 1
T

∥∥v̂1 − v̂2
∥∥
Y 1
T

+ T
1
q′
∥∥v̂1 − v̂2

∥∥
Y 1
T

∥∥v̂1
∥∥
Y 1
T

)
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
,

where we used the property of ∆h that ∆h(fg)(t) = ∆hf(t)g(t− h) + f(t)∆hg(t). Similarly,

I4 ≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
,

Collecting Ii, i = 1, . . . , 4, we get∥∥trΓ (G(w1)−G(w2)
)∥∥

W
1− 1

q
, 1
2 (1− 1

q )
q (Γ×(0,T ))

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
.

Since the trace regularities for G on Γ and Γs are same, one also obtains∥∥trΓs

(
G(w1)−G(w2)

)∥∥
W

1− 1
q
, 1
2 (1− 1

q )
q (Γs×(0,T ))

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
.

Then ∥∥G(w1)−G(w2)
∥∥
Z2

T

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
,

Estimate of ‖H1(w1) − H1(w2)‖Z3
T

, ‖H2(w1) − H2(w2)‖Z4
T

. Since Γ is of class C3, n̂Γ ∈
C2(∂Ωf ). Then by similar estimates as for trΓ(G(w1) − G(w2)), the norm of H1(w1) − H1(w2)
in Z3

T can be estimated as∥∥H1(w1)−H1(w2)
∥∥
Z3

T

=
∥∥∥rK̃(w1)− K̃(w2)

z
n̂Γ

∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n)

+
∥∥∥rK̃(w1)− K̃(w2)

z
n̂Γ

∥∥∥
Lq(0,T ;W

1− 1
q

q (Γ)n)

≤ C
∥∥∥K̃f (w1)− K̃f (w2) + K̃s(w1)− K̃s(w2)

∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n×n)

+ C
∥∥∥(K̃(w1)− K̃(w2)

)∥∥∥
Lq(0,T ;W 1

q (Ω̃)n×n)
≤ C(R)T δ

∥∥w1 − w2
∥∥
YT
.

Similarly, we can easily derive∥∥H2(w1)−H2(w2)
∥∥
Z4

T

≤ CT δ (1 +R)
2 ∥∥w1 − w2

∥∥
YT
.

Estimate of ‖F 1(w1)− F 1(w2)‖Z5
T

. For F 1
f = d̂iv F̃f , we have∥∥F 1

f (w1)− F 1
f (w2)

∥∥
Z5

T

≤
∥∥∥F̃f (w1)− F̃f (w2)

∥∥∥
Lq(0,T ;W 1

q (Ωf )n)

≤ D̂f

∥∥∥(F̂−1
f (v1

f )F̂−⊤
f (v1

f )− F̂−1
f (v2

f )F̂−⊤
f (v2

f )
)
∇̂ĉ1f

∥∥∥
Lq(0,T ;W 1

q (Ωf )n)

+ D̂f

∥∥∥(F̂−1
f (v2

f )F̂−⊤
f (v2

f )− I
)(
∇̂ĉ1f − ∇̂ĉ2f

)∥∥∥
Lq(0,T ;W 1

q (Ωf )n)
=: F1 + F2.
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Lemma 3.16 and the multiplication property of W 1
q (Ωf ) in Proposition 2.18 imply that

F1 ≤ C
(∥∥∥F̂−1

f (v1
f )
(

F̂−⊤
f (v1

f )− F̂−⊤
f (v2

f )
)∥∥∥

L∞(0,T ;W 1
q (Ωf )n×n)

+
∥∥∥(F̂−1

f (v1
f )− F̂−1

f (v2
f )
)

F̂−⊤
f (v2

f )
∥∥∥
L∞(0,T ;W 1

q (Ωf )n×n)

)∥∥∥∇̂ĉ1f∥∥∥
Lq(0,T ;W 1

q (Ωf )n)

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
,

and

F2 ≤ C
(∥∥∥F̂−1

f (v2
f )
(

F̂−⊤
f (v2

f )− I
)∥∥∥

L∞(0,T ;W 1
q (Ωf )n×n)

+
∥∥∥F̂−1

f (v2
f )− I

∥∥∥
L∞(0,T ;W 1

q (Ωf )n×n)

)∥∥∥∇̂ĉ1f − ∇̂ĉ2f∥∥∥
Lq(0,T ;W 1

q (Ωf )n)

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
.

Then ∥∥F 1
f (w1)− F 1

f (w2)
∥∥
Z5

T

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
.

For F 1
s = F̄ 1

s + F g
s = d̂iv F̃s + F g

s , it can be deduced similarly as for F 1
f that∥∥F̄ 1

s (w1)− F̄ 1
s (w2)

∥∥
Z5

T

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
.

Moreover, ∥∥F g
s (w1)− F g

s (w2)
∥∥
Z5

T

≤ β
∥∥∥∥(ĉ1s − ĉ2s)(1 + γ

ρ̂s
ĉ1s

)∥∥∥∥
Lq(Ωs×(0,T ))

+ β
∥∥ĉ2s (ĉ1s − ĉ2s)∥∥Lq(Ωs×(0,T ))

+ n

∥∥∥∥∥∇̂ĝ1ĝ1

(
F̃s(w1)− F̃s(w2) +

(
∇̂ĉ1s − ∇̂ĉ2s

))∥∥∥∥∥
Lq(Ωs×(0,T ))

+ n

∥∥∥∥∥
(
∇̂ĝ1

ĝ1
− ∇̂ĝ

2

ĝ2

)
F̂−1
s (v̂2

s)F̂−⊤
s (v̂2

s)∇̂ĉ2s

∥∥∥∥∥
Lq(Ωs×(0,T ))

=:

4∑
i=1

Fg
i .

Apparently, with ĉi|t=0 = ĉ0, i = 1, 2,

Fg
1 + Fg

2 ≤ C
∥∥ĉ1s − ĉ2s∥∥L∞(0,T ;Lq(Ωs))

∥∥∥∥1 + γ

ρ̂s
ĉ1s

∥∥∥∥
Lq(0,T ;L∞(Ωs))

+ C
∥∥ĉ1s − ĉ2s∥∥L∞(0,T ;Lq(Ωs))

∥∥ĉ2s∥∥Lq(0,T ;L∞(Ωs))
≤ C(R)T

1
q′
∥∥w1 − w2

∥∥
YT
.

Proceeding the same estimates as F̃f above, we have

Fg
3 + Fg

4 ≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
,

by ĝ ≥ 1
2 and Lemma 3.16. Collecting Fg

i , i = 1, ..., 4 together, one concludes∥∥F 1
s (w1)− F 1

s (w2)
∥∥
Z5

T

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
.
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Estimate of ‖F 2(w1) − F 2(w2)‖Z6
T

, ‖F 3(w1) − F 3(w2)‖Z7
T

. Since the key ingredient here
is to estimate F̃ (w1)− F̃ (w2) in the space W 1−1/q,1/2−1/2q

q (Γ× (0, T )), we only give the details
to handle this term. By definition,∥∥∥F̃ (w1)− F̃ (w2)

∥∥∥
W

1− 1
q
, 1
2
(1− 1

q
)

q (Γ×(0,T ))n

=
∥∥∥F̃ (w1)− F̃ (w2)

∥∥∥
Lq(0,T ;W

1− 1
q

q (Γ)n)
+
∥∥∥F̃ (w1)− F̃ (w2)

∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n)

.

The first term can be controlled easily by the trace theorem for q > n and the estimates of F̃ in
Ω̃ above. Namely,∥∥∥F̃ (w1)− F̃ (w2)

∥∥∥
Lq(0,T ;W

1− 1
q

q (Γ)n)

≤ C
∥∥∥F̃ (w1)− F̃ (w2)

∥∥∥
Lq(0,T ;W 1

q (Ω̃)n)
≤ C(R)T

1
q′
∥∥w1 − w2

∥∥
YT
.

For the second term, again by the definition of vector-valued Sobolev–Slobodeckij space, we have∥∥∥F̃ (w1)− F̃ (w2)
∥∥∥
W

1
2 (1− 1

q )
q (0,T ;Lq(Γ)n)

≤ C(R)T
1

2q′
∥∥w1 − w2

∥∥
YT
,

following the argument of estimating trΓ(G(w1)−G(w2)). Then,∥∥F 2(w1)− F 2(w2)
∥∥
Z6

T

+
∥∥F 3(w1)− F 3(w2)

∥∥
Z7

T

≤ C(R)T δ
∥∥w1 − w2

∥∥
YT
.

Estimate of ‖F 4(w1)−F 4(w2)‖Z8
T

, ‖F 5(w1)−F 5(w2)‖Z8
T

. Observing that the nonlinearities
in F 4 and F 5 are ĉsĉ∗s and ĉsĝ, which are all quadratic, we control them under the assumptions
ĉi
∣∣
t=0

= ĉ0, ĉ∗s|t=0 = 0, ĝi
∣∣
t=0

= 1, i = 1, 2, and by

‖uv‖Lq(0,T ;W 1
q (Ωs))

≤Mq ‖u‖L∞(0,T ;W 1
q (Ωs))

‖v‖Lq(0,T ;W 1
q (Ωs))

,

for u, v ∈W 1
q (0, T ;W

1
q (Ωs)). Hence,∥∥F 4(w1)− F 4(w2)

∥∥
Z8

T

+
∥∥F 5(w1)− F 5(w2)

∥∥
Z8

T

≤ C(R)T
1
q′
∥∥w1 − w2

∥∥
YT
.

Consequently, we derive (3.34). Now, choosing w1 = w and w2 = (0, 0, 0, 0, 1) in (3.34),
(3.33) follows immediately from the fact that M (0, 0, 0, 0, 1) = 0.

Proof of Theorem 3.8. Since L : YT → ZT ×Dq is an isomorphism as shown in Proposition
3.19, and because of the estimates in Theorem 3.12, we can set a well-defined constant

CL := sup
0≤T≤1

∥∥L −1
∥∥
L(ZT×Dq,YT )

,

which is uniformly bounded as T → 0 for trivial initial data. We choose R > 0 so large that
R ≥ 2CL

∥∥(v̂0, ĉ0)
∥∥
Dq

. Then

∥∥L −1N (0̄,w0)
∥∥
YT
≤ CL

∥∥(v̂0, ĉ0)
∥∥
Dq
≤ R

2
. (3.36)
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Here N (0̄,w0) is in the sense of trivial data 0̄ = (0, 0, 0, 0, 1). For ‖wi‖YT
≤ R, i = 1, 2, we take

TR > 0 small enough such that

CLC(R)T
δ
R ≤

1

2
,

where C(R) is the constant in (3.34). Then for 0 < T < TR, we infer from Theorem 3.20 that∥∥L −1N (w1,w0)−L −1N (w2,w0)
∥∥
YT

≤ CLC(R)T
δ
∥∥w1 − w2

∥∥
YT
≤ 1

2

∥∥w1 − w2
∥∥
YT
,

(3.37)

which implies the contraction property. From (3.36) and (3.37), we have∥∥L −1N (w,w0)
∥∥
YT

≤
∥∥L −1N (0̄,w0)

∥∥
YT

+
∥∥L −1N (w,w0)−L −1N (0̄,w0)

∥∥
YT
≤ R.

We defineMR,T by

MR,T :=
{

w ∈ BYT
(0̄, R) : w = (v̂, π̂, ĉ, ĉ∗s, ĝ)

}
,

which is a closed subset of YT . Hence, L −1N (·,w0) : MR,T → MR,T is well-defined for all
0 < T < TR and a strict contraction. Since YT is a Banach space, the Banach fixed-point
Theorem implies the existence of a unique fixed-point of L −1N in MR,T , i.e., (3.9) admits a
unique strong solution inMR,T for small time 0 < T < TR.

In the following, we prove the uniqueness of solutions in YT by a continuity argument. Let
w1,w2 ∈ YT be two different solutions of (3.9) and R̃ := max{

∥∥w1
∥∥
YT
,
∥∥w2

∥∥
YT
}, then there

is a time TR̃ ≤ T such that L −1N (·,w0) : MR̃,TR̃
→ MR̃,TR̃

is a contraction and therefore
w1|[0,TR̃] = w2|[0,TR̃]. Now we argue by contradiction. We define T̃ as

T̃ := sup
{
T ′ ∈ (0, T ] : w1

∣∣
[0,T ′]

= w2
∣∣
[0,T ′]

}
,

and assume T̃ < T . Since w1|[0,T̃ ] = w2|[0,T̃ ], we consider w1|t=T̃ = w2|t=T̃ as the initial value
for (3.9). Repeating the argument above, we see that there is a time T̂ ∈ (T̃ , T ) such that
w1|[T̃ ,T̂ ] = w2|[T̃ ,T̂ ], which contradicts the definition of T̃ .

In conclusion, (3.9) admits a unique solution in YT .
For the nonnegativity of ĉ, we show it in Eulerian coordinates. Let UT = (Ωt\Γt) × (0, T ),

Uf,T = Ωt
f × (0, T ), Us,T = Ωt

s × (0, T ), and define the parabolic boundary ∂PUf,T := (Ω
0

f ×
{0}) ∪ (Γt × [0, T ]), ∂PUs,T := (Ω

0

s × {0}) ∪ ((Γt ∪ Γt
s) × [0, T ]) and ∂PUT := ∂PUf,T ∪ ∂PUs,T .

First of all, we claim that c ∈ C2,1
loc (UT ) ∩ C(UT ), where

C2s,s(UT ) :=
{
c(·, t) ∈ C2s(Ωt\Γt), c(x, ·) ∈ Cs(0, T ), ∀x ∈ Ωt\Γt, t ∈ (0, T )

}
,

for s > 0. As shown above, we assume that c ∈ Y 3
T is the solution of

∂tc−D∆c = −(v · ∇c+ (div v + β)c) =: f. (3.38)

With the regularity of v, c and embedding theorems, we know that f ∈ C
α,α/2
loc (UT ) for some

0 < α < 1. By the local regularity theory for parabolic equations, one obtains

c ∈ C2+α,1+α
2

loc (UT ) ↪→ C2,1
loc (UT ).
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The continuity of c can be derived directly from Proposition 2.22, especially (2.4) with

W 1
q ↪→ C1−n

q ↪→ C0, for q > n.

Now, given a nonnegative initial value c0(x) ≥ 0, x ∈ Ω0. Define cλ := e−λtc where λ > 0
is a constant, which will be assigned later. Adding ccλ to the both sides of (3.38), we have the
equation for cλ

∂tcλ −D∆cλ + v · ∇cλ + (div v + c+ β + λ)cλ = c2e−λt ≥ 0.

Taking λ sufficiently large such that

β + λ ≥ sup
0≤t≤T,x∈Ωt\Σt

|div v|+ |c| ,

one obtains
div v + c+ β + λ ≥ 0.

By the weak maximum principle for parabolic equations, we have

min
Uf,T

cf (x, t) ≥ − max
∂PUf,T

c−f (x, t), min
Us,T

cs(x, t) ≥ − max
∂PUs,T

c−s (x, τ),

namely,
min
UT

c(x, t) ≥ − max
∂PUT

c−(x, t),

where c−(x, t) := −min{c(x, t), 0}.
Since c0(x) ≥ 0, now we claim that c(x, t) ≥ 0 for all (x, t) ∈ (Γt ∪ Γt

s)× [0, T ]. To this end,
we argue by contradiction. Assume that for some t0 ∈ (0, T ], there exists a point x0 ∈ Γt0 ∪ Γt0

s ,
such that

c(x0, t0) = − max
x∈Γt0∪Γ

t0
s

c−(x, t0) < 0,

that is,
min

x∈Γt0∪Γ
t0
s

min{c(x, t0), 0} < 0.

This implies that x 7→ min{c(x, t0), 0} attains a negative minimum at x0, i.e., x 7→ c(x, t0) attains
a negative minimum at x0.

Case 1: x0 ∈ Γt0 . For both Ωt0
f and Ωt0

s , since Γt0 is assumed to be a C3− interface, we
infer from Hopf’s Lemma that

Df∇cf · nΓt0 (x0) < 0, Ds∇cs · nΓt0 (x0) > 0, on Γt0 .

Hence, JD∇cK · nΓt0 (x0) < 0,

which contradicts (3.1j).
Case 2: x0 ∈ Γt0

s . Again by Hopf’s Lemma, one obtains

D∇c · n
Γ
t0
s
(x0) < 0, on Γt0

s ,

which contradicts to (3.1k).
In summary, c(x, t) ≥ 0 for all (x, t) ∈ Ω

t × [0, T ].
For ĉ∗s and ĝ, we note that the equations for them in Lagrangian coordinates are ordinary

differential equations with suitable ĉs ≥ 0. Then

ĉ∗s =

ˆ t

0

e
´ σ
t

γβ
ρ̂s

ĉs(x,τ)dτβĉs(x, σ)dσ > 0, ĝ = e
´ t
0

γβ
nρ̂s

ĉs(x,τ)dτ > 0,

which completes the proof.
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3.5. Appendix: Some Results on Linear Systems

In this section, we give several maximal Lq-regularity results of different problems, which
are needed for the whole system.

3.5.1. Two-phase Stokes problems with Dirichlet boundary condition. In this section,
we focus on the following nonstationary two-phase Stokes problem.

%∂tv − div(2µDv) +∇p = %fu, in Ω\Σ× (0, T ),

div v = gd, in Ω\Σ× (0, T ),

v = gb, on ∂Ω× (0, T ),JvK = gu, on Σ× (0, T ),J−2µDv + pIK νΣ = g, on Σ× (0, T ),

v|t=0 = v0, in Ω\Σ,

(3.39)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with ∂Ω ∈ C3, Σ ⊂ Ω a closed hypersurface of
class C3. %j are positive constants, j = 1, 2. v : Ω × (0, T ) → Rn is the velocity of the fluid,
p : Ω×(0, T )→ R denotes the pressure. µ > 0 is the constant viscosity and Dv = 1

2

(
∇v +∇v⊤

)
.

νΣ represents the unit outer normal vector on Σ. fu, gd, gb, gu, g are given functions and v0 is
the prescribed initial value. System (3.39) has been investigated by many scholars in various
aspects. We refer for the maximal Lq regularity results of such kind of two-phase Stokes problem
to Prüss–Simonett [PS16]. Readers can also find similar results in Abels and Moser [AM18] for
(gb, gu) = 0.

Proposition 3.21. Let q > n + 2, Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C3, Σ ⊂ Ω a
closed hypersurface of class C3. Assume that (fu, gd, gb, gu, g) ∈ ZT where

ZT :=


fu ∈ Lq(0, T ;Lq(Ω)n), gd ∈ Lq(0, T ;W 1

q (Ω\Σ)),

gb ∈W
2− 1

q ,1−
1
2q

q (∂Ω× (0, T ))n, gu ∈W
2− 1

q ,1−
1
2q

q (Σ× (0, T ))n,

g ∈W 1− 1
q ,

1
2 (1−

1
q )

q (Σ× (0, T ))n : (gd, gb · ν∂Ω, gu · νΣ) ∈W 1
q (0, T ; Ŵ

−1
q (Ω))


and v0 ∈W

2− 2
q

q (Ω\Σ)n satisfying the compatibility conditions

div v0 = gd|t=0 , v0|∂Ω = gb|t=0 , Jv0K|Σ = gu|t=0 , J(2µDv0νΣ)τ K|Σ = gτ |t=0 . (3.40)

Then two-phase Stokes problem (3.39) admits a unique solution (v, p) with regularity

v ∈ Lq(0, T ;W 2
q (Ω\Σ)n) ∩W 1

q (0, T ;L
q(Ω)n),

p ∈ Lq(0, T ;W 1
q,(0)(Ω\Σ)), JpK ∈W 1− 1

q ,
1
2 (1−

1
q )

q (Σ× (0, T )).

Moreover, for any fixed 0 < T0 <∞, there is a constant C, independent of T ∈ (0, T0], such that

‖v‖Lq(0,T ;W 2
q (Ω\Σ)n) + ‖v‖W 1

q (0,T ;Lq(Ω)n)

+ ‖p‖Lq(0,T ;W 1
q,(0)

(Ω\Σ)) + ‖JpK‖
W

1− 1
q
, 1
2 (1− 1

q )
q (Σ×(0,T ))

≤ C
(
‖fu‖Lq(0,T ;Lq(Ω)n) + ‖gd‖Lq(0,T ;W 1

q (Ω\Σ)) + ‖gb‖
W

2− 1
q
,1− 1

2q
q (∂Ω×(0,T ))n

(3.41)
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+ ‖gu‖
W

2− 1
q
,1− 1

2q
q (Σ×(0,T ))n

+ ‖∂t(gd, gb · ν∂Ω, gu · νΣ)‖Lq(0,T ;Ŵ−1
q (Ω))

+ ‖g‖
W

1− 1
q
, 1
2 (1− 1

q )
q (Σ×(0,T ))n

+ ‖v0‖
W

2− 2
q

q (Ω\Σ)n

)
.

Here, Ŵ−1
q (Ω) is the space of all triples (ϕ,ψ, χ) ∈ Lq(Ω)×W 2−1/q

q (∂Ω)n ×W 2−1/q
q (Σ)n, which

enjoy the regularity property (ϕ,ψ · ν∂Ω, χ · νΣ) ∈ Ẇ−1
q (Ω) = (Ẇ 1

q′(Ω))
′, where

〈(ϕ,ψ · ν∂Ω, χ · νΣ), φ〉 := −〈ϕ, φ〉Ω + 〈ψ · ν∂Ω, φ〉∂Ω + 〈χ · νΣ, φ〉Σ , (3.42)

for all φ ∈ Ẇ 1
q′(Ω).

Proof. We proceed to prove this theorem with Theorem 8.1.4 in [PS16], by which we need some
special treatments for (3.39). The first one is to extend the quintuple (fu, gd, gb, gu, g) from ZT to
Z∞. Since fu ∈ Lq(0, T ;Lq(Ω)n) is without time derivatives, we simply extend it by zero to a new
function f̄u = χ[0,T ]fu ∈ Lq(0,∞;Lq(Ω)n). Since gd ∈ Lq(0, T ;W 1

q (Ω\Σ)) ∩W 1
q (0, T ;W

−1
q (Ω)),

by Theorem 2.27 with X1 = W 1
q (Ω\Σ), X0 = W−1

q (Ω), we obtain a new function ḡd :=
E(gd) ∈ Lq(0,∞;W 1

q (Ω\Σ)) ∩W 1
q (0,∞;W−1

q (Ω)), which is uniformly bounded for T ≤ T0. For
(gb, gu, g) ∈ W 2−1/q,1−1/2q

q (∂Ω × (0, T ))n ×W 2−1/q,1−1/2q
q (Σ × (0, T ))n ×W 1−1/q,(1−1/q)/2

q (Σ ×
(0, T ))n, Theorem 2.28 with α = 1 − 1/2q > 1/q and (1 − 1/q)/2 > 1/q respectively im-
ply that they can be extended as (ḡb, ḡu, ḡ) := E(gb, gu, g) ∈ W

2−1/q,1−1/2q
q (∂Ω × (0,∞))n ×

W
2−1/q,1−1/2q
q (Σ × (0,∞))n ×W 1−1/q,(1−1/q)/2

q (Σ × (0,∞))n, which are uniformly bounded for
T ≤ T0. In summary,

(f̄u, ḡd, ḡb, ḡu, ḡ)
∣∣
[0,T ]

= (fu, gd, gb, gu, g)

and
(f̄u, ḡd, ḡb, ḡu, ḡ) ∈ Z∞.

Now, for a constant ω > ω0 ≥ 0, define

(f̃u, g̃d, g̃b, g̃u, g̃)(t) = e−ωt(f̄u, ḡd, ḡb, ḡu, ḡ)(t).

Then it is easy to verify that (f̃u, g̃d, g̃b, g̃u, g̃) is also contained in Z∞, since e−ωt is smooth and
bounded with respect to time t.

Let (u, π) be the solution of (8.4) in [PS16] with (fu, gd, gb, gu, g) = (f̃u, g̃d, g̃b, g̃u, g̃) given
above, as well as the constant viscosity µ > 0 in (3.39). For all t ∈ R+, we define

v(t) = eωtu(t), p(t) = eωtπ(t),

then (v, p) solves (3.39) for t ∈ [0, T ]. Consequently, existence and regularity of (u, π), which
are given by Theorem 8.1.4 in [PS16], imply those of (v, p). Additionally, (3.41) holds under our
construction of (v, p).

Finally, we need to show that our solution is unique. To this end, let (v1, p1) 6= (v2, p2)
be two solutions of (3.39) in (0, T ) with same source terms and initial value. Define (v, p) =
(v1 − v2, p1 − p2). Since (3.39) is linear, (v, p) satisfies

%∂tv − div(2µDv) +∇p = 0, in Ω\Σ× (0, T ),

div v = 0, in Ω\Σ× (0, T ),

v = 0, on ∂Ω× (0, T ),JvK = 0, on Σ× (0, T ),J−2µDv + pIK νΣ = 0, on Σ× (0, T ),

v|t=0 = 0, in Ω\Σ.

(3.43)
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Multiplying the first equation of (3.43) by v and integrating by parts over Ω\Σ × (0, t), one
obtains

ˆ
Ω\Σ

%

2
|v(t)|2 dx+

ˆ t

0

ˆ
Ω\Σ

2µ |Dv(x, t)|2 dxdt = 0, for a.e. t ∈ (0, T ),

which implies the uniqueness and completes the proof.

Remark 3.22. For (gd, gb · ν∂Ω, gu · νΣ) ∈W 1
q (0, T ; Ŵ

−1
q (Ω)), we notice that

ˆ
Ω

gddx =

ˆ
∂Ω

gb · ν∂Ωd(∂Ω)−
ˆ
Σ

gu · νΣdΣ,

when φ = 1 in (3.42), the regularity property of Ŵ−1
q (Ω). Thus, for the zero-Dirichlet problem,

which means gb = gu = 0 in (3.39), one has an hidden compatibility condition
ˆ
Ω

gddx = 0.

This is an important condition when we solve the Stokes type problems with homogeneous
Dirichlet boundary conditions.

3.5.2. Laplacian transmission problems with Dirichlet boundary. In this section, we
investigate a transmission problem for the Laplacian equation with Dirichlet boundary condition,
which reads

−∆ψ = f in Ω\Σ,J∂νψK = g on Σ,JψK = h on Σ,

ψ = gb on ∂Ω.

(3.44)

Here, we denote the inner domain by Ω−, resp. outer domain by Ω+ and the unit normal vector
on Σ = ∂Ω− by ν.

The second result concerns strong solutions.

Proposition 3.23. Let 1 < q < ∞, Ω ⊂ Rn, n ≥ 2, with boundary ∂Ω of class C3−,
and let Σ ⊂ Ω be a closed hypersurface of class C3−, s ∈ {0, 1}. For all f ∈ W s

q (Ω\Σ),
g ∈ W 1+s−1/q

q (Σ), h ∈ W 2+s−1/q
q (Σ), gb ∈ W 2+s−1/q

q (∂Ω), the problem (3.44) admits a unique
solution ψ ∈W 2+s

q (Ω\Σ). Moreover, there is a constant C > 0 such that

‖ψ‖W 2+s
q
≤ C

(
‖f‖W s

q
+ ‖g‖

W
1+s− 1

q
q

+ ‖h‖
W

2+s− 1
q

q

+ ‖gb‖
W

2+s− 1
q

q

)
.

Proof. Step 1: Reduction. We first reduce to the case (h, gb) = 0. To this end, we find a ϕ
solving

−∆ϕ = 0 in Ω−,

ϕ = h on Σ,

and
−∆ϕ = 0 in Ω+,

ϕ = 0 on Σ,

ϕ = gb on ∂Ω.
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The existence and uniqueness of these two systems are clear due to elliptic theory. Thanks to
the trace theorem, the extra outer normal derivatives terms on Σ enjoys the same regularities as
g. Substracting ϕ from ψ, we can investigate the reduced system (3.44) with (h, gb) = 0.
Step 2: Weak solution with L2-setting. Now, let Hk = W k

2 and Hk
0 = W k

2,0 for k ∈ N.
Testing (3.44) by a function φ ∈ H1

0 (Ω) and integrating by parts, one obtains
ˆ
Ω\Σ
∇ψ · ∇φdx =

ˆ
Ω\Σ

fφdx−
ˆ
Σ

gφdΣ =: 〈F, φ〉H−1×H1
0
,

as a result of the regularities of f and g. The Lax-Milgram Lemma implies existence of a unique
weak solution ψ ∈ H1

0 (Ω) to (3.44) with (h, gb) = 0.
Step 3: Truncation. Since the problem (3.44) with Neumann boundary conditions on ∂Ω has
been uniquely solved, see e.g. Prüss–Simonett [PS16, Proposition 8.6.1], we show the propostion
by a truncation method. More specifically, we choose a cutoff function η ∈ C∞

0 (Ω) such that

η(x) =

{
1, in a neighborhood of Ω−,

0, in a neighborhood of Ω+,

We decompose ψ = ηψ + (1− η)ψ =: u1 + u2, where u1 solves

−∆u1 = ηf − 2∇η · ∇ψ + ψ∆η =: f1 in Ω\Σ,J∂νu1K = J∂νψK = g on Σ,JuK = JψK = 0 on Σ,

∂νu1 = 0 on ∂Ω,

weakly and u2 solves

−∆u2 = (1− η)f + 2∇η · ∇ψ − ψ∆η =: f2 in Ω,

u2 = 0 on ∂Ω.

Step 4: Improving the regularity. From Step 2, we already know that (3.44) admits a unique
weak solution ψ enjoying the regularity ∇ψ ∈ L2(Ω), which means f i ∈ L2(Ω) in Step 3. By
classical elliptic theory and [PS16], one obtains u1 ∈ H2(Ω\Σ), u2 ∈ H1

0 (Ω) ∩ H2(Ω). Then
ψ ∈ H1

0 (Ω) ∩H2(Ω\Σ). Moreover,

∇ψ ∈ H1(Ω\Σ) ↪→


Lp(Ω\Σ), if 1 ≤ p <∞, n = 2,

Lp(Ω\Σ), if 1 ≤ p ≤ p∗ :=
2n

n− 2
, n > 2,

due to the Sobolev Embedding Theorem. For n = 2, the right-hand side terms f1 and f2 in
Step 3 are contained in Lp(Ω\Σ), 1 ≤ p < ∞. Consequently with p = q, Proposition 8.6.1 and
Corollary 7.4.5 in Prüss–Simonett [PS16] indicate that u1 ∈ W 2

q (Ω\Σ) and u2 ∈ W 2
q (Ω), which

implies ψ ∈ W 2
q (Ω\Σ). For n > 2, we have f i ∈ Lp∗ , i = 1, 2. Again by regularity results in

[PS16], we have u1 ∈W 2
p∗(Ω\Σ) and u2 ∈W 2

p∗(Ω) and hence

∇ψ ∈W 1
p∗(Ω\Σ) ↪→


Lp(Ω\Σ), 1 ≤ p <∞, n = q∗,

Lp(Ω\Σ), 1 ≤ p ≤ p∗∗ :=
np∗

n− p∗
, n > p∗,

Cα(Ω\Σ), 0 < α ≤ 1− n

p∗
2 < n < p∗.
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For the first and third cases, we find f i ∈ Lp(Ω\Σ), i = 1, 2, 1 ≤ p < ∞, and then get the
regularity of ψ. For the second case, we know p∗∗ = np∗

n−p∗ > p∗. Therefore, by a bootstrap-
ping argument, we can always increase the integration exponent until we obtain Lq. Thus, by
Proposition 8.6.1 and Corollary 7.4.5 in Prüss–Simonett [PS16], one obtains u1 ∈W 2

q (Ω\Σ) and
u2 ∈W 2

q (Ω), i.e., ψ ∈W 2
q (Ω\Σ) with the estimate

‖ψ‖W 2
q (Ω\Σ) ≤ C

(
‖f‖Lq(Ω\Σ) + ‖g‖

W
1− 1

q
q (Σ)

+ ‖h‖
W

2− 1
q

q (Σ)
+ ‖gb‖

W
2− 1

q
q (∂Ω)

)
,

for some constant C > 0. Then as above, one gets f i ∈ W 1
q (Ω\Σ), i = 1, 2. With the help of

Proposition 8.6.1 and Corollary 7.4.5 in Prüss–Simonett [PS16], we have the desired regularity
and estimate with s = 1.
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Chapter 4

Fluid-Structure Interaction Problem with Growth in
Cylindrical Domain

This chapter concerns a free-interface fluid-structure interaction prob-
lem for plaque growth with additional viscoelastic effects, which was
also investigated in Chapter 3 (see [AL23a] for the published version).
Compared to it, the problem is posed in a cylindrical domain with ninety-
degree contact angles, which brings additional difficulties when we deal
with the linearization of the system. By a reflection argument, we obtain
the existence and uniqueness of strong solutions to the model problems
for the linear systems, which are then shown to be well-posed in a cylin-
drical (annular) domain via a localization procedure. Finally, we prove
that the full nonlinear system admits a unique strong solution locally in
time with the aid of the contraction mapping principle.

Overview of This Chapter

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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Notations. In this chapter, we consider specifically the following notations.

• v, v̂, the Eulerian and Lagrangian velocity
• c, ĉ, cell concentrations
• c∗, ĉ∗ foam cell concentration
• g, ĝ, growth metrics
• F̂, the deformation gradient in terms of v̂
• F, the inverse deformation gradient

When there is no danger of confusion, we specify the quantities with a subscript “f” and “s”
to identify those defined in fluid domain and solid domain respectively. In addition, without a
special statement, the quantities or operators with a hat “̂·” will indicate those in Lagrangian
coordinates.



Chapter 4. FSIG in Cylindrical Domain

4.1. Introduction

In this chapter, we focus on a 3d free-boundary fluid-structure interaction problem for plaque
growth, which was also addressed in Chapter 3. To be more precise, the blood is assumed to be
described by the incompressible Navier–Stokes equation and the artery is modeled as an elastic
material with viscoelasticity, while inside the blood flow and vessel wall the cells react, leading to
the plaque formation, see e.g. Chapter 1 or Yang–Jäger–Neuss-Radu–Richter [Yan+16]. Define
Ωt := Ωt

f ∪Ωt
s ∪Σt ⊂ R3 (see Figure 4.1), with three disjoint parts, where Ωt

f , Ωt
s are piece-wise

smooth domains for the fluid and solid respectively, while Σt is a two dimensional sub-manifold of
R3 with boundary ∂Σt. In particular, ∂Ωt = Gt∪S, ∂Ωt

f = Gt
f ∪Σt and ∂Ωt

s = Gt
s∪Σt∪S, where

Ωt
f

Ωt
s

S

Gt
1 Gt

2

Σt

Figure 4.1: Deformed cylindrical domain.

Gt := Gt
1 ∪ Gt

2 ∪ ∂Σt is a hypersurface with Gt
β := Gt

1,β ∪ Gt
2,β , β ∈ {f, s}, Gt

i = Gt
i,f ∪ Gt

i,s,
Gt

i,f ⊂ Gt
i, i ∈ {1, 2}, and S denotes the fixed surrounding surface, which is supposed to be

perpendicular to Gt at ∂S. Moreover, Σt is assumed to be perpendicular to Gt at ∂Σt as well.
In such setting, the domain is endowed with the fixed contact line ∂S and moving contact line
∂Σt with ninety-degree contact angles for a short time, while in [AL23a], we considered a smooth
domain without contact.

Recalling from (1.36) and (1.37), we have

ρf (∂t + vf · ∇) vf = divTf , in Ωt
f , t ∈ (0, T ), (4.1a)

div vf = 0, in Ωt
f , t ∈ (0, T ), (4.1b)

ρs (∂t + vs · ∇) vs = divTs, in Ωt
s, t ∈ (0, T ), (4.1c)

ρs div vs = γβcs, in Ωt
s, t ∈ (0, T ), (4.1d)

∂tcf + vf · ∇cf − div(Df∇cf ) = 0, in Ωt
f , t ∈ (0, T ), (4.1e)

∂tcs + vs · ∇cs − div(Ds∇cs) = −βcs, in Ωt
s, t ∈ (0, T ), (4.1f)

∂tc
∗
s + vs · ∇c∗s = βcs, in Ωt

s, t ∈ (0, T ), (4.1g)

∂tg + vs · ∇g =
γβcs
3ρs

, in Ωt
s, t ∈ (0, T ), (4.1h)

JvK = 0, JTK nΣt = 0, on Σt, t ∈ (0, T ), (4.1i)JD∇cK · nΣt = 0, ζ JcK−Ds∇cs · nΣt = 0, on Σt, t ∈ (0, T ), (4.1j)
vs = 0, on S, t ∈ (0, T ), (4.1k)

Ds∇cs · nS = 0, on S, t ∈ (0, T ), (4.1l)
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4.1. Introduction

PGt(v) = 0, (TnGt)nGt = 0, on Gt \ Σt, t ∈ (0, T ), (4.1m)
D∇c · nGt = 0, on Gt \ Σt, t ∈ (0, T ), (4.1n)

v|t=0 = v0, c|t=0 = c0, c∗s|t=0 = 0, g|t=0 = 1, (4.1o)

where ρf > 0 is the fluid density. The tensor Tf = −πf I+ νf (∇vf +∇v⊤
f ) denotes the Cauchy

stress tensor, the unknown function πf is the fluid pressure and νf > 0 represents the fluid
viscosity. For the solid, the constant ρs > 0 is the solid density. The tensor Ts = Te

s +Tv
s stands

for the stress tensor satisfying

Te
s = −πsI+ µs

(
F−1
s,eF−⊤

s,e − I
)
, Tv

s = νs
(
∂tF−1

s + ∂tF−⊤
s

)
F−⊤
s .

Here, πs denotes the solid pressure, µs, νs represents the Lamé coefficient and viscosity respec-
tively, which are all constant. The elastic tensor Te

s is given by the constitutive relation of an
incompressible Neo-Hookean material, which is hyperelastic, isotropic and incompressible. Note
that Fs = F̂−1

s is the inverse deformation gradient and Fs,e denotes an inverse elastic tensor
under the assumption of growth as in Section 3.1. Similarly, the Kelvin–Voigt stress tensor Te

s

is introduced. For more discussions about it, readers are referred to Chapter 1.
The conditions (4.1i) and (4.1j) on the interface are exactly the same as in Chapter 3.

Moreover, S is supposed to be the rigid part of the boundary, i.e.,

vs = 0 on S, (4.2)

which means that the outside of the blood vessel is fixed.
Now for the boundary conditions on Gt, we need a more careful consideration to make sure

that they are physically meaningful and compatible to the conditions on S and Σt respectively.
In this work, the outflow conditions (4.1m) is employed, where PGt := I−nGt ⊗nGt denotes the
tangential projection onto Gt.
Remark 4.1. We comment that Gt is a free surface. Since the vessel is cut in the Lagrangian
coordinate, the cross sections then turn to be free when we recovered it in the Eulerian coordinate.
In general, it can be static with suitable boundary conditions.
Remark 4.2. Now we discuss more about the choice of the outflow boundary conditions on Gt.

(1) The boundary condition is not possible to be of the Dirichlet type, i.e., no-slip condition.
On one hand, a Dirichlet boundary yields a the rigid part. For example v = 0 means that
the displacement

´ t
0

vdt = 0 vanishes on the boundary, which contradicts our consideration,
as in Remark 4.1. On the other hand, a no-slip condition leads to an incompatibility at
the moving contact lines ∂Σt. Specifically, on the interface Σt the normal velocity is
VΣt := v · nΣt , while at ∂Σt one derives VΣt = 0 according to the vanishing Dirichlet
condition, contradicting a “moving contact line” setting.

(2) In some literature, e.g. [GT18, GT23], the well-known Navier-slip condition was employed
for the slip of the fluid along the solid with dynamic contact lines, while in [Wil13], Wilke
showed that an incompatibility with moving contact lines happens for a two-phase Navier–
Stokes problem in a cylindrical domain. So they considered a so-called pure-slip condition.
However, in our model, the surface Gt is not supposed to be fixed and it is physically
meaningless if we take the pure-slip condition into account. Thus, an outflow boundary
condition is proper and fits to the reality of the blood flow in a vessel if we cut the human
vessels along the cross section to get a bounded domain.

(3) For the sake of analysis, the outflow condition allows for a reflection argument at the contact
lines so that the reflected solutions of model problems are endowed with the symmetry, in
view of the divergence-free condition of the solutions. See Section 4.3 for more details.
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Chapter 4. FSIG in Cylindrical Domain

For further analysis, we define the initial domain as Ω = Ωf ∪ Ωs ∪ Σ, where Ωf := Ω0
f ,

Ωs := Ω0
s and Σ := Σ0 that is supposed to be perpendicular to the assumed flat initial surface

G := G0 at ∂Σ just like S. Then the deformation from initial configuration to current one is
defined via a motion ϕ with

x = ϕ(X, t) = X +

ˆ t

0

v̂(X, τ)dτ, ∀X ∈ Ω, (4.3)

as well as x|t=0 = ϕ(X, 0) = X. Then the deformation gradient has the form of

F̂(v̂)(X, t) = ∂

∂X
ϕ(X, t) = ∇̂ϕ(X, t) = I+

ˆ t

0

∇̂v̂(X, τ)dτ, (4.4)

for all X ∈ Ω with initial deformation F̂|t=0 = I and by Ĵ := det F̂ its determinant. Conversely,
we have the inverse deformation gradient by F(v)(x, t) = F̂−1. As in Section 1.6.1, we assume
the decomposition of F̂s as

F̂s = F̂s,eF̂s,g, in Ωs,

where F̂s,g is the growth tensor and F̂s,e represents the elastic tensor. Then the corresponding
determinants are

Ĵs,g = det F̂s,g, Ĵs,e = det F̂s,e, in Ωs,

with Ĵs = Ĵs,gĴs,e.
Moreover, with constant-density growth hypothesis, one ends up with (see (1.30) for the

derivation)
tr(F̂−1

s,g∂tF̂s,g) = γβcs, in Ωs.

In addition, the growth is assumed to be isotropic, i.e.,

F̂s,g = ĝI, in Ωs,

where ĝ = ĝ(X, t) is the metric of growth, a scalar function depending on the concentration of
macrophages. Hence,

F̂s,e =
1

ĝ
F̂s, Ĵs,g = ĝ3,

where 3 is the dimension of space. Consequently, under the assumption of constant-density
growth, one deduces the equation for growth in Lagrangian coordinates

∂tĝ =
γβĉs
3ρ̂s

ĝ, in Ωs. (4.5)

This shows the specific dependence of ĝ on ĉs.

4.1.1. A short review of contact angle problems. In Section 3.1.2, we already recalled the
literature of analysis of fluid-structure interaction problems. Concerning contact angle problems
in fluid dynamics, it is a challenging problem and is not yet well understood, especially with
moving contact lines and dynamic contact angles.

For the mathematical analysis, there are only limited results. Schweizer [Sch01] studied a 2D
Navier–Stokes problem with a fixed contact angle of π

2 . Bodea [Bod06] analysis a similar problem
with fixed π

2 contact angle in 3D channels with periodicity in one direction. The dynamics
of a 2D drop with fixed contact angle when the fluid is assumed to be governed by Darcy’
s law are investigated by Knüpfer–Masmoudi [KM13, KM15]. Related analysis of the fully
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stationary Navier–Stokes system with free, but unmoving boundary, was carried out in 2D by
Solonnikov [Sol95] with contact angle fixed at π, by Jin [JJ05] in 3D with angle π

2 . In recent
work [GT18, GT23], Guo–Tice considered (Navier–)Stokes equations that integrate boundary
conditions allowing for full motion of the contact points and angles. They prove that the solutions
exists globally close to equilibrium with contact angles between 0 and π, and decay to equilibrium
at an exponential rate. Tice–Wu [TW21] and [ZT17] proved corresponding results for the Stokes
droplet problem and established local existence results.

As far as we know, with a ninety-degree contact angle, Wilke [Wil13, Wil20] gave a complete
and outstanding analysis of two-phase Navier–Stokes equations with surface tension in cylindrical
domains, using the framework of maximal Lp-regularity theory. Then Rauchecker [Rau20] and
Rauchecker–Wilke [RW20] extended the results to a two-phase Navier–Stokes/Stefan problem
and a two-phase Navier–Stokes/Mullins–Sekerka system with boundary contact, respectively.
The general methods in these papers are the localization procedure and the key element is the
reflection argument for the model problems with respect to the linearized systems, thanks to the
assumption of ninety-degree contact angle. Considering various angles, Köhne–Saal–Westermann
[KSW21] proved that the solution of the stationary and the instationary Stokes equations subject
to perfect slip boundary conditions on a 2D wedge domain admits optimal regularity in the Lp-
setting, in particular it is W 2

p in space.

4.1.2. Main features. In Chapter 3, we firstly established the short time existence of strong
solutions to the considered plaque growth model including viscoelastic effects in a smooth domain
using the maximal regularity theory. Motivated by these preceding results above, especially
Wilke [Wil20], we will investigate the local existence of strong solutions to (4.1) in a cylindrical
domain. In other words, we attempt to extend the results in Chapter 3 to the system in a
cylindrical domain with ninety-degree contact angles, which is close to human arteries.

First of all, let us comment that we include the viscoelastic effects into the model as in
Chapter 3, which yields the parabolicity of the solid equation. To be precise, for a short time,
the term describing the Kelvin–Voigt viscoelasticity leads to a principal regularity part of the
equation, and yields a two-phase Stokes type problem for the linearized fluid-structure interaction
problem. This provides the solvabilities and maximal regularities of the solutions. Throughout
the proof based on the maximal regularity of type Lq that has been used in [PS10, PS16, Wil13],
one obtains a semi-flow for the free boundary problem in a natural phase space. In particular,
there is no loss of regularity and no more additional compatibility conditions needed. In this
work, we only consider the three dimensional case for the sake of simplicity. In fact, it could be
any dimension d ≥ 2 as long as q has a modification restriction with respect to d. This is also
an advantage of the maximal Lq-regularity theory.

In the present chapter, the boundary is not smooth any more since we have ninety-degree
contact angles, so even for the linear system, there seem to be no well-posedness result that can
be applied. To circumvent this problem, a localization procedure will be employed as in [PS16,
Wil20]. More precisely, under suitable partition of unity for the cylindrical domain, we try to
solve several kinds of model problems, for which we proceed using reflection arguments for the
model problems in quarter (bent) spaces and half (bent) spaces, thanks to the ninety-degree
contact angle. Then by a Neumann series argument, one can conclude the existence results of
model problems and derive the well-posedness for the related linear system. However, we have
no chance to consider all possible boundary conditions around the contact line, which play an
essential role in both physics and mathematics. For example, as commented in [Wil20] no-slip
condition may lead to a paradoxon for the moving contact line, see also e.g. [PS82, GT18, GT23]
and references therein. For the purpose they imposed a pure-slip condition on the boundary with
contact, which guarantees that a reflection argument can be used. As in Remark 4.2, an outflow
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boundary condition is chosen on the surface Gt in our work. Here on the one hand, the outflow
condition coincides with the situation of blood flow in vessels and does not violate the physical
reality of a moving contact line. On the other hand, the symmetry of the reflected solutions on
the boundary can be ensured from the perspective of mathematical analysis. For instance in the
three dimensional case, if one carries out the reflection argument for Stokes equations in a quarter
space with respect to x2 = 0, the divergence-free condition divu = ∂1u1+∂2u2+∂3u3 = 0 should
also hold on x2 = 0. Then once u1, u3 are odd function with regard to x2 = 0, ∂2u2 must be an
odd function, which is exactly associated with the outflow boundary condition.

Moreover, due to the presence of the outflow boundary condition on G in (4.10), when we
applied the localization argument, several auxiliary problems, namely, elliptic/Laplace transmis-
sion problem in a cylindrical domain with a Dirichlet boundary condition on G and parabolic
transmission problem with a Neumann boundary condition, are involved, see Section 4.7. Note
that in [Wil20], similar auxiliary problems defined in a vertical cylindrical domain with a hori-
zontal interface instead were analyzed. Our results in Section 4.7 are the extensions to [Wil20,
Appendix 5.3], where a Neumann boundary condition was impose on the vertical surface.

Let us finally point out that one of our main results obtained is the well-posedness of the
nonstationary two-phase Stokes problem in a general cylindrical domain with an outflow bound-
ary condition and a ninety-degree contact angle, as well as the heat equation in both a cylindrical
domain and a cylindrical annular domain. Since we considered the general situation of the do-
main, i.e., smooth hypersurfaces S and Σ, the results can be applied to solve broader nonlinear
problems.

4.1.3. Outline. In Section 4.2 we reformulate the system by transferring the system from the
deformed configuration to the reference one, and present the well-posedness theorems for the lin-
earized systems in Subsection 4.2.2. Section 4.3 is devoted to the analysis of the corresponding
model problems. The main results of this section are well-posedness of these new model prob-
lems with outflow boundary conditions. In particular, the reflection argument is employed to
investigate the solvability of a two-phase Stokes equation with boundary contact, as well as two
heat equations. In Section 4.4, we make an observation of additional regularity of the pressure
for the first step. Then the reduction argument is carried out for the sake of analysis. Finally
we prove the well-posedness of the two-phase Stokes equation in general cylindrical domain by a
localization procedure. Based on the solvability results in the previous section, in Section 4.5 the
full nonlinear system is shown to be well-posed locally via the Banach fixed-point theorem. In
addition, the existence of a partition of our domain is given in Section 4.6 and the existence and
uniqueness of auxiliary elliptic and parabolic transmission problems are analyzed in Section 4.7.

4.2. Preliminaries

4.2.1. Reformulation in the reference configuration. In this section, we transform the
free-interface fluid-structure problem with growth from the deformed configuration to a fixed
reference configuration and state the main result. For quantities in different configurations, we
define

v̂(X, t) = v(x, t), π̂(X, t) = π(x, t), T̂(X, t) = T(x, t),
ρ̂(X, t) = ρ(x, t), µ̂(X, t) = µ(x, t), ν̂(X, t) = ν(x, t),

(4.6)

for all x = ϕ(X, t), X ∈ Ω and t ≥ 0. For the fluid part, it follows from Proposition 1.12 that

Ĵf = 1, in Ωf . (4.7)
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For the solid part, since the deformation from natural configuration Ωg
s to the deformed config-

uration Ωt
s conserves mass, incompressibility yields Ĵs,e = 1 and hence

Ĵs = Ĵs,g = ĝn, in Ωs.

Now combining Propositions 1.12, 1.15 and 1.65, and Theorem 1.35, we rewrite the fluid–
structure interaction problem (4.1) in Lagrangian coordinate and rearrange the equation to obtain
the system for t ∈ J := (0, T ), T > 0,

ρ̂f∂tv̂f − d̂iv S(v̂f , π̂f ) = Kf

d̂iv v̂f = Gf

}
in Ωf × J,

ρ̂s∂tv̂s − d̂iv S(v̂s, π̂s) = K̄s + Kg
s =: Ks

d̂iv v̂s −
γβ

ρ̂s
ĉs = Gs

 in Ωs × J,

Jv̂K = 0, JS(v̂, π̂)K n̂Σ = H1 on Σ× J,
PG(v̂) = H2, S(v̂, π̂)n̂G · n̂G = H3 on G\Σ× J,

v̂s = 0 on S × J,
v̂|t=0 = v̂0 in Ω\Σ, (4.8)

∂tĉf − D̂f �̂ ĉf = F 1
f in Ωf × J,

∂tĉs − D̂f �̂ ĉs = F̄ 1
s + F g

s =: F 1
s in Ωs × J,

D̂f ∇̂ĉf · n̂Σ = D̂s∇̂ĉs · n̂Σ + F̄ 2
f =: F 2

f

D̂s∇̂ĉs · n̂Σ = ζ JĉK + F̄ 2
s =: F 2

s

}
on Σ× J,

D̂∇̂ĉ · n̂G = F 3 on G\∂Σ× J,
D̂s∇̂ĉs · n̂S = F 4 on S × J,

ĉ|t=0 = ĉ0 in Ω\Σ,

∂tĉ
∗
s − βĉs = F 5, ∂tĝ −

γβ

nρ̂s
ĉs = F 6 in Ωs × J,

ĉ∗s|t=0 = 0, ĝ|t=0 = 1 in Ωs,

where S(v̂, π̂) = −π̂I+ ν̂
(
∇̂v̂ + ∇̂v̂⊤

)
and

Kf = d̂iv K̃f , K̄s = d̂iv K̃s, Kg
s = −

(
T̂sF̂−⊤

s

) n∇̂ĝ
ĝ

,

G = −
(

F̂−⊤ − I
)
: ∇̂v̂, H1 = −

r
K̃

z
n̂Σ,

H2 = −
(
I−

(
(F̂−⊤n̂G)⊗ (F̂−⊤n̂G)− n̂G ⊗ n̂G

))
v̂,

H3 = −T̂F̂−⊤n̂G · (F̂−⊤n̂G) + S(v̂, π̂)n̂G · n̂G, F 1
f = d̂iv F̃f , (4.9)

F̄ 1
s = d̂iv F̃s, F g

s = −βĉs
(
1 +

γ

ρ̂s
ĉs

)
− n∇̂ĝ

ĝ
·
(
D̂sF̂−1

s F̂−⊤
s ∇̂ĉs

)
,

F̄ 2
f = −

r
F̃

z
· n̂Σ, F̄ 2

s = −F̃s · n̂Σ, F 3 = F̃ · n̂G, F 4 = −F̃s · n̂S ,

F 5 = −γβ
ρ̂s
ĉsĉ

∗
s, F 6 = − γβ

nρ̂s
ĉs (ĝ − 1) ,
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with

T̂f = −π̂f I+ ν̂f

(
F̂−1
f ∇̂v̂f + ∇̂v̂⊤

f F̂−⊤
f

)
, T̂s = T̂e

s + T̂v
s ,

T̂e
s = −π̂sI+ µ̂s

(
1

(ĝ)2
F̂sF̂⊤

s − I
)
, T̂v

s = ν̂s

(
∇̂v̂s + ∇̂v̂⊤

s

)
F̂⊤
s ,

K̃f = −π̂f
(

F̂−⊤
f − I

)
+ νf

(
F̂−1
f ∇̂v̂f + ∇̂v̂⊤

f F̂−⊤
f

)(
F̂−⊤
f − I

)
+ νf

((
F̂−1
f − I

)
∇̂v̂f + ∇̂v̂⊤

f

(
F̂−⊤
f − I

))
,

K̃s = −π̂s
(

F̂−⊤
s − I

)
+ µs

(
1

ĝ2

(
F̂s − I

)
+

(
1

ĝ2
− 1

)
I−

(
F̂−⊤
s − I

))
,

F̃ = D̂
(

F̂−1F̂−⊤ − I
)
∇̂ĉ.

For (4.8), we introduce the corresponding function spaces for the solutions

Ev̂(J) :=
{

v ∈W 1
q (J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3) : JvK = 0, v|S = 0

}
,

Eπ̂(J) :=


π ∈ Lq(J ; Ẇ 1

q (Ω\Σ)) :JπK ∈W 1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

π|G ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ))

 ,

Eĉ(J) :=W 1
q (J ;L

q(Ω)) ∩ Lq(J ;W 2
q (Ω\Σ)),

Eĉ∗s (J) :=W 1
q (J ;W

1
q (Ωs)), Eĝ(J) :=W 1

q (J ;W
1
q (Ωs)),

E(J) := Ev̂ × Eπ̂ × Eĉ × Eĉ∗s
× Eĝ,

as well as the spaces for initial data

Xγ,v̂ :=W
2− 2

q
q (Ω\Σ)3, Xγ,c :=W

2− 2
q

q (Ω\Σ), Xγ := Xγ,v̂ ×Xγ,c.

Then the main result of (4.8) reads as follows.
Theorem 4.3. Let q > 5, Ω ⊂ R3 be a domain defined as above with Σ, G, S of class C3 and

∂G, ∂Σ of C4 as well. Given (v̂0, ĉ0) ∈ Xγ satisfying the compatibility conditions

div v̂0 = 0, PG(v̂0)
∣∣
G
= 0, v̂0

∣∣
S
= 0,

q
v̂0

y
= 0, PΣ

q
µ(∇v̂0 + (∇v̂0)⊤)νΣ

y
= 0,

ζ
q
ĉ0

y
− D̂s∇̂ĉ0s · n̂Σ = 0,

r
D̂∇̂ĉ0

z
· n̂Σ = 0, D̂∇̂ĉ0 · n̂G

∣∣
G\∂Σ = 0.

Then there exists a positive T0 = T0(‖(v̂0, ĉ0)‖Xγ
) < ∞ such that for J := (0, T ), 0 < T < T0,

(4.8) admits a unique solution (v̂, π̂, ĉ, ĉ∗s, ĝ) ∈ E(J).
The proof of Theorem 4.3 relies on the Banach fixed-point theorem. More specifically, we

need to prove that the linearized operator defines an isomorphism and construct a contraction
mapping from the solutions to the nonlinear data.
Remark 4.4. We comment here that in [AL23a], it was shown that the cell concentrations are
nonnegative, which is not clear in the present case. The problem comes up with the contact line
formulated in the problem, that is, the boundaries for both cf and cs are not smooth anymore.
Remark 4.5. Here for nonlinear well-posedness, we assume q > 5. In fact, q > 3 is enough
to argue in the Lagrangian coordinates. If additionally, we have q > 5 = 3 + 2, one has the
embedding

W 1
q (J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3) ↪→ C(J̄ ;C1(Ω\Σ)3).
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Then the Lagrangian flow map ϕ defined in (4.3) above is endowed with regularity C1(J̄ ;C1(Ω\Σ)3).
Hence all the regularities can be transformed to Eulerian coordinates.

4.2.2. Linearization. Let J := (0, T ) with T > 0. Now we consider the linear systems sepa-
rately, namely,

1). Two-phase Stokes problem in a cylindrical domain

ρ∂tu− divSµ(u, π) = fu, in Ω\Σ× J,
divu = fd, in Ω\Σ× J,JuK = g1, on Σ× J,q

−πI+ µ(∇u+∇u⊤)
y
νΣ = g2, on Σ× J,

(u1, u3)
⊤ = g3, on G\∂Σ× J,

−π + 2µ∂2u2 = g4, on G\∂Σ× J,
u = g5, on S × J,

u(0) = u0, in Ω\Σ.

(4.10)

where Sµ(u, π) = −πI + µ(∇u + ∇u⊤). ρ, µ > 0 are constants representing the density and
viscosity, respectively. νΣ denotes the unit normal vector on Σ, pointing from Ωf to Ωs.

For the maximal regularity setting, we define the suitable function spaces for solutions and
data with q > 3, as

u ∈ Eu(J) :=W 1
q (J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3),

π ∈ Eπ(J) :=


π ∈ Lq(J ; Ẇ 1

q (Ω\Σ)) :JπK ∈W 1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

π|G ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ))

 .

The additional regularities for π on Σ and G come from the Neumann trace of u on both
boundaries. If (u, π) is a solution of (4.10), the necessary regularity classes for the data are
subsequently given by

u0 ∈ Xγ,u :=W
2− 2

q
q (Ω\Σ)3, fu ∈ F1(J) := Lq(J ;Lq(Ω)3),

fd ∈ F2(J) :=W 1
q (J ; Ẇ

−1
q (Ω)) ∩ Lq(J ;W 1

q (Ω\Σ)),

g1 ∈ F3(J) :=W
1− 1

2q
q (J ;Lq(Σ)3) ∩ Lq(J ;W

2− 1
q

q (Σ)3),

g2 ∈ F4(J) :=W
1
2−

1
2q

q (J ;Lq(Σ)3) ∩ Lq(J ;W
1− 1

q
q (Σ)3),

g3 ∈ F5(J) :=W
1− 1

2q
q (J ;Lq(G)2) ∩ Lq(J ;W

2− 1
q

q (G\∂Σ)2),

g4 ∈ F6(J) :=W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)),

g5 ∈ F7(J) :=W
1− 1

2q
q (J ;Lq(S)) ∩ Lq(J ;W

2− 1
q

q (S)3).

Then it is necessary to consider the compatibility conditions at t = 0, that is,

divu0 = fd|t=0 , ((u0)1, (u0)3)
⊤|G = g3|t=0 , u0|S = g5|t=0 ,Ju0K = g1|t=0 , PΣ

q
µ(∇u0 +∇u⊤0 )νΣ

y
= PΣg2|t=0 ,

(4.11)
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where PΣ := I − νΣ ⊗ νΣ denotes the tangential projection of νΣ.
Moreover, the following compatibility conditions at the contact lines ∂G and ∂Σ must be

satisfied as well.

g3 = ((g5)1, (g5)3)
⊤, at ∂G, Jg3K = ((g1)1, (g1)3)

⊤, at ∂Σ,
(g2)1 = J2µ∂1(g3)1νΣ · e1 + µ(∂1(g3)2 + ∂3(g3)1)νΣ · e3K

+ Jg4 − 2µfdK νΣ · e1 + J2µ(∂1(g3)1 + ∂3(g3)2)K νΣ · e1, at ∂Σ,
(g2)3 = J2µ∂3(g3)2νΣ · e3 + µ(∂1(g3)2 + ∂3(g3)1)νΣ · e1K

+ Jg4 − 2µfdK νΣ · e3 + J2µ(∂1(g3)1 + ∂3(g3)2)K νΣ · e3, at ∂Σ.

(4.12)

Remark 4.6. For fd, we assume the regularity W 1
q (J ; Ẇ

−1
q (Ω)), which is due to the divergence

equation in (4.10) and the regularity u ∈ W 1
q (J ;L

q(Ω)). A similar but different condition
was employed in Wilke [Wil20, Section 1.2], where they considered the Dirichlet and pure-slip
boundary conditions around the contact line. Such setting gives rise to a compatibility identity
for fd and data associated with the normal component of velocities on each boundary and
the interface. Readers are also referred to e.g. Prüss–Simonett [PS16, Section 7.3 and (8.2)].
The difference comes up with the consideration of outflow boundary condition, which is not
endowed with the normal component of velocity. In our previous work [AL23a], the stress-free
boundary is considered and hence we also have an additional regularity for fd without the hidden
compatibility identity, see also Prüss–Simonett [PS16, Page 338].

Let E(J) := Eu(J) × Eπ(J) and F(J) := Π7
j=1Fj(J). Now we give the theorem for the

two-phase Stokes problem in a cylindrical domain, whose proof is postponed in Section 4.4.3.
Theorem 4.7. Let ρ, µ > 0, q > 3. Assume that Ω ⊂ R3 is the domain defined in Theorem

4.3 with Σ, G, S of class C3 and ∂G, ∂Σ of C4 as well. Then there exists a unique solution

(u, π) ∈ E(J)

of (4.10) if and only if the data are subject to the following regularity and compatibility conditions:

(1) (fu, fd, g1, g2, g3, g4, g5) ∈ F(J),

(2) u0 ∈ Xγ,u,

(3) compatibility conditions (4.11) and (4.12) hold.

2). Heat equation in a cylindrical domain

∂tcf −Df∆cf = fc,f , in Ωf × J,
Df∇cf · νGf∪Σ = g6, on Gf ∪ Σ× J,

cf (0) = c0,f , in Ωf ,

(4.13)

where Df > 0 is the diffusivity. As above, we need the regularity classes of solutions and data
for the maximal regularity setting. More specifically,

cf ∈ Ec,f (J) :=W 1
q (J ;L

q(Ωf )) ∩ Lq(J ;W 2
q (Ωf )),

with the data

c0,f ∈ Xγ,cf :=W
2− 2

q
q (Ωf ), fc,f ∈ F8(J) := Lq(J ;Lq(Ωf )),

g6 ∈ F9(J) :=W
1
2−

1
2q

q (J ;Lq(Gf ∪ Σ)) ∩ Lq(J ;W
1− 1

q
q (Gf ∪ Σ)).
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Moreover, concerning the compatibility conditions at t = 0 and the contact line ∂Σ ∩ Gf , for
q > 3 we have

Df∇c0,f · νG2∪Σ|G2∪Σ = g6|t=0 , on Gf ∪ Σ,

∂νGf
(g6|Σ) = ∂νΣ(g6|Gf

), at ∂Σ.
(4.14)

Theorem 4.8. Let Df > 0, q > 3. Assume that Ωf ⊂ R3 is the domain defined in Theorem
4.3 with Σ, Gf of class C3 and ∂Σ of C4 as well. Then there exists a unique solution

cf ∈ Ec,f (J)

of (4.13) if and only if the data are subject to the following regularity and compatibility conditions:

(1) (fc,f , g6) ∈ F8(J)× F9(J),

(2) c0,f ∈ Xγ,cf ,

(3) compatibility condition (4.14) holds.

3). Heat equation in a cylindrical ring

∂tcs −Ds∆cs = fc,s, in Ωs × J,
Ds∇cs · ν∂Ωs

= g7, on ∂Ωs × J,
cs(0) = c0,s, in Ωs,

(4.15)

where ∂Ωs := Σ ∪ S ∪Gs, Ds > 0 is the diffusivity. As above, we need the regularity classes of
solutions and data for the maximal regularity setting. More specifically,

cs ∈ Ec,s(J) :=W 1
q (J ;L

q(Ωs)) ∩ Lq(J ;W 2
q (Ωs)),

with the data

c0,s ∈ Xγ,cf :=W
2− 2

q
q (Ωs), fc,s ∈ F10(J) := Lq(J ;Lq(Ωs)),

g7 ∈ F11(J) :=W
1
2−

1
2q

q (J ;Lq(∂Ωs)) ∩ Lq(J ;W
1− 1

q
q (∂Ωs)).

Moreover, concerning the compatibility conditions at t = 0, for q > 3 we have

Df∇c0,s · ν∂Ωs |∂Ωs
= g7|t=0 ,

∂νGs
(g7|Σ) = ∂νΣ

(g7|Gs
), at ∂Σ, ∂νGs

(g7|S) = ∂νS
(g7|Gs

) at ∂S.
(4.16)

Theorem 4.9. Let Ds > 0, q > 3. Assume that Ωs ⊂ R3 is the domain defined in Theorem
4.3 with Σ, Gs, S of class C3 and ∂Σ, ∂G of C4 as well. Then there exists a unique solution

cs ∈ Ec,s(J)

of (4.10) if and only if the data are subject to the following regularity and compatibility conditions:

(1) (fc,s, g8) ∈ F10(J)× F11(J),

(2) c0,s ∈ Xγ,cs ,

(3) compatibility condition (4.16) holds.
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4). ODEs in a cylindrical ring
∂tc

∗
s − β1cs = fc∗ , in Ωs × J,

∂tg − β2cs = fg, in Ωs × J,
c∗s(0) = 0, g(0) = 1, in Ωs,

(4.17)

where β1 = β, β2 = γβ/3ρs. Since both equations in (4.17) are ordinary differential equation, if
cs is the solution of (4.15), then one obtains

c∗s ∈W 1
q (J ;W

1
q (Ωs)), g ∈W 1

q (J ;W
1
q (Ωs)),

provided that
fc∗ ∈ Lq(J ;W 1

q (Ωs)), fg ∈ Lq(J ;W 1
q (Ωs)).

4.3. Model Problems

As in [PS16] and [Wil20], a localization argument will be employed to prove the existence
and uniqueness of the solution to (4.10)–(4.17). Since the linearized decoupled systems are a two-
phase Stokes problem, two heat equations and two ODEs, we apply the localization procedure
to each system. To this end, we study nine different types model problems, which are:

• the two-phase Stokes equations with a flat interface and without any boundary condition
• the full space heat equations (without any boundary or interface conditions)
• the Stokes equations with outflow boundary conditions in a half-space and no interface
• the Stokes equations with no-slip boundary conditions in a half-space and no interface
• the heat equations with Dirichlet or Neumann boundary conditions in a half-space and no

interface
• the Stokes equations in quarter-spaces with outflow conditions on one part of the boundary

and no-slip boundary conditions on the other part
• the two-phase Stokes equations with outflow boundary conditions, a flat interface and a

contact angle of 90 degrees in a half-space
• the heat equations in quarter-spaces with Neumann boundary conditions.

Remark 4.10. As the first five problems are well understood, see e.g. Prüss–Simonett [PS16],
we focus on the remaining three ones. Note that in [Wil20], Wilke studied model problems for
the Stokes equations with pure slip boundary conditions in a quarter-space, as well as for the
two-phase Stokes equations with pure slip boundary conditions in a half-space, our consideration
extends his results to such model problems with outflow boundary conditions, which is reasonable
if we cut the human vessels virtually.

4.3.1. The Stokes equations in quarter-spaces. For convenience, we define Ω := R×R+×
R+, G := R× {0} × R+ and S := R× R+ × {0}. Now let us firstly consider the system

ρ∂tu− divSµ(u, π) = f, in Ω× J,
divu = fd, in Ω× J,

(u1, u3)
⊤ = 0, on G× J,

−π + 2µ∂2u2 = g2, on G× J,
u = g3, on S × J,

u(0) = 0, in Ω× J,

(4.18)
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where Sµ(u, π) = −πI+ µ(∇u+∇u⊤). Then we have the following theorem related to (4.18).
Theorem 4.11. Let q > 3/2, q 6= 3, T > 0, ρ, µ > 0 and J = (0, T ). Assume that G,S ∈ C3

and ∂G is of class C4. Then there exists a unique solution

u ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω)

3),

π ∈ Lq(J ; Ẇ 1
q (Ω)), π|G ∈W

1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G))

of (4.18) if and only if the data satisfy the following regularity and compatibility conditions:

(1) f ∈ Lq(J ;Lq(Ω)3),

(2) fd ∈ 0W
1
q(J ; Ẇ

−1
q (Ω)) ∩ Lq(J ;W 1

q (Ω)),

(3) g2 ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

(4) g3 ∈ 0W
1− 1

2q
q (J ;Lq(S)3) ∩ Lq(J ;W

2− 1
q

q (S)3),

(5) ((g3)1, (g3)3)
⊤|G∩S = 0.

Proof. To deal with the well-posedness of the Stokes equations in quarter-spaces, we extend the
data suitably to the half-space and solve the Stokes equations in half space. For this purpose,
we firstly extend the function

fd ∈ 0W
1
q(J ; Ẇ

−1
q (Ω)3) ∩ Lq(J ;W 1

q (Ω)
3)

with respect to x3 by

f̃d(t, x1, x2, x3) =

{
fd(t, x1, x2, x3), if x3 > 0,

− fd(t, x1, x2,−2x3) + 2fd(t, x1, x2,−x3/2), if x3 < 0.
(4.19)

to
f̃d ∈ 0W

1
q(J ; Ẇ

−1
q (R× R+ × R)3) ∩ Lq(J ;W 1

q (R× R+ × R)3).

By the same extension, we have the extended functions

f̃ ∈ Lq(J ;Lq(R× R+ × R)3),

g̃2 ∈W
1
2−

1
2q

q (J ;Lq(R× {0} × R)) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R)).

Now one solves the auxiliary half-space Stokes problem

ρ∂tu− divSµ(u, π)µ = f̃ , in R× R+ × R× J,
divu = f̃d, in R× R+ × R× J,

(u1, u3)
⊤ = 0, on R× {0} × R× J,

−π + 2µ∂2u2 = g̃2, on R× {0} × R× J,
u(0) = 0, in R× R+ × R,

(4.20)

and obtains a unique solution (see e.g. [BP07, Theorem 6.1] or [PS16, Theorem 7.2.1])

ũ ∈ 0W
1
q(J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 2
q (R× R+ × R)3),

π̃ ∈ Lq(J ; Ẇ 1
q (R× R+ × R)), π̃|x2=0 ∈W

1
2−

1
2q

q (J ;Lq(R2)) ∩ Lq(J ;W
1− 1

q
q (R2)).
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If (u, π) is a solution of (4.18), then the function (u− ũ, π − π̃) solves

ρ∂tu−∆u+∇π = 0, in Ω× J,
divu = 0, in Ω× J,

(u1, u3)
⊤ = 0, on G× J,

−π + 2µ∂2u2 = 0, on G× J,
u = g3, on S × J,

u(0) = 0, in Ω,

(4.21)

with a modified data g3 (not to be relabeled) in the right regularity classes having a vanishing
trace at t = 0 and satisfying ((g3)1, (g3)3)

⊤|G∩S = 0. Note that the odd reflection does work
for functions in both W 1

q,0(Rn
+) and W 2

q (Rn
+) ∩W 1

q,0(Rn
+), the real interpolation implies that the

function in W s
q (Rn

+) ∩W 1
q,0(Rn

+) can be extended to W s
q (Rn), 1 < s < 2, as well. It follows from

divu = 0 that ∂2(g3)2 = ∂2u2 = −∂1u1 − ∂3u3 = 0 on G ∩ S. Thus, we extend ((g3)1, (g3)3) via
odd reflection and (g3)2 via even reflection along x2 to

g̃3 ∈ 0W
1− 1

2q
q (J ;Lq(R2 × {0})3) ∩ Lq(J ;W

2− 1
q

q (R2 × {0})3).

By Bothe–Prüss [BP07, Theorem 6.1] or Prüss–Simonett [PS16, Theorem 7.2.1], the half-space
Stokes problem

ρ∂tū−∆ū+∇π̄ = 0, in R× R× R+ × J,
div ū = 0, in R× R× R+ × J,

ū = g̃3, on R× R× {0} × J,
ū(0) = 0, in R× R× R+,

(4.22)

admits a unique solution satisfying

ū ∈ 0W
1
q(J ;L

q(R× R× R+)
3) ∩ Lq(J ;W 2

q (R× R× R+)
3),

π̄ ∈ Lq(J ; Ẇ 1
q (R× R× R+)).

With symmetry, we conclude that

(ǔ, π̌)(t, x1, x2, x3) := ((−û1, û2,−û3)⊤,−π̂)(t, x1,−x2, x3)

is a solution pair to (4.22) as well. It follows from the uniqueness that

ǔ(t, x1, x2, x3) = û(t, x1, x2, x3), π̌(t, x1, x2, x3) := π̂(t, x1, x2, x3)

and this yields

(û1, û3)(t, x1, 0, x3) = 0, ∂2û2(t, x1, 0, x3) = 0, π̂(t, x1, 0, x3) = 0.

Therefore, the restricted pair (u, π) := (ũ+ ū, π̃ + π̄) is the desired solution to (4.18).
Now we give a brief proof of the uniqueness. To this end, for a solution u to (4.18) with data

all reduced in a quarter-space, one reflects it by suitable extension operators with respect to x2
to a function ũ with ũ|x2>0 = u in a half-space. Note here reflecting along x3 is also an option
without a difference. Then by the uniqueness of Stokes equation in half-space, see e.g. [PS16,
Theorem 7.2.1], one concludes that ũ ≡ 0, which implies the uniqueness of u. This completes
the proof.
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4.3.2. The Stokes equations in bent quarter-spaces. Now we consider the case of bent
quarter spaces. Let θ ∈ BC2(R2) and x = (x′, x3), x′ = (x1, x2) such that

Ωθ :=
{
x ∈ R3 : x2 > 0, x3 > θ(x′)

}
.

Let ∇x′ = (∂1, ∂2)
⊤. Assume that ‖∇x′θ‖∞ ≤ η and

∥∥∇2
x′θ
∥∥
∞ ≤ M , M > 0, where η > 0 may

be chosen as small as we need. Define

Sθ :=
{
x ∈ R3 : x3 = θ(x′), x2 > 0

}
, Gθ :=

{
x ∈ R3 : x3 > θ(x′), x2 = 0

}
.

Moreover, denote the unit outer normal vector on Sθ by

νSθ
:=

1√
1 + |∇x′θ(x′)|2

(∇x′θ(x′),−1)⊤.

Now we consider the problem

ρ∂tu− divSµ(u, π) = f, in Ωθ × J,
divu = fd, in Ωθ × J,

(u1, u3)
⊤ = g1, on Gθ × J,

−π + 2µ∂2u2 = g2, on Gθ × J,
u = g3, on Sθ × J,

u(0) = u0, in Ωθ,

(4.23)

where Sµ(u, π) = −πI + µ(∇u + ∇u⊤) and ρ, µ > 0 are given constants. For given data
(f, fd, g1, g2, g3, u0), the following compatibility conditions hold:

divu0 = fd|t=0 , u0|Sθ
= g3|t=0 , ((u0)1, (u0)3)

⊤ = g1|t=0 , (4.24)
g1 = ((g3)1, (g3)3)

⊤, at the contact line Gθ ∩ Sθ. (4.25)

Reduction. To solve (4.23), we shall reduce it to the case (u0, f, g1, g2) = 0. For this purpose,
it is possible to extend u0 and f to some ũ0 ∈W 2−2/q

q (R3)3 and f̃ ∈ Lq(J ;Lq(R3)3) respectively
(for example, extend them to R× R+ × R by the extension (4.41) below and then extend them
to R3 by a standard extension operator). Then solving the full-space heat equation

ρ∂tu− µ∆u = f, in R3 × J,
u(0) = ũ0, in R3,

yields a solution
ũ ∈W 1

q (J ;L
q(R3)3) ∩ Lq(J ;W 1

q (R3)3).

For g̃1 := g1−((ũ)1, (ũ)3)⊤|Gθ
, g̃2 := g2− 2µ∂2ũ2|Gθ

and f̃d := fd−div ũ, it holds that g̃1|t=0 = 0

and f̃d|t=0 = 0 from (4.24). Analogously, one can suitably extend them to some function

ĝ1 ∈ 0W
1− 1

2q
q (J ;Lq(R× {0} × R)2) ∩ Lq(J ;W

2− 1
q

q (R× {0} × R)2),

ĝ2 ∈W
1
2−

1
2q

q (J ;Lq(R× {0} × R)2) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R)2),

f̂d ∈ 0W
1
q(J ; Ẇ

−1
q (R× R+ × R)) ∩ Lq(J ;W 1

q (R× R+ × R)).
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Then we solve the half-space Stokes equation with outflow boundary condition

ρ∂tu− Sµ(u, π) = 0, in R× R+ × R× J,

divu = f̂d, in R× R+ × R× J,
(u1, u3)

⊤ = ĝ1, on R× {0} × R× J,
−π + 2µ∂2u2 = ĝ2, on R× {0} × R× J,

u(0) = 0, in R× R+ × R,

and obtain a unique solution (û, π̂) satisfying

û ∈ 0W
1
q(J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 1
q (R× R+ × R)3),

π̂ ∈ Lq(J ; Ẇ 1
q (R× R+ × R)3), π̂|x2=0 ∈W

1
2−

1
2q

q (J ;Lq(R2)) ∩ Lq(J ;W
1− 1

q
q (R2)),

by Bothe–Prüss [BP07, Theorem 6.1] or Prüss–Simonett [PS16, Theorem 7.2.1]. If (u, π) is a solu-
tion of (4.23), then (ǔ, π̌) := (u−ũ−û, π−π̂) solves (4.23) with reduced data (u0, f, fd, g1, g2) = 0
and a modified function g3 (not to be relabeled) in the right regularity classes satisfying the com-
patibility conditions g3|t=0 = 0 and ((g3)1, (g3)3)

⊤ = 0 at the contact line Gθ ∩ Sθ by (4.25).

Transform to a quarter space. In this part, we transform the boundaries Sθ and Gθ to
S := R×R+×{0} and G := R×{0}×R+, respectively, and hence, Ωθ to Ω := R×R2

+. To this
end, we introduce the new variables x̄ := (x̄1, x̄2, x̄3) where x̄1 = x1, x̄2 = x2 and x̄3 = x3−θ(x′)
for x ∈ Ωθ. For (u, π) a solution to (4.23), set

ū(t, x̄) := u(t, x̄1, x̄2, x̄3 + θ(x̄′)), π̄(t, x̄) := π(t, x̄1, x̄2, x̄3 + θ(x̄′)).

for t ∈ J, x̄ ∈ Ω. In the same way we transform the data (fd, g2, g3) to (f̄d, ḡ2, ḡ3). Note that

∇θ = (∇x′θ, 0)⊤, ∇u = ∇ū− ∂x̄3
ū⊗∇θ,

divu = div ū−∇θ · ∂x̄3
ū, divT = divT − ∂x̄3

T∇θ,
(4.26)

where u, ū are vector-valued and T , T are tensor-valued functions. Then

∆u = div∇u = div(∇ū− ∂x̄3 ū⊗∇θ)
= ∆ū− ∂x̄3∇ū∇θ − div(∂x̄3 ū⊗∇θ) + ∂x̄3(∂x̄3 ū⊗∇θ)∇θ
= ∆ū− ∂x̄3

∇ū∇θ − (∇∂x̄3
ū)∇θ +∆θ∂x̄3

ū+ (∂2x̄3
ū⊗∇θ)∇θ.

(4.27)

In the following, we will write ∂x̄3 as ∂3 for the sake of readability. Consequently, for (ū, π̄), we
have the problem

ρ∂tū− µ∆ū+∇π̄ =M1(θ, ū, π̄), in Ω× J,
div ū =M2(θ, ū), in Ω× J,

(ū1, ū3)
⊤ = 0, on G× J,

−π̄ + 2µ∂2ū2 =M3(θ, ū), on G× J,
ū = ḡ3, on S × J,

ū(0) = 0, in Ω,

(4.28)

where M1, M2 and M3 are given by

M1(θ, ū, π̄) := µ
(
− 2∂3∇ū∇θ +∆θ∂3ū+ (∂23 ū⊗∇θ)∇θ

)
+∇θ(x̄′)∂3π̄,

M2(θ, ū) := ∇θ(x̄′) · ∂3ū, M3(θ, ū) := 2µ∂2θ(x̄
′)∂3ū2.
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Existence and uniqueness. Notice that (4.28) can be seen as a perturbation of (4.18) if data
are in the right regularity classes and ‖∇θ‖∞ ≤ η, where η > 0 is small enough. Since Theorem
4.11 holds, we are going to apply the Neumann series argument to (4.28). To this end, we employ
the similar regularity classes for (ū, π̄) and given data as in Wilke [Wil20, Section 1.3.2], namely,
define

0E(J) := 0Eu(J)× Eπ(J),

where

0Eu(J) :=
{
u ∈ 0W

1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω)

3) : (u1, u3)
⊤∣∣

G
= 0
}
,

Eπ(J) :=

{
π ∈ Lq(J ; Ẇ 1

q (Ω)) : π|G ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G))

}
,

and
F̃(J) := F1(J)× 0F2(J)× 0F3(J)× F4(J),

where

F1(J) := Lq(J ;Lq(Ω)3), 0F2(J) := 0W
1
q(J ; Ẇ

−1
q (Ω)) ∩ Lq(J ;W 1

q (Ω)),

0F3(J) := 0W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

F4(J) :=W
1− 1

2q
q (J ;Lq(S)3) ∩ Lq(J ;W

2− 1
q

q (S)3).

In addition, let

0F(J) :=
{
(f, fd, g2, g3) ∈ F̃(J) : ((g3)1, (g3)3)⊤ = 0 at the contact line G ∩ S

}
.

Now define an operator L : 0E(J)→ 0F(J) by

L(ū, π̄) :=


ρ∂tū− µ∆ū+∇π̄

div ū
−π̄ + 2µ∂2ū2|G

ū|S

 ,
which is an isomorphism by Theorem 4.11. For the right-hand side of (4.28), we set

M(θ, ū, π̄) := (M1(θ, ū, π̄),M2(θ, ū),M3(θ, ū), 0)
⊤

and

F := (0, 0, 0, f3)
⊤, f3 := ḡ3.

It is clear that F ∈ F̃(J), since θ ∈ C3(R2). Noticing that ((ḡ3)1, (ḡ3)3)
⊤ = 0, one obtains

F ∈ 0F(J).
To proceed with the Neumann series argument, we focus on the perturbation termM(θ, ū, π̄).

It can be verified easily that M(θ, ū, π̄) ∈ 0F(J) for each (ū, π̄) ∈ 0E(J), combining the smooth-
ness of θ. The only point that needs to be taken care of is M2(θ, ū) ∈ 0W

1
q(J ; Ẇ

−1
q (Ω)). By

integration by parts with respect to the x̄3, we have
ˆ
Ω

M2(θ, ū)φdx̄ = −
ˆ
Ω

∇θ · ū∂3φdx̄, for all φ ∈W 1
q′,0(Ω), (4.29)
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which yields the claim with ū ∈ 0Eu(J).
Then we rewrite (4.28) as

(ū, π̄) = L−1M(θ, ū, π̄) + L−1F.

Our aim in the following is to show that for each ε > 0, there exist T0 > 0 and η0 > 0 such that

‖M(θ, ū, π̄)‖
0F(J) ≤ ε ‖(ū, π̄)‖0E(J) , (4.30)

for 0 < T < T0 and 0 < η < η0.
Note that

0W
1
q(J ;L

q(Ω)) ∩ Lq(J ;W 2
q (Ω)) ↪→ 0W

1
2
q (J ;W

1
q (Ω)) ↪→ L2q(J ;W 1

q (Ω)),

is valid for every q > 1 and the embedding constant does not depend on T > 0, since ū|t=0 = 0.
Then direct calculations yield

‖M1(θ, ū, π̄)‖F1(J)

≤ C ‖∇θ‖∞ ‖(ū, π̄)‖0E(J) + ‖∇θ‖
2
∞ ‖ū‖0Eu(J)

+
∥∥∇2θ

∥∥
∞ ‖∇ū‖Lq(J;Lq(Ω))

≤ C ‖∇θ‖∞ ‖(ū, π̄)‖0E(J) + ‖∇θ‖
2
∞ ‖ū‖0Eu(J)

+ T
1
2q

∥∥∇2θ
∥∥
∞ ‖∇ū‖L2q(J;Lq(Ω))

≤ C(‖∇θ‖∞ (1 + ‖∇θ‖∞) + T
1
2q

∥∥∇2θ
∥∥
∞) ‖(ū, π̄)‖

0E(J) ,

(4.31)

where C > 0 does not depend on T > 0. For M2(θ, ū) = ∇θ(x̄′) · ∂3ū, we have

‖M2(θ, ū)‖0F2(J)
= ‖M2(θ, ū)‖Lq(J;W 1

q (Ω)) + ‖M2(θ, ū)‖
0W 1

q(J;Ẇ
−1
q (Ω)) .

The first term in the right-hand side above can be obtained by

‖M2(θ, ū, π̄)‖Lq(J;W 1
q (Ω))

≤ C ‖∇θ‖∞ ‖ū‖0Eu(J)
+
∥∥∇2θ

∥∥
∞ ‖ū‖Lq(J;W 1

q (Ω))

≤ C ‖∇θ‖∞ ‖ū‖0Eu(J)
+ T

1
2q

∥∥∇2θ
∥∥
∞ ‖ū‖L2q(J;W 1

q (Ω))

≤ C(‖∇θ‖∞ + T
1
2q

∥∥∇2θ
∥∥
∞) ‖ū‖

0Eu(J)

similarly to M1, while the second term follows from (4.29) that

‖M2(θ, ū, π̄)‖
0W 1

q(J;Ẇ
−1
q (Ω)) ≤ C ‖∇θ‖∞ ‖ū‖0Eu(J)

.

Then
‖M2(θ, ū)‖0F2(J)

≤ C(‖∇θ‖∞ + T
1
2q

∥∥∇2θ
∥∥
∞) ‖ū‖

0Eu(J)
. (4.32)

ForM3(θ, ū) = 2µ∂2θ(x̄
′)∂3ū2, one may need to verify both the regularity of 0W

1/2−1/2q
q (J ;Lq(G))

and Lq(J ;W
1−1/q
q (G)). To this end, we proceed by the definition of Sobolev–Slobodeckij space

that

‖M3(θ, ū)‖
0W

1
2
− 1

2q
q (J;Lq(G))

≤ C ‖∇θ‖∞ ‖∇ū‖
0W

1
2
− 1

2q
q (J;Lq(G))

≤ C ‖∇θ‖∞ ‖ū‖0Eu(J)
.

With the help of Sobolev trace theory, one derives that

‖M3(θ, ū)‖
Lq(J;W

1− 1
q

q (G))
≤ C ‖∇θ‖∞ ‖∇ū‖Lq(J;W 1

q (Ω)) ≤ C ‖∇θ‖∞ ‖ū‖0Eu(J)
.
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Then we arrive at
‖M3(θ, ū)‖0F3(J)

≤ C ‖∇θ‖∞ ‖ū‖0Eu
. (4.33)

Consequently, collecting (4.31) and (4.32) together yields

‖M(θ, ū, π̄)‖
0F(J) ≤ C(‖∇θ‖∞ (1 + ‖∇θ‖∞) + T

1
2q

∥∥∇2θ
∥∥
∞) ‖(ū, π̄)‖

0E(J) .

Since ‖∇θ‖∞ ≤ η,
∥∥∇2θ

∥∥
∞ ≤ M , by choosing η > 0 and T > 0 sufficiently small, one obtains

(4.30). A Neumann series argument in 0E(J) finally implies that there exists a unique solution
(ū, π̄) ∈ 0E(J) of L(ū, π̄) = M(θ, ū, π̄) + F or equivalently a solution (u, π) of (4.23), provided
that the data satisfy all relevant compatibility conditions at the contact line G ∩ S.

Conversely, (4.23) admits a solution operator SQS : FQS → EQS , where FQS and EQS are
the solution space and data space, respectively, for the bent quarter-space and the data in FQS

satisfy the compatibility conditions at the contact line {(x1, 0, θ(x1)) : x1 ∈ R}.

4.3.3. The two-phase Stokes equations in half-spaces. Let Ω := R × R+ × R, G :=
R× {0} × R, Σ := R× R+ × {0} and ∂Σ := R× {0} × {0}. Consider the problem

ρ∂tu− divSµ(u, π) = f, in Ω\Σ× J,
divu = fd, in Ω\Σ× J,JuK = g1, on Σ× J,J−πe3 + µ (∂3u+∇u3)K = g2, on Σ× J,

(u1, u3)
⊤ = 0, on G\∂Σ× J,

−π + 2µ∂2u2 = g4, on G\∂Σ× J,
u(0) = 0, in Ω\Σ.

(4.34)

Then we have the following well-posedness result.

Theorem 4.12. Let q > 3, T > 0, ρj , µj > 0, j = 1, 2, and J = (0, T ). Assume that
Σ, G ∈ C3 and ∂Σ is of class C4. Then (4.34) admits a unique solution (u, π) with regularity

u ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3),

π ∈ Lq(J ; Ẇ 1
q (Ω\Σ)), JπK ∈W 1

2−
1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

π|x2=0 ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

if and only if the data satisfy the following regularity and compatibility conditions:

(1) f ∈ Lq(J ;Lq(Ω)3),

(2) fd ∈ 0W
1
q(J ; Ẇ

−1
q (Ω)) ∩ Lq(J ;W 1

q (Ω\Σ)),

(3) g1 ∈ 0W
1− 1

2q
q (J ;Lq(Σ)3) ∩ Lq(J ;W

2− 1
q

q (Σ)3),

(4) ((g2)1, (g2)2)
⊤ ∈ 0W

1
2−

1
2q

q (J ;Lq(Σ)2) ∩ Lq(J ;W
1− 1

q
q (Σ)2),

(5) (g2)3 ∈W
1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

(6) g4 ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)),
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(7) ((g1)1, (g1)3)
⊤ = 0, (g2)1 = 0, (g2)3 = Jg4K− J2µfdK at ∂Σ.

Proof. The idea of the proof is based on the procedure in Wilke [Wil20], while a different type
of boundary conditions (outflow conditions) is considered in our case.

Reduction of f and fd. Let us firstly reduce (f, fd) to zero. To this end, we extend
f ∈ Lq(J ;Lq(Ω)3) to some function f̃ ∈ Lq(J ;Lq(R3)3) and

fd ∈ Lq(J ;W 1
q (Ω\Σ)) ∩ 0W

1
q(J ; Ẇ

−1
q (Ω))

to some function
f̃d ∈ Lq(J ;W 1

q (R2 × Ṙ)) ∩ 0W
1
q(J ; Ẇ

−1
q (R2 × Ṙ))

by the extension (4.19) above with respect to −x2 direction. Define

f̃± := f̃
∣∣∣
x3≷0

∈ Lq(J ;Lq(R2 × R±)),

f̃±d := f̃d

∣∣∣
x3≷0

∈ Lq(J ;W 1
q (R2 × R±)) ∩ 0W

1
q(J ; Ẇ

−1
q (R2 × R±)).

Now extend f̃+ with respect to x3 to some function f̂+ ∈ Lq(J ;Lq(R3)3) and f̃+d to some
function f̂+d ∈ Lq(J ;W 1

q (R3)) ∩W 1
q (J ; Ẇ

−1
q (R3)). Let µ± := µ|x3≷0, ρ± := ρ|x3≷0 and extend

µ+, ρ+ ∈ R × R2
+ to µ̂+ ≡ µ+, ρ̂+ ≡ ρ+ ∈ R3 by constants. Then solving the full space Stokes

equation
ρ̂+∂tû

+ − divSµ̂+(û+, π̂+) = f̂+, in R3 × J,

div û+ = f̂+d , in R3 × J,
û+(0) = 0, in R3,

(4.35)

yields a unique solution (û+, π̂+) satisfying

û+ ∈ 0W
1
q(J ;L

q(R3)3) ∩ Lq(J ;W 2
q (R3)3), π̂+ ∈ Lq(J ; Ẇ 1

q (R3)),

by Prüss–Simonett [PS16, Theorem 7.1.1]. Analogously, we extend f̃− and f̃−d to some function
f̂− ∈ Lq(J ;Lq(R3)3) and f̂−d ∈ Lq(J ;W 1

q (R3))∩W 1
q (J ; Ẇ

−1
q (R3)) with respect to x3 respectively.

Let µ̂− ≡ µ−, ρ̂− ≡ ρ−. Then we solve (4.35) with all superscripts + replaced by − to obtain a
unique solution

û− ∈ 0W
1
q(J ;L

q(R3)3) ∩ Lq(J ;W 2
q (R3)3), π̂− ∈ Lq(J ; Ẇ 1

q (R3)).

Based on these functions, we define

(û, π̂) :=

{
(û+, π̂+)

∣∣
Ω
, if x3 > 0,

(û−, π̂−)
∣∣
Ω
, if x3 < 0.

Then

û ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3), π̂ ∈ Lq(J ; Ẇ 1

q (Ω\Σ)).

If (u, π) is a solution of (4.34), then (u−û, π−π̂) solves (4.34) with (f, fd) = 0 and some modified
data gj , j ∈ {1, 2, 3, 4} (not to be relabeled), in the right regularity classes, having vanishing
traces at t = 0 whenever it exists and satisfying the compatibility conditions at ∂Σ stated in
Theorem 4.12.
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Reduction of g1 and g4. Now we extend

g+4 := g4|x3>0 ∈W
1
2−

1
2q

q (J ;Lq(R× {0} × R+)) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R+))

by means of even reflection to functions

g̃+4 ∈W
1
2−

1
2q

q (J ;Lq(R× {0} × R)) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R)).

Let µ+ := µ|x3>0, ρ+ := ρ|x3>0. Then the half-space Stokes problem with the outflow boundary
condition

ρ+∂tǔ
+ − µ+∆ǔ+ +∇π̌+ = 0, in Ω× J,

div ǔ+ = 0, in Ω× J,
(ǔ+1 , ǔ

+
3 )

⊤ = 0, on G× J,
−π̌+ + 2µ+∂2ǔ

+
2 = g̃+4 , on G× J,

ǔ+(0) = 0, in Ω,

(4.36)

admits a unique solution (ǔ+, π̌+) with regularity

ǔ+ ∈ 0W
1
q(J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 2
q (R× R+ × R)3),

π̌+ ∈ Lq(J ; Ẇ 1
q (R× R+ × R)), π̌+

∣∣
x2=0

∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

by Bothe–Prüss [BP07, Theorem 6.1] or Prüss–Simonett [PS16, Theorem 7.2.1]. Repeating the
same procedure with all superscripts + replaced by − in (4.36), where g̃−4 is the extension of
g−4 := g4|x3<0 similar to g̃+4 , we get the corresponding functions (ǔ−, π̌−) with regularity

ǔ− ∈ 0W
1
q(J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 2
q (R× R+ × R)3),

π̌− ∈ Lq(J ; Ẇ 1
q (R× R+ × R)), π̌−∣∣

x2=0
∈W

1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)).

Define

(ǔ, π̌) :=

{
(ǔ+, π̌+), if x3 > 0,

(ǔ−, π̌−), if x3 < 0.

Then (ū, π̄) := (u− ǔ, π − π̌) (restricted) satisfies that ū|t=0 = 0, JūK = g1 − JǔK =: k on Σ and

(ū1, ū3)
⊤ = 0, −π̄ + 2µ∂2ū2 = 0,

on G\∂Σ, which also means ∂iūj = 0 for i, j = 1, 3 on G\∂Σ. From the compatibility conditions,
we know k1 = k3 = 0 on ∂Σ. Moreover, since div ū = 0 up to the boundary, one obtains
∂2k2 = J∂2ū2K = div ū− J∂1ū1 + ∂3ū3K = 0 on ∂Σ. Therefore, one may extend

k ∈ 0W
1− 1

2q
q (J ;Lq(Σ)3) ∩ Lq(J ;W

2− 1
q

q (Σ)3)

to some function

k̃ ∈ 0W
1− 1

2q
q (J ;Lq(R2 × {0})3) ∩ Lq(J ;W

2− 1
q

q (R2 × {0})3)

by odd reflection of k1, k3 as before and even reflection of k2. Then the half-space Dirichlet
Stokes equation

ρ∂tw − µ∆w +∇p = 0, in R× R× R+ × J,
divw = 0, in R× R× R+ × J,

w = k̃, on R× R× {0} × J,
w(0) = 0, in R× R× R+,

(4.37)
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admits a unique solution
w ∈ 0W

1
q(J ;L

q(R2 × R+)
3) ∩ Lq(J ;W 2

q (R2 × R+)
3), p ∈ Lq(J ; Ẇ 1

q (R2 × R+)).

By symmetry, it is easy to verify that the function
w̄(t, x) = (−w1, w2,−w3)

⊤(t, x1,−x2, x3), p̄(t, x) = −p(t, x1,−x2, x3)

is also a solution of (4.37). The uniqueness of (w, p) implies that (w, p) = (w̄, p̄) and therefore
w1 = w3 = 0 as well as ∂2w2 = 0, p = 0 on G\∂Σ. Let (ū±, π̄±) := (ū, π̄)|x3≷0 and define

(u∗, π∗) :=

{
(ū+, π̄+)− (w, p), if x3 > 0,

(ū−, π̄−), if x3 < 0.

Then Ju∗K = 0 on Σ and
(u∗1, u

∗
3)

⊤ = 0, −π∗ + 2µ∂2u
∗
2 = 0,

on G\∂Σ. Hence, (u∗, π∗) (restricted) solves (4.34) with (f, fd, gj) = 0, j ∈ {1, 4} and the
modified data g2 (not to be relabeled) in proper regularity classes having vanishing trace at
t = 0 whenever it exists and satisfying the compatibility conditions.

Proof of Theorem 4.12. From the compatibility conditions and boundary conditions on
G\∂Σ, it is possible to extend ((g2)1, (g2)3) by odd reflection and (g2)2 by even reflection with
respect to −x2. In the following, we consider the reflected problem

ρ∂tũ− µ∆ũ+∇π̃ = 0, in R× R× Ṙ× J,
div ũ = 0, in R× R× Ṙ× J,JuK = 0, on R× R× {0} × J,J−π̃e3 + µ (∂3ũ+∇ũ3)K = g̃2, on R× R× {0} × J,
ũ(0) = 0, in R× R× Ṙ.

(4.38)

with given reflected data

((g̃2)1, (g̃2)2) ∈ 0W
1
2−

1
2q

q (J ;Lq(R2 × {0})2) ∩ Lq(J ;W
1− 1

q
q (R2 × {0})2),

(g̃2)3 ∈W
1
2−

1
2q

q (J ;Lq(R2 × {0})) ∩ Lq(J ; Ẇ
1− 1

q
q (R2 × {0})).

By Prüss–Simonett [PS10, Theorem 3.1], (4.38) admits a unique solution (ũ, π̃) with
ũ ∈W 1

q (J ;L
q(R3)3) ∩ Lq(J ;W 2

q (R2 × Ṙ)3), π̃ ∈ Lq(J ; Ẇ 1
q (R2 × Ṙ)),

Jπ̃K ∈W 1
2−

1
2q

q (J ;Lq(R2 × {0})) ∩ Lq(J ;W
1− 1

q
q (R2 × {0})).

Define (ū, π̄) as
ū(t, x) := (−u1, u2,−u3)⊤(t, x1,−x2, x3), π̄(t, x) := −π(t, x1,−x2, x3).

It is clear that (ū, π̄) is also a solution of (4.38). The uniqueness implies that (ũ, π̃) = (û, π̂) and
therefore,

ũ1 = ũ3 = 0, ∂2ũ2 = 0,

as well as π̃ = 0 on G\∂Σ. Consequently, the restriction (ũ, π̃)|Ω is the strong solution of (4.34)
with (f, fd, gj) = 0, j ∈ {1, 4}. The uniqueness can be verified by a similar argument as in
Section 4.3.1. More specifically, assume u is a solution of (4.34) with data all reduced in a half-
space. Then one reflects it by suitable extension operators with respect to x2 to a function ũ
with ũ|x2>0 = u in full space. By the uniqueness of two-phase Stokes equation in full space, see
e.g. [PS10, Theorem 3.1], we know ũ ≡ 0 and hence obtain the uniqueness of u. This completes
the proof.
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4.3.4. The two-phase Stokes equations in half-spaces with a bent interface. In this
section, we consider the case of a bent interface for the two-phase Stokes equations in half-spaces.
So let the interface Σ be given as a graph of a function θ : R× R+ → R of class C3. Moreover,
let x = (x′, x3), x′ = (x1, x2) and ∇x′ = (∂1, ∂2)

⊤, we assume that ‖∇x′θ(x′)‖∞ ≤ η and∥∥∇i
x′θ(x′)

∥∥
∞ ≤ M , i ∈ {2, 3} for M > 0, where η > 0 will be chosen sufficiently small later.

Then the interface is defined as

Σθ :=
{
(x′, x3) ∈ R3 : x3 = θ(x′), x′ ∈ R× R+

}
,

and the associated unit normal vector is given by

νΣθ
(x′) := β(x′)(−∇x′θ(x′), 1)⊤, β(x′) :=

1√
1 + |∇x′θ(x′)|2

.

Let Ω := R× R+ × R, G := R× {0} × R and

∂Σθ := {(x′, x3) : x3 = θ(x′), x′ ∈ R× {0}} .

We consider the problem

ρ∂tu− divSµ(u, π) = f, in Ω\Σθ × J,
divu = fd, in Ω\Σθ × J,JuK = g1, on Σθ × J,q

−πI+ µ(∇u+∇u⊤)
y
νΣθ

= g2, on Σθ × J,
(u1, u3)

⊤ = g3, on G\∂Σθ × J,
−π + 2µ∂2u2 = g4, on G\∂Σθ × J,

u(0) = u0, in Ω\Σθ,

(4.39)

where Sµ(u, π) = −πI + µ(∇u + ∇u⊤) and ρ, µ > 0 are given constants. For given data
(f, fd, g1, g2, g3, g4, u0), we give the following compatibility conditions at time t = 0

divu0 = fd|t=0 , Ju0K = g1|t=0 , ((u0)1, (u0)3)
⊤|G = g3|t=0 ,

PΣθ

q
µ(∇u0) +∇u⊤0 )νΣθ

y
= PΣθ

g2|t=0,

where PΣθ
:= I − νΣθ

⊗ νΣθ
denotes the tangential projection of νΣθ

. Moreover, at the contact
line ∂Σθ, we have

Jg3K = ((g1)1, (g1)3)
⊤,

(g2)1 = J2µ∂1(g3)1νΣθ
· e1 + µ(∂1(g3)2 + ∂3(g3)1)νΣθ

· e3K ,
+ Jg4 − 2µfdK νΣθ

· e1 + J2µ(∂1(g3)1 + ∂3(g3)2)K νΣθ
· e1,

(g2)3 = J2µ∂3(g3)2νΣθ
· e3 + µ(∂1(g3)2 + ∂3(g3)1)νΣθ

· e1K
+ Jg4 − 2µfdK νΣθ

· e3 + J2µ(∂1(g3)1 + ∂3(g3)2)K νΣθ
· e3.

(4.40)

Reduction. As above, we want to reduce (4.39) to the case (u0, f, fd, g3, g4) = 0 for convenience.
In a same way as in Section 4.3.2, one can reduce to the case (u0, f, fd) = 0, we do not give the
details here. Then we have modified data gj , j ∈ {1, 2, 3, 4}, in the right regularity classes and
having vanishing traces at t = 0 whenever it exists.
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Next, set g±j := gj |x3≷θ(x1,0)
, j ∈ {3, 4}. By the extension

g̃+3 (x1, 0, x3) =


g+3 (x1, x3 − θ(x1, 0)), if x1 ∈ R, x3 > θ(x1, 0),

− g+3 (x1,−2(x3 − θ(x1, 0)))
+ 2g+3 (x1,−(x3 − θ(x1, 0))/2), if x1 ∈ R, x3 < θ(x1, 0),

(4.41)

we have

g̃+3 ∈ 0W
1− 1

2q
q (J ;Lq(R× {0} × R)2) ∩ Lq(J ;W

2− 1
q

q (R× {0} × R)2).

Employing an even reflection to g+4 , one obtains the extended function

g̃+4 ∈W
1
2−

1
2q

q (J ;Lq(R× {0} × R)2) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R)2).

Let µ+ := µ|x3>0, ρ+ := ρ|x3>0. Now consider the half-space Stokes equation with the outflow
boundary condition

ρ+∂tǔ
+ − µ+∆ǔ+ +∇π̌+ = 0, in Ω× J,

div ǔ+ = 0, in Ω× J,
(ǔ+1 , ǔ

+
3 )

⊤ = g̃+3 , on G× J,
−π̌+ + 2µ+∂2ǔ

+
2 = g̃+4 , on G× J,

ǔ+(0) = 0, in Ω,

(4.42)

which admits a unique solution (ǔ+, π̌+) with regularity

ǔ+ ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω)

3),

π̌+ ∈ Lq(J ; Ẇ 1
q (Ω)), π̌+

∣∣
x2=0

∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

by Bothe–Prüss [BP07, Theorem 6.1] or Prüss–Simonett [PS16, Theorem 7.2.1]. Repeating the
same procedure with all superscripts + replaced by − in (4.42), where g̃−j are the extensions of
g−j := gj |x3<θ(x1,0)

similar to g̃+j , j = 3, 4, we get the corresponding functions (ǔ−, π̌−) with
regularity

ǔ− ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω)

3),

π̌− ∈ Lq(J ; Ẇ 1
q (Ω)), π̌−∣∣

x2=0
∈W

1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)).

We define

(ǔ, π̌) :=

{
(ǔ+, π̌+), if x3 > θ(x′),

(ǔ−, π̌−), if x3 < θ(x′).

Then (ū, π̄) := (u − ǔ, π − π̌) (restricted) solves (4.39) with (u0, f, fd, g3, g4) = 0 and modified
data (g1, g2) (not to be relabeled) belonging to proper regularity classes with vanishing traces at
t = 0 whenever they exist and satisfying

((g1)1, (g1)3)
⊤ = 0, ((g2)1, (g2)3)

⊤ = 0, on G.
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Transform to a half space. By the reduction argument explained above we may assume

(u0, f, fd, g3, g4) = 0.

Our aim now is to transform Σθ to Σ := R×R+×{0} and ∂Σθ to ∂Σ := R×{0}× {0}. To this
end, we introduce the new variables x̄′ = x′ and x̄3 = x3− θ(x′), where x̄′ := (x̄1, x̄2), for x ∈ Ω,
as in Section 4.3.2. Then we define

ū(t, x̄) := u(t, x̄′, x̄3 + θ(x̄′)), π̄(t, x̄) := π(t, x̄′, x̄3 + θ(x̄′)),

for t ∈ J , x̄′ ∈ R × R+. In the same way, we transform the data (g1, g2) to (ḡ1, ḡ2). In the
following, we will write ∂x̄3

as ∂3 for the sake of readability. Then with the help of (4.26) and
(4.27) in Section 4.3.2, one arrives at the transformed system

ρ∂tū− µ∆ū+∇π̄ =M1(θ, ū, π̄), in Ω\Σ× J,
div ū =M2(θ, ū), in Ω\Σ× J,JūK = ḡ1, on Σ× J,J−π̄e3 + µ(∂3ū+∇ū3)K =M4(θ, ū) + (ḡ2 +∇θ(ḡ2)3)/β, on Σ× J,

(ū1, ū3)
⊤ = 0, on G\∂Σ× J,

−π̄ + 2µ∂2ū2 =M5(θ, ū), on G\∂Σ× J,
ū(0) = 0, in Ω\Σ,

(4.43)

where Mj , j = {1, 2, 4, 5}, are given by

M1(θ, ū, π̄) := µ
(
− 2∂3∇ū∇θ +∆θ∂3ū+ (∂23 ū⊗∇θ)∇θ

)
+∇θ(x̄′)∂3π̄,

M2(θ, ū) := ∇θ · ∂3ū,
M4(θ, ū) :=

q
µ(∇ū+∇ū⊤)

y
∇θ − Jµ(∇θ ⊗ ∂3ū+ ∂3ū⊗∇θ)K∇θ

+ (Jµ∂3ū3K /β2 − Jµ(∂3ū+∇ū3)K · ∇θ)∇θ,
M5(θ, ū) := 2µ∂2θ(x

′)∂3ū2.

Existence and uniqueness. As in Section 4.3.2 and [Wil20, Section 1.3.4], if the data are in
the right regularity classes and ‖∇θ‖∞ ≤ η, η > 0 is sufficiently small, one may consider (4.43)
as a perturbation of (4.39) and apply the Neumann series argument to (4.43) via Theorem 4.12.
To this end, we define the solution spaces as

0E(J) := 0Eu(J)× Eπ(J),

where

0Eu(J) :=
{
u ∈ 0W

1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3) : (u1, u3)⊤

∣∣
G
= 0
}
,

Eπ(J) :=

π ∈ L
q(J ; Ẇ 1

q (Ω)) : JπK ∈W 1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

π|G ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ))

 ,

as well as the data function spaces

F̃(J) := F1(J)× 0F2(J)× 0F3(J)× 0F4(J)× 0F5(J),
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where

F1(J) := Lq(J ;Lq(Ω)3),

0F2(J) := 0W
1
q(J ; Ẇ

−1
q (Ω\Σ)) ∩ Lq(J ;W 1

q (Ω\Σ)),

0F3(J) := 0W
1− 1

2q
q (J ;Lq(Σ)3) ∩ Lq(J ;W

2− 1
q

q (Σ)3),

0F4(J) := 0W
1
2−

1
2q

q (J ;Lq(Σ)3) ∩ Lq(J ;W
1− 1

q
q (Σ)3),

0F5(J) := 0W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)).

In addition, let

0F(J) :=

{
(f1, f2, g1, g2, g3) ∈ F̃(J) :

((g1)1, (g1)3)
⊤ = 0, (g2)1 = 0, at ∂Σ

(g2)3 = Jg3 − 2µf2K , at ∂Σ

}
.

Now we define an operator L : 0E(J)→ 0F(J) by

L(ū, π̄) :=


ρ∂tū− µ∆ū+∇π̄

div ūJūKJ−π̄e3 + µ(∂3ū+∇ū3)K
(−π̄ + 2µ∂2ū2)|G

 .

Then L is an isomorphism by Theorem 4.12. For the right-hand side of (4.28), we set

M(θ, ū, π̄) := (M1(θ, ū, π̄),M2(θ, ū), 0,M4(θ, ū),M5(θ, ū))
⊤

and

F := (0, 0, f3, f4, 0)
⊤, f3 := ḡ1, f4 := (ḡ2 +∇θ(ḡ2)3)/β.

It is clear that F ∈ F̃(J), since θ ∈ C3(R × R+). We note that ((ḡ1)1, (ḡ1)3)
⊤ = 0, ((ḡ2 +

∇θ(ḡ2)3)/β)1 = 0 as well as (ḡ2)3 = 0 at the contact line ∂Σ, one obtains F ∈ 0F(J).
To apply the Neumann series argument, we investigate the perturbation term M(θ, ū, π̄).

Note that from the compatibility conditions, (M4(θ, ū))1 = 0 as well as (M4(θ, ū))3 = 0 must be
true at the contact line ∂Σ, since 2µM2(θ, ū) =M5(θ, ū) at the contact line ∂Σ. However, these
do not hold in general, namely,

(M4(θ, ū))1 = ∂2θµ(∂1ū2 + ∂2ū1 + (1 + ∂1θ)∂3ū2 + ∂2ū3), at ∂Σ,
(M4(θ, ū))3 = ∂2θµ(∂2ū3 + ∂3ū2), at ∂Σ.

To overcome this trouble, we follow the argument in [Wil20] by introducing a modified M̃4(θ, ū)
as

M̃4(θ, ū) = (M4(θ, ū))1 − ∂2θ(K1, 0,K2)
⊤,

where

K1(θ, ū) = extΣ
(r
µ(∂1ū2 + ∂2ū1 + (1 + ∂1θ)∂3ū2 + ∂2ū3)|G\∂Σ

z)
,

K2(θ, ū) = extΣ
(r
µ(∂2ū3 + ∂3ū2)|G\∂Σ

z)
.
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Here, by Wilke [Wil20, Proposition 5.1], there exists a linear and bounded extension operator
extΣ from

0W
1
2−

1
q

q (J ;Lq(∂Σ)) ∩ Lq(J ;W
1− 2

q
q (∂Σ))

to
0W

1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

such that (extΣz)|∂Σ = z for all z ∈ 0W
1/2−1/q
q (J ;Lq(∂Σ)) ∩ Lq(J ;W

1−2/q
q (∂Σ)). Define

M̃(θ, ū, π̄) := (M1(θ, ū, π̄),M2(θ, ū), 0, M̃4(θ, ū),M5(θ, ū))
⊤.

Then it can be verified easily that the modified perturbation M̃(θ, ū, π̄) ∈ 0F(J) for each (ū, π̄) ∈
0E(J), combining the smoothness of θ. The only point that needs to be taken care of isM2(θ, ū) ∈
0W

1
q(J ; Ẇ

−1
q (Ω\Σ)). By integration by parts with respect to the x̄3, we have

ˆ
Ω

M2(θ, ū)φdx̄ =

ˆ
Ω

∇θ · ∂3ūφdx̄ = −
ˆ
Ω

∇θ · ū∂3φdx̄, (4.44)

for all φ ∈W 1
q′,0(Ω\Σ), which implies the claim with ū ∈ 0Eu(J).

Then we rewrite (4.43), with M4 replaced by M̃4, as

(ū, π̄) = L−1M̃(θ, ū, π̄) + L−1F.

Our goal in the following is to show that for each ε > 0, there exist T0 > 0 and η0 > 0 such that∥∥∥M̃(θ, ū, π̄)
∥∥∥

0F(J)
≤ ε ‖(ū, π̄)‖

0E(J) (4.45)

holds for 0 < T < T0 and 0 < η < η0.
We estimate M̃(θ, ū, π̄) term by term. Mimicking the estimates in Section 4.3.2, one obtains

‖M1(θ, ū, π̄)‖F1(J)
≤ C(‖∇θ‖∞ + ‖∇θ‖2∞ + T

1
2q

∥∥∇2θ
∥∥
∞) ‖(ū, π̄)‖

0E(J) , (4.46)

‖M2(θ, ū)‖
0F2(J)

≤ C(‖∇θ‖∞ + T
1
2q

∥∥∇2θ
∥∥
∞) ‖ū‖

0Eu(J)
. (4.47)

where C > 0 does not depend on T > 0. For M̃4(θ, ū) ∈ 0F4(J), we see that∥∥∥M̃4(θ, ū)
∥∥∥

0F4(J)
=
∥∥∥M̃4(θ, ū)

∥∥∥
0W

1
2
− 1

2q
q (J;Lq(Σ)3)

+
∥∥∥M̃4(θ, ū)

∥∥∥
Lq(J;W

1− 1
q

q (Σ)3)
.

The first term in the right-hand side above is estimated by∥∥∥M̃4(θ, ū)
∥∥∥

0W
1
2
− 1

2q
q (J;Lq(Σ)3)

≤ C(‖∇θ‖∞ + ‖∇θ‖2∞) ‖∇ū‖
0W

1
2
− 1

2q
q (J;Lq(Σ)3×3)

≤ C(‖∇θ‖∞ + ‖∇θ‖2∞) ‖ū‖
0Eu

,

while the second term satisfies∥∥∥M̃4(θ, ū)
∥∥∥
Lq(J;W

1− 1
q

q (Σ)3)
≤ C(‖∇θ‖∞ + ‖∇θ‖2∞) ‖∇ū‖

Lq(J;W
1− 1

q
q (Σ)3×3)

+ C(1 + ‖∇θ‖∞)
∥∥∇2θ

∥∥
∞ ‖∇ū‖Lq(J;Lq(Ω\Σ)3×3)

≤ C(‖∇θ‖∞ + ‖∇θ‖2∞) ‖ū‖
0Eu

+ CT
1
2q (1 + ‖∇θ‖∞)

∥∥∇2θ
∥∥
∞ ‖ū‖0Eu

,
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by the trace theory of Sobolev spaces. Hence,∥∥∥M̃4(θ, ū)
∥∥∥

0F4(J)
(4.48)

≤ C(‖∇θ‖∞ + ‖∇θ‖2∞) ‖ū‖
0Eu

+ CT
1
2q (1 + ‖∇θ‖∞)

∥∥∇2θ
∥∥
∞ ‖ū‖0Eu

.

The same estimate as in (4.33) yields that

‖M5(θ, ū)‖
0F5(J)

≤ C ‖∇θ‖∞ ‖ū‖0Eu
. (4.49)

Collecting (4.46)–(4.49), we have∥∥∥M̃(θ, ū, π̄)
∥∥∥

0F(J)

≤ C
(
‖∇θ‖∞ + ‖∇θ‖2∞ + CT

1
2q (1 + ‖∇θ‖∞)

∥∥∇2θ
∥∥
∞

)
‖(ū, π̄)‖

0E(J) .

Since ‖∇x′θ(x′)‖∞ ≤ η and
∥∥∇2

x′θ(x′)
∥∥
∞ ≤ M , by choosing η > 0 and T > 0 sufficiently small,

one obtains (4.45). A Neumann series argument in 0E(J) finally implies that there exists a
unique solution (ū, π̄) ∈ 0E(J) of L(ū, π̄) = M̃(θ, ū, π̄) + F or equivalently a solution (u, π) of
(4.39).

Consequently, (4.39) admits a solution operator SHS : FHS → EHS , where FHS and EHS

are the solution space and data space respectively, for a half-space with a bent interface and the
data in FHS satisfy the compatibility conditions (4.40).

4.3.5. The heat equations in quarter-spaces. As in Section 4.3.1, define Ω := R×R+×R+,
G := R× {0} × R+ and S := R× R+ × {0}. Consider the problem

∂tu−D∆u = f, in Ω× J,
D∂2u = g1, on G× J,
D∂3u = g2, on S × J,
u(0) = u0, in Ω,

(4.50)

where u : R3 × R+ → R is the quantity of the system, e.g., the temperature, the concentration,
etc. D > 0 denotes the constant diffusivity.

Theorem 4.13. Let q > 3, T > 0, D > 0 and J = (0, T ). Assume that G,S ∈ C3 and ∂G
is of class C4. Then there exists a unique solution

u ∈W 1
q (J ;L

q(Ω)) ∩ Lq(J ;W 2
q (Ω)),

of (4.50) if and only if the data satisfy the following regularity and compatibility conditions:

(1) f ∈ Lq(J ;Lq(Ω)),

(2) g1 ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G)),

(3) g2 ∈W
1
2−

1
2q

q (J ;Lq(S)) ∩ Lq(J ;W
1− 1

q
q (S)),

(4) u0 ∈W
2− 2

q
q (Ω),

(5) D∂2u0|G = g1|t=0, D∂3u0|S = g2|t=0,
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4.3. Model Problems

(6) ∂3g1|G∩S = ∂2g2|G∩S.

Proof. To prove Theorem 4.13, we extend the data suitably to the half-space and solve the
heat equations in half space. To this end, one extends (f, g1, u0) with respect to x3 by general
extension to some functions

f̃ ∈ Lq(J ;Lq(R× R+ × R)), ũ0 ∈W
2− 2

q
q (R× R+ × R),

g̃1 ∈W
1
2−

1
2q

q (J ;Lq((R× {0} × R))) ∩ Lq(J ;W
1− 1

q
q ((R× {0} × R))).

Solving
∂tu−D∆u = f̃ , in R× R+ × R× J,

D∂2u = g̃1, in R× {0} × R× J,
u(0) = ũ0, in R× R+ × R,

yields a unique solution

ũ ∈W 1
q (J ;L

q(R× R+ × R)) ∩ Lq(J ;W 2
q (R× R+ × R)),

by [PS16, Theorem 6.2.5]. Then (u− ũ) solves (4.50) with (f, g1, u0) = 0 and modified g2 (not to
be relabeled) satisfying ∂2g2|S = 0 with vanishing time trace at t = 0. Now extend g2 by even
reflection with respect to x2 to functions

g̃2 ∈W
1
2−

1
2q

q (J ;Lq(R2 × {0})) ∩ Lq(J ;W
1− 1

q
q (R2 × {0})).

We solve
∂tu−D∆u = 0, in R× R× R+ × J,

D∂3u = g̃2, in R× R× {0} × J,
u(0) = 0, in R× R× R+,

again by [PS16, Theorem 6.2.5] to obtain a unique solution

û ∈W 1
q (J ;L

q(R2 × R+)) ∩ Lq(J ;W 2
q (R2 × R+)).

Note that û(t, x1,−x2, x3) is also a solution of above system. Then uniqueness of solutions
implies that

û(t, x1, x2, x3) = û(t, x1,−x2, x3)

and hence ∂2û(t, x1, 0, x3) = 0. Therefore, the restricted u := ũ + û is the desired solution
to (4.50). The uniqueness can be derived by the argument in Section 4.3.1 combined with
the uniqueness of heat equation in half-spaces ([PS16, Theorem 6.2.5]), which completes the
proof.

4.3.6. The heat equations in bent quarter-spaces. By the same argument in Section 4.3.2,
we can find a unique solution to (4.50) with a perturbation of x3 = 0. Hence in turn, one obtains
a solution operator SHQS : FHQS → EHQS , where FHQS and EHQS are the solution space and
data space, respectively, for the bent quarter-space and the data in FQS satisfy the compatibility
conditions at the contact line {(x1, 0, θ(x1)) : x1 ∈ R}.
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4.4. General Bounded Cylindrical Domains

In this section, we will show that (4.10), (4.13) and (4.15) respectively admits a unique
solution. For system (4.13) and (4.15), a localization procedure does work since they are both
standard parabolic equations, while some modifications are needed for (4.10). The point is that
for (4.10), the presence of pressure and the divergence equation will bring additional difficulties,
for which we proceed as in [PS16] and [Wil20] to obtain extra regularity for the pressure under
suitable conditions and reduce the system to a simpler form.

4.4.1. Regularity of the pressure. In general, the pressure π does not have more regularity
than that stated in Theorem 4.7. However, in a special situation, one may obtain extra time-
regularity of π.

Proposition 4.14. Let Ω be the bounded domain defined in Theorem 4.7 and (u, π) ∈ E(J)
be a solution of the two-phase problem (4.10) with

(u0, fd, g1 · νΣ, g5 · νS) = 0

and fu ∈ 0W
α
q (J ;L

q(Ω)3), for some α ∈ (0, 1/2− 1/2q). Then π ∈ 0W
α
q (J ;L

q(Ω)) and there is
a constant C > 0 independent of J , u, π, fu, such that

‖π‖Wα
q (J;Lq(Ω)) ≤ C

(
‖u‖Eu

+ ‖π‖Eπ
+ ‖fu‖Wα

q (J;Lq(Ω)3)

)
.

Proof. Fix any ψ ∈ Lq′(Ω). By Theorem 4.21, the transmission problem

∆φ = ψ, in Ω\Σ,JρφK = 0, on Σ,J∂νΣ
φK = 0, on Σ,

ρφ = 0, on G\∂Σ,
∂νS

φ = 0, on S

(4.51)

possesses a unique solution φ ∈W 1
q′(Ω) ∩W 2

q′(Ω\Σ), which satisfies the estimate

‖φ‖W 1
q′ (Ω)∩W 2

q′ (Ω\Σ) ≤ C ‖ψ‖Lq′
(0)

(Ω)
.

By integration by parts, one obtainsˆ
Ω

πψdx =

ˆ
Ω

π∆φdx = −
ˆ
Σ

JπK ∂νΣ
φdσ +

ˆ
G

π∂νG
φdσ −

ˆ
Ω

∇π · ∇φdx

= −
ˆ
Σ

JπK ∂νΣ
φdΣ+

ˆ
G

π∂νG
φdσ −

ˆ
Ω

(fu − ρ∂tu+ ν∆u) · ∇φdx

= −
ˆ
Σ

(JπK ∂νΣφ+ Jµ∂νΣu · ∇φK) dσ +

ˆ
G

π∂νG
φdσ −

ˆ
Ω

fu · ∇φdx

−
ˆ
S

µ∂νS
u · ∇φdσ −

ˆ
G

µ∂νG
u · ∇φdσ +

ˆ
Ω

µ∇u : ∇2φdx.

Taking the supremum of the left-hand side over all functions ψ ∈ Lq′(Ω), we have

‖π(t)‖Lq(Ω) ≤ C
(
‖∇u(t)‖Lq(Ω) + ‖∂νS

u(t)‖Lq(S) + ‖∂νG
u(t)‖Lq(G)

+ ‖∂νΣ
u(t)‖Lq(Σ) + ‖Jπ(t)K‖Lq(Σ) + ‖π(t)‖Lq(G) + ‖fu(t)‖Lq(Ω)

)
,
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for almost all t ∈ J . Furthermore,

‖π(t)− π(s)‖Lq(Ω)

≤ C
(
‖∇(u(t)− u(s))‖Lq(Ω) + ‖∂νS

(u(t)− u(s))‖Lq(S) + ‖∂νG
(u(t)− u(s))‖Lq(G)

+ ‖∂νΣ
(u(t)− u(s))‖Lq(Σ) + ‖Jπ(t)− π(s)K‖Lq(Σ) + ‖(π(t)− π(s))‖Lq(G)

+ ‖fu(t)− fu(s)‖Lq(Ω)

)
,

for almost all t ∈ J . Since 0Eu ↪→ 0H
1
2
q (J ;W 1

q (Ω\Σ)), trace theory (see e.g. [PS16, Proposition
6.2.4]) implies that

(∂kul)|K ∈ 0W
1
2−

1
2q

q (J ;Lq(K)),

for k, l ∈ {1, 2, 3} and K ∈ {Σ, G, S}. From the embedding W s
q ↪→ W s−ϵ

q , ε > 0, one gets
π ∈ 0W

α
q (J ;L

q(Ω)) and the desired estimate.

Remark 4.15. Note that for unbounded domains, e.g., the (bent) quarter space and the half
space with a (bent) interface, one can always reduce the unbounded domain to a bounded
domain with the same part of boundary by suitable extension. Therefore, in the following
localization procedure as in Section 4.4.3, we will apply Proposition 4.4.1 directly without any
further explanations.

4.4.2. Reductions. In this section, we reduce the problem (4.10) to the case

(u0, fu, fd, g1 · νΣ, g5 · νS) = 0.

To this end, consider the parabolic transmission problem

ρ∂tū− µ∆ū = fu, in Ω\Σ× J,JūK = g1, in Σ× J,q
µ(∇ū+∇ū⊤)νΣ

y
= g2, on Σ× J,

(ū1, ū3)
⊤ = g3, on G\∂Σ× J,

2µ∂2ū2 = g4, on G\∂Σ× J,
ū = g5, on S × J,

ū(0) = u0, in Ω\Σ,

(4.52)

with (u0, fu, gj), j ∈ {1, ..., 5}, in suitable function spaces. Then by Theorem 4.23, (4.52) admits
a unique solution

ū ∈W 1
q (J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3),

which implies that (u− ū, π) solves (4.10) with (u0, fu, g1, g3, g5) = 0. Next, solving the elliptic
transmission problem

∆φ = fd − div ū, in Ω\Σ,JρφK = 0, on Σ,J∂νΣφK = 0, on Σ,

ρφ = 0, on G\∂Σ,
∂νS

φ = 0, on S

(4.53)
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yields a unique solution φ with regularity

∇φ ∈ 0W
1
q(J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3),

thanks to Theorem 4.21. Now for (u, π) the solution of (4.10), define

(ũ, π̃) := (u− ū−∇φ, π + ρ∂tφ− µ∆φ).

It is clear that (ũ, π̃) solves (4.10) with (u0, fu, fd, g1 · νΣ, g5 · νS) = 0 and other modified data in
right regularity classes having vanishing time traces at t = 0.

4.4.3. Localization procedure. Firstly, we are devoted to prove Theorem 4.7, which is the
most crucial part of this work. The proof is based on the localization procedure with the model
problems we considered in Section 4.3.

Proof of Theorem 4.7. Following the localization method in e.g. [DHP03], [PS16] and [Wil20],
we split the proof into two parts.

(1). Existence of a left inverse. Let (u, π) be a solution of (4.10). By the reduction
argument in Section 4.4.2, there exists (ū, π̄) such that (ũ, π̃) := (u, π)−(ū, π̄) solves the problem

ρ∂tũ− µ∆ũ+∇π̃ = 0, in Ω\Σ× J,
div ũ = 0, in Ω\Σ× J,JũK = g̃1, on Σ× J,q

−π̃I+ µ(∇ũ+∇ũ⊤)
y
νΣ = g̃2, on Σ× J,

(ũ1, ũ3)
⊤ = g̃3, on G\∂Σ× J,

−π̃ + 2µ∂2ũ2 = g̃4, on G\∂Σ× J,
ũ = g̃5, on S,×J

ũ(0) = 0, in Ω\Σ.

(4.54)

with (g̃1 · νΣ, g̃5 · νS) = 0. Choose open sets Uk = Br(xk) with radius r > 0 and centers xk such
that ∂Σ ⊂

⋃N1

k=5 Uk, ∂S ⊂
⋃N

k=N1+1 Uk and choose r > 0 small enough such that corresponding
solution operators from Section 4.3.2 and 4.3.4 are well-defined. By Proposition 4.19, there exist
open and connected sets such that

• U0 ∩ Ω 6= ∅, U0 ∩G = ∅,

• Ui ∩G1 6= ∅, Uj ∩G2 6= ∅, Uk ∩ (Σ ∪ S) = ∅, i = 1, 2, j = 3, 4, k = i, j,

and a family of functions {ϕk}Nk=0 ⊂ C3
c (R3; [0, 1]) such that Ω ⊂

⋃N
k=0 Uk, suppϕk ⊂ Uk,∑N

k=0 ϕk = 1 and ∂νΣ
ϕk(x) = 0, ∂νS

ϕk(x) = 0, for x ∈ Uk ∩ (∂Σ ∪ ∂S), k ≥ 5.
Now define (ũk, π̃k) := (ũ, π̃)ϕk, the data g̃jk := g̃jϕk, as well as the domain Ωk := Ω ∩ Uk,

where Uk is an open set if k = 0, a half space if k = 1, ..., 4, a bent quarter space if k =
N1 + 1, ..., N , a half space with a bent interface if k = 5, ..., N1. Moreover, let Σk := Σ ∩ Uk,
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Gk := G ∩ Uk and Sk := S ∩ Uk. Then (ũk, π̃k) satisfies the problem

ρ∂tũk − µ∆ũk +∇π̃k = Fk(ũ, π̃), in Ωk\Σk × J,
div ũk = Fdk(ũ), in Ωk\Σk × J,JũkK = g̃1k, on Σk × J,q

−π̃kI+ µ(∇ũk +∇ũ⊤k )
y
νΣk = g̃2k +G2k(ũ), on Σk × J,

((ũk)1, (ũk)3)
⊤ = g̃3k, on Gk\∂Σk × J,

−π̃k + 2µ∂2(ũk)2 = g̃4k +G4k(ũ), on Gk\∂Σk × J,
ũk = g̃5k, on Sk × J,

ũk(0) = 0, in Ωk\Σk,

(4.55)

where

Fk(ũ, π̃) := [∇, ϕk]π̃ − µ[∆, ϕk]ũ, Fdk(ũ) := ũ · ∇ϕk,

G2k(ũ) := Jµ(∇ϕk ⊗ ũ+ ũ⊗∇ϕk)K νΣk , G4k(ũ) := 2µ∂2ϕkũ2.

For k = 0, we extend Σ to Σ̃ and S to S̃ smoothly, such that

Σ̃ ∩ U0 = Σ ∩ U0, Ω̃ ∩ U0 = Ω ∩ U0, Σ̃ ⊂ Ω̃.

Then solving a two-phase Stokes problem in a bounded domain with smooth boundary and
interface yields the unique solution of this local problem by [PS16, Theorem 8.1.4]. If k = 1, ..., 4,
we have the half-space Stokes problem with outflow boundary conditions. This problem was
investigated in [BP07, Section 6] and [PS16, Section 7.2]. For k = 5, ..., N1 and k = N1+1, ..., N ,
we obtain a bent quarter-space Stokes problem and respectively, a half-space two-phase Stokes
problem with a bent interface, which are solvable according to Section 4.3.2 and 4.3.4. Hence,
the solution operators for the charts Uk, k ≥ 5, are well-defined by the results in Section 4.3.2
and 4.3.4. We denote the corresponding solution operators for each chart by Sk.

Next, we want to reduce Fdk(ũ), since we do not have enough time regularity for it, while Fk,
G2k and G4k are endowed with extra time regularity due to the regularity of ũ and Proposition
4.14. More specifically, if ũ ∈ 0Eu(J) ↪→ 0W

1/2
q (J ;W 1

q (Ω
k)3), then

[∆, ϕk]ũ ∈ 0W
1/2
q (J ;Lq(Ωk)3) ∩ Lq(J ;W 1

q (Ω
k\Σk)3).

From Proposition 4.14, we know that

π̃ ∈ 0W
α
q (J ;L

q(Ωk)) ∩ Lq(J ;W 1
q (Ω

k\Σk)),

and hence
[∇, ϕk]π̃ ∈ 0W

α
q (J ;L

q(Ωk)3) ∩ Lq(J ;W 1
q (Ω

k\Σk)3),

for 0 < α < 1/2− 1/2q. Then

Fk(ũ, π̃) ∈ 0W
α
q (J ;L

q(Ωk)) ∩ Lq(J ;W 1
q (Ω

k\Σk)),

as well as

G2k(ũ) ∈ 0W
1−1/2q
q (J ;Lq(Σk)3) ∩ 0W

1/2
q (J ;W 1−1/q

q (Σk)3),

G4k(ũ) ∈ 0W
1−1/2q
q (J ;Lq(Gk)) ∩ 0W

1/2
q (J ;W 1−1/q

q (Gk\∂Σk)),
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by similar argument and the trace theory (see e.g. [PS16, Proposition 6.2.4]). However, Fdk ∈
0Eu(J) is an exception without enough regularity. Thus, we reduce it by solving an auxiliary
elliptic transmission problem

∆φk = Fdk(ũ), in Ωk\Σk,JρφkK = 0, on Σk,J∂νΣ
φkK = 0, on Σk,

ρφk = 0, on Gk\∂Σk,

∂νS
φk = 0, on Sk,

(4.56)

with Theorem 4.70 to obtain a unique solution φk with regularity

∇φk ∈ 0Eϕ(J) := 0W
1
q(J ;W

1
q (Ω

k\Σk)3) ∩ Lq(J ;W 3
q (Ω

k\Σk)3)

↪→ 0W
1
q(J ;W

1
q (Ω

k\Σk)3) ∩ 0W
1/2
q (J ;W 2

q (Ω
k\Σk)3),

and the estimate
‖∇φk‖0Eϕ(J)

≤ CN ‖ũ‖0Eu(J)
,

where CN depends on N , Ω and Σ but does not depend on J . Moreover, trace theory (see e.g.
[PS16, Proposition 6.2.4]) yields that

J∇φkK ∈ 0W
1−1/2q
q (J ;W 1

q (Σ
k)3) ∩ 0W

1/2
q (J ;W 2−1/q

q (Σk)3),

∇φk|Gk ∈ 0W
1−1/2q
q (J ;W 1

q (G
k\∂Σk)3) ∩ 0W

1/2
q (J ;W 2−1/q

q (Gk\∂Σk)3),

∇φk|Sk ∈ 0W
1−1/2q
q (J ;W 1

q (S
k)3) ∩ 0W

1/2
q (J ;W 2−1/q

q (Sk)3),

with vanishing normal part on Σk and Sk andq
µ∇2φk

y
∈ 0W

1−1/2q
q (J ;Lq(Σk)3×3) ∩ 0W

1/2
q (J ;W 1−1/q

q (Σk)3×3),

µ∇2φk
∣∣
Sk ∈ 0W

1−1/2q
q (J ;Lq(Sk)3×3) ∩ 0W

1/2
q (J ;W 1−1/q

q (Sk)3×3),

whenever they exist. Define

(ûk, π̂k) := (ũk −∇φk, π̃k + ρ∂tφk − µ∆φk).

Then we arrive at the system

ρ∂tûk − µ∆ûk +∇π̂k = Fk(ũ, π̃), in Ωk\Σk × J,
div ûk = 0, in Ωk\Σk × J,JûkK = g̃1k − J∇φkK , on Σk × J,q

−π̂kI+ µ(∇ûk +∇û⊤k )
y
νΣk = g̃2k + Ĝ2k(ũ), on Σk × J,

((ûk)1, (ûk)3)
⊤ = g̃3k − (∂1φk, ∂3φk)

⊤, on Gk\∂Σk × J,

−π̂k + 2µ∂2(ûk)2 = g̃4k + Ĝ4k(ũ), on Gk\∂Σk × J,
ûk = g̃5k −∇φk, on Sk × J,

ûk(0) = 0, in Ωk\Σk,

(4.57)
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where

Ĝ2k(ũ) := G2k(ũ)−
q
2µ∇2φk

y
νΣk + Jµ∆φkK νΣk ,

Ĝ4k(ũ) := G4k(ũ)− 2µ∂22φk + µ∆φk.

By the solution operators Sk, one may rewrite (4.57) as

(ûk, π̂k) = Sk(Dk +Rk(ũ, π̃)), (4.58)

where
Dk := (0, 0, g̃1k, g̃2k, g̃3k, g̃4k, g̃5k)

⊤

denotes the given data and

Rk(ũ, π̃) := (Fk(ũ, π̃), 0,− J∇φkK , Ĝ2k(ũ),−(∂1φk, ∂3φk), Ĝ4k(ũ),−∇φk)⊤

represents the remaining part on the right-hand side of (4.57).
Choose cutoff functions {ηk}Nk=0 ⊂ C∞

c (Uk) such that ηk|supp φk
= 0. Then ũ =

∑N
k=0 ũkηk,

π̃ =
∑N

k=0 π̃kηk. Multiplying (4.58) by ηk, replacing (ûk, π̂k)ηk by (ũk − ∇φk, π̃k + ρ∂tφk −
µ∆φk)ηk and rearranging the equation, one obtains

(ũk, π̃k)ηk = Sk(Dkηk +Rk(ũ, π̃)ηk) + (∇φk,−ρ∂tφk + µ∆φk)ηk.

Now recalling the function spaces in Section 4.2.2, we claim that there exist a δ > 0 and a
constant C independent of T > 0, such that for α > 1/2q,

‖Rk(ũ, π̃)ηk‖
0F(J) ≤ CT

δ ‖(ũ, π̃)‖
0E(J) , (4.59)

‖∇φkηk‖
0Eu(J)

≤ CT δ
(
‖(ũ, π̃)‖

0E(J) + ‖Dk‖
0F(J)

)
, (4.60)

‖(−ρ∂tφk + µ∆φk)ηk‖0Eπ(J)
≤ CT δ

(
‖(ũ, π̃)‖

0E(J) + ‖Dk‖
0F(J)

)
. (4.61)

It is easy to verify (4.59), since we have given associated additional time regularity for the
remaining terms. We present the estimate for Fk(ũ, π̃) as an example. For α > 1/2q, we have

‖ηkFk(ũ, π̃)‖F1(J)
≤ T

1
2q ‖Fk(ũ, π̃)‖L2q(J;Lq(Ωk)3) ≤ CT

1
2q ‖Fk(ũ, π̃)‖

0Wα
q (J;Lq(Ωk)3) .

By Proposition 4.14, we get

‖(−ρ∂tφk + µ∆φk)ηk‖
0Wα

q (J;Lq(Ωk)) ≤ ‖π̃ηk − π̂k‖0Wα
q (J;Lq(Ωk))

≤ C
(
‖(ũ, π̃)‖

0E(J) + ‖Dk‖
0F(J) + ‖Rk(ũ, π̃)ηk‖

0F(J)

)
.

Since ∇φk ∈ 0W
1
q(J ;W

1
q (Ω

k\Σk)3), one has

∂tφk ∈ 0W
α
q (J ;L

q(Ωk)) ∩ Lq(J ;W 2
q (Ω

k\Σk)) ↪→ 0W
α−ϵ
q (J ;W 1

q (Ω
k\Σk)),

for ε > 0 small. Then

‖∇φkηk‖0Eu(J)
≤ C ‖∇φk‖Lq(J;W 2

q (Ω
k\Σk)3) + ‖φk‖0W 1

q(J;W
1
q (Ω

k\Σk)3)

≤ CT
1
2q ‖∇φk‖

0W
1
2
q (J;W 2

q (Ω
k\Σk)3)

+ ‖φk‖Lq(J;W 1
q (Ω

k\Σk)) + ‖∂tφk‖Lq(J;W 1
q (Ω

k\Σk))

≤ CT
1
2q ‖∇φk‖

0W
1
2
q (J;W 2

q (Ω
k\Σk)3)

+ CT
1
2q ‖∂tφk‖

0W
α−ϵ
q (J;W 1

q (Ω
k\Σk))

≤ CT
1
2q

(
‖(ũ, π̃)‖

0E(J) + ‖Dk‖0F(J)
)
,
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and

‖(−ρ∂tφk + µ∆φk)ηk‖
0Eπ(J)

≤ CT
1
2q ‖∂tφk‖

0W
α−ϵ
q (J;Ẇ 1

q (Ω
k\Σk)) + CT

1
2q ‖∇φk‖

0W
1
2
q (J;W 2

q (Ω
k\Σk)3)

+ CT
1
2q ‖J∆φkK‖

0W
1
2
q (J;W

1− 1
q

q (Σk))
+ CT

1
2 ‖J∆φkK‖

0W
1− 1

2q
q (J;Lq(Σk))

+ CT
1
2q ‖∆φk|Sk‖

0W
1
2
q (J;W

1− 1
q

q (Σk))
+ CT

1
2 ‖∆φk|Sk‖

0W
1− 1

2q
q (J;Lq(Σk))

≤ CT
1
2q

(
‖(ũ, π̃)‖

0E(J) + ‖Dk‖
0F(J)

)
,

where we used

‖∂tφk‖Lq(J;Ẇ 1
q (Ω

k\Σk)) ≤ T
1
2q ‖∂tφk‖L2q(J;Ẇ 1

q (Ω
k\Σk))

≤ CT
1
2q ‖∂tφk‖

W
α
2

− ϵ
2

q (J;Ẇ 1
q (Ω

k\Σk))
≤ CT

1
2q ‖∂tφk‖Wα−ϵ

q (J;Ẇ 1
q (Ω

k\Σk)) ,

for some 1/2q < α < 1/2−1/2q and ε small enough. Then we get (4.60) and (4.61). Consequently,
there is a constant δ > 0, such that

‖(ũk, π̃k)ηk‖
0E(J) ≤ C

(
‖Dk‖

0F(J) + T δ ‖(ũ, π̃)‖
0E(J)

)
,

where C > 0 does not depend on T > 0. Taking the sum over all charts k = 0, ..., N , one obtains

‖(ũ, π̃)‖
0E(J) ≤ C

(
‖D‖

0F(J) + T δ ‖(ũ, π̃)‖
0E(J)

)
,

where D denotes the data in (4.54). Then choosing T > 0 sufficiently small yields the a priori
estimate

‖(ũ, π̃)‖
0E(J) ≤ C ‖D‖0F(J) .

Hence we may conclude that the operator L : 0E → 0F defined by the left-hand side of (4.54)
is injective and has closed range and there is a left inverse S for L such that SLz = z for all
z ∈ 0E(J).

(2). Existence of a right inverse. Now we are in the position to prove the existence of
a right inverse. Given data

F := (fu, fd, g1, g2, g3, g4, g5)
⊤ ∈ F(J), u0 ∈ Xγ,u,

satisfying the compatibility conditions (4.11) and (4.12). As stated in Section 4.4.2, without loss
of generality one may assume that u0 = 0, which means that the time traces of all the data at
t = 0 vanish whenever they exist.

Let ū,∇φ be the unique solution of (4.52) and (4.53), respectively. Define

(ũ, π̃) := (ū−∇φ,−∂tφ+ µ∆φ), S̃F := (ũ, π̃).

Then it follows that

LS̃F = (fu, fd, g1 +G1(φ), g2 +G2(φ), g3 +G3(φ), g4 +G4(φ), g5 +G5(φ), 0)
⊤
,

where

G1(φ) := − J∇φK , G2(φ) := −
q
2µ∇2φ

y
νΣ + Jµ∆φK νΣ,

G3(φ) := (−∂1φ,−∂3φ)⊤, G4(φ) := −2µ∂22φ+ µ∆φ, G5(φ) := −∇φ.
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In the following, by localization we consider the problem

ρ∂tũk − µ∆ũk +∇π̃k = 0, in Ωk\Σk × J,
div ũk = 0, in Ωk\Σk × J,JũkK = G1k(φ), on Σk × J,q

−π̃kI+ µ(∇ũk +∇ũ⊤k )
y
νΣk = G2k(φ), on Σk × J,

((ũk)1, (ũk)3)
⊤ = G3k(φ), on Gk\∂Σk × J,

−π̃k + 2µ∂2(ũk)2 = G4k(φ), on Gk\∂Σk × J,
ũk = G5k(φ), on Sk × J,

ũk(0) = 0, in Ωk\Σk,

(4.62)

where Gjk(φ) := Gj(φ)ϕk, j ∈ {1, ..., 5}. Now, we are going to check if Gjk(φ) satisfy all the
relevant compatibility condition at ∂Σk and ∂Sk, whenever they exist. For k = 0, ..., 4, one
does not need compatibility condition for Gjk, j = 1, 2, 5. Since φ has vanishing trace at t = 0,
one obtains (G3k, G4k)|t=0 = 0. For k = 5, ..., N1, i.e., the bent quarter-space Stokes problem,
it is obviously that G3k = ((G5k)1, (G5k)3)

⊤, which fulfills the compatibility condition on the
contact line ∂Sk. For k = N1, ..., N , namely, the half-space two-phase Stokes problem with a
bent interface, we have JG3kK = ((G1k)1, (G1k)3)

⊤ and

(G2k)1 = J2µ∂1(G3k)1νΣk · e1 + µ(∂1(G3k)2 + ∂3(G3k)1)νΣk · e3K
+ JG4kK νΣk · e1 + J2µ(∂1(G3k)1 + ∂3(G3k)2)K νΣk · e1,

(G2k)3 = J2µ∂3(G3k)2νΣk · e3 + µ(∂1(G3k)2 + ∂3(G3k)1)νΣk · e1K
+ JG4kK νΣk · e3 + J2µ(∂1(G3k)1 + ∂3(G3k)2)K νΣk · e3,

at the contact line ∂Σk, which verifies the compatibility condition (4.40).
Therefore, according to the model problems we established in Section 4.3, for each k ∈

{0, 1, ..., N}, there exists a unique solution (ũk, π̃k) of (4.62) in right regularity class. Choose
cutoff functions {ηk}Nk=0 ⊂ C∞

c (Uk) such that ηk|supp φk
= 0. Solving the elliptic transmission

problem

∆φk = (ũk · ∇ηk)|Ω , in Ω\Σ,JρφkK = 0, on Σ,J∂νΣ
φkK = 0, on Σ,

ρφk = 0, on G\∂Σ,
∂νS

φk = 0, on S,

(4.63)

yields a unique solution φk with regularity

∇φk ∈ 0W
1
q(J ;W

1
q (Ω\Σ)3) ∩ Lq(J ;W 3

q (Ω\Σ)3).

Finally, define

SF :=

N∑
k=0

(ũkηk −∇φk, π̃kηk − ρ∂tφk + µ∆φk).
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Then it holds that

LSF =

N∑
k=0



−µ[∆, ηk]ũk + [∇, ηk]ũk
0

ηkG1k(φ) +G1k(φk)

ηkG2k(φ) + Ĝ2k(φk)

ηkG3k(φ) +G3k(φk)

ηkG4k(φ) + Ĝ4k(φk)

ηkG5k(φ) +G5k(φk)

0


,

where

Ĝ2k(φk) := G2k(φk)− Jµ(∇ηk ⊗ ũk + ũk ⊗∇ηk)K νΣk ,

Ĝ4k(φk) := G4k(φk)− 2µ∂2φk(ũk)2.

From the construction of ηk, we know that

Gj(φ) =

N∑
k=0

ηkGjk(φ).

Let ŜF := S̃F − SF , it follows that

LŜF = LS̃F − LSF = F −RF,

where

RF :=

N∑
k=0

(
−µ[∆, ηk]ũk + [∇, ηk]ũk, 0, G1k, Ĝ2k, G3k, Ĝ4k, G5k, 0

)⊤
.

As in the first part of the proof, since we have additional time-regularity for ũk, π̃k and φ, we
could conclude that there exists constant δ > 0 such that

‖RF‖
0F(J) ≤ CT

δ ‖F‖
0F(J) ,

where C > 0 does not depend T > 0. Taking T > 0 small enough, for example, CT δ < 1/2, the
operator (I−R) is invertible. Substitute F above by (I−R)−1F , one obtains

LŜ(I−R)−1F = F,

which defines the right inverse for L as S := Ŝ(I−R)−1.
This completes the proof.
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Given cs ∈ Lq(J ;W 2
q (Ωs)) ∩W 1

q (J ;L
q(Ωs)), we obtain the well-posedness of

ρ∂tu− divSµ(u, π) = fu, in Ω\Σ× J,

divu− γβ

ρs
cs = fd, in Ω\Σ× J,

JuK = g1, on Σ× J,q
(−πI+ µ(∇u+∇u⊤))νΣ

y
= g2, on Σ× J,

(u1, u3)
⊤ = g3, on G\∂Σ× J,

−π + 2µ∂2u2 = g4, on G\∂Σ× J,
u = g5, on S × J,

u(0) = u0, in Ω\Σ,

(4.64)

with the aid of Theorem 4.7.
Corollary 4.16. Let γ, β > 0. Given cs ∈ Lq(J ;W 2

q (Ωs)) ∩W 1
q (J ;L

q(Ωs)). Then under
the assumptions of Theorem 4.7, (4.64) admits a unique solution

(u, π) ∈ E(J),

if and only if the data are subject to the regularity and compatibility conditions in Theorem 4.7.

Proof. Since cs ∈ Ec,s(J) = Lq(J ;W 2
q (Ωs)) ∩ W 1

q (J ;L
q(Ωs)), it follows from the embeddings

W 2
q (Ωs) ↪→W 1

q (Ωs), L
q(Ωs) ↪→W−1

q (Ωs) that cs ∈ F2(J). For c0,s ∈W 2−2/q
q (Ωs), trace method

of real interpolation implies that there exists a function c̃s ∈ Ec,s(J) such that c̃s|t=0 = c0,s. Then
one may decompose cs as cs := c̃s+ c̄s, where c̄s ∈ 0Ec,s(J). Extend c̄s suitably from 0Ec,s(J) to
c̄ ∈ Lq(J ;W 2

q (Ω\Σ)) ∩ 0W
1
q(J ;L

q(Ω)). By compatibility conditions (4.11) and (4.12), we define
a function ĉ such that

ĉ =


c̄|Ωs

= c̄s, in Ωs,
µs

µf
c̄|Ωf

, in Ωf .

Then ĉ ∈ 0F2(J) and JµĉK = 0 on Σ. Consequently, the problem

ρ∂tū− divSµ(ū, π̄) = 0, in Ω\Σ× J,

div ū =
γβ

ρs
ĉ, in Ω\Σ× J,

JūK = 0, on Σ× J,q
−π̄I+ µ(∇ū+∇ū⊤)

y
νΣ = 0, on Σ× J,

(ū1, ū3)
⊤ = 0, on G\∂Σ× J,

−π̄ + 2µ∂2ū2 = 0, on G\∂Σ× J,
ū = 0, on S × J,

ū(0) = 0, in Ω\Σ.

admits a unique solution (ū, π̄) ∈ 0E(J) thanks to Theorem 4.7. Let (ũ, π̃) be the unique solution
of (4.10) with fd substituted by fd + γβ

ρs
c̃s, then (ū+ ũ, π̄ + π̃) solves (4.64).

By standard localization procedure, one can prove the local well-posedness of the heat equa-
tion in a cylindrical domain and in a cylindrical ring respectively. We omit the proof of Theorem
4.8 and 4.9 here and refer to Wilke [Wil20, Section 5.3.2] for similar arguments with model
problems constructed in Section 4.3.6 and Prüss–Simonett [PS16, Section 6.2].
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4.5. Nonlinear Well-posedness

In this section, we aim to prove the local well-posedness of (4.8), namely, to prove Theorem
4.3. To this end, we firstly introduce the function spaces for the data

F1(J) := Lq(J ;Lq(Ω)3), F2(J) :=W 1
q (J ; Ẇ

−1
q (Ω)) ∩ Lq(J ;W 1

q (Ω\Σ)),

F3(J) :=W
1
2−

1
2q

q (J ;Lq(Σ)3) ∩ Lq(J ;W
1− 1

q
q (Σ)3),

F4(J) :=W
1− 1

2q
q (J ;Lq(G)3) ∩ Lq(J ;W

2− 1
q

q (G\∂Σ)3),

F5(J) :=W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)),

F6(J) := Lq(J ;Lq(Ωf )), F7(J) :=W
1
2−

1
2q

q (J ;Lq(Σ)) ∩ Lq(J ;W
1− 1

q
q (Σ)),

F8(J) :=W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)),

F9(J) :=W
1
2−

1
2q

q (J ;Lq(S)) ∩ Lq(J ;W
1− 1

q
q (S)),

F10(J) := Lq(J ;W 1
q (Ωs)), F11(J) := Lq(J ;W 1

q (Ωs)), F(J) := Π11
j=1Fj(J).

Let w = (v̂, π̂, ĉ, ĉ∗s, ĝ) and w0 = (v̂0, ĉ0, 0, 1). Recalling the definition of solution and initial
spaces in Section 4.2.1, we reformulate (4.8) in the abstract form

L (w) = N (w,w0) for all w ∈ E(J), (v̂0, ĉ0) ∈ Xγ , (4.65)

where

L (w) :=



ρ̂∂tv̂− d̂iv S(v̂, π̂)

d̂iv (v̂)− γβ

ρ̂s
ĉs

JS(v̂, π̂)K n̂Σ

PG(v̂)|G
S(v̂, π̂)n̂G · n̂G|G
∂tĉ− D̂ �̂ ĉ
D̂∇̂ĉ · n̂Σ

D̂∇̂ĉ · n̂G

D̂s∇̂ĉs · n̂S

∂tĉ
∗
s − βĉs

∂tĝ −
γβ

nρ̂s
ĉs

(v̂, ĉ, ĉ∗s, ĝ)|t=0



, N (w,w0) :=



K(w)

G(w)

H1(w)

H2(w)

H3(w)

F 1(w)

F 2(w)

F 3(w)

F 4(w)

F 5(w)

F 6(w)

w0



.

Define
M (w) :=

(
K, G,H1,H2,H3, F 1, F 2, F 3, F 4, F 5, F 6

)⊤
(w).

Then it follows from Corollary 4.16 and Theorem 4.8, 4.9 that L : E(J) → F(J) × Xγ is an
isomorphism for J := [0, T ], T > 0. Moreover, the following proposition holds for M : E(J) →
F(J).
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Proposition 4.17. Let q > 3 , J = [0, T ] and R > 0. Assume w = (v̂, π̂, ĉ, ĉ∗s, ĝ) ∈ E(J)
with ĝ|t=0 = 1 and ‖w‖E(J) ≤ R, then there exist a constant C = C(R) > 0, a finite time TR > 0

depending on R and δ > 0 such that for 0 < T < TR, M : E(J) → F(J) is well-defined and
bounded along with the estimates:

‖M (w)‖F(J) ≤ C(R)T
δ
(
‖w‖E(J) + 1

)
for all w ∈ E(J). (4.66)

Moreover, there exist a constant C = C(R) > 0, a finite time TR > 0 depending on R and δ > 0
such that for 0 < T < TR,∥∥M (w1)−M (w2)

∥∥
F(J) ≤ C(R)T

δ
∥∥w1 − w2

∥∥
E(J) , (4.67)

for w1 = (v̂1, π̂1, ĉ1, ĉ∗s
1, ĝ1),w2 = (v̂2, π̂2, ĉ2, ĉ∗s

2, ĝ2) ∈ YT , ĉi
∣∣
t=0

= ĉ0, ĉ∗s|t=0 = 0, ĝi
∣∣
t=0

= 1

and
∥∥wi

∥∥
E(J) ≤ R (i = 1, 2).

Proof. This proposition is same as in Proposition 3.20 and the proof is very similar. The different
points we need to pay attention are the estimates of H2 and H3, where

H2 = −
(
I−

(
(F̂−⊤n̂G)⊗ (F̂−⊤n̂G)− n̂G ⊗ n̂G

))
v̂,

H3 = −T̂F̂−⊤n̂G · (F̂−⊤n̂G) + S(v̂, π̂)n̂G · n̂G.

Note that for matrices S,T ∈ R3×3 and vectors u, v ∈ R3, we have the tensor algebra property

S(u⊗ v) = (Su)⊗ v, (u⊗ v)S = u⊗ (S⊤v),
Tu · (S⊤v) = (ST)u · v = S(Tu) · v.

Then one can derive

H2(w1)−H2(w2)

=
((

F̂−⊤(∇̂v̂1)− F̂−⊤(∇̂v̂2)
)
(n̂G ⊗ n̂G)F̂−1(∇̂v̂1)

+ F̂−⊤(∇̂v̂2)(n̂G ⊗ n̂G)
(
F̂−1(∇̂v̂1)− F̂−1(∇̂v̂2)

))
v̂1

+
((

F̂−⊤(∇̂v̂2)− I
)
(n̂G ⊗ n̂G)F̂−1(∇̂v̂1)

+ (n̂G ⊗ n̂G)
(
F̂−1(∇̂v̂2)− I

))
(v̂1 − v̂2)− (v̂1 − v̂2)I

and

H3(w1)−H3(w2)

= −(F̂−1(∇̂v̂1)− I)
(
T̂(ŵ1)F̂−⊤(∇̂v̂1)− T̂(ŵ2)F̂−⊤(∇̂v̂2)

)
n̂G · n̂G

−
(
F̂−1(∇̂v̂1)− F̂−1(∇̂v̂2)

)
(T̂(ŵ2)F̂−⊤(∇̂v̂2))n̂G · n̂G −Kn̂G · n̂G.

With the general trace theorem and Proposition 2.18, one can derive the estimates for H2 and
H3 following the procedure in Proposition 3.20.

Now we are in the position to show Theorem 4.3.
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Proof of Theorem 4.3. For (v̂0, ĉ0) ∈ Xγ , by the trace method of real interpolation, see e.g.
Lunardi [Lun18, Proposition 1.13], there exists a function w̃ = (ṽ, c̃) ∈ Ev̂(∞)×Eĉ(∞) such that
w̃|t=0 = (v̂0, ĉ0). Then one can reduce (4.8) to the case of trivial initial data by eliminating w̃.
Now we set a well-defined constant for

CL := sup
0<T≤1

∥∥L −1
∥∥
L(0F(J),0E(J))

,

which is finite. Choose R > 0 large such that R ≥ 2CL

∥∥(v̂0, ĉ0)
∥∥
Xγ

. Then

∥∥L −1N (0̄,w0)
∥∥
E(J) ≤ CL

∥∥(v̂0, ĉ0)
∥∥
Xγ
≤ R

2
. (4.68)

Here N (0̄,w0) is in the sense of trivial data 0̄ = (0, 0, 0, 0, 1). For
∥∥wi

∥∥
E(J) ≤ R, i = 1, 2, we

take TR > 0 small enough such that CLC(R)T
δ
R ≤ 1/2, where C(R) is the constant in (4.67).

Then for 0 < T < TR, we infer from Proposition 4.17 that∥∥L −1N (w1,w0)−L −1N (w2,w0)
∥∥
E(J)

≤ CLC(R)T
δ
∥∥w1 − w2

∥∥
E(J) ≤

1

2

∥∥w1 − w2
∥∥
E(J) ,

(4.69)

for all wj ∈ E(J) with ‖wj‖E(J) ≤ R, which implies the contraction property. From (4.68) and
(4.69), we have∥∥L −1N (w,w0)

∥∥
E(J)

≤
∥∥L −1N (0,w0)

∥∥
E(J) +

∥∥L −1N (w,w0)−L −1N (0̄,w0)
∥∥
E(J) ≤ R.

DefineMR,T by
MR,T :=

{
w ∈ B

0E(J)(0̄, R) : w = (v̂, π̂, ĉ, ĉs, ĝ)
}
,

a closed subset of 0E(J). Hence, L −1N (·,w0) :MR,T →MR,T is well-defined for all 0 < T <
TR and a strict contraction. Since 0E(J) is a Banach space, the Banach fixed-point Theorem
implies the existence of a unique fixed-point of L −1N (·,w0) inMR,T , i.e., (4.8) admits a unique
strong solution inMR,T for small time 0 < T < TR.

The uniqueness in 0E(J) follows easily by mimicking the continuity argument in Proof of
Theorem 3.8, we omit it here and complete the proof.

4.6. Appendix: Partition of Unity with Vanishing Neumann Trace

Proposition 4.18. Let G0 := G+
0 ∪G

−
0 ∪ Γ ⊂ R2 with three disjoint components and G−

0 ⊂
G0, be a bounded domain with the boundary ∂G0 ∈ Cm+1 and an interface Γ = ∂G−

0 ∈ Cm+1,
m ∈ N+. G−

0 ⊂ G0. Then for each finite open covering {Uk}Nk=1 of Γ ∪ ∂G0 with {Uk}N1

k=1 ⊃ Γ
and {Uk}Nk=N1+1 ⊃ ∂G0, there exist open sets U0 ⊂ G−

0 and UN+1 ⊂ G+
0 such that U0 ∩ Γ = ∅,

UN+1 ∩ (∂G0 ∪ Γ) = ∅,
⋃N+1

k=0 Uk ⊃ G0. Moreover, there is a subordinated partition of unity
{ψk}N+1

k=0 ⊂ Cm
c (R2), such that suppψk ⊂ Uk and ∂νG0

ψk = 0 on ∂G0, ∂νΓ
ψk = 0, on Γ, where

νΓ denotes the unit normal vector pointing from G−
0 to G+

0 , νG0 is the outer unit normal vector
on ∂G0.
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Proof. The proof is based on [Wil20, Proposition 5.3]. For any finite open covering {Uk}Nk=1

of Γ ∪ ∂G0, where
⋃N1

k=1 Uk ⊃ Γ and
⋃N

k=N1+1 Uk ⊃ ∂G0, there exists UN1+1 ⊂ G+
0 , such that

UN1+1 ∩ (Γ∪ ∂G0) = ∅ and
⋃N+1

k=1 Uk ⊃ G+
0 by [Wil20, Proposition 5.3], while at the same time,

there exists U0 ⊂ G−
0 , such that U0 ∩ Γ = ∅ and

⋃N1

k=0 Uk ⊃ G−
0 .

Moreover, there are two subordinated partitions of unity {φk}N1

k=0, {ϕk}N+1
k=1 ⊂ Cm

c (R2) such
that suppφk ⊂ Uk and suppϕk ⊂ Uk, ∂νΓ

φk = 0, −∂νΓ
ϕk = 0, on Γ and ∂νG0

ϕk = 0, on
∂G0. Now we argue by the truncation. Let V :=

⋃N+1
k=0 Uk and V − :=

⋃N1

k=0 Uk. For x ∈ V ,
define d(x) as the distance from x to V −. Let η(x) ∈ C∞

0 (R; [0, 1]) be a cutoff function over
V such that η(s) = 1 if |s| < ε and η(s) = 0 if |s| > 2ε for ε > 0 small. Define ψk :=
η(d(x))φk + (1− η(d(x)))ϕk. Then

N+1∑
k=0

ψk =

N1∑
k=0

ηφk +

N+1∑
k=1

(1− η)ϕk = 1.

Then {ψk}N+1
k=0 ⊂ Cm

c (R2) is a partition of unity such that suppψk ⊂ Uk. Since η(s) is constant
in both a neighborhood of and far away from s = 0, one obtains ∂νΓ

ψk = 0, on Γ and ∂νG0
ψk = 0,

on ∂G0.

Analogous to [Wil20, Section 5.2], the results can be extended to the general cylindrical
domain Ω := Ω+ ∪ Ω− ∪ Σ with three disjoint components satisfying Ω− ⊂ Ω, ∂Ω = G ∪ S,
∂Ω− = Σ∪G−

0 , ∂Ω+ = Σ∪S∪G+
0 , where L1 < L2 <∞ are two constant, G := ∪j=1,2G0×{Lj}

and S,Σ ⊂ R3 are general hypersurfaces which will be assigned with certain regularity. In
particular, ∂Σ = ∪j=1,2Γ×{Lj}, ∂S = ∪j=1,2∂G0×{Lj} are sub-manifolds of dimension one in
R3. Moreover, we assume that S ⊥ G at ∂G, Σ ⊥ G at ∂Σ and Σ ∩ S = ∅.

Proposition 4.19. Let Ω be a bounded domain defined above with G,S,Σ ∈ Cm and
∂Σ, ∂S ∈ Cm+1, m ∈ N+. Then for each finite open covering {Uk}Nk=1 of ∂S ∪ ∂Σ in R3,
there exist open sets Uj ⊂ R3, j ∈ {N + 1, ..., N + 5}, such that

• UN+1 ∩ (Ω\G) 6= ∅, UN+1 ∩G = ∅,

• UN+1+j ∩ UN+1 ∩G+
j 6= ∅, UN+1+j ∩ (Σ ∪ S) = ∅, j = 1, 2,

• UN+3+j ∩ UN+1 ∩G−
j 6= ∅, UN+3+j ∩ Σ = ∅, j = 1, 2,

•
⋃N+5

j=1 Uj ⊃ Ω.

Moreover, there is a subordinated partition of unity {ψk}N+5
k=1 ⊂ Cm

c (R3), such that suppψk ⊂ Uk

and ∂νS
ψk = 0 on ∂S, ∂νΣψk = 0, on ∂Σ.

Proof. This proposition can be proved easily by mimicking same arguments as in [Wil20, Propo-
sition 5.4].

4.7. Appendix: Auxiliary Transmission Problems

In this section, we give the existence and uniqueness of auxiliary elliptic and parabolic
transmission problems. Given G0 := G+

0 ∪G
−
0 ∪Γ ⊂ R2 with G−

0 ⊂ G0, we define the cylindrical
domain for 0 < L1 < L2 <∞ as Ω := Ω+ ∪Ω− ∪Σ, Ω− ⊂ Ω with three disjoint parts, satisfying
∂Ω = G ∪ S, ∂Ω− = Σ ∪ G−

0 , ∂Ω+ = Σ ∪ S ∪ G+
0 , where G := ∪j=1,2G0 × {Lj} and S,Σ ⊂ R3

are general hypersurfaces which will be assigned with certain regularity. Particularly, curves
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∂Σ = ∪j=1,2Γ × {Lj}, ∂S = ∪j=1,2∂G0 × {Lj} are two one dimensional sub-manifolds of R3.
Moreover, we assume that S ⊥ G at ∂G, Σ ⊥ G at ∂Σ and Σ ∩ S = ∅, which means ∂S, ∂Σ
are the contact lines involving with ninety-degree contact angles. In addition, ν denotes the unit
outer normal vector on the interface Σ (point from Ω− to Ω+) and the boundary ∂Ω.

4.7.1. Elliptic transmission problems. Firstly, for λ > 0, we consider the elliptic system

λφ−∆φ = f, in Ω\Σ,JρφK = g1, on Σ,J∂νΣφK = g2, on Σ,

ρφ = g3, on G\∂Σ,
∂νS

φ = g4, on S.

(4.70)

Then we have the following theorem.

Theorem 4.20. Let q > 1, ρ > 0, T > 0, J = (0, T ) and s ∈ {0, 1}. Assume that Ω, Σ, G, S
are defined as above and Σ, G, S are of class C3, as well as ∂G ∈ C4. Then there is a constant
λ0 ≥ 0 such that for all λ > λ0, (4.70) admits a unique solution φ ∈ W 2+s

q (Ω\Σ) if and only if
the data satisfy the following regularity and compatibility conditions:

(1) f ∈W s
q (Ω\Σ),

(2) g1 ∈W
2+s− 1

q
q (Σ),

(3) g2 ∈W
1+s− 1

q
q (Σ),

(4) g3 ∈W
2+s− 1

q
q (G\∂Σ),

(5) g4 ∈W
1+s− 1

q
q (S),

(6) Jg3K = g1, J∂νΣ
(g3/ρ)K = g2, at ∂Σ,

(7) ∂νS
(g3/ρ) = g4, on ∂S.

Proof. We first consider the case s = 0. The general tool is the localization procedure, see e.g.
[DHP03], [PS16], [Wil20]. To this end, one gives four model problems with respect to (4.70).
Namely,

• The half-space elliptic equation with Dirichlet boundary condition

• The quarter-space elliptic equation with Neumann and Dirichlet boundary conditions

• The half-space elliptic transmission problem with a flat interface and Dirichlet boundary
condition

• The elliptic transmission problem in smooth domain with a flat interface and Neumann
boundary condition.

The first and the last one have been solved well, readers are referred to e.g. Prüss–Simonett
[PS16].
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Elliptic equation in a quarter space. For a quarter space {(x1, x2, x3) : x1 ∈ R, x2 ∈
R+, x3 ∈ R+}, we consider the problem for λ > 0 large,

λφ−∆φ = f, x1 ∈ R, x2 > 0, x3 > 0,

ρφ = g1, x1 ∈ R, x2 = 0, x3 > 0,

∂3φ = g2, x1 ∈ R, x2 > 0, x3 = 0.

(4.71)

Naturally, the compatibility condition at the contact line

∂3

(
g1
ρ

)
= g2, x1 ∈ R, x2 = 0, x3 = 0,

should be satisfied. To solve (4.71), we reduce it to the case g1 = 0. Extend g1 ∈ W
2− 1

q
q (R ×

{0} × R+) with respect to x3 by the extension

g̃1(x1, x2, x3) =

{
g1(x1, x2, x3), if x3 > 0,

− g1(x1, x2,−2x3) + 2g1(x1, x2,−x3/2), if x3 < 0.

Then g̃1 ∈W
2− 1

q
q (R× {0} × R). Let ρ̄ ≡ ρ in R× R+ × R. Solving

λφ−∆φ = 0, x1 ∈ R, x2 > 0, x3 ∈ R,
ρ̄φ = g̃1, x1 ∈ R, x2 = 0, x3 ∈ R,

yields a unique solution φ̄ ∈ W 2
q (R× R+ × R) by [PS16, Section 6.2]. Then (φ− φ̄) (restricted)

solves (4.71) with g1 = 0 and modified data (not to be relabeled) g2 satisfying the compatibility
condition g2|x2=0 = 0. Extend f ∈ Lq(R×R2

+) and g2 ∈W
1− 1

q
q (R×R+×{0}) to some function

f̃ ∈ Lq(R2 × R+) and g̃2 ∈ W
1− 1

q
q (R2 × {0}) by odd reflection. Then we solve the half-space

elliptic equation
λφ−∆φ = f̃ , x1 ∈ R, x2 ∈ R, x3 > 0,

∂3φ = g̃2, x1 ∈ R, x2 ∈ R, x3 = 0,

to obtain a unique solution φ̃ ∈W 2
q (R2×R+) by [PS16, Section 6.2]. By the symmetry, the func-

tion −φ̃(x1,−x2, x3) is also a solution to the above system and the uniqueness implies φ̃|x2=0 = 0.
Then the restricted function (φ̄+ φ̃) ∈ W 2

q (R× R2
+) solves (4.71). The uniqueness follows simi-

larly by carrying out argument in Section 4.3.1, with the help of the uniqueness in [PS16, Section
6.2].

Analogously, there is a solution operator with regard to the data and solutions for the elliptic
equation in a bent quarter space as in Section 4.3.2.

Elliptic transmission problem in a half space. For a half space

{(x1, x2, x3) : x1 ∈ R, x2 ∈ R+, x3 ∈ R},

we consider the problem for λ > 0 large,

λφ−∆φ = f, x1 ∈ R, x2 > 0, x3 ∈ Ṙ,JρφK = g1, x1 ∈ R, x2 > 0, x3 = 0,J∂3φK = g2, x1 ∈ R, x2 > 0, x3 = 0,

ρφ = g3, x1 ∈ R, x2 = 0, x3 ∈ Ṙ.

(4.72)
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The compatibility conditions at the contact line are

Jg3K = g1,

s
∂3

(
g3
ρ

){
= g2, x1 ∈ R, x2 = 0, x3 = 0.

Similarly as above, we reduce (4.72) to the case (f, g3) = 0 firstly. Define g±3 := g3|x3≷0,

f± := f |x3≷0 and ρ± := ρ|x3≷0. Extend g±3 ∈ W
2− 1

q
q (R × {0} × R±) to some functions g̃±3 ∈

W
2− 1

q
q (R× {0} × R) and respectively, f± ∈ Lq(R× R+ × R±) to f̃± ∈ Lq(R× R+ × R) by the

extension above, ρ± to ρ̃± by constant. Solving the half-space elliptic equation

λφ−∆φ = f̃+, x1 ∈ R, x2 > 0, x3 ∈ R,
ρ̃+φ = g̃+3 , x1 ∈ R, x2 = 0, x3 ∈ R,

yields a unique solution φ̄+ ∈W 2
q (R×R+×R) by [PS16, Section 6.2]. Replacing the superscript

“+” above by “−”, one obtains a unique solution φ̄− ∈W 2
q (R× R+ × R). Define

φ̄ :=

{
φ̄+, if x3 > 0,

φ̄−, if x3 < 0.

Then (φ− φ̄) (restricted) solves (4.72) with (f, g3) = 0 and modified data (not to be relabeled)
g1, g2 satisfying the compatibility condition g1|x2=0 = g2|x2=0 = 0. Hence one can extend

g1 ∈W
2− 1

q
q (R×R+×{0}) to some function g̃1 ∈W

2− 1
q

q (R2×{0}) and g2 ∈W
1− 1

q
q (R×R+×{0})

to some function g̃2 ∈ W
1− 1

q
q (R2 × {0}) by odd reflection. Then we solve the full-space elliptic

transmission problem with a flat interface

λφ−∆φ = 0, x1 ∈ R, x2 ∈ R, x3 ∈ Ṙ,JρφK = g̃1, x1 ∈ R, x2 ∈ R, x3 = 0,J∂3φK = g̃2, x1 ∈ R, x2 ∈ R, x3 = 0,

to obtain a unique solution φ̃ ∈ W 2
q (R2 × Ṙ) by [PS16, Section 6.5]. By the symmetry, the

function −φ̃(x1,−x2, x3) is also a solution to the above system. Then the uniqueness implies
φ̃|x2=0 = 0. Consequently, the restricted function (φ̄ + φ̃) ∈ W 2

q (R × R+ × Ṙ) solves (4.72). As
in Section 4.3.4, one can conclude that there is also a solution operator with regard to the data
and solutions for the elliptic transmission problem in a half space with a bent interface.

Now following the procedure in Section 4.4.3, one can complete the proof analogously, with
the help of Proposition 4.19.

For the case s = 1, the higher-order regularity case, we refer to e.g. Section 6.3.5, Section
6.5.3 in [PS16] for the models problems in a higher-order regularity class. Then proceeding with
a similar localization argument gives us the desired higher regularity.

Based on Theorem 4.70, we have the solvability and regularity for the Laplace transmission
problem.

−∆φ = f, in Ω\Σ,JρφK = 0, on Σ,J∂νΣφK = 0, on Σ,

ρφ = 0, on G\∂Σ,
∂νS

φ = 0, on S.

(4.73)
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Theorem 4.21. Under the assumption of Theorem 4.70, (4.73) admits a unique solution
φ ∈W 2+s

q (Ω\Σ) if and only if f ∈W s
q (Ω\Σ).

Proof. For s = 0, let Hk :=W k
2 and Hk

K :=W k
2,K be the Sobolev spaces, where

W k
q,K(Ω)3 =

{
u ∈W k

q (Ω)
3 : u|K = 0, K ∈ {G,S}

}
.

Testing (4.73) with a function ψ ∈ H1
G(Ω), one obtains

ˆ
Ω

∇φ · ∇ψdx =

ˆ
Ω

fψdx.

Then by Lax–Milgram Theorem, we know that there is a unique weak solution φ ∈ H1
G(Ω) of

(4.73). Equivalently, φ solves

λφ−∆φ = f + λφ =: f̃ , in Ω\Σ,JρφK = 0, on Σ,J∂νΣφK = 0, on Σ,

ρφ = 0, on G\∂Σ,
∂νS

φ = 0, on S.

(4.74)

weakly. From Sobolev embeddings, we have H1(Ω) ↪→ L6(Ω) in the three dimensional case. Then
f̃ ∈ Lp(Ω) for p = min(q, 6). If q ≤ 6, then (4.74) can be solved uniquely in W 2

q (Ω\Σ) ∩H1
G(Ω)

by Theorem 4.20. Otherwise if q > 6, one obtains φ ∈ W 2
6 (Ω\Σ) ∩W 1

6,G(Ω) ↪→ Lp(Ω) for any
p ≥ 1. Consequently, f̃ ∈ Lq(Ω), which means φ ∈W 2

q (Ω\Σ) ∩W 1
q,G(Ω) by Theorem 4.20.

For s = 1, one can proceed the bootstrap argument from s = 0, with the help of higher
regularity in Theorem 4.20. Namely, we can promote the regularity for f̃ in (4.74) up toW 1

q (Ω\Σ)
and get the desired regularity by Theorem 4.20 with s = 1.

Remark 4.22. Note that in Wilke [Wil20, Lemma 5.6], a mean value free condition was imposed
for f , while in the present paper, we do not have this one. This is due to the face that if we
integrate (4.73) over Ω, we will obtain

ˆ
Ω

fdx = −
ˆ
G

∂νG
φdσ,

which does not need to vanish since on G\∂Σ, ρφ = 0 instead of ∂νG
φ = 0 as in [Wil20].

4.7.2. Parabolic transmission problems. Consider the parabolic transmission problem with
mixed boundary conditions

ρ∂tu− µ∆u = f, in Ω\Σ× J,JuK = g1, on Σ× J,q
µ(∇u+∇u⊤)νΣ

y
= g2, on Σ× J,

(u1, u3)
⊤ = g3, on G\∂Σ× J,

2µ∂2u2 = g4, on G\∂Σ× J,
u = g5, on S × J,

u(0) = u0, in Ω\Σ.

(4.75)

Then one obtains the following theorem.
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Theorem 4.23. Let q > 3, ρ, µ > 0, T > 0 and J = (0, T ). Assume that Ω, Σ, G, S are
defined as above and Σ, G, S are of class C3, as well as ∂G of C4. Then (4.75) admits a unique
solution

u ∈W 1
q (J ;L

q(Ω)3) ∩ Lq(J ;W 2
q (Ω\Σ)3),

if and only if the data satisfy the following regularity and compatibility conditions:

(1) f ∈ Lq(J ;Lq(Ω)3),

(2) g1 ∈W
1− 1

2q
q (J ;Lq(Σ)3) ∩ Lq(J ;W

2− 1
q

q (Σ)3),

(3) g2 ∈W
1
2−

1
2q

q (J ;Lq(Σ)3) ∩ Lq(J ;W
1− 1

q
q (Σ)3),

(4) g3 ∈W
1− 1

2q
q (J ;Lq(G)2) ∩ Lq(J ;W

2− 1
q

q (G\∂Σ)2),

(5) g4 ∈W
1
2−

1
2q

q (J ;Lq(G)) ∩ Lq(J ;W
1− 1

q
q (G\∂Σ)),

(6) g5 ∈W
1− 1

2q
q (J ;Lq(S)3) ∩ Lq(J ;W

2− 1
q

q (S)3),

(7) u0 ∈W
2− 2

q
q (Ω\Σ)3, Ju0K = g1|t=0, PΣ(

q
∇u0 +∇u⊤0

y
νΣ) = PΣ(g2)|t=0,

(8) ((u0)1, (u0)3)
⊤|G = g3|t=0, 2µ∂2(u0)2|G = g4|t=0, u0|S = g5|t=0,

(9) Jg3K = ((g1)1, (g1)3)
⊤, at ∂Σ,

(10) (g2)1 = J2µ∂1(g3)1νΣ · e1 + µ(∂1(g3)2 + ∂3(g3)1)νΣ · e3K at ∂Σ,

(11) (g2)3 = J2µ∂3(g3)2νΣ · e3 + µ(∂1(g3)2 + ∂3(g3)1)νΣ · e1K, at ∂Σ,

(12) g3 = ((g5)1, (g5)3)
⊤, g4 = 2µ∂2(g5)2, at ∂S.

Proof. Again, we are going to prove the theorem by localization procedure. To this end, one
considers four model problems with respect to (4.75). Namely,

• The half-space heat equation with outflow boundary condition

• The quarter-space heat equation with outflow and Dirichlet boundary conditions

• The half-space heat transmission problem with a flat interface and Dirichlet boundary
condition

• The heat transmission problem in smooth domain with a flat interface and Dirichlet bound-
ary condition.

The first one has been solved, readers are referred to [PS16]. We focus on the remaining ones.
Heat equation in a quarter space. For a quarter space {(x1, x2, x3) : x1 ∈ R, x2 ∈

R+, x3 ∈ R+}, we consider the problem

ρ∂tu− µ∆u = f, in R× R+ × R+ × J,
(u1, u3)

⊤ = g1, on R× {0} × R+ × J,
2µ∂2u2 = g2, on R× {0} × R+ × J,

u = g3, on R× R+ × {0} × J,
u(0) = u0, in R× R+ × R+,

(4.76)
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where ρ, µ > 0, u : R3 × [0, T ]→ R3 is the unknown quantity. The data gi, i = 1, 2, 3 satisfy the
initial compatibility conditions

((u0)1, (u0)3)
⊤∣∣

x2=0
= g1|t=0 , 2µ∂2(u0)2|x2=0 = g2|t=0 , u0|x3=0 = g3|t=0 ,

and compatibility condition at the contact line R× {0} × {0}

((g3)1, (g3)3)
⊤ = g1, 2µ∂2(g3)2 = g2, x1 ∈ R, x2 = 0, x3 = 0.

To solve (4.76), we reduce it to the case (u0, f, g3) = 0. We extend

u0 ∈W
2− 2

q
q (R× R2

+)
3, f ∈ Lq(J ;Lq(R× R2

+)
3),

g3 ∈W
1− 1

2q
q (J ;Lq(R× R+ × {0})3) ∩ Lq(J ;W

2− 1
q

q (R× R+ × {0})3)

with respect to x2 by the similar extension as (4.19) to some functions

ũ0 ∈W
2− 2

q
q (R2 × R+)

3, f̃ ∈ Lq(J ;Lq(R2 × R+)
3),

g̃3 ∈W
1− 1

2q
q (J ;Lq(R2 × {0})3) ∩ Lq(J ;W

2− 1
q

q (R2 × {0})3).

Solving
ρ∂tu− µ∆u = f̃ , in R× R× R+ × J,

u = g̃3, on R× R× {0} × J,
u(0) = ũ0, in R× R× R+,

yields a unique solution

ū ∈W 1
q (J ;L

q(R2 × R+)
3) ∩ Lq(J ;W 2

q (R2 × R+)
3),

by [PS16, Section 6.2]. Then (u− ū) (restricted) solves (4.76) with (u0, f, g3) = 0 and modified
data g1, g2 (not to be relabeled) having vanishing trace at t = 0 and satisfying g1|x3=0 = 0 and
g2|x3=0 = 0. Now by odd reflection with respect to x3, one can extend

g1 ∈ 0W
1− 1

2q
q (J ;Lq(R× {0} × R+)

2) ∩ Lq(J ;W
2− 1

q
q (R× {0} × R+)

2),

g2 ∈ 0W
1
2−

1
2q

q (J ;Lq(R× {0} × R+)) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R+)),

to some functions

g̃1 ∈ 0W
1− 1

2q
q (J ;Lq(R× {0} × R)2) ∩ Lq(J ;W

2− 1
q

q (R× {0} × R)2),

g̃2 ∈ 0W
1
2−

1
2q

q (J ;Lq(R× {0} × R)) ∩ Lq(J ;W
1− 1

q
q (R× {0} × R)).

Then we solve the half-space heat equation

ρ∂tu− µ∆u = 0, in R× R+ × R× J,
(u1, u3)

⊤ = g̃1, on R× {0} × R× J,
2µ∂2u2 = g̃2, on R× {0} × R× J,
u(0) = 0, in R× R+ × R,

(4.77)
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to obtain a unique solution

ũ ∈ 0W
1
q(J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 2
q (R× R+ × R)3).

We remark here that (4.77) is actually assembled by two separated heat equations with Dirichlet
boundary condition and Neumann boundary condition respectively. Namely,

ρ∂t(u1, u3)
⊤ − µ∆(u1, u3)

⊤ = 0, ρ∂tu2 − µ∆u2 = 0, in R× R+ × R× J,
(u1, u3)

⊤ = g̃1, 2µ∂2u2 = g̃2, on R× {0} × R× J,
(u1, u3)

⊤(0) = 0, u2(0) = 0 in R× R+ × R,

Hence (4.77) is uniquely solved by [PS16, Section 6.2]. By the symmetry, one knows that

ū(t, x1, x2, x3) := (−ũ1(t, x1, x2,−x3),−ũ2(t, x1, x2,−x3),−ũ3(t, x1, x2,−x3))⊤

is also a solution to (4.77). Then the uniqueness implies that ū(t, x1, x2, x3) = ũ(t, x1, x2, x3),
i.e., ũ(t, x1, x2, 0) = 0. Consequently, the restricted function

(ū+ ũ) ∈W 1
q (J ;L

q(R× R2
+)

3) ∩ Lq(J ;W 2
q (R× R2

+)
3)

solves (4.76) with compatibility condition at the contact line.
Analogously, there is a solution operator with regard to the data and solutions for the heat

equation in a bent quarter space as in Section 4.3.2.
Heat transmission problem in a half space. For a half space R×R+ ×R, we consider

the problem
ρ∂tu− µ∆u = f, in R× R+ × Ṙ× J,JuK = g1, on R× R+ × {0} × J,Jµ(∂3u+∇u3)K = g2, on R× R+ × {0} × J,

(u1, u3)
⊤ = g3, on R× {0} × Ṙ× J,

2µ∂2u2 = g4, on R× {0} × Ṙ× J,
u(0) = u0, in R× R+ × Ṙ.

(4.78)

Then the data (u0, gj), j = 1, ..., 4, satisfy the corresponding initial compatibility condition

Ju0K = g1|t=0 , J∂3u0 +∇(u0)3K = g2|t=0 ,

((u0)1, (u0)3)
⊤∣∣

x2=0
= g3|t=0 , 2µ∂2(u0)2|x2=0 = g4|t=0 ,

and compatibility conditions at the contact line {x ∈ R3 : x2 = 0, x3 = 0}

((g1)1, (g1)3)
⊤ = Jg3K , 2∂2(g1)2 =

s
g4
µ

{
,

(g2)1 = Jµ(∂3(g3)1 + ∂1(g3)2)K , (g2)3 = J2µ∂3(g3)2K .
Following the argument in Section 4.3.3, one can easily reduce (4.78) to the case (u0, f, g3, g4) = 0
with modified data (not to be relabeled) having vanishing trace at t = 0 and satisfying

((g1)1, (g1)3)
⊤∣∣

x2=0
= 0, ∂2(g2)2|x2=0 = 0, (g2)1|x2=0 = 0, (g2)3|x2=0 = 0,
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Subsequently, one can extend ((g1)1, (g1)3, (g2)1, (g2)3) and ((g1)2, (g2)2) by odd and even reflec-
tion respectively to some functions

g̃1 ∈ 0W
1− 1

2q
q (J ;Lq(R2 × {0})3) ∩ Lq(J ;W

2− 1
q

q (R2 × {0})3),

g̃2 ∈ 0W
1
2−

1
2q

q (J ;Lq(R2 × {0})3) ∩ Lq(J ;W
1− 1

q
q (R2 × {0})3).

Then we solve the full-space heat transmission problem with a flat interface

ρ∂tu− µ∆u = 0, on R× R× Ṙ× J,JuK = g̃1, on R× R× {0} × J,Jµ(∂3u+∇u3)K = g̃2, on R× R× {0} × J,
u(0) = 0, on R× R× Ṙ,

to obtain a unique solution

ũ ∈ 0W
1
q(J ;L

q(R2 × R)3) ∩ Lq(J ;W 2
q (R2 × Ṙ)3).

with the help of [PS16, Section 6.5]. Again by symmetry, we conclude that

û(t, x1, x2, x3) := (−ũ1(t, x1, x2,−x3), ũ2(t, x1, x2,−x3),−ũ3(t, x1, x2,−x3))⊤

is a solution to (4.78) as well. From the uniqueness, that is, û(t, x1, x2, x3) = ũ(t, x1, x2, x3), we
know that

(ũ1, ũ3)(t, x1, 0, x3) = 0, ∂2ũ2(t, x1, 0, x3) = 0.

Consequently, the restricted function

ũ ∈W 1
q (J ;L

q(R× R+ × R)3) ∩ Lq(J ;W 2
q (R2 × Ṙ)3).

solves (4.78) with (u0, f, g3, g4) = 0. As in Section 4.3.4, one concludes that there is also a
solution operator with regard to the data and solutions for the heat transmission problem in a
half space with a bent interface.

Heat transmission problem with a Dirichlet boundary. Suppose that Ω ⊂ R3 is a
bounded domain with C2-boundary, consisting of two parts Ω± which are also open and such
that Ω+ ⊂ Ω. Let Σ = ∂Ω+ be the interface separating Ω± such that Ω = Ω+∪Σ∪Ω−. Consider
the problem

ρ∂tu− µ∆u = f, in Ω\Σ× J,JuK = g1, on Σ× J,q
µ(∇u+∇u⊤)ν

y
= g2, on Σ× J,

u = g3, on ∂Ω× J,
u(0) = u0, in Ω\Σ,

(4.79)

where ρ, µ > 0, ν denotes the outer unit normal vector on Σ pointing from Ω+ into Ω−. Note
that a similar transmission problem with a Neumann boundary condition was investigated in
[PS16, Section 6.5], one could solve (4.79) by a truncation technique. Readers are referred to
Proof of Theorem 3.12 for more details, where we handled the two-phase Stokes problem. In
this position, we only give a sketch of the procedure. To this end, we choose ψ(x) ∈ C∞

0 (Ω) as
a cutoff function over Ω such that

ψ(x) =

{
1, in a neighborhood of Ω+,

0, in a neighborhood of ∂Ω.
(4.80)
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We define u := ψu1+(1−ψ)u2, where u1 is the solution of a parabolic transmission problem with
a Neumann boundary condition in Ω, while u2 solves the heat equation in Ω− with a Dirichlet
boundary condition. Then u solves (4.79) with some remainders. Since systems for u1 and u2
are all solvable and hence, following the procedure in Proof of Theorem 3.12 completes the proof
of this part.

Finally, by a standard localization procedure as in Section 4.4.3 (see also [PS16]), one can
finish the proof analogously, with the help of Proposition 4.19.
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Chapter 5

Quasi-stationary Fluid-Structure Interaction Problem with
Growth in Smooth Domain

We address a quasi-stationary fluid-structure interaction problem cou-
pled with cell reactions and growth, which comes from the plaque for-
mation during the stage of the atherosclerotic lesion in human arteries.
The blood is modeled by the incompressible Navier–Stokes equation,
while the motion of vessels is captured by a quasi-stationary equation of
nonlinear elasticity. The growth happens when both cells in fluid and
solid react, diffuse and transport across the interface, resulting in the
accumulation of foam cells, which are exactly seen as the plaques. Via a
fixed-point argument, we derive the local well-posedness of the nonlinear
system, which is based on the analysis of the decoupled linear systems.

Overview of This Chapter

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2. Reformulation and Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3. Analysis of the Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4. Nonlinear Well-posdeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.5. Appendix: Stokes Resolvent Problem . . . . . . . . . . . . . . . . . . . . . . . . . 174

Notations. In this chapter, we consider specifically the following notations.

• Ωt = Ωt
f ∪ Ωt

s ∪ Γt, where Ωt ⊂ R3 is divided by the interface Γt into two disjoint parts,
fluid domain Ωt

f and solid domain Ωt
s. Γt

s denotes the outer boundary of Ωt. See Figure
3.1.

• u, û, the Eulerian and Lagrangian displacement

• v, v̂, the Eulerian and Lagrangian

• c, ĉ, cell concentrations

• c∗, ĉ∗ foam cell concentration

• g, ĝ, growth metrics

• F̂, the deformation gradient in terms of v̂

• F, the inverse deformation gradient

When there is no danger of confusion, we specify the quantities with a subscript “f” and “s”
to identify that defined in fluid domain and solid domain respectively. In addition, without a
special statement, the quantities or operators with a hat “̂·” will indicate those in Lagrangian
coordinates.
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5.1. Introduction

5.1.1. Model description. In this chapter, we consider a quasi-stationary fluid-structure in-
teraction problem for plaque growth, which describes the formation of plaque during the reaction-
diffusion and transport of different cells in human blood and vessels. As discussed in Section 1.7,
the problem is set up in a smooth domain Ωt ⊂ R3, with three disjoint parts Ωt = Ωt

f ∪Ωt
s ∪ Γt,

where Γt = ∂Ωt
f , Ωt

f ⊂ Ωt and Ωt
f , Ωt

s denote the domains for the fluid and solid, respectively.
Γt
s = ∂Ωt stands for the outer boundary of Ωt, which is also a free boundary.

Now we recall from (1.38) that the target system reads as

ρf (∂t + vf · ∇) vf = divTf , in Ωt
f , t ∈ (0, T ), (5.1a)

div vf = 0, in Ωt
f , t ∈ (0, T ), (5.1b)

divTs = 0, in Ωt
s, t ∈ (0, T ), (5.1c)

ρs div vs = γβcs, in Ωt
s, t ∈ (0, T ), (5.1d)

∂tcf + vf · ∇cf − div(Df∇cf ) = 0, in Ωt
f , t ∈ (0, T ), (5.1e)

∂tcs + vs · ∇cs − div(Ds∇cs) = −βcs, in Ωt
s, t ∈ (0, T ), (5.1f)

∂tc
∗
s + vs · ∇c∗s = βcs, in Ωt

s, t ∈ (0, T ), (5.1g)

∂tg + vs · ∇g =
γβcs
3ρs

, in Ωt
s, t ∈ (0, T ), (5.1h)

JvK = 0, JTK nΓt = 0, on Γt, t ∈ (0, T ), (5.1i)JD∇cK · nΓt = 0, ζ JcK−Ds∇cs · nΓt = 0, on Γt, t ∈ (0, T ), (5.1j)
TsnΓt

s
= 0, Ds∇cs · nΓt

s
= 0, on Γt

s, t ∈ (0, T ), (5.1k)
vf |t=0 = v0

f , us|t=0 = u0
s, c|t=0 = c0, c∗s|t=0 = c0∗, g|t=0 = g0, (5.1l)

where Tf := −πf I+νs(∇vf+∇v⊤
f ) denotes the Cauchy stress tensor. vf :

⋃
t∈(0,T ) Ω

t
f×{t} → R3,

πf :
⋃

t∈(0,T ) Ω
t
f × {t} → R are the unknown velocity and pressure of the fluid. ρf > 0 stands

for the fluid density and νs represents the viscosity of the fluid.
Compared to the problems (3.1) and (4.1), where an evolution equation for the incompressible

neo-Hookean material was employed, the vessel in this chapter is assumed to be quasi-stationary,
in view of the fact that generally it moves far slower than the blood from a macro point of
view. Thus, we model the blood vessel by the equilibrium of a nonlinear elastic equation. To
mathematically describe the elasticity conveniently, the Lagrangian coordinate was commonly
used, see e.g. [Gor17, GFA10]. Thus, we set reference configuration as the initial domain which
is defined by Ω := Ωt|t=0, as well as Ωf = Ω0

f , Ωs = Ω0
s and Γ = Γ0, then Ω = Ωf ∪ Ωs ∪ Γ. Let

X be the spatial variable in the reference configuration. Now we introduce the Lagrangian flow
map

ϕ : Ω× (0, T )→ QT ,

with
x(X, t) = ϕ(X, t) = X + u(x(X, t), t) (5.2)

for all X ∈ Ω and x(X, 0) = X, where

u(x(X, t), t) =

uf (x(X, t), t) =

ˆ t

0

vf (x(X, t), τ)dτ, if X ∈ Ωf ,

us(x(X, t), t), if X ∈ Ωs,
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denotes the displacement for the fluid and solid respectively. In the sequel, without special
statement, the quantities with a hat will indicate those in Lagrangian reference configuration,
e.g., û(X, t) = u(x(X, t), t), while the operators with a hat means those act on the quantities in
Lagrangian coordinate. Then the tensor field

F(x(X, t), t) = F̂(X, t) := ∂

∂X
ϕ(X, t) = ∇̂ϕ(X, t) = I+ ∇̂û(X, t), ∀X ∈ Ω, (5.3)

with F̂f (X, 0) = I and F̂s(X, 0) = I + ∇̂û0
s is referred to be the deformation gradient and

J = Ĵ := det(F̂) denotes its determinant. For the blood vessels, since the growth is taken into
account, we impose the so-called multiplicative decomposition for the solid deformation gradient
F̂s as

F̂s = F̂s,eF̂s,g

with Ĵs = Ĵs,eĴs,g, where F̂s,e is the pure elastic deformation tensor and F̂s,g denotes the growth
tensor, which are described as in Section 1.6. Inspired by Goriely [Gor17, Chapter 11–13] and
Jones–Chapman [JC12, Section 3.2], a general incompressible hyperelastic material is considered
for solid as

− divTs = 0, in Ωt
s, t ∈ (0, T ), (5.4)

where Ts := −πsI + J−1
s,eDW (Fs,e)F⊤

s,e stands for the Cauchy stress tensor. πs :
⋃

t∈(0,T ) Ω
t
f ×

{t} → R is the unknown pressure of the solid. The scalar function W : R3×3 → R+ is called
the strain energy density function (also known as the stored energy density), which needs some
general assumptions for the sake of analysis.

Assumption 5.1.

(A1) W is frame-indifferent, i.e., W (RF) = W (F), for all R ∈ SO(3) and F ∈ R3×3, where
SO(3) := {A ∈ R3×3 : A⊤A = I, det A = 1} is the set of all proper orthogonal tensors.

(A2) W ∈ C4(R3×3;R).

(A3) DW (I) = 0, W (R) = 0 for all R ∈ SO(3).

(A4) There exists a constant C0 > 0, such that W (F) ≥ C0 dist2(F, SO(3)).

Here, DW (F) := ∂W
∂Fij

ei ⊗ ej for all F ∈ R3×3. dist(F, SO(3)) := minQ∈SO(d) |F−Q|.

Remark 5.2. The Assumption (A4) implies that

D2W (I)F : F ≥ C1 |sym F|2 ,

for some constant C1 > 0, where sym F := 1
2 (F + F⊤). Indeed, by the polar decomposition,

F = RU,

for some rotation R ∈ SO(3) and positive-definite symmetric tensor U ∈ R3×3
sym+. Then it follows

from e.g. [Ame21, Lemma 2.3.3] that

dist2(F;SO(3)) =
∣∣F⊤F− I

∣∣2 .
Substituting F by I+ tF for any t > 0 and using Assumption (A4), one obtains

1

C0
W (I+ tF) ≥ dist2(I+ tF, SO(3))

=
∣∣2t sym F + t2F⊤F

∣∣2 = 4t2 |sym F|2 +O(t3).
(5.5)
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By a Taylor expansion at t = 0, we have

W (I+ tF) =W (I) + tDW (I)F︸ ︷︷ ︸
=0 thanks to (A3)

+
t2

2
D2W (I)F : F +O(t3)

=
t2

2
D2W (I)F : F +O(t3).

(5.6)

Combining (5.5) and (5.6) together and passing to the limit t→ 0, one arrives at

D2W (I)F : F ≥ C1 |sym F|2 .

Let F = a⊗ b, a, b ∈ R3, then

D2W (I)(a⊗ b) : (a⊗ b) ≥ C1

4
|a⊗ b + b⊗ a|2

=
C1

4

3∑
i,j=1

(aibjaibj + biajaibj + aibjbiaj + biajbiaj)

=
C1

4

(
2 |a|2 |b|2 + 2(a · b)2︸ ︷︷ ︸

≥0

)
≥ C1

2
|a|2 |b|2 ,

which shows the so-called Legendre-Hadamard condition for − divD2W (I)∇. Consequently, it is
strongly normally elliptic, see e.g. [PS16, Page 271].

5.1.2. Technical discussions. Under the above setting, the fluid-structure part is of parabolic-
elliptic type, while the cells part is similar to the ones in Chapters 3 and 4. To solve the nonlinear
problem, our basic strategy is still a fixed-point argument in the framework of maximal regularity
theory, while more issues come up when we consider the linearized systems. More precisely, for the
linearization of the fluid-structure part, it is hard to solve it directly by the maximal regularity
theory due to the parabolic-elliptic type coupling, which results in the unmatched regularity
between v̂f and ûs on the sharp interface Γ. To overcome the problem, one tries to decouple the
system to a nonstationary Stokes equation with respect to fluid velocity v̂s and a quasi-stationary
Stokes-type equation with regard to the solid displacement ûs. Note that one key point is to
separate the kinetic and dynamic condition on the interface correctly. Specifically, we impose the
Neumann boundary condition for v̂s and a Dirichlet boundary condition for ûs, see Section 5.3
below. Otherwise if v̂f |Γ = v̂s, one may face the problem that there is no regularity information
about the velocity of solid v̂s = ∂tûs, since the solid equation is quasi-stationary without any
damping.

Another issue is the choice of function spaces for the elastic equation, i.e., how to assemble
suitable function spaces for the data in the linearized solid equation so that the regularity of ∇̂ûs

matches with ∇̂v̂s of fluid on the interface in the nonlinear system. Our choice is

f ∈ H1/2
q (0, T ;W−1

q,Γ(Ωs)
3) ∩ Lq(0, T ;Lq(Ωs)

3).

This space is motivated by the observation that the nonstationary Stokes equation (5.12) is
uniquely solvable if the Neumann boundary data

h ∈W 1/2−1/2q
q (0, T ;Lq(Γ)3) ∩ Lq(0, T ;W 1−1/q

q (Γ)3)

holds, which implies that

D2W (I)∇̂ûs ∈W 1/2−1/2q
q (0, T ;Lq(Γ)3) ∩ Lq(0, T ;W 1−1/q

q (Γ)3)
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as well. In fact, the anisotropic Bessel potential space we assigned is a sharp regularity if one
goes back to the anisotropic trace operator, see Lemma 2.25 in Chapter 2, and it is natural to
equip f with the regularity above. Because of this sharp regularity setting, one can not expect
the Lipschitz estimates of nonlinear terms only with small time, which gives rise to an additional
smallness assumption (5.9) on the initial solid displacement and pressure. Detailed discussion
can be found in Remark 5.4 and Proposition 5.22 later.

To solve the quasi-stationary (linearized) elastic equation, one treated it as a Stokes-type
problem with respect to the displacement ûs and the pressure π̂s, due to the incompressibility.
However, as we assigned the certain regularity space for it as above and the Stokes operator
is not a standard one (namely, div(D2W (I)∇·)), one needs to consider a generalized stationary
Stokes equation with f in Lq and W−1

q,Γ1
respectively, for which the maximal regularity of analytic

C0 semigroups is applied, as well as a complex interpolation method with a very weak solution
in Lq of a mixed-boundary Stokes-type equation, which can be solved by a duality argument.

For the cells part there is a problem of the positivity for the concentrations, compared to
Chapter 3. The idea in Chapter 3 to prove it is to apply the maximum principle to the original
equation and deduce a contradiction with the help of Hopf’s Lemma. However, due to the lack
of regularity of vs = ∂tus, one can not expect it to be Hölder continuous in space-time, even
continuous. To deal with this trouble, we make use of the idea of mollification, i.e., approximating
vs by sufficient smooth functions vϵ

s such that
´ t
0

vϵ
s → us in certain space. Then arguing by

a similar procedure in Chapter 3, we obtain an approximate nonnegative solution cϵ. Finally
one can show that it converges to a nonnegative function c, which exactly satisfies the original
equations of cell concentrations.

5.1.3. Structure of the chapter. The paper is organized as follows. A reformulation of the
system is done in Section 5.2.1 and later we give the main result for the reformulated system.
Section 5.3 is devoted to three linearized systems in Section 5.3.1 and 5.3.2 respectively. The
main results of this section are the Lq-solvability for these linear problems, for which a careful
analysis is carried out. In Section 5.4, we first introduce some preliminary Lemmata in Section
5.4.1, which will be frequently used in proving the Lipschitz estimates later in Section 5.4.2.
Then by the Banach Fixed-Point Theorem, we derive the short time existence of strong solutions
to the nonlinear system in Section 5.4.3. Moreover, the cell concentrations are shown to be
nonnegative, provided that the initial concentration is nonnegative. In addition, we establish the
solvability of a Stokes-type resolvent problem with mixed boundary condition in Section 5.5.

5.2. Reformulation and Main Result

5.2.1. System in Lagrangian coordinates. In this section, we transform (5.1) in deformed
domain Ωt to the reference domain Ω, whose definition are given in Section 5.1.1.

Similar to Chapters 3 and 4, the reformulated system now reads as:

ρ̂f∂tv̂f − d̂ivPf = 0, F̂−⊤
f : ∇̂v̂f = 0 in Ωf × (0, T ), (5.7a)

∂tĉf − D̂f d̂iv
(
F̂−1
f F̂−⊤

f ∇̂ĉf
)
= 0 in Ωf × (0, T ), (5.7b)

− d̂ivPs = 0, F̂−⊤
s : ∇̂ûs −

ˆ t

0

γβ

ρ̂s
ĉs dτ = 0 in Ωs × (0, T ), (5.7c)

∂tĉs − D̂sĴ
−1
s d̂iv

(
ĴsF̂−1

s F̂−⊤
s ∇̂ĉs

)
+ βĉs

(
1 +

γ

ρ̂s
ĉs
)
= 0 in Ωs × (0, T ), (5.7d)

∂tĉ
∗
s − βĉs +

γβ

ρ̂s
ĉsĉ

∗
s = 0, ∂tĝ −

γβ

3ρ̂s
ĉsĝ = 0 in Ωs × (0, T ), (5.7e)
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Jv̂K = 0, JPK n̂Γ = 0 on Γ× (0, T ), (5.7f)r
D̂F̂−1F̂−⊤∇̂ĉ

z
n̂Γ = 0, ζ JĉK− D̂sF̂−1

s F̂−⊤
s ∇̂ĉs · n̂Γ = 0 on Γ× (0, T ), (5.7g)

Psn̂Γs = 0, D̂sF̂−1
s F̂−⊤

s ∇̂ĉs · n̂Γs = 0 on Γs × (0, T ), (5.7h)
v̂f |t=0 = v̂0

f , ĉf |t=0 = ĉ0f in Ωf , (5.7i)
ûs|t=0 = û0

s, ĉs|t=0 = ĉ0s, ĉ∗s|t=0 = ĉ0∗, ĝ|t=0 = ĝ0 in Ωs, (5.7j)

where Pi := ĴiT̂iF̂−⊤
i , i ∈ {f, s}, denotes the first Piola–Kirchhoff stress tensor associated with

the Cauchy stress tensor Ti defined in Section 1.4.1.

5.2.2. Compatibility condition and well-posedness. Before stating our main theorem, one
still needs to impose suitable function spaces and compatibility conditions. Following the general
setting of maximal regularity, e.g. Chapters 3 and 4 or [AL23a, AL23b, PS16], where the basic
space is Lq(Ω), we assume that

v̂0
f ∈ B

2− 2
q

q,q (Ωf )
3 =: D1

q , ĉ0 ∈ B2− 2
q

q,q (Ω\Γ) =: D2
q , ĉ0∗, ĝ

0 ∈W 1
q (Ωs),

and Dq := D1
q ×D2

q . Moreover, the solution space are defined by YT :=
∏7

j=0 Y
j
T , where

Y 1
T :=W 1

q (0, T ;L
q(Ωf )

3) ∩ Lq(0, T ;W 2
q (Ωf )

3),

Y 2
T := H

1
2
q (0, T ;W

1
q (Ωs)

3) ∩ Lq(0, T ;W 2
q (Ωs)

3),

Y 3
T :=

{
π ∈ Lq(0, T ;W 1

q (Ωf )) :

π|Γ ∈W
1
2−

1
2q

q (0, T ;Lq(Γ)) ∩ Lq(0, T ;W
1− 1

q
q (Γ))

}
,

Y 4
T := Lq(0, T ;W 1

q (Ωs)) ∩H
1
2
q (0, T ;L

q(Ωs)),

Y 5
T :=W 1

q (0, T ;L
q(Ω)) ∩ Lq(0, T ;W 2

q (Ω\Γ)),
Y 6
T :=W 1

q (0, T ;W
1
q (Ωs)), Y 7

T :=W 1
q (0, T ;W

1
q (Ωs)).

Analogous to Chapters 3 and 4, the compatibility conditions for v̂0
f and ĉ0 read as

div v̂0
f = 0, v̂0

f

∣∣
Γ
= 0,(

ζ
q
ĉ0

y
− D̂s∇̂ĉ0s · n̂Γ

)∣∣∣
Γ
= 0,

r
D̂∇̂ĉ0

z
· n̂Γ

∣∣∣
Γ
= 0, D̂s∇̂ĉ0s · n̂Γs

∣∣∣
Γs

= 0,
(5.8)

Generally speaking, one does not need to assign any initial pressure for the Stokes equation.
However, in this chapter the coupling on the interface does lead to a condition on the initial fluid
pressure since the solid equation is quasi-stationary and holds at t = 0. More specifically, we
assume that there exists π̂0

f ∈W
1−3/q
q (Γ) and (û0

s, π̂
0
s) ∈W

2−2/q
q (Ωs)

3 ×W 1−2/q
q (Ωs) satisfying∥∥∥∇̂û0

s

∥∥∥
W

1− 2
q

q (Ωs)
+
∥∥π̂0

s

∥∥
W

1− 2
q

q (Ωs)
≤ κ, (5.9)

for sufficiently small κ > 0, such that

− d̂iv(DW (I+ ∇̂û0
s)) + ∇̂π̂0

s = 0, in Ωs,

d̂iv û0
s = 0, in Ωs,(

− π̂0
sI+DW (I+ ∇̂û0

s)
)
n̂Γ =

(
− π̂0

f I+ νf (∇̂v̂0
f + (∇̂v̂0

f )
⊤)
)
n̂Γ, on Γ,(

− π̂0
sI+DW (I+ ∇̂û0

s)
)
n̂Γs = 0, on Γs.

(5.10)
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Remark 5.3. Here, the regularity for π̂0
f on the interface Γ is initiated from the matched regularity

of ∇̂v̂0
f , π̂0

s and DW (I+ ∇̂û0
s) on Γ. Moreover, it coincides with the regularity of π̂f by the trace

method of interpolation (see e.g. [PS16, Example 3.4.9]), i.e.,

W
1
2−

1
2q

q (0, T ;Lq(Γ)) ∩ Lq(0, T ;W
1− 1

q
q (Γ)) ↪→ C([0, T ];W

1− 3
q

q (Γ)).

Remark 5.4. In this paper, we need the smallness assumption of initial displacement to guarantee
the estimates with respect to the deformation gradient, e.g. (5.24), which is a key element to
derive the final contraction property of the certain operator. This is because we consider the
general case of ûs|t=0 and linearize the elastic equation around the identity I, not the initial
deformation gradient I + ∇̂û0

s. Specifically, one can not control (F̂s − I) by a small constant
only with a short time. In particular, for the case û0

s = 0, one knows F̂s|t=0 = I and hence the
estimates later is uniform with respect to time T > 0. Moreover, for initial pressure it does also
need the smallness due to the sharp regularity of pressure, see e.g. (5.32).

Theorem 5.5. Let 5 < q <∞ and κ > 0 be a sufficiently small constant. Ω ⊂ R3 is the do-
main defined above with Γ, Γs hypersurfaces of class C3. Assume that (v̂0

f , ĉ
0) ∈ Dq satisfying the

compatibility condition (5.8), π̂0
f ∈ W

1−3/q
q (Γ), ĉ0∗, ĝ0 ∈ W 1

q (Ωs) and (û0
s, π̂

0
s) ∈ W

2−2/q
q (Ωs)

3 ×
W

1−2/q
q (Ωs) fulfilling (5.9) and (5.10). Then there is a positive T0 = T0(v̂0

f , ĉ
0, ĉ0∗, ĝ

0, κ) < ∞
such that for 0 < T < T0, the problem (5.7) admits a unique solution (v̂f , ûs, π̂f , π̂s, ĉ, ĉ

∗
s, ĝ) ∈ YT .

Moreoever, ĉ, ĉ∗s, ĝ ≥ 0 if ĉ0, ĉ0∗, ĝ0 ≥ 0.

Motivated by [AL23a, AL23b, PS16], we prove Theorem 5.5 via the Banach fixed point
theorem. To be more precise, we are going to linearize (5.7) in the first step, show the well-
posedness of the linear system, estimate the nonlinear terms in suitable function spaces with
small time and then constract a contraction mapping.
Remark 5.6. In fact, Theorem 5.5 still holds true in even more general dimensional case n ≥ 2
as long as q has a adapted restriction with respect to n. This is also an advantage of making use
of maximal regularity theory.

5.2.3. Linearization. Now following the linearization procedure in Chapter 3, we linearize
(5.7) first, equate all the lower-order terms to the right-hand side and then arrive at the equivalent
system:

ρ̂f∂tv̂f − d̂iv S(v̂f , π̂f ) = Kf in Ωf × (0, T ), (5.11a)

d̂iv v̂f = Gf in Ωf × (0, T ), (5.11b)
S(v̂f , π̂f )n̂Γ − (D2W (I)∇̂us − π̂sI)n̂Γ = H1

f on Γ× (0, T ), (5.11c)

− d̂iv(D2W (I)∇̂us) + ∇̂π̂s = Ks in Ωs × (0, T ), (5.11d)

d̂iv ûs −
ˆ t

0

γβ

ρ̂s
ĉs dτ = Gs in Ωs × (0, T ), (5.11e)

ûs = H1
s on Γ× (0, T ), (5.11f)

(D2W (I)∇̂us − π̂sI)n̂Γs
= H2 on Γs × (0, T ), (5.11g)

∂tĉf − D̂f �̂ ĉf = F 1
f in Ωf × (0, T ), (5.11h)

D̂f ∇̂ĉf · n̂Γ = F 2
f on Γ× (0, T ), (5.11i)

∂tĉs − D̂s �̂ ĉs = F 1
s in Ωs × (0, T ), (5.11j)
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D̂s∇̂ĉs · n̂Γ = F 2
s on Γ× (0, T ), (5.11k)

D̂s∇̂ĉs · n̂Γs
= F 3 on Γs × (0, T ), (5.11l)

∂tĉ
∗
s + β(

γĉ0∗
ρ̂s
− 1)ĉs = F 4, ∂tĝ −

γβĝ0

3ρ̂s
ĉs = F 5 in Ωs × (0, T ), (5.11m)

v̂f |t=0 = v̂0
f , ĉf |t=0 = ĉ0f in Ωf , (5.11n)

ûs|t=0 = û0
s, ĉs|t=0 = ĉ0s, ĉ∗s|t=0 = ĉ0∗, ĝ|t=0 = ĝ0 in Ωs, (5.11o)

where S(v̂f , π̂f ) := −π̂f + νf (∇̂v̂f + ∇̂v̂⊤
f ) and

Kf = d̂iv K̃f , Ks = d̂iv K̃s,

Gf = −
(

F̂−⊤
f − I

)
: ∇̂v̂f , Gs = −(F̂−⊤

s − I) : ∇̂ûs

H1
f = −K̃f n̂Γ + K̃sn̂Γ, H1

s =

ˆ t

0

v̂f (X, τ)dτ, H2 = −K̃sn̂Γs
,

F 1
f = d̂iv F̃f , F 1

s = d̂iv F̃s − βĉs
(
1 +

γ

ρ̂s
ĉs

)
− 3∇̂ĝ

ĝ
·
(
D̂sF̂−1

s F̂−⊤
s ∇̂ĉs

)
,

F 2
f = D̂s∇ĉs · n̂Γ −

r
F̃

z
· n̂Γ, F 2

s = ζ JĉK− F̃s · n̂Γ,

F 3 = −F̃s · n̂Γs
, F 4 = −γβ

ρ̂s
ĉs(ĉ

∗
s − ĉ0∗), F 5 = − γβ

3ρ̂s
ĉs
(
ĝ − ĝ0

)
,

with

K̃f = −π̂f (F̂−1
f − I) + νf

(
F̂−1
f ∇̂v̂f + ∇̂v̂⊤

f F̂−⊤
f

)
(F̂−⊤

f − I)

+ νf
(
(F̂−1

f − I)∇̂v̂f + ∇̂v̂⊤
f (F̂−⊤

f − I)
)
,

K̃s = −ĝ3π̂s(F̂−1
s − I)− (ĝ3 − (ĝ0)3)π̂sI− ((ĝ0)3 − 1)π̂sI

+DW (F̂s)
(
(ĝ0)2 − ĝ2

)
++DW (F̂s)

(
1− (ĝ0)2

)
+ ĝ2

(
DW (F̂s)−DW (F̂s/ĝ)

)
+

ˆ 1

0

D3W
(
(1− s)I+ sF̂s

)
(1− s)ds(F̂s − I)(F̂s − I),

F̃ = D̂
(
F̂−1F̂−⊤ − I

)
∇̂ĉ.

Remark 5.7 (Discussions on the linearization).

(1) The linearization can be derived as follows. Let h(s) := DW ((1− s)I+ sF). Then h(0) =
DW (I), h(1) = DW (F). Since

h(1) = h(0) + h′(0) +

ˆ 1

0

h′′(s)(1− s) ds,

it follows from (A3) that

DW (F) = D2W (I)(F− I) + R(F),

where

R(F) :=
ˆ 1

0

D3W ((1− s)I+ sF)(1− s) ds(F− I)(F− I).
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(2) The linearization is similar to the one in Chapter 3, but with several modifications, one of
which is deduced above. It is possible to have other kinds of linearizations but we remark
that in the present paper a divergence structure of d̂iv K̃s plays an essential role when
we prove the linear theory and estimate it in a particular function space, see Corollary
5.11 and Proposition 5.22 later. Moreover, for the solid mass balance equation (5.1d), we
integrate it over (0, t) as (5.11e) to keep the Stokes-type structure for the elastic equation
with respect to the displacement ûs.

(3) Noticing that the continuity conditions (5.7f) on the interface are separated to (5.11c) and
(5.11f) formally after the linearization, we remark here that this is for the sake of analysis
due to the mismatch of the regularity on Γ. For instant, if one replaces (5.11c) with the
boundary condition v̂f = ∂tûs, it has no chance to solve the fluid part since we have no
first-order temporal derivative information for the solid displacement ûs.

5.3. Analysis of the Linear Systems

In this section, we are devoted to solve the linear systems associated with (5.11). Note
that we already give the linear heat equation with Neumann boundary condition and ordinary
differential equations in Sections 3.3.2 and 3.3.3, here we only consider a nonstationary Stokes
equation and a quasi-stationary Stokes equation with mixed boundary conditions.

5.3.1. Nonstationary Stokes equation. Let Ω be a bounded domain with a boundary ∂Ω
of class C3−, T > 0. We consider the nonstationary Stokes equation

ρ∂tu− divSµ(u, π) = f, in Ω× (0, T ),

div u = g, in Ω× (0, T ),

Sµ(u, π)n = h, on ∂Ω× (0, T ),

u|t=0 = u0, in Ω,

(5.12)

where Sµ(u, π) = −πI+µ(∇u+∇u⊤). ρ, µ > 0 are the constant density and viscosity. n denotes
the unit outer normal vector on ∂Ω. Then we have the following solvability and regularity result,
which can be adapted directly from e.g. Abels [Abe10, Theorem 1.1], Bothe–Prüss [BP07,
Theorem 4.1], Prüss–Simonett [PS16, Theorem 7.3.1] by the argument of Proposition 3.21.

Theorem 5.8. Let 3 < q < ∞, T0 > 0. Suppose that the initial data is u0 ∈ W 2−2/q
q (Ω)3

satisfying compatibility conditions

div u0 = g|t=0 , Pn(µ(∇u0 +∇u⊤
0 )n)

∣∣
∂Ω

= h|t=0 ,

where Pn := I− n⊗ n denotes the tangential projection onto ∂Ω. For given data (f, g, h) with

f ∈ Ff(T ) := Lq(0, T ;Lq(Ω)3),

g ∈ Fg(T ) := Lq(0, T ;W 1
q (Ω)) ∩W 1

q (0, T ;W
−1
q (Ω)),

h ∈ Fh(T ) := Lq(0, T ;W
1− 1

q
q (∂Ω)3) ∩W

1
2−

1
2q

q (0, T ;Lq(∂Ω)3),

(5.12) admits a unique solution (u, π) ∈ E(T ) := Eu(T )× Eπ(T ) where

Eu(T ) := Lq(0, T ;W 2
q (Ω)

3) ∩W 1
q (0, T ;L

q(Ω)3),

Eπ(T ) :=

{
Lq(0, T ;W 1

q (Ω)) : π|∂Ω ∈W
1
2−

1
2q

q (0, T ;Lq(∂Ω)) ∩ Lq(0, T ;W
1− 1

q
q (Ω))

}
.
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Moreover, there is a constant C > 0 independent of f, g, h, u0, T0, such that for 0 < T ≤ T0

‖(u, π)‖E(T ) ≤ C
(
‖f‖Ff(T ) + ‖g‖Fg(T ) + ‖h‖Fh(T ) + ‖u0‖W 2−2/q

q (Ω)

)
.

Remark 5.9. In our case, there will be a term of the form (D2W (I)∇v−pI)n in the third equation
of (5.12) with certain regularity. It is not a problem since given (v, p) such that (D2W (I)∇v −
pI)n is endowed with the same regularity of h, one can solve the original equation with h =
(D2W (I)∇v− pI)n and (f, g, u0) = 0 by Theorem 5.8 and add the solution above to recover the
case.

5.3.2. Quasi-stationary Stokes equation with mixed boundary conditions. Let Ω be
a bounded domain with a boundary ∂Ω of class C3−, ∂Ω = Γ1 ∪ Γ2 consisting of two closed,
disjoint, nonempty components. Consider the generalized stationary Stokes-type equation

− div(D2W (I)∇u) +∇π = f, in Ω,

div u = g, in Ω,

u = h1, on Γ1,

(D2W (I)∇u− πI)n = h2, on Γ2,

(5.13)

where n denotes the unit outer normal vector on ∂Ω. W : R3×3 → R+ is the elastic energy density
such that Assumption 5.1 holds. Before going to the quasi-stationary case, we first investigate
the weak solution and strong solution in Lq-class of the stationary problem (5.13).

Theorem 5.10. Let 1 < q < ∞ and s ∈ {0,−1}. Given f ∈ W s
q,Γ1

(Ω)3, g ∈ W 1+s
q (Ω),

h1 ∈ W 2+s−1/q
q (Γ1)

3 and h2 ∈ W 1+s−1/q
q (Γ2)

3. Then problem (5.13) admits a unique solution
(u, π) ∈W 2+s

q (Ω)3 ×W 1+s
q (Ω). Moreover, there is a constant C > 0 such that

‖u‖W 2+s
q (Ω)3 + ‖π‖W 1+s

q (Ω) ≤ C
(
‖g‖W 1+s

q (Ω) +
∥∥h1
∥∥
W

2+s− 1
q

q (Γ1)3
+ |||F|||s

)
,

where |||F|||s := ‖f‖Lq(Ω)3 +
∥∥h2
∥∥
W

1− 1
q

q (Ω)3
if s = 0 and when s = −1,

|||F|||s := sup
∥w∥

W1
q′,Γ1

(Ω)3
=1

(
〈f,w〉W−1

q,Γ1
(Ω)3×W 1

q′,Γ1
(Ω)3 +

〈
h2, w|Γ2

〉
W

− 1
q

q (Γ2)3×W
1− 1

q′
q′ (Γ2)3

)
.

Proof. First let s = 0, we reduce the system (5.13) to the case (g, h1, h2) = 0. To this end, take
a cutoff funtion ψ ∈ C∞

0 ((0, T )) such that

ˆ 3T/4

T/4

ψ(t) dt = 1, in [T/4, 3T/4].

Then

ψ(t)g ∈ Lp(0, T ;W 1
q (Ω)) ∩W 1

p (0, T ;W
−1
q,Γ2

(Ω)),

ψ(t)hj ∈ Lp(0, T ;W
3−j− 1

q
q (Γj)

3) ∩W
1
j −

1
2q

p (0, T ;Lq(Γj)
3), j = 1, 2.
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In view of Remark 5.2 and the maximal Lq-regularity result for the generalized Stokes problems
(e.g., [BP07, Theorem 4.1], Prüss–Simonett [PS16, Theorem 7.3.1]), we solve the system

∂tu− div(D2W (I)∇u) +∇π = 0, in Ω× (0, T ),

div u = ψ(t)g, in Ω× (0, T ),

u = ψ(t)h1, on Γ1 × (0, T ),

(D2W (I)∇u− πI)n = ψ(t)h2, on Γ2 × (0, T ),

u|t=0 = 0, in Ω,

with 3 < p <∞, 1 < q <∞ to get a pair of solution (ũ, π̃) fulfilling

ũ ∈W 1
p (0, T ;L

q(Ω)3) ∩ Lp(0, T ;W 2
q (Ω)

3), π̃ ∈ Lp(0, T ;W 1
q (Ω)).

Then one infers
(ū, π̄) :=

ˆ 3T/4

T/4

(ũ, π̃)(t) dt ∈W 2
q (Ω)

3 ×W 1
q (Ω),

and

div ū = g, in Ω, ū|Γ1
= h1, on Γ1, (D2W (I)∇ū− π̄I)n

∣∣
Γ2

= h2, on Γ2.

Subtracting the solution to (5.13) with (ū, π̄), we are in the position to solve (5.13) with
(g, h1, h2) = 0, which can be referred to Theorem 5.24 with λ = 0. Note that the case λ = 0 is
applicable due to Remark 5.25.

Now we consider s = −1, namely the weak solution. In this case we only reduce (g, h1) to
zero since the Neumann boundary trace need to make sense on Γ2 correctly. Concerning the
Stokes equation with Dirichlet boundary condition

−∆u +∇π = 0, in Ω,

div u = g, in Ω,

u = h1, on Γ1,

u = c, on Γ2,

where c > 0 is a constant such thatˆ
Ω

g dx =

ˆ
Γ1

h1 · n dH2 +

ˆ
Γ2

c · n dH2,

holds, where Hd with d ∈ N+ denotes the d-dimensional Hausdorff measure. It follows from the
weak solution theory for stationary Stokes equation, see e.g. Galdi–Simader–Sohr [GSS05, Sec-
tion 5, (5.12)] in Sobolev spaces, Schumacher [Sch09, Theorem 4.3] in weighted Bessel potential
spaces, that one obtains a unique solution denoted by (ū, π̄) such that

(ū, π̄) ∈W 1
q (Ω)

3 × Lq(Ω),

and
div ū = g, in Ω, ū|Γ1

= h1, on Γ1.

Then one can subtract the solution of (5.13) with (ū, π̄) and solve (5.13) with reduced data
(g, h1) = 0 and modified (f, h2) (not to be relabeled). The idea of the proof is to introduce
a Lq-class of very weak solution (see e.g. [GSS05, Sch09]), so that one can derive a solution
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with certain regularity in W 1
q (Ω) by complex interpolation, see e.g. Schumacher [Sch09] for the

stationary Stokes equation in fractional Bessel potential spaces.
Define the solenoidal space

Lq
σ(Ω) :=

{
u ∈ Lq(Ω)3 : div u = 0, n · u|Γ1

= 0
}
.

For 1 < q, q′ < ∞ satisfying 1/q + 1/q′ = 1, we define a generalized Stokes-type operator with
respect to (5.13) as

Aq(u) := Pq

(
− div(D2W (I)∇u)

)
for all u ∈ D(Aq),

with
D(Aq) =

{
u ∈W 2

q (Ω)
3 ∩ Lq

σ(Ω) : u|Γ1
= 0, Pn((D

2W (I)∇u)n)
∣∣
Γ2

= 0
}
,

where Pq denotes the Helmholtz–Weyl projection onto Lq
σ(Ω), see e.g. [Abe10, Appendix A] for

the existence of the projection with mixed boundary conditions. Pn := I−n⊗n is the tangential
projection onto ∂Ω. By the result of s = 0 we see that

Aq : D(Aq)→ Lq
σ(Ω)

is well-defined and bijective. Then one knows that its dual operator

A∗
q′ : L

q′

σ (Ω)
′ → D(Aq′)

′

is bijective as well, which gives rise to the existence of very weak solutions. Note that Aq and
A∗

q′ are consistent, namely,〈
A∗

q′u,w
〉
D(Aq′ )

′×D(Aq′ )
= 〈u,Aq′w〉Lq

σ(Ω)×Lq′
σ (Ω)

=

ˆ
Ω

∇u : D2W (I)∇w dx =

ˆ
Ω

D2W (I)∇u : ∇w dx = 〈Aqu,w〉
Lq

σ(Ω)×Lq′
σ (Ω)

,

for u ∈ D(Aq) ⊆ Lq
σ(Ω), w ∈ D(Aq′) ⊆ Lq′

σ (Ω), where (D2W (I))klij = (D2W (I))ijkl, i, j, k, l =
1, 2, 3. Then by the complex interpolation of operators, e.g. [Sch09, Theorem 2.6], we record
that

Aq :
(
Lq
σ(Ω),D(Aq)

)
[ 12 ]
→
(
Lq
σ(Ω),D(Aq′)

′)
[ 12 ]

is bijective. Since Aq admits a bounded H∞-calculus and has bounded imaginary powers, see
e.g. [Prü18, Theorem 1.1], complex interpolation methods can be used to describe domains of
fractional power operators. By virtue of [Prü18, Theorem 1.1] and [Sch09, Theorem 2.6], one
obtains (

Lq
σ(Ω),D(Aq)

)
[ 12 ]

= D(A1/2
q ) =W 1,q

σ,Γ1
(Ω),(

Lq
σ(Ω),D(Aq′)

′)
[ 12 ]

= (Lq
σ(Ω)

′,D(Aq′))
′
[ 12 ]

= D(A1/2
q′ )′ =W−1,q

σ,Γ1
(Ω).

Consequently,
Aq :W 1,q

σ,Γ1
(Ω)→W−1,q

σ,Γ1
(Ω)

is bijective, which implies there exists a unique solution u ∈W 1,q
σ,Γ1

(Ω) such that

〈Aqu,w〉 = 〈F ,w〉 for all w ∈W 1,q′

σ,Γ1
(Ω),
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with F ∈W−1,q
σ,Γ1

(Ω) defined by

〈F ,w〉 := 〈f,w〉W−1
q,Γ1

(Ω)×W 1
q′,Γ1

(Ω) +
〈
h2, w|Γ2

〉
W

− 1
q

q (Γ2)×W
1− 1

q′
q′ (Γ2)

,

for all w ∈ W 1,q′

σ,Γ1
(Ω). Moreover, by means of the open mapping theorem, one immediately

deduces the estimate
‖u‖W 1,q

σ,Γ1
(Ω)3 ≤ C |||F|||−1 ,

in which

|||F|||−1 := sup
∥w∥

W1
q′,Γ1

(Ω)3
=1

(
〈f,w〉W−1

q,Γ1
(Ω)3×W 1

q′,Γ1
(Ω)3 +

〈
h2, w|Γ2

〉
W

− 1
q

q (Γ2)3×W
1− 1

q′
q′ (Γ2)3

)
.

Up to now, one still needs to recover the pressure in the very weak sense, i.e., solving
ˆ
Ω

π∆ϕ dx = 〈F,ϕ〉 , ∀ϕ ∈ D(∆q′,DN ), (5.14)

where

〈F,ϕ〉 := −〈f,∇ϕ〉+
ˆ
Ω

D2W (I)∇u : ∇2ϕ+
〈
h2 · n, ∂nϕ|Γ2

〉
,

D(∆q′,DN ) :=
{
ψ ∈W 2

q′(Ω) : ∂nψ|Γ1
= 0, ψ|Γ2

= 0
}
.

Since f ∈W−1
q,Γ1

(Ω)3, u ∈W 1
q,Γ1

(Ω)3 and h2 ∈W−1/q
q (Γ2)

3, it is easy to verify that the functional
F defined above is well-defined in D(∆q′,DN )′. For every u ∈ Lq′(Ω), it follows from [PS16,
Corollary 7.4.5] that there exists a unique solution ϕ(u) ∈ D(∆q′,DN ) satisfying ∆ϕ = u. Now
we define π ∈ Lq(Ω) by duality as a linear functional on Lq′(Ω) acting for every u as

〈π, u〉 = 〈F,ϕ〉 . (5.15)

Indeed π is the very weak solution we are looking for, since for all ϕ ∈ D(∆q′,DN ) we have

〈π,∆ϕ〉 = 〈π, u〉 = 〈F,ϕ〉 .

The uniqueness can be showed by letting F = 0 in (5.15) so that for all u ∈ Lq′(Ω), 〈π, u〉 = 0,
which implies π = 0 a.e. in Ω. Then we have the estimate

‖π‖Lq(Ω) ≤ C ‖F‖D(∆q′,DN )′ ≤ C
(
‖u‖W 1

q (Ω)3 + |||F|||−1

)
.

This completes the proof.

In Theorem 5.10, we consider the general case of data. In fact, for applications the right-
hand side terms sometimes have special structure, which is of much help to derive the estimate
in a concise form.

Corollary 5.11. In the case of s = −1, if there is an F ∈ Lq(Ω)3×3 such that

f = div F, in Ω, h2 = −Fn, on Γ2

holds in the sense of distribution, i.e.,

〈f,w〉W−1
q,Γ1

(Ω)3×W 1
q′,Γ1

(Ω)3 +
〈
h2, w|Γ2

〉
W

− 1
q

q (Γ2)3×W
1− 1

q′
q′ (Γ2)3

= 〈F,∇w〉 , (5.16)
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for all w ∈W 1,q′

σ,Γ1
(Ω), then the solution (u, π) in Theorem 5.10 satisfies

‖u‖W 1
q (Ω)3 + ‖π‖Lq(Ω) ≤ C

(
‖g‖Lq(Ω) +

∥∥h1
∥∥
W

1− 1
q

q (Γ1)3
+ ‖F‖Lq(Ω)3×3

)
.

Proof. On account of (5.16) and the definition of |||F|||−1 above with respect to (f, h2), one has

|||F|||−1 = ‖F‖Lq(Ω)3×3 ,

which yields the desired estimate.

Remark 5.12. In fact, Theorem 5.10 can be generalize to s ∈ (−2, 0) by employing complex
interpolation. Namely, since Aq admits bounded imaginary powers, we have the domains of any
fractional powers by complex interpolation

D(Aθ
q) =

(
Lq
σ(Ω),D(Aq)

)
[θ]
, 0 < θ < 1.

More details can be found in e.g. [Abe10, Prü18, Sch09].
Combining with the temporal regularities, Theorem 5.10 and Corollary 5.11, one arrives at

the following theorem.
Theorem 5.13. Let 1 < q <∞ and T0 > 0. Given (f, g, h1, h2) such that

f ∈ Ff(T ) := Lq(0, T ;Lq(Ω)3) ∩H
1
2
q (0, T ;W

−1
q,Γ1

(Ω)3),

g ∈ Fg(T ) := Lq(0, T ;W 1
q (Ω)) ∩H

1
2
q (0, T ;L

q(Ω)),

h1 ∈ Fh1(T ) := Lq(0, T ;W
2− 1

q
q (Γ1)

3) ∩H
1
2
q (0, T ;W

1− 1
q

q (Γ1)
3),

h2 ∈ Fh2(T ) := Lq(0, T ;W
1− 1

q
q (Γ2)

3) ∩H
1
2
q (0, T ;W

− 1
q

q (Γ2)
3).

Then (5.13) admits a unique solution (u, π) ∈ E(T ) := Eu(T )× Eπ(T ) where

Eu(T ) := Lq(0, T ;W 2
q (Ω)

3) ∩H
1
2
q (0, T ;W

1
q (Ω)

3),

Eπ(T ) := Lq(0, T ;W 1
q (Ω)) ∩H

1
2
q (0, T ;L

q(Ω)).

If additionally, there is an F ∈ Lq(0, T ;W 1
q (Ω)

3×3) ∩H1/2
q (0, T ;Lq(Ω)3×3) such that

f = div F, in Ω, h2 = −Fn, on Γ2

holds in the sense of distribution. Then there is a constant C > 0 independent of f, g, h1, h2, T ,
such that for 0 < T <∞

‖(u, π)‖E(T ) ≤ C
(
‖F‖

Lq(0,T ;W 1
q (Ω)3×3)∩H

1
2
q (0,T ;Lq(Ω)3×3)

+ ‖g‖Fg(T ) +
∥∥h1
∥∥
Fh1 (T )

)
.

Now given γ > 0 and c ∈ Lq(0, T ;W 2
q (Ω)) ∩W 1

q (0, T ;L
q(Ω)), one has the solvability of the

system
− div(D2W (I)∇u) +∇π = f, in Ω,

div u− γ
ˆ t

0

c dτ = g, in Ω,

u = h1, on Γ1,

(D2W (I)∇u− πI)n = h2, on Γ2.

(5.17)
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Corollary 5.14. Let γ > 0. Given c ∈ Lq(0, T ;W 2
q (Ω)) ∩W 1

q (0, T ;L
q(Ω)). Then under

the assumptions of Theorem 5.13, there is a unique solution (u, π) of (5.17) satisfying

(u, π) ∈ E(T ),

Proof. Similar to Corollary 4.16, the only point we need to check is γ
´ t
0
cdτ ∈ Fg(T ), which is

not hard to verify thanks to the regularity of c. Then solving (5.13) with (f, h1, h2) = 0 and g

substituted by γ
´ t
0
cdτ ∈ Fg(T ), adding the resulted solution and that of (5.13), one completes

the proof.

Remark 5.15. In view of Theorem 5.13 and Lemma 2.25, we know that(
D2W (I)∇u− πI

)
n
∣∣
Γ1
∈ Lq(0, T ;W

1− 1
q

q (Γ1)
3) ∩W

1
2−

1
2q

q (0, T ;Lq(Γ1)
3)

makes sense, which contributes to the nonlinear estimate for the fluid part.

5.4. Nonlinear Well-posdeness

We denote by δ a universal positive function

δ : R+ → R+ such that δ(t)→ 0+, as t→ 0+. (5.18)

The most common example in the present paper is δ(t) = tθ for different θ > 0 from line to line.

5.4.1. Auxiliary Lemmata. In this section, we give some Lemmata which we shall use later
on.

Lemma 5.16. Let f, g ∈ H
1
2
q (R;Lq(Ω)) ∩ L∞(R;L∞(Ω)) ∩Wα

2q(R;L2q(Ω)) with q > 1 and
1/4 < α < 1/2, then fg ∈ H

1
2
q (R;Lq(Ω)) and

‖fg‖
H

1
2
q (R;Lq(Ω))

≤ C
(
‖f‖

H
1
2
q (R;Lq(Ω))

‖g‖L∞(R;L∞(Ω))

+ ‖g‖
H

1
2
q (R;Lq(Ω))

‖f‖L∞(R;L∞(Ω)) + ‖f‖Wα
2q(R;L2q(Ω)) ‖g‖Wα

2q(R;L2q(Ω))

)
.

Moreover, if additionally f |t=0 = g|t=0 = 0, the assertion is true as well with R substituted by
an interval (0, T ) and the constant C > 0 in the estimate is independent of T > 0.

Proof. First let us recall the equivalent definition of Bessel potential space

‖f‖Hs
q (R;Lq(Ω)) = ‖f‖Lq(R;Lq(Ω)) + ‖(−∆)

s
2 f‖Lq(R;Lq(Ω)),

where the fractional Laplace operator is represented by the singular integral

(−∆)
s
2 f(t) = Cs lim

ϵ→0

ˆ
|h|≥ϵ

∆hf(t)

|h|1+s dh,

with Cs > 0 a constant depending on s, 0 < s < 2 and ∆hf(t) := f(t)− f(t−h), see e.g. [Ste70,
Chapter V, Section 6.10]. For f, g ∈ H

1/2
q (R;Lq(Ω)) ∩ L∞(R;L∞(Ω)) ∩ Wα

2q(R;L2q(Ω)) with
q > 1 and 1/4 < α < 1/2, we see that the integrand has an algebraic decay rate greater than one
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with respect to |h|, which means the singular integral is actually integrable and one can omit the
“lim” in the following. Then we have∥∥∥(−∆)

1
4 (fg)(t)

∥∥∥
Lq(Ω)

= C

∥∥∥∥ ˆ
R

∆h(fg)(t)

|h|1+
1
2

dh
∥∥∥∥
Lq(Ω)

= C

∥∥∥∥g(t) ˆ
R

∆hf(t)

|h|1+
1
2

dh+

ˆ
R

f(t)∆hg(t)

|h|1+
1
2

dh+

ˆ
R

(
∆hf(t)

)(
∆hg(t)

)
|h|1+

1
2

dh
∥∥∥∥
Lq(Ω)

≤ C
(∥∥∥g(t)(−∆)

1
4 f(t)

∥∥∥
Lq(Ω)

+
∥∥∥f(t)(−∆)

1
4 g(t)

∥∥∥
Lq(Ω)

)
︸ ︷︷ ︸

≤∥g(t)∥L∞(Ω))∥(−∆)
1
4 f(t)∥Lq(Ω)+∥f(t)∥L∞(Ω))∥(−∆)

1
4 g(t)∥Lq(Ω)

+ C

∥∥∥∥ ˆ
R

(
∆hf(t)

)(
∆hg(t)

)
|h|1+

1
2

dh
∥∥∥∥
Lq(Ω)︸ ︷︷ ︸

=:I(t)

.

Dividing the region R into a neighborhood of the origin and its complement, we have

I(t) ≤
ˆ
|h|≤1

∥∥(∆hf(t)
)(
∆hg(t)

)∥∥
Lq(Ω)

1

|h|1+
1
2

dh

+

ˆ
|h|>1

∥∥(∆hf(t)
)(
∆hg(t)

)∥∥
Lq(Ω)

1

|h|1+
1
2

dh =: I1(t) + I2(t),

where

I1(t) ≤ C
ˆ
|h|≤1

‖∆hf(t)‖L2q(Ω) ‖∆hg(t)‖L2q(Ω)

1

|h|1+
1
2

dh

= C

ˆ
|h|≤1

‖∆hf(t)‖L2q(Ω) ‖∆hg(t)‖L2q(Ω)

(
1

|h|1+
q
2+ε q

q′

) 1
q
(

1

|h|1−ε

) 1
q′

dh

≤ C

(ˆ
|h|≤1

‖∆hf(t)‖qL2q(Ω) ‖∆hg(t)‖qL2q(Ω)

dh
|h|1+

q
2+ε q

q′

) 1
q
(ˆ

|h|≤1

|h|−1+ε dh
) 1

q′

︸ ︷︷ ︸
≤Cε

,

for every ε > 0 and 1/q + 1/q′ = 1. By the Hölder’s inequality,ˆ
R
|I1(t)|q dt ≤ Cε

ˆ
R

ˆ
|h|≤1

‖∆hf(t)‖qL2q(Ω) ‖∆hg(t)‖qL2q(Ω)

dhdt
|h|1+

q
2+ε q

q′

≤ Cε

(ˆ
R

ˆ
|h|≤1

‖∆hf(t)‖2qL2q(Ω)

|h|1+
q
2+ε q

q′
dhdt

) 1
2
(ˆ

R

ˆ
|h|≤1

‖∆hg(t)‖2qL2q(Ω)

|h|1+
q
2+ε q

q′
dhdt

) 1
2

≤ Cε ‖f‖q
W

1
4
+ ε

2q′
2q (R;L2q(Ω))

‖g‖q
W

1
4
+ ε

2q′
2q (R;L2q(Ω))

.

Moreover,
ˆ
R
|I2(t)|q dt ≤ C

ˆ
R
‖f(t)‖qL2q(Ω) ‖g(t)‖

q
L2q(Ω)

(ˆ
|h|>1

1

|h|1+
1
2

dh
)q

dt

≤ C
ˆ
R
‖f(t)‖qL2q(Ω) ‖g(t)‖

q
L2q(Ω) dt ≤ C ‖f‖qL2q(R;L2q(Ω)) ‖g‖

q
L2q(R;L2q(Ω)) .
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Combining the estimate

‖fg‖Lq(R;Lq(Ω)) ≤ ‖f‖Lq(R;Lq(Ω)) ‖g‖L∞(0,T ;L∞(Ω)) ≤ C ‖f‖
H

1
2
q (R;Lq(Ω))

‖g‖L∞(R;L∞(Ω)) ,

we conclude that for 1/4 < α < 1/2,

‖fg‖
H

1/2
q (R;Lq(Ω))

≤ C
(
‖f‖

H
1/2
q (R;Lq(Ω))

‖g‖L∞(R;L∞(Ω))

+ ‖g‖
H

1/2
q (R;Lq(Ω))

‖f‖L∞(R;L∞(Ω)) + ‖f‖Wα
2q(R;L2q(Ω)) ‖g‖Wα

2q(R;L2q(Ω))

)
.

Now denoting by E the extension operator for Bessel potential spaces with vanishing initial value
from [MS12, Lemma 2.5], one arrives at

‖fg‖
0H

1
2
q (0,T ;Lq(Ω))

= ‖E(f)E(g)‖
0H

1
2
q (0,T ;Lq(Ω))

≤ C ‖E(f)E(g)‖
0H

1
2
q (R;Lq(Ω))

≤ C
(
‖E(f)‖

H
1
2
q (R;Lq(Ω))

‖E(g)‖L∞(R;L∞(Ω)) + ‖E(g)‖
H

1
2
q (R;Lq(Ω))

‖E(f)‖L∞(R;L∞(Ω))

+ ‖E(f)‖Wα
2q(R;L2q(Ω)) ‖E(g)‖Wα

2q(R;L2q(Ω))

)
≤ C

(
‖f‖

0H
1
2
q (0,T ;Lq(Ω))

‖g‖L∞(0,T ;L∞(Ω))

+ ‖g‖
0H

1
2
q (0,T ;Lq(Ω))

‖f‖L∞(0,T ;L∞(Ω)) + ‖f‖Wα
2q(0,T ;L2q(Ω)) ‖g‖Wα

2q(0,T ;L2q(Ω))

)
,

where the constant C > 0 is independent of T .

Lemma 5.17. Let Ω ⊂ R3 be a bounded domain with C1 boundary, R > 0, T > 0 and
5 < q <∞. Given

f ∈ X := H
1
2
q (0, T ;L

q(Ω)) ∩ Lq(0, T ;W 1
q (Ω))

with ‖f‖X ≤ R. Then f ∈ L∞(0, T ;L∞(Ω)) and there exists some 1/4 < s < 1/2 − 5/4q such
that f ∈W s

2q(0, T ;L
2q(Ω)). In addition,

‖f‖L∞(0,T ;L∞(Ω)) ≤ Cδ(T ), (5.19)
‖f‖W s

2q(0,T ;L2q(Ω)) ≤ C, (5.20)

provided f |t=0 = 0, where C > 0 depends on R. Moreover, for f1, f2, g ∈ X with (f1−f2)|t=0 =
0, g|t=0 = 0 and

∥∥(f i, g)∥∥
X×X

≤ R, i ∈ {1, 2},∥∥f1 − f2∥∥
L∞(0,T ;L∞(Ω))

≤ Cδ(T )
∥∥f1 − f2∥∥

X
, (5.21)∥∥(f1 − f2)g∥∥

X
≤ Cδ(T )

∥∥f1 − f2∥∥
X
, (5.22)

where C > 0 depends on R.

Proof. For f ∈ X, by Proposition 2.21 and Proposition 2.24, we have

H
1
2
q (0, T ;L

q(Ω)) ∩ Lq(0, T ;W 1
q (Ω)) ↪→ H

1
5
q (0, T ;H

3
5
q (Ω)) ↪→ C([0, T ];C(Ω)),

for q > 5, which means f ∈ L∞(0, T ;L∞(Ω)). If f |t=0 = 0, the first embedding constant above
is uniform with regard to T and it follows from Proposition 2.21 that (5.19) holds true, as well
as (5.21). By means of the time-space embedding Proposition 2.24 again, one has

0H
1
2
q (0, T ;L

q(Ω)) ∩ Lq(0, T ;W 1
q (Ω)) ↪→ 0H

r
q(0, T ;W

1−2r
q (Ω)),
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for 1/q < r < 1/2, where the embedding constant does not depend on T > 0. By virtue of the
embeddings W s

q (Ω) ↪→ L2q(Ω) for s − 3/q ≥ −3/2q and Hs
q (0, T ;X) ↪→ W

s−1/2q
2q (0, T ;X), one

infers the conditions
1− 2r − 3

q
≥ − 3

2q
, r − 1

2q
>

1

4
.

Combining the inequalities above together yields that r should satisfies

1

4
+

1

2q
< r ≤ 1

2
− 3

4q
.

Since q > 5, it is easy to verify that 1
2 −

3
4q >

1
4 + 1

2q , which means that such r does exist and
f ∈W r−1/2q

2q (0, T ;L2q(Ω)).
In addition, by means of Lemma 5.16, one obtains for all 1/4 < α < 1/2,∥∥(f1 − f2)g∥∥

H
1
2
q (0,T ;Lq(Ω))

≤ C
( ∥∥f1 − f2∥∥

L∞(0,T ;L∞(Ω))
‖g‖X +

∥∥f1 − f2∥∥
X
‖g‖L∞(0,T ;L∞(Ω))︸ ︷︷ ︸

≤C(R)δ(T )∥f1−f2∥X thanks to (5.19) and (5.21)

+
∥∥f1 − f2∥∥

Wα
2q(R;L2q(Ω))

‖g‖Wα
2q(R;L2q(Ω))

)
,

Now choosing α such that 1/4 < α < s < 1/2 − 5/4q, where s is given in (5.20), one deduces
that ∥∥(f1 − f2)g∥∥

H
1
2
q (0,T ;Lq(Ω))

≤ CT s−α
∥∥f1 − f2∥∥

X
.

Moreover, we have∥∥(f1 − f2)g∥∥
Lq(0,T ;W 1

q (Ω))

=
∥∥(f1 − f2)g∥∥

Lq(0,T ;Lq(Ω))
+
∥∥∇(f1 − f2)g∥∥

Lq(0,T ;Lq(Ω))
+
∥∥(f1 − f2)∇g∥∥

Lq(0,T ;Lq(Ω))

≤
∥∥f1 − f2∥∥

L∞(0,T ;L∞(Ω))
‖g‖X +

∥∥f1 − f2∥∥
Lq(0,T ;W 1

q (Ω))
‖g‖L∞(0,T ;L∞(Ω))

+
∥∥f1 − f2∥∥

L∞(0,T ;L∞(Ω))
‖g‖Lq(0,T ;W 1

q (Ω)) ≤ C(R)δ(T )
∥∥f1 − f2∥∥

X
.

which proves (5.22).

Remark 5.18. If one replaces the f |t=0 = 0 condition above by ‖f‖X ≤ κ for κ > 0, we still have
similar estimates above with δ(T ) substituted by δ(T )+κ, which can be done by same argument
as in (5.28) below.

Lemma 5.19. Let q > 5 and F̂ be the deformation gradient defined by (5.3) with respect to
v̂f ∈ Y 1

T in Ωf and ûs ∈ Y 2
T in Ωs respectively. Assume that û0

s := ûs|t=0 ∈ W 2−2/q
q (Ωs)

3 and
‖∇̂û0

s‖W 1−2/q
q (Ωs)3

≤ κ with κ > 0 small enough. Then for every R > 0, there are a constant
C = C(R) > 0 and a finite time 0 < TR < 1 depending on R such that for all 0 < T < TR and
‖(v̂f , ûs)‖Y 1

T×Y 2
T
≤ R, F̂−1 exists a.e. with regularities

F̂−1
f ∈W 1

q (0, T ;W
1
q (Ωf )

3×3), F̂−1
s ∈ H

1
2
q (0, T ;L

q(Ωs)
3×3) ∩ Lq(0, T ;W 1

q (Ωs)
3×3),
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and satisfies∥∥∥F̂−1
f

∥∥∥
L∞(0,T ;W 1

q (Ωf )3×3)
≤ C,

∥∥∥F̂−1
f − I

∥∥∥
L∞(0,T ;W 1

q (Ωf )3×3)
≤ Cδ(T ), (5.23)∥∥∥F̂−1

s

∥∥∥
L∞(0,T ;L∞(Ωs)3×3)

≤ C,
∥∥∥F̂−1

s − I
∥∥∥
L∞(0,T ;L∞(Ωs)3×3)

≤ C(δ(T ) + κ), (5.24)[
F̂−1
f − I

]
0W r

q(0,T ;W 1
q (Ωf )3×3)

≤ Cδ(T ), 0 < r < 1, (5.25)

Moreover, for ŵf ∈ Y 1
T and ŵs ∈ Y 2

T with ‖(ŵf , ŵs)‖Y 1
T×Y 2

T
≤ R and (ŵf , ŵs)|t=0 = (v̂f , v̂s)|t=0,

we have[
F̂−1
f (∇̂v̂f )− F̂−1

f (∇̂ŵf )
]
0W r

q(0,T ;W 1
q (Ωf )3×3)

≤ Cδ(T ) ‖v̂f − ŵf‖Y 1
T
, 0 < r < 1, (5.26)∥∥∥F̂−1

s (∇̂v̂s)− F̂−1
s (∇̂ŵs)

∥∥∥
L∞(0,T ;L∞(Ωs)3×3)

≤ C(δ(T ) + κ) ‖v̂s − ŵs‖Y 2
T
. (5.27)

Proof. The proof of this lemma is similar to Lemma 3.16. However, for the solid part the
regularity is a bit lower due to the quasi-stationary elastic equation. For F̂f , one can refer
to Lemma 3.16 with Propositions 2.18, 2.19 and 2.21, while (5.25) and (5.26) follows from
Lemma 2.20. For F̂s, it follows from the definition of Y 2

T that

F̂s − I = ∇̂ûs ∈ H
1
2
q (0, T ;L

q(Ωs)
3×3) ∩ Lq(0, T ;W 1

q (Ωs)
3×3).

Since ∇̂û0
s ∈ W

1−2/q
q (Ωs)

3 ↪→ L∞(Ωs)
3 for q > 5 and ‖∇̂û0

s‖W 1−2/q
q (Ωs)3

≤ κ, one obtains from
Lemma 5.17 that

sup
0≤t≤T

∥∥∥F̂s − I
∥∥∥
L∞(Ωs)3×3

= sup
0≤t≤T

∥∥∥F̂s − (I+ ∇̂û0
s)
∥∥∥
L∞(Ωs)3×3

+
∥∥∥∇̂û0

s

∥∥∥
L∞(Ωs)3

≤ C(δ(T ) + κ) ≤ 1

2
,

(5.28)

by taking TR, κ > 0 small enough such that δ(TR) + κ ≤ 1/(2C). Then by the Neumann series,
F̂−1
s does exist. Note that F̂−1

s (∇̂ûs) = (I+ ∇̂ûs)
−1 is in the class of C∞(R3×3\{−I})3×3 with

respect to ∇̂ûs, it turns out from Proposition 2.19 and q > 5 that

(I+ ∇̂û0
s)

−1
∈W 1− 2

q
q (Ωs)

3×3, F̂−1
s ∈ H

1
2
q (0, T ;L

q(Ωs)
3×3) ∩ Lq(0, T ;W 1

q (Ωs)
3×3). (5.29)

In addition, we have

(I+ ∇̂û0
s)

−1
− I =

ˆ 1

0

d
dτ (I+ τ∇̂û0

s)
−1 dτ =

ˆ 1

0

−(I+ τ∇̂û0
s)

−1
∇̂û0

s(I+ τ∇̂û0
s)

−1 dτ,

then ∥∥∥(I+ ∇̂û0
s)

−1
− I
∥∥∥
W

1− 2
q

q (Ωs)3×3
≤ Cκ,

provided κ > 0 sufficiently small, where C > 0 is finite. Consequently, similarly to (5.28), one
can derive that

sup
0≤t≤T

∥∥∥F̂−1
s − I

∥∥∥
L∞(Ωs)3×3

≤ C(δ(T ) + κ),

which proves (5.24) and (5.27).
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Lemma 5.20. Let Ω ⊂ R3 be a bounded domain with C1 boundary, 0 < s ≤ 1 and 1 < q <∞
with sq > 3. Let W : R3×3 → R+ satisfy Assumption (A2). Then for F ∈ Ks

q (Ω)
3×3,

K ∈ {W,H}, with ‖F‖Ks
q (Ω)3×3 ≤ R, there is a positive constant C depending on R such that∥∥DkW (F)

∥∥
Ks

q (Ω)32k
≤ C, k ∈ {0, 1, 2, 3}.

Moreover, for F1,F2 ∈ Ks
q (Ω)

3×3 with
∥∥F1

∥∥
Ks

q (Ω)3×3 ,
∥∥F2

∥∥
Ks

q (Ω)3×3 ≤ R, we have∥∥DkW (F1)−DkW (F2)
∥∥
Ks

q (Ω)32k
≤ C

∥∥F1 − F2
∥∥
Ks

q (Ω)3×3 , k ∈ {1, 2, 3}.

Proof. One can prove it by Proposition 2.19 for 0 < s ≤ 1 directly.

Lemma 5.21. Let T > 0, R > 0 and q ∈ (1,∞). Ωs is the domain defined in Section 5.1.1.
Given ĝ ∈ W 1

q (0, T ;W
1
q (Ωs)) with ‖ĝ‖W 1

q (0,T ;W 1
q (Ωs))

≤ R, ĝ(X, t)|t=0 = ĝ0, there exists a time
TR > 0 such that for T ∈ (0, TR), one has

ĝ(X, t) ≥ 1

2
, ∀X ∈ Ωs, t ∈ [0, T ].

Proof. By calculus,

ĝ(X, t) = ĝ0(X) +

ˆ t

0

∂tĝ(X, τ)dτ, ∀X ∈ Ωs, t ∈ [0, T ].

Then ∥∥ĝ(t)− ĝ0∥∥
L∞(Ωs)

≤ C
∥∥∥∥ˆ t

0

∂tĝ(·, τ)dτ
∥∥∥∥
W 1

q (Ωs)

≤ CT 1− 1
qR ≤ 1

2
,

where we choose TR > 0 sufficiently small such that T 1− 1
q

R ≤ 1
2CR . Hence ĝ(X, t) ≥ 1

2 , for all
X ∈ Ωs, t ∈ [0, T ].

5.4.2. Lipschitz estimates. Now we are in the position to derive the Lipschitz estimates of
the nonlinear lower-order terms in (5.11). To this end, let us first define the function spaces for
the nonlinear terms ZT :=

∏12
j=1 Z

j
T , where

Z1
T := Lq(0, T ;Lq(Ωf )

3),

Z2
T := Lq(0, T ;Lq(Ωs)

3) ∩H
1
2
q (0, T ;W

−1
q,Γ(Ωs)

3),

Z3
T :=

{
g ∈ Lq(0, T ;W 1

q (Ωf )) ∩W 1
q (0, T ;W

−1
q (Ωf )) : trΓ(g) ∈ Z5

T

}
,

Z4
T := Lq(0, T ;W 1

q (Ωs)) ∩H
1
2
q (0, T ;L

q(Ωs)),

Z5
T := Lq(0, T ;W

1− 1
q

q (Γ)3) ∩W
1
2−

1
2q

q (0, T ;Lq(Γ)3),

Z6
T := Lq(0, T ;W

2− 1
q

q (Γ)3) ∩H
1
2
q (0, T ;W

1− 1
q

q (Γ)3),

Z7
T := Lq(0, T ;W

1− 1
q

q (Γs)
3) ∩H

1
2
q (0, T ;W

− 1
q

q (Γs)
3),

Z8
T := Lq(0, T ;Lq(Ω\Γ)),

Z9
T := Lq(0, T ;W

1− 1
q

q (Γ)) ∩W
1
2−

1
2q

q (0, T ;Lq(Γ)),

Z10
T := Lq(0, T ;W

1− 1
q

q (Γs)) ∩W
1
2−

1
2q

q (0, T ;Lq(Γs)),

Z11
T := Lq(0, T ;W 1

q (Ωs)), Z12
T := Lq(0, T ;W 1

q (Ωs)),
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Let
w := (v̂f , ûs, π̂f , π̂s, ĉ, ĉ

∗
s, ĝ) (5.30)

be in the space YT given in Section 5.2.1 and define the associated initial data as

w0 := (v̂f , ûs, π̂s, ĉ, ĉ
∗
s, ĝ)|t=0 = (v̂0

f , û0
s, π̂

0
s , ĉ

0, ĉ0∗, ĝ
0). (5.31)

Then we have the following Lipschitz estimates for the lower-order terms defined in (5.11).

Proposition 5.22. Let q > 5 and R > 0. There exist constants C, κ > 0 and a finite time
TR > 0 both depending on R such that for 0 < T < TR and ‖∇̂û0

s‖W 1−2/q
q (Ωs)3

+‖π̂0
s‖W 1−2/q

q (Ωs)
≤

κ, ∥∥Kf (w1)−Kf (w2)
∥∥
Z1

T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
,∥∥(Ks,H2)(w1)− (Ks,H2)(w2)

∥∥
Z2

T×Z7
T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
,∥∥Gi(w1)−Gi(w2)

∥∥
Z3

T×Z4
T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
, i ∈ {f, s},∥∥H1

i (w1)−H1
i (w2)

∥∥
Z5

T×Z6
T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
, i ∈ {f, s},∥∥F j(w1)− F j(w2)

∥∥
Z7+j

T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
, j ∈ {1, 2, 3, 4, 5},

for all
∥∥w1

∥∥
YT
,
∥∥w2

∥∥
YT
≤ R with w1

0 = w2
0.

Proof. For the estimates related to the fluid (with a subscript f) except H1
f and F j , j = 1, ..., 5,

we refer to Proposition 3.20, with the help of Lemma 5.17 and 5.19.
Estimate of Ks,H2. Thanks to the divergence form from the linearization, i.e. Ks = div K̃s

and H2 = −K̃sn̂Γs
, one can estimate Ks,H2 together with cancellation of boundary data like

Corollary 5.11. Namely,∥∥(Ks,H2)(w1)− (Ks,H2)(w2)
∥∥
Z2

T×Z7
T

≤
∥∥∥K̃s(w1)− K̃s(w2)

∥∥∥
Lq(0,T ;W 1

q (Ω)3×3)∩H
1
2
q (0,T ;Lq(Ωs)3×3)

.

Combining the definition of K̃s in Section 5.2.3, Lemma 5.17–5.21 and Assumption 5.1, one
obtains for q > 5,∥∥(Ks,H2)(w1)− (Ks,H2)(w2)

∥∥
Z2

T×Z7
T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
.

In this estimate, the smallness of the initial solid pressure is employed for the term ((ĝ0)3− 1)π̂s
in K̃s, i.e.,

‖π̂s‖L∞(0,T ;L∞(Ωs))
≤
∥∥π̂s − π̂0

s

∥∥
L∞(0,T ;L∞(Ωs))

+
∥∥π̂0

s

∥∥
L∞(Ωs)

≤ C(δ(T ) + κ). (5.32)

Estimate of Gs. By means of Lemma 5.17 and 5.19, estimate in Lq(0, T ;W 1
q (Ωs)) is clear.

By the definition of Gs,

Gs(w1)−Gs(w2) = (F̂−1
s (w1)− I) : (∇̂û1

s − ∇̂û2
s) +

(
F̂−1
s (w1)− F̂−1

s (w2)
)
: ∇̂û2

s.

Then with Lemma 5.17, 5.19 and the regularity (5.29), we have for q > 5 that∥∥Gs(w1)−Gs(w2)
∥∥
H

1
2
q (0,T ;Lq(Ωs))

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
.
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Estimate of H1
f/s. With v̂f ∈ Y 1

T , one knows
ˆ t

0

v̂f (X, τ)dτ ∈W 1
q (0, T ;W

2
q (Ωf )

3) ∩W 2
q (0, T ;L

q(Ωf )
3) ↪→ H

3
2
q (0, T ;W

1
q (Ωf )

3).

It follows from the trace theorem trΓ :W k
q (Ωf )→W

k− 1
q

q (Γ) that
ˆ t

0

v̂f (X, τ)dτ
∣∣∣∣
Γ

∈ H
3
2
q (0, T ;W

1− 1
q

q (Γ)3) ∩W 1
q (0, T ;W

2− 1
q

q (Γ)3),

whose Lipschitz estimate in Z6
T can be controlled by δ(T )

∥∥w1 − w2
∥∥
YT

thanks to Lemma 2.20
and 2.25, namely, ∥∥H1

s(w1)−H1
s(w2)

∥∥
Z6

T

≤ Cδ(T )
∥∥w1 − w2

∥∥
YT
.

Now let us recall H1
f = −K̃f n̂Γ + K̃sn̂Γ. The first part can be addressed in the same way as

in Proposition 3.20. By Lemma 2.25 the anisotropic trace theorem and C3 interface that ensures
a n̂Γ of class C2, the second term can be estimated by∥∥∥K̃s(w1)− K̃s(w2)

∥∥∥
Z5

T

≤ C
∥∥∥K̃s(w1)− K̃s(w2)

∥∥∥
Lq(0,T ;W 1

q (Ω)3×3)∩H
1
2
q (0,T ;Lq(Ωs)3×3)

Then together with Lemma 5.17–5.21 and Assumption 5.1, one gets∥∥H1
f (w1)−H1

f (w2)
∥∥
Z5

T

≤ C(δ(T ) + κ)
∥∥w1 − w2

∥∥
YT
.

Estimate of F j . We can estimate F 1
f and F j , j = 4, 5 analogously as in Chapter 3. For

others, since Y 5
T ↪→ H

1/2
q (0, T ;W 1

q (Ω)) implies that

∇̂ĉs ∈ H
1
2
q (0, T ;L

q(Ωs)
3) ∩ Lq(0, T ;W 1

q (Ωs)
3),

one can apply Lemma 5.17 and 5.19 to derive the corresponding estimates with q > 5, combining
Lemma 2.25, the regularity of F̂⊤

s , ĉ∗s and ĝ.
This completes the proof.

5.4.3. Nonlinear well-posedness. For a w defined in (5.30), define

M (w) :=
(
Kf ,Ks, Gf , Gs,H1

f ,H1
s,H2, F 1, F 2, F 3, F 4, F 5

)⊤
(w),

where the elements are given by (5.11). Then the following proposition holds for M (w) : YT →
ZT , where YT , ZT are given in Section 5.2.1, 5.4.2 respectively.

Proposition 5.23. Let q > 5 and R > 0. Let w ∈ YT be the function as in (5.30) with the
associated initial data as w0 as in (5.31). Then there exist constants C, κ > 0, a finite time TR > 0
both depending on R and δ(T ) as in (5.18) such that for 0 < T < TR, M : YT → ZT is well-defined
and bounded together with the estimates for ‖w‖YT

≤ R and ‖∇̂û0
s‖W 1−2/q

q (Ωs)3
+‖π̂0

s‖W 1−2/q
q (Ωs)

≤
κ that

‖M (w)‖ZT
≤ C(δ(T ) + κ). (5.33)

Moreover, there exist a constant C > 0, a finite time TR > 0 depending on R and a function
δ(T ) as in (5.18) such that for 0 < T < TR,∥∥M (w1)−M (w2)

∥∥
ZT
≤ C(δ(T ) + κ)

∥∥w1 − w2
∥∥
YT
, (5.34)

for all w1,w2 ∈ YT with w1
0 = w2

0 and
∥∥w1

∥∥
YT
,
∥∥w2

∥∥
YT
≤ R.
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Proof. The second part follows directly from Proposition 5.22. Then by setting a trivial solu-
tion w2 = (0, 0, 0, 0, 0, 0, 1) in (5.34), one derives (5.33) immediately in view of the fact that
M (0, 0, 0, 0, 0, 0, 1) = 0.

Now recalling the definition of solution and initial spaces in Section 5.2.1, we rewrite (5.11)
in the abstract form

L (w) = N (w,w0) for all w ∈ YT , (v̂0
f , ĉ

0) ∈ Dq, (5.35)

where L (w) denotes the left-hand side of (5.11) and N (w,w0) is the right-hand side. It follows
from the linear theory in Section 5.3 that L : YT → ZT ×Dq is an isomorphism.

Proof of Theorem 5.5. For (v̂0
f , ĉ

0) ∈ Dq satisfying the compatibility conditions, we may
solve L (w̃) = N (0̄,w0) by some w̃ ∈ YT . Here N (0̄,w0) is in the sense of trivial data
0̄ = (0, 0, 0, 0, 0, 0, 1). Then one can reduce the system to the case of trivial initial data by
eliminating w̃ and we are able to set a well-defined constant

CL := sup
0<T≤1

∥∥L −1
∥∥
L(ZT ,YT )

,

which is finite by the linear theories in Section 5.3 and the estimate (5.33), as in Chapter 3.
Choose R > 0 large such that R ≥ 2CL

∥∥∥(v̂0
f , ĉ

0)
∥∥∥
Dq

. Then

∥∥L −1N (0̄,w0)
∥∥
YT
≤ CL

∥∥(v̂0
f , ĉ

0)
∥∥
Dq
≤ R

2
. (5.36)

For
∥∥wi

∥∥
YT
≤ R, i = 1, 2, we take TR > 0 and κ > 0 small enough such that CLC(R)(δ(TR) +

κ) ≤ 1/2, where C(R) is the constant in (5.34). Then for 0 < T < TR, we infer from Theorem
5.23 that ∥∥L −1N (w1,w0)−L −1N (w2,w0)

∥∥
YT

≤ CLC(R)T
δ
∥∥w1 − w2

∥∥
YT
≤ 1

2

∥∥w1 − w2
∥∥
YT
,

(5.37)

which implies the contraction property. From (5.36) and (5.37), we have∥∥L −1N (w,w0)
∥∥
YT

≤
∥∥L −1N (0̄,w0)

∥∥
YT

+
∥∥L −1N (w,w0)−L −1N (0,w0)

∥∥
YT
≤ R.

Define a ball in YT as

MR,T :=
{

w ∈ BYT
(0̄, R) : w is as in (5.30)

}
,

a closed subset of YT . Hence, L −1N (·,w0) :MR,T →MR,T is well-defined for all 0 < T < TR
and a strict contraction. Since YT is a Banach space, the Banach fixed-point Theorem implies the
existence of a unique fixed-point of L −1N (·,w0) in MR,T , i.e., (5.11) admits a unique strong
solution inMR,T for small time 0 < T < TR.

The uniqueness in YT , 0 < T < T0, follows easily by repeating the continuity argument in
Proof of Theorem 3.8, so we omit it here. In summary, (5.11) admits a unique solution in YT ,
equivalently, (5.7) admits a unique solution in YT .
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Now we are in the position to prove the positivity of cells concentrations. Since the regularity
of v̂s = ∂tûs is much lower than that in Chapter 3, we can not proceed as in Chapter 3 for ĉ. To
overcome this problem, we take a smooth mollification v̂ϵ

s of v̂s for ε > 0 such that
ˆ t

0

v̂ϵ
s(·, τ)dτ → ûs, in Y 2

T , as ε→ 0.

Consider the problem

∂tc
ϵ
f + div

(
cϵfvf

)
−Df∆c

ϵ
f = 0, in QT

f ,

∂tc
ϵ
s + div (cϵsvϵ

s)−Ds∆c
ϵ
s = −frs , in QT

s ,

with boundary and initial values as in Section 5.1.1. Then with same argument in Proof of
Theorem 3.8, one obtains

0 ≤ cϵ(x, t) ∈W 1
q (0, T ;L

q(Ωt)3) ∩ Lq(0, T ;W 2
q (Ω

t\Γt)3),

which means there is a subsequent still denoted by cϵ and a function c such that

cϵ ⇀ c weakly in W 1
q (0, T ;L

q(Ωt)3) ∩ Lq(0, T ;W 2
q (Ω

t\Γt)3),

and
cϵ → c in D′(QT \ST ),

where D′(U) denotes the space of distributions on U , QT , ST are defined in Section 5.1.1. It
is standard to verify that c solves the same equation with vϵ

s replaced by vs. We only give the
sketch of proof with respect to div(cϵsvϵ

s) as an example.
ˆ T

0

ˆ
Ωt

s

cϵsvϵ
s · ∇φ dxdt−

ˆ T

0

ˆ
Ωt

s

csvs · ∇φ dxdt

=

ˆ T

0

ˆ
Ωt

s

(cϵs − cs)vϵ
s · ∇φ dxdt+

ˆ T

0

ˆ
Ωt

s

cs(vϵ
s − vs) · ∇φ dxdt→ 0,

as ε → 0, for all φ ∈ D(QT \ST ), because of the regularity and convergence of cϵs and vϵ
s. Note

that
0 ≤
ˆ T

0

ˆ
Ωt\Γt

cϵφ dxdt ≤ lim sup
ϵ→0

ˆ T

0

ˆ
Ωt\Γt

cϵφ dxdt =
ˆ T

0

ˆ
Ωt\Γt

cφ dxdt,

for all φ ∈ D(QT \ST ), φ ≥ 0, one concludes that c ≥ 0, a.e. in QT \ST . The positivity of ĉ∗s and
ĝ then follows automatically, as showed in Chapter 3, which completes the proof.

5.5. Appendix: Stokes Resolvent Problem

In this section, we give a short proof of the solvability of the following Stokes resolvent
problem with mixed boundary conditions. Let Ω ⊂ R3 be a bounded domain of class C3− with
boundary ∂Ω = Γ1 ∪ Γ2 consisting of two closed, disjoint, nonempty components. Consider the
resolvent problem

λu− div(D2W (I)∇u) +∇π = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ1,

(D2W (I)∇u− πI)n = 0, on Γ2,

(5.38)
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where n is the outer unit normal on the boundary, W : R3×3 → R+ is a scalar function with
Assumption 5.1 holding.

Theorem 5.24. Let 1 < q < ∞. Assume that Ω ⊂ R3 is the domain defined above. Given
f ∈ Lq(Ω)3, there exists some λ0 ∈ R such that for all λ > λ0, (5.38) admits a unique solution
(u, π) satisfying

u ∈W 2
q (Ω)

3, π ∈W 1
q (Ω).

Moreover,
λ ‖u‖L2(Ω)3 + ‖u‖W 2

q (Ω)3 + ‖π‖W 1
q (Ω) ≤ C ‖f‖Lq(Ω)3 .

Proof. The proof is based on the maximal regularity of a generalized Stokes equation, see e.g.
Bothe–Prüss [BP07, Theorem 4.1], Prüss–Simonett [PS16, Theorem 7.3.1]. Let us recall the
definition of solenoidal space

Lq
σ(Ω) := {u ∈ Lq(Ω)3 : div u = 0, n · u|Γ1

= 0}.

Then we define a Stokes-type operator as in Section 5.3.2 that

Aq(u) := Pq

(
− div(D2W (I)∇u)

)
for all u ∈ D(Aq),

with
D(Aq) =

{
u ∈W 2

q (Ω)
3 ∩ Lq

σ(Ω) : u|Γ1
= 0, Pn((D

2W (I)∇u)n)
∣∣
Γ2

= 0
}
,

where Pq denotes the Helmholtz–Weyl projection on Lq
σ(Ω), see e.g. [Abe10, Appendix A] for the

existence of the projection with mixed boundary conditions. Pn := I − n ⊗ n is the tangential
projection onto ∂Ω. As in Remark 5.2, the operator − div(D2W (I)∇·) is strongly normally
elliptic. By e.g. Prüss–Simonett [PS16, Theorem 7.3.2], one knows that λ+Aq ∈MRq(L

q
σ(Ω))

for all λ > λ0 := s(−Aq), where MRq(L
q
σ(Ω)) means the class of maximal Lq-regularity in

Lq
σ(Ω) and s(−Aq) denotes the spectral bound of −Aq. Consequently, for λ > λ0 and f ∈ Lq

σ(Ω),

λu +Aqu = f,

is uniquely solvable with u ∈ D(Aq), which implies that of (5.38).
Now it remains to recover the pressure π. To this end, we solve the Dirichlet–Neumann

problem
∆π = div(f− λu + div(D2W (I)∇u)), in Ω,

∂nπ = (f− λu + div(D2W (I)∇u)) · n, on Γ1,

π = (D2W (I)∇u)n · n, on Γ2,

(5.39)

weakly, which is equivalent to the following weak formulation
ˆ
Ω

∇π · ∇ϕ dx =

ˆ
Ω

(f− λu + div(D2W (I)∇u))︸ ︷︷ ︸
=:̃f

·∇ϕdx, ∀ϕ ∈W 1
q′,Γ2

(Ω). (5.40)

Since f ∈ Lq(Ω)3 and u ∈ W 2
q (Ω)

3 ∩ Lq
σ(Ω), we have f̃ ∈ Lq(Ω)3. Then (5.40) admits a unique

solution π ∈W 1
q (Ω), with the aid of [PS16, Theorem 7.4.3]. The boundary regularity is easy due

to the third equation of (5.39), and the trace theorem.
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Remark 5.25. As D(Aq) embeds compactly into Lq
σ(Ω), the Stokes-type operator Aq has compact

resolvent. Therefore, its spectrum consists only of eigenvalues of finite algebraic multiplicity by
spectral theory for compact operators (see e.g. Alt [Alt16]), and is independent of q by Sobolev
embeddings. So it is enough to investigate these eigenvalues for the case q = 2. Let ω be the
eigenvalue of −A2. Employing the energy method, Lemma 5.2 and the Korn’s inequality, we
have

ω

ˆ
Ω

|u|2 dx = −〈A2u, u〉L2
σ(Ω) = −

ˆ
Ω

D2W (I)∇u : ∇u dx

≤ −C
ˆ
Ω

∣∣∇u +∇u⊤∣∣2 dx ≤ −C
ˆ
Ω

|∇u|2 dx,

which shows that ω is real and nonpositive. Since Ω is bounded and Γ1 is assumed to be
nonempty, the Poincaré’s inequality is valid and one obtains

ω

ˆ
Ω

|u|2 dx ≤ −C
ˆ
Ω

|u|2 dx,

which implies ω ≤ −C, where C > 0 does not depend on λ. Then one conclude that λ0 defined
in Theorem 5.24 is negative and hence if λ = 0, the theorem still holds true.
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Chapter 6

A Diffuse Interface Model for Two-Phase Incompressible
Viscoelastic Flows

This chapter concerns a diffuse interface model for the flow of two incom-
pressible viscoelastic fluids in a bounded domain. More specifically, the
fluids are assumed to be macroscopically immiscible, but with a small
transition region, where the two components are partially mixed. Con-
sidering the elasticity of both components, one ends up with a coupled
Oldroyd-B/Cahn–Hilliard type system, which describes the behavior of
two-phase viscoelastic fluids. In some particular cases, it can be used to
describe a class of fluid-structure interaction problems.
We prove the existence of weak solutions to the system in two dimen-
sions for general (unmatched) mass densities, variable viscosities, dif-
ferent shear moduli, and a class of physically relevant and singular free
energy densities that guarantee that the order parameter stays in the
physically reasonable interval. The proof relies on a combination of a
novel regularization of the original system and a new hybrid implicit time
discretization for the regularized system together with the analysis of an
Oldroyd-B type equation.

Overview of This Chapter

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2. Preliminaries and Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3. Matrix-Valued Equation with Stress Diffusion . . . . . . . . . . . . . . . . . . . . 188
6.4. Regularized System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.5. Existence of Weak Solutions (η → 0) . . . . . . . . . . . . . . . . . . . . . . . . . 222

Notations. In this chapter, we consider specifically the following notations.

• u, the Eulerian velocity

• F or F, the Eulerian deformation gradient

• B, the Eulerian left Cauchy–Green tensor

• φ, order parameter

Throughout the chapter, for simplicity we write the induced norms of Lebesgue and Sobolev
spaces by ‖ · ‖X with X ∈ {Lp,W k,p} . For the further applications, we give the solenoidal
spaces as Lp

σ(Ω) := {u ∈ Lp(Ω;Rd) : div u = 0, n · u|∂Ω = 0} and W k,p
0,σ (Ω) := W k,p

0 (Ω) ∩ Lp
σ(Ω).

Sometimes we use the notation W k,p
t Wm,q

x :=W k,p(0, t;Wm,q(Ω)) with k,m ∈ N0, 1 ≤ p, q ≤ ∞.



Chapter 6. Two-Phase Incompressible Viscoelastic Flows

6.1. Introduction

In this chapter we study a so-called diffuse interface model (also called phase field model) for
two incompressible, viscoelastic fluids of different mass densities, viscosities and shear moduli.
In the model, a partial mixing of the macroscopically immiscible fluids is considered and elastic
effects are taken into account.

This model is quite new and was developed recently in Mokbel–Abels–Aland [MAA18], where
they proposed a novel phase-field model for a fluid-structure interaction problem to handle very
large deformations as well as topology changes like the contact of a solid to a wall. Under
certain assumptions on the system parameters, the model is able to describe a thermodynamically
consistent, frame indifferent, incompressible two-phase flow with viscoelasticity of Oldroyd-B
type.

Let T > 0, QT := Ω× (0, T ) with Ω ⊂ Rd, d ∈ {2, 3}, a sufficiently smooth bounded domain
and ST := ∂Ω× (0, T ). We consider the following system of Oldroyd-B/Cahn–Hilliard type:

∂t(ρ(φ)u) + div(ρ(φ)u⊗ u) + div(u⊗ J) +∇p
− div

(
S(∇u,B, φ)

)
= −εσ̃ div

(
∇φ⊗∇φ

) in QT , (6.1a)

div u = 0 in QT , (6.1b)

∂tB+ u · ∇B+
α(φ)

λ(φ)
(B− I) = B∇u⊤ +∇uB in QT , (6.1c)

∂tφ+ u · ∇φ = div(m(φ)∇q) in QT , (6.1d)

q − σ̃
(1
ε
W ′(φ)− ε∆φ

)
=
µ′(φ)

2
tr(B− lnB− I) in QT , (6.1e)

where J denotes the relative mass flux associated with the diffusion of the mixture components
given by

J := −ρ′(φ)m(φ)∇q
and the stress tensor S is defined by

S(∇u,B, φ) := ν(φ)(∇u +∇u⊤) + µ(φ)(B− I),

as well as the capillary force εσ̃ div
(
∇φ ⊗∇φ

)
with σ̃ > 0 related to the surface tension at the

interface and ε > 0 corresponding to the thickness of the interface. Let φi be the volume fraction
of fluid i, i ∈ {1, 2}. Define φ := φ2 − φ1 as the order parameter related to the concentrations
of the two fluids. Namely, the value φ = −1 and φ = 1 indicate the unmixed “pure” phases of
fluid 1 and fluid 2, respectively. Based on the order parameter φ, u and ρ(φ) are the unknown
(volume-averaged) velocity and the density of the mixture of the two fluids given by

u :=
1− φ
2

u1 +
1 + φ

2
u2, ρ(φ) :=

1− φ
2

ρ̃1 +
1 + φ

2
ρ̃2,

where ui, ρ̃i, i ∈ {1, 2} are the specific velocities and densities of fluid i. Moreover, the matrix B
denotes the left Cauchy–Green tensor related to elasticity, p is the pressure, and q denotes the
chemical potential associated to φ. In system (6.1), ν(φ) > 0 denotes the viscosity coefficient,
m(φ) > 0 is a (non-degenerate) mobility coefficient, and µ(φ) > 0 is the shear mudulus. The ratio
λ(φ)/α(φ) > 0 refers to the relaxation time of elasticity, which is supposed to be phase-dependent
in the case of fluid-structure interaction cf. [MAA18]. Furthermore, W (φ) is the homogeneous
free energy density for the mixture, which is of double-well type. One of the typical examples is
the logarithmic potential

W (φ) =
θ

2

(
(1 + φ) ln(1 + φ) + (1− φ) ln(1− φ)

)
− θc

2
φ2,
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6.1. Introduction

defined in [−1, 1], which leads to a physically relevant value φ ∈ [−1, 1], with 0 < θ < θc being
the absolute temperature and the critical temperature of the mixture. The system is closed with
the boundary and initial conditions

u = 0 on ST , (6.1f)
∂nφ = ∂nq = 0 on ST , (6.1g)
(u,B, φ)(0) = (u0,B0, φ0) in Ω, (6.1h)

where ∂n := n · ∇ and n denotes the exterior normal at ∂Ω. Note that (6.1c) is a transport
equation for which no further boundary condition is required, as n · u|∂Ω = 0 ensures that
characteristics do not enter the domain.

The total energy of the system (6.1) denoted by E(t) consists of the kinetic energy, the elastic
energy and the Ginzburg–Landau free energy as

E(t) :=
ˆ
Ω

ρ(φ)

2
|u|2 dx︸ ︷︷ ︸

Kinetic energy

+

ˆ
Ω

µ(φ)

2
tr(B− lnB− I) dx︸ ︷︷ ︸

Elastic energy

+

ˆ
Ω

σ̃
( ε
2
|∇φ|2 + 1

ε
W (φ)

)
dx︸ ︷︷ ︸

Free energy

. (6.2)

Moreover, every sufficiently smooth solution of (6.1) satisfies the energy dissipation differential
inequality

d
dtE(t) = −

ˆ
Ω

ν(φ)

2

∣∣∇u +∇u⊤∣∣2 dx

−
ˆ
Ω\{λ=0}

µ(φ)α(φ)

2λ(φ)
tr(B+ B−1 − 2I) dx−

ˆ
Ω

m(φ) |∇q|2 dx ≤ 0.

(6.3)

This is referred to [MAA18], where the model was derived via local energy dissipation laws. As
they did not provide a detailed comprehension of the elasticity, we give a complete derivation
with a more general energy density in Section 1.8. Note that the model (6.1) can be seen as
a viscoelastic fluid counterpart of the celebrated Abels–Garcke–Grün (AGG) model [AGG12]
where a diffuse interface model was proposed for a two-phase flow of two incompressible fluids
with different densities using methods from rational continuum mechanics, which satisfies local
and global dissipation inequalities and is frame indifferent.

6.1.1. State of the art. Over the last decades mathematical analysis of fluid dynamics has
been developed with an abundant amount of literature. In particular, the problem of two-phase
fluids with a free interface fascinated the profound attention of mathematicians. However, the
free interface is not easy to track in actual applications and mathematicians still do not have
a thorough comprehension of the problems concerning singularities of interfaces and topological
changes during the evolution of interfaces. Thus, an effective approximation of the interface has
been introduced with the Ginzburg–Landau free energy since, e.g., [GPVn96, HH77], where the
authors proposed a so-called “model H” by the phase-field method in terms of the phase variable
that indicates the specific phase of the whole system. Later on, this model was investigated and
employed explosively in many areas, especially in numerical simulations, since the model has the
advantage that topological changes can happen. However, model H was endowed with a basic
assumption that the densities of both components are the same, which is not always physically
reasonable. To overcome this disadvantage, Abels–Garcke–Grün [AGG12] derived the “AGG
model”, which considers unmatched densities and is thermodynamically consistent and frame
indifferent. For the analysis of weak solutions and strong solutions to the AGG model, we refer
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to [ADG13a, ADG13b, AGG23, Gio21]. An alternative and thermodynamically consistent model
was derived before by Lowengrub–Truskinovski [LT98] by using the mass-averaged (barycentric)
velocity. From the mathematical viewpoint, the latter has the disadvantage that the mass-
averaged velocity is not divergence free, which is the case in the AGG model based on a volume-
averaged velocity. In view of the physical advantages of the AGG model, there came many
variants subsequently concerning different aspects. Readers are referred, for example, to [Fri16]
for the nonlocal Cahn–Hilliard–Navier–Stokes equations with unmatched densities, to [GGW19,
GK23] for diffuse interface models including moving contact lines, to [Sie20] for polymeric fluids,
to [KMS23] for magnetohydrodynamic two-phase flow with different densities, and to [MAA18]
for a diffuse interface model simulating a fluid-structure interaction problem with viscoelasticity
of Oldroyd-B type, which is exactly of our interest.

Now let us recall some facts about viscoelasticity, in particular of Oldroyd-B type. Depending
on the deformation gradient F that is defined in Eulerian coordinates or the corresponding left
Cauchy–Green tensor B := FF⊤, viscoelasticity can be recognized as two regimes. In the context
of F, the incompressible viscoelastic fluid model reads as

∂tu + u · ∇u− µ∆u +∇p = div(FF⊤),

∂tF + u · ∇F = ∇uF,
div u = 0,

(6.4)

whose derivation is referred to, e.g., Giga–Kirshtein–Liu [GKL18] by the energy variational ap-
proach. The analysis of (6.4) has been quite popular in the last decade, and the global well-
posedness and long time behavior have been established in, e.g., [HW15, LLZ08, LLZ05, LZ08]
and their citations. However, due to the lack of compactness for the deformation gradient, prob-
lems concerning the existence of weak solutions are still open even in two dimensions. We refer
to two recent progressive papers by Hu–Lin [HL16a, HL16b] for the existence of 2D weak solu-
tions with small initial data in Lp and L2, respectively, where the so-called effective viscous flux
method was employed. Based on this viscoelastic approach, some very interesting models that
describe the motion of two-phase flows have been introduced in the very recent years. Read-
ers are referred to Agosti–Colli–Garcke–Rocca [Ago+23] for a phase-field model coupled with
viscoelasticity with large deformations, and Kim–Tawri–Temam [KTT22] for a diffuse interface
model describing the interaction between blood flow and a thrombus with Hookean elasticity
during the stage of atherosclerotic lesion in human artery.

When it comes to the left Cauchy–Green tensor B = FF⊤, the so-called Oldroyd-B equation
without dampings or with infinite Weissenberg number can be directly derived from (6.4), with
(6.4)2 rewritten in terms of B as

∂tB+ u · ∇B−∇uB− B∇u⊤ = 0.

By this approach, one has to face instabilities in applications due to the so-called high Weissenberg
number problem, which is still not fully understood, see, e.g., [HLL18] and references therein. It
is possible to avoid this problem by including additional dissipative terms, for instance, in terms
of elastic relaxation. The original formulation of the Oldroyd-B model includes relaxation and
is formulated with respect to the elastic stress tensor in linear elasticity τ := B− I, i.e.,

∂tu + u · ∇u− µ∆u +∇p = div τ ,

∂tτ + u · ∇τ −∇uτ − τ∇u⊤ + aτ =
b

2
(∇u +∇u⊤),

div u = 0,

(6.5)
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where a, b ≥ 0 and 1/a denotes the relaxation time and b/a is the viscosity of the polymers. For a
derivation, we refer to [MP18, Old50, RT21]. It can also be recovered from the micro-macroscopic
FENE (Finite Extensible Nonlinear Elastic) dumbbell model, see, e.g., [GKL18]. Concerning the
analysis of (6.5), the first existence result of weak solutions goes back to Lions–Masmoudi [LM00],
where they considered a co-rotational version of the stress tensor equation to get better estimates
and compactness. Due to lack of compactness, the existence of weak solutions to (6.5) has been
an open problem for a long time. We mention a breakthrough on a related model, for which
Masmoudi [Mas13] proved the existence of weak solutions to the FENE dumbbell model with
many weak convergence techniques, based on the control of the propagation of strong convergence
of some well-chosen quantity by studying a transport equation for its defect measure. Instead
of solving (6.5) directly, in recent years mathematicians tried to include some regularization
terms for the Oldroyd-B equation, for example the diffusive stress ∆τ , in order to obtain higher
regularity and compactness, which is however still limited to two dimensions. Barrett–Boyaval
[BB11] proved the existence of weak solutions to a regularized Oldroyd-B model with stress
diffusion in 2D by employing an approximating finite element scheme, together with an entropy
regularization, while the global regularity of 2D diffusive Oldroyd-B equations was obtained by
Constantin–Kliegl [CK12]. Note that in [BB11], the authors reformulated an equivalent system
in terms of the left Cauchy–Green tensor B instead of τ , and made use of a physically relevant
elastic tr(B − lnB − I) and its estimate, which was derived before by Hu–Lelièvre [HL07]. One
of the advantages of the formulation with respect to B is that one can expect the positive
definiteness of it, while in the other formulation this is not clear at all. Later, a compressible
counterpart of the (diffusive) Oldroyd-B model was proposed and analyzed in [BLS17] by means
of a combination of multilayer approximations from [BB11] and the compressible Navier–Stokes
equation [FN17], based on the Galerkin scheme. For other related viscoelastic models, one
refers to [BLLM22, LM+17] for Peterlin type models, and to [BBM21] for a mixing of the
Oldroyd-B model and the Giesekus model. Along with the development of diffuse interface
models, two-phase viscoelasticity came up in recent years. Grün–Metzger [GM16] derived a
micro-macro model for two-phase flow of dilute polymeric solutions, where a Fokker–Planck
type equation describes orientation and elongation of polymers. Sieber [Sie20] then extended
the model in [GM16] to the case with different mass densities for polymeric fluids. Moreover, a
viscoelastic phase separation model of Peterlin type was derived in [Bru+21] and investigated
in [BLM22a, BLM22b]. By virtue of the Oldroyd-B model, recently Garcke–Kovács–Trautwein
[GKT22] established a viscoelastic Cahn–Hilliard model to describe tumor growth and obtained
the existence of weak solutions in the case of matched mass densities with the help of finite
element approximations.

In contrast to the growing literature on two-phase flows and viscoelastic fluids, the ana-
lytical results about two-phase viscoelasticity are quite limited, especially the Oldroyd-B type
models with unmatched densities and variable shear moduli. To the best of our knowledge, the
only related results of diffuse interface model including viscoelasticity of Oldroyd-B type are
[GKT22, Sie20] we mentioned above, where they showed the existence of weak solutions for 2D
two-phase Oldroyd-B type fluids with polynomial potential, while none of them concerned the
case of unmatched densities and phase-depending shear moduli, which in fact, is rather physical
and interesting. The aim of the present paper is to provide a deep understanding on the theory
of incompressible two-phase flow with viscoelasticity of Oldroyd-B type with more physical as-
sumptions, in company with the AGG model [ADG13a, AGG12]. More precisely, we are going
to prove the existence of weak solutions to the incompressible Oldroyd-B/Cahn–Hilliard model
in the presence of variable densities, shear moduli, viscosities, and a singular potential.
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6.1.2. Reformulation with a modified pressure and stress diffusion. Before recording
our main result, one reformulates the system with a modified pressure which, for the sake of
analysis of weak solutions, leads to a more convenient right-hand side of (6.1a). Note that both
formulations are equivalent for sufficiently smooth solutions. In particular, we define a new scalar
pressure as

π := p+
σ̃ε

2
|∇φ|2 + σ̃

ε
W (φ) +

µ(φ)

2
tr(B− lnB− I).

Then we have

∇π = ∇p+ q∇φ+ σ̃ε div
(
∇φ⊗∇φ

)
+
µ(φ)

2
∇ tr(B− lnB− I).

Additionally, it is necessary for the analysis to introduce a diffusive regularization κ
µ(ϕ)∆B for

a κ > 0 in (6.1c) such that the evolution law of the Cauchy–Green tensor B is of parabolic
nature. The system is closed with an additional no-flux boundary condition ∂nB = 0, see also
in [Ago+23, BB11, BBM21, GKT22]. For the purpose of readability, in the following we will
let α(·) = λ(·) = ε = σ̃ = 1 since they have no significant contribution to the analysis.

The full system of our interest now reads

∂t(ρ(φ)u) + div(ρ(φ)u⊗ u) + div(u⊗ J) +∇π

− div
(
S(∇u,B, φ)

)
= q∇φ+

µ(φ)

2
∇ tr(B− lnB− I)

in QT , (6.6a)

div u = 0 in QT , (6.6b)

∂tB+ u · ∇B+ (B− I) = B∇u⊤ +∇uB+
κ

µ(φ)
∆B in QT , (6.6c)

∂tφ+ u · ∇φ = div(m(φ)∇q) in QT , (6.6d)

q −W ′(φ) + ∆φ =
µ′(φ)

2
tr(B− lnB− I) in QT , (6.6e)

u = 0, ∂nB = 0 on ST , (6.6f)
∂nφ = ∂nq = 0 on ST , (6.6g)
(u,B, φ)(0) = (u0,B0, φ0) in Ω. (6.6h)

Remark 6.1. In comparison to, e.g., [BB11], the special structure of the additional diffusive term
κ

µ(ϕ)∆B in (6.6c) is of main importance in presence of a phase-depending shear modulus µ(φ).
The coefficient 1

µ(ϕ) is of much help to keep the energy dissipation structure in (6.3), i.e.,

d
dtE(t) = −

ˆ
Ω

ν(φ)

2

∣∣∇u +∇u⊤∣∣2 dx− κ

2

ˆ
Ω

|∇ tr lnB|2 dx

−
ˆ
Ω

µ(φ)

2
tr(B+ B−1 − 2I) dx−

ˆ
Ω

m(φ) |∇q|2 dx ≤ 0.

In general, the additional diffusive term κ
µ(ϕ)∆B can also be motivated by means of a nonlocal

storage of energy or a nonlocal entropy production mechanisms, see Málek–Průša–Skřivan–Süli
[M+́18].

Remark 6.2. Here, an additional term µ(ϕ)
2 ∇ tr(B − lnB − I) appears in (6.6a) after modifying

the pressure. In [BLS17], a regularization term α∇ tr lnB was added in the momentum equation
but here we get it for free, since the shear modulus µ(φ) is unmatched among two fluids.
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6.1.3. Main results. Now we are in the position to state our main result of this chapter.
Namely, the global existence of weak solutions to (6.6) in two dimensions, which describes the
incompressible viscoelastic two-phase flow with general (unmatched) mass density, variable vis-
cosity, different shear moduli and a singular free energy density in two dimensions. We note that
the notation will be explained in the beginning of Section 6.2.

Theorem 6.3 (Proved in Section 6.5.2). Let d = 2 and let Assumption 6.12 hold true (see
Section 6.2.2). Assume that the initial data satisfy (u0,B0, φ0) ∈ L2

σ(Ω)×L2(Ω;R2×2
sym)×W 1,2(Ω)

with B0 positive definite a.e. in Ω, tr lnB0 ∈ L1(Ω), and |φ0| ≤ 1 a.e. in Ω and
ffl
Ω
φ0 dx ∈ (−1, 1).

Then for any T ∈ (0,∞), there exists a weak solution (u,B, φ, q) of (6.6) in the sense of Definition
6.14. Moreover, the left Cauchy–Green tensor B fulfills the following estimate

‖B(t)‖2L2 +

ˆ t

0

‖B(τ)‖2L2 dτ +
ˆ t

0

‖∇B(τ)‖2L2 dτ ≤ C(E(0), ‖B0‖2L2)

for a.e. t ∈ (0, T ).
Remark 6.4. Here we assume that the initial data B0 additionally satisfies

tr lnB0 ∈ L1(Ω).

This is for the sake of the estimate of the elastic energy in (6.2). In general, one can not expect
to derive it from B0 ∈ L2(Ω;R2×2

sym+) since
´
Ω

tr lnB0 dx is not necessarily bounded from below.
This is a rather mild restriction, which was also used in Barrett–Lu–Süli [BLS17]. Note that in
Barrett–Boyaval [BB11], a stronger restriction was employed, that is, B0 is uniformly positive
definite, i.e.,

B0 |w|
2 ≤ w⊤B0(x)w ≤ B0 |w|2 for all w ∈ R2 and for a.e. x ∈ Ω,

where B0,B0 ∈ R+.
Remark 6.5. In this chapter, we consider an isotropic free energy and a regular mobility. These
are simplifications as our main focus lies on the unmatched densities, viscosities and shear moduli.
We comment that more general cases can be obtained by suitable modifications in our current
framework. See also Remark 6.41 for further discussion.
Remark 6.6. For simplicity of the model, α, λ are assumed to be constant. The existence result
also holds true, if α, λ : R → R are continuous, positive and bounded functions that depend on
the phase-field variable φ.

6.1.4. Strategy of the proof (technical discussions). Note that the system (6.6) has a
similar structure as the AGG model [AGG12], which was solved with the help of an implicit
time discretization scheme in [ADG13a]. In order to combine this with the existence of weak
solutions to an Oldroyd-B fluid system proved in [BB11], we introduce a novel regularization to
(6.6) (see Rη below, also in (6.40)), such that we can solve the regularized system in a suitable
way and have good uniform a priori estimates (see Section 6.4.1), inspired by [Abe09b, BS18,
LR14]. More specifically, the advantages of the regularization is threefold. Due to the presence
of a phase-dependent shear modulus, the regularity of the terms with the coefficient µ(φ) will
cause problems if one tries the standard testing procedure. For example, multiplying the second
term in (6.6c) with µ(ϕ)

2 (I− B−1) and integrating by parts over Ω leads to
ˆ
Ω

u · ∇B :
µ(φ)

2
(I− B−1) dx =

ˆ
Ω

u · ∇
(
µ(φ)

2
tr(B− lnB− I)

)
dx

−
ˆ
Ω

µ′(φ)

2
u · ∇φ tr(B− lnB− I) dx
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where u ∈ L∞(0, T ;L2
σ(Ω))∩L2(0, T ;W 1,2

0 (Ω;Rd)). The first term on the right-hand side vanishes
for such u (as it is solenoidal), while it is not clear if the second integral is well-defined or not under
the current regularity setting. With the regularized terms µ(Rηφ) and Rηu in the regularized
system, it is not an issue anymore since Rηφ and Rηu are sufficiently smooth for any η > 0. The
second motivation of the regularization comes from the solvability of the Oldroyd-B equation,
see (6.20) below. Namely, this kind of regularization on the velocities in (6.40c) and η∂tφ in
(6.40e) allow us to show existence, uniqueness and continuous dependence for it, even in three
dimensions, which has been an open problem for a long time for the Oldroyd-B model. Moreover,
under such regularization, one does not need to construct multiple layers of approximations for
the whole system as in, e.g., [BB11, BLS17]. Instead, we separate the proof into solving two
relatively easy systems.

Concerning the solvability of the regularized Oldroyd-B equation in three dimensions, we
make use of the standard Galerkin approximation, on accounting to the parabolic nature. In
addition, inspired by [BB11], an entropy regularization for lnB is introduced, which is of impor-
tance since the left Cauchy–Green tensor B is not necessarily positive definite almost everywhere
in QT and hence the physical energy tr(B− lnB− I) is not necessarily well-defined in presence of
the logarithmic term. Thanks to the regularization Rη, we obtain uniform estimates and then
pass to the limit for both the entropy regularization and the Galerkin approximation. Finally,
we conclude the positive definiteness of the limit function (i.e. the left Cauchy–Green tensor B)
with a contradiction argument.

To solve the regularized system in 3D, one natural idea would be to employ a time dis-
cretization scheme for the full system as in [ADG13a]. However, it is not applicable to repeat all
the regularization and approximation techniques for practicality and readability. Thus, in this
chapter, we propose a novel scheme, we called “hybrid time discretization” (see Section 6.4.3), to
obtain a suitable approximation of the full system, combined with the solvability of the Oldroyd-
B system. Specifically, for the AGG part (u, φ) we keep the implicit time discretization as in
[ADG13a], namely the piecewise constant discrete solution with time-averaged terms regarding
B, while the Oldroyd-B part is solved in each time interval continuously in time with the time-
averaged solution from the previous time step as the initial datum. Due to the well-posedness
of the Oldroyd-B part, one is able to construct a continuous mapping of B in terms of (u, φ)
in the discrete AGG system, which is solvable in a similar fashion as in [ADG13a]. The first
essential ingredient of the hybrid time discretization scheme is a uniform estimate, for which we
finalize with the energy estimate of B on a discrete time interval and cancel out all the mixing
terms. This is where we use the time-averaged approximation of terms containing B, see (6.55)
and (6.56). The second crucial element is the compactness of these time-averaged terms, as the
limit passage in these terms requires additional arguments. For this, we provide compactness
results for weakly-∗ convergent and weakly convergent sequences, respectively, with the help of a
convolution (in time) with Dirac sequences and the Lebesgue differentiation theorem, see Section
6.4.6. Note that one can not apply the Aubin–Lions lemma for the approximate Cauchy–Green
tensor, say B̃N , since it is endowed with jumps across the time intervals and one can not expect
the existence of ∂tB̃ over the whole time interval. This is overcome by a compactness argument
with time translations, see Section 6.4.7.

The final step is the passage to the limit in the regularized system as the regularization
parameter η → 0. This can be realized with a compactness argument from the concise uniform a
priori estimate (6.51) and a stronger estimate (6.78) for B, which are both independent of η > 0.
The stronger estimate is necessary since the energy estimate (6.51) only provides merely L1

information of B. Note that here the stronger estimate for B relies on the Gagliardo–Nirenberg
inequality which requires the restriction to two dimensions. Then, in light of the compactness of
u, which is derived with a Helmholtz projection and the convergence of the kinetic energy, one
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obtains the existence of a weak solution to the original full system (6.6) by passing to the limit
as η → 0.

6.1.5. Outline. The rest of the chapter unfolds as follows. In Section 6.2, we explain the no-
tations and provide some auxiliary lemmata. Then, we present the main assumptions and the
definition of weak solutions to (6.6). In Section 6.3 we study the matrix-valued equation for
the left Cauchy–Green tensor with η-regularization in three dimensions. The well-posedness is
of particular significance and is obtained by a Galerkin approximation and an entropy regular-
ization. Section 6.4 is devoted to the analysis of the regularized system, which is solved with
a novel hybrid time discretization scheme and the Leray–Schauder principle. In Section 6.5 we
finish the proof of Theorem 6.3 (the existence of weak solutions to (6.6)) by passing to the limit
in the regularization, i.e., η → 0, together with a uniform estimate derived in Section 6.4.1 and
a stronger estimate for B in Section 6.5.1.

6.2. Preliminaries and Weak Solutions

6.2.1. Linear algebra of matrices. For any B ∈ Rd×d
sym , there exists a diagonal decomposition

B = O⊤DO, satisfying trB = trD, (6.7)

where O ∈ Rd×d is an orthogonal matrix and D ∈ Rd×d is a diagonal matrix. For any symmetric
positive definite B ∈ Rd×d

sym+, we define its real logarithm lnB as a symmetric matrix such that
eln B = B. Indeed, in view of (6.7), we have

lnB = O⊤diag{lnλ1, lnλ2, . . . , lnλd}O,

where D = diag{λ1, λ2, . . . , λd} with λk > 0, k = 1, . . . , d, the eigenvalues of B, which implies
tr lnB = ln detB.

We recall a set of properties for matrix-valued functions.
Lemma 6.7 (Properties of matrix-valued functions). Let B : U → Rd×d

sym+ with some open
U ⊂ Rn, n ≤ d, d, n ∈ N, be differentiable with respect to a first-order differential operator ∂·.
Then

B+ B−1 − 2I is symmetric and tr(B− lnB− I) ≥ 0, (6.8)
∂B : B−1 = tr

(
B−1∂B

)
= ∂ tr lnB, (6.9)

∂ lnB : B = tr
(
B∂ lnB

)
= ∂ trB, (6.10)

∂B : (I− B−1) = ∂ tr(B− lnB− I). (6.11)

Moreover, let B = (Bjk)
d
j,k=1,C = (Cjk)

d
j,k=1 ∈ Rd×d

sym , v ∈ C1(Rd;Rd×d), then(
∇vB+ B∇v⊤) : C = 2

(
CB
)
: ∇v. (6.12)

Proof. We refer to [BB11, BLS17].

Auxiliary results.
Lemma 6.8. Let E : [0, T ) → [0,∞), 0 < T ≤ ∞, be a lower semicontinuous function and

let D : (0, T )→ [0,∞) be an integrable function. Then

E(0)ς(0) +

ˆ T

0

E(t)ς ′(t) dt ≥
ˆ T

0

D(t)ς(t) dt
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holds for all ς ∈W 1,1(0, T ) with ς(T ) = 0 and ς ≥ 0 if and only if

E(t) +

ˆ t

s

D(τ) dτ ≤ E(s)

holds for all s ≤ t < T and almost all 0 ≤ s < T including s = 0.

Proof. For the proof, one is referred to Abels [Abe09a, Lemma 4.3].

Lemma 6.9. Let X,Y be two Banach spaces such that Y ↪→ X and X ′ → Y ′ densely and let
0 < T <∞. Then

L∞(0, T ;Y ) ∩ C([0, T ];X) ↪→ Cw([0, T ];Y ).

Proof. See Abels [Abe09a, Lemma 4.1].

Let (X0, X1) be a compatible couple of Banach spaces, that is, there is a Hausdorff topological
vector space Z such that X0, X1 ↪→ Z, and let (·, ·)[θ], (·, ·)(θ,r), θ ∈ [0, 1], r ∈ [1,∞], denote the
complex and real interpolation functor, respectively, cf. Abels [Abe09b], Bergh–Löfström [BL76].
Then we have the following lemma.

Lemma 6.10 ([BL76, Theorem 5.1.2]). Let (X0, X1) be a compatible couple of Banach spaces,
I ⊂ R and Ω ⊂ Rd, d ∈ N. For all 1 ≤ p0 <∞, 1 ≤ p1 ≤ ∞, and θ ∈ (0, 1),

(Lp0(I;X0), L
p1(I;X1))[θ] = Lp(I; (X0, X1)[θ]),

where 1
p = 1−θ

p0
+ θ

p1
. In particular, for p0 = 2, p1 =∞, p = 4, X0 =W 1,2(Ω) and X1 = L2(Ω),

it holds
(L2(I;W 1,2(Ω)), L∞(I;L2(Ω))[ 12 ] = L4(I;H

1
2 ,2(Ω)) ↪→ L4(I;Ls(Ω)), (6.13)

where s = 3 if d = 3 and s = 4 if d = 2. The space Hs,2 for 0 < s < 1 is the Bessel potential
space.

Mollifiers. For a function ψ ∈ C∞
0 (Rd) with

´
Rd ψ dx = 1, ψ(x) = ψ(−x) ≥ 0 and suppψ ⊂ Rd,

define ψη(x) := η−dψ(xη ), where η > 0. Then we introduce a regularization operator Rη by

Rηw := ψη ∗ w =

ˆ
Rd

ψη(x− y)w(y) dy =

ˆ
Ω

ψη(x− y)w(y) dy, (6.14)

with w defined on Ω ⊂ Rd extended by 0 outside of Ω. Moreover, the following properties are
satisfied.

Lemma 6.11 (Mollification). Let X be a Banach space. If v ∈ L1
loc(Rd;X), then we have

Rηv ∈ C∞(Rd;X). Furthermore, the following holds:

(1) For u, v ∈ L1
loc(Rd), it holds that

ˆ
Rd

Rηu · v dx =

ˆ
Rd

u ·Rηv dx. (6.15)

(2) If v ∈ Lp
loc(Rd;X), 1 ≤ p < ∞, then Rηv ∈ Lp

loc(Rd;X) and Rηv → v in Lp
loc(Rd;X) as

η → 0.

(3) If v ∈ Lp(Rd;X), 1 ≤ p < ∞, then Rηv ∈ Lp(Rd;X), ‖Rηv‖Lp(Rd;X) ≤ ‖v‖Lp(Rd;X) and
Rηv→ v in Lp(Rd;X) as η → 0.

186



6.2. Preliminaries and Weak Solutions

(4) If v ∈ Lp(Rd;X), 1 ≤ p < ∞, then ‖Rηv‖L∞(Rd;X) ≤ C(η) ‖v‖Lp(Rd;X) with C(η) > 0

depending on η.

(5) If v ∈ L∞(Rd;X), then Rηv ∈ L∞(Rd;X), and ‖Rηv‖L∞(Rd;X) ≤ ‖v‖L∞(Rd;X).

Proof. The first statement is a direct consequence of ψ(x) = ψ(−x), while the fourth one can be
derived by taking the supremum norm of ψ. The remaining statements are referred to [FN17,
Theorem 11.3].

6.2.2. Assumptions. In the following we summarize the assumptions that are necessary to
formulate the notation of a weak solution.

Assumption 6.12. We assume that Ω ⊂ R2 is a bounded domain with smooth boundary.
Moreover, we impose the following conditions.

(H1) The density of the model is given by ρ(φ) = 1
2 (ρ̃1 + ρ̃2) +

1
2 (ρ̃2 − ρ̃1)φ, which is derived in

[AGG12, MAA18]. Here ρ̃i > 0 denote the constant unmatched densities of two fluids and
φ is the difference of the volume fractions of the fluids.

(H2) We assume m,µ ∈ C1(R), ν ∈ C(R) and they have the corresponding constant lower and
upper bounds, i.e., 0 < m ≤ m ≤ m, 0 < ν ≤ ν ≤ ν, 0 < µ ≤ µ ≤ µ and 0 < µ′ ≤ µ′ ≤ µ′.

(H3) The free energy density is assumed to be a general function W ∈ C([−1, 1]) ∩ C2((−1, 1))
that satisfies

lim
s→−1

W ′(s) = −∞, lim
s→1

W ′(s) = +∞, W ′′(s) ≥ −ω for some ω ∈ R.

Remark 6.13. The Assumption (H3) allows for a nonconvex potential W , which has the domain
of definition [−1, 1]. Then, the evaluation of W (φ) automatically induces the evaluation of
a physically relevant φ ∈ (−1, 1), with W ′(φ) < ∞. One typical example is the so-called
logarithmic potential as given in Section 6.1.

6.2.3. Weak solutions. Now we give the definition of weak solutions to (6.6).

Definition 6.14. Let T > 0 and (u0,B0, φ0) ∈ L2
σ(Ω) × L2(Ω;R2×2

sym) × W 1,2(Ω) with B0

positive definite, tr lnB0 ∈ L1(Ω) and |φ0| ≤ 1 almost everywhere in Ω. In addition, let Assump-
tion 6.12 hold true. We call the quadruple (u, φ, q,B) a finite energy weak solution to (6.6) with
initial data (u0,B0, φ0), provided that

(1) the quadruple (u, φ, q,B) satisfies

u ∈ Cw([0, T ];L
2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω;R2));

φ ∈ Cw([0, T ];W
1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)) with φ ∈ (−1, 1) a.e. in QT ;

W ′(φ) ∈ L2(0, T ;L2(Ω)), q ∈ L2(0, T ;W 1,2(Ω));

B is symmetric positive definite a.e. in QT ;

B ∈ Cw([0, T ];L
2(Ω;R2×2

sym)) ∩ L2(0, T ;W 1,2(Ω;R2×2
sym));

tr lnB ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;W 1,2(Ω));
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(2) for all t ∈ (0, T ) and all w ∈ C∞([0, T ];C∞
0 (Ω;R2)) with div w = 0, we haveˆ t

0

ˆ
Ω

(
ρ(φ)u · ∂tw + (ρ(φ)u⊗ u) : ∇w− ρ′(φ)(u⊗m(φ)∇q) : ∇w

)
dx dτ

−
ˆ t

0

ˆ
Ω

(
ν(φ)(∇u +∇u⊤) : ∇w + µ(φ)(B− I) : ∇w

)
dx dτ (6.16)

= −
ˆ t

0

ˆ
Ω

q∇φ · w dx dτ −
ˆ t

0

ˆ
Ω

µ(φ)

2
∇ tr(B− lnB− I) · w dx dτ

+

ˆ
Ω

ρ(φ(·, t))u(·, t) · w(·, t) dx−
ˆ
Ω

ρ(φ0)u0 · w(·, 0) dx;

(3) for all t ∈ (0, T ) and all ξ ∈ C∞([0, T ];C1(Ω;R)), we haveˆ t

0

ˆ
Ω

φ
(
∂tξ + u · ∇ξ

)
dx dτ −

ˆ t

0

ˆ
Ω

m(φ)∇q · ∇ξ dx dτ (6.17)

=

ˆ
Ω

φ(·, t)ξ(·, t) dx−
ˆ
Ω

φ0ξ(·, 0) dx;

(4) for a.e. (x, t) ∈ QT , we have

q =W ′(φ)−∆φ+
µ′(φ)

2
tr(B− lnB− I);

(5) for all t ∈ (0, T ) and all C ∈ C∞(QT ;R2×2
sym+), we have

ˆ t

0

ˆ
Ω

(
B : ∂tC+ (u⊗ B) : ∇C

)
dx dτ

+

ˆ t

0

ˆ
Ω

((
∇uB+ B∇u⊤) : C− κ∇B : ∇ C

µ(φ)

)
dx dτ (6.18)

=

ˆ t

0

ˆ
Ω

(B : C− trC) dx dτ +
ˆ
Ω

B(·, t) : C(·, t) dx−
ˆ
Ω

B0 : C(·, 0) dx;

(6) for a.e. t ∈ (0, T ), the following energy estimate holds

E(t) + 1

2

ˆ t

0

∥∥∥√ν(φ)(∇u +∇u⊤)(τ)
∥∥∥2
L2

dτ

+

ˆ t

0

(∥∥∥∥µ(φ)2
tr(B+ B−1 − 2I)(τ)

∥∥∥∥
L1

+
κ

2
‖∇ tr lnB‖2L2

)
dτ (6.19)

+

ˆ t

0

∥∥∥√m(φ)∇q(τ)
∥∥∥2
L2

dτ ≤ CE(0),

where E(t) is the energy defined in (6.2).

6.3. Matrix-Valued Equation with Stress Diffusion

In this section, we are going to solve the matrix-valued equation for B in dimension d ∈ {2, 3},

∂tB+ Rηv · ∇B− B∇Rηv⊤ −∇RηvB+ (B− I) =
κ

µη(ξ)
∆B, in QT

∂nB = 0, on ST

B(0) = B0, in Ω,

(6.20)
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with B0 ∈ L2(Ω;Rd×d
sym+), d ∈ {2, 3}, and given data (v, ξ) satisfying

v ∈ C([0, T ];W 1,2
0,σ (Ω;R

d)), ξ ∈ C([0, T ];W 2,2(Ω)) ∩W 1,2(0, T ;L2(Ω)). (6.21)

Here, Rη is the mollifier defined in (6.14) and µη(φ) := µ(Rηφ). As usual, we give the precise
definition of finite energy weak solutions of the system (6.20).

Definition 6.15. Let d ∈ {2, 3}, T > 0, B0 ∈ L2(Ω;Rd×d
sym) positive definite a.e. in Ω,

tr lnB0 ∈ L1(Ω), and (v, ξ) be satisfying (6.21). We call B a finite energy weak solution of (6.20)
with data (B0, v, ξ), provided that

(1) the left Cauchy–Green tensor B satisfies

B is symmetric positive definite a.e. in QT ;

B ∈ Cw([0, T ];L
2(Ω;Rd×d

sym)) ∩ L2(0, T ;W 1,2(Ω;Rd×d
sym));

∂tB ∈ L2(0, T ; [W 1,2(Ω;Rd×d
sym)]′);

tr lnB ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;W 1,2(Ω));

(2) for all t ∈ (0, T ) and all C ∈ C∞(QT ;Rd×d
sym), we have

ˆ t

0

ˆ
Ω

(
B : ∂tC+ (Rηv⊗ B) : ∇C

)
dx dτ

+

ˆ t

0

ˆ
Ω

((
∇RηvB+ B∇Rηv⊤) : C− κ∇B : ∇ C

µη(ξ)

)
dx dτ (6.22)

=

ˆ t

0

ˆ
Ω

(B : C− trC) dx dτ +
ˆ
Ω

B(·, t) : C(·, t) dx−
ˆ
Ω

B0 : C(·, 0) dx;

(3) for a.e. t ∈ (0, T ) we have the following energy estimate

‖tr(B− lnB)(t)‖L1 + ‖B(t)‖2L2

+

ˆ t

0

(
‖B(τ)‖2L2 + κ ‖∇B(τ)‖2L2

)
dτ

+

ˆ t

0

(∥∥tr(B+ B−1 − 2I)(τ)
∥∥
L1 + κ ‖∇ tr lnB‖2L2

)
dτ

≤ C
(
1 + ‖tr(B0 − lnB0)‖L1 + ‖B0‖2L2

)
.

(6.23)

Then main result of this section reads as follows:
Theorem 6.16. Let T > 0 and Ω ⊂ Rd, d ∈ {2, 3}, be a bounded smooth domain. Assume

that (v, ξ) satisfies (6.21), B0 ∈ L2(Ω;Rd×d
sym) positive definite a.e. in Ω and tr lnB0 ∈ L1(Ω).

Then, there exists a finite energy weak solution of (6.20) in the sense of Definition 6.15. Moreover,
the solution is unique and depends continuously on (v, ξ,B0).
Remark 6.17. This theorem is valid for (v, ξ) satisfying (6.21), which is a quite general and rather
strong assumption. Later on, we will only consider the case with piecewise-in-time constant
functions satisfying certain spatial regularity, which, for sure, fulfill (6.21) on each subinterval.

We now devote the rest of this section to the proof of Theorem 6.16, which consists of a
two-layer approximation, uniform estimates, limit passages and a uniqueness argument.
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6.3.1. Galerkin approximation. By the classical theory of eigenvalue problems for symmetric
linear elliptic operators, one can carry out the finite space approximation. Let {Ak}k∈N be the
eigenfunctions of the matrix-valued Laplace operator with homogeneous Neumann boundary
conditions, namely,

−∆Al = λlAl in Ω, ∂nAl = 0 on ∂Ω,
with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λl →∞, l→∞. Moreover,

Al ∈W 2,2(Ω;Rd×d
sym) ∩ C∞(Ω;Rd×d

sym).

Then {Al}l∈N is an orthonormal basis in L2(Ω;Rd×d
sym) and an orthogonal basis in W 1,2(Ω;Rd×d

sym)
(see also [BLS17] for the compressible Oldroyd-B case). Define Hl = span{A1, . . . ,Al} ⊂
L2(Ω;Rd×d

sym) with l ∈ N and denote by Pl : W 1,2(Ω;Rd×d
sym) → Hl the orthogonal projection

on Hl with respect to the inner product in L2(Ω;Rd×d) such that

(A,B) =
ˆ
Ω

A : B dx, ∀A,B ∈ L2(Ω;Rd×d).

Now we make the Galerkin ansatz to approximate the solution B of (6.20) as

Bl =

l∑
k=1

clk(t)Ak(x), Bl(0) = PlB0,

where {clk} are scalar functions of time. Then one arrives at the following approximate system

(∂tBl,W) + (Rηv · ∇Bl,W)−
(
Bl∇Rηv⊤,W

)
− (∇RηvBl,W) + (Bl − I,W) = −

(
κ∇Bl,∇

W
µη(ξ)

)
,

(6.24)

for all W ∈ Hl, with the initial data Bl(0) = PlB0. Taking W = Aj , j = 1, . . . , l in (6.24)
respectively, we have

(∂tBl,Aj) + (Rηv · ∇Bl,Aj)−
(
Bl∇Rηv⊤,Aj

)
− (∇RηvBl,Aj) + (Bl − I,Aj) = −

(
κ∇Bl,∇

Aj

µη(ξ)

)
.

(6.25)

Consequently, (6.25) turns into the form of

Ml d
dtc

l = Ll(t)cl + fl, (6.26)

where [cl(t)]j = clj(t), [cl(0)]j = (PlB0,Aj) , j = 1, . . . , l. The matrices Ml, Ll and the vector f
are induced respectively with the entries for j, k = 1, . . . , l,

[Ml]jk =(Ak,Aj) ,

[Ll(t)]jk =− (Rηv(t) · ∇Ak,Aj) +
(
Ak∇Rηv⊤(t),Aj

)
+ (∇Rηv(t)Ak,Aj)− (Ak,Aj) + κλk

(
1

µη(ξ)
Ak,Aj

)
,

[fl]j =
ˆ
Ω

tr(Aj) dx.

Now we are able to obtain the existence and uniqueness of cl by verify the conditions of classical
linear ordinary differential equation theory, which thereafter implies that (6.25) admits a unique
solution Bl on the whole interval [0, Tl] for all l ∈ N.
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6.3.2. Entropy regularization. Concerning the energy tr(B − lnB − I), we notice that it
does not necessarily make sence due to the logarithmic term. The a priori bounds are usually
obtained by assuming that B is symmetric positive definite, which we do not have a priori. Thus,
motivated by [BB11], we employ a regularization for the logarithmic function G(s) = ln(s) to
construct a family of symmetric positive definite approximations for B, namely, one defines a C1

function for δ > 0

Gδ(s) =


s

δ
+ ln δ − 1, s < δ,

ln s, s ≥ δ,

and a cut-off function βδ(s) = [G′
δ(s)]

−1 = max{s, δ}, for all s ∈ R. This kind of regularization
was also applied in, e.g., [BLS17] for a compressible Oldroyd-B system, or [GKT22] for a Cahn–
Hilliard tumor growth model including viscoelasticity.

Let us recall the following result from [BB11, Lemma 2.1].

Lemma 6.18. For all A,C ∈ Rd×d
sym , d ∈ {2, 3}, and for any δ ∈ (0, 1), it holds

βδ(A)G′
δ(A) = G′

δ(A)βδ(A) = I, (6.27a)
tr
(
βδ(A) + β−1

δ (A)− 2I
)
≥ 0, (6.27b)

tr
(
A−Gδ(A)− I

)
≥ 0, (6.27c)

(A− βδ(A)) : (I−G′
δ(A)) ≥ 0, (6.27d)

(A− C) : G′
δ(C) ≥ tr

(
Gδ(A)−Gδ(C)

)
. (6.27e)

In addition, if δ ∈ (0, 12 ], it holds

tr(A−Gδ(A)) ≥


1

2
|A| ,

1

2δ
|[A]−| ,

(6.27f)

A : (I−G′
δ(A)) ≥

1

2
|A| − d, (6.27g)

where [·]− denotes the negative part function defined by [s]− := min{s, 0}, ∀s ∈ R.

Remark 6.19. The domain of definition of scalar functions is naturally extended to symmetric
matrices by the standard functional calculus from spectral theory.

Now employing the regularization from above with respect to δ > 0, we have the regularized
Oldroyd-B equation with symmetric positive definite approximations.(

∂tBδ
l ,W

)
+
(
Rηv · ∇βδ(Bδ

l ),W
)
−
(
βδ(Bδ

l )∇Rηv⊤,W
)

−
(
∇Rηvβδ(Bδ

l ),W
)
+
(
Bδ
l − I,W

)
= −

(
κ∇Bδ

l ,∇
W

µη(ξ)

) (6.28)

for all W ∈ Hl, subjected to the initial values Bδ
l (0) = Pl(δI+RδB0), where we use a mollification

of the initial data B0 with respect to the regularization parameter δ and a diagonal shift by δI,
since RδB0 is not necessarily positive definite. Then we have δI + RδB0 → B0 in L2(Ω;Rd×d

sym),
as δ → 0, and δI + RδB0 is positive definite a.e. in Ω. Note that in the same way as in Section
6.3.1, (6.28) is a system of ordinary differential equations for Bδ

l with respect to the time variable,
for which the Picard–Lindelöf theorem is applicable. This guaranteees the existence of a unique
solution on a local time interval (0, Tl,δ), where Tl,δ ∈ (0, T ).
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6.3.3. Uniform a priori estimates in Galerkin level. Let W = Bδ
l in (6.28), it follows from∣∣βδ(Bδ

l )
∣∣ ≤ 1 +

∣∣Bδ
l

∣∣, 0 < δ ≤ 1, that
1

2

d
dt
∥∥Bδ

l

∥∥2
L2 +

ˆ
Ω

(
Rηv · ∇

)
βδ(Bδ

l ) : Bδ
l dx+

∥∥Bδ
l

∥∥2
L2 +

κ

µ

∥∥∇Bδ
l

∥∥2
L2

≤
ˆ
Ω

trBδ
l dx+ κ

ˆ
Ω

µ′
η(ξ)

µ2
η(ξ)

(∇Rηξ · ∇)Bδ
l : Bδ

l dx+ 2

ˆ
Ω

Bδ
l βδ(Bδ

l ) : ∇Rηv dx

≤
ˆ
Ω

∣∣trBδ
l

∣∣ dx+
κµ′

µ2

ˆ
Ω

∣∣(∇Rηξ · ∇)Bδ
l : Bδ

l

∣∣ dx+ 2

ˆ
Ω

(1 +
∣∣Bδ

l

∣∣) ∣∣Bδ
l

∣∣ |∇Rηv| dx.

On account of integration by parts, div v = 0 and v|∂Ω = 0, one gets

−
ˆ
Ω

(
Rηv · ∇

)
βδ(Bδ

l ) : Bδ
l dx =

ˆ
Ω

(
Rηv · ∇

)
Bδ
l : βδ(Bδ

l ) dx.

In light of Hölder’s and Young’s inequalities, we haveˆ
Ω

∣∣(∇Rηξ · ∇)Bδ
l : Bδ

l

∣∣ dx ≤ ε
∥∥∇Bδ

l

∥∥2
L2 + C ‖∇Rηξ‖2L∞

∥∥Bδ
l

∥∥2
L2 ,ˆ

Ω

(1 +
∣∣Bδ

l

∣∣) ∣∣Bδ
l

∣∣ |∇Rηv| dx ≤
(
1 + ‖∇Rηv‖L∞

) ∥∥Bδ
l

∥∥2
L2 + ‖∇v‖2L2 ,

ˆ
Ω

∣∣(Rηv · ∇
)
Bδ
l : βδ(Bδ

l )
∣∣ dx ≤

∥∥∇Bδ
l

∥∥
L2

∥∥|Rηv| (1 +
∣∣Bδ

l

∣∣)∥∥
L2

≤ ε
∥∥∇Bδ

l

∥∥2
L2 + C ‖Rηv‖2L∞

∥∥Bδ
l

∥∥2
L2 + C ‖v‖2L2 ,

for some small ε > 0 that will be specified later. In addition,
trBδ

l ≤
√
2
∣∣Bδ

l

∣∣ .
Then integrating it over (0, t), t ∈ (0, Tl,δ) together with choosing 2ε ≤ κ

2µ yields

1

2

∥∥Bδ
l (t)
∥∥2
L2 +

1

2

ˆ t

0

∥∥Bδ
l (τ)

∥∥2
L2 dτ + κ

2µ

ˆ t

0

∥∥∇Bδ
l (τ)

∥∥2
L2 dτ

≤ 1

2

∥∥Bδ
l (0)

∥∥2
L2 + 1 + C

ˆ t

0

(‖v(τ)‖2L2 + ‖∇v(τ)‖2L2) dτ

+ C

ˆ t

0

(1 + ‖∇Rηξ‖2L∞ + ‖Rηv‖2L∞ + ‖∇Rηv‖L∞ + ‖∇v‖2L2)
∥∥Bδ

l (τ)
∥∥2
L2 dτ,

which, by Gronwall’s inequality, gives rise to∥∥Bδ
l (t)
∥∥2
L2 +

ˆ t

0

∥∥Bδ
l (τ)

∥∥2
L2 dτ +

ˆ t

0

∥∥∇Bδ
l (τ)

∥∥2
L2 dτ ≤ C, (6.29)

for all t ∈ [0, Tl,δ], where C > 0 is independent of l ∈ N, but depends on κ, µ, Tl,δ, B0, v, ξ and
the parameters δ, η, which is due to Lemma 6.11.

Moreover, due to the mollification of the initial data and (6.21), one can easily derive the
higher regularity estimates by letting W = ∆Bδ

l and W = ∂tBδ
l to obtain∥∥∇Bδ

l (t)
∥∥2
L2 +

ˆ t

0

∥∥∇Bδ
l (τ)

∥∥2
L2 dτ +

ˆ t

0

∥∥∆Bδ
l (τ)

∥∥2
L2 dτ ≤ C,

ˆ t

0

∥∥∂tBδ
l (τ)

∥∥2
L2 dτ +

∥∥Bδ
l (t)
∥∥2
L2 +

∥∥∇Bδ
l (t)
∥∥2
L2 ≤ C,

(6.30)
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for all t ∈ [0, Tl,δ], where C > 0 is independent of l ∈ N, but depends on κ, µ, Tl,δ, B0, v, ξ and
the parameters δ, η, which is due to Lemma 6.11.
Remark 6.20. The uniform higher regularity estimate is twofold. On one hand, one is able to
pass to the limit l → ∞ in the next subsection. On the other hand, this allows us to carry out
the energy estimate with a logarithmic bound for the δ-limit, see also Barrett–Lu–Süli [BLS17,
Lemma 6.1].
Remark 6.21. Here we have a maximal existence time Tl,δ. As shown in [BLS17, Section 7.3], the
approximate time Tl,δ actually coincides with the final time T for the compressible Oldroyd-B
system. Here in a same manner, one can also prove it for the Oldroyd-B equation (6.28). Thus,
in the following we will still denote T for the maximal existence time.

6.3.4. Passing to the limit of the Galerkin approximation. Now, from the uniform
bounds (6.29) and (6.30), it follows that the sequence Bl has the following convergences up
to a non-relabeled subsequence, as l→∞,

Bδ
l → Bδ, weakly-∗ in L∞(0, T ;W 1,2(Ω;Rd×d

sym));

Bδ
l → Bδ, weakly in L2(0, T ;W 2,2(Ω;Rd×d

sym));

∂tBδ
l → ∂tBδ, weakly in L2(0, T ;L2(Ω;Rd×d

sym)),

which thereafter implies the convergence of the weak formulation (6.28). Then, with the higher
regularity bounds, we end up with the pointwise formulation

∂tBδ + Rηv · ∇βδ(Bδ)− βδ(Bδ)∇Rηv⊤ −∇Rηvβδ(Bδ) + (Bδ − I) =
κ

µη(ξ)
∆Bδ, (6.31)

subjected to Bδ(0) = δI+ RδB0.

6.3.5. Uniform energy estimate. In view of the stronger bounds (6.30), the strong formula-
tion (6.31) and [BLS17, Lemma 6.1.], we are allowed to multiply (6.31) with µη(ξ)

2 (I − G′
δ(Bδ))

and integrate the resulting equation over Ω to get
d
dt

ˆ
Ω

µη(ξ)

2
tr(Bδ −Gδ(Bδ)− I) dx

+

ˆ
Ω

µη(ξ)

2
tr(βδ(Bδ) + β−1

δ (Bδ)− 2I) dx+
κ

d

ˆ
Ω

∣∣∇ tr lnβδ(Bδ)
∣∣2 dx (6.32)

≤
ˆ
Ω

µ′
η(ξ)

2
(∂t + Rηv · ∇)Rηξ tr(Bδ −Gδ(Bδ)− I) dx+

ˆ
Ω

µη(ξ)(βδ(Bδ)− I) : ∇Rηv dx.

Here we employedˆ
Ω

Rηv · ∇Bδ :
µη(ξ)

2
(I−G′

δ(Bδ)) dx =

ˆ
Ω

Rηv · ∇
(µη(ξ)

2
tr(Bδ −Gδ(Bδ)− I)

)
dx︸ ︷︷ ︸

=0 due to div v=0 and v|∂Ω=0

−
ˆ
Ω

µ′
η(ξ)

2
Rηv · ∇Rηξ tr(Bδ −Gδ(Bδ)− I) dx,

(Bδ − I) : (I−G′
δ(Bδ)) ≥ tr

(
βδ(Bδ) + β−1

δ (Bδ)− 2I
)
≥ 0,(

∇Rηvβδ(Bδ) + βδ(Bδ)∇Rηv⊤) : µη(ξ)

2
(I−G′

δ(Bδ)) = µη(ξ)(βδ(Bδ)− I) : ∇Rηv,

−
ˆ
Ω

∇B : ∇G′
δ(B) dx ≥ 1

d

ˆ
Ω

|∇ tr lnβδ(B)|2 dx,
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where the second and the third statements can be derived by [BB11, (2.26)], (6.12) respectively,
and the last one is referred to [BLS17, Lemma 7.1]. Integrating (6.32) over (0, t), t ∈ (0, T ), one
obtains from the inequality

∣∣βδ(Bδ)
∣∣ ≤ 1 +

∣∣Bδ
∣∣, 0 < δ ≤ 1, that

1

2
µ

ˆ
Ω

tr(Bδ −Gδ(Bδ))(t) dx

+

ˆ t

0

ˆ
Ω

µη(ξ)

2
tr(βδ(Bδ) + β−1

δ (Bδ)− 2I)(τ) dx dτ + κ

d

ˆ t

0

∥∥∇ tr lnβδ(Bδ)
∥∥2
L2 dx

≤ C
(
1 +

ˆ
Ω

tr(Bδ(0)− lnBδ(0)) dx
)
+ C ‖∇v‖2L2

tx
+

1

4

ˆ t

0

∥∥Bδ(τ)
∥∥2
L2 dx

+

ˆ t

0

µ′

2
‖(∂t + Rηv · ∇)Rηξ(τ)‖L∞

( ˆ
Ω

tr(Bδ −Gδ(Bδ))(τ) dx
)

dτ. (6.33)

Note that there is a term
´ t
0
‖Bδ(τ)‖2L2 on the right-hand side of (6.33), which can not be

controlled for the moment. Thus, we proceed with the similar estimate as (6.29) to reach

1

2

∥∥Bδ(t)
∥∥2
L2 +

1

2

ˆ t

0

∥∥Bδ(τ)
∥∥2
L2 dτ + κ

2µ

ˆ t

0

∥∥∇Bδ(τ)
∥∥2
L2 dτ

≤ 1

2

∥∥Bδ(0)
∥∥2
L2 +

ˆ t

0

2
√
2

ˆ
Ω

tr(Bδ −Gδ(Bδ))(τ) dx dτ (6.34)

+ C

ˆ t

0

(‖v(τ)‖2L2 + ‖∇v(τ)‖2L2) dτ

+ C

ˆ t

0

(1 + ‖∇Rηξ‖2L∞ + ‖Rηv‖2L∞ + ‖∇Rηv‖L∞ + ‖∇v‖2L2)
∥∥Bδ(τ)

∥∥2
L2 dτ.

Now summing (6.33) and (6.34) gives birth to

1

2
µ
∥∥tr(Bδ −Gδ(Bδ))(t)

∥∥
L1 +

1

2

∥∥Bδ(t)
∥∥2
L2 +

1

2

ˆ t

0

∥∥Bδ(τ)
∥∥2
L2 dτ + κ

2µ

ˆ t

0

∥∥∇Bδ(τ)
∥∥2
L2 dτ

+

ˆ t

0

ˆ
Ω

µη(ξ)

2
tr(βδ(Bδ) + β−1

δ (Bδ)− 2I)(τ) dxdτ + κ

2

ˆ t

0

∥∥∇ tr lnβδ(Bδ)(τ)
∥∥2
L2 dτ

≤ C
(
1 +

ˆ
Ω

tr(Bδ(0)− lnBδ(0)) dx+
1

2

∥∥Bδ(0)
∥∥2
L2

)
(6.35)

+ C

ˆ t

0

(1 + g̃(τ))
(∥∥tr(Bδ −Gδ(Bδ))(τ)

∥∥
L1 +

∥∥Bδ(τ)
∥∥2
L2

)
dτ,

where g̃(t) := ‖(∂t+Rηv ·∇)Rηξ‖L∞ +‖∇Rηξ+Rηv‖2L∞ +‖∇Rηv‖L∞ +‖∇v‖2L2 and C depends
on ‖v + ∇v‖2

L2
tx

and the upper-lower bounds of the coefficients but is uniform with respect to
δ > 0. Then, by means of Gronwall’s lemma, one derives∥∥tr(Bδ −Gδ(Bδ))(t)

∥∥
L1 +

∥∥Bδ(t)
∥∥2
L2 +

ˆ t

0

∥∥Bδ(τ)
∥∥2
L2 dτ + κ

ˆ t

0

∥∥∇Bδ(τ)
∥∥2
L2 dτ

+

ˆ t

0

ˆ
Ω

tr(βδ(Bδ) + β−1
δ (Bδ)− 2I)(τ) dxdτ + κ

ˆ t

0

∥∥∇ tr lnβδ(Bδ)(τ)
∥∥2
L2 dτ

≤ C
(
1 +

∥∥tr(Bδ(0)− lnBδ(0))
∥∥
L1 +

∥∥Bδ(0)
∥∥2
L2

)
exp(t+ g(t)),

(6.36)

for a.e. t ∈ (0, T ), where g(t) := ‖(∂t+Rηv·∇)Rηξ‖L1
tL

∞
x
+‖∇Rηξ+Rηv‖2

L2
tL

∞
x
+‖∇Rηv‖L1

tL
∞
x
+

‖∇v‖2
L2

tx
<∞ depends on η, and the constant C is independent of δ.
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6.3.6. Passing to the limit of the entropy regularization. From the weak formulation of
(6.31) and the estimate (6.36), one directly infers that, up to a non-relabeled subsequence, as
δ → 0,

Bδ → B, weakly-∗ in L∞(0, T ;L2(Ω;Rd×d
sym));

Bδ → B, weakly in L2(0, T ;W 1,2(Ω;Rd×d
sym));

∂tBδ → ∂tB, weakly in L2(0, T ; [W 1,2(Ω;Rd×d
sym)]′).

In view of the Aubin–Lions lemma and the Sobolev embedding W 1,2(Ω) ↪→ L6(Ω), we have

Bδ → B, strongly in L2(0, T ;L6(Ω;Rd×d
sym));

βδ(Bδ)→ [B]+, strongly in L2(0, T ;L6(Ω;Rd×d
sym)).

where the limit matrix-valued function B is real symmetric as Bδ is real symmetric for all δ > 0.

6.3.7. Positive definiteness of the left Cauchy–Green tensor. To make sure that the
weak formulation (6.22) is recovered from (6.31) in the limit δ → 0, and similarly for the energy
inequality, we mimic the arguments from [BLS17, Section 8.2] and [BLLM22, Lemma 4.1] to
prove the positive definiteness of the limit function B. Here we use the uniform estimate (6.36),
also see [BB11, Theorem 6.2].

Lemma 6.22. Let B be the limit function of the sequence of positive definite solutions Bδ.
Then B is positive definite a.e. in QT .

Proof. Assume that B is not positive definite a.e. in QT . Then, there exists a subset D ⊂ QT

with nonzero measure and a vector w ∈ L∞(QT ;Rd) satisfying |w| = 1 a.e. in D and w = 0
a.e. in QT \D such that

[B]+w = 0, a.e. in QT . (6.37)
With a direct calculation, one has

|D| =
ˆ T

0

ˆ
Ω

|w|2 dxdt =
ˆ T

0

ˆ
Ω

∣∣∣w⊤β
− 1

2

δ (Bδ)β
1
2

δ (B
δ)w
∣∣∣ dxdt

≤

(ˆ T

0

ˆ
Ω

∣∣β−1
δ (Bδ)

∣∣ dxdt
) 1

2
(ˆ T

0

ˆ
Ω

∣∣w⊤βδ(Bδ)w
∣∣ dxdt

) 1
2

≤ C

(ˆ T

0

ˆ
Ω

∣∣w⊤βδ(Bδ)w
∣∣ dxdt

) 1
2

,

where C does not depend on δ due to the uniform estimate (6.36). In view of the strong conver-
gence in the last subsection, as δ → 0, and (6.37), we obtain |D| = 0, which is a contradiction
to the nonzero measure assumption of D. Hence, B is positive definite a.e. in QT .

On account of Lemma 6.22 and the uniform bounds of tr lnβδ(Bδ), we can extract a con-
verging subsequence of {∇ tr lnβδ(Bδ)}δ>0 in the space L2(0, T ;L2(Ω;Rd)) and a limit function
∇ tr lnB ∈ L2(0, T ;L2(Ω;Rd)) such that, as δ → 0,

∇ tr lnβδ(Bδ)→ ∇ tr lnB, weakly in L2(0, T ;L2(Ω;Rd)),

Indeed, we can identify ∇ tr lnB with ∇ tr lnB. Note that the energy estimates (6.36) and the
definitions of Gδ(·) and βδ(·) imply the uniform boundedness of tr lnβδ(Bδ) in L∞(0, T ;L1(Ω)).
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Hence, with the Poincaré–Wirtinger inequality, Lemma 6.22, the continuity of the logarithm and
the pointwise convergence βδ(Bδ)→ B a.e. in QT , we obtain for a non-relabeled subsequence, as
δ → 0,

tr lnβδ(Bδ)→ tr lnB, weakly in L2(0, T ;L2(Ω)).

Based on this, the existence of the weak gradient of tr lnB is established as follows. For any
arbitrary test function ζ ∈ C∞

0 (QT ;Rd), it holds
ˆ
QT

∇ tr lnB · ζ dxdt←
ˆ
QT

∇ tr lnβδ(Bδ) · ζ dxdt

= −
ˆ
QT

tr lnβδ(Bδ)div(ζ) dxdt

→ −
ˆ
QT

tr lnB div(ζ) dxdt,

as δ → 0, which allows us to identify ∇ tr lnB as the weak gradient of tr lnB, i.e., ∇ tr lnB =
∇ tr lnB ∈ L2(0, T ;L2(Ω;Rd)).

Remark 6.23. For certain smooth solutions, the positive definiteness of the left Cauchy–Green
tensor B can be preserved for all t > 0 if B is positive definite initially. This has been observed for
the 2D Oldroyd-B equation with stress diffusion [CK12, Proposition 1] and for other viscoelastic
fluid systems in, e.g., [HL07, Lemma 2.1], [LM+17, Remark 3.4]. We remark here that one could
obtain a similar result as in [CK12, Proposition 1] for d ∈ {2, 3}, by means of our argument
above, provided with a stronger initial data B0 ∈ W 1,2(Ω;Bd×d

sym) that is positive definite a.e. in
Ω and tr lnB0 ∈ L1(Ω).

6.3.8. Proof of Theorem 6.16. With all the arguments from above, we are able to prove
the existence of weak solutions in Theorem 6.16 by verifying Definition 6.15. Noticing that we
already have

B ∈ L∞(0, T ;L2(Ω;Rd×d
sym)) ∩W 1,2(0, T ; [W 1,2(Ω;Rd×d

sym)]′)

and the Sobolev embeddings

W 1,2(0, T ;X) ↪→ C([0, T ];X), where X is a Banach space,
W 1,2(Ω;Rd×d

sym) ↪→ L2(Ω;Rd×d
sym) ↪→ [W 1,2(Ω;Rd×d

sym)]′ densely ,

one concludes from Lemma 6.9 that

B ∈ Cw([0, T );L
2(Ω;Rd×d

sym)).

Combining all the convergences obtained above, one obtains the weak formulation (6.22). The
energy inequality (6.23) follows immediately from the uniform estimate (6.36) using the lower
semicontinuity of norms and Fatou’s lemma. This proves the existence.

In the final step, we show the uniqueness and continuous dependence of weak solutions of
(6.20) on the data (v, ξ,B0). In fact, one only needs to prove the continuous dependence and, as
a consequence, we then have uniqueness. To this end, let Bi, i = 1, 2 be two weak solutions of
(6.20) in the sense of Definition 6.15 with data (vi, ξi,Bi

0), respectively, satisfying (6.21) and let
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B = B1 − B2 and (v, ξ) = (v1 − v2, ξ1 − ξ2). Then, B solves

∂tB+ Rηv1 · ∇B+ Rηv · ∇B2 − B∇Rηv⊤
1 −∇Rηv1B

−B2∇Rηv⊤ −∇RηvB2 + B =
κ

µη(ξ1)
∆B+ κ∆B2

( 1

µη(ξ1)
− 1

µη(ξ2)

)
, in QT ,

∂nB = 0, on ST ,

B(0) = B1
0 − B2

0, on Ω.

(6.38)

By the standard testing procedure with B in (6.38) and integration by parts over Ω, it follows
that

1

2

d
dt
∥∥B∥∥2

L2 +

ˆ
Ω

Rηv · ∇B2 : B dx− 2

ˆ
Ω

B2
: ∇Rηv1 dx

− 2

ˆ
Ω

(
B2B

)
: ∇Rηv dx+

∥∥B∥∥2
L2

= −
ˆ
Ω

κ

µη(ξ1)

∣∣∇B∣∣2 dx+

ˆ
Ω

κµ′
η(ξ1)

µ2
η(ξ1)

(∇Rηξ1 · ∇)B : B dx

−
ˆ
Ω

κ
( 1

µη(ξ1)
− 1

µη(ξ2)

)
∇B2 : ∇B dx

+

ˆ
Ω

κ

((µ′
η(ξ1)∇ξ1
µ2
η(ξ1)

−
µ′
η(ξ2)∇ξ2
µ2
η(ξ2)

)
· ∇
)
B2 : B dx.

Now we estimate the equality above term by term. In view of Hölder’s and Young’s inequalities
and Lemma 6.11, one obtains for some ε > 0 to be determined yet,

ˆ
Ω

Rηv · ∇B2 : B dx ≤ ‖Rηv‖L∞ ‖∇B2‖L2

∥∥B∥∥
L2 ≤ C(η) ‖v‖2L2 + ‖∇B2‖2L2

∥∥B∥∥2
L2 ,ˆ

Ω

B2
: ∇Rηv1 dx ≤ ‖∇Rηv1‖L∞

∥∥B∥∥2
L2 ,ˆ

Ω

(
B2B

)
: ∇Rηv dx ≤ ‖∇Rηv‖L∞ ‖B2‖L2

∥∥B∥∥
L2 ≤ C(η) ‖∇v‖2L2 + ‖B2‖2L2

∥∥B∥∥2
L2 ,

ˆ
Ω

κµ′
η(ξ1)

µ2
η(ξ1)

(∇Rηξ1 · ∇)B : B dx ≤ C ‖∇Rηξ1‖L∞

∥∥∇B∥∥
L2

∥∥B∥∥
L2

≤ ε
∥∥∇B∥∥2

L2 + C ‖∇Rηξ1‖2L∞

∥∥B∥∥2
L2 ,ˆ

Ω

κ
( 1

µη(ξ1)
− 1

µη(ξ2)

)
∇B2 : ∇B dx =

ˆ
Ω

κ
µη(ξ2)− µη(ξ1)

µη(ξ1)µη(ξ2)
∇B2 : ∇B dx

≤ C
∥∥Rηξ

∥∥
L∞ ‖∇B2‖L2

∥∥∇B∥∥
L2

≤ ε
∥∥∇B∥∥2

L2 + C(η) ‖∇B2‖2L2

∥∥ξ∥∥2
L2 ,ˆ

Ω

κ

((∇µη(ξ1)

µ2
η(ξ1)

− ∇µη(ξ2)

µ2
η(ξ2)

)
· ∇
)
B2 : B dx

≤ C(η)
∥∥Rηξ +∇Rηξ

∥∥
L∞ ‖∇B2‖L2

∥∥B∥∥
L2

≤ C(η)(
∥∥ξ∥∥2

L2 +
∥∥∇ξ∥∥2

L2) + C ‖∇B2‖2L2

∥∥B∥∥2
L2 ,

where C(η) depends on η, κ and the upper-lower bounds of µ, µ′. Summarizing all the estimates
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above, choosing 2ε ≤ κ
2µ and integrating over (0, t), t ∈ (0, T ), give birth to

1

2

∥∥B(t)∥∥2
L2 +

ˆ t

0

∥∥B(τ)∥∥2
L2 dτ + κ

2µ

ˆ t

0

∥∥∇B∥∥2
L2 dτ

≤ C(η)
(
‖v‖2L2

tL
2
x
+ ‖∇v‖2L2

tL
2
x
+
∥∥ξ∥∥2

L∞
t L2

x
+
∥∥∇ξ∥∥2

L2
tL

2
x
+
∥∥B0

∥∥2
L2

)
+ C

ˆ t

0

(
‖∇Rηv1(τ)‖L∞ + ‖∇Rηξ1(τ)‖2L∞ + ‖B2(τ)‖2L2 + ‖∇B2(τ)‖2L2

)∥∥B(τ)∥∥2
L2 dτ.

By Gronwall’s lemma, one concludes that

∥∥B(t)∥∥2
L2 +

ˆ t

0

∥∥B(τ)∥∥2
L2 dτ +

ˆ t

0

∥∥∇B∥∥2
L2 dτ

≤ C(η)
(
‖v‖2L2

tL
2
x
+ ‖∇v‖2L2

tL
2
x
+
∥∥ξ∥∥2

L∞
t L2

x
+
∥∥∇ξ∥∥2

L2
tL

2
x
+
∥∥B0

∥∥2
L2

)
exp(g(t)),

(6.39)

where C(η) depends on ‖∇B2‖L2
tL

2
x
, η, κ and the upper-lower bounds of the coefficients, the

function g(t) :=
´ t
0
(‖∇Rηv1(τ)‖L∞ + ‖∇Rηξ1(τ)‖2L∞ + ‖B2(τ)‖2L2 + ‖∇B2(τ)‖2L2) dτ < ∞ is

finite for t ∈ (0, T ) thanks to the existence of weak solutions and the mollification. On account
of (6.39), one has the continuous dependence of solutions of (6.20) on the data (v, ξ,B0), which
implies the uniqueness.

This completes the proof of Theorem 6.16.

6.4. Regularized System

As discussed before, we are going to introduce a novel regularization to (6.6), so that one
can easily obtain good uniform estimates and pass to the limit in the regularization parameter
with enough compactness. In view of the regularization operator Rη defined in (6.14) for η > 0,
we define µη(φ) := µ(Rηφ). The aim of this section is therefore to obtain a weak solution to the
following regularized system:

∂t(ρ(φ)u) + u · ∇(ρ(φ)u)− ρ′(φ) div
(
u⊗m(φ)∇q

)
+∇π

− div
(
Sη(∇u,B, φ)

)
= q∇φ+ Rη

[µη(φ)

2
∇ tr(B− lnB− I)

] in QT , (6.40a)

div u = 0 in QT , (6.40b)

∂tB+ Rηu · ∇B+ (B− I) = B∇Rηu⊤ +∇RηuB+
κ

µη(φ)
∆B in QT , (6.40c)

∂tφ+ u · ∇φ = div(m(φ)∇q) in QT , (6.40d)

q −W ′(φ) + ∆φ− η∂tφ = Rη

[µ′
η(φ)

2
tr(B− lnB− I)

]
in QT , (6.40e)

u = 0, ∂nB = 0 on ST , (6.40f)
∂nφ = ∂nq = 0 on ST , (6.40g)
(u,B, φ)(0) = (u0,B0, φ0) in Ω, (6.40h)

where
Sη(∇u,B, φ) = ν(φ)(∇u +∇u⊤) + Rη

[
µη(φ)(B− I)

]
.

Let us start with the definition of weak solutions to the system (6.40).
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Definition 6.24. Let T > 0, d ∈ {2, 3}, and (u0,B0, φ0) ∈ L2
σ(Ω)× L2(Ω;Rd×d

sym)×W 1,2(Ω)

with B0 positive definite a.e. in Ω, tr lnB0 ∈ L1(Ω) and |φ0| ≤ 1 a.e. in Ω. In addition, let
Assumption 6.12 hold. We call the quadruple (u, φ, q,B) a finite energy weak solution to (6.40)
with initial data (u0,B0, φ0), provided that

(1) the quadruple (u, φ, q,B) satisfies

u ∈ Cw([0, T ];L
2
σ(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω;Rd));

φ ∈ Cw([0, T ];W
1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)) with φ ∈ (−1, 1) a.e. in QT ;

W ′(φ) ∈ L2(0, T ;L2(Ω)), q ∈ L2(0, T ;W 1,2(Ω));

B is symmetric positive definite a.e. in QT ;

B ∈ Cw([0, T ];L
2(Ω;Rd×d

sym)) ∩ L2(0, T ;W 1,2(Ω;Rd×d
sym));

tr lnB ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;W 1,2(Ω));

(2) for all t ∈ (0, T ) and all w ∈ C∞([0, T ];C∞
0 (Ω;Rd)) with div w = 0, we have

ˆ t

0

ˆ
Ω

(
ρ(φ)u · ∂tw + (ρ(φ)u⊗ u) : ∇w− ρ′(φ)(u⊗m(φ)∇q) : ∇w

)
dxdτ

−
ˆ t

0

ˆ
Ω

(
ν(φ)(∇u +∇u⊤) : ∇w + Rη

[
µη(φ)(B− I)

]
: ∇w

)
dxdτ (6.41)

= −
ˆ t

0

ˆ
Ω

q∇φ · w dxdτ −
ˆ t

0

ˆ
Ω

Rη

[µη(φ)

2
∇ tr(B− lnB− I)

]
· w dxdτ

+

ˆ
Ω

ρ(φ(·, t))u(·, t) · w(·, t) dx−
ˆ
Ω

ρ(φ0)u0 · w(·, 0) dx;

(3) for all t ∈ (0, T ) and all ξ ∈ C∞([0, T ];C1(Ω)), we have
ˆ t

0

ˆ
Ω

φ
(
∂tξ + u · ∇ξ

)
dxdτ −

ˆ t

0

ˆ
Ω

m(φ)∇q · ∇ξ dxdτ (6.42)

=

ˆ
Ω

φ(·, t)ξ(·, t) dx−
ˆ
Ω

φ0ξ(·, 0) dx;

(4) for a.e. (x, t) ∈ QT , we have

q =W ′(φ)−∆φ+ η∂tφ+ Rη

[µ′
η(φ)

2
tr(B− lnB− I)

]
; (6.43)

(5) for all t ∈ (0, T ) and all C ∈ C∞(QT ;Rd×d
sym), we have

ˆ t

0

ˆ
Ω

(
B : ∂tC+ (Rηu⊗ B) : ∇C

)
dxdτ

+

ˆ t

0

ˆ
Ω

((
∇RηuB+ B∇Rηu⊤) : C− κ∇B : ∇ C

µη(φ)

)
dxdτ (6.44)

=

ˆ t

0

ˆ
Ω

(B : C− trC) dxdτ +
ˆ
Ω

B(·, t) : C(·, t) dx−
ˆ
Ω

B0 : C(·, 0) dx;
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(6) for a.e. t ∈ (0, T ), the following energy estimate holds

Eη(t) +
ˆ t

0

∥∥∥√ν(φ)(∇u +∇u⊤)(τ)
∥∥∥2
L2

dτ

+

ˆ t

0

∥∥∥√m(φ)∇q(τ)
∥∥∥2
L2

dτ + η

ˆ t

0

‖∂tφ(τ)‖2L2 dτ (6.45)

+

ˆ t

0

(∥∥tr(B+ B−1 − 2I)(τ)
∥∥
L1 + κ ‖∇ tr lnB(τ)‖2L2

)
dτ ≤ CE(0),

where the energy of the regularized system is

Eη(t) =
ˆ
Ω

ρ(φ)

2
|u|2 dx+

ˆ
Ω

µη(φ)

2
tr(B− lnB− I) dx+

ˆ
Ω

1

2
|∇φ|2 +W (φ) dx, (6.46)

satisfying Eη(0) ≤ C(µ, µ)E(0) uniformly regarding η with E defined in (6.2).
Our main result in this section will be as follows.
Theorem 6.25. Let Assumption 6.12 hold, d ∈ {2, 3}, (u0,B0, φ0) ∈ L2

σ(Ω)×L2(Ω;Rd×d
sym)×

W 1,2(Ω) with tr lnB0 ∈ L1(Ω), B0 positive definite and |φ0| ≤ 1 a.e. in Ω and
ffl
Ω
φ0 dx ∈ (−1, 1).

Then there exists a finite energy weak solution (u, φ, q,B) of (6.40) in the sense of Definition
6.24.
Remark 6.26. The theorem is proved in Section 6.4.7. Thanks to the regularization Rη we
introduced, the existence theorem can be established both in two and three dimensions. This
can not be reached when passing to the limit as η → 0 in Section 6.5, where we need a stronger
estimate of B (uniform in η) in Section 6.5.1, which is restricted to two dimensions.
Remark 6.27. In the rest of this section, we only proceed with the case d = 3, while the other
case d = 2 is even simpler with better Sobolev embeddings. For this, we refer to the final proof
of Theorem 6.3 in Section 6.5.2.

6.4.1. Formal a priori estimates. In this section, we carry out formal energy estimates
including the regularization with respect to η > 0. Note that this energy is not necessarily finite
if B is not positive definite, which is due to the logarithmic term. In Section 6.3.2 we overcome
it by means of an entropy regularization to the logarithmic function. Here we do everything
formally, which will be justified later. Now we discuss about the a priori estimates for (6.40).
Testing (6.40a) with u, we have

d
dt

ˆ
Ω

ρ(φ)

2
|u|2 dx+

ˆ
Ω

(ν(φ)
2

∣∣∇u +∇u⊤∣∣2 + Rη

[
µη(φ)

(
B− I

)]
: ∇u

)
dx

+

ˆ
Ω

(
(∂t + u · ∇)ρ(φ)− div

(
m(φ)∇q

)
ρ′(φ)︸ ︷︷ ︸

=0 by (6.40d)

) |u|2
2

dx

=

ˆ
Ω

q∇φ · u dx+

ˆ
Ω

Rη

[µη(φ)

2
∇ tr(B− lnB− I)

]
· u dx︸ ︷︷ ︸

=−
´
Ω

µ′
η(ϕ)

2 Rηu·∇Rηϕ tr(B−ln B−I) dx

,

(6.47)

where we used the identity for a first-order differential operator ∂· that

∂(ρu) · u = ∂ρ |u|2 + ρ∂u · u

= ∂ρ |u|2 + ρ∂
( |u|2

2

)
= ∂ρ |u|2 + ∂

(
ρ
|u|2

2

)
− ∂ρ |u|

2

2
= ∂

(
ρ
|u|2

2

)
+ ∂ρ

|u|2

2
.
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Multiplying (6.40c) by µη(ϕ)
2 (I− B−1) and integrating it over Ω, one obtains

d
dt

ˆ
Ω

µη(φ)

2
tr(B− lnB− I) dx

+

ˆ
Ω

µη(φ)

2
tr(B+ B−1 − 2I) dx+

κ

d

ˆ
Ω

|∇ tr lnB|2 dx (6.48)

≤
ˆ
Ω

µ′
η(φ)

2
(∂t + Rηu · ∇)Rηφ tr(B− lnB− I) dx+

ˆ
Ω

µη(φ)(B− I) : ∇Rηu dx,

where we employed (6.11), (6.12) and

−
ˆ
Ω

∇B : ∇B−1 dx ≥ 1

d

ˆ
Ω

|∇ tr lnB|2 dx,

which is referred to [BLS17, Lemma 3.1] with d = 2, 3. Testing (6.40d) with q, (6.40e) with
−∂tφ, integrating and adding both eqations and integrating by parts over Ω yields

d
dt

ˆ
Ω

(1
2
|∇φ|2 +W (φ)

)
dx+

ˆ
Ω

u · ∇φq dx+ η

ˆ
Ω

|∂tφ|2 dx

+

ˆ
Ω

µ′
η(φ)

2
∂tRηφ tr(B− lnB− I) dx+

ˆ
Ω

m(φ) |∇q|2 dx = 0.

(6.49)

Adding (6.47), (6.48) and (6.49) together gives rise to

d
dtEη(t) +

ˆ
Ω

(ν(φ)
2

∣∣∇u +∇u⊤∣∣2 +m(φ) |∇q|2 + η |∂tφ|2
)

dx

+

ˆ
Ω

µη(φ)

2
tr(B+ B−1 − 2I) dx+

κ

d

ˆ
Ω

|∇ tr lnB|2 dx ≤ 0,

(6.50)

with the help of (6.15), where the mixed terms are canceled after the summation. Then, inte-
grating (6.50) over t ∈ (0, τ), τ ∈ (0, T ) and using the upper and lower bounds of ν, µ,m, one
finally obtains the a priori estimate

Eη(t) +
ˆ τ

0

‖∇u(t)‖2L2 dt+
ˆ τ

0

‖∇q(t)‖2L2 dt+ η

ˆ τ

0

‖∂tφ(t)‖2L2 dt

+

ˆ τ

0

∥∥tr(B+ B−1 − 2I)(t)
∥∥
L1 dt+

ˆ τ

0

‖∇ tr lnB(t)‖2L2 dt ≤ CE(0),
(6.51)

for a.e. τ ∈ (0, T ). Here, the positive constant C comes from Eη(0) ≤ µ
µE(0) and is independent

of η > 0.

6.4.2. Reformulation of the chemical potential. In presence of the singular, non-convex
potential W (φ), we first rewrite the chemical potential. The idea is to use the subdifferential of
a convex potential, which was also employed in [AW07] for the Cahn–Hilliard equation and in
[ADG13a] for the Cahn–Hilliard–Navier–Stokes equation. First we define an extended potential
W̃ through

W̃ : R→ R, W̃ (s) =

{
W (s) if s ∈ [−1, 1],
+∞ else,
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where W is the potential fulfilling Assumption (H3). Note that W̃ is not necessarily convex
by this assumption. Hence, we define W̃0(r) := W̃ (r) + ω

2 r
2, which satisfies W̃0 ∈ C([−1, 1]) ∩

C2((−1, 1)) and is convex due to the Assumption (H3). In particular, we have W̃ ′(r) = W̃ ′
0(r)−

ωr. Now (6.40e) is equivalent to

q + ωφ = W̃ ′
0(φ)−∆φ+ η∂tφ+ Rη

[µ′
η(φ)

2
tr(B− lnB− I)

]
, a.e. in QT .

Following [AW07, ADG13a], we define a modified energy Ẽ : L2(Ω)→ R ∪ {+∞} by

Ẽ(φ) =


1

2

ˆ
Ω

|∇φ|2 +
ˆ
Ω

W̃0(φ) for φ ∈ D(Ẽ),

+∞ else,

with the domain of definition

D(Ẽ) =
{
φ ∈W 1,2(Ω) : −1 ≤ φ ≤ 1 a.e.

}
.

Then, as in [ADG13a], the domain of the definition of the subgradient ∂Ẽ is

D(∂Ẽ) =
{
φ ∈W 2,2(Ω) : W̃ ′

0(φ) ∈ L2(Ω), W̃ ′′
0 (φ) |∇φ|

2 ∈ L1(Ω), ∂nφ|∂Ω = 0
}
.

With these definitions, one has

∂Ẽ(φ) = −∆φ+ W̃ ′
0(φ) for φ ∈ D(∂Ẽ).

Note that ∂Ẽ is maximal monotone by the convexity of W̃0 and the lower semicontinuity. More-
over, it holds that

‖φ‖2W 2,2 + ‖W̃ ′
0(φ)‖2L2 +

ˆ
Ω

W̃ ′′
0 (φ(x)) |∇φ(x)|

2 dx ≤ C
(
‖∂Ẽ(φ)‖2L2 + ‖φ‖2L2 + 1

)
. (6.52)

Remark 6.28. Note that in [ADG13a] a more complicated subgradient ∂Ẽ(φ) = −∆A(φ) +
W̃ ′

0(A(φ)) was considered to resolve the problem caused by the phase-dependent free energy´
Ω

(a(ϕ)
2 |∇φ|

2
+W (φ)

)
dx, where a(φ) is some positive function and A(φ) is related to a(φ), see

[ADG13a]. However, in this paper, the simpler case of a(φ) = 1 is studied. We still take the
advantage of ∂Ẽ(φ) = −∆φ+W̃ ′

0(φ), which is a maximal monotone operator, to pass to the limit
in the final proof, see Section 6.4.7. Another possible strategy is to approximate the singular
potential with a sequence of regular potentials, for which we also refer to, e.g., [GGW19] for
the case with dynamic boundary conditions and a(φ) = 1, where the authors take the idea of a
convex decomposition of a singular potential and a regular approximation.

6.4.3. Hybrid implicit time discretization. Inspired by the well-posedness result of the
Oldroyd-B equation (6.20) and the implicit time discretization argument in [ADG13a] to solve
the AGG model with unmatched densities and singular potential, we propose a hybrid implicit
time discretization for the whole regularized system (6.40). Namely, for the AGG part, we employ
a time discretization similarly to [ADG13a], while the Oldroyd-B part is solved continuously in
time with the help of Theorem 6.16 on each discrete time interval.

More precisely, let T > 0, h = T
N for N ∈ N, B0 ∈ L2(Ω;Rd×d

sym+) with tr lnB0 ∈ L1(Ω),
and, for k ∈ {0, ..., N − 1}, let uk ∈ L2

σ(Ω), φk ∈ W 1,2(Ω) with W ′(φk) ∈ L2(Ω), and ρk =
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1
2 (ρ̃1 + ρ̃2) +

1
2 (ρ̃2 − ρ̃1)φk be given. We construct (u, φ, q, B̃) = (uk+1, φk+1, qk+1, B̃k+1) as a

solution of the following nonlinear system.
Let Ik+1 := (tk, tk+1) with tk = kh, k ∈ {0, ..., N − 1}. Find (u, φ, q, B̃) with u ∈ W 1,2

0,σ (Ω),
φ ∈ D(∂Ẽ), µ ∈ W 2,2

n = {u ∈ W 2,2(Ω) : ∂nu|∂Ω = 0 on ∂Ω}, and B̃ ∈ L∞(Ik+1;L
2(Ω;Rd×d

sym)) ∩
L2(Ik+1;W

1,2(Ω;Rd×d
sym)) with B̃ positive definite a.e. in Ω and tr ln B̃ ∈ L1(Ik+1;L

1(Ω)), such
that Bk+1 = 1

h

´
Ik+1

B̃(t) dt, where B̃ is the solution of (6.20) on the time interval Ik+1 with
initial data Bk and data (v, ξ)(t) = (u, φk), t ∈ Ik+1, where B0 = B0, that is,

∂tB̃+ Rηu · ∇B̃− B̃∇Rηu⊤ −∇RηuB̃+ (B̃− I) =
κ

µη(φk)
∆B̃, in Ω× Ik+1,

∂nB̃ = 0, on ∂Ω× Ik+1,

B̃(tk) = Bk, in Ω.

(6.53a)

Note that we have continuous dependence of B̃ on (u, φk,Bk) by Theorem 6.16. Moreover, we
consider the following discrete problem with time-averaged terms with respect to B̃:(

ρu− ρkuk

h
,w
)
+ (div(ρku⊗ u),w) + (div(u⊗ J),w)

+
(
ν(φk)(∇u +∇u⊤),∇w

)
− 1

h

ˆ
Ik+1

(
div Rη

[
µη(φk)(B̃− I)

]
,w
)

dt

= (q∇φk,w) +
1

h

ˆ
Ik+1

(
Rη

[µη(φk)

2
∇ tr(B̃− ln B̃− I)

]
,w
)

dt

(6.53b)

for all w ∈ C∞
0 (Ω) with div w = 0, where

J = Jk+1 = −ρ′(φk)m(φk)∇qk+1 = −ρ′(φk)m(φk)∇q.

In addition, for a.e. x ∈ Ω,

φ− φk
h

+ u · ∇φk = div(m(φk)∇q), (6.53c)

q + ω
φ+ φk

2
= W̃ ′

0(φ)−∆φ+ η
φ− φk
h

+ Rη

[1
2

µη(φ)− µη(φk)

Rη(φ− φk)
1

h

ˆ
Ik+1

tr(B̃− ln B̃− I)(t) dt
]
.

(6.53d)

Remark 6.29. In the above system, we distinguish between time-discrete functions and functions
that are continuous-in-time. That is the reason why we write a tilde on the top of the left
Cauchy–Green tensor B̃. In order to make sure the time-continuous problem (6.53a) and the
time-discrete subsystem (6.53b)–(6.53d) are compatible with each other, we make use of time
averages for the terms containing B̃ in the time-discrete problem. In fact, it is necessary to take
advantage of all the information of B̃ in a fixed time interval so that the terms regarding B̃ are
well-defined concerning the regularity.

Another motivation is to get the uniform energy estimate for the whole hybrid discrete
problem with respect to h, for which we approximate µ′

η(φ) due to the variable shear modulus
by the difference quotient µη(ϕ)−µη(ϕk)

Rη(ϕ−ϕk)
, and proceed with the energy estimate (6.56) for B̃ in the

interval Ik+1. With all these ingredients, we establish a uniform estimate by canceling the mixed
terms corresponding to B̃.
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Remark 6.30. The approximation of µ′
η(φ) with the difference quotient µη(ϕ)−µη(ϕk)

Rη(ϕ−ϕk)
is well-

defined for φ 6= φk, as µ ∈ C1(R) with bounded derivative in view of Assumption (H2). Indeed,
by the mean value theorem, it holds

µη(φ)− µη(φk)

Rη(φ− φk)
= µ′

η(ξ) ∈ [µ′, µ′],

for some ξ ∈ (φ, φk), w.l.o.g. φ < φk. Moreover, as φk → φ a.e. in QT , it holds

µη(φ)− µη(φk)

Rη(φ− φk)
→ µ′

η(φ).

Remark 6.31. By simply integrating (6.53c) over Ω and applying integration by parts over Ω
together with div u = 0 and the Neumann boundary condition ∂nq|∂Ω = 0, one infers that

ˆ
Ω

φ dx =

ˆ
Ω

φk dx =

ˆ
Ω

φ0 dx,

which implies that the mass is conserved for the time-discrete problem.
In a similar fashion as in [ADG13a, Lemma 4.2], we have the following lemma, which will be

frequently used later. For the reader’s convenience, we point out the main differences compared
to [ADG13a, Lemma 4.2] arising from the additional terms.

Lemma 6.32. Let φ ∈ D(∂Ẽ) and q ∈ W 1,2(Ω) be solving (6.53d) with given φk ∈ W 2,2(Ω)
satisfying |φk| ≤ 1 and

√
η
φ− φk
h

∈ L2(Ω),
1

|Ω|

ˆ
Ω

φ dx =
1

|Ω|

ˆ
Ω

φk dx ∈ (−1, 1).

Moreover, let B̃ ∈ L2(Ik+1;L
2(Ω;Rd×d

sym+)) with tr ln B̃ ∈ L2(Ik+1;L
2(Ω)). Then, there exists a

constant C > 0 depending on η and
´
Ω
φk dx such that

∥∥∥W̃ ′
0(φ)

∥∥∥
L1(Ω)

+

∣∣∣∣ˆ
Ω

q dx
∣∣∣∣ ≤ C( ‖∇q‖2L2 + ‖∇φ‖2L2 + ‖∇φk‖2L2

+ η

∥∥∥∥φ− φkh

∥∥∥∥2
L2

+
1

h

∥∥∥tr(B̃− ln B̃− I)
∥∥∥2
L2(Ik+1;L2(Ω))

+ 1
)
.

Proof. First of all, testing (6.53d) with φ− φ, where φ := 1
Ω

´
Ω
φ dx is the mean value of φ over

Ω, leads to
ˆ
Ω

q(φ− φ) dx+

ˆ
Ω

ω
φ+ φk

2
(φ− φ) dx

=

ˆ
Ω

W̃ ′
0(φ)(φ− φ) dx+

ˆ
Ω

∇φ · ∇(φ− φ) dx+

ˆ
Ω

η
φ− φk
h

(φ− φ) dx

+

ˆ
Ω

µη(φ)− µη(φk)

2Rη(φ− φk)

( 1
h

ˆ
Ik+1

tr(B̃− ln B̃− I)(t) dt
)
Rη(φ− φ) dx.

By means of Hölder’s and Young’s inequalities, and the Poincaré–Wirtinger inequality, one has
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the following estimates:
ˆ
Ω

q(φ− φ) dx =

ˆ
Ω

(q − q)φ dx ≤ ‖q − q‖L2 ‖φ‖L2 ≤ ‖∇q‖2L2 + C(‖∇φ‖L2 + 1),

ˆ
Ω

ω
φ+ φk

2
(φ− φ) dx ≤ C(‖φ‖L2 + ‖φk‖L2) ‖∇φ‖L2 ≤ C(‖∇φ‖2L2 + ‖∇φk‖2L2 + 1),

ˆ
Ω

∇φ · ∇(φ− φ) dx ≤ C ‖∇φ‖2L2 ,

ˆ
Ω

η
φ− φk
h

(φ− φ) dx ≤ η
∥∥∥∥φ− φkh

∥∥∥∥
L2

∥∥φ− φ∥∥
L2 ≤ η

∥∥∥∥φ− φkh

∥∥∥∥2
L2

+ η ‖∇φ‖2L2 ,

ˆ
Ω

µη(φ)− µη(φk)

2Rη(φ− φk)

( 1
h

ˆ
Ik+1

tr(B̃− ln B̃− I)(t) dt
)
Rη(φ− φ) dx

≤ µ′

4

1

h

∥∥∥tr(B̃− ln B̃− I)
∥∥∥2
L2(Ik+1;L2(Ω))

+
µ′

4
‖∇φ‖2L2 ,

where C depends on
´
Ω
φk dx. Moreover, it follows from the assumption limϕ→±1 W̃

′
0(φ)→ ±∞

and W̃ ′
0 ∈ C([−1 + ε

2 , 1 −
ε
2 ]) due to (H3), together with the fact that φ ∈ (−1 + ε, 1 − ε) for

some ε > 0, that
W̃ ′

0(φ)(φ− φ) ≥ C
∣∣∣W̃ ′

0(φ)
∣∣∣− C1,

by discussing the range of φ in three cases: [−1,−1 + ε
2 ], [−1 + ε

2 , 1 −
ε
2 ], [1 − ε

2 , 1]. As a
consequence, ˆ

Ω

W̃ ′
0(φ)(φ− φ) dx ≥ C

ˆ
Ω

∣∣∣W̃ ′
0(φ)

∣∣∣ dx− C2.

Collecting all the estimates from above yields∥∥∥W̃ ′
0(φ)

∥∥∥
L1(Ω)

≤ C
(
‖∇q‖2L2 + ‖∇φ‖2L2 + ‖∇φk‖2L2

+ η

∥∥∥∥φ− φkh

∥∥∥∥2
L2

+
1

h

∥∥∥tr(B̃− ln B̃− I)
∥∥∥2
L2(Ik+1;L2(Ω))

+ 1
)
,

which thereafter implies that∣∣∣∣ˆ
Ω

q dx
∣∣∣∣ ≤ C( ‖∇q‖2L2 + ‖∇φ‖2L2 + ‖∇φk‖2L2

+ η

∥∥∥∥φ− φkh

∥∥∥∥2
L2

+
1

h

∥∥∥tr(B̃− ln B̃− I)
∥∥∥2
L2(Ik+1;L2(Ω))

+ 1
)
,

by integrating (6.53d) over Ω, for which we used
´
Ω
∆φ dx =

´
∂Ω
∂nφ dHd−1 = 0.

Remark 6.33. The condition tr ln B̃ ∈ L2(Ik+1;L
2(Ω)) in Lemma 6.32 follows directly from

Theorem 6.16 and the Poincaré–Wirtinger inequality.

6.4.4. Existence for the hybrid discrete system. Now we present and prove the existence
of solutions to the hybrid discrete system (6.53).
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Proposition 6.34. Let B0 ∈ L2(Ω;Rd×d
sym+) with tr lnB0 ∈ L1(Ω), and, for k ∈ {0, ..., N−1},

let uk ∈ L2
σ(Ω), φk ∈ W 2,2(Ω), and ρk = 1

2 (ρ̃1 + ρ̃2) +
1
2 (ρ̃2 − ρ̃1)φk be given. Then there are

some (u, φ, q, B̃) ∈W 1,2
0,σ (Ω)×D(∂Ẽ)×W 2,2

n ×L∞(Ik+1;L
2(Ω;Rd×d

sym))∩L2(Ik+1;W
1,2(Ω;Rd×d

sym))

with B̃ positive definite a.e. in Ω and tr ln B̃ ∈ L1(Ω × Ik+1) solving (6.53) and satisfying the
discrete energy inequality

EAGG(u, φ) +
1

h

ˆ
Ik+1

EB(B̃, φ)(t) dt+
ˆ
Ω

ρk
|u− uk|2

2
dx+

ˆ
Ω

|∇φ−∇φk|2

2
dx

+ h

ˆ
Ω

ν(φk)

2

∣∣∇u +∇u⊤∣∣2 dx+ h

ˆ
Ω

m(φk) |∇q|2 dx+ ηh

ˆ
Ω

∣∣∣∣φ− φkh

∣∣∣∣2 dx

+
κ

d

ˆ
Ik+1

ˆ
Ω

∣∣∣∇ tr ln B̃
∣∣∣2 dxdt+

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃+ B̃−1 − 2I) dx dt

≤ EAGG(uk, φk) +
1

h

ˆ
Ik

EB(B̃k, φk)(t) dt, (6.54)

where
EAGG(u, φ) :=

ˆ
Ω

ρ(φ)

2
|u|2 dx+

ˆ
Ω

(1
2
|∇φ|2 +W (φ)

)
dx,

and
EB(B, φ) :=

ˆ
Ω

µη(φ)

2
tr(B− lnB− I) dx.

Proof. The key idea of the proof is as follows. First, we derive a uniform energy estimate which
holds true for any solution (u, φ, q, B̃) of (6.53). Then, we justify the existence of at least one
solution of (6.53) with a fixed point argument. More precisely, we first construct a continuous
mapping (v, φk,Bk) 7→ Tk+1(v, φk,Bk), see (6.58), where Tk+1(v, φk,Bk) denotes the unique
solution of the Oldroyd-B equation (6.20) on the time interval Ik+1, which depends continuously
on a given function triplet (v, φk,Bk), see Theorem 6.16 and (6.39). Then, we rewrite (6.53) as
a fixed point problem for (u, φ, q) with B̃ implicitly given by B̃ = Tk+1(u, φk,Bk), which is then
solved with the Leray–Schauder principle.

Let us start with the energy inequality. With a standard testing procedure as in [ADG13a],
one may expect a similar estimate, except for the terms regarding B̃. Namely, testing (6.53b)
with u, (6.53c) with q and (6.53d) with ϕ−ϕk

h , and multiplying everything by h, one has

EAGG(u,φ) +

ˆ
Ω

ρk
|u− uk|2

2
dx+

ˆ
Ω

|∇φ−∇φk|2

2
dx

+ h

ˆ
Ω

ν(φk)

2

∣∣∇u +∇u⊤∣∣2 dx+ h

ˆ
Ω

m(φk) |∇q|2 dx+ ηh

ˆ
Ω

∣∣∣∣φ− φkh

∣∣∣∣2 dx

+

ˆ
Ω

µη(φ)− µη(φk)

2

( 1
h

ˆ
Ik+1

tr(B̃− ln B̃− I)(t) dt
)

dx

≤ EAGG(uk, φk) +

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
Rηu · ∇ tr(B̃− ln B̃− I) dx dt

−
ˆ
Ik+1

ˆ
Ω

µη(φk)(B̃− I) : ∇Rηu dx dt. (6.55)

The key point here is to cancel out or control these extra terms associated with B̃ uniformly with
respect to h, so that the energy will not blow up after summing over k = 0, ..., N −1 and sending
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N →∞. Here, we make sufficient use of the entropy structure of B̃. Formally multiplying (6.53a)
with µη(ϕk)

2 (I− B̃−1) and integrating over Ω× (tk, t) for a.e. t ∈ Ik+1 yields
ˆ
Ω

µη(φk)

2
tr(B̃− ln B̃− I)(t) dx+

ˆ t

tk

ˆ
Ω

µη(φk)

2
tr(B̃+ B̃−1 − 2I)(s) dxds

+
κ

d

ˆ t

tk

ˆ
Ω

∣∣∣∇ tr ln B̃
∣∣∣2 (s) dxds

≤
ˆ
Ω

µη(φk)

2
tr(Bk − lnBk − I) dx−

ˆ t

tk

ˆ
Ω

µη(φk)

2
Rηu · ∇ tr(B̃− ln B̃− I) dxds

+

ˆ t

tk

ˆ
Ω

µη(φk)(B̃− I) : ∇Rηu dxds.

We note that this inequality can be recovered from the limit passage in (6.32) on the δ-regularized
level in Section 6.3.5. Now, integrating over t ∈ (tk, tk+1) = Ik+1 and multiplying both sides by
1
h lead to

1

h

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃− ln B̃− I) dxdt+

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃+ B̃−1 − 2I) dxdt

+
κ

d

ˆ
Ik+1

ˆ
Ω

∣∣∣∇ tr ln B̃
∣∣∣2 dxdt

≤
ˆ
Ω

µη(φk)

2
tr(Bk − lnBk − I) dx−

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
Rηu · ∇ tr(B̃− ln B̃− I) dxdt

+

ˆ
Ik+1

ˆ
Ω

µη(φk)(B̃− I) : ∇Rηu dxdt, (6.56)

which is with the help of the fundamental theorem of calculus. Using Jensen’s inequality, we
estimateˆ

Ω

µη(φk)

2
tr(Bk − lnBk − I) dx ≤ 1

h

ˆ
Ik

ˆ
Ω

µη(φk)

2
tr(B̃k − ln B̃k − I)(t) dxdt. (6.57)

Adding (6.55) and (6.56) and noting (6.57) gives birth to the desired uniform estimate, where
the mixed terms on the right-hand sides of (6.55)–(6.56) cancel out, i.e.,

EAGG(u, φ) +
1

h

ˆ
Ik+1

ˆ
Ω

µη(φ)

2
tr(B̃− ln B̃− I)(t) dxdt

+

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃+ B̃−1 − 2I) dx dt

+

ˆ
Ω

ρk
|u− uk|2

2
dx+

ˆ
Ω

|∇φ−∇φk|2

2
dx+

κ

d

ˆ
Ik+1

ˆ
Ω

∣∣∣∇ tr ln B̃
∣∣∣2 dxdt

+ h

ˆ
Ω

ν(φk)

2

∣∣∇u +∇u⊤∣∣2 dx+ h

ˆ
Ω

m(φk) |∇q|2 dx+ ηh

ˆ
Ω

∣∣∣∣φ− φkh

∣∣∣∣2 dx

≤ EAGG(uk, φk) +
1

h

ˆ
Ik

ˆ
Ω

µη(φk)

2
tr(B̃k − ln B̃k − I)(t) dxdt.

In order to prove the existence of weak solutions, we proceed with the Leray–Schauder
principle (see, e.g., [Soh01, Lemma 3.1.1, Chapter II]), which was carried out in [ADG13a] as
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well. Now we define

X =W 1,2
0,σ (Ω)×D(∂Ẽ)×W 2,2

n (Ω), Y = [W 1,2
0,σ (Ω)]

′ × L2(Ω)× L2(Ω),

Zk+1 =

{
B ∈ L2(Ik+1;W

1,2(Ω;Rd×d
sym)) : B is positive definite a.e. in Ω,

tr lnB ∈ L1(Ω× Ik+1)

}
.

By means of Theorem 6.16, we construct a mapping Tk+1 : X → Zk+1 such that

B̃ = Tk+1(u, φk,Bk) solves (6.53a) with Bk =
1

h

ˆ
Ik

B̃k(t) dt, (6.58)

which are both positive definite a.e. in Ω, and such that the inequality (6.56) is fulfilled.
Next, we are going to deal with (6.53b)–(6.53d) with the help of (6.58). For w = (u, φ, q) ∈ X,

we define Lk : X → Y as

Lk(w) =


Lk(u)

− div(m(φk)∇q) +
ˆ
Ω

q dx

∂Ẽ(φ) + φ

 ,

where
〈Lk(u), v〉[W 1,2

0,σ ]
′,W 1,2

0,σ
=

ˆ
Ω

ν(φk)(∇u +∇u⊤) : ∇v dx for v ∈W 1,2
0,σ (Ω),

and the second and third line are understood in the pointwise sense. Moreover, for w = (u, φ, q) ∈
X we introduce Fk : X → Y as

Fk(w) =


Fk(w)

−φ− φk
h

− u · ∇φk +

ˆ
Ω

q dx

−ηφ− φk
h

+ φ+ q + ω
φ+ φk

2
−G(w, B̃)

 ,

where

G(w, B̃) =Rη

[1
2

µη(φ)− µη(φk)

Rη(φ− φk)
1

h

ˆ
Ik+1

tr(B̃− ln B̃− I)(t) dt
]
,

Fk(w) =− ρu− ρkuk

h
− div(ρku⊗ u) + q∇φk

−
(

div J− ρ− ρk
h

− u · ∇ρk
)u
2
− (J · ∇)u

− div
(
Rη

[
µη(φk)(Bk+1 − I)

])
+

1

h

ˆ
Ik+1

Rη

[µη(φk)

2
∇ tr(B̃− ln B̃− I)

]
dt,

and Bk+1 and B̃ are constructed in (6.58). Consequently, we see that (u, φ, q, B̃) is a weak solution
of the system (6.53) if and only if w = (u, φ, q) ∈ X satisfies

Lk(w)−Fk(w) = 0. (6.59)

Similarly to [ADG13a], one can check that Lk : X → Y is invertible with the inverse
L−1
k : Y → X. Note that X is not a Banach space since D(∂Ẽ) consists of inequality constraints.
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To get a continuous and even compact operator, we introduce for 0 < s < 1
4 the following Banach

spaces

X̃ :=W 1,2
0,σ (Ω)×W 2−s,2(Ω)×W 2,2

n (Ω), Ỹ := L
3
2 (Ω;R2)×W 1, 32 (Ω)×W 1,2(Ω).

Then we obtain the continuity of L−1
k : Y → X̃ from standard theory and with the above note

concerning the continuity of the third line in L−1
k . In view of the Rellich–Kondrachov theorem in

two and three dimensions, one knows that Ỹ ⊂⊂ Y compactly, which implies that the restriction
L−1
k : Ỹ → X̃ is a compact operator. Moreover, we infer that Tk+1 : X̃ → Z is well-defined

due to Theorem 6.16 and the restriction Fk : X̃ → Ỹ is continuous and maps bounded sets into
bounded sets, which can be verified by the same argument as in [ADG13a]. Here we leave out
the details except for the terms regarding B̃. Thanks to the regularization operator Rη, we have∥∥div

(
Rη

[
µη(φk)(Bk+1 − I)

])∥∥
L

3
2

≤ C 1

h

ˆ
Ik+1

(‖B̃‖2L2 + ‖∇B̃‖2L2) dt+ ‖φk‖2L2 + ‖∇φk‖2L2 + C ≤ Ck(1 +
1

h
),

1

h

ˆ
Ik+1

∥∥∥∥Rη

[µη(φk)

2
∇ tr(B̃− ln B̃− I)

]∥∥∥∥
L

3
2

dt

≤ C 1

h

ˆ
Ik+1

∥∥∥∇ tr(B̃− ln B̃)
∥∥∥2
L2

dt+ C ≤ Ck(1 +
1

h
),∥∥∥G(w, B̃)∥∥∥

W 1,2
≤ C 1

h

ˆ
Ik+1

∥∥∥tr(B̃− ln B̃− I)
∥∥∥
W 1,2

dt ≤ Ck(1 +
1

h
),

where Ck = Ck(‖u‖W 1,2) > 0. Hence, Fk maps bounded sets into bounded sets.
Next we recall the continuity of Fk, that is, Fk(wℓ) → Fk(w) in Ỹ if wℓ → w in X̃ as

`→∞. Note that most of the terms of Fk are similar to [ADG13a], and the main differences are
the terms corresponding to B̃. In order to prove the continuity, we take an arbitrary sequence
{wℓ}ℓ∈N ⊂ X̃ such that wℓ → w in X̃, as ` → ∞, which implies uℓ → u in W 1,2

0,σ , and then we
investigate the continuity of Tk+1 in terms of uℓ ∈ W 1,2

0,σ for fixed φk and Bk. It follows from
Theorem 6.16 and (6.39) that Bℓ → B in L2(Ω × Ik+1) and ∇Bℓ → ∇B in L2(Ω × Ik+1). By
applying a similar argument as in Section 6.3.7, one is able to show the positive definiteness of
B and tr lnBℓ → tr lnB a.e. in Ω × Ik+1 (up to a non-relabeled subsequence). Then, with the
uniform boundedness of tr lnBℓ in L2(Ω× Ik+1), one concludes that tr lnBℓ → tr lnB strongly in
L1(Ω× Ik+1) in view of Vitali’s convergence theorem. Hence, tr(Bℓ− lnBℓ− I)→ tr(B− lnB− I)
in L1(Ω× Ik+1), which finally implies the continuity of Fk.

The final step is to apply the Leray–Schauder principle on Ỹ , for which we denote Kk :=
Fk ◦ L−1

k : Ỹ → Ỹ , rewrite (6.59) as

f−Kk(f) = 0 for f = Lk(w),

and find a fixed point of Kk. Note that Kk is a compact operator because L−1
k is compact and

Fk is continuous. Now we are in the position to show that

∃R > 0 such that ‖f‖Ỹ ≤ R, for f ∈ Ỹ fulfilling f = λKk(f) for some 0 ≤ λ ≤ 1. (6.60)

according to the Leray–Schauder principle (see, e.g., [Soh01, Lemma 3.1.1, Chapter II]). Here
λ is a constant used for the proof and has nothing to do with the relaxation time of the model
(6.1). By the definition w = L−1

k (f), one may see that f = λKk(f) in (6.60) is equivalent to

Lk(w)− λFk(w) = 0 for some 0 ≤ λ ≤ 1. (6.61)
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The rest of this subsection is devoted to the estimate of w in X̃ satisfying (6.61), which thereby
gives the estimate of f in Ỹ by the fact that Fk : X̃ → Ỹ is bounded. The subsequent argument
is rather lengthy, but is very similar to [ADG13a]. Thus, we point out the main differences
associated with B̃ in the following. For the reader’s convenience, we give the equivalent weak
formulation corresponding to (6.61) as follows.

λ

(
ρu− ρkuk

h
, v
)
+ λ (div(ρku⊗ u), v) + λ (div(u⊗ J), v)

+
(
ν(φk)(∇u +∇u⊤),∇v

)
− λ

(
div Rη

[
µη(φk)(Bk+1 − I)

]
, v
)

= λ (q∇φk, v) + λ
1

h

ˆ
Ik+1

(
Rη

[µη(φk)

2
∇ tr(B̃− ln B̃− I)

]
, v
)

dt,

(6.62a)

for all v ∈W 1,2
0,σ (Ω), and for a.e. x ∈ Ω,

λ
φ− φk
h

+ λu · ∇φk = div(m(φk)∇q), (6.62b)

λq + λω
φ+ φk

2
+ λφ = ∂Ẽ(φ) + φ+ λη

φ− φk
h

+ λG(w, B̃). (6.62c)

By the analogous test procedure as for the energy estimate (also in [ADG13a]), that is, testing
(6.62a) with u, (6.62b) with q and (6.62c) with ϕ−ϕk

h , we derive similar estimates. The main
difference here compared to [ADG13a] is that we have extra terms associated with B̃, which in
light of (6.56) can be canceled, as

λ

ˆ
Ik+1

ˆ
Ω

µη(φk)(B̃− I) : ∇Rηu dxdt− λ
ˆ
Ik+1

ˆ
Ω

µη(φk)

2
Rηu · ∇ tr(B̃− ln B̃− I) dxdt

+ λ

ˆ
Ik+1

ˆ
Ω

Rη(φ− φk)
2h

µη(φ)− µη(φk)

Rη(φ− φk)
tr(B̃− ln B̃− I)(t) dxdt

≥ λ 1
h

ˆ
Ik+1

ˆ
Ω

µη(φ)

2
tr(B̃− ln B̃− I)(t) dxdt− λ

ˆ
Ω

µη(φk)

2
tr(Bk − lnBk − I) dx

+ λ

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃+ B̃−1 − 2I) dxdt+ λ

κ

2

ˆ
Ik+1

ˆ
Ω

∣∣∣∇ tr ln B̃
∣∣∣2 dxdt.

Then we reach the estimate
‖w‖X̃ +

∥∥∥∂Ẽ(φ)
∥∥∥
L2
≤ Ck,

for fixed h, and hence
‖f‖Ỹ = ‖λFk(w)‖Ỹ ≤ Ck(‖w‖X̃ + 1) ≤ Ck,

which finishes the proof by the Leray–Schauder principle.

6.4.5. Construction of approximate solutions. Let T > 0 and N ∈ N be given and, for
k ∈ {1, ..., N}, let (uk, φk, qk,Bk) be chosen successively as a solution to (6.53) with h = T

N and
(u0, φ

N
0 ,B0) as the initial data. Here, the regularized initial value φN0 ∈ W 2,2(Ω) is constructed

as in [ADG13a] and satisfies φN0 → φ0 in W 1,2(Ω), as N →∞.
Now we define fN (t) on [−h, T ) through

fN (t) = fk for t ∈ [tk−1, tk),
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where k ∈ {0, ..., N} and f ∈ {u, φ, q,B}. In particular, it holds that

fN ((k − 1)h) = fk, fN (kh) = fk+1, fN (t) = fk+1 with t ∈ [tk, tk+1), k ∈ {0, ..., N − 1}.

Moreover, for t ∈ [tk−1, tk), k ∈ {1, ..., N}, we define B̃N (t) := B̃k(t), B
N
(t) := 1

h

´
Ik

B̃k(t) dt and

ρN := ρ(φN ), fh := f(t− h),

(∆+
h f)(t) := f(t+ h)− f(t), ∂+t,hf(t) :=

1

h
(∆+

h f)(t),

(∆−
h f)(t) := f(t)− f(t− h), ∂−t,hf(t) :=

1

h
(∆−

h f)(t).

By definition, it follows that

ˆ τ

0

fN (t) dt = h

τ/h∑
k=0

fk+1,

ˆ τ

0

B̃N (t) dt =
τ/h∑
k=0

ˆ
Ik+1

B̃k+1(t) dt, (6.63)

for τ ∈ h · {0, ..., N − 1} = {0, h, 2h, ..., (N − 1)h}.
Then for arbitrary w ∈ C∞([0, T ];C∞

0 (Ω;Rd)) with div w = 0 we shall take w̃ :=
´ (k+1)h

kh
w dt

satisfying div w̃ = 0 as the test function in (6.53b) and sum over k ∈ {0, ..., N − 1} to get

−
ˆ τ

0

ˆ
Ω

(
ρNuN · ∂+t,hw− (ρNh uN ⊗ uN ) : ∇w

)
dxdt

+

ˆ τ

0

ˆ
Ω

(
ν(φNh )(∇uN + (∇uN )⊤) : ∇w− (uN ⊗ JN ) : ∇w

)
dxdt

+

ˆ τ

0

ˆ
Ω

Rη

[
µη(φ

N
h )(BN − I)

]
: ∇w dxdt (6.64a)

=

ˆ τ

0

ˆ
Ω

qN∇φNh · w dxdt+
ˆ τ

0

ˆ
Ω

Rη

[µη(φ
N
h )

2
∇GN

]
· w dxdt

−
ˆ
Ω

ρ(φN (·, τ − h))uN (·, τ − h) · wτ dx+

ˆ
Ω

ρ(φN0 )u0 · w0 dx,

for all τ ∈ h · {0, ..., N − 1}, where

ws :=
1

h

ˆ s+h

s

w(t) dt for s ∈ [0, τ ],

and
GN (t) :=

1

h

ˆ
Ik+1

tr(B̃k+1 − ln B̃k+1 − I)(s)ds for t ∈ [tk, tk+1).

Here the identity
ˆ τ

0

ˆ
Ω

∂−t,h(ρ
NuN ) · w dxdt+

ˆ τ

0

ˆ
Ω

ρNuN · ∂+t,hw dxdt

=

ˆ
Ω

ρ(φN (·, τ − h))uN (·, τ − h) · wτ dx−
ˆ
Ω

ρ(φN0 )u0 · w0 dx
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is employed for all τ ∈ h · {0, ..., N − 1} and w ∈ C∞([0, T ];C∞
0 (Ω;Rd)). Analogously, it follows

from (6.53c) and (6.53d) that

−
ˆ τ

0

ˆ
Ω

(
φN∂+t,hξ + φNh uN · ∇ξ

)
dxdt (6.64b)

= −
ˆ τ

0

ˆ
Ω

m(φNh )∇qN · ∇ξ dxdt−
ˆ
Ω

φN (·, τ − h)ξτ dx+

ˆ
Ω

φN0 ξ0 dx

for all τ ∈ h · {0, ..., N − 1} and ξ ∈ C∞([0, T ];C1(Ω)), where

ξs :=
1

h

ˆ s+h

s

ξ(t) dt for s ∈ [0, τ ],

In addition,
∂Ẽ(φN ) = W̃ ′

0(φ
N )−∆φN = qN +

ω

2
(φN + φNh )− η∂−t,hφ

N

− 1

2
Rη

[µη(φ
N )− µη(φ

N
h )

Rη(φN − φNh )
GN
] (6.64c)

for a.e. x ∈ Ω, and all τ ∈ h·{0, ..., N−1}. Moreover, testing (6.53a) with any C ∈ C∞(QT ;Rd×d
sym)

and integrating over Ω× Ik+1 with k ∈ {0, ..., N −1}, applying integration by parts (for the time
derivative) and summing over all k ∈ {0, ...,m} with m ∈ {0, ..., N − 1} and τ = hm, one knowsˆ τ

0

ˆ
Ω

(
B̃N : ∂tC+ (RηuN ⊗ B̃N ) : ∇C

)
dxdt

+

ˆ τ

0

ˆ
Ω

2CB̃N : ∇RηuN − κ∇B̃N : ∇ C
µη(φNh )

)
dxdt (6.64d)

=

ˆ τ

0

ˆ
Ω

(
B̃N : C− trC

)
dxdt+

ˆ
Ω

B̃N (·, τ) : C(·, τ) dx−
ˆ
Ω

B0 : C(·, 0).

Now let EN (t) be the piecewise linear interpolant of

Etot(uk, φk, B̃k) := EAGG(uk, φk) +
1

h

ˆ
Ik

EB(B̃k, φk)(s) ds

at tk = kh given by

EN (t) =
(k + 1)h− t

h
Etot(uk, φk, B̃k) +

t− kh
h
Etot(uk+1, φk+1, B̃k+1)

for t ∈ [kh, (k+1)h), satisfying EN (0) = Etot(u0, φ
N
0 ,B0) := EAGG(u0, φ

N
0 )+ EB(B0, φ

N
0 ). By the

discrete energy inequality (6.54), we have

− d
dtE

N (t) =
Etot(uk, φk, B̃k)− Etot(uk+1, φk+1, B̃k+1)

h
≥ DN (t), (6.65)

where the piecewise constant dissipation DN (t) is given by

DN (t) :=

ˆ
Ω

ν(φk)

2

∣∣∇uk+1 +∇u⊤
k+1

∣∣2 dx+

ˆ
Ω

m(φk) |∇qk+1|2 dx

+
1

h

ˆ
Ω

ρk
|uk+1 − uk|2

2
dx+

1

h

ˆ
Ω

|∇φk+1 −∇φk|2

2
dx+ η

ˆ
Ω

∣∣∣∣φk+1 − φk
h

∣∣∣∣2 dx

+
κ

d

1

h

ˆ
Ik+1

ˆ
Ω

∣∣∣∇ tr ln B̃k+1

∣∣∣2 dxds+ 1

h

ˆ
Ik+1

ˆ
Ω

µη(φk)

2
tr(B̃k+1 + B̃−1

k+1 − 2I) dxds

for t ∈ Ik+1, k ∈ {0, ..., N − 1}.
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6.4.6. Compactness of time-averaged terms. Before proving the existence of weak solution
to the regularized system, we give three technical lemmata, which are of much significance for
the limit passage concerning the time-averaged terms, in particular, the compactness of these
terms. First, we give a uniform boundedness and compactness property.

Lemma 6.35 (Compactness in Lp). Let h = T/N with N ∈ N and f ∈ Lp(0, T ;X) be a
bounded function for p ∈ (1,∞), where X is a Banach space. Define f̄N (t) = 1

h

´
Ik+1

f(s) ds
for t ∈ Ik+1 as a piecewise-in-time constant function in (0, T ). Then {f̄N}N∈N ⊂ Lp(0, T ;X).
Moreover, it holds f̄N → f in Lp(0, T ;X), as N →∞.

Proof. By virtue of (6.63) and Jensen’s inequality for the time integral (as p ∈ (1,∞)), one
knows that

∥∥f̄N∥∥p
Lp(0,T ;X)

=

ˆ T

0

∥∥f̄N (s)
∥∥p
X

ds = h

N−1∑
k=0

∥∥∥∥∥ 1h
ˆ
Ik+1

f(s) ds
∥∥∥∥∥
p

X

≤ h
N−1∑
k=0

( 1
h

ˆ
Ik+1

‖f(s)‖X ds
)p

≤ h
N−1∑
k=0

1

h

ˆ
Ik+1

‖f(s)‖pX ds =
ˆ T

0

‖f(s)‖pX ds ≤ C,

where C > 0 is independent of h > 0 (and N ∈ N, respectively). The second part of the
lemma follows directly from the uniform boundedness and the Banach–Steinhaus theorem, as
the convergence result holds true for any f ∈ C∞([0, T ];X) ⊂ Lp(0, T ;X) densely, i.e., for any
f ∈ C∞([0, T ];X), it holds

∥∥f̄N − f∥∥p
Lp(0,T ;X)

=

ˆ T

0

∥∥f̄N (s)− f(s)
∥∥p
X

ds =
N−1∑
k=0

ˆ
Ik+1

∥∥∥∥∥ 1h
ˆ
Ik+1

f(s) ds− f(t)
∥∥∥∥∥
p

X

dt

=

N−1∑
k=0

ˆ
Ik+1

∥∥∥∥∥ 1h
ˆ
Ik+1

(
f(s)− f(t)

)
ds
∥∥∥∥∥
p

X

dt

≤ Ch sup
t∈(0,T )

‖∂tf(t)‖pX → 0,

as h→ 0.

Remark 6.36. The first part of the lemma also holds true for f substituted by a uniformly
bounded sequence {fN}N∈N in Lp(0, T ;X), that is, the sequence {f̄N}N∈N with definition
f̄N (t) = 1

h

´
Ik+1

fN (s) ds for t ∈ Ik+1 is uniformly bounded in Lp(0, T ;X).

Now concerning the weakly convergent sequences, we introduce the following lemma for the
time-averaged functions.

Lemma 6.37 (Weak compactness). Let h = T/N with N ∈ N and {fN}N∈N ⊂ L2(QT ) be
a sequence satisfying fN → f weakly in L2(QT ), as N → ∞ (resp. h → 0), with f ∈ L2(QT ).
Defining a piecewise-in-time constant function f̄N (t) = 1

h

´
Ik+1

fN (s) ds for t ∈ Ik+1, we have
for any function ϕ ∈ L2(QT ) independent of h,

ˆ
QT

f̄Nϕ dxdt→
ˆ
QT

fϕ dxdt, as N →∞.
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Proof. Define ϕ̄N (t) = 1
h

´
Ik+1

ϕ(s) ds for t ∈ Ik+1. In light of Lemma 6.35, ϕ̄N is uniformly
bounded in L2(QT ) and it holds

ϕ̄N → ϕ, strongly in L2(QT ).

With the help of (6.63) and Fubini’s theorem, we then have
ˆ T

0

ˆ
Ω

f̄Nϕdxdt =
N−1∑
k=0

ˆ
Ik+1

ˆ
Ω

(( 1
h

ˆ
Ik+1

fN (s) ds
)
ϕ̃k+1(t)

)
dxdt

=

N−1∑
k=0

ˆ
Ω

( 1
h

ˆ
Ik+1

fN (s) ds
)( ˆ

Ik+1

ϕ̃k+1(t) dt
)
dx

=

N−1∑
k=0

ˆ
Ω

( ˆ
Ik+1

fN (s) ds
)( 1

h

ˆ
Ik+1

ϕ̃k+1(t) dt
)

dx

=

ˆ
Ω

ˆ T

0

fN (s)ϕ̄N (s) dsdx→
ˆ T

0

ˆ
Ω

fϕ dxdt,

as N → ∞, where the last convergence holds true for weakly convergent fN and strongly
convergent ϕ̄N .

We now write the time-averaged terms as a convolution with a Dirac sequence. Let N ∈ N
and h = T/N . We define ζN (t) = 1

hχ(−h
2 ,

h
2 )
(t) for t ∈ R, where χI(·) denotes the characteristic

function on a given interval I ⊂ R. Let X be a Banach space and p ∈ [1,∞). Then, for
f ∈ Lp(0, T ;X) and t ∈ (h2 , T −

h
2 ), we rewrite the time average over the interval (t− h

2 , t+
h
2 )

as a convolution with ζN , i.e.,

(ζN ∗ f)(t) :=
ˆ
R
ζN (t− s)f(s) ds = 1

h

ˆ
R
χ
(t−h

2 ,t+
h
2 )
(s)f(s) ds = 1

h

ˆ t+
h
2

t−h
2

f(s) ds.

Here, the function f is naturally extended with a zero outside of (0, T ). We note some properties
from, e.g., [Alt16, Theorems 4.13 and 4.15], that we will use:

• {(ζN ∗ f)}N∈N ⊂ Lp(0, T ;X) with (ζN ∗ f)→ f in Lp(0, T ;X), as N →∞.

• For f, g ∈ L1(0, T ;X), it holds
´
R(ζ

N ∗ f)(t)g(t) dt =
´
R f(t)(ζ

N ∗ g)(t) dt.

Note that in fact the first one can be derived by the Lebesgue differentiation theorem for p = 1
and additionally with Jensen’s inequality for 1 < p <∞. The second one is a direct consequence,
since ζN is an even function by construction.

Regarding the weak-∗ convergence, we have the following lemma.

Lemma 6.38 (Weak-∗ compactness). Let h = T/N with N ∈ N. Moreover, let fN ∈
L∞(−h, T ), N ∈ N, with fN → f weakly-∗ in L∞(0, T ), as N → ∞ (resp. h → 0). Then, for
all ς ∈ L1(0, T ), it holds as N →∞ (resp. h→ 0),

ˆ T

0

( 1
h

ˆ t

t−h

fN (s) ds
)
ς(t) dt→

ˆ T

0

f(t)ς(t) dt.

Proof. To prove the lemma, we rewrite the inner integral with the help of the Dirac sequence
defined above with a shift of h

2 . Then one applies the associativity of the convolution with
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the Dirac sequence, the second property above, to move the convolution to the test function
ς ∈ L1(0, T ). Finally, combining with the weak-∗ convergence of fN to f in L∞(0, T ) and the
first property above, we finish the proof. Namely,
ˆ T

0

( 1
h

ˆ t

t−h

fN (s) ds
)
ς(t) dt =

ˆ
R
(ζN ∗ fN )(t)ς(t) dt

=

ˆ
R
fN (t)(ζN ∗ ς)(t) dt→

ˆ
R
f(t)ς(t) dt =

ˆ T

0

f(t)ς(t) dt,

as N →∞ (resp. h→ 0).

Remark 6.39. In principle, it is possible to generalize Lemmata 6.37 and 6.38 for a broader class
of Lebesgue spaces. However, we only make use of these special cases in this work.

For future reference, we also note a compactness criterion with time translations, which can
be found in, e.g., [Sim87, Section 8, Theorem 5].

Lemma 6.40. Let p ∈ [1,∞] and let X,Y, Z be Banach spaces with X ⊂⊂ Y compactly
and Y ⊂ Z continuously. Moreover, let F ⊂ Lp(0, T ;X) be a bounded set and for f ∈ F let
‖f(·+ h)− f‖Lp(0,T−h;Z) → 0 uniformly, as h→ 0. Then, F is relatively compact in Lp(0, T ;Y )

if p ∈ [1,∞), and in C([0, T ];Y ) if p =∞, respectively.

6.4.7. Existence of weak solutions for regularized system. Now we are ready to prove
Theorem 6.25 by compactness arguments and limit passages.

We obtain the energy inequality for the approximate solution (uN , φN , qN , B̃N ) by integrating
(6.65) over Ik+1 and summing over k = 0, ...,m, where m ∈ {0, ..., N − 1} and τ = hm, together
with (6.63),

EAGG(φ
N (τ), uN (τ)) +

1

h

ˆ τ

τ−h

EB(B̃N (t), φN (t)) dt

+
1

2h

ˆ τ

0

ˆ
Ω

(
ρNh
∣∣uN − uN

h

∣∣2 + ∣∣∇φN −∇φNh ∣∣2 ) dxdt

+

ˆ τ

0

ˆ
Ω

(ν(φNh )

2

∣∣∇uN + (∇uN )⊤
∣∣2 +m(φNh )

∣∣∇qN ∣∣2 + η
∣∣∣∂−t,hφN ∣∣∣2 ) dxdt

+

ˆ τ

0

ˆ
Ω

(κ
d

∣∣∣∇ tr ln B̃N
∣∣∣2 + µη(φ

N
h )

2
tr(B̃N + (B̃N )−1 − 2I)

)
dxdt

≤ EAGG(φ
N (0), uN (0)) + EB(B̃N (0), φN (0))

(6.66)

which induces the boundedness of certain norms. However, even with these uniform bounds, the
limit passing is still not possible for N →∞. The reason is that, for B̃N , there is no compactness
available at the moment (only ‖ trBN‖L1). To overcome this problem, we recall the energy
estimate (6.23) derived in Section 6.3, namely,∥∥∥tr(B̃N − ln B̃N )(τ)

∥∥∥
L1

+
∥∥∥B̃N (τ)

∥∥∥2
L2

+

ˆ τ

0

(∥∥∥B̃N (t)
∥∥∥2
L2

+ κ
∥∥∥∇B̃N (t)

∥∥∥2
L2

)
dt

+

ˆ τ

0

(∥∥∥tr(B̃N + (B̃N )
−1
− 2I)(t)

∥∥∥
L1

+ κ
∥∥∥∇ tr ln B̃N (t)

∥∥∥2
L2

)
dt

≤ C
(
1 + EB(B̃N (0), φN (0)) + ‖B0‖2L2

)
(6.67)
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for all τ ∈ (0, T ), where C > 0 depends on η > 0 and certain norms of (uN , φN ), which
are bounded uniformly regarding N due to (6.66). The right-hand side of (6.67) is uniformly
bounded as well. Combining (6.66) and (6.67), we obtain the following uniform bounds on N
(resp. h):

uN is bounded in L2(0, T ;W 1,2
0 (Ω;Rd)) and L∞(0, T ;L2

σ(Ω)),

∇qN is bounded in L2(0, T ;L2(Ω;Rd)),

φN is bounded in L∞(0, T ;W 1,2(Ω)),

B̃N is bounded in L2(0, T ;W 1,2(Ω;Rd×d
sym)) and L∞(0, T ;L2(Ω;Rd×d

sym+)),

tr ln B̃N is bounded in L∞(0, T ;L1(Ω)),

∇ tr ln B̃N is bounded in L2(0, T ;L2(Ω;Rd)),
√
η∂−t,hφ

N is bounded in L2(0, T ;L2(Ω)),

and by (6.52) and Lemma 6.32,

φN is bounded in L2(0, T ;W 2,2(Ω)),

W̃ ′
0(φ

N ) is bounded in L2(0, T ;L2(Ω)),ˆ T

0

∣∣∣∣ˆ
Ω

qN dx
∣∣∣∣ dt ≤M(T ),

for a certain monotone function M : R+ → R+. Up to a subsequence (not to be relabeled), one
concludes the following convergences:

uN → u, weakly in L2(0, T ;W 1,2
0 (Ω;Rd)),

uN → u, weakly-∗ in L∞(0, T ;L2
σ(Ω))

∼= [L1(0, T ;L2
σ(Ω))]

′,

φN → φ, weakly in L2(0, T ;W 2,2(Ω)),

φN → φ, weakly-∗ in L∞(0, T ;W 1,2(Ω)) ∼= [L1(0, T ;W 1,2(Ω))]′,
√
η∂−t,hφ

N → √η∂tφ, weakly in L2(0, T ;L2(Ω)),

qN → q, weakly in L2(0, T ;W 1,2(Ω)),

B̃N → B, weakly in L2(0, T ;W 1,2(Ω;Rd×d
sym)),

B̃N → B, weakly-∗ in L∞(0, T ;L2(Ω;Rd×d
sym)) ∼= [L1(0, T ;L2(Ω;Rd×d

sym))]′,

∇ tr ln B̃N → ∇ tr lnB, weakly in L2(0, T ;L2(Ω;Rd)).

Here the L2(Ω)-convergence of qN is derived by the Poincaré–Wirtinger inequality together with
the integrability from above.

Recall the definition of B̃N (t) = B̃k+1(t) for t ∈ [tk, tk+1), k ∈ {0, ..., N − 1}, with B̃k+1(t)
defined by (6.53a). Thanks to the boundedness of uN , φN , the mollifier Rη and the weak formu-
lation (6.64d) restricted to each time interval Ik+1, k ∈ {0, ..., N − 1}, we get

N−1∑
k=0

ˆ
Ik+1

∥∥∥∂tB̃k+1(t)
∥∥∥2
[W 1,2]′

dt (6.68)

≤ C(η)
(∥∥uN

∥∥2
L2(0,T ;W 1,2)

∥∥∥B̃N
∥∥∥2
L∞(0,T ;L2)

+
∥∥∥B̃N

∥∥∥2
L2(0,T ;W 1,2)

(
1 +

∥∥∇φNh ∥∥2L∞(0,T ;L2)

)
+ 1
)
,
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where C(η) > 0 depends on η but not on N ∈ N. This allows us to employ a time translation
compactness argument for B̃N , that is,
ˆ T−h

0

∥∥∥B̃N (t+ h)− B̃N (t)
∥∥∥2
[W 1,2]′

dt

=

N−2∑
k=0

ˆ
Ik+1

∥∥∥B̃k+2(t+ h)− B̃k+1(t)
∥∥∥2
[W 1,2]′

dt

≤
N−2∑
k=0

ˆ
Ik+1

2
(∥∥∥B̃k+2(t+ h)− Bk+1(t)

∥∥∥2
[W 1,2]′

+
∥∥∥Bk+1(t)− B̃k+1(t)

∥∥∥2
[W 1,2]′

)
dt

= 2

N−1∑
k=1

ˆ
Ik+1

∥∥∥B̃k+1(t)− B̃k+1(tk)
∥∥∥2
[W 1,2]′

dt+ 2

N−2∑
k=0

ˆ
Ik+1

∥∥∥Bk+1(t)− B̃k+1(t)
∥∥∥2
[W 1,2]′

dt,

where Bk+1(t) = 1
h

´
Ik+1

B̃k+1(s) ds, as defined in Section 6.4.3. For the first term, using the
fundamental theorem of calculus, Jensen’s inequality and (6.68), we calculate

N−1∑
k=1

ˆ
Ik+1

∥∥∥B̃k+1(t)− B̃k+1(tk)
∥∥∥2
[W 1,2]′

dt ≤ h2
N−1∑
k=1

ˆ
Ik+1

∥∥∥∂tB̃k+1(t)
∥∥∥2
[W 1,2]′

dt ≤ Ch2,

where C does not depend on N ∈ N. For the second term, we also use Jensen’s inequality, the
fundamental theorem of calculus and (6.68) to get

N−2∑
k=0

ˆ
Ik+1

∥∥∥Bk+1(t)− B̃k+1(t)
∥∥∥2
[W 1,2]′

dt

≤ 1

h

N−2∑
k=0

ˆ
Ik+1

ˆ
Ik+1

∥∥∥B̃k+1(s)− B̃k+1(t)
∥∥∥2
[W 1,2]′

ds dt

≤ Ch2
N−2∑
k=0

ˆ
Ik+1

∥∥∥∂tB̃k+1(t)
∥∥∥2
[W 1,2]′

dt

≤ Ch2,

where C is independent of N ∈ N. Then, one concludes that
ˆ T−h

0

∥∥∥B̃N (t+ h)− B̃N (t)
∥∥∥2
[W 1,2]′

dt→ 0,

as N →∞ (h→ 0, respectively). By virtue of Lemma 6.40, one obtains the strong convergences

B̃N → B, strongly in L2(0, T ;Lp(Ω;Rd×d
sym)), 2 ≤ p ≤ 6,

B̃N → B, a.e. in QT .

Proceeding in a similar fashion as in Section 6.3.7 together with the Poincaré–Wirtinger inequality
gives birth to

B is positive definite a.e. in QT ,

tr ln B̃N → tr lnB, weakly in L2(0, T ;W 1,2(Ω)),
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It follows from the continuity of tr ln(·) that

tr ln B̃N → tr lnB, a.e. in QT . (6.69)

Arguing as in Section 6.3.8 yields

B ∈ Cw([0, T ];L
2(Ω;Rd×d

sym)).

Now let φ̃N be the piecewise linear interpolant of φN (kh), k ∈ {0, ..., N}, i.e., φ̃N = 1
hχ[0,h]∗t

φN , where the convolution only happens regarding time variable t. Then it follows that ∂tφ̃N =
∂−t,hφ

N and, for a.e. t ∈ (0, T ),

‖φ̃N − φN‖[W 1,2(Ω)]′ ≤ Ch‖∂tφ̃N‖[W 1,2(Ω)]′ . (6.70)

In view of the weak formulation (6.64b) and boundedness of (uN , φN , qN ), we see that

∂tφ̃
N is bounded in L2(0, T ; [W 1,2(Ω)]′),

which, together with Aubin–Lions thereby implies the strong convergence

φ̃N → φ̃, strongly in L2(0, T ;W 1,p(Ω)), 2 ≤ p ≤ 6,

φ̃N → φ̃, strongly in C([0, T ];Lp(Ω)), 2 ≤ p ≤ 6,

φ̃N → φ̃, a.e. in QT ,

for some φ̃ ∈ L∞(0, T ;W 1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)), thanks to the boundedness of φ̃N , which
can be derived from that of φN . Note that (6.70) indicates that

φ̃N − φN → 0 in L2(0, T ; [W 1,2(Ω)]′), as N →∞,

which gives φ̃ = φ. Then we have ∂tφ ∈ L2(0, T ; [W 1,2(Ω)]′) and hence

φ ∈ Cw([0, T ];W
1,2(Ω))

due to Lemma 6.9. Next, we verify the identity φ(0) = φ0, which can be recorded from

φ̃N (0)→ φ̃(0) = φ(0), strongly in Lp(Ω),

and the fact that φ̃N (0) = φN0 with φN0 → φ0 in W 1,2(Ω). In addition, it holds
ˆ
Ω

φN (·, τ − h)ξτ dx+

ˆ
Ω

φN0 ξ0 dx→
ˆ
Ω

φ(·, τ)ξ(·, τ) dx+

ˆ
Ω

φ0ξ(·, 0) dx,

as N → ∞ (resp. h → 0) for a.e. τ ∈ (0, T ), concerning the weak convergence of φN (τ), and
strong convergence of ξτ → ξ(τ) in L2(Ω) for fixed τ . Moreover, the continuity of m(·), ν(·), µ(·)
and the almost everywhere convergence of φN yield

m(φN )→ m(φ), a.e. in QT ,

ν(φN )→ ν(φ), a.e. in QT ,

µ(φN )→ µ(φ), a.e. in QT ,

µη(φ
N )− µη(φ

N
h )

RηφN −RηφNh
→ µ′

η(φ), a.e. in QT .
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Then one can pass to the limit of (6.64b) to (6.42) and (6.64d) to (6.44) as N → ∞, with the
help of the mollifier Rη and the convergence results from above.

By virtue of the weak convergences of qN , φN , ∂tφN , B̃N and tr ln B̃N , together with Lemma
6.11, one knows the right-hand side of (6.64c) denoted by QN converges weakly in L2(0, T ;L2(Ω))
to

Q := q + ωφ− η∂tφ−
1

2
Rη

[
µ′
η(φ) tr(B− lnB− I)

]
,

by applying the convergences result above term by term. Here, the weak convergence of the last
term on the right-hand side is valid due to Lemmata 6.11 and 6.37. On the other hand,(

∂Ẽ(φN ), φN
)
=
(
QN , φN

)
→ (Q,φ) , as N →∞

due to the strong convergence of φN in L2(0, T ;L2(Ω)). Therefore, by e.g. [Cia13, Theorem
9.13-2] for monotone operators one knows ∂Ẽ(φ) = Q, which is exactly (6.43).

Next, we are going to get compactness of uN in L2(0, T ;L2(Ω;Rd)), which implies a pointwise
almost everywhere convergence. This is in general not a problem in the case of the matched
density (constant ρ), for which one can use the same strategy as of BN to achieve the strong
convergence by the Aubin–Lions lemma. However, it is not possible to apply the same argument
directly for uN with unmatched densities, here, instead, we make use of the Helmholtz projection
Pσ onto L2

σ(Ω) as in [ADG13a] (also called Leray projection). With the uniform boundedness of
uN , φN , qN and BN , it follows that

ρNh uN ⊗ uN is bounded in L2(0, T ;L2(Ω;Rd×d)),

∇uN + (∇uN )⊤ is bounded in L2(0, T ;L2(Ω;Rd×d)),

uN ⊗∇qN is bounded in L
8
7 (0, T ;L

4
3 (Ω;Rd×d)),

qN∇φNh is bounded in L2(0, T ;L
3
2 (Ω;Rd)),

Rη[µη(φ
N
h )(BN − I)] is bounded in L2(0, T ;L6(Ω;Rd×d

sym)),

Rη

[µη(φ
N
h )

2
∇GN

]
is bounded in L2(0, T ;L2(Ω;Rd)).

Note that the first four bounds follow directly from [ADG13a, Page 474], while the remaining
bounds are valid due to the boundedness of B̃N , the uniform upper bound of µ and Lemma 6.11,
Remark 6.36. Then going back to the equation (6.64a), one may infer that

∂t
(
Pσ(ρ̃uN

)
)

is bounded in L
8
7 (0, T ;W−1,4(Ω;Rd)),

where ρ̃uN is the piecewise linear interpolant of ρNuN (kh) for k ∈ {0, ..., N}, which fulfulls
∂t
(
ρ̃uN)

= ∂−t,h(ρ
NuN ). Moreover,

Pσ(ρ̃uN
) is bounded in L2(0, T ;W 1,2(Ω;Rd)).

In light of the Aubin–Lions lemma, one arrives at the strong convergence

Pσ(ρ̃uN
)→ Pσ(ρ(φ)u), strongly in L2(0, T ;L2(Ω;Rd)),

for some function Pσ(ρ(φ)u) ∈ L∞(0, T ;L2(Ω;Rd)). Indeed,

ρ̃uN → ρ(φ)u, weakly in L2(0, T ;L2(Ω;Rd)). (6.71)
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Then by virtue of the weak continuity of the Leray projection Pσ : L2(0, T ;L2(Ω;Rd)) →
L2(0, T ;L2

σ(Ω)), we obtain
Pσ(ρ(φ)u) = Pσ(ρ(φ)u).

Now in view of the strong convergence of Pσ(ρ
NuN ) and the weak convergence of uN both in

L2(0, T ;L2(Ω;Rd)), one ends up with
ˆ T

0

ˆ
Ω

ρN
∣∣uN

∣∣2 dxdt =
ˆ T

0

ˆ
Ω

Pσ(ρ
NuN ) · uN dxdt

→
ˆ T

0

ˆ
Ω

Pσ(ρ(φ)u) · u dxdt =
ˆ T

0

ˆ
Ω

ρ(φ) |u|2 dxdt,

which implies √
ρNuN →

√
ρ(φ)u, strongly in L2(0, T ;L2(Ω;Rd)), (6.72)

with the weak convergence (6.71). As ρ(r) is affine linear regarding r, one gets

ρ(φN )→ ρ(φ), a.e. in QT and ρ(φN ) ≥ C > 0,

which together with the strong convergence (6.72) of
√
ρNuN gives rise to

uN =
1√
ρN

√
ρNuN → 1√

ρ(φ)

√
ρ(φ)u = u, strongly in L2(0, T ;L2(Ω;Rd)),

and hence

uN → u, a.e. in QT .

In addition, it holdsˆ
Ω

ρ(φN (·, τ − h))uN (·, τ − h) · wτ dx→
ˆ
Ω

ρ(φ(·, τ))u(·, τ) · w(·, τ) dx,
ˆ
Ω

ρ(φN0 )u0 · w0 dx→
ˆ
Ω

ρ(φ0)u0 · w(·, 0) dx,

as N → ∞ (resp. h → 0) for a.e. τ ∈ (0, T ), concerning the convergences of φN (τ) and uN (τ),
and the strong convergence of wτ → w(τ) in L2

σ(Ω) for fixed τ . Subsequently, one can pass to
the limit in (6.64a) to (6.41) term by term as N → ∞ with the strong convergences of uN , φN ,
except for the terms with respect to B̃N . Let us recall the definition of BN and GN

BN
(t) :=

1

h

ˆ
Ik+1

B̃k+1(s) ds = 1

h

ˆ
Ik+1

B̃N (s) ds,

GN (t) :=
1

h

ˆ
Ik+1

tr(B̃k+1 − ln B̃k+1 − I)(s) ds = 1

h

ˆ
Ik+1

tr(B̃N − ln B̃N − I)(s) ds

for t ∈ [tk, tk+1), where k ∈ {0, ..., N −1}. In fact, by Lemma 6.35, Remark 6.36 and the uniform
bounds of B̃N and tr ln B̃N , we know that BN and ∇GN are uniformly bounded in L2(QT ). With
the help of Lemma 6.37, one concludesˆ τ

0

ˆ
Ω

[
µη(φ

N
h )(BN − I)

]
: Rη∇w dxdt→

ˆ τ

0

ˆ
Ω

[
µη(φ)(B− I)

]
: Rη∇w dxdt,

ˆ τ

0

ˆ
Ω

[µη(φ
N
h )

2
∇GN

]
·Rηw dxdt→

ˆ τ

0

ˆ
Ω

[µη(φ)

2
∇ tr(B− lnB− I)

]
·Rηw dxdt.
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Using integration by parts over Ω and the compactness of φN , we get the convergence of´ t
0

´
Ω
qN∇φN · w dxdt. Then, it remains to verify that u ∈ Cw([0, T ];L

2
σ(Ω)) and u(t) → u0

as t→ 0, which are clear by proceeding the same argument as in [ADG13a, Section 5.2].
In the final step, one recovers the energy dissipation inequality (6.45). To this end, multiply-

ing the discrete energy inequality (6.65) by a function ς ∈ W 1,1(0, T ) with ς ≥ 0 and ς(T ) = 0,
and integrating the resulting inequality over (0, T ) and by parts with respect to the time variable,
one obtains

Etot(u0, φ
N
0 ,B0)ς(0) +

ˆ T

0

EN (τ)ς ′(τ) dτ ≥
ˆ T

0

DN (τ)ς(τ) dτ, (6.73)

where Etot, EN and DN are defined in the end of last subsection. Thanks to the compactness of
uN , φN and B̃N , we deduce that up to a subsequence (not relabeled),

uN (t)→ u(t), in L2
σ(Ω), (6.74)

φN (t)→ φ(t), in C(Ω), (6.75)
B̃N (t)→ B(t), in L2(Ω;Rd×d

sym), (6.76)

for a.e. t ∈ (0, T ), as N →∞ (resp. h→ 0). On noting the uniform energy estimate (6.66) and
tr ln B̃N → tr lnB a.e. in QT , it follows thatˆ

Ω

tr ln B̃N dx→
ˆ
Ω

tr lnB dx, weakly- ∗ in L∞(0, T ).

Then by the weak-∗ compactness Lemma 6.38,
ˆ T

0

(
1

h

ˆ t

t−h

( ˆ
Ω

tr ln B̃N (τ) dx
)

dτ
)
ς ′(t) dt→

ˆ T

0

ˆ
Ω

tr lnB(t) dx ς ′(t) dt. (6.77)

for any ς ∈W 1,1(0, T ) with ς ≥ 0. Therefore with (6.74)–(6.77), we have
ˆ T

0

EN (t)ς ′(t) dt→
ˆ T

0

Eη(t)ς ′(t) dt,

with Eη(t) defined in (6.46). In view of the lower semicontinuity of norms, the positivity of m(·),
ν(·) and µ(·), and the almost everywhere convergence of φN to φ, one has

lim inf
N→∞

ˆ T

0

DN (τ)ς(τ) dτ ≥
ˆ T

0

Dη(τ)ς(τ) dτ,

for any ς ∈W 1,1(0, T ) with ς ≥ 0, where, for a.e. t ∈ (0, T ),

Dη(t) :=

ˆ
Ω

(ν(φ)
2

∣∣∇u +∇u⊤∣∣2 +m(φ) |∇q|2 + η |∂tφ|2
)

dx

+

ˆ
Ω

µη(φ)

2
tr(B+ B−1 − 2I) dx+

κ

d

ˆ
Ω

|∇ tr lnB|2 dx.

Passing to the limit in (6.73), as N →∞, yields

E(0)ς(0) +
ˆ T

0

Eη(τ)ς ′(τ) dτ ≥
ˆ T

0

Dη(τ)ς(τ) dτ,

for any ς ∈ W 1,1(0, T ) with ς ≥ 0 and ς(T ) = 0. On account of Lemma 6.8, we get the desired
energy dissipation inequality (6.45).

This completes the proof.
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6.5. Existence of Weak Solutions (η → 0)

In this section, we are devoted to proving Theorem 6.3, by virtue of Theorem 6.25 for the
regularized system (6.40), compactness discussions and limit passages. Due to technical reasons,
the final proof of Theorem 6.3 is restricted to the two dimentional case, as discussed in Sections
6.1.1, 6.1.4 and Remark 6.26.

6.5.1. Stronger uniform estimate. With the a priori estimate (6.51) in hand, we are not
able to prove the existence of weak solutions by passing to the limit as η → 0. This is due to
the very weak regularity of B, namely ‖B(t)‖L1 , which is of no help to obtain the compactness.
Thus, in this section we derive a stronger estimate for the Cauchy–Green tensor, which was also
carried out in, e.g., [BB11, BLS17, GKT22]. Note that the restriction of the problem to two
dimensions arises precisely from the stronger estimate, even in presence of the stress diffusion
term κ

µ(ϕ)∆B. Multiplying (6.40c) with B, using the chain rule, integrating over Ω and by parts,
we have for a.e. t ∈ (0, T ),

1

2

d
dt ‖B‖

2
L2 + ‖B‖2L2 +

ˆ
Ω

Rηu · ∇
(1
2
|B|2

)
dx+

ˆ
Ω

κ

µη(φ)
|∇B|2 dx

=

ˆ
Ω

trB dx+ κ

ˆ
Ω

µ′
η(φ)

µ2
η(φ)

(∇Rηφ · ∇)B : B dx+ 2

ˆ
Ω

(BB) : ∇Rηu dx.

Noting the upper-lower bounds of µ(·), µ′(·), integrating by parts over Ω in the convective term,
employing Hölder’s inequality, the 2D Gagliardo–Nirenberg inequality and Lemma 6.11, we ob-
tain

1

2

d
dt ‖B‖

2
L2 + ‖B‖2L2 +

κ

µ
‖∇B‖2L2

≤ 1

2
‖B‖2L2 + C +

κ

2µ
‖∇B‖2L2 + C

(
‖∇φ‖4L4 + ‖∇u‖2L2

)
‖B‖2L2 .

Here, we used
ˆ
Ω

(∇Rηφ · ∇)B : B dx ≤ ‖∇B‖L2 ‖B‖L4 ‖∇Rηφ‖L4

≤ ‖∇B‖
3
2

L2 ‖B‖
1
2

L2 ‖∇Rηφ‖L4 ≤
κ

4µ
‖∇B‖2L2 + C ‖B‖2L2 ‖∇φ‖4L4 ,

ˆ
Ω

(BB) : ∇Rηu dx ≤ ‖B‖2L4 ‖∇Rηu‖L2

≤ ‖∇B‖L2 ‖B‖L2 ‖∇Rηu‖L2 ≤
κ

4µ
‖∇B‖2L2 + C ‖B‖2L2 ‖∇u‖2L2 .

Then integrating over (0, t) and applying Gronwall’s lemma, one obtains

‖B(t)‖2L2 +

ˆ t

0

‖B(τ)‖2L2 dτ +
ˆ t

0

‖∇B(τ)‖2L2 dτ ≤ C(‖B0‖2L2 + 1) exp(h(t)), (6.78)

for a.e. t ∈ (0, T ), where C > 0 does not depend on η > 0 and h(t) := ‖∇φ‖4L4(0,t;L4) +

‖∇u‖2L2(0,t;L2) <∞ due to (6.51) and the embedding (6.13).
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6.5.2. Proof of Theorem 6.3. Let us denote by (uη,Bη, φη, qη) the corresponding regularized
solution of (6.40), where η > 0. Note that the a priori estimate done in Section 6.4.1 and 6.5.1
are uniform in terms of η. We conclude from (6.51) and (6.78) that

Eη(τ) + ‖Bη(τ)‖2L2 +

ˆ τ

0

‖∇uη(t)‖2L2 dt+
ˆ τ

0

‖∇qη(t)‖2L2 dt+
ˆ τ

0

‖Bη(t)‖2L2 dt

+

ˆ τ

0

‖∇Bη(t)‖2L2 dt+
ˆ τ

0

∥∥∥tr(Bη + (Bη)
−1 − 2I)(t)

∥∥∥
L1

dt+
ˆ τ

0

‖∇ tr lnBη(t)‖2L2 dt

≤ C(Eη(0), ‖B0‖2L2) ≤ C(E(0), ‖B0‖2L2), (6.79)

for any τ ∈ (0, T ), where C > 0 is uniform in terms of η, which together with the fact that
E(0), ‖B0‖2L2 are bounded, implies the following uniform bounds (in η)

uη is bounded in L2(0, T ;W 1,2
0 (Ω;R2)) and L∞(0, T ;L2

σ(Ω)),

∇qη is bounded in L2(0, T ;L2(Ω;R2)),

φη is bounded in L∞(0, T ;W 1,2(Ω)),

Bη is bounded in L2(0, T ;W 1,2(Ω;R2×2
sym)) and L∞(0, T ;L2(Ω;R2×2

sym+)),

and ˆ T

0

∣∣∣∣ˆ
Ω

qη dx
∣∣∣∣ dt ≤M(T ),

for a certain monotone function M : R+ → R+. Moreover, testing (6.43) with ∆φη together
with W (r) =W0(r)− ω

2 r
2 as in Section 6.4.2, integration by parts and Young’s inequality yields

ˆ T

0

ˆ
Ω

(
|∆φη|2 +W ′′

0 (φ
η) |∇φη|2

)
dxdt

=

ˆ T

0

ˆ
Ω

(
∇qη · ∇φη + ω |∇φη|2 − µ′

2
∇ tr(Bη − lnBη − I) · ∇φη

)
dxdt

≤
ˆ T

0

‖∇qη‖2L2 dt+ C(ω, µ′) +

ˆ T

0

(
‖∇Bη‖2L2 + ‖∇ tr lnBη‖2L2

)
dt ≤ C,

where C > 0 is uniform in η due to W ′′
0 > 0 and (6.79). Therefore, one obtains further

φη is bounded in L2(0, T ;W 2,2(Ω)).

Next, we gain more bounds for the purpose of compactness. By the Sobolev embedding in
two dimensions and the interpolation embedding (6.13) we know

uη is bounded in L4(0, T ;L4(Ω;R2)),

Bη is bounded in L4(0, T ;L4(Ω;R2×2
sym)),

which together with bounds above leads to

Rηuη ⊗ Bη is bounded in L2(0, T ;L2(Ω;R2×2×2)),

∇RηuηBη is bounded in L
4
3 (0, T ;L

4
3 (Ω;R2×2)).

By making use of the weak formulation (6.44), one ends up with

∂tBη is bounded in L
4
3 (0, T ; [W 1,2(Ω;R2×2

sym)]′),
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Because of (6.42) and the boundedness of uη, ∇qη, we have

∂tφ
η is bounded in L2(0, T ; [W 1,2(Ω)]′),

Then up to a subsequence (ηk → 0 as k →∞) still denoted by the superscript η, one obtains

uη → u, weakly in L2(0, T ;W 1,2
0 (Ω;R2)),

uη → u, weakly-∗ in L∞(0, T ;L2
σ(Ω))

∼= [L1(0, T ;L2
σ(Ω))]

′,

φη → φ, weakly in L2(0, T ;W 2,2(Ω)),

φη → φ, weakly-∗ in L∞(0, T ;W 1,2(Ω)) ∼= [L1(0, T ;W 1,2(Ω))]′,

∂tφ
η → ∂tφ, weakly in L2(0, T ; [W 1,2(Ω)]′),

qη → q, weakly in L2(0, T ;W 1,2(Ω)),

∇qη → ∇q, weakly in L2(0, T ;L2(Ω;R2)),

Bη → B, weakly in L2(0, T ;W 1,2(Ω;R2×2
sym)),

Bη → B, weakly-∗ in L∞(0, T ;L2(Ω;R2×2
sym)) ∼= [L1(0, T ;L2(Ω;R2×2

sym))]′,

∂tBη → ∂tB, weakly in L 4
3 (0, T ; [W 1,2(Ω;R2×2

sym)]′).

In view of the Aubin–Lions lemma, one concludes the strong convergence (up to a non-relabeled
subsequence)

φη → φ, strongly in L2(0, T ;W 1,p(Ω)), 1 ≤ p <∞,
φη → φ, a.e. in QT ,

Bη → B, strongly in L2(0, T ;Lp(Ω;R2×2
sym)), 2 ≤ p <∞,

Bη → B, a.e. in QT .

Arguing in a similar fashion as in Section 6.3.7 leads us to

B is positive definite a.e. in QT ,

tr lnBη → tr lnB, weakly in L2(0, T ;W 1,2(Ω)),

Then it follows from the continuity of W ′(·) and tr ln(·) that

W ′(φη)→W ′(φ), a.e. in QT ,

tr lnBη → tr lnB, a.e. in QT .

Again by the uniform boundedness of tr lnBη in L2(QT ), one concludes the strong convergence
of tr lnBη → tr lnB in L2−ϵ(QT ) for 0 < ε < 1 by Vitali’s convergence theorem. Then in view of
Lemma 6.11 and strong convergence of φη, we have

Rη

[µ′
η(φ)

2
tr(B− lnB− I)

]
→ µ′(φ)

2
tr(B− lnB− I), in L1(QT ), (6.80)

Consequently, up to a non-relabeled subsequence, we end up with

qη → q =W ′(φ)−∆φ+
µ′(φ)

2
tr(B− lnB− I), a.e. in QT ,

as η → 0.
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Now, we are in the position to get the compactness of uη, by addressing the problem caused
by the variable density ρ(φη) with the Helmholtz projection Pσ. With the boundedness of uη,
φη, qη and Bη in two dimensions, one infers

ρ(φη)uη ⊗ uη is bounded in L2(0, T ;L2(Ω;R2×2)),

∇uη + (∇uη)⊤ is bounded in L2(0, T ;L2(Ω;R2×2)),

uη ⊗∇qη is bounded in L
4
3 (0, T ;L

4
3 (Ω;R2×2)),

qη∇φη is bounded in L2(0, T ;L
2p

2+p (Ω;R2)), 2 < p <∞,
Rη[µη(φ

η)(Bη − I)] is bounded in L2(0, T ;Lp(Ω;R2×2
sym)), 2 < p <∞,

Rη

[µη(φ
η)

2
∇ tr(Bη − lnBη − I)

]
is bounded in L2(0, T ;L2(Ω;R2)),

which means the all terms above are bounded in L 4
3 (0, T ;L

4
3 (Ω)) (without specifying the dimen-

sions). Then in (6.41), the test function can be restricted to

w,∇w ∈ [L
4
3 (0, T ;L

4
3 (Ω))]′ = L4(0, T ;L4(Ω)).

Note that w lies in the solenoidal space. Hence, with the help of the Leray projection Pσ, we
conclude that

∂t
(
Pσ(ρ(φ

η)uη)
)

is bounded in [L4(0, T ;W 1,4
0,σ (Ω;R

2))]′ = L
4
3 (0, T ;W−1,4

σ (Ω;R2)),

Pσ(ρ(φ
η)uη) is bounded in L2(0, T ;W 1,2(Ω;R2)),

which together with the Aubin–Lions lemma implies the strong convergence

Pσ(ρ(φ
η)uη)→ Pσ(ρ(φ)u), strongly in L2(0, T ;L2

σ(Ω;R2)), (6.81)

for some function Pσ(ρ(φ)u) ∈ L∞(0, T ;L2
σ(Ω)). Analogously to Section 6.4.7, we identify

Pσ(ρ(φ)u) = Pσ(ρ(φ)u). Indeed, as ρ(φη)uη → ρ(φ)u weakly in L2(0, T ;L2(Ω;R2)), and by
virtue of the weak continuity of the Leray projection Pσ : L2(0, T ;L2(Ω;R2))→ L2(0, T ;L2

σ(Ω)),
we obtain

Pσ(ρ(φ)u) = Pσ(ρ(φ)u).

Once again, we prove the strong convergence of uη to u through the convergence of the kinetic
energy. Namely,

ˆ T

0

ˆ
Ω

ρ(φη) |uη|2 dxdt =
ˆ T

0

ˆ
Ω

Pσ(ρ(φ
η)uη) · uη dxdt

→
ˆ T

0

ˆ
Ω

Pσ(ρ(φ)u) · u dxdt =
ˆ T

0

ˆ
Ω

ρ(φ) |u|2 dxdt,

from which we have√
ρ(φη)uη →

√
ρ(φ)u, strongly in L2(0, T ;L2(Ω;R2)).

Because ρ(r) is affine regarding r, one gets

ρ(φη)→ ρ(φ), a.e. in QT and |ρ(φη)| ≥ C > 0.
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Then it holds that

uη =
1√
ρ(φη)

√
ρ(φη)uη → 1√

ρ(φ)

√
ρ(φ)u = u, strongly in L2(0, T ;L2(Ω;R2)),

and hence

uη → u, a.e. in QT .

With all the compactness above, one can pass to the limit in (6.41) to (6.16) as η → 0,
combining with

m(φη)→ m(φ), a.e. in QT ,

ν(φη)→ ν(φ), a.e. in QT ,

µ(φη)→ µ(φ), a.e. in QT ,

which can be deduced by means of the continuity of m(·), ν(·), µ(·) and the almost everywhere
convergence of φη. Similarly, we use integration by parts and the compactness of φη to handle
the term

´ t
0

´
Ω
qη∇φη · w dxdt.

In the final step of the proof, we derive the energy dissipation inequality (6.19). To this end,
multiplying the differential inequality (6.50) by a function ς ∈ W 1,1(0, T ) with ς ≥ 0, ς(T ) = 0,
and integrating the resulting inequality over (0, T ) and by parts with respect to the time variable,
one obtains

Eη(0)ς(0) +
ˆ T

0

Eη(τ)ς(τ)′ dτ ≥
ˆ T

0

Dη(τ)ς(τ) dτ, (6.82)

where Eη(t) is given in (6.46) and, for a.e. t ∈ (0, T ),

Dη(t) :=

ˆ
Ω

(ν(φη)
2

∣∣∇uη + (∇uη)⊤
∣∣2 +m(φη) |∇qη|2

)
dx

+

ˆ
Ω

µ(φη)

2
tr(Bη + (Bη)

−1 − 2I) dx+
κ

2

ˆ
Ω

|∇ tr lnBη|2 dx.

Thanks to the compactness of uη, φη, we deduce that up to a subsequence (not relabeled),

uη(t)→ u(t), in L2
σ(Ω),

φη(t)→ φ(t), in C(Ω),
Bη(t)→ B(t), in L2(Ω;R2×2

sym),ˆ
Ω

tr lnBη(t) dx dτ →
ˆ
Ω

tr lnB(t) dx,

for a.e. t ∈ (0, T ), where the last statement holds true by Vitali’s convergence theorem in view
of the pointwise convergence of tr lnBη and the uniform boundedness in L2(QT ). Therefore, it
comes up with

Eη(t)→ E(t), a.e. in (0, T ),

where E(t) is defined in (6.2). In view of the lower semicontinuity of norms and the almost
everywhere convergence of φη to φ, one has

lim inf
η→0

ˆ T

0

Dη(τ)ς(τ) dτ ≥
ˆ T

0

D(τ)ς(τ) dτ,
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for any ς ∈W 1,1(0, T ) with ς ≥ 0, where

D(t) :=
ˆ
Ω

(ν(φ)
2

∣∣∇u +∇u⊤∣∣2 +m(φ) |∇q|2
)

dx

+

ˆ
Ω

µ(φ)

2
tr(B+ B−1 − 2I) dx+

κ

2

ˆ
Ω

|∇ tr lnB|2 dx.

Note that here we employed the positivity of m(·), ν(·) and µ(·), and

lim inf
η→0

ˆ T

0

η ‖∂tφη(τ)‖2L2 ς(τ)dτ ≥ 0.

Passing to the limit in (6.82) as η → 0 yields

E(0)ς(0) +
ˆ T

0

E(τ)ς ′(τ) dτ ≥
ˆ T

0

D(τ)ς(τ) dτ,

for any ς ∈ W 1,1(0, T ) with ς ≥ 0 and ς(T ) = 0. By virtue of Lemma 6.8, we get the desired
energy dissipation inequality (6.19). The additional stronger estimate of B can be obtained
directly from (6.78) together with (6.19).

This finishes the proof.
Remark 6.41. The case of a general free energy

ˆ
Ω

(a(φ)
2
|∇φ|2 +W (φ)

)
dx

with some positive coefficient a(φ) can be achieved by our method with slight modifications.
Note that the two-phase incompressible flow with different densities and general free energy was
already addressed in [ADG13a]. In our framework, one only needs to adopt a more complicated
subgradient with respect to a reparametrized potential as in [ADG13a] during the proof of the
existence of solutions to the regularized problem in Section 6.4.
Remark 6.42. Our method is capable to deal with other coupled systems, e.g., polymer fluids
with a Fokker–Planck type equation or Magnetohydrodynamics fluids. For these, by modifying
a little bit of the regularization in the full system and later on by the same argument, one is able
to obtain the existence of weak solutions in a nontrival but easier way.
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