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We investigate the convergence of solutions of a recently proposed diffuse
interface/phase field model for cell blebbing by means of matched asymptotic
expansions. It is a biological phenomenon that increasingly attracts attention by
both experimental and theoretical communities. Key to understanding the pro-
cess of cell blebbing mechanically are proteins that link the cell cortex and the
cell membrane. Another important model component is the bending energy of
the cell membrane and cell cortex which accounts for differential equations up
to sixth order. Both aspects pose interesting mathematical challenges that will
be addressed in this work like showing non-singularity formation for the pres-
sure at boundary layers, deriving equations for asymptotic series coefficients of
uncommonly high order, and dealing with a highly coupled system of equations.

1 INTRODUCTION

The phenomenon of cell blebbing is connectedwith various biological processes such as locomotion of primordial germ or
cancer cells, the programmed cell death (apoptosis) or cell division. Its importance has been recognised and emphasized
in the last decade [1–3], and attracts more and more interest. Cell blebbing results from chemical reactions that cause the
selection of sites on the cell cortex, which lies underneath the cell membrane, where it contracts. This contraction causes
the fluid inside the cell (the cytosol) to be pushed towards the cell membrane, which is then stretched out and moved
away from the cell cortex. The cell membrane is pinned to the cell cortex via linker proteins. Only if a sufficient amount
of protein bonds can be broken, the membrane can freely develop a protrusion that is called a bleb.
Besides experimental studies [4], there are also many endeavours to understand cell blebbing from a theoretical per-

spective, compare Refs. [5–12]. While all thesemodelling approaches concentrate on selected aspects of the whole process,
a full 3Dmodel that brings together the linker proteins, their surface diffusion and the fluid–structure interaction has only
recently been proposed inWerner et al. [13]: the authors derive a phase fieldmodel in which cell cortex and cell membrane
are defined by two coupled phase fields, with phase field parameter 𝜀, that interact with the cytosol. The coupling of the
phase fields reflects the linker proteins connecting both surfaces and brings in new interesting mathematical challenges
such as well-posedness of equations on evolving ‘diffusemanifolds’ (the linker protein densities on the cell cortex undergo
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changes due to surface diffusion and bond breaking), developing numerical schemes for solving non-linear, sixth-order
phase field equations and answering the question what model is reached in the limit 𝜀 → 0.
This article is aimed at investigating the last problem and showing that the phase field model of Werner et al. [13]

formally approximates a sharp interface model that has also been derived by physical first principles [14]. For that, we will
use the method of formal asymptotic analysis. The techniques we employ are similar to those applied for the asymptotic
analysis of related phase field models like Caginalp and Fife [15], the Stokes–Allen–Cahn system in Abels and Liu [16]
or the Willmore 𝐿2-flow [17]. Another related asymptotic analysis is that of Wang [18] for minimisers of the Canham–
Helfrich energy.
We start by briefly recalling the phase field model from Werner et al. [13] and show the sharp interface system that

is expected in the limit. After we have introduced the notation and gained some understanding of the system of partial
differential equations, we introduce foundations of the technique we use to pass to the limit 𝜀 → 0. Here, the parameter 𝜀
is proportional to the interfacial thickness of the diffuse interfacial layer in the phase field model. The major part of this
paper follows, which is to plug in series expansions of the solutions of the phase field model in powers of 𝜀. Via separation
of scales, we are able to derive equations for the leading order summands of the series. Using these findings, we can
finally pass to the limit in the equations of the phase field model and find the sharp interface system of equations that we
initially reviewed.

1.1 Preliminaries

We denote the 𝑛-dimensional Lebesgue measure by 𝑛 and the Hausdorff measure of Hausdorff dimension 𝑚 by 𝑚.
Recall that for a two-dimensional submanifold Γ ⊂ ℝ3 with a smooth global chart 𝜑 ∶ Γ → ℝ2, and for a summable
function 𝑓 ∶ Γ → ℝ, it holds by definition

∫Γ 𝑓 d
2 = ∫𝜑(Γ) 𝑓 ◦ 𝜑

−1𝐽
[
𝜑−1

]
d2,

where 𝐽[𝑢] =
√
det (∇𝑢𝑇∇𝑢) is the Jacobian of 𝑢 = 𝜑−1.

Let Γ ⊆ ℝ3 be a sufficiently smooth submanifold. We denote by 𝑁𝛿(Γ) =
{
𝑥 ∈ ℝ3 ∣ distΓ(𝑥) < 𝛿

}
the tubular neigh-

bourhood around Γ, where distΓ(𝑥) is the distance of 𝑥 to Γ defined via the orthogonal projection; by 𝑑Γ(𝑥), we denote
the signed distance. If we partition 𝑁𝛿(Γ) =

⋃
𝑟∈(−𝛿,𝛿) Γ𝑟, where Γ𝑟 = {𝑥 ∈ 𝑁𝛿(Γ) ∣ 𝑑Γ(𝑥) = 𝑟}, we may define extensions

of quantities defined on Γ into 𝑁𝛿(Γ) (cf. [19, Sec. 14.6]). The extended principal curvatures are defined as

�̄�𝑖 ∶ 𝑁𝛿(Γ) → ℝ,
𝑥 ↦ 𝜅Γ𝑑Γ(𝑥),𝑖(𝑥),

where 𝜅𝑆,𝑖(𝑥) is the 𝑖th principal curvature of the surface 𝑆. Accordingly, the mean curvature is

�̄� ∶ 𝑁𝛿(Γ) → ℝ,
𝑥 ↦ 𝐻Γ𝑑Γ(𝑥) (𝑥),

Another extension method we will encounter is the normal extension of a quantity 𝑓 ∶ Γ → 𝑉, for a set 𝑉, meaning that
the quantity is extended constantly in normal direction. We denote those extensions by 𝑓𝜈.
The surface gradient, ∇Γ𝑓|𝑝, of a function 𝑓 ∶ Γ → ℝ in a point 𝑝 ∈ Γ is the vector

∇Γ𝑓|𝑝 = ℙΓ(𝑝)∇𝑓𝜈||𝑝,
where ℙΓ(𝑝) = 𝐼 − 𝜈Γ(𝑝) ⊗ 𝜈Γ(𝑝) is the tangential projection onto Γ. Other surface differential operators such as the
divergence or the Jacobi matrix can be derived analogously.
For a differentiable functional 𝑆 ∶ 𝑋 → [0,∞) on a Banach space 𝑋, the element ∇𝑌𝑆(𝑢), 𝑢 ∈ 𝑋, of a subspace 𝑌 ⊆ 𝑋

that fulfills (
∇𝑌𝑆(𝑢), 𝑣

)
𝑌
= 𝑆′(𝑢)𝑣 ∀𝑣 ∈ 𝑌,
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F IGURE 1 Illustration of the relationship of the two diffuse layers. The dotted lines indicate the centres of the transition layers of 𝜙 and
𝜓. In the white region, both 𝜙𝜀 and 𝜓𝜀 take values close to 1. In the light orange region, 𝜓𝜀 takes values close to 1, but 𝜙𝜀 has values close to −1.
In the dark orange region, both 𝜙𝜀 and 𝜓𝜀 have values close to −1.

where 𝑆′(𝑢) is the Gateaux derivative of 𝑆 in 𝑢, is called the 𝑌-gradient of 𝑆. Consider, for example, the functional
𝑆(𝑢) = ∫

𝐵1(0)
|∇𝑢(𝑥)|2 d3(𝑥); its 𝐿2-gradient is ∇𝐿2𝑆(𝑢) = −Δ𝑢, whereas the 𝐻10 -gradient takes the form ∇𝐻

1
0𝑆(𝑢) = 𝑢,

and the𝐻−1-gradient is ∇𝐻−1𝑆(𝑢) = Δ2𝑢.

2 MODELLING

Besides the numerical advantage of making topological changes such as pinch-offs (like when vesicles form out of the
membrane) easy to handle, a phase field approach for modelling cell blebbing is also apt for bio-physical reasons: cell
membranes are bilayers of lipid molecules which can be subject to undulations, and so the membrane is not strictly
demarcated to the surrounding fluid. Depending on the scale, we look at these membranes, the diameter of the lipid
molecules involved, and the spacing between them, it may be desirable to model uncertainty in the lipid molecules’ posi-
tion and thus take them to be diffuse layers of some thickness 𝜀. Another peculiarity when considering cell blebbing is
experimental evidence [4] that at sites where blebbing occurs, the cell membrane is folded multiple times providing for
enough material to be unfolded, and is thus thicker than a typical biological membrane.
Let us assume thatwe observe the process of cell blebbing for a certain time𝑇 ∈ (0,∞) in a domainΩ ⊆ ℝ3.We consider

two evolving diffuse interfaces – the cellmembrane and the cell cortex – that can be defined as those subsets ofΩ, onwhich
phase fields 𝜙𝜀 (modelling the membrane) and 𝜓𝜀 (modelling the cell cortex) are close to zero, respectively. Additionally,
there is a surrounding fluid with density 𝜌, velocity 𝑣𝜀 and pressure 𝑝𝜀. Also in the domain, but concentrated on the
cell cortex, are linker proteins with mass volume density 𝜌𝑎,𝜀. They connect the cell membrane and the cell cortex. The
linker proteins behave like springs, but may break if overstretched, so we introduce another density 𝜌𝑖,𝜀 which gives the
mass of linkers per volume that are broken. This is important because ‘repairing mechanisms’ of the cell take care of
reconnecting those broken linkers back to the cell membrane. A scheme in which the aforementioned quantities are all
depicted together is given in Figure 1.
For deriving the phase field model, Onsager’s variational principle [20, 21] is combined with a reaction–diffusion-like

surface evolution equation for the active and inactive linker proteins. To establish a basic understanding of how a PDE
system for cell blebbing can be obtained, let us mention the principle steps in the derivation.

1. Definition of an energy functional𝑈 [𝑣𝜀, 𝑝𝜀, 𝜙𝜀, 𝜓𝜀] that is the sum of all kinds of energy of the cell: the ingredients are
the kinetic energy of the fluid, the surface and bending energy of the cell cortex and cell membrane, and a potential
energy that accounts for the coupling of both membrane and cortex via the linker proteins.

2. Definition of appropriate boundary conditions (see below).
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3. Variation of𝑈 plus a dissipation functional.With regard to the linker proteins, our process is assumed to be quasi-static,
that is, we assume the linker proteins to be given parameters of 𝑈 although their evolution is given by a reaction–
diffusion-like surface equation.

4. Extending the stationarity condition derived by the previous variation step, the aforementioned surface evolution
equations for the linker proteins are added.

2.1 Phase field model

Several computations and formulae are the same for the phase field representing the cell membrane 𝜙𝜀 and that
representing the cell cortex 𝜓𝜀. For those, we always use the symbols 𝜑 ∈ {𝜙, 𝜓} andΦ ∈ {Γ, Σ} to avoid copious repetition.
In the phase field approach, we approximate two important geometrical quantities known from the sharp interface

perspective, namely the normal

𝜈Φ = 𝜈𝜑𝜀 + 𝑂(𝜀), 𝜈𝜑𝜀 =
∇𝜑𝜀|∇𝜑𝜀|

(everywhere where 𝜑𝜀 ≠ 0), and the mean curvature
𝐻Φ = 𝐻𝜑𝜀 + 𝑂(𝜀), 𝐻𝜑𝜀 = |∇𝜑𝜀| (−𝜀Δ𝜑𝜀 + 𝜀−1𝑊′ (𝜑𝜀)

)
with𝑊 (𝜑𝜀) =

1

4

(
𝜑2𝜀 − 1

)2
. Having the velocity 𝑣 and density 𝜌 of the fluid, we may express the kinetic energy as

1
2 ∫Ω 𝜌|𝑣|2 d3.

Let us consider the following energies at a particular point in time 𝑡 ∈ [0, 𝑇], so we can ignore the time-dependency for
now. The surface energy of the diffuse cell membrane with a surface tension proportional to 𝛾Γ is given by the Ginzburg–
Landau energy

𝜀,Γ[𝜙] = 𝛾Γ ∫Ω
𝜀
2
|∇𝜙|2 + 1

𝜀
𝑊(𝜙) d3 = 𝛾Γ ∫Ω 𝑔𝜀[𝜙] d

3

with 𝑔𝜀[𝜙] =
𝜀

2
|∇𝜙|2 + 1

𝜀
𝑊(𝜙). A well-established [22–24] model for the bending energy of a cell membrane with bending

rigidity 𝛽Γ and spontaneous mean curvature 𝐶Γ0 is the phase field version of the Canham–Helfrich energy

𝜀,Γ[𝜙] =
𝛽Γ
2𝜀 ∫Ω

(
−𝜀Δ𝜙 +

(
1
𝜀
𝜙 + 𝐶Γ0

)(
𝜙2 − 1

))2
d3.

The spontaneousmean curvature corresponds to an intrinsic bending of themembranewhich is typical for biomembranes.
The additional term in the energy introduced by that, however, does not introduce new theoretical challenges compared
to using aWillmore functional, which is why we will omit it for the sake of a straightforward presentation, that is, 𝐶Γ0 = 0.
In this configuration,𝜀,Γ[𝜙] is the phase field version of theWillmore energy.We simplify the situation for the cell cortex
in that we assume it to be just a stiffer membrane thus employing the same types of energies just with different surface
tension and bending rigidity. Both energies associated tomembrane and cortex are summarised in the energy functionals

𝜀Φ[𝜑] =𝜀,Φ[𝜑] + 𝜀,Φ[𝜑].
For the coupling of cell membrane and cell cortex, we account with a generalised Hookean spring energy.

𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] = ∫Ω 𝑔𝜀[𝜙](𝑦)
𝜉

2 ∫Ω 𝑔𝜀[𝜓](𝑥)|𝑥 − 𝑦|2𝜌𝑎,𝜀(𝑡, 𝑥)𝜔 (
𝑥, 𝑦, 𝜈𝜓𝜀

)
d3(𝑥) d3(𝑦),
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where 𝜉 is a spring constant, and 𝜔
(
𝑥, 𝑦, 𝜈𝜓𝜀

)
assigns to points 𝑥, 𝑦 ∈ Ω the particle-per-volume density of protein linkers

connecting in direction 𝑥 − 𝑦. A possible choice is

𝜔
(
𝑥, 𝑦, 𝜈𝜓𝜀

)
= �̃�

(
(𝑥 − 𝑦) ⋅ 𝜈𝜓𝜀 (𝑥)|𝑥 − 𝑦|

)
, �̃�(𝑟) = �̂� exp

(
(𝑟 − 1)2

𝑠2

)
with 𝑠 being a suitable standard deviation and �̂� an appropriate scaling factor. To outline the idea for thismodelling choice,
we first point out that 𝑔𝜀 [𝜙𝜀] can be pictured as a ‘smooth Dirac delta function’ if 𝜙𝜀 is the so-called optimal profile

𝑥 ↦ tanh

(
𝑑Γ(𝑥)

𝜀
√
2

)
.

The same holds for 𝑔𝜀 [𝜓𝜀], so that

∫Ω 𝑔𝜀[𝜙] ⋅ d
3 ≈

2
√
2

3 ∫Γ(𝑡) ⋅ d
2

and

∫Ω 𝑔𝜀[𝜙] ⋅ d
3 ≈

2
√
2

3 ∫Σ(𝑡) ⋅ d
2

approximate surface integrals for small 𝜀. Thus,

𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] = ∫Ω 𝑔𝜀[𝜙](𝑦)
𝜉

2 ∫Ω 𝑔𝜀[𝜓](𝑥)|𝑥 − 𝑦|2𝜌𝑎,𝜀(𝑡, 𝑥)𝜔 (
𝑥, 𝑦, 𝜈𝜓𝜀

)
d3(𝑥) d3(𝑦)

≈ ∫Γ(𝑡)
𝜉

2 ∫Σ(𝑡) |𝑥 − 𝑦|2𝜌𝑎,𝜀(𝑡, 𝑥)𝜔 (
𝑥, 𝑦, 𝜈Σ(𝑡)

)
d2(𝑥) d2(𝑦).

Looking at the sharp interface equivalent of the coupling energy, we can identify

1. 𝜉

2
|𝑥 − 𝑦|2 as a Hookean energy density, which is integrated over the membrane and cortex, and weighted additionally

by
2. 𝜔

(
𝑥, 𝑦, 𝜈Σ(𝑡)

)
to incorporate the likeliness of the two spatial points 𝑥 ∈ Σ, 𝑦 ∈ Γ being connected, and

3. the volume–density of linker particles 𝜌𝑎,𝜀(𝑡, 𝑥) actually linking.

The Hookean energy ansatz accounts for the earlier mentioned assumption that the linker proteins behave like springs.
Additionally, since linkers might not be distributed homogeneously, we should scale the coupling force by their actual
amount, which explains 3. The necessity to consider a weight 𝜔might not be so obvious: it has not yet been agreed upon
in the biological literature how to identify the pairs of points (𝑥, 𝑦) ∈ Σ × Γ that are connected by protein linkers. That is
why we allow the weight 𝜔 to model a certain probability for this state. An easy way to describe such a probability is in
terms of the angle between 𝑦 − 𝑥 and a gauge direction. As this gauge direction, we chose the cortex normal, which enters
as the third argument of 𝜔.

Remark 2.1. It shall be remarked that there are other choices for ‘smooth Dirac delta functions’ like 1

𝜀
𝑊(𝜑), which is

smoother and easier to handle analytically and numerically. It turns out, however, that for passing to the limit 𝜀 → 0, the
latter two choices are not appropriate. The reason for that becomes clear when we compare the right hand side 𝐾 of the
momentum balance for the different choices of the integral weight: only for 𝑔𝜀[𝜑], we have phase field counterparts in 𝐾
for every term we expect in the sharp interface system as derived from physical first principles (cf. Werner et al. [13]).

Summing all potential energies, we obtain the Helmoltz free energy of the cell as

𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] = 𝜀Γ [𝜙𝜀] + 𝜀Σ [𝜓𝜀] + 𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] ,
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6 of 39 NÖLDNER et al.

and the inner energy as

𝑈
[
𝑣𝜀, 𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀

]
=
1
2 ∫Ω 𝜌 |𝑣𝜀|2 d3 + 𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] .

Via Onsager’s variational principle (cf. Werner et al. [13]), the following system of partial differential equations is then
found as stationarity conditions

𝜌 (𝜕𝑡𝑣𝜀 + (𝑣𝜀 ⋅ ∇) 𝑣𝜀) − ∇ ⋅
(
𝜂
(
∇𝑣𝜀 + ∇𝑣𝜀

𝑇
)
− 𝑝𝜀

)
= 𝐾, (1a)

∇ ⋅ 𝑣𝜀 = 0 (1b)

𝜕𝑡𝜙𝜀 + 𝑣𝜀 ⋅ ∇𝜙𝜀 = ∇ ⋅
(
𝑚 (𝜙𝜀)

(
∇
(
∇𝐿

2

𝜙
𝜀Γ [𝜙𝜀]

)
+ ∇

(
∇𝐿

2

𝜙𝜀
𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀]))) , (1c)

𝜕𝑡𝜓𝜀 + 𝑣𝜀 ⋅ ∇𝜓𝜀 = ∇ ⋅
(
𝑚 (𝜓𝜀)

(
∇
(
∇𝐿

2

𝜓
𝜀Σ [𝜓𝜀]

)
+ ∇

(
∇𝐿

2

𝜓𝜀
𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀]))) , (1d)

where

𝐾 = ∇𝐿
2𝜀Γ [𝜙𝜀]∇𝜙𝜀 + ∇𝐿2𝜀Σ [𝜓𝜀]∇𝜓𝜀

+ ∇𝐿
2

𝜙
𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀]∇𝜙 + ∇𝐿2𝜓 𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀]∇𝜓

− ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)𝜕𝜌𝑎,𝜀 𝑐
(
⋅, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

)
𝐻𝜓𝜀𝜌𝑎,𝜀𝜈𝜓 d3(𝑦)

− ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)ℙ𝜈𝜓∇
(
𝜕𝜌𝑎,𝜀 𝑐

(
⋅, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

))
𝑔𝜀[𝜓]𝜌𝑎,𝜀 d3(𝑦).

The imposed boundary conditions are

𝑣𝜀|𝜕Ω = 0, (1e)

𝜕𝜈𝜙𝜀|𝜕Ω = 𝜕𝜈𝜓𝜀|𝜕Ω = 0, (1f)

𝐽𝜙𝜀 |𝜕Ω ⋅ 𝜈 = 𝐽𝜓𝜀 |𝜕Ω ⋅ 𝜈 = 0, (1g)

𝜌𝑎,𝜀|𝜕Ω = 𝜌𝑖,𝜀|𝜕Ω = 0, (1h)

where

𝐽𝜙𝜀 = ∇
(
∇𝐿

2

𝜙
𝜀Γ[𝜙] + ∇𝐿2𝜙𝜀𝜀

[
𝜙, 𝜓, 𝜌𝑎,𝜀

])
,

and

𝐽𝜓𝜀 = ∇
(
∇𝐿

2

𝜓
𝜀Σ[𝜓] + ∇𝐿2𝜓𝜀𝜀

[
𝜙, 𝜓, 𝜌𝑎,𝜀

])
.

In addition, we consider evolution equations for the active and inactive linkers on the diffuse surface of the cell cortex:

𝑔𝜀 [𝜓𝜀] 𝜕𝑡𝜌𝑎,𝜀 − v𝜈𝜓𝜀 𝐻𝜓𝜀𝜌𝑎,𝜀 − ∇ ⋅ (𝑔𝜀 [𝜓𝜀] 𝜂𝑎∇𝜌𝑎) + ∇ ⋅ (𝑔𝜀 [𝜓𝜀] 𝑣𝜀𝜏𝜌𝑎) =

𝑔𝜀 [𝜓𝜀] [
𝜌𝑎, 𝜌𝑖, 𝜙𝜀, 𝜈𝜓

]
, (1i)
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NÖLDNER et al. 7 of 39

𝑔𝜀 [𝜓𝜀] 𝜕𝑡𝜌𝑖,𝜀 − v𝜈𝜓𝜀 𝐻𝜓𝜀𝜌𝑖,𝜀 − ∇ ⋅ (𝑔𝜀 [𝜓𝜀] 𝜂𝑖∇𝜌𝑖) + ∇ ⋅ (𝑔𝜀 [𝜓𝜀] 𝑣𝜀𝜏𝜌𝑖) =

−𝑔𝜀 [𝜓𝜀] [
𝜌𝑎, 𝜌𝑖, 𝜙𝜀, 𝜈𝜓

]
, (1j)

where

 [
𝜌𝑎,𝜀, 𝜌𝑖,𝜀, 𝜙𝜀, 𝜈𝜓

]
= 𝑘𝜌𝑖,𝜀 − 𝜌𝑎,𝜀𝑟

[
𝜙𝜀, 𝜈𝜓

]
.

The term 𝑘𝜌𝑖,𝜀 is the effective reconnection rate, 𝑘 ≥ 0, of the inactive linkers, and
𝜌𝑎,𝜀𝑟

[
𝜙𝜀, 𝜈𝜓

]
is the effective disconnection rate of the active linkers in relation to the membrane position in space and the orientation
of the cortex given by its normal.
For a thorough discussion and further references, the readermay please refer toWerner [14]. In the following section, we

describe steps one, two and four, but leave out the lengthy calculations involved for step three. For the following discussion,
however, we need the concrete expression for all the 𝐿2-gradients of the energies, so we give them here without doing the
calculations. Note that these calculations depend on the boundary conditions (1e), (1f), (1g) and (1h):

∇𝐿
2

𝜑 𝜀Φ = ∇𝐿2𝜑 𝜀 + ∇
𝐿2
𝜑 𝜀 (2a)

∇𝐿
2

𝜑 𝜀 = −𝜀Δ𝜑𝜀 + 1𝜀𝑊′ (𝜑𝜀) =∶ 𝜇 [𝜑𝜀] , (2b)

∇𝐿
2

𝜑 𝜀 = −Δ (𝜇𝜀[]𝜑𝜀) + 𝜇 [𝜑𝜀]
1

𝜀2
𝑊′′ (𝜑𝜀) (2c)

For easier expression of the coupling energy gradients, we introduce

𝐶𝜓(𝑡, 𝑦) = ∫Ω 𝑔𝜀 [𝜓𝜀] (𝑥)𝑐
(
𝑥, 𝑦, 𝜌𝑎(𝑡, 𝑥), 𝜈𝜓𝜀(𝑡)(𝑥)

)
d3(𝑥),

𝐶𝜙(𝑡, 𝑥) = ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)𝑐
(
𝑥, 𝑦, 𝜌𝑎(𝑡, 𝑥), 𝜈𝜓𝜀(𝑡)(𝑥)

)
d3(𝑦).

Then,

∇𝐿
2

𝜙𝜀
𝜀 = 𝜇0 [𝜙𝜀] (𝑦)𝐶𝜓(𝑦) − ∫Ω 𝜀𝑔𝜀 [𝜓𝜀] (𝑥)∇𝑦𝜙𝜀 ⋅ ∇𝑦

(
𝑐
(
𝑥, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

))
d3(𝑥), (2d)

∇𝐿
2

𝜓𝜀
𝜀 = 𝜇0 [𝜓𝜀] (𝑥)𝐶𝜙(𝑥) − ∫Ω 𝜀𝑔𝜀 [𝜙𝜀] (𝑦)∇𝑥

(
𝑐
(
𝑥, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

))
⋅ ∇𝑥𝜓𝜀 d3(𝑦)

− ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)∇𝑥 ⋅
(
𝑔𝜀 [𝜓𝜀] (𝑥)∇𝜈𝑐

(
𝑥, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

)𝑇 1|∇𝜓|ℙ𝜈𝜓
)
d3(𝑦). (2e)

Solutions of Equation (1) fulfil an energy inequality, compare Werner et al. [13].
This energy inequality reads

d
d𝑡

𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀] ≤ − ‖∇𝑣𝜀‖2
[𝐿2(Ω)]

(3,3)

− 𝑚 (𝜙𝜀)
‖‖‖‖∇(

∇𝐿
2

𝜙𝜀
𝜀Γ [𝜙𝜀] + ∇𝐿2𝜙𝜀𝜀

[
𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀

])‖‖‖‖
2

𝐿2(Ω)

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300101 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 39 NÖLDNER et al.

−𝑚 (𝜓𝜀)
‖‖‖‖∇(

∇𝐿
2

𝜓𝜀
𝜀Σ [𝜓𝜀] + ∇𝐿2𝜓𝜀𝜀

[
𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀

])‖‖‖‖
2

𝐿2(Ω)

+ ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)∫Ω 𝑔𝜀 [𝜓𝜀] (𝑥)𝜕𝜌𝑎,𝜀 𝑐
[
𝜕𝑡𝜌𝑎,𝜀

]
d3(𝑥) d3(𝑦)

− ∫Ω 𝐻𝜓(𝑡, 𝑥)𝜌𝑎,𝜀(𝑡, 𝑥)v𝜈𝜓 (𝑡, 𝑥)∫Ω 𝑔𝜀[𝜙](𝑦)𝜕𝜌𝑎,𝜀 𝑐
(
𝑥, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

)
d3(𝑦) d3(𝑥)

− ∫Ω ∫Ω 𝑔𝜀 [𝜙𝜀] (𝑦)∇
(
𝜕𝜌𝑎,𝜀 𝑐

(
⋅, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

))
⋅ 𝑣𝜏𝑔𝜀[𝜓]𝜌𝑎,𝜀 d3(𝑦) d3(𝑥). (3)

2.2 Sharp interface model

We introduce two evolving, two-dimensional manifolds Γ𝑇 = (Γ(𝑡))𝑡∈[0,𝑇] for the cell membrane, and Σ𝑇 = (Σ(𝑡))𝑡∈[0,𝑇]
for the cell cortex. These evolving manifolds can also be described as the level sets Γ(𝑡) = 𝜙−1(𝑡, 0) and Σ(𝑡) = 𝜓−1(𝑡, 0) of
functions 𝜙 ∶ Ω × [0, 𝑇] → ℝ and 𝜓 ∶ Ω × [0, 𝑇] → ℝ. The cell we consider is swimming in a fluid with pressure 𝑝 and
velocity 𝑣. Additionally, we have the density 𝜌𝑎 ∶ Σ𝑇 → ℝ of linker proteins connecting cell membrane and cell cortex,
which we call active linkers. Another density 𝜌𝑖 ∶ Σ𝑇 → ℝ is introduced to model the density of the disconnected or
broken proteins, called inactive linkers; these no longer couple cell membrane and cell cortex, but may be reconnected

due to healing mechanisms inside the cell.
◦
Ω= Ω∖(Γ(𝑡) ∪ Σ(𝑡))

𝜌 (𝜕𝑡𝑣 + (𝑣 ⋅ ∇)𝑣) − ∇ ⋅ 𝕋 = 0 in
◦
Ω (4a)

∇ ⋅ 𝑣 = 0 in
◦
Ω (4b)

𝑣(𝑡, ⋅) = 0 on 𝜕Ω, (4c)

⟦𝑣⟧Γ(𝑡) = 0 on Γ(𝑡), (4d)

⟦𝑣⟧Σ(𝑡) = 0 on Σ(𝑡), (4e)

−⟦𝕋𝜈⟧ = ∇𝐿2
𝜙
Γ∇𝜙 − (

∇𝑦𝐶
0
Σ ⋅ 𝜈Γ

)
𝜈Γ + 𝐻Γ𝐶

0
Σ𝜈Γ on Γ(𝑡), (4f)

−⟦𝕋𝜈⟧ = ∇𝐿2
𝜓
Σ∇𝜓 − (

∇𝑥𝐶
0
Γ ⋅ 𝜈Σ

)
𝜈Σ + 𝐻Σ𝐶

0
Γ𝜈Σ

− 𝜕𝜌𝑎𝐶
0
Γ𝐻Σ𝜌𝑎𝜈Σ − ∇Σ

(
𝜕𝜌𝑎𝐶

0
Γ

)
𝜌𝑎 − ∇Σ ⋅

(
∇𝜈𝐶

0
Γ

)
𝜈Σ

− 𝐻Σ
(
∇𝜈𝐶

0
Γ ⋅ 𝜈Σ

)
𝜈Σ on Σ(𝑡), (4g)

𝜕𝑡𝜙 + 𝑣 ⋅ ∇𝜙 = 0 in Ω, (4h)

𝜕𝑡𝜓 + 𝑣 ⋅ ∇𝜓 = 0 in Ω, (4i)

𝜕𝑡𝜌𝑎 − 𝐻v𝜈𝜓𝜌𝑎 − ∇Σ(𝑡) ⋅ (𝜂𝑎∇𝜌𝑎) + ∇Σ(𝑡) ⋅ (𝜌𝑎𝑣𝜏) =  [𝜌𝑎, 𝜌𝑖, 𝜙𝜈Σ] on Σ(𝑡), (4j)

𝜕𝑡𝜌𝑖 − 𝐻v𝜈𝑣𝜌𝑖 − ∇Σ(𝑡) ⋅ (𝜂𝑖∇𝜌𝑖) + ∇Σ(𝑡) ⋅ (𝜌𝑖𝑣𝜏) =  [𝜌𝑎, 𝜌𝑖, 𝜙, 𝜈Σ] on Σ(𝑡). (4k)

The equations have to be solved with appropriate initial and boundary conditions. The initial data need to be related to
the initial data of the phase field field model as specified in item 1. of Section 3.2.

3 FORMAL ASYMPTOTIC ANALYSIS

Having outlined the physical principles, we are going to analyse the sharp interface limit of the phase field model. Let
us now turn to the main result of this paper: we will demonstrate, using the method of formal asymptotic expansions,
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NÖLDNER et al. 9 of 39

that classical solutions of the system (1) converge, for 𝜀 → 0, to solutions of Equation (4). For a thorough theoretical
introduction into the subject of formal asymptotic expansions, we refer to Eckhaus [25], whereas a more application-
oriented perspective is taken in Holmes [26].

3.1 Interfacial coordinates

For the following analysis, we will need a coordinate transformation typical for asymptotic analysis of phase field
equations for which boundary layers are expected in the regions where the phase fields are close to zero.
Let us denote a tubular neighbourhood of a smooth, orientable hypersurface 𝑆 ⊆ ℝ3 by 𝑁𝛿(𝑆). We require that

𝛿 ∈ (0,∞) is small enough such that 𝑁𝛿(Γ(𝑡)) ∩ 𝑁𝛿(Σ(𝑡)) = ∅ for all 𝑡 ∈ [0, 𝑇]. The local boundary layer coordinates, or
interfacial coordinates (as they are most often termed in this context), with respect to 𝑆 are defined by the map

𝜄𝑆,𝜀 ∶𝑁𝛿(𝑆) → 𝑆 × ℝ,

𝑥 ↦

(
𝜋𝑆(𝑥),

𝑑𝑆(𝑥)

𝜀

)
.

For two evolving manifolds Γ𝑇, Σ𝑇, we extent this definition to

𝜄𝜀 ∶
⋃
𝑡∈[0,𝑇]

{𝑡} × (𝑁𝛿(Γ(𝑡)) ∪ 𝑁𝛿(Σ(𝑡))) →
⋃
𝑡∈[0,𝑇]

{𝑡} × (Γ(𝑡) ∪ Σ(𝑡)) × ℝ,

(𝑡, 𝑥) ↦

{(
𝑡, 𝜄Γ(𝑡),𝜀(𝑥)

)
𝑥 ∈ 𝑁𝛿(Γ(𝑡))(

𝑡, 𝜄Σ(𝑡),𝜀(𝑥)
)
𝑥 ∈ 𝑁𝛿(Σ(𝑡))

,

and then set

𝜄𝑆𝑇,𝜀 = 𝜄𝜀 ∣
⋃

𝑡∈[0,𝑇]
{𝑡}×𝑆(𝑡)

for 𝑆(𝑡) ∈ {Γ(𝑡), Σ(𝑡)}. We always consider 𝛿 small enough such that the interfacial coordinate transformations are well-
defined. Generally, for a function 𝑓 on

⋃
𝑡∈[0,𝑇]{𝑡} × (𝑁𝛿(Γ(𝑡)) ∪ 𝑁𝛿(Σ(𝑡))), we define

𝑓 ◦ 𝜄𝜀(𝑡, 𝑥) = 𝑓(𝑡, 𝑥).

The function 𝑓 depends on three arguments: The first is time, the second a point on one of the manifolds Γ(𝑡) or Σ(𝑡) and
the third a real number from

(
−
𝛿

𝜀
,
𝛿

𝜀

)
. The latter is occasionally referred to as ‘fast variable’ and derivatives with respect

to this variable are denoted by (⋅)′; derivatives with respect to the first variable are denoted by 𝜕𝑠(⋅).
The following (standard) formulae will be important later.

Lemma 3.1 cf. Gilbarg and Trudinger [19, Sec. 14.6]. Let 𝑆 ⊆ ℝ3 be a real, orientable and sufficiently smooth submanifold
and𝑁𝛿(𝑆), 𝛿 ∈ ℝ > 0, a tubular neighbourhood onwhich all the following extended functions are defined. For all 𝑥 ∈ 𝑁𝛿(𝑆),
it holds

�̄�(𝑥) =
2∑
𝑖=1

�̄�𝜈𝑆,𝑖(𝑥)

1 − 𝑑𝑆(𝑥)�̄�
𝜈
𝑆,𝑖(𝑥)

=
2∑
𝑖=1

�̄�𝜈𝑆,𝑖(𝑥) + 𝑑𝑆(𝑥)�̄�
𝜈
𝑆,𝑖(𝑥)

2 + 𝑂
(
𝑑𝑆(𝑥)

2
)

(5a)

=
2∑
𝑖=1

(
�̂�𝑆,𝑖 + 𝜀𝑧�̂�

2
𝑆,𝑖 + 𝑂

(
𝜀2
))
◦ 𝜄𝑆,𝜀 (𝜋𝑆(𝑥)) ,
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10 of 39 NÖLDNER et al.

∇(�̄�)||𝑥 ⋅ �̄�(𝑥) = 2∑
𝑖=1

�̄�𝜈𝑆,𝑖(𝑥)
2(

1 − 𝑑𝑆(𝑥)�̄�
𝜈
𝑆,𝑖(𝑥)

)2
=

2∑
𝑖=1

�̄�𝜈𝑆,𝑖(𝑥)
2 + 2𝑑𝑆(𝑥)�̄�

𝜈
𝑆,𝑖(𝑥)

3 + 𝑂
(
𝑑𝑆(𝑥)

2
)

(5b)

=

(
2∑
𝑖=1

�̂�2𝑆,𝑖 + 2𝜀𝑧�̂�
3
𝑆,𝑖 + 𝑂

(
𝜀2
))

◦ 𝜄𝑆,𝜀 (𝜋𝑆(𝑥)) .

∇(�̄�)||𝑥 ⋅ �̄�(𝑥) = �̄�(𝑥)2 − 2�̄�(𝑥). (5c)

∇2(�̄�)||𝑥 ∶ �̄�(𝑥) ⊗ �̄�(𝑥) = 2�̄�(𝑥) (�̄�(𝑥)2 − 3�̄�(𝑥)) . (5d)

3.2 Assumptions on the solution

Typically, formal asymptotic theories rely on non-trivial properties on the solution of the system under investigation, (1)
in our case. A rigorous justification requires treatment of its own and is not in the scope of this work. We shall restrict
ourselves to clearly formulating the properties we need in form of assumptions, and rather focus on the relation of the
quantities of a solution of Equation (1) that assure a sensible behaviour in the limit. These assumptions can serve as a hint
what needs to be investigated when a mathematical proof is to be given.

1. For every 𝜀 > 0 the system (1) with boundary conditions (1e), (1f), (1g), (1h) and initial data 𝜙𝜀(0, ⋅), 𝜓𝜀(0, ⋅), 𝜌𝑎,𝜀(0, ⋅),
which converge in 𝐿2(Ω) × 𝐿2(Ω) × 𝐻1(Ω) for 𝜀 ↘ 0 and form a recovery sequence of  , has a classical solution(

𝑣𝜀, 𝑝𝜀, 𝜙𝜀, 𝜓𝜀, 𝜌𝑎,𝜀, 𝜌𝑖,𝜀
)

onΩ𝑇 = [0, 𝑇] × Ω for some time 𝑇 > 0 being independent of 𝜀. Throughout this work, we choose the mobilities of the
phase field to be a power of 𝜀 ∶ 𝑚(𝜙) = 𝑚(𝜓) = 𝜀𝛼 for 𝛼 ∈ ℝ>0.

2. Additionally, there shall be two-dimensional, orientable, smoothly evolving manifolds

Γ(𝑡) = {𝑥 ∈ Ω ∣ 𝜙𝜀(𝑡, 𝑥) = 0} , Σ(𝑡) = {𝑥 ∈ Ω ∣ 𝜓𝜀(𝑡, 𝑥) = 0} ,

which both enclose open sets Ω−
Γ(𝑡)

and Ω−
Σ(𝑡)

. The corresponding outer domains are defined such that
Ω+
Γ(𝑡)
= Ω∖Ω−

Γ(𝑡)
∖Γ(𝑡) and Ω+

Σ(𝑡)
= Ω∖Ω−

Σ(𝑡)
∖Σ(𝑡). It shall hold, lim𝜀↘0 𝜙𝜀(0, ⋅) = −1 pointwise on Ω−Γ , and

lim𝜀↘0 𝜙𝜀(0, ⋅) = 1 pointwise on Ω+Γ , and analogously for 𝜓 and Σ.
3. For sufficiently small 𝑇, it shall hold Γ(𝑡) ∩ Σ(𝑡) = ∅ for all 𝑡 ∈ [0, 𝑇].
4. The components of every classical solution to (1) shall have a regular asymptotic expansion in every compact subset𝑈

of Ω0 = Ω∖Γ(𝑡)∖Σ(𝑡), that is, for every 𝑞 ∈
{
𝜙𝜀, 𝜓𝜀, 𝑣𝜀, 𝑝𝜀, 𝜌𝑎,𝜀, 𝜌𝑖,𝜀

}
, it holds

𝑞|𝑈 (𝑡, 𝑥) = 𝑛∑
𝑖=0

𝑞𝑜𝑖 (𝑡, 𝑥)𝜀
𝑖 + 𝑜 (𝜀𝑛) , (6)

for some 𝑛 ∈ ℕ0. All 𝑞𝑜𝑖 shall be as smooth as 𝑞. We call these series outer expansions of 𝑞. This implies that a boundary
layer is to be expected at most at Γ(𝑡) ∪ Σ(𝑡).

5. If 𝑞 = 𝜙, Equation (6) shall even hold for all 𝑈 ⋐ Ω0 ∪ Σ and if 𝑞 = 𝜓 for all 𝑈 ⋐ Ω0 ∪ Γ. Thus, every phase field is
expected to have only one boundary layer.
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NÖLDNER et al. 11 of 39

6. The species densities’ evolution is irrelevant outside the diffuse layers around Γ𝑇, Σ𝑇 . We thus consider them to be
asymptotically constant in time away from the diffuse layers: For every 𝑈 ⋐ Ω0, it holds 𝜕𝑡

(
𝜌𝑎,𝜀||𝑈) ∈ 𝑂 (

𝜀2
)
, which

is equivalent to claiming 𝜕𝑡𝜌𝑜𝑎,𝜀0 = 0 = 𝜕𝑡𝜌
𝑜
𝑎,𝜀1 .

7. The components of every classical solution to Equation (1) shall have a regular asymptotic expansion in 𝑁𝛿(𝑆), 𝑆 ∈
{Γ(𝑡), Σ(𝑡)}, after transformation into local coordinates: For all 𝑞 ∈

{
𝜙𝜀, 𝜓𝜀, 𝑣𝜀, 𝑝𝜀, 𝜌𝑎,𝜀, 𝜌𝑖,𝜀

}
, it holds 𝑞|Γ(𝑡)∪Σ(𝑡) = �̂� ◦ 𝜄𝜀

such that

�̂�(𝑡, 𝑠, 𝑧) =
𝑛∑

𝑘=−𝑁

𝜀𝑘�̂�𝑖
𝑘
(𝑡, 𝑠, 𝑧) + 𝑜 (𝜀𝑛)

for 𝑁, 𝑛 ∈ ℕ0, where all �̂�𝑖𝑘 shall be integrable in 𝑧 and as smooth as 𝑞. We call these series inner expansions of 𝑞.
8. Physically, the phase fields model the volume fraction of phases. Thus, they should always take values between−1 and
1, independent of how small 𝜀 may be. Hence, for 𝑞 ∈ {𝜙, 𝜓}, we assume �̂�𝑖

𝓁
= 0 for all 𝓁 ∈ {−𝑁,… ,−1}.

9. For the species density 𝜌𝑎,𝜀, we additionally require that blow-ups are of order at most −1, that is, �̂�𝑖𝑎,𝜀𝓁 = 0 for all
𝓁 ∈ {−𝑁,… ,−2}. The reason why we cannot naturally expect boundedness here is that 𝜌𝑎,𝜀 does not give the volume
fraction, but the number of particles per volume of the active linkers.

We will often have to compute differential operators of functions that are expressed in interfacial coordinates:

Remark 3.2. For a sufficiently smooth function 𝑞 ∶ 𝑇 × ℝ → ℝ on an evolving manifold 𝑇 = ⋃
𝑡∈[0,𝑇]{𝑡} × 𝑆𝑡, and

𝑡∗ ∈ [0, 𝑇], 𝑥∗ ∈ Ω, it holds

∇𝑥
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−1𝑞′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
�̄� (𝑡∗, 𝑥∗) + ∇𝑆(𝑡∗)𝑑(𝑥∗)𝑞

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
, (7)

Δ𝑥
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−2𝑞′′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
− 𝜀−1𝑞′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
�̄� (𝑡∗, 𝑥∗)

+ Δ𝑆(𝑡∗)𝑑(𝑥∗)
𝑞
(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
, (8)

𝜕𝑡
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = −𝜀−1𝑉𝑆𝜈 (𝑡

∗, 𝑥∗) 𝑞′
(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
+ 𝜕𝑡𝑞

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
. (9)

For 𝑞 ∶ 𝑇 × ℝ → ℝ𝑛, it holds

∇𝑥 ⋅
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−1𝑞′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
⋅ �̄� (𝑡∗, 𝑥∗) + ∇𝑆(𝑡∗)𝑑(𝑥∗) ⋅ 𝑞

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
, (10)

∇𝑥
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−1𝑞′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
⊗ �̄� (𝑡∗, 𝑥∗) + ∇𝑆(𝑡∗)𝑑(𝑥∗)𝑞

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
, (11)

Δ𝑥
(
𝑞 ◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−2𝑞′′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
− 𝜀−1(𝑞)′ ◦ 𝜄𝑇,𝜀 (𝑡∗, 𝑥∗) �̄� (𝑡∗, 𝑥∗)

+ Δ𝑆(𝑡∗)𝑑(𝑥∗)𝑞
(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
. (12)

For 𝑄 ∶ 𝑇 × ℝ → ℝ(𝑛,𝑛), it holds

∇𝑥 ⋅
(
𝑄◦ 𝜄𝑇,𝜀

)
(𝑡∗, 𝑥∗) = 𝜀−1𝑄′

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
�̄� (𝑡∗, 𝑥∗) + ∇𝑆(𝑡∗)𝑑(𝑥∗) ⋅ 𝑄

(
𝜄𝑇,𝜀 (𝑡∗, 𝑥∗)

)
(13)

Let us further exercise some smaller expansions.

Lemma 3.3. For 𝜑 ∈ {𝜓, 𝜙}, the following expansions hold:

|∇𝜑| = 𝜈 ⋅ ∇𝜑 = (
𝜀−1�̂�′0 + �̂�

′
1 + 𝜀�̂�

′
2

)
◦ 𝜄𝜀 + 𝑂

(
𝜀2
)
, (14)
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12 of 39 NÖLDNER et al.

𝑊(𝜑) = 𝑊 (𝜑0) + 𝜀𝑊
′ (𝜑0) 𝜑1 + 𝜀

2
(
𝑊′ (𝜑0) 𝜑2 +𝑊

′′ (𝜑0) 𝜑
2
1

)
+ 𝑂

(
𝜀3
)
, (15)

𝑔𝜀[𝜑] = 𝜀
−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀 +𝑊 (𝜑0)

)
+ 2

(
�̂�′0�̂�

′
1

)
◦ 𝜄𝜀 +𝑊

′ (𝜑0) 𝜑1 + 𝑂(𝜀), (16)

|∇𝜑|−1 = 𝜀 (�̂�′0)−1 ◦ 𝜄𝜀 + 𝜀2 �̂�′1 ◦ 𝜄𝜀(
�̂�′0

)2
◦ 𝜄𝜀

+ 𝑂
(
𝜀3
)
. (17)

If 𝜑 is the optimal profile at leading order, that is, �̂�′′0 ◦ 𝜄𝜀 −𝑊
′ (𝜑0) = 0 we further have

𝐻𝜑 = 𝜀
−1�̂�′0 ◦ 𝜄𝜀

(
�̂�′0 ◦ 𝜄𝜀�̄� + �̂�

′′
1 ◦ 𝜄𝜀 +𝑊

′′ (𝜑0) 𝜑1
)
+ 𝑂(1). (18)

Proof. Ad (16): We use Equation (14) to compute

𝑔𝜀[𝜌] = 𝜀
−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀 +𝑊 (𝜌0)

)
+ 2

(
�̂�′0�̂�

′
1

)
◦ 𝜄 +𝑊′ (𝜌0) 𝜌1 + 𝑂(𝜀).

Ad (17): Observe,

|∇ (𝜌0 + 𝜀𝑟1)|−1 = |∇𝜌0|−1 − 𝜀∇𝜌0 ⋅ ∇𝑟1|∇𝜌0|3 + 𝑂
(
𝜀3
)
. (19)

Note further that |∇𝜌0|−1 = (∇𝜌0 ⋅ 𝜈)−1 = (
𝜀−1�̂�′0 ◦ 𝜄𝜀

)−1
= 𝜀

(
�̂�′0 ◦ 𝜄𝜀

)−1
and ∇𝑟1 = 𝜀−1�̂�′1 ◦ 𝜄𝜀𝜈 + 𝑂 (1) so that

𝜀
∇𝜌0 ⋅ ∇𝑟1|∇𝜌0|3 =

𝜀−1�̂�′0 ◦ 𝜄𝜀�̂�
′
1 ◦ 𝜄𝜀 + 𝑂(1)|∇𝜌0|3 ∈ 𝑂

(
𝜀2
)
.

Ad (18): Expand

𝐻𝜌 = |∇𝜌| (−𝜀Δ𝜌 + 𝜀−1𝑊′(𝜌)
)

(1)
=

(
𝜀−1�̂�′0 ◦ 𝜄𝜀 + �̂�

′
1 ◦ 𝜄𝜀 + 𝑂(𝜀)

) (
−𝜀−1�̂�′′0 ◦ 𝜄𝜀 + �̂�

′
0 ◦ 𝜄𝜀�̄� + �̂�

′′
1 ◦ 𝜄𝜀 + 𝜀

−1𝑊′ (𝜌0) +𝑊
′′ (�̂�0) 𝜌1 + 𝑂(𝜀)

)
(2)
= 𝜀−1�̂�′0 ◦ 𝜄𝜀

(
�̂�′0 ◦ 𝜄𝜀�̄� + �̂�

′′
1 ◦ 𝜄𝜀 +𝑊

′′ (𝜌0) 𝜌1
)
+ 𝑂(1),

where for Equation (1), we employ Equation (8), and for Equation (2), the optimal profile equation. □

A common principle, which we will make use of in the following multiple times, is summarised in the following:

Lemma 3.4. Let Γ ⊆ Ω be a smooth hypersurface. Let 𝑝 ∈ 𝐿1(ℝ) with

sup|𝑡|>𝑠 |𝑝(𝑡)𝑡| ≤ 𝐶
𝑠𝑚

for some 𝐶 ∈ [0,∞) and𝑚 ∈ (0,∞), 𝑓𝜀 ∈ 𝐶(Ω), and for all sequences 𝑥𝜀
𝜀→0
⟶ 𝑥, it holds 𝑓𝜀 (𝑥𝜀)

𝜀→0
⟶ 𝑓(𝑥) with ‖𝑓𝜀‖𝐿∞(Ω) <

𝑀 for some𝑀 ∈ (0,∞) being independent of 𝜀. Then,

𝜀−1 ∫Ω 𝑝
(
𝑑Γ(𝑥)

𝜀

)
𝑓𝜀(𝑥) d3(𝑥) 𝜀→0⟶ ∫

∞

−∞
𝑝(𝑠) d1(𝑠)∫Γ 𝑓(𝑥) d

2(𝑥).

After the preliminaries are fixed, we shall proceed by analysing the asymptotic behaviour of the solution of Equation (1).
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NÖLDNER et al. 13 of 39

3.3 Outer expansion

We start with investigating the solutions’ behaviour away from the boundary layer, that is, on a set Ω𝛿 =
Ω∖ (𝑁𝛿(Γ) ∪ 𝑁𝛿(Σ)) for some 𝛿 > 0. Let 𝜑 ∈ {𝜙𝜀, 𝜓𝜀} for the following considerations.
Due to the recovery sequence property of the initial data postulated in Assumption 1,

𝜀 [𝑣𝜀(0, ⋅), 𝜙𝜀(0, ⋅), 𝜓𝜀(0, ⋅), 𝜌𝑎,𝜀(0, ⋅)] ∈ 𝑂(1).
Further, the sufficiently fast decay of the species densities’ time derivative, see Assumption 6 imply

∫Ω𝛿 𝑔𝜀[𝜙](𝑦)∫Ω𝛿 𝑔𝜀[𝜓](𝑥)𝜕𝜌𝑎,𝜀 𝑐
[
𝜕𝑡𝜌𝑎,𝜀

]
d3(𝑥) d3(𝑦) ∈ 𝑂(1).

From (1c) and (1d), we also obtain

𝜀𝛼Δ
(
∇𝐿

2

𝜑 𝜀Γ[𝜑] + ∇𝐿2𝜑 𝜀
)
∈ 𝑂(1),

so for 𝛼 < 1, ∇𝐿2𝜑 𝜀Γ[𝜑] + ∇𝐿2𝜑 𝜀 ∈ 𝑂(1) (Bringing 𝜀𝛼 to the right, all leading order terms of Δ
(
∇𝐿

2

𝜑 𝜀Γ[𝜑] + ∇𝐿2𝜑 𝜀
)
from

order−3 to−1 have nomatch on the right-hand side and thus have to be zero following the separation of scales argument.
Using that the Neumann boundary conditions (1g) do not depend on 𝜀, we can thus conclude that all these terms are of
order zero.) Comparing the right-hand side of (1a) with its left-hand side, we conclude

∫Ω𝛿 𝐻𝜓(𝑥)𝜌𝑎,𝜀(𝑡, 𝑥)v𝜈𝜓 (𝑡, 𝑥)∫Ω𝛿 𝑔𝜀[𝜙](𝑦)𝜕𝜌𝑎,𝜀 𝑐
(
𝑥, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

)
d3(𝑦) d3(𝑥)+

∫Ω𝛿 ∫Ω𝛿 𝑔𝜀 [𝜙𝜀] (𝑦)∇
(
𝜕𝜌𝑎,𝜀 𝑐

(
⋅, 𝑦, 𝜌𝑎,𝜀, 𝜈𝜓

))
⋅ 𝑣𝜏𝑔𝜀[𝜓]𝜌𝑎,𝜀 d3(𝑦) d3(𝑥) ∈ 𝑂(1).

It, thus, follows from Equation (3) that

ess sup
𝑡∈[0,𝑇]

𝜀 [𝜙𝜀, 𝜓𝜀, 𝜌𝑎] ∈ 𝑂(1).

Therefore, ∫
Ω𝛿

𝜀

2
|∇𝜌|2 + 𝜀−1𝑊(𝜌) d3 ∈ 𝑂(1) for all 𝑡 ∈ [0, 𝑇], and we conclude 𝑊(𝜑) ∈ 𝑂(𝜀). Inserting the outer

expansion of 𝜑 into𝑊(𝜑) brings

𝑊(𝜑) =
((
𝜑𝑜0

)2
− 1

)2
+ 𝑂(𝜀).

Hence, it must hold

((
𝜑𝑜0

)2
− 1

)2|||||Ω𝛿 = 0
for any 𝛿 > 0. This further implies 𝜑𝑜0 ∣ Ω𝛿(𝑡, ⋅) ∈ {−1, 1} for all 𝑡 ∈ [0, 𝑇]. For the initial data of 𝜑, we have
(cf. Assumption 2) 𝜑𝑜0(0, ⋅) = −1 in Ω

−
𝑆 and 1 in Ω

+
𝑆 , 𝑆 ∈ {Γ, Σ}, so that we can argue by continuity in time that

𝜑𝑜0
|||Ω−𝑆 ∖𝑁𝛿(𝑆) (𝑡, ⋅) = −1 and 𝜑𝑜0|||Ω+𝑆 ∖𝑁𝛿(𝑆) (𝑡, ⋅) = 1 for all 𝑡 ∈ [0, 𝑇], (20)

which is the essential result of this paragraph.
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14 of 39 NÖLDNER et al.

3.4 Inner expansion

As there is no danger of confusion, we drop the subscript 𝜀 on the physical quantities. Let us first note that the result of
the previous paragraph can be combined with the principle of asymtptotic matching on the phase fields such that we
obtain (

lim
𝑧↗∞

�̂�𝑖0(⋅, ⋅, 𝑧)

)
◦ 𝜄𝜀(𝑡, 𝑥) = lim

𝑥→Γ
𝑥∈Ω+Γ

𝜙𝑜0(𝑡, 𝑥) = 1 (21)

for 𝑥 ∈ 𝑁𝛿(Γ) ∩ Ω+Γ , that is, 𝑑Γ(𝑥) > 0. Analogously,(
lim
𝑧↘−∞

�̂�𝑖0(⋅, ⋅, 𝑧)

)
◦ 𝜄𝜀(𝑡, 𝑥) = lim

𝑥→Γ
𝑥∈Ω−Γ

𝜙𝑜0(𝑡, 𝑥) = −1 (22)

for 𝑥 ∈ 𝑁𝛿(Γ) ∩ Ω−Γ and mutatis mutandis for 𝜓.

Remark 3.5. An immediate consequence of thematching principle and the assumption that 𝑞𝑜
𝓁
= 0 for all 𝓁 ∈ {−𝑁,… ,−1}

of the outer expansion is

lim
𝑧→±∞

�̂�𝓁 = 0 for all 𝓁 ∈ {−𝑁,… ,−1} (23)

of the inner expansion. This also holds for all derivatives as long as they exist.

3.5 Properties of 𝒗 and �̂� to leading order

Let 𝑆 ∈ {Γ, Σ}. To obtain insight on the higher-order coefficients in the expansion of the velocity and the pressure, we
exploit the structure of the Navier–Stokes equations (1a), (1b) following Abels and Liu [16, p. 486, Section A.1.2].
Due to Assumption 8, ∇𝐿2

𝜓
 ∈ 𝑂

(
𝜀−3

)
. Thus, for 𝑁 ≥ 3, we have from Equation (1a), at order 𝜀−𝑁−2,

−𝜂𝑣′′−𝑁 ◦ 𝜄𝜀 = 0

With Equation (23), it further follows 𝑣′−𝑁 = 0. From 𝑣
′
−𝑁 = 0 with Equation (23), we conclude analogously 𝑣−𝑁 = 0.

At order 𝜀−𝑁−1, the equation is

−𝜂𝑣′′−𝑁+1 ◦ 𝜄𝜀 + �̂�
′
−𝑁 ◦ 𝜄𝜀�̄� = 0. (24)

From Equation (1b) we have, using Remark 3.2 (10), to leading order 𝜀−𝑁 :

𝑣′−𝑁+1 ◦ 𝜄𝜀 ⋅ �̄� = 0. (25)

Multiplying Equation (24) by �̄�, we find with Equation (25)

�̂�′−𝑁 ◦ 𝜄𝜀 = 0. (26)

In turn, inserting Equation (26) back into Equation (24), we obtain 𝑣′′−𝑁+1 = 0, and with Equation (23) further 𝑣
′
−𝑁+1 = 0.

From 𝑣′−𝑁+1 = 0 with Equation (23), we conclude analogously 𝑣−𝑁+1 = 0. Arguing verbatim with Equations (23), (26)
implies �̂�−𝑁 = 0.
Repeating the arguments of the previous paragraph, we may from now on assume w.l.o.g. 𝑣𝓁 = 0 for all 𝓁 ≤ −3 and

�̂�𝓁 = 0 for all 𝓁 ≤ −4.
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NÖLDNER et al. 15 of 39

At order 𝜀−4, we have an additional right-hand side term

𝜀−4
(
−𝜂𝑣′′−2 ◦ 𝜄𝜀 + �̂�

′
−3 ◦ 𝜄𝜀�̄�

)
= 𝜀−1

(
∇𝐿

2

𝜙
 �̂�′0 ◦ 𝜄𝜀�̄� + ∇𝐿2𝜓  �̂�′0 ◦ 𝜄𝜀�̄�

)
− 𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝑖0

𝜈𝜓𝑖0
𝜌𝑖𝑎−1.

Multiplying again by �̄� and noting that due to the previous considerations 𝑣′−2 ◦ 𝜄𝜀 ⋅ �̄� = 0 (25), we have

𝜀−4�̂�′−3 ◦ 𝜄𝜀 = 𝜀
−1

(
∇𝐿

2

𝜙
 �̂�′0 ◦ 𝜄𝜀 + ∇𝐿2𝜓  �̂�′0 ◦ 𝜄𝜀

)
− 𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝑖0

𝜈𝜓𝑖0
⋅ �̄�𝜌𝑖𝑎−1;

hence, 𝑣′′−2 = 0 and we may conclude 𝑣−2 = 0 as before.
We cannot go further now. However, in Section 3.6, we show that actually ∇𝐿2𝜌  ∈ 𝑂

(
𝜀−2

)
and in Section 3.7 that

𝜌𝑖𝑎 ∈ 𝑂(1) – using only the results on velocity and pressure we have derived here, which gives �̂�′−3 ◦ 𝜄𝜀 = 0 and further

𝜀−3�̂�′−2 ◦ 𝜄𝜀 = 𝜀
−1

(
∇𝐿

2

𝜙
 �̂�′0 ◦ 𝜄𝜀 + ∇𝐿2𝜓  �̂�′0 ◦ 𝜄𝜀

)
− 𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝑖0

𝜈𝜓𝑖0
⋅ �̄�𝜌𝑖𝑎0

resulting in 𝑣′′−1 = 0 and 𝑣−1 = 0. All together, we can, thus, state that

𝑣𝓁 = 0 for all 𝓁 ∈ {−𝑁,… ,−1}, and �̂�𝓁 = 0 for all 𝓁 ∈ {−𝑁,… ,−3}. (27)

3.6 Optimal profiles of �̂� and 𝝓 to leading order

Leading order of ∇𝐿2
𝜓
 and ∇𝐿2

𝜓
 is at most 𝜀−2. We consider the evolution law (1d):

𝜕𝑡𝜓 + 𝑣 ⋅ ∇𝜓 = 𝜀
𝛼Δ

(
∇𝐿

2

𝜓
 + ∇𝐿

2

𝜓
 + ∇𝐿2

𝜓
) .

The left-hand side is atmost of order 𝜀−2 (since the velocity is atmost of order 𝜀−1, see the previous Section 3.5). So requiring
𝛼 ≤ 2, the leading order terms of 𝜀𝛼Δ(

∇𝐿
2

𝜓
)

are of order 𝜀−3 and must be zero, which is equivalent to the equation

((
�̂�′′0 −𝑊

′
(
�̂�0

))′′
−
(
�̂�′′0 −𝑊

′
(
�̂�0

))
𝑊′′

(
�̂�0

))′′
= 0.

We pose the additional condition �̂�0(𝑡, 𝑠, 0) = 0 (otherwise, we had infinitely many solutions by shifting along the
abscissa). Further, we set 𝑔 ∶=

(
�̂�′′0 −𝑊

′
(
�̂�0

))′′
−
(
�̂�′′0 −𝑊

′
(
�̂�0

))
𝑊′′

(
�̂�0

)
and observe that thanks to the counterparts

of Equations (21), (22) for 𝜓, lim|𝑧|→∞ 𝑔 = 0. By integration, we obtain
0 = 𝑔′(𝑧) − 𝑔′(0),

and sending |𝑧|→∞ gives 𝑔′(0) = 0. Conclusively, 𝑔′(𝑧) = 0 for all 𝑧 ∈ ℝ. Repeating the argument, we obtain

0 = 𝑔(𝑧) − 𝑔(0),

send |𝑧|→∞, conclude 𝑔(0) = 0 and thus have 𝑔(𝑧) = 0 for all 𝑧 ∈ ℝ. Setting 𝑓 ∶=
(
�̂�′′0 ◦ 𝜄𝜀 −𝑊

′ (𝜓0)
)
, a solution to(

�̂�′′0 −𝑊
′
(
�̂�0

))′′
−
(
�̂�′′0 −𝑊

′
(
�̂�0

))
𝑊′′

(
�̂�0

)
= 𝑔 = 0

is obviously given by 𝑓 = 0. From

𝑓 = �̂�′′0 ◦ 𝜄𝜀 −𝑊
′ (𝜓0) = 0 (28)

we further conclude with the counterparts of Equations (21), (22) for 𝜓 that �̂�0(𝑧) = tanh
(

𝑧√
2

)
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16 of 39 NÖLDNER et al.

The very same argument applies verbatim for 𝜙.

3.7 Properties of �̂�𝒂 and �̂�𝒊 to leading order

The following analysis is conducted on the example of 𝜌𝑎, but the arguments are the same for �̂�𝑖 . We consider Equation
(1i) on 𝑁𝛿(Σ):

𝑔𝜀[𝜓]𝜕𝑡𝜌𝑎 − v𝜈𝜓𝐻𝜓𝜌𝑎 − ∇ ⋅ (𝑔𝜀[𝜓]𝜂𝑎∇𝜌𝑎) + ∇ ⋅ (𝑔𝜀[𝜓]𝜌𝑎𝑣𝜏) = 𝑔𝜀[𝜓]
[
𝜌𝑎, 𝜌𝑖; 𝜙, 𝜈𝜓

]
.

Using Equation (16), the results from Section 3.5, (27), the optimal profile found for𝜓 in Section 3.6 together with Equation
(18), we have

𝑔𝜀[𝜓]𝜕𝑡𝜌
𝑖
𝑎, v𝜈𝜓𝐻𝜓𝜌

𝑖
𝑎, ∇ ⋅

(
𝑔𝜀

[
𝜓𝑖
]
𝜌𝑖𝑎𝑣

𝑖
𝜏

)
, 𝑔𝜀[𝜓] [

𝜌𝑎, 𝜌𝑖; 𝜙, 𝜈𝜓
]
∈ 𝑂

(
𝜀−𝑁−2

)
,

so to leading order only the terms at 𝜀−𝑁−3 of the diffusion term matter:

∇𝑥 ⋅

(
𝜀−𝑁−2

(
1
2

(
�̂�′0

)2
+𝑊

(
�̂�0

))
◦ 𝜄𝜀𝜂𝑎�̂�

′
𝑎−𝑁 ◦ 𝜄𝜀�̄�

)
= 𝜀−𝑁−3

((
1
2

(
�̂�′0

)2
+𝑊

(
�̂�0

))
𝜂𝑎𝜌𝑎

′
−𝑁�̂�

)′
⋅ �̄�

+𝑂
(
𝜀−𝑁−2

)
= 0.

Thus,
(
1

2

(
�̂�′0

)2
+𝑊

(
�̂�0

))
𝜂𝑎𝜌𝑎

′
−𝑁 has to be constant in 𝑧. However,

1

2

(
�̂�′0

)2
+𝑊

(
�̂�0

)
decays due to Equations (21) and

(22). Simultaneously, �̂�′𝑎−𝑁 decays as |𝑧|→∞, see Equation (23). Thus, it must even hold(
1
2

(
�̂�′0

)2
+𝑊

(
�̂�0

))
𝜂𝑎�̂�𝑎

′
−𝑁 = 0

and so𝜌𝑎′−𝑁(𝑠, 𝑧) = 0 for all 𝑠, 𝑧. Consequently, �̂�𝑎 − 𝑁 is constant in 𝑧. LeveragingEquation (23) again, it follows �̂�𝑎 − 𝑁 =
0. We may repeat this argument and find

̂𝜌𝑎𝓁 = 0 for all 𝓁 ∈ {−𝑁,… ,−1}. (29)

Finally, we have to leading order: ((
1
2

(
�̂�′0

)2
+𝑊

(
�̂�0

))
𝜂𝑎𝜌𝑎

′
0�̂�

)′
⋅ �̄� = 0,

and conclude

𝜌′𝑎(𝑠, 𝑧) = 0 for all 𝑠, 𝑧. (30)

3.8 Further properties of �̂� and �̂�

The expansion of the Willmore–Energy gradient in interfacial coordinates shall be

∇̂𝐿
2
𝜑 =

∞∑
𝑘=−3

𝜀𝑘𝑒𝑘(𝑠, 𝑧),

and in original coordinates

∇𝐿
2

𝜑  =
∞∑
𝑘=−3

𝜀𝑘𝑒𝑘

(
𝜋Φ(𝑥),

𝑑Φ(𝑥)

𝜀

)
. (31)
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NÖLDNER et al. 17 of 39

We are going to show that 𝑒−3 = 𝑒−2 = 𝑒−1 = 0 by dint of the energy inequality. Afterwards, we are going to see that
important properties of �̂�0, �̂�1 and �̂�2 follow from these equations that we will use when passing to the limit in the next
Section 4. Before going on, let us calculate

∇𝐿
2

𝜑 [𝜑] = −Δ(𝜇[𝜑]) + 𝜀−2𝜇[𝜑]𝑊′′(𝜑)

Thanks to the optimal profiles at leading order for both phase fields, compare Section 3.6, we have∇𝐿2𝜑 [𝜑] ∈ 𝑂 (
𝜀−2

)
,

and also ∇𝐿2𝜑 [𝜑] ∈ 𝑂(1). We note further

∇𝐿
2

𝜙
(𝑦) = 𝜇[𝜙](𝑦)𝐶𝜓(𝑦) − 𝜀 ∫Ω 𝑔𝜀[𝜓](𝑥)∇𝑦𝜙 ⋅ ∇𝑦𝑐

(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑥) ∈ 𝑂(1),

which follows from the optimal profile of 𝜙 and 𝜓 to leading order combined with Lemma 3.4. (The optimal profiles allow
for showing the decaying condition that is the main prerequisite of Lemma 3.4.) For

∇𝐿
2

𝜓
(𝑥) = 𝜇[𝜓](𝑥)𝐶𝜙(𝑥) − ∫Ω 𝜀𝑔𝜀[𝜙](𝑦)∇𝑥

(
𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

))
⋅ ∇𝑥𝜓 d3(𝑦)

− ∫Ω 𝑔𝜀[𝜙](𝑦)∇𝑥 ⋅
(
𝑔𝜀[𝜓](𝑥)∇𝜈𝑐

(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)𝑇 1|∇𝜓|ℙ𝜈𝜓
)
d3(𝑦) ∈ 𝑂(1),

we have to additionally consider Equation (57), and note Equation (58), as well as 1|∇𝜓|ℙ𝜈𝜓 ∈ 𝑂(𝜀). We conclude

⨏
𝑁𝛿(𝑆)

∇𝜑d3 ∈ 𝑂 (
𝜀−1

)
(again, leveraging Lemma 3.4 and using the optimal profile of 𝜙 and 𝜓 to verify the

prerequisites). The energy inequality (3) gives us additionally

∫
𝑇

0 ∫𝑁𝛿(𝑆) 𝜀
𝛼 |||∇∇𝜑 |||2 d3 d1 ∈ 𝑂(1).

Note that we can restrict to𝑁𝛿(𝑆) since the energies and their 𝐿2-gradients are zero outside to leading order. Applying the
Poincaré–Wirtinger inequality, we deduce,

⎛⎜⎜⎝∫
𝑇

0 ∫𝑁𝛿(𝑆) 𝜀
𝛼

(
∇𝜑 − ⨏𝑁𝛿(𝑆) ∇𝜑 d

3

)2
d3 d1

⎞⎟⎟⎠
1

2

≤
(
∫
𝑇

0 ∫𝑁𝛿(𝑆) 𝜀
𝛼 |||∇∇𝜑 |||2 d3 d1

) 1

2

,

which implies, using the reversed triangle inequality for ‖ ⋅ ‖𝐿2(𝑁𝛿(𝑆)),
(
∫
𝑇

0 ∫𝑁𝛿(𝑆) 𝜀
𝛼 |||∇𝜑 |||2 d3 d1

) 1

2

−
√|𝑁𝛿(𝑆)|𝜀 𝛼2 ⨏𝑁𝛿(𝑆) ∇𝜑 d3 ∈ 𝑂(1), (32)

thus (
∫
𝑇

0 ∫𝑁𝛿(𝑆)
|||∇𝜑 |||2 d3 d1

) 1

2

−
√|𝑁𝛿(𝑆)|⨏𝑁𝛿(𝑆) ∇𝜑 d3 ∈ 𝑂

(
𝜀
−
𝛼

2

)
, (33)

so

∫
𝑇

0 ∫𝑁𝛿(𝑆)
|||∇𝜑 |||2 d3 d1 ∈ 𝑂 (

𝜀−2
)
,

for 𝛼 ≤ 2. By applying Young’s inequality, we can deduce further

∫𝑁𝛿(𝑆)
|||∇𝜑 |||2 d3 = ∫𝑁𝛿(𝑆)

|||∇𝐿2𝜑  + ∇𝐿2𝜑 |||2 + 2∇𝐿2𝜑  ⋅
(
∇𝐿

2

𝜑  + ∇𝐿2𝜑 ) + |||∇𝐿2𝜑 |||2 d3,
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18 of 39 NÖLDNER et al.

which in turn implies

1
2 ∫𝑁𝛿(𝑆)

|||∇𝐿2𝜑 |||2 d3 ≤ ∫𝑁𝛿(𝑆)
|||∇𝜑 |||2 + 3 |||∇𝐿2𝜑  + ∇𝐿2𝜑 |||2 d3,

so with the co-area formula, it follows

𝜀 ∫
𝑇

0 ∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
|||∇̂2𝜑|||2 d2 d1(𝑧) d1 ∈ 𝑂 (

𝜀−2
)
. (34)

From Equation (31), the expansion

|||∇̂𝐿2𝜑|||2 = 𝜀−6𝑒2−3 + 𝜀−52𝑒−3𝑒−2 + 𝜀−4 (𝑒2−2 + 2𝑒−3𝑒−1) + 𝜀−3 (2𝑒−3𝑒0 + 2𝑒−2𝑒−1)
+ 𝜀−2

(
𝑒2−1 + 𝑒−2𝑒0 + 2𝑒−3𝑒1

)
+ 𝑂

(
𝜀−1

)
=

−2∑
𝑘=−6

𝜀𝑘𝑓𝑘(𝑠, 𝑧) + 𝑂
(
𝜀−1

)
of the integrand follows directly. Equation (34) then requires

∫
𝑇

0 ∫
∞

−∞ ∫Φ 𝑓𝑘 d
2 d1 d1 = 0

up to 𝑘 ≤ −4, so
𝑒2−3 = 𝑓−6 = 0 a.e. ⟹𝑒−3 = 0 a.e.

⟹𝑒2−2 = 𝑓−4 = 0 a.e.

⟹𝑒−2 = 0 a.e.

This in turn gives ∇𝜑 ∈ 𝑂 (
𝜀−1

)
, so ⨏

𝑁𝛿(𝑆)
∇𝜑 d3 ∈ 𝑂(1), which we insert into Equation (32), and choose 𝛼 < 1 to

obtain

∫𝑁𝛿(𝑆)
|||∇𝜑 |||2 d3 ∈ 𝑜 (𝜀−1)

hence,

∫
𝑇

0 ∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
|||∇̂�̄�2𝜑|||2 d2 d1(𝑧) d1 ∈ 𝑜 (𝜀−2) ,

so that 𝑒−1 = 0.
Now that we have found equations 𝑒−1 = 0, 𝑒−2 = 0 and 𝑒−3 = 0, we may derive information on �̂� from them.

3.8.1 Expansion of the 𝐿2-gradient of the Willmore energy

We recall that

∇
𝐿2
𝜑  = −Δ(𝜇]𝜑]) + 𝜖2𝜇[𝜑]𝑊′′(𝜑) (35)
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NÖLDNER et al. 19 of 39

First, we expand the chemical potential,

𝜇 [𝜑0 + 𝜀𝑒1] = −𝜀Δ (𝜑0 + 𝜀𝑒1) + 𝜀
−1𝑊′ (𝜑0 + 𝜀𝑒1) ,

by expanding the Laplacian term:

𝜀Δ (𝜑0 + 𝜀𝑒1) =𝜀
−1�̂�′′0 ◦ 𝜄𝜀 − �̂�

′
0 ◦ 𝜄𝜀�̄� + 𝜀ΔΓ𝑑(𝑥)𝜑0

+ �̂�′′1 ◦ 𝜄𝜀 − 𝜀�̂�
′
1 ◦ 𝜄𝜀�̄� + 𝜀

2ΔΓ𝑑(𝑥)𝜑1

+ 𝜀�̂�′′2 ◦ 𝜄𝜀 − 𝜀
2�̂�′2 ◦ 𝜄𝜀�̄�

+ 𝜀2�̂�′′3 ◦ 𝜄𝜀 + 𝑂
(
𝜀3
)

and the double well potential’s first derivative:

𝜀−1𝑊′ (𝜑0 + 𝜀𝑒1) = 𝜀
−1

(
𝑊′ (𝜑0) + 𝜀𝑊

′′ (𝜑0) 𝑒1 + 𝜀
2𝑊(3) (𝜑0) 𝑒

2
1 + 𝜀

3𝑊(4) (𝜑0) 𝑒
3
1

)
= 𝜀−1𝑊′ (𝜑0) +𝑊

′′ (𝜑0)
(
𝜑1 + 𝜀𝜑2 + 𝜀

2𝜑3
)
+ 𝜀𝑊(3) (𝜑0)

(
𝜑21 + 2𝜀𝜑1𝜑2

)
+ 𝜀2𝑊(4) (𝜑0) 𝜑

3
1

+ 𝑂
(
𝜀3
)

= 𝜀−1𝑊′ (𝜑0) +𝑊
′′ (𝜑0) 𝜑1 + 𝜀

(
𝑊′′ (𝜑0) 𝜑2 +𝑊

(3) (𝜑0) 𝜑
2
1

)
+ 𝜀2

(
𝑊′′ (𝜑0) 𝜑3 + 2𝑊

(3) (𝜑0) 𝜑1𝜑2 +𝑊
(4) (𝜑0) 𝜑

3
1

)
+ 𝑂

(
𝜀3
)
.

The expansion of the chemical potential then reads

𝜇 [𝜑0 + 𝜀𝑒1] = 𝜀
−1𝜇−1[𝜑] + 𝜇0[𝜑] + 𝜀𝜇1[𝜑] + 𝜀

2𝜇2[𝜑] + 𝑂
(
𝜀3
)

(36)

with

𝜇−1[𝜑] = −�̂�
′′
0 ◦ 𝜄𝜀 +𝑊

′ (𝜑0) ,

𝜇0[𝜑] = �̂�
′
0 ◦ 𝜄𝜀�̄� − �̂�

′′
1 ◦ 𝜄𝜀 +𝑊

′′ (𝜑0) 𝜑1,

𝜇1[𝜑] = −ΔΓ𝑑(𝑥)𝜑0 + �̂�
′
1 ◦ 𝜄𝜀�̄� − �̂�

′′
2 ◦ 𝜄𝜀 +𝑊

′′ (𝜑0) 𝜑2 +𝑊
(3) (𝜑0) 𝜑

2
1,

𝜇2[𝜑] = −ΔΓ𝑑(𝑥)𝜑1 + �̂�
′
2 ◦ 𝜄𝜀�̄� − �̂�

′′
3 ◦ 𝜄𝜀 +𝑊

′′ (𝜑0) 𝜑3 + 2𝑊
(3) (𝜑0) 𝜑1𝜑2 +𝑊

(4) (𝜑0) 𝜑
3
1. (37)

Expansion of Δ(𝜇[𝜑]):
We may rewrite 𝜇𝑖[𝜑] = �̂�𝑖[�̂�] ◦ 𝜄𝜀 and treat the Laplacian terms Δ (𝜇𝑖[𝜑]) with Equation (8):

Δ (𝜇𝑖[𝜑]) = 𝜀
−2�̂�𝑖[�̂�]

′′ ◦ 𝜄𝜀 − 𝜀
−1�̂�𝑖[�̂�]

′ ◦ 𝜄𝜀�̄� + ΔΓ𝑑(𝑥) (𝜇𝑖[𝜑])

giving

Δ(𝜇[𝜑]) =𝜀−3
(
�̂�−1[�̂�]

′′ ◦ 𝜄𝜀
)
+

𝜀−2
(
−�̂�−1[�̂�]

′ ◦ 𝜄𝜀�̄� + �̂�0[�̂�]
′′ ◦ 𝜄𝜀

)
+

𝜀−1
(
ΔΓ𝑑(𝑥) (𝜇−1[𝜑]) − �̂�0[�̂�]

′ ◦ 𝜄𝜀�̄� + �̂�1[�̂�]
′′ ◦ 𝜄𝜀

)
+

ΔΓ𝑑(𝑥) (𝜇0[𝜑]) − �̂�1[�̂�]
′ ◦ 𝜄𝜀�̄� + �̂�2[�̂�]

′′ ◦ 𝜄𝜀+

𝑂(𝜀).
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20 of 39 NÖLDNER et al.

Expansion of 𝜀−2𝑊′′(𝜑)𝜇[𝜑]:
For obtaining the expansion of 𝜀−2𝑊′′(𝜑)𝜇[𝜑], the remaining ingredient is an expansion of𝑊′′(𝜑):

𝜀−2𝑊′′ (𝜑0 + 𝜀𝑒1) = 𝜀
−2𝑊′′ (𝜑0) + 𝜀

−1𝑊(3) (𝜑0) 𝜑1 +𝑊
(3) (𝜑0) 𝜑2 +𝑊

(4) (𝜑0) 𝜑
2
1

+ 𝜀
(
𝑊(3) (𝜑0) 𝜑3 + 2𝑊

(4) (𝜑0) 𝜑1𝜑2 +𝑊
(5) (𝜑0) 𝜑

3
1

)
+ 𝑂

(
𝜀2
)
. (38)

Multiplication of Equations (36) and (38) gives

𝜀−2𝑊′′(𝜑)𝜇[𝜑] = 𝜀−3
(
𝜇−1[𝜑]𝑊

′′ (𝜑0)
)
+

𝜀−2
(
𝜇0[𝜑]𝑊

′′ (𝜑0) + 𝜇−1[𝜑]𝑊
(3) (𝜑0) 𝜑1

)
+

𝜀−1
(
𝜇1[𝜑]𝑊

′′ (𝜑0) + 𝜇0[𝜑]𝑊
(3) (𝜑0) 𝜑1 + 𝜇−1[𝜑]

(
𝑊(3) (𝜑0) 𝜑2 +𝑊

(4) (𝜑0) 𝜑
2
1

))
+

𝜇2[𝜑]𝑊
′′ (𝜑0) + 𝜇1[𝜑]𝑊

(3) (𝜑0) 𝜑1 + 𝜇0[𝜑]
(
𝑊(3) (𝜑0) 𝜑2 +𝑊

(4) (𝜑0) 𝜑
2
1

)
+

𝜇−1[𝜑]
(
𝑊(3) (𝜑0) 𝜑3 + 2𝑊

(4) (𝜑0) 𝜑1𝜑2 +𝑊
(5) (𝜑0) 𝜑

3
1

)
+

𝑂(𝜀).

Finally, we draw the following conclusions for �̂�0, �̂�1 and �̂�2 by evaluating the equations 𝑒𝑖 = 0, for 𝑖 ∈ {−1,−2, −3}:

∙ 𝑒−3 = 0: This is an equation we have already encountered in Section 3.6, and it reassures the optimal profile �̂�0(𝑠, 𝑧) =

tanh

(
𝑧√
2

)
.

∙ 𝑒−2 = 0: We use

0 = −�̂�0[�̂�]
′′ ◦ 𝜄𝜀 + 𝜇0[𝜑]𝑊

′′ (𝜑0) , (39)

and compute

−�̂�0[𝜑]
′′ = −

(
�̂�′0�̂�

)′′
+
(
�̂�′′1 −𝑊

′′ (�̂�0) �̂�1
)′′

= −�̂�(3)0 �̂� − 2�̂�
′′
0 �̂�

′ − �̂�′0�̂�
′′ +

(
�̂�′′1 −𝑊

′′ (�̂�0) �̂�1
)′′

(40)

with

�̂�′′(𝑠, 𝑧) = �̄� (𝑠 + 𝜀𝑧𝜈𝑆(𝑠))
′
= 𝜀∇�̄� (𝑠 + 𝜀𝑧𝜈𝑆(𝑠)) ⋅ 𝜈𝑆(𝑠) (41)

and

�̂�′′(𝑠, 𝑧) = �̄� (𝑠 + 𝜀𝑧𝜈𝑆(𝑠))
′′
= 𝜀2∇2�̄� (𝑠 + 𝜀𝑧𝜈𝑆(𝑠)) ∶ 𝜈𝑆(𝑠) ⊗ 𝜈𝑆(𝑠). (42)

Passing the last two terms to lower scales, we obtain from Equation (39),

−�̄��̂�(3)0 ◦ 𝜄𝜀 +
(
�̂�′′1 +𝑊

′′ (�̂�0) �̂�1
)′′
◦ 𝜄𝜀 −

(
−�̄��̂�′0 ◦ 𝜄𝜀 + �̂�

′′
1 ◦ 𝜄𝜀 −𝑊

′′ (𝜑0) 𝜑1
)
𝑊′′ (𝜑0) = 0.

We note that from the optimal profile property �̂�′′0 ◦ 𝜄𝜀 −𝑊
′ (𝜑0) = 0 the relation �̂�

(3)
0 = �̂�′0𝑊

′′ (�̂�0) directly follows, so
we may further simplify: (

�̂�′′1 +𝑊
′′ (�̂�0) �̂�1

)′′
◦ 𝜄𝜀 −

(
�̂�′′1 ◦ 𝜄𝜀 −𝑊

′′ (𝜑0) 𝜑1
)
𝑊′′ (𝜑0) = 0,

which is solved by

�̂�1 = 0. (43)
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NÖLDNER et al. 21 of 39

∙ 𝑒−1 = 0: Equation

0 = �̄��̂�0[�̄�]
′ ◦ 𝜄𝜀 − �̂�1[�̂�]

′′ ◦ 𝜄𝜀 + 𝜇1[𝜑]𝑊
′′ (𝜑0) − 2�̂�

′′
0 ◦ 𝜄𝜀∇�̄� ⋅ �̄�(𝑥)

is equivalent to

0 =�̄�2�̂�′′0 ◦ 𝜄𝜀 − �̂�1[�̂�]
′′ ◦ 𝜄𝜀 + 𝜇1[𝜑]𝑊

′′ (𝜑0) − 2�̂�
′′
0 ◦ 𝜄𝜀∇�̄� ⋅ �̄�(𝑥)

+ 𝜀�̄��̂�′0 ◦ 𝜄𝜀∇�̄� ⋅ �̄� (44)

using �̂�1 = 0 so that 𝜇0[𝜑] = �̂�′0 ◦ 𝜄𝜀�̄�. We use Lemma 3.1 abbreviating �̂�(𝑠, 0) =∶ �̂�
|||𝑆 (𝑠):

∇(�̄�)||𝑥 ⋅ �̄�(𝑥) =
(

2∑
𝑖=1

�̂�2𝑖 + 2𝜀𝑧�̂�
3
𝑖 + 𝑂

(
𝜀2
))

◦ 𝜄𝜀 (𝜋𝑆(𝑥))

=

(
�̂�|||2𝑆 − 2�̂�|||𝑆 + 2𝜀𝑧

(
�̂�|||3𝑆 − 3�̂�|||𝑆 �̂�||||𝑆

)
+ 𝑂

(
𝜀2
))
◦ 𝜄𝜀 (𝜋𝑆(𝑥)) (45)

and

�̄�(𝑥)2 =

(
�̂�|||𝑆 + 𝜀𝑧

(
�̂�|||2𝑆 − 2�̂�|||𝑆

)
+ 𝑂

(
𝜀2
))2

◦ 𝜄𝜀 (𝜋𝑆(𝑥))

=

(
�̂�|||2𝑆 + 2𝜀𝑧�̂�|||𝑆

(
�̂�|||2𝑆 − 2�̂�|||𝑆

)
+ 𝑂

(
𝜀2
))
◦ 𝜄𝜀 (𝜋𝑆(𝑥)) (46)

Passing all terms of lower order to the lower scales, we obtain

0 = �̂�|||2𝑆 �̂�′′0 − �̂�1[�̂�]′′ + 𝜇1[�̂�]𝑊′′ (�̂�0) − 2�̂�
′′
0

(
�̂�|||2𝑆 − 2�̂�|||𝑆

)
= −�̂�1[�̂�]

′′ + 𝜇1[�̂�]𝑊
′′ (�̂�0) − �̂�

′′
0

(
�̂�|||2𝑆 − 4�̂�|||𝑆

)
. (47)

We make the ansatz �̂�1[�̂�](𝑠, 𝑧) = −
(
�̂�|||2𝑆 − 4�̂�|||𝑆

)
(𝑠)𝑠1(𝑧) Then, Equation (47) becomes

0 =

(
�̂�|||2𝑆 − 4�̂�|||𝑆

)(
𝑠′′1 − 𝑠1𝑊

′′ (�̂�0) − �̂�
′′
0

)
.

Substituting �̂�′′0 = 𝑊
′ (�̂�0), and solving for

0 = 𝑠′′1 − 𝑠1𝑊
′′ (�̂�0) − �̂�

′′
0

gives 𝑠1(𝑧) =
1

2
�̂�′0(𝑧)𝑧 as in Wang [18, Theorem 2.13, Equ. (2.29)], so

�̂�1[�̂�](𝑠, 𝑧) = −
1
2

(
�̂�|||2𝑆 − 4�̂�|||𝑆

)
(𝑠)�̂�′0(𝑧)𝑧. (48)

3.9 Revisiting 𝒗 and �̂� at leading order

The incompressibility (1b) gives with Equation (10) to leading order 𝜀−1

(𝑣0 ⋅ �̄�)
′
= 0. (49)
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22 of 39 NÖLDNER et al.

We have shown in Section 3.8 that∇𝐿2𝜑  ∈ 𝑂(1). This gives, by repeating the arguments used in Section 3.5, �̂�−2 = 0. Using
Equations (9), (11) and (12), we compute for the inner expansion on 𝑁𝛿(Γ) ∪ 𝑁𝛿(Σ), 𝑆 ∈ {Γ, Σ},

𝜕𝑡𝑣 = 𝜕𝑡𝑣
𝑖
0 − 𝜀

−1𝑣′0 ◦ 𝜄𝜀𝑉
Φ
𝜈 + 𝑣

′
1 ◦ 𝜄𝜀 + 𝑂(𝜀),

∇𝑣 = 𝜀−1𝑣′0 ◦ 𝜄𝜀 ⊗ �̄� + ∇𝑆𝑑𝑣
𝑖
0 + 𝑣

′
1 ◦ 𝜄𝜀 ⊗ �̄� + 𝑂(𝜀)

resulting in

(𝑣 ⋅ ∇)𝑣 = 𝜀−1𝑣′0 ◦ 𝜄𝜀𝑣
𝑖
0 ⋅ �̄� + 𝑣

′
0 ◦ 𝜄𝜀𝑣

𝑖
1 ⋅ �̄� +

(
∇𝑆𝑑𝑣

𝑖
0 + 𝑣

′
1 ◦ 𝜄𝜀 ⊗ �̄�

)
𝑣𝑖0 + 𝑂(𝜀),

and

Δ𝑣𝑖 = 𝜀−2𝑣′′0 ◦ 𝜄𝜀 + 𝜀
−1

(
−𝑣′0�̄� + 𝑣

′′
1

)
+ ΔΦ𝑑𝑣

𝑖
0 − 𝑣

′
1�̄� + 𝑣

′′
2 ◦ 𝜄𝜀 + 𝑂(𝜀).

At leading order 𝜀−2 of Equation (1a), we thus find

−𝜂𝑣′′0 ◦ 𝜄𝜀 + �̂�
′
−1 ◦ 𝜄𝜀�̄� = 0.

Multiplication by �̄� and using Equation (49) gives

�̂�′−1 = 0. (50)

By matching Equation (23), �̂�−1 = 0. Inserting back again, we obtain 𝑣′′0 = 0 Conclusively, 𝑣
′
0 is constant in 𝑧. Matching

with the outer expansion (
lim
𝑧↗∞

𝑣0

)
◦ 𝜄𝜀(𝑥) = lim

𝛿↘0
𝑣𝑜0 (𝜋𝑆(𝑥) + 𝛿𝜈𝑆 (𝜋𝑆(𝑥)))

and (
lim
𝑧↘−∞

𝑣0

)
◦ 𝜄𝜀(𝑥) = lim

𝛿↗0
𝑣𝑜0 (𝜋𝑆(𝑥) + 𝛿𝜈𝑆 (𝜋𝑆(𝑥)))

indicates that 𝑣0 is bounded. Thus, it must hold

𝑣′0 = 0. (51)

4 SHARP INTERFACE LIMIT

By inserting the expansions in interfacial coordinates of the components of the solution of Equation (1) into the systems’
equations, we have managed to

∙ eliminate the velocity expansion’s summands up to (and including) order 𝜀−1,
∙ eliminate the pressure expansion’s summands up to (and including) order 𝜀−3,
∙ show that both phase fields assume the optimal profile at leading order,
∙ show that 𝜑1 = 0,
∙ and derive Equation (48).

Before we can make use of these findings and pass to the limit 𝜀 → 0, we compute the expansions of the remaining terms
in 𝐾 (see the right-hand side of Equation 1a).
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4.1 Expansion of 𝛁𝑳𝟐 and remaining force terms

We compute the asymptotic expansions of ∇𝐿2
𝜙
, ∇𝐿2

𝜓
,

𝐺𝜀 ∶= −𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝜌𝑎𝜈𝜓 = −𝜌𝑎𝐻𝜓 ∫Ω 𝑔𝜀[𝜙](𝑦)𝜕𝜌𝑎𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑦)𝜈𝜓,

and

𝐻𝜀 ∶= −𝑔𝜀[𝜓]ℙ𝜈𝜓∇𝜕𝜌𝑎𝐶𝜙𝜌𝑎 = −∫Ω 𝑔𝜀[𝜙](𝑦)ℙ𝜈𝜓∇𝑥
(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

))
𝑔𝜀[𝜓]𝜌𝑎 d3(𝑦).

Expansion of ∇𝐿2𝜙  ∶
We recall from Equation (2d) that

∇𝐿
2

𝜙
 = 𝐴𝜖 + 𝐵𝜖 (52a)

with

𝐴𝜀(𝑦) =
(
−𝜀Δ𝑦𝜙 + 𝜀

−1𝑊′(𝜙)
)
(𝑦)∫𝑁𝛿(Σ) 𝑔𝜀[𝜓](𝑥)𝑐

(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑥) + 𝑂(𝜀),

𝐵𝜀(𝑦) = −𝜀∇𝑦𝜙 ⋅ ∫𝑁𝛿(Σ) 𝑔𝜀[𝜓](𝑥)∇𝑦
(
𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

))
d3(𝑥) + 𝑂(𝜀). (52b)

We further expand

𝑐
(
𝑥, 𝑦, 𝜌𝑎0 + 𝜀𝑟1, 𝜈𝜓0+𝜀𝑠1

)
= 𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝜀∇𝜌𝑎,𝜈𝑐 ⋅

(
𝑟1,

d
d𝜀

(
𝜈𝜓0+𝜀𝑠1

)||||0
)𝑇
+ 𝑂

(
𝜀2
)
,

and note

d
d𝜀

(
𝜈𝜓0+𝜀𝑠1

)||||0 = 1|∇𝜓0|ℙ𝜈𝜓0∇𝑠1 ∈ 𝑂(1), (53)

and thus

∇𝜌𝑎,𝜈𝑐 ⋅

(
𝑟1,

d
d𝜀

(
𝜈𝜓0+𝜀𝑠1

)||||0
)𝑇
∈ 𝑂(1).

By employing Equation (16), we expand 𝐴𝜀:

∫𝑁𝛿(Σ) 𝑔𝜀[𝜓](𝑥)𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑥) =

∫𝑁𝛿(Σ) 𝜀
−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜓0(𝑥))

)
𝑐
(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥).

Multiplication with
(
−𝜀Δ𝑦𝜙 + 𝜀

−1𝑊′(𝜙)
)
yields

𝐴𝜀(𝑦) = �̂�
′
0 ◦ 𝜄𝜀(𝑦)�̄�(𝑦)∫𝑁𝛿(Σ) 𝜀

−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜓0(𝑥))

)
𝑐
(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥)

thanks to �̂�0 being the optimal profile, and Equation (43).
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24 of 39 NÖLDNER et al.

In order to expand 𝐵𝜀, we first compute

∇𝑦𝑐
(
𝑥, 𝑦, 𝜌𝑎0 + 𝜀𝑟1, 𝜈𝜓0+𝜀𝑠1

)
= ∇𝑦𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝜀∇𝜌𝑎,𝜈∇𝑦𝑐

(
𝑟1

1|𝜓0|ℙ𝜈𝜓0∇𝑠1
)
+ 𝑂

(
𝜀2
)
.

Therefore, using Equation (16), we find

∫𝑁𝛿(Σ) 𝑔𝜀[𝜓]∇𝑦𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑥) =

∫𝑁𝛿(Σ) 𝜀
−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜓0(𝑥))

)
∇𝑦𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥).

Multiplication with −𝜀∇𝜙 gives

𝐵𝜀(𝑦) = −�̂�
′
0 ◦ 𝜄𝜀(𝑦)∫𝑁𝛿(Σ) 𝜀

−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜓0(𝑥))

)
�̄�(𝑦) ⋅ ∇𝑦𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥).

Expansion of ∇𝐿2𝜓  ∶
We recall Equation (2e),

∇𝐿
2
𝜓

= 𝐶𝜀 + 𝐷𝜀 + 𝐸𝜀 (54a)

with

𝐶𝜀(𝑥) =
(
−𝜀Δ𝑥𝜓 + 𝜀

−1𝑊′(𝜓)
)
(𝑥)∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)𝑐

(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑦),

𝐷𝜀(𝑥) = −𝜀∇𝑥𝜓 ⋅ ∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)∇𝑥
(
𝑐
(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

))
d3(𝑦), (54b)

𝐸𝜀(𝑥) = −∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)∇𝑥 ⋅
(
𝑔𝜀[𝜓]∇𝜈𝑐

𝑇 1|∇𝜓|ℙ𝜈𝜓
)
d3(𝑦).

Before we start expanding these terms, we prove the following formulae:

Lemma 4.1. It holds,

∇𝜓|∇𝜓| = �̄� + 𝑂 (
𝜀2
)

(55)

∇2𝜓 = 𝜀−2�̂�′′0 ◦ 𝜄𝜀�̄� ⊗ �̄� + 𝜀
−1�̂�′0 ◦ 𝜄𝜀∇�̄� + �̂�

′′
2 ◦ 𝜄𝜀�̄� ⊗ �̄� + 𝑂(𝜀). (56)

Proof. Ad (55): Due to �̂�0 being the optimal profile and it thus being independent of the tangential variable 𝑠, and
considering Equation (43), we have

∇𝜓 = 𝜀−1�̂�′0 ◦ 𝜄𝜀�̄� + ∇Σ𝑑 �̂�0 + �̂�
′
1 ◦ 𝜄𝜀�̄� + 𝑂(𝜀) = 𝜀

−1�̂�′0 ◦ 𝜄𝜀�̄� + 𝑂(𝜀).

This observation brings the claimed expansion for the product of ∇𝜓 and |∇𝜓|−1 using Equation (19).
Ad (56):

∇ (𝜕𝑖𝜓) = 𝜀
−2�̂�′′0 ◦ 𝜄𝜀�̄��̄�𝑖 + 𝜀

−1∇Σ𝑑
(
�̂�′0 ◦ 𝜄𝜀

)
�̄�𝑖 + 𝜀

−1�̂�′0 ◦ 𝜄𝜀∇�̄�𝑖

+ ∇Σ𝑑
(
𝜀−1�̂�′0 ◦ 𝜄𝜀�̄�𝑖 + ∇Σ𝑑 (𝜓0) (𝑖)

)
+ ∇

(
�̂�′1 ◦ 𝜄𝜀∇𝜈𝑖 + 𝜀∇Σ𝑑 �̂�1(𝑖)

)
+ �̂�′′2 ◦ 𝜄𝜀�̄��̄�𝑖 + 𝑂(𝜀).
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NÖLDNER et al. 25 of 39

We again use the optimal profile and Equation (43) to conclude

𝜀−1∇Σ𝑑
(
�̂�′0 ◦ 𝜄𝜀

)
𝜈𝑖 = ∇Σ𝑑

(
𝜀−1�̂�′0 ◦ 𝜄𝜀𝜈𝑖 + ∇Σ𝑑 (𝜓0) (𝑖)

)
= ∇

(
�̂�′1 ◦ 𝜄𝜀∇𝜈𝑖 + 𝜀∇Σ𝑑 �̂�1(𝑖)

)
= 0,

and the claim follows. □

𝐶𝜀 is expanded just like 𝐴𝜀:

𝐶𝜀(𝑥) = �̂�
′
0 ◦ 𝜄𝜀(𝑥)�̄�(𝑥)∫𝑁𝛿(Σ) 𝜀

−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜙0(𝑥))

)
𝑐
(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑦).

We continue by expanding 𝐷𝜀: First note

𝜀∇𝑥𝜓 ⋅ ∇𝑥
(
𝑐
(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

))
= 𝜀∇𝑥𝜓 ⋅

(
∇𝑥𝑐 + 𝜕𝜌𝑎𝑐∇𝑥𝜌𝑎 + ∇𝜈

𝑇
𝜓
∇𝜈𝑐

)
.

Then we observe 𝜀∇𝑥𝜓𝑇∇𝜈𝑇𝜓 = 𝑂(𝜀), so

𝜀∇𝑥𝜓 ⋅ ∇𝑥𝑐 =
(
�̂�′0 ◦ 𝜄𝜀�̄� + 𝑂(𝜀)

)
⋅
(
∇𝑥𝑐 + 𝜕𝜌𝑎𝑐∇𝜌𝑎

)
= �̂�′0 ◦ 𝜄𝜀�̄� ⋅

(
∇𝑥𝑐 + 𝜕𝜌𝑎𝑐∇𝜌𝑎

)
+ 𝑂(𝜀),

where the last equality is justified by Equation (30). Then,

𝐷𝜀(𝑥) = −∫𝑁𝛿(Γ) 𝜀
−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀(𝑦) +𝑊 (𝜙0(𝑦))

)(
�̂�′0 ◦ 𝜄𝜀�̄� ⋅

(
∇𝑥𝑐 + 𝜕𝜌𝑎𝑐∇𝜌𝑎

)
+ 𝑂(𝜀)

)
+ 𝑂(𝜀) d3(𝑦).

At last, we turn to 𝐸𝜀 and compute

∇𝑥 ⋅

(
𝑔𝜀[𝜓]∇𝜈𝑐

𝑇 1|∇𝜓|ℙ𝜈𝜓
)
= ∇𝑥 (𝑔𝜀[𝜓]) ⋅

1|∇𝜓|ℙ𝜈𝜓𝑇∇𝜈𝑐 + 𝑔𝜀[𝜓]∇ ⋅
(

1|∇𝜓|ℙ𝑇𝜈𝜓∇𝜈𝑐
)

= ∇𝜈𝑐
𝑇 1|∇𝜓|ℙ𝜈𝜓∇𝑥 (𝑔𝜀[𝜓])

+ 𝑔𝜀[𝜓]

(
1|∇𝜓|∇ (∇𝜈𝑐) ∶ ℙ𝜈𝜓 + ∇𝜈𝑐 ⋅ ∇ ⋅

(
1|∇𝜓|ℙ𝜈𝜓

))
. (57)

On the first term, we use Equations (56) and (43) (for the expansion of the double well potential) to obtain

∇ (𝑔𝜀[𝜓]) =
(
𝜀∇2𝜓 + 𝜀−1𝑊′(𝜓)

)
∇𝜓

=
(
𝜀−1�̂�′′0 ◦ 𝜄𝜀�̄� ⊗ �̄� + �̂�

′
0 ◦ 𝜄𝜀∇�̄� + 𝜀

−1𝑊′ (𝜓0) + 𝑂(𝜀)
) (
𝜀−1�̂�′0 ◦ 𝜄𝜀�̄� + 𝑂(𝜀)

)
= 𝜀−2

(
�̂�′′0 ◦ 𝜄𝜀�̂�

′
0 ◦ 𝜄𝜀�̄� + 𝑊

′ (𝜓0) �̂�
′
0 ◦ 𝜄𝜀�̄�

)
+ 𝑂(1).

Since ℙ𝜈𝜓 �̄� ∈ 𝑂
(
𝜀2
)
thanks to Equation (55), we have

∇𝜈𝑐
𝑇 1|∇𝜓|ℙ𝜈𝜓∇ (𝑔𝜀[𝜓]) ∈ 𝑂(𝜀). (58)

Second, we calculate

𝑔𝜀[𝜓]
1|∇𝜓|∇ (∇𝜈𝑐) ∶ ℙ𝜈𝜓 =

(
𝜀−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀 +𝑊 (𝜓0)

)
+ 𝑂(𝜀)

)
1|∇𝜓| (∇ (∇𝜈𝑐) ∶ ℙ�̄� + 𝑂 (

𝜀2
))

= 𝜀−1
1|∇𝜓|

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀 +𝑊 (𝜓0)

)
∇Σ𝑑(𝑥) ⋅ (∇𝜈𝑐) + 𝑂

(
𝜀2
)
.
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26 of 39 NÖLDNER et al.

Third,

∇ ⋅

(
1|∇𝜓|ℙ𝜈𝜓

)
= ℙ𝜈𝜓∇

(
1|∇𝜓|

)
+

1|∇𝜓|∇ ⋅ ℙ𝜈𝜓 ,
We further compute

∇

(
1|∇𝜓|

)
= −

1|∇𝜓|3 ∇2𝜓∇𝜓 = − 1|∇𝜓|2 ∇2𝜓�̄�,
and using Equation (56), we find

∇𝜈𝑐 ⋅ ∇ ⋅

(
1|∇𝜓|ℙ𝜈𝜓

)
= ∇𝜈𝑐 ⋅ ℙ𝜈𝜓∇

(
1|∇𝜓|

)
+ ∇𝜈𝑐 ⋅

1|∇𝜓|∇ ⋅ ℙ𝜈𝜓 = ∇𝜈𝑐 ⋅ 1|∇𝜓|∇ ⋅ ℙ𝜈𝜓 + 𝑂 (
𝜀3
)
.

Finally,

∇ ⋅ ℙ𝜈𝜓 = −(∇�̄��̄� + �̄�∇ ⋅ �̄� + 𝑂(𝜀)) = �̄��̄� + 𝑂(𝜀),

so

𝐸𝜀(𝑥) = −
𝜀−1|∇𝑥𝜓|

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥) +𝑊 (𝜓0(𝑥))

)
.

⋅ ∫𝑁𝛿(Γ) 𝜀
−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀(𝑦) +𝑊 (𝜙0(𝑦))

)(
∇Σ𝑑(𝑥) ⋅ (∇𝜈𝑐) + ∇𝜈𝑐 ⋅ �̄�(𝑥)�̄�(𝑥)

)
d3(𝑦) + 𝑂(1).

Expansion of 𝐺𝜀:
We use Equations (16), (18) and (55) in connection with Equation (43) to obtain

𝐺𝜀 = − ∫Ω 𝑔𝜀[𝜙](𝑦)𝜌𝑎𝐻𝜓𝜕𝜌𝑎𝑐
(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

)
𝜈𝜓 d3(𝑦) =

− 𝜀−1𝜌𝑎0
(
�̂�′0

)2
�̄��̄� ∫𝑁𝛿(Γ) 𝜀

−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀(𝑦) +𝑊 (𝜙0(𝑦))

)
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
d3(𝑦) + 𝑂(1).

Expansion of𝐻𝜀:
As before, we employ Equations (16) and (55) to obtain

𝐻𝜀 = − ∫Ω 𝑔𝜀[𝜙](𝑦)ℙ𝜈𝜓∇𝑥
(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

))
𝑔𝜀[𝜓]𝜌𝑎 d3(𝑦) = −𝜀−1

(
1
2

(
�̂�′0
)2
◦ 𝜄𝜀 +𝑊 (𝜓0)

)
⋅ ∫Ω 𝜀

−1

(
1
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑦) +𝑊 (𝜙0(𝑦))

)
∇Σ𝑑

(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎0, 𝜈𝜓0

))
𝜌𝑎0 d3(𝑦) + 𝑂(1).

We now show, using the results of the analysis in the previous sections, that classical solutions of Equation (1) converge
formally to solutions of Equation (4) for 𝜀 ↘ 0. In the following, we will often use that

(
�̂�′0(𝑧)

)2
=
(
�̂�′0(𝑧)

)2
=
⎛⎜⎜⎝tanh

(
𝑧√
2

)′⎞⎟⎟⎠
2

=
1
2

⎛⎜⎜⎝1 − tanh
(
𝑧√
2

)2⎞⎟⎟⎠
2

is integrable, and we will abbreviate

𝑍 ∶=
1
2 ∫

∞

−∞

⎛⎜⎜⎝1 − tanh
(
𝑧√
2

)2⎞⎟⎟⎠
2

d1(𝑧).
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We also partition all integrals overΩ into an interal over𝑁𝛿(𝑆) and one overΩ𝛿 = Ω∖𝑁𝛿(𝑆). In the latter region, the outer
expansions hold, and thus the integrands are all of lower order vanishing in the limit, so we can neglect them.

4.2 Momentum balance and mass conservation

4.2.1 Outer region

At order 𝜀0, we find with the results of Section 3.3 (causing all the energy gradient terms on the right to vanish)

𝜌
(
𝜕𝑡𝑣

𝑜
0 +

(
𝑣𝑜0 ⋅ ∇

)
𝑣𝑜0
)
− ∇ ⋅

(
𝜂
(
∇𝑣𝑜0 + ∇𝑣

𝑜𝑇
0

))
+ ∇𝑝𝑜0 = 0,

and for the incompressibility condition

∇ ⋅ 𝑣𝑜0 = 0.

This gives Equations (4a) and (4b).

4.2.2 Inner region

Let 𝑆 ∈ {Γ, Σ}. We note that the matching conditions for the velocity state the no-jump conditions (4d), (4e).
Plugging further the inner expansion into Equation (1a) and using Equations (50) and (51), we find

−𝜀−1

((
𝜂𝑣′1

)′
+

(
∇̂Φ𝑑𝑣0

𝑇
𝜂𝑇

)′
�̂� + �̂� ⊗ 𝑣′′1 �̂�

)
◦ 𝜄𝜀 + 𝜀

−1�̂�′0 ◦ 𝜄𝜀�̄� + 𝑟 =

𝜀−1
(
∇𝐿

2

𝜙
 �̂�′0 ◦ 𝜄𝜀 + ∇𝐿2𝜓  �̂�′0 ◦ 𝜄𝜀

)
�̄� − 𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝑖0

𝜈𝜓𝑖0𝜌
𝑖
𝑎0,

where 𝑟 = 𝑟 ◦ 𝜄𝜀 with 𝑟 ∈ 𝑂(1). For understanding the limit of this equation, let us consider its variational formulation
with test functions 𝑤 ∈

[
𝐻1(Ω)

]3
. The left-hand side then reads

𝜀−1 ∫𝑁𝛿(Γ)∪𝑁𝛿(Σ)
(
−
(
𝜂𝑣′1

)′
◦ 𝜄𝜀 +

(
∇̂Φ𝑑𝑣0

𝑇
𝜂𝑇

)′
�̄� ◦ 𝜄𝜀�̄� + �̄� ⊗ 𝑣

′′
1 ◦ 𝜄𝜀�̄� + �̂�

′
0 ◦ 𝜄𝜀�̄�

)
⋅ 𝑤 d3 =

∫
𝛿

𝜀

−
𝛿

𝜀

∫Γ𝜀𝑧∪Σ𝜀𝑧
((

−
(
𝜂𝑣′1

)′
+

(
∇̂Φ𝜀𝑧𝑣0

𝑇
𝜂𝑇

)′
�̂� + �̂� ⊗ 𝑣′′1 �̂�

)
(𝜋Σ∪Γ(𝜎), 𝑧) + �̂�

′
0 (𝜋Σ∪Γ(𝜎), 𝑧) �̄�(𝜎)

)
⋅ 𝑤 d2(𝜎) d𝑧 =

∫Γ𝜀𝑧∪Σ𝜀𝑧
⎛⎜⎜⎝
[
−𝜂𝑣′1 +

(
∇̂Φ𝜀𝑧𝑣0

𝑇
𝜂𝑇

)
�̂� + �̂� ⊗ 𝑣′1�̂�

] 𝛿
𝜀

−
𝛿

𝜀

(𝜋Σ∪Γ(𝜎)) + [�̂�0]
𝛿

𝜀

−
𝛿

𝜀

(𝜋Σ∪Γ(𝜎)) �̄�(𝜎)
⎞⎟⎟⎠ ⋅ 𝑤 d2(𝜎). (59)

We can rewrite the integral of −𝜂𝑣′1 +
(
∇̂Φ𝜀𝑧

𝑇

0
𝜂𝑇

)
�̂� + �̂� ⊗ 𝑣′1�̂� in 𝑧 by looking at the expansions of ∇𝑣�̄� and of ∇𝑣

𝑇�̄� in

interfacial coordinates:

∇ (𝑣 ◦ 𝜄𝜀) �̄� = 𝜀
−1𝑣′0 ◦ 𝜄𝜀 + 𝑣

′
1 ◦ 𝜄𝜀 + 𝑂(𝜀)

= 𝑣′1 ◦ 𝜄𝜀 + 𝑂(𝜀),

and

∇ (𝑣 ◦ 𝜄𝜀)
𝑇
�̄� = 𝜀−1𝑣 ⊗ 𝑣′0 ◦ 𝜄𝜀𝑣 + ∇Φ𝑑𝑣0

𝑇�̄� ⊗ 𝑣′1 ◦ 𝜄𝜀𝑣 + 𝑂(𝜀)

= ∇Φ𝑑𝑣0
𝑇�̄� + �̄� ⊗ 𝑣′1 ◦ 𝜄𝜀�̄� + 𝑂(𝜀),
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28 of 39 NÖLDNER et al.

respectively (following with Equations 11 and 51). With the matching conditions for ∇𝑣�̄� and ∇𝑣𝑇�̄�, we further obtain

lim
𝛼↘0

(∇𝑣0�̄�) (𝜋𝑆(𝑥) + 𝛼𝜈𝑆 (𝜋𝑆(𝑥))) =

(
lim
𝑧↗∞

𝑣′1

)
◦ 𝜄𝜀(𝑥),

lim
𝛼↘0

(
∇𝑣𝑇0 �̄�

)
(𝜋𝑆(𝑥) + 𝛼𝜈𝑆 (𝜋𝑆(𝑥))) = lim

𝑧↗∞

(
∇̂Φ𝑑𝑣0

𝑇
)
◦ 𝜄𝜀�̄� + �̄� ⊗ lim

𝑧↗∞

(
𝑣′1
)
◦ 𝜄𝜀�̄�. (60)

The computations go analogously for the limits 𝛼 ↗ 0 and 𝑧 ↘ −∞. Together, both limits form a jump ⟦⋅⟧. Now we pass
𝜀 ↘ 0 in Equation (59) and insert the matching condition for the pressure and Equation (60). This reveals

𝜀−1 ∫𝑁𝛿(Γ)∪𝑁𝛿(Σ)
(
−
(
𝜂𝑣′1

)′
◦ 𝜄𝜀 +

(
∇̂Φ𝑑𝑣0

𝑇
𝜂𝑇

)′
�̄� ◦ 𝜄𝜀�̄� + �̄� ⊗ 𝑣

′′
1 ◦ 𝜄𝜀�̄� + �̂�

′
0 ◦ 𝜄𝜀�̄�

)
⋅ 𝑤 d3 𝜀≻0

⟶

∫Γ∪Σ −⟦𝜂 (∇𝑣0 + ∇𝑣𝑇0 ) − 𝑝0⟧𝜈 ⋅ 𝑤 d2, (61)

where 𝜈 ∈ {𝜈Γ, 𝜈Σ} depending on what surface the integrand is to be understood.
The right-hand side of Equation (1a) in variational form is

𝑓(𝑤) =
(
∇𝐿

2

𝜙
[𝜙] + ∇𝐿2

𝜙
[𝜙] + ∇𝐿2

𝜙
 [𝜙, 𝜓, 𝜌𝑎] , ∇𝜙 ⋅ 𝑤

)
𝐿2(𝑁𝛿(Γ))

+
(
∇𝐿

2

𝜓
[𝜓] + ∇𝐿2

𝜓
[𝜓] + ∇𝐿2

𝜓
 [𝜙, 𝜓, 𝜌𝑎] , ∇𝜓 ⋅ 𝑤

)
𝐿2(𝑁𝛿(Σ))

−

(
∫Ω 𝑔𝜀[𝜙](𝑦)ℙ𝜈𝜓∇

(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

))
𝑔𝜀[𝜓]𝜌𝑎 d3(𝑦), 𝑤

)
[𝐿2(𝑁𝛿(Σ))]

3
(62)

−

(
∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)𝜌𝑎𝐻𝜓𝜕𝜌𝑎𝑐 d

3(𝑦), 𝑤 ⋅ 𝜈𝜓

)
𝐿2(𝑁𝛿(Σ))

.

Note that we can rewrite

−

(
∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)𝜌𝑎𝐻𝜓𝜕𝜌𝑎𝑐 d

3(𝑦), 𝑤 ⋅ 𝜈𝜓

)
𝐿2(𝑁𝛿(Σ))

= −
(
𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝜌𝑎, 𝑤 ⋅ 𝜈𝜓

)
𝐿2(𝑁𝛿(Σ))

and

−

(
∫Ω 𝑔𝜀[𝜙](𝑦)ℙ𝜈𝜓∇

(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎, 𝜈𝜓

))
𝑔𝜀[𝜓]𝜌𝑎 d3(𝑦), 𝑤

)
[𝐿2(𝑁𝛿(Σ))]

3
=

−
(
𝑔𝜀[𝜓]ℙ𝜈𝜓∇𝜕𝜌𝑎𝐶𝜙𝜌𝑎, 𝑤

)
[𝐿2(𝑁𝛿(Σ))]

3 ,

which we use in the following as abbreviation.
To pass Equation (62) to the limit, we treat the gradients of the energies separately. The gradients of and  have the

same structure for both 𝜙 and 𝜓, and can, therefore, be treated verbatim. For , we distinguish the derivatives w.r.t. 𝜙 and
𝜓. Let us start our analysis with ∇𝐿2𝜑  .

4.2.3 Force terms of ∇𝐿2𝜑 
In this section, we show the following theorem:

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300101 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NÖLDNER et al. 29 of 39

Theorem 4.2. Let 𝑆 ∈ {Γ, Σ} and 𝜑 ∈ {𝜙, 𝜓} such that 𝑆 is the boundary layer for 𝜑. The following limit holds true:

𝛽 ∫𝑁𝛿(Φ)
(
−Δ(𝜇[𝜑]) + 𝜇[𝜑]𝜀−2𝑊′′(𝜑)

)
∇𝜑 ⋅ 𝑤 d3 𝜀→0⟶ −𝐶 ∫Φ

(
2ΔΦ𝐻Φ + 𝐻Φ

(
𝐻2Φ − 4𝐾Φ

))
𝜈𝑆 ⋅ 𝑤 d2

for a constant 𝐶.

The strategy of the proof is as follows: In Section 3.8, we have expanded the gradient ∇𝐿2𝜑  and concluded from the
energy inequality that all its terms up to order 𝜀−1 must equal zero. The terms remaining on order 𝜀0 are shifted to order
𝜀−1 by multiplication with ∇𝜑 ⋅ 𝑤, which is just the right scaling for obtaining the claimed limit using Lemma 3.4.

Proof of 4.2. Collect all the terms of
(
∇𝐿

2

𝜑  , ∇𝜑 ⋅ 𝑤)
𝐿2(𝑁𝛿(Φ))

on order 𝜀−1:

(
∇𝐿

2

𝜑  , ∇𝜑 ⋅ 𝑤)
𝐿2(𝑁𝛿(Φ))

= 𝜀−1 ∫𝑁𝛿(Φ)
(
−ΔΦ𝑑(𝑥) (𝜇0[𝜑]) + �̂�1[�̂�]

′ ◦ 𝑗�̄� − �̂�2[�̂�]
′′ ◦ 𝜄𝜀

+ 𝜇2[𝜑]𝑊
′′ (𝜑0) + 𝜇0[𝜑]𝑊

(3) (𝜑0) 𝜑2

+ �̂�′0 ◦ 𝜄𝜀∇�̄� ⋅ �̄��̄� + 2𝜀
−1𝑑(𝑥)�̂�′′0 ◦ 𝜄𝜀�̄�

|||Φ ( �̄�||2Φ − 2�̄�||Φ)
−�̂�′0 ◦ 𝜄𝜀∇

2�̄� ∶ �̄� ⊗ �̄� − 4𝜀−1𝑑(𝑥)�̂�′′0 ◦ 𝜄𝜀
(
�̄�||3Φ − 3�̄�||Φ �̄�|||Φ)) �̂�′0 ◦ 𝜄𝜀𝜈𝜑 ⋅ 𝑤 d3(𝑥)

+ 𝑂(𝜀).

The terms on the first and second line are from the expansion of the chemical potential and the double well potential.
The left summand on line three stems from Equation (44), the right one from Equation (46). The left summand on line
four is taken from Equation (40) (note (42)); the right summand is from (44) (note Equation 45). First, we substitute some
expressions using Lemma 3.1 and Equation 43:(

∇𝐿
2

𝜑  , ∇𝜑 ⋅ 𝑤)
𝐿2(𝑁𝛿(Φ))

= 𝜀−1 ∫𝑁𝛿(Φ)
(
−�̂�′0 ◦ 𝜄𝜀ΔΦ𝑑(𝑥) �̄� + �̂�1[�̂�]

′ ◦ 𝜄𝜀�̄� − �̂�2[�̂�]
′′ ◦ 𝜄𝜀

+ 𝜇2[𝜑]𝑊
′′ (𝜑0) + 𝜇0[𝜑]𝑊

(3) (𝜑0) 𝜑2

+ �̂�′0 ◦ 𝜄𝜀�̄�
(
�̄�2 − 2�̄�

)
+ 2𝜀−1𝑑(𝑥)�̂�′′0 ◦ 𝜄𝜀�̄�

|||Φ ( �̄�||2Φ − 2�̄�||Φ)
−2�̂�′0 ◦ 𝜄𝜀

(
�̄�3 − 3�̄��̄�

)
− 4𝜀−1𝑑(𝑥)�̂�′′0 ◦ 𝜄𝜀

(
�̄�||3Φ − 3�̄�||Φ �̄�|||Φ)) �̂�′0 ◦ 𝜄𝜀𝜈𝜑 ⋅ 𝑤 d3(𝑥)

+ 𝑂(𝜀).

Second, we transform the integral using the co-area formula. We denote 𝑗(𝜎, 𝑧) = (𝜋Φ(𝜎), 𝑧).

(
∇𝐿

2

𝜑  , ∇𝜑 ⋅ 𝑤)
𝐿2(𝑁𝛿(Φ))

= ∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀
(
−�̂�′0 ◦ 𝑗ΔΦ𝜀𝑧�̄� + �̂�1[�̂�]

′ ◦ 𝑗�̄� − �̂�2[�̂�]
′′ ◦ 𝑗

+ 𝜇2[𝜑]𝑊
′′ (𝜑0) + 𝜇0[𝜑]𝑊

(3) (𝜑0) 𝜑2

+ �̂�′0 ◦ 𝑗�̄�
(
�̄�2 − 2�̄�

)
+ 2𝑧�̂�′′0 ◦ 𝑗�̄�

|||Φ ( �̄�||2Φ − 2�̄�||Φ)
−2�̂�′0 ◦ 𝑗

(
�̄�3 − 3�̄��̄�

)
− 4𝑧�̂�′′0 ◦ 𝑗

(
�̄�||3Φ − 3�̄�||Φ �̄�|||Φ) )

�̂�′0 ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧)
+ 𝑂(𝜀).
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30 of 39 NÖLDNER et al.

With integration by parts, it follows directly that ∫ ∞
−∞
𝑧�̂�′′0 �̂�

′
0 d𝑧 = −

1

2
∫ ∞
−∞

(
�̂�′0

)2
d𝑧 Exploiting this property and the

independence of �̂�0 of the first argument of 𝑗, we obtain

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
(
�̂�′0 ◦ 𝑗�̄�

(
�̄�2 − 2�̄�

)
+ 2𝑧�̂�′′0 ◦ 𝑗�̄�

|||Φ ( �̄�||2Φ − 2�̄�||Φ)) �̂�′0 ◦ 𝑗 d2(𝜎) d1(𝑧) =

∫
𝛿

𝜀

−
𝛿

𝜀

(
�̂�′0

)2
∫Φ𝜀𝑧 �̄�

(
�̄�2 − 2�̄�

)
d2(𝜎) d1(𝑧) − ∫

𝛿

𝜀

−
𝛿

𝜀

(
�̂�′0

)2
d1(𝑧)∫Φ �̄�

||||||Φ
(
�̄�||2Φ − 2�̄�||Φ) d2(𝜎).

Thanks to Lemma 3.4, we know that this difference converges to zero as 𝜀 ↘ 0. The same reasoning applies for

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
(
−2�̂�′0 ◦ 𝑗

(
�̄�3 − 3�̄��̄�

)
− 4𝑧�̂�′′0 ◦ 𝑗

(
�̄�||3Φ − 3�̄�||Φ �̄�|||Φ)) �̂�′0 ◦ 𝑗 d2 d1(𝑧).

The remaining terms are treated as follows: We recall �̂�′ ∈ 𝑂(𝜀) and �̂�′′ ∈ 𝑂
(
𝜀2
)
(cf. Equations 41 and 42) and

�̂�2[�̂�] = �̂�
′
2�̂� − �̂�

′′
3 + �̂�3𝑊

′′ (�̂�0)

(cf. Equation 37 with 𝜑1 = 0). Thus, the following expansion holds:

�̂�2[�̂�]
′′ = �̂�(3)2 �̂� − �̂�

′′ + 𝑂(𝜀),

where

�̂� = �̂�′′3 − �̂�3𝑊
′′ (�̂�0) .

This way we see with 𝜇0[𝜑] = �̄��̂�′0 ◦ 𝜄𝜀 and �̂�1[�̂�] = −�̂�
′′
2 +𝑊

′′ (�̂�0) �̂�2 (cf. Equation 37 with 𝜑1 = 0) that

−�̂�2[�̂�]
′′ ◦ 𝑗 + 𝜇2[𝜑]𝑊

′′ (𝜑0) + 𝜇0[𝜑]𝑊
(3) (𝜑0) 𝜑2 = −�̄��̂�

(3)
2 ◦ 𝑗 + �̄�𝑊′′ (𝜑0) �̂�

′
2 ◦ 𝑗 + 𝜇0[𝜑]𝑊

(3) (𝜑0) 𝜑2

+ �̂�′′ ◦ 𝑗 − 𝑞𝑊′′ (𝜑0) + 𝑂(𝜀)

= �̄�
(
−�̂�′′2 +𝑊

′′ (�̂�0) �̂�2
)′
◦ 𝑗 + �̂�′′ ◦ 𝑗 − 𝑞𝑊′′ (�̂�0) ◦ 𝑗 + 𝑂(𝜀)

= �̄��̂�1[�̂�]
′ ◦ 𝑗 + �̂�′′ ◦ 𝑗 − 𝑞𝑊′′ (�̂�0) ◦ 𝑗 + 𝑂(𝜀),

where we used 𝜇0[𝜑]𝑊(3) (𝜑0) 𝜑2 = 𝜑0
′ ◦ 𝑗𝑊(3) (𝜑0) 𝜑2�̄� =

(
𝑊′′ (�̂�0)

)′
◦ 𝑗𝜑2�̄�. We, therefore, obtain,

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
(
−�̂�′0 ◦ 𝑗ΔΦ𝜀𝑧 �̄� + �̄��̂�1[�̂�]

′ ◦ 𝑗 − �̂�2[�̂�]
′′ ◦ 𝑗

+𝜇2[𝜑]𝑊
′′ (𝜑0) + 𝜇0[𝜑]𝑊

(3) (𝜑0) 𝜑2
)
�̂�′0 ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2 d1(𝑧) =

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
(
−�̂�′0 ◦ 𝑗ΔΦ𝜀𝑧 �̄� + 2�̄�1[�̂�]

′ ◦ 𝑗 + �̂�′′ ◦ 𝑗 − �̂� ◦ 𝑗𝑊′′ (�̂�0) ◦ 𝑗
)
�̂�′0 ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧) + 𝑂(𝜀).

To treat ∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′0 ∫Φ𝜀𝑧 �̂�′′ ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧), we take a global parametrisation 𝛾 ∶ ℝ2 → Φ (this is w.l.o.g. since in

case there is no global parametrisation, we make all the following calculations locally and patch the integrals together
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NÖLDNER et al. 31 of 39

afterwards), and define 𝛾𝜀𝑧(𝑠) = 𝛾(𝑠) + 𝜀𝑧𝜈𝑆(𝛾(𝑠)). With the area formula, we obtain

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′0(𝑧)∫Φ𝜀𝑧 �̂�
′′ ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧) =

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′0(𝑧)∫ℝ2 �̂�
′′(𝛾(𝑠), 𝑧)𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧𝐽 [𝛾𝜀𝑧] d2(𝑠) d1(𝑧).

Note that 𝑗 (𝛾𝜀𝑧(𝑠), 𝑧) = (𝛾(𝑠), 𝑧). We further integrate by parts

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′0(𝑧)∫ℝ2 �̂�
′′(𝛾(𝑠), 𝑧)𝐽 [𝛾𝜀𝑧] 𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧 d2(𝑠) d1(𝑧) =

− ∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′′0 (𝑧)∫ℝ2 �̂�
′(𝛾(𝑠), 𝑧)𝐽 [𝛾𝜀𝑧] 𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧 d2(𝑠) d1(𝑧)

+ ∫ℝ2
[
�̂�′(𝛾(𝑠), ⋅)�̂�′0𝐽 [𝛾𝜀𝑧] 𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧

]𝛿∕𝜀
−𝛿∕𝜀

d2(𝑠)

+ ∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′′0 ∫ℝ2 �̂�
′(𝛾(𝑠), 𝑧)𝐽 [𝛾𝜀𝑧]

(
𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧

)′
d2(𝑠) d1(𝑧) + 𝑂(𝜀).

We observe (
𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧

)′
= 𝜀∇𝜈𝑇𝜑 ◦ 𝛾𝜀𝑧𝜈Φ ◦ 𝛾 ⋅ 𝑤 ◦ 𝛾𝜀𝑧 + 𝜀𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ ∇𝑤

𝑇 ◦ 𝛾𝜀𝑧𝜈Φ ◦ 𝛾

= 𝜀

(
1|𝜑|∇2𝜑𝑇ℙ𝜈𝜑

)
◦ 𝛾𝜀𝑧𝜈Φ ◦ 𝛾 ⋅ 𝑤 ◦ 𝛾𝜀𝑧 + 𝑂(𝜀),

and we have ℙ𝜈𝜑 ◦ 𝛾𝜀𝑧𝜈Φ ∈ 𝑂
(
𝜀2
)
◦ 𝛾 (see Equation 55), so

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′′0 ∫ℝ2 �̂�
′𝐽 [𝛾𝜀𝑧]

(
𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧

)′
d2(𝑠) d1(𝑧) ∈ 𝑂(𝜀).

With Jacobi’s formula for derivatives of determinants, it can be seen that the derivative of the Jacobian w.r.t 𝑧 is also in
𝑂(𝜀). Integrating by parts, one more time leads us, therefore, to

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�′0(𝑧)∫ℝ2 �̂�
′′(𝛾(𝑠), 𝑧)𝐽 [𝛾𝜀𝑧] 𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧 d2(𝑠) d1(𝑧) =

∫
𝛿

𝜀

−
𝛿

𝜀

�̂�(3)0 (𝑧)∫ℝ2 �̂�(𝛾(𝑠), 𝑧)𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧𝐽 [𝛾𝜀𝑧] d
2(𝑠) d1(𝑧)

+ ∫ℝ2
[
�̂�′(𝛾(𝑠), ⋅)�̂�′0𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧𝐽 [𝛾𝜀𝑧]

]𝛿∕𝜀
−𝛿∕𝜀

d2(𝑠)

− ∫ℝ2
[
�̂�(𝛾(𝑠), ⋅)�̂�′′0 𝜈𝜑 ◦ 𝛾𝜀𝑧 ⋅ 𝑤 ◦ 𝛾𝜀𝑧𝐽 [𝛾𝜀𝑧]

]𝛿∕𝜀
−𝛿∕𝜀

d2(𝑠) + 𝑂(𝜀).
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32 of 39 NÖLDNER et al.

The last integrals vanish for 𝜀 ↘ 0 since �̂�′0 and �̂�
′′
0 vanish for 𝑧 → ±∞ (see Equations 21 and 22). Hence,

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀
(
�̂�′′ − �̂�𝑊′′ (�̂�0)

)
�̂�′0𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧) 𝜀↘0⟶ ∫

∞

−∞
�̂�(3)0 − �̂�′0𝑊

′′ (�̂�0) d1(𝑧)∫Φ 𝑞𝜈𝜑 ⋅ 𝑤 d
2(𝑠).

Note that �̂�(3)0 − �̂�′0𝑊
′′ (�̂�0) = 0 (property of the optimal profile), so the whole integral vanishes in the limit.

The last term we need to investigate is 2�̂��̂�1[�̂�]′ and we already know (see Equation 48)

2�̂��̂�1[�̂�]
′ = −�̂�

(
�̂�|||2Φ − 4�̂�|||Φ

)(
�̂�′0𝑧

)′
= −�̂�

(
�̂�|||2Φ − 4�̂�|||Φ

)(
�̂�′′0 𝑧 + �̂�

′
0

)
.

Now we observe

∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧 −�̄�
(
�̄�||2Φ − 4�̄�||Φ) (

�̂�′′0 ◦ 𝑗𝑧 + �̂�
′
0 ◦ 𝑗

)
�̂�′0 ◦ 𝑗𝜈𝜑 ⋅ 𝑤 d2(𝜎) d1(𝑧) 𝜀↘0⟶

−∫
∞

−∞
�̂�′′0 �̂�

′
0𝑧 +

(
�̂�′0

)2
d1(𝑧)∫Φ �̂�

(
�̂�|||2Φ − 4�̂�|||Φ

)
𝜈𝜑 ⋅ 𝑤 d2(𝜎),

and finally use ∫ ∞
−∞
�̂�′′0 �̂�

′
0𝑧 +

(
�̂�′0

)2
d1(𝑧) = 1

2
∫ ∞
−∞

(
�̂�′0

)2
d1(𝑧). □

4.2.4 Force terms of ∇𝐿2𝜑 
A small calculation reveals

∇𝐿
2

𝜑 [𝜑] = 𝛾𝜇[𝜑],
and from Equation (36) we have with �̂�′′0 ◦ 𝜄𝜀 −𝑊

′ (𝜑0) = 0 and Equation (43)

𝜇[𝜑] = 𝛾�̂�′0 ◦ 𝜄𝜀�̄� + 𝑂(𝜀).

So convergence under the integral follows by Lemma 3.4:

∫𝑁𝛿(Φ)
(
�̂�′0

)2
◦ 𝜄𝜀𝛾�̄�𝜈𝜑 ⋅ 𝑤 d3 + 𝑂(𝜀) 𝜀↘0⟶ 𝑍 ∫Φ 𝛾�̄�𝜈Φ ⋅ 𝑤 d

2.

4.2.5 Coupling energy force terms

We now come to the limit of the terms (
∇𝐿

2

𝜙
, ∇𝜙 ⋅ 𝑤)

𝐿2(𝑁𝛿(Γ))
,(

∇𝐿
2

𝜓
, ∇𝜓 ⋅ 𝑤)

𝐿2(𝑁𝛿(Σ))
,

�̄�𝜀 ∶= −
(
𝜕𝜌𝑎𝐶𝜙𝐻𝜓𝜌𝑎, 𝑤 ⋅ 𝜈𝜓

)
𝐿𝐿2(𝑁𝛿(Σ)), and

�̄�𝜀 ∶= −
(
𝑔𝜀[𝜓]ℙ𝜈𝜓∇𝜕𝜌𝑎𝐶𝜙𝜌𝑎, 𝑤

)
[𝐿2(𝑁𝛿(Σ))]

3

in Equation (62).

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300101 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NÖLDNER et al. 33 of 39

Limit of
(
∇𝐿

2

𝜙 , ∇𝜙 ⋅ 𝑤
)
𝐿2(𝑁𝛿(Γ))

:

Recall Equation (52) with the term abbreviations introduced therein. Then,(
∇
𝐿2,∇𝜙⋅𝑤
𝜙

)
𝐿2(𝑁𝛿(Γ))

=
(|∇𝜙| (𝐴𝜀 + 𝐵𝜀) , 𝜈𝜙 ⋅ 𝑤)𝐿2(𝑁𝛿(Γ)) =∶ �̄�𝜀 + �̄�𝜀. (63)

We further define

�̃�𝜀 = ∫𝑁𝛿(Σ) 𝜀
−1

(
1
2

(
�̂�′0(𝜄(𝑥))

)2
+𝑊 (𝜓0(𝑥))

)
𝑐
(
𝑥, ⋅, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥)

so that

𝐴𝜀 = �̂�
′
0 ◦ 𝜄𝜀�̄��̃�𝜀. (64)

Due to the optimal profile for 𝜓0, it holds𝑊 (𝜓0) =
(
�̂�′0

)2
, and applying Lemma 3.4, we have as 𝜀 ↘ 0,

�̃�𝜀 = ∫𝑁𝛿(Σ) 𝜀
−1 3
2

(
�̂�′0(𝜄(𝑥))

)2
𝑐
(
𝑥, ⋅, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥)

→
3𝑍
2 ∫Σ 𝑐 (𝑥, ⋅, 𝜌𝑎0, 𝜈Σ) d

2(𝑥).

In order to apply Lemma 3.4 on �̄�𝜀, we shall show that for 𝑦𝜀 converging to 𝑦, �̃�𝜀 (𝑦𝜀) converges. To this purpose, we
write �̃�𝜀(𝑦) = 𝐹𝜀 [𝑐 (⋅, 𝑦, 𝜌𝑎0, 𝜓0)] for all 𝑦 ∈ Ω, where 𝐹𝜀 ∶ 𝐿2(Ω) → ℝ is linear and continuous. �̃�𝜀 (𝑦𝜀) converging is then
equivalent to 𝐹𝜀 [𝑐𝜀] = �̃�𝜀 (𝑦𝜀) converging for 𝑐𝜀 = 𝑐 (⋅, 𝑦𝜀, 𝜌𝑎0, 𝜓0). We calculate

|𝐹𝜀 [𝑐𝜀] − 𝐹0 [𝑐0]| ≤ |𝐹𝜀 [𝑐𝜀 − 𝑐0]| + |𝐹𝜀 [𝑐0] − 𝐹0 [𝑐0]| . (65)

The previous calculations directly show |𝐹𝜀 [𝑐0] − 𝐹0 [𝑐0]|⟶0. For the other summand, it holds |𝐹𝜀 [𝑐𝜀 − 𝑐0]| ≤‖𝐹𝜀‖ ‖𝑐𝜀 − 𝑐0‖𝐿2(Ω) Since we have convergence of 𝐹𝜀[𝑓] for every 𝑓 ∈ 𝐿2(Ω), the Banach–Steinhaus theorem implies‖𝐹𝜀‖ < ∞. Also, the last term converges to zero (𝑐 is continuous in 𝑦), and so the left-hand side of Equation (65) converges
to zero. Then, as 𝜀 ↘ 0,

�̄�𝜀 = ∫𝑁𝛿(Γ)
|||∇𝑦𝜙(𝑦)|||𝐴𝜀(𝑦)𝜈𝜙(𝑦) ⋅ 𝑤(𝑦) d3(𝑦)

= 𝜀−1 ∫𝑁𝛿(Γ)
(
�̂�′0(𝜄(𝑦))

)2
�̄�(𝑦)�̃�𝜀(𝑦)𝜈𝜙(𝑦) ⋅ 𝑤(𝑦) d3(𝑦) + 𝑂(𝜀)

→ 𝑍 ∫Γ 𝐻Γ(𝑦)�̃�0(𝑦)𝜈Γ(𝑦) ⋅ 𝑤(𝑦) d
2(𝑦)

=
3𝑍2

2 ∫Γ 𝐻Γ(𝑦)∫Σ 𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) d
2(𝑥)𝜈Γ(𝑦) ⋅ 𝑤(𝑦) d2(𝑦).

Concerning �̄�𝜀 one argues analogously, as 𝜀 ↘ 0,

�̄�𝜀 = ∫𝑁𝛿(Γ)
|||∇𝑦𝜙(𝑦)|||𝐵𝜀(𝑦)𝜈𝜙(𝑦) ⋅ 𝑤(𝑦) d3(𝑦)

= −𝜀−1 ∫𝑁𝛿(Γ)
(
�̂�′0 ◦ 𝜄𝜀

)2
∫𝑁𝛿(Σ) 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑥))

)2
�̄�(𝑦) ⋅ ∇𝑦𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
+ 𝑂(1) d3(𝑥)𝜈𝜙 ⋅ 𝑤 d3(𝑦)

→ −
3𝑍2

2 ∫Γ 𝜈Γ ⋅ ∫Σ ∇𝑦𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) d
2(𝑥)𝜈Γ ⋅ 𝑤 d2(𝑦).
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34 of 39 NÖLDNER et al.

Limit of
(
∇𝐿

2

𝜓 , ∇𝜓 ⋅ 𝑤
)
𝐿2(𝑁𝛿(Σ))

:

We recall Equation (54) and write(
∇𝐿

2(Ω)
𝜓

, ∇𝜓 ⋅ 𝑤)
𝐿2(𝑁𝛿(Σ))

=
(|∇𝜓| (𝐶𝜀 + 𝐷𝜀 + 𝐸𝜀) , 𝜈𝜓 ⋅ 𝑤)𝐿2(𝑁𝛿(Σ)) + 𝑂(𝜀) = �̄�𝜀 + �̄�𝜀 + �̄�𝜀 + 𝑂(𝜀). (66)

The term �̄�𝜀 is treated just like �̄�𝜀, so we obtain in the limit 𝜀 ↘ 0

�̄�𝜀 = ∫𝑁𝛿(Σ)
(
−𝜀Δ𝜓 + 𝜀−1𝑊′(𝜓)

)
∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)𝑐

(
𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓

)
d3(𝑦)𝜈𝜓(𝑥) ⋅ 𝑤(𝑥) d3(𝑥)

→
3𝑍2

2 ∫Σ 𝐻Σ(𝑥)∫Γ 𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) d
2(𝑦)𝜈Σ(𝑥) ⋅ 𝑤(𝑥) d2(𝑥).

Using the expansion of 𝐷𝜀, we compute further

�̄�𝜀 = −∫𝑁𝛿(Σ) |∇𝜓|𝜀∇𝜓 ⋅ ∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)∇𝑥 (𝑐 (𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓)) d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥)
= −∫𝑁𝛿(Σ) |∇𝜓|�̂�′0 ◦ 𝜄𝜀�̄� ⋅ ∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)∇𝑥𝑐 (𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓) d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥)
− ∫𝑁𝛿(Σ) |∇𝜓|�̂�′0 ◦ 𝜄𝜀�̄� ⋅ ∫𝑁𝛿(Γ) 𝑔𝜀[𝜙](𝑦)𝜕𝜌𝑎𝑐 (𝑥, 𝑦, 𝜌𝑎, 𝜈𝜓)∇𝑥𝜌𝑎0 d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥) + 𝑂(𝜀)
= −∫𝑁𝛿(Σ) 𝜀

−1
(
�̂�′0

)2
◦ 𝜄𝜀�̄� ⋅ ∫𝑁𝛿(Γ) 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑦))

)2
∇𝑥𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥)

− ∫𝑁𝛿(Σ) 𝜀
−1

(
�̂�′0

)2
◦ 𝜄𝜀�̄� ⋅ ∫𝑁𝛿(Γ) 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑦))

)2
𝜕𝜌𝑎𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
∇𝑥𝜌𝑎0 d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥) + 𝑂(𝜀)

(1)
= −∫𝑁𝛿(Σ) 𝜀

−1
(
�̂�′0

)2
◦ 𝜄𝜀�̄� ⋅ ∫𝑁𝛿(Γ) 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑦))

)2
∇𝑥𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥) + 𝑂(𝜀)

→ −
3𝑍2

2 ∫Σ 𝜈Σ ⋅ ∫Γ ∇𝑥𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) d
2(𝑦)𝜈Σ ⋅ 𝑤 d2(𝑥) as 𝜀 ↘ 0,

where for Equation (1), we observe that due to Equation (30), ∇𝑥𝜌𝑎0 = ∇Σ𝑑𝜌𝑎0, thus �̄� ⋅ ∇𝑥𝜌𝑎0 = 0.
At last, we turn to �̄�𝜀:

�̄�𝜀 = −∫Ω 𝜀
−1 3
2

(
�̂�′0

)2
◦ 𝜄𝜀 ∫Ω 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑦))

)2
∇Σ ⋅ (∇𝜈𝑐)

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥)

− ∫Ω 𝜀
−1 3
2

(
�̂�′0

)2
◦ 𝜄𝜀 ∫Ω 𝜀

−1 3
2

(
�̂�′0 (𝜄𝜀(𝑦))

)2
∇𝜈𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
⋅ �̄�(𝑥)�̄�(𝑥) d3(𝑦)𝜈𝜓 ⋅ 𝑤 d3(𝑥)

→ −

(
3𝑍
2

)2
∫Σ ∫Γ ∇Σ ⋅ (∇𝜈𝑐) (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) + ∇𝜈𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) ⋅ 𝐻Σ(𝑥)𝜈Σ(𝑥) d

2(𝑦)𝜈Σ ⋅ 𝑤 d2(𝑥) as 𝜀 ↘ 0.

Limit of �̄�𝜀:
Using the expansion we computed before, we obtain

�̄�𝜀 = −∫𝑁𝛿(Σ) 𝜌𝑎0𝜀
−1

(
�̂�′0 ◦ 𝜄𝜀

)2
�̄��̄� ⋅ 𝑤 ∫𝑁𝛿(Γ) 𝜀

−1 3
2

(
�̂�′0 ◦ 𝜄𝜀

)2
𝜕𝜌𝑎𝑐

(
𝑥, 𝑦, 𝜌𝑎0, 𝜈𝜓0

)
d3(𝑦) d3(𝑥) + 𝑂(𝜀)

→ −
3𝑍2

2 ∫Σ 𝜌𝑎0𝐻Σ𝜈Σ ⋅ 𝑤 ∫Γ 𝜕𝜌𝑎𝑐 (𝑥, 𝑦, 𝜌𝑎0, 𝜈Σ) d
2(𝑦) d2(𝑥) as 𝜀 ↘ 0.
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NÖLDNER et al. 35 of 39

Limit of �̄�𝜀:
On the expansion derived before, we use𝑊 (𝜓0) =

(
�̂�′0

)2
, and then pass to the limit 𝜀 ↘ 0:

�̄�𝜀 = −∫𝑁𝛿(Σ) 𝜀
−1 3
2

(
�̂�′0

)2
◦ 𝜄𝜀(𝑥)∫𝑁𝛿(Γ) 𝜀

−1 3
2

(
�̂�′0
)2
◦ 𝜄𝜀(𝑦)∇Σ𝑑

(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎0, 𝜈𝜓0

))
⋅ 𝑤𝜌𝑎0 d3(𝑦) d3(𝑥)

+ 𝑂(𝜀)

→ −

(
3𝑍
2

)2
∫Σ ∫Γ ∇Σ𝑑

(
𝜕𝜌𝑎𝑐

(
⋅, 𝑦, 𝜌𝑎0, 𝜈𝜓0

))
⋅ 𝑤𝜌𝑎0 d2 d2.

4.2.6 Deriving the jump conditions

We now observe that all the previously computed limits have equal, corresponding terms in the right hand sides of Equa-
tions (4f) and (4g). Note that these appear with a minus on the right-hand side of the momentum balance, so we negate
them here accordingly. We start by labelling them (here in variational form):

𝐼0 = ∫Γ
(
−∇𝑦𝐶

0
Σ ⋅ 𝜈Γ + 𝐻Γ𝐶

0
Σ

)
𝑤 ⋅ 𝜈Γ d2,

𝐽0 = ∫Σ
(
−∇𝑥𝐶

0
Γ ⋅ 𝜈Σ + 𝐻Σ𝐶

0
Γ

)
𝑤 ⋅ 𝜈Σ d2,

�̄�0 = −∫Σ 𝜕𝜌𝑎𝐶
0
Γ𝐻Σ𝜌𝑎𝑤 ⋅ 𝜈Σ d2,

�̄�0 = −∫Σ ∇Σ
(
𝜕𝜌𝑎𝐶

0
Γ

)
⋅ 𝜌𝑎𝑤 d2,

�̄�0 = −∫Σ
(
∇Σ ⋅

(
∇𝜈𝐶

0
Γ

)
+𝐻Σ

(
∇𝜈𝐶

0
Γ ⋅ 𝜈Σ

))
𝑤 ⋅ 𝜈Σ d2.

We see immediately that �̄�0 + �̄�0 =
3𝑍2

2
𝐼0. Further,

�̄�0 + �̄�0 = −
3𝑍2

2 ∫Σ ∫Γ 𝜈Σ ⋅ ∇𝑥𝑐𝜈Σ ⋅ 𝑤 d
2 d2 +

3𝑍2

2 ∫Σ 𝐻Σ ∫Γ 𝑐 d
2𝜈Σ ⋅ 𝑤 d2 =

3𝑍2

2
𝐽0.

Clearly, �̄�0 =
3𝑍2

2
�̄�0, �̄�0 =

(
3𝑍

2

)2
�̄�0 and �̄�0 = (

3𝑍

2
)2�̄�0.

Equating Equation (61) on the left and the limit of Lemma 4.2, as well as the terms for the Ginzburg–Landau energy
gradient and �̄�0 + �̄�0 + �̄�0 + �̄�0 + �̄�0 + �̄�0 + �̄�0 on the right, we find Equations (4f) and (4g).

4.3 Phase field evolution equations

Equations (1c) and (1d) are just the tautologies 0 = 0 in the outer region, so we are only concerned with them close to the
boundary layers. On their left-hand sides, we find at leading order 𝜀−1

−𝑉Φ𝜈 �̂�
′
0 ◦ 𝜄𝜀 + 𝑣0 ⋅ �̄��̂�

′
0 ◦ 𝜄𝜀 (67)

for 𝜑 ∈ {𝜙, 𝜓} with corresponding boundary layer Φ ∈ {Γ, Σ}.
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36 of 39 NÖLDNER et al.

From the energy inequality, the following bound holds,

𝜀𝛼 ∫
𝑇

0 ∫𝑁𝛿(Φ)
|||∇∇𝐿2𝜑  |||2 d3 d𝑡 ∈ 𝑂(1). (68)

We have found in Section 3.8 that ∇𝐿2𝜑 [𝜑] ∈ 𝑂(1), so

∇∇𝐿
2

𝜑  =
2∑

𝑖=−1

𝜀𝑖𝑓𝑖 ◦ 𝜄𝜀 + 𝑂
(
𝜀3
)
.

Thus,

|||∇∇̂𝐿2𝜑 |||2 = 𝜀−2𝑓2−1 + 2𝜀−1𝑓−1𝑓0 + (
𝑓20 + 𝑓−1𝑓1

)
+ 𝜀

(
2𝑓−1𝑓2 + 2𝑓0𝑓1

)
+ 𝜀2

(
𝑓21 + 2𝑓−1𝑓3 + 2𝑓0𝑓2

)
+ 𝑂(1).

Equation (68) directly implies

∫
𝑇

0 ∫
𝛿

𝜀

−
𝛿

𝜀

∫Φ𝜀𝑧
||||∇̂∇𝐿2𝜑  ||||

2

(𝜋Φ(𝜎), 𝑧) d2(𝜎) d𝑧 d𝑡 ∈ 𝑂
(
𝜀−𝛼−1

)
.

Since 𝛼 < 1 (required in Section 3.8), 𝑓−1 = 0, so ∇̂∇𝐿
2

𝜑  ∈ 𝑂(1). Further, ∇ ⋅ (𝜀𝛼∇(
∇𝐿

2

𝜑 )) ∈ 𝑂 (
𝜀−1+𝛼

)
, which

is of lower order than the left-hand side (67) for 𝛼 > 0, so we obtain from the phase field evolution to leading
order

𝑣0 ⋅ �̄� = 𝑉
Φ
𝜈 (69)

meaning that the interface Φ is driven purely by the fluid’s velocity in normal direction, and this is equivalent to the
Hamilton–Jacobi equations (4h) and (4i).

4.4 Species subsystem

Like the phase field equations, the species subsystem (1i), (1j) is meaningless in the outer region. For reasons of symmetry,
it suffices to conduct the asymptotic analysis for the equation of 𝜌𝑎: it carries over to 𝜌𝑖 verbatim.
We start our analysis by expanding the term ∇ ⋅ (𝑔𝜀[𝜓]𝜂𝑎∇𝜌𝑎). W.l.o.g., we assume that 𝜂𝑎′ = 0. First we derive from

Equation (7) and using Equation (30)

𝜂𝑎∇𝜌𝑎 = 𝜀
−1𝜂𝑎�̂�

′
𝑎0 ◦ 𝜄𝜀�̄� + 𝜂𝑎∇Σ𝑑𝜌𝑎0 + 𝜂𝑎�̂�

′
𝑎1 ◦ 𝜄𝜀�̄� + 𝜀𝜂𝑎∇Σ𝑑𝜌𝑎1 + 𝑂

(
𝜀2
)

= 𝜂𝑎∇Σ𝑑𝜌𝑎0 + 𝜂𝑎�̂�
′
𝑎1 ◦ 𝜄𝜀�̄� + 𝜀𝜂𝑎∇Σ𝑑𝜌𝑎1 + 𝑂

(
𝜀2
)
.

With Equation (16) and thanks to Equation (43) and �̂�0 being the optimal profile, we have also

𝑔𝜀[𝜓] = 𝜀
−1 3
2

(
�̂�′0

)2
◦ 𝜄𝜀 + 𝑂(𝜀).

Multiplying both equations gives

𝑔𝜀[𝜓]𝜂𝑎∇𝜌𝑎 = 𝜀
−1 3
2

(
�̂�′0

)2
◦ 𝜄𝜀𝜂𝑎

(
∇Σ𝑑𝜌𝑎0 + �̂�

′
𝑎1 ◦ 𝜄𝜀�̄�

)
+
3
2

(
�̂�′0

)2
◦ 𝜄𝜀𝜂𝑎∇Σ𝑑𝜌𝑎1 + 𝑂(𝜀). (70)
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NÖLDNER et al. 37 of 39

We also expand

∇ ⋅ (𝑔𝜀[𝜓]𝜌𝑎𝑣𝜏) = ∇ ⋅

(
𝜀−1
3
2

(
�̂�′0

)2
◦ 𝜄𝜀𝜌𝑎0 (𝑣0)𝜏 +

3
2

(
�̂�′0

)2
◦ 𝜄𝜀

(
𝜌𝑎1 (𝑣0)𝜏 + 𝜌𝑎0 (𝑣1)𝜏

)
+ 𝑂(𝜀)

)

= 𝜀−2
(
3
2

(
�̂�′0

)2
�̂�𝑎0 (𝑣0)𝜏

)′
◦ 𝜄𝜀 ⋅ �̄� + 𝜀

−1

(
3
2

(
�̂�′0

)2 (
�̂�𝑎1 (𝑣0)𝜏 + �̂�𝑎0 (𝑣1)𝜏

))′
◦ 𝜄𝜀 ⋅ �̄�

+ 𝜀−1∇Σ𝑑 ⋅

(
3
2

(
�̂�′0

)2
◦ 𝜄𝜀𝜌𝑎0 (𝑣0)𝜏

)
+ 𝑂(1). (71)

The first and second summands vanish since (𝑣𝑖)𝜏 ⋅ �̂� = 𝑣
𝑇
𝑖 ℙ𝜈�̂� �̂� = 𝑂

(
𝜀2
)
, 𝑖 ∈ {1, 2}, thanks to Equation (55).

Second, we compute (making again use of Equation 30)

∇ ⋅ (𝑔𝜀[𝜓]𝜂𝑎∇𝜌𝑎) = 𝜀
−2 3
2

((
�̂�′0

)2)′
◦ 𝜄𝜀𝜂𝑎

(
∇Σ𝑑𝜌𝑎0 + �̂�

′
𝑎1 ◦ 𝜄𝜀�̄�

)
⋅ �̄� + 𝜀−2

3
2

(
�̂�′0

)2
◦ 𝜄𝜀𝜂𝑎�̂�

′′
𝑎1 ◦ 𝜄𝜀

+ 𝑂
(
𝜀−1

)
= 𝜀−2

3
2

(((
�̂�′0

)2)′
◦ 𝜄𝜀�̂�

′
𝑎1 ◦ 𝜄𝜀 +

(
�̂�′0

)2
◦ 𝜄𝜀𝜂𝑎�̂�

′′
𝑎1 ◦ 𝜄𝜀

)
= 𝜀−2

3
2
𝜂𝑎

((
�̂�′0

)2
�̂�′𝑎1

)′
◦ 𝜄𝜀 + 𝑂

(
𝜀−1

)
.

All other terms in Equation (1i) are in𝑂
(
𝜀−1

)
. Thus,

(
�̂�′0

)2
�̂�′𝑎1 is constant in 𝑧. We observe that

(
�̂�′0

)2
decays for large |𝑧|,

and for the expression to remain constant, �̂�′𝑎1 must either blow up or be zero constantly. We can exclude the former case
by matching, so

�̂�′𝑎1 = 0.

Then, Equation (70) simplifies and we obtain

∇ ⋅ (𝑔𝜀[𝜓]𝜂𝑎∇𝜌𝑎) = 𝜀
−1 3
2

(((
�̂�′0

)2)′
◦ 𝜄𝜀𝜂𝑎∇Σ𝑑𝜌𝑎1 ⋅ �̄�

+
(
�̂�′0

)2
◦ 𝜄𝜀

(
∇Σ𝑑 ⋅

(
𝜂𝑎∇Σ𝑑𝜌𝑎0

)
+ 𝜂𝑎

(
∇̂Σ𝑑𝜌𝑎

)′
◦ 𝜄𝜀 ⋅ �̄�

))
+ 𝑂(1)

= 𝜀−1
3
2

(
�̂�′0

)2
◦ 𝜄𝜀∇Σ𝑑 ⋅

(
𝜂𝑎∇Σ𝑑𝜌𝑎0

)
.

Finally, we find in Equation (1i) (note Equations 71 and 18, and the independence of �̂�0 from the tangential variable due
to its being the optimal profile) to leading order 𝜀−1

3
2

(
�̂�′0

)2
◦ 𝜄𝜀

(
𝜕𝑡𝜌𝑎0 − ∇Σ𝑑 ⋅

(
𝜂𝑎∇Σ𝑑𝜌𝑎0

))
−
(
�̂�′0

)2
◦ 𝜄𝜀𝜌𝑎0�̄�𝑣0 ⋅ �̄� +

3
2

(
�̂�′0

)2
◦ 𝜄𝜀∇Σ𝑑 ⋅

(
𝜌𝑎0 (𝑣0)𝜏

)
=

3
2

(
�̂�′0

)2
◦ 𝜄𝜀 [

𝜌𝑎0, 𝜌𝑖0; 𝜙0, 𝜈𝜓0
]
,

which is Equation (4j) up to constants. On the right-hand side, we used the expansion

 [
𝜌𝑎, 𝜌𝑖; 𝜙, 𝜈𝜓

]
=  [

𝜌𝑎0, 𝜌𝑖0; 𝜙0, 𝜈𝜓0
]
+ 𝑂(𝜀),

which holds with Equation (53) and

∇𝐿
2

𝜌𝑎, ∇𝐿2𝜌𝑖 , ∇𝐿2𝜙 , ∇𝐿2𝜈  ∈ 𝑂(1).
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38 of 39 NÖLDNER et al.

So altogether, we could arguewith the help of formallymatched asymptotic expansions that solutions of the PDE system
(1), under suitable Assumptions Assumptions 1–8, converge to solutions of Equation (4) as 𝜀 ↘ 0.

5 CONCLUSION

We have made plausible that both the diffuse and sharp interface modelling approaches are compatible in the sense
that their solutions are approximations of each other. To arrive at this conclusion, we leveraged the method of formal
asymptotic analysis.
From a mathematical perspective, it is desirable to prove that this result rigorously like Abels and Liu [16] or Fei and

Liu [17] did for related PDE systems. The main problems to deal with will likely be analysing the leading order terms in
the expansion of the Canham–Helfrich energy and controlling the pressure, showing it does not blow up near the diffuse
layers. An excellent stock of techniques for analysing the Canham–Helfrich energy is already provided in [17]. However,
they analyse the pure Willmore flow problem, and so there is no coupling with a fluid, nor with a species subsystem like
in the PDE system (1) investigated here, which poses additional problems like possible pressure blow-ups. Controlling the
pressure for a phase-field-Navier–Stokes coupling is investigated in Abels and Liu [16]. A step towards a rigorous analysis
of Equation (1) might, therefore, be possible by uniting the results of both works and leaving the species subsystem aside.
From a modelling perspective, our results increase the confidence that qualitatively both abstractions – the

sharp interface or diffuse layer abstraction – are equivalent and the focus can now be more on other aspects like
numerical feasibility.
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