
CoShare: a Multi-Pointer Collaborative Screen Sharing Tool
Martina Emmert

University of Regensburg

Regensburg, Germany

martina.emmert@stud.uni-regensburg.de

Andreas Schmid

University of Regensburg

Regensburg, Germany

andreas.schmid@ur.de

Raphael Wimmer

University of Regensburg

Regensburg, Germany

raphael.wimmer@ur.de

Niels Henze

University of Regensburg

Regensburg, Germany

niels.henze@ur.de

Figure 1: CoShare allows users to share their screen with others and give viewers their own mouse pointer. Unlike collaborative
whiteboards, CoShare is application-agnostic and does not rely on third-party servers.

ABSTRACT
Existing tools for screen sharing and remote control only allow a

single user to interact with a system while others are watching.

Collaborative editors and whiteboards allow multiple users to work

simultaneously, but only offer a limited set of tools. With CoShare,
we combine both concepts into a screen sharing tool that gives

remote viewers a mouse pointer and a text cursor so that they can

seamlessly collaborate within the same desktop environment. We

have developed a proof-of-concept implementation that leverages

Linux’ multi-pointer support so users can control applications in

parallel. It also allows limited sharing of clipboard and dragging

files from the remote viewer’s desktop into the video-streamed

desktop. In focus groups we gathered user requirements regarding

privacy, control, and communication. A qualitative lab study iden-

tified further areas for improvement and demonstrated CoShare’s

utility.

ACM Reference Format:
Martina Emmert, Andreas Schmid, Raphael Wimmer, and Niels Henze. 2023.

CoShare: a Multi-Pointer Collaborative Screen Sharing Tool. In Mensch und
Computer 2023 (MuC ’23), September 03–06, 2023, Rapperswil, Switzerland.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3603555.3608524

1 INTRODUCTION
Remote collaboration has become ever more common in recent

years. Most applications for synchronous remote collaboration can

be grouped into two categories: screen sharing and collaborative

editing. Most video conferencing software allow people to stream

This work is licensed under a Creative Commons Attribution International

4.0 License.

MuC ’23, September 03–06, 2023, Rapperswil, Switzerland
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0771-1/23/09.

https://doi.org/10.1145/3603555.3608524

their screen’s contents to other participants in a meeting. However,

there is always a clear distinction between presenter and viewers.

Viewersmay view, comment, or sometimes annotate shown content,

but they cannot interact directly. In contrast, web-based collabora-

tive editors, such as Google Docs or Miro, provide a document or

canvas in which multiple people can edit content simultaneously

with the same editing powers and tools. However, all collaboration

happens on a remote server within a single document and using

the provided set of tools.

With CoShare, we explore a different type of remote collabora-

tion: multi-pointer interactive screen sharing. The hosting user not

only streams their screen to visitors but also allows them to interact

with the screen contents as if it were their own computer. Each

visitor controls their own pointer and text cursor. To learn about

the technical, interactional, and social aspects of such a interaction

model, we developed a proof-of-concept prototype for sharing (part

of) a Linux desktop with a single remote visitor. In the following,

we first give a short overview of the design space and related work.

Afterwards, we describe design process and implementation of the

CoShare prototype. In focus groups and a qualitative user study we

identified several important considerations such applications. We

conclude by discussing limitations and planned improvements.

2 RELATEDWORK
Nowadays, remote collaboration takes place predominantly by us-

ing dedicated tools. There are cloud services that provide online

file storage and tools to edit those files collaboratively in real-time.

Additionally, almost all video conference programs come with a

screen sharing function. TeamViewer allows for controlling a PC

remotely, for example, to let experts solve a problem. However, first

visions for collaborative work in the digital age already emerged in

the early 1990s, including concepts for an electronic meeting system

[16], or early concepts for collaborative editors [4]. With Virtual
Network Computing (VNC) [19], remotely controlling graphical user

interfaces became possible.

325

https://orcid.org/0009-0009-5540-8402
https://orcid.org/0000-0003-3593-2476
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3603555.3608524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3603555.3608524
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603555.3608524&domain=pdf&date_stamp=2023-09-03


MuC ’23, September 03–06, 2023, Rapperswil, Switzerland Emmert et al.

2.1 Co-located Collaboration
In 1999, Stewart et al. [23] introduced the concept of Single Dis-
play Groupware (SDG), which allows co-located users to simultane-

ously control software on a shared screen, for example, in meetings.

Mighty Mouse [5] lets multiple co-located users control one PC.

Users can switch between contexts by moving the mouse cursor

through display boundaries, similar to transitioning between mul-

tiple connected displays. Even though they did not implement this

feature for Mighty Mouse, authors envisioned adding a shard clip-

board to SDG applications to allow for easy data transfer between

devices. Lacome [14] allows for sharing application windows on a

large screen. It builds upon VNC and a custom communication pro-

tocol. As it features input redirection, Lacome allows users to work

concurrently, as well as control each other’s applications. Steinert

et al. [22] present a prototypical implementation of collaborative

application for extreme programming. It supports co-located users

interacting on a single screen, as well as remote collaboration.

Similar to Single Display Groupware, there are several research

projects that investigate how co-located users could interact in

multi-display environments. Many of those projects allow for easily

distributing application windows among screens in the room, or add

multi-pointer support to applications on those screens. PointRight
[13] is a cross-platform environment that allows for connecting

multiple screens to one PC, as well as multiple PCs to one screen

by redirecting the PC’s inputs. Designed for rooms with smart

boards and interactive tables, the system uses a geometrical model

of the room for more intuitive context switching. ARIS [3] allows
for relocating applications windows to different screens in a room

and supports multiple platforms such as PC and PDAs. Wallace et al.

[24] used a similar concept for a multi-cursor windowmanager that

can be used in control rooms where multi-display applications and

context switching are commonplace. Swordfish [25] allows users to

customize their workspace in multi-display environments.

2.2 Multi-pointer interaction
As buying additional input devices is significantly cheaper than pur-

chasing desktop or laptop computers, collaborative multi-pointer

applications are an opportunity for broader access to computers

in third world countries. Pawar et al. [17, 18] evaluated single-

display multi-mouse applications with children. They observed

significantly less fighting for the mouse in a multi-mouse setting,

but in competitive situations, older children had a clear advantage.

The authors concluded that simultaneous interaction has a posi-

tive effect on the value of a PC for education, but users should be

granted their own personal space within multi-user applications.

Scott et al. [21] compared teams of users solving a collaborative

task in three different settings: sharing a single mouse and display,

using two independent mice on a shared display, and solving the

task together on paper. When sharing a single mouse, users collab-

orated less and interacted strictly sequentially opposed to parallel

interaction when working with two independent mice or on paper.

With theMulti-Pointer X Server (MPX), Hutterer and Bruce added

multi-pointer support to the XWindow System, the prevalent graph-

ics subsystem for Linux [11, 12]. This low-level extension allows

multiple independent input devices to be used to control GUI appli-

cations with the window manager solving cursor ambiguity. With

MPX, each connected mouse/keyboard pair controls its own pointer,

allowing for simultaneous interaction – even within the same win-

dow and with support for legacy applications. In 2009, Chris Ball

extended the Vino VNC server to support MPX and thus allowmulti-

pointer support during remote access [1]. Neither Windows nor

macOS natively support multiple independent pointers. Therefore,

workarounds are required. TIDL [10] achieves multi-pointer inter-

action by using Java’s GlassPane as a screen overlay that renders

multiple cursors. However, interaction techniques such as drag and

drop had to be re-implemented to work with TIDL. Metamouse [7]
adds multi-mouse support to Windows applications by rendering

each user’s cursor independently using Westergaard’s CPNmouse
API [26]. Metamouse does not allow for simultaneous input but dis-

plays an additional meta cursor between all user’s cursors. Clicks

are only propagated to an application if all users agree by posi-

tioning their cursors close together. TWICE [6, 20] is a JavaScript

toolkit for creating web-based multi-pointer applications that can

be accessed via URL with a normal web browser. Even though au-

thors provide an in-depth explanation of their design decisions and

implementation, they do not show any applications developed with

their toolkit, or results from possible user studies.

In summary, previous work investigated different models of co-

located and remote collaboration. With common screen sharing

and remote access tools, there is a clear difference in agency as

only a single user is in control at a time - others can just watch and

comment. There is some evidence that synchronous multi-pointer

interaction gives users a feeling of agency and may improve team

performance. While cloud-based collaborative editors allow for

simultaneous interaction with documents and canvases, the tool

range is limited, and the experience is controlled by the cloud

service.

3 DESIGN AND IMPLEMENTATION
With CoShare, our goal is to explore how screen-sharing can be

turned from a broadcasting medium to an interactive medium. Our

interaction concept is inspired by physically co-located collabora-

tive work where visitors are invited into the host’s home or office,

given access to facilities and tools, and equally contribute to the

task at hand.

Using a design science approach [8, 9], we iteratively developed

a prototype of a collaborative screen-sharing application. First we

gathered requirements and attitudes in two focus groups. Based on

the requirement analysis, we developed a proof-of-concept proto-

type and evaluated its utility and limitations in a small user study.

3.1 Requirement Analysis
To learn about needs of users in remote collaborative work, we

conducted two remote focus groups with four respectively six par-

ticipants via Zoom. All participants were local media informatics

students (21–26 years, 7m, 3f) and had experience with a variety

of screen-sharing tools, for example for collaborating remotely

with others to work on university projects. The selected group is

representative of the typical audience we envision for CoShare.

Both focus groups had the same structure. First, groups of two

participants were asked to consolidate the advantages and disad-

vantages of existing screen-sharing tools and collaborative work

326



CoShare: a Multi-Pointer Collaborative Screen Sharing Tool MuC ’23, September 03–06, 2023, Rapperswil, Switzerland

private shared

This text was 
written by 
the streamer.

Viewers can 
enter text 
simultaneously.
Awesome!

Hello world!Hello world!

copy paste

(a) (b)

(c) (d)

Figure 2: Interaction concepts for CoShare: Streamers can
share any rectangular screen region while parts of their desk-
top remain private (a). All collaborators can work simultane-
ously with independent mouse and text cursors (b). Viewers
can paste their clipboard content to the shared workspace
(c). Viewers can transfer files from their PC to the shared
workspace using drag and drop (d).

solutions. After that, we presented initial concepts for an interac-

tive screen-sharing application, such as sharing a partial region of

the host’s screen and redirecting the visitor’s mouse and keyboard

input to the host’s desktop. Participants then discussed the concepts

and made suggestions for the features’ implementation.

By consolidating the focus groups’ transcripts, we identified

following general topics (participant ID in parentheses):

To preserve privacy, participants appreciated the opportunity

to share arbitrary regions instead of a whole window or screen

(6). The shared region should be highlighted at all times (3) and

re-scaling should be possible (3). To interact with the shared con-
tent, mouse and keyboard input within the shared region should be

propagated through the stream (5). Parallel interaction requires

simultaneous and independent inputs (4). Visual clues should help

to distinguish cursors (3). The application should include a direct

way of data transfer between visitor and host, avoiding the need

for a separate file sharing platform (4). The system should be as

simple to use as possible, e.g., by leveraging and supporting es-

tablished interaction techniques, such as copy/paste or drag/drop

(5). Performance should be good enough not to distract users and

latency should be minimized (5). Furthermore, participants sug-

gested integrating these features into an existing cross-platform

video conference software (5), an option for the host to restrict the

others’ interaction for security reasons (5), and the option to open

shared files with their own preferred tools (3).

Interaction concepts derived from the requirement analysis are

depicted in Figure 2.

3.2 Design Decisions and Implementation
Based on the requirement analysis, as well as on consensus from

related work, we made several design decisions for CoShare. For
the first design iteration, we focused on basic interaction concepts,

data transfer, and privacy features. Therefore, we postponed cross-

platform support and security features, and only support a single

visitor.

In the current prototype, the host can select an arbitrary rectan-

gular screen region to be streamed (Fig. 3b). Parts of application

windows in the selected region are shared while everything else

remains private. On the host’s desktop, the shared area is indicated

by a red border (Fig. 3c). On the visitor’s desktop, the stream is

displayed within an application window (Fig. 3d). This way, all

collaborators can have their own private area, similar to the sug-

gestions of Pawar et al. or Barry et al. [2, 18]. Independent cursors

for each user allow for pointing, clicking, and typing simultane-

ously at different positions on the screen without interfering with

each other’s input during parallel work. Each participant’s cursor is

marked with a distinctly colored dot. Each participant’s keyboard

is linked to their mouse pointer, so the window/widget focused

by the mouse pointer receives keyboard input. This allows users

to work in different applications on the host’s desktop in paral-

lel. Applications that explicitly support multi-pointer interaction

may also be used simultaneously by multiple participants at once.

Clients can copy and paste text through the shared screen using

the usual shortcuts CTRL+C and CTRL+V without affecting the

host’s clipboard. Visitors can transmit files to the host by dragging

a file on their own computer into the application window. Dragging

files from the host’s desktop to the visitors is not possible with the

current prototype.

We developed CoShare for GNU/Linux as it is the only major

operating system that with native multipointer support and pro-

vides easy access to input events and clipboard. The application is

written in Python 3.8 with PyQt5 as UI toolkit. A few components

are written in C. Visitors can join the stream via a tray menu (Fig.

3a). The host then receives a registration request and starts stream-

ing the shared screen region which is displayed in a window on

the viewer’s system. All real-time communication between host

(server) and visitor (client) happens via UDP. For transferring files,

we use a Flask HTTP server running on the host’s system. For the

video stream, we use gstreamer1. We use the MPX [11] to allow for

parallel work with multiple mouse cursors and virtual keyboards.

The visitor’s keyboard input is captured using evdev2, and mouse

events are retrieved via pynput3. All captured input events within

the visitor’s application window are sent to the host as evdev events.

On the host’s side, received events are assigned to a virtual input

device and input events are emitted using uinput. The keyboard
shortcuts CTRL+C/V are not forwarded to the host. Instead, when

copying from the stream window, the host’s clipboard content is

transferred to the visitor’s local clipboard. If they paste into the

stream window, the visitor’s clipboard is sent to the host and pasted

at the position of the visitor’s cursor. To allow for file transfer via

drag and drop, we capture drop events on the stream window with

PyQt5 and send the dropped file to the HTTP server running on

the host’s machine where a drop event is simulated.

1
https://gstreamer.freedesktop.org/

2
https://python-evdev.readthedocs.io/

3
https://pypi.org/project/pynput/

327

https://gstreamer.freedesktop.org/
https://python-evdev.readthedocs.io/
https://pypi.org/project/pynput/


MuC ’23, September 03–06, 2023, Rapperswil, Switzerland Emmert et al.

Figure 3: Different states of CoShare. The application can be controlled via a tray menu (a). The shared area is highlighted by a
border. The border is initially gray (b) and turns red once a viewer joins (c). The viewer’s cursor position is marked by a red dot
(c). On the viewer’s side, a window displays the shared area of the host’s screen with which the viewer can interact (d).

4 EVALUATION
We evaluated CoShare in a small formative user study. We recruited

twelve participants (21–25 years, 9m / 3f) with and without a tech-

nical background to cover different perspectives on the system and

different approaches to solving the task. We designed a scenario

which represents a realistic use case for collaboration: a teacher

(host) and a tutor (visitor) work together to grade assignments of a

language course and record student’s grades in a summary sheet.

The assignments, short texts about the USA and Germany, were

stored on the tutor’s computer. The teacher had an assessment sheet

with a list of requirements for the assignments, the summary sheet,

and a language tool to help find grammar and spelling mistakes.

For each group, both participants were seated at separate desks in

our laboratory. On each desk, there was a PC running CoShare. The
experimenter observed the study from a distance and took notes.

First, we informed participants about the study’s procedure and

asked them for demographic data with a questionnaire. Then, we

introduced participants to the prototype and explained the task.

Additionally, we provided a printed sheet with a task description

and information on where to find required documents and tools on

their computers. Each group graded eight texts in total, switching

roles after the first half. As we intend CoShare to be used together

with voice chat or video conference software, participants were

allowed to talk to each other during the study, for example to discuss

their strategy to solve the tasks. The study was followed by a semi-

structured interview to reflect participants’ usage of CoShare. We

asked them for a comparison between the host’s and the visitor’s

part, their opinion on provided features, if they missed any features,

and which problems occurred or might have occurred using the

system. We then asked them for advantages and disadvantages

of CoShare compared to existing screen-sharing tools, and during

which use cases they would benefit from an interactive screen share.

5 RESULTS AND DISCUSSION
We transcribed and paraphrased all interviews and used inductive

category formation [15] to group results.

Streaming and Viewing: According to eight participants, shar-

ing a selected region makes sense to preserve privacy and hide

irrelevant areas. However, new windows might open within the

shared region. Five participants found CoShare most useful when

using a separate screen as shared space. Five participants wished

to be able to re-scale the streamed region during runtime. Some-

times, compression artifacts degraded the stream and there was no

indication for the viewer when the streamer stopped the stream.

Overall, Interacting with the Stream was appreciated by the

participants. Four participants noted that most applications do not

support simultaneous input. Two participants found the mouse

cursor indicator not clear enough.

Text and Data Transfer: Due to a bug with the shared clip-

board, CoShare occasionally pasted the streamer’s clipboard content

instead of the viewer’s when they pressed CTRL+V. For four partici-
pants, the clipboard worked flawlessly, and two participants did not

use it. Four participants found the drag and drop feature simple and

useful. Two participants had safety concerns, as the streamer can

not opt out of receiving files at the current state of development.

Feature Requests: All participants found CoShare useful for
collaborating, but agreed that some kind of voice chat is necessary

when working remotely. Six participants requested the option for

streamers to bind the stream to an application window, so it can be

moved or minimized without affecting the stream. Four participants

wished to use an independent system to initialize the stream, so

all users are equal. Six participants requested bi-directional data

transfer. Annotations on the streamer’s screen, as well as stream

recording and rewinding were mentioned by one participant each.

Advantages vs. Screen Sharing: Seven participants sawCoShare’s
biggest advantage in the simple data transfer. Seven participants

appreciated increased efficiency as they could do things themselves

instead of describing them to the streamer. Two participants found

CoShare’s context independence to be an advantage over cloud-

based tools.

Use Cases: Participants identified several use cases for CoShare:
teaching (3), group projects (4), pair programming (2), collaborative

drawing (1), helping/guiding someone else (1), checking on a col-

league’s progress without disturbing them (1), and remote meetings

with friends (1) or colleagues (1).

Overall, participants liked concept and implementation. Focus

groups and study highlight important aspects that need to be consid-

ered when developing multi-pointer screen-sharing tools: privacy

and security concerns need to be addressed. These mechanisms

should be based on existing mental models. Making only a part of

the screen accessible to visitors is a useful feature. Sharing clipboard

contents and files is an important feature that needs to be fleshed

out.

328



CoShare: a Multi-Pointer Collaborative Screen Sharing Tool MuC ’23, September 03–06, 2023, Rapperswil, Switzerland

6 CONCLUSION AND FUTUREWORK
We presented CoShare, a proof-of-concept implementation for a

novel approach to computer-supported remote collaboration. We

could show that interaction through a shared screen is possible with

only a few low-level features such as input forwarding or data trans-

fer. In contrast to traditional screen sharing, agency is distributed

evenly between participants as all have simultaneous access to files

and applications in the shared area. Furthermore, CoShare allows
users to solve tasks with tools and workflows they are familiar

with, opposed to restrictive applications targeted at specific tasks

that come with current approaches to collaborative work. While

most applications are not built with multi-pointer support in mind,

CoShare allows for working in parallel on separate applications. For

an ideal solution, true multi-pointer support would include features

such as multiple cursors in a single text input widget. Solving this

problem would require major modifications of existing software,

for example by integrating multi-pointer support into established

UI frameworks. Future development of CoShare will focus on multi-

platform support, improved data transfer between participants, and

integration of a video/voice channel. After implementing these

features, we will be able to compare CoShare to established systems

for remote collaborative work. Additionally, we plan to evaluate

how to visually distinguish the different cursors effectively without

distracting the users.

Source code ofCoShare is publicly available under an open source
license

4
.

REFERENCES
[1] Chris Ball. 2009. Multi-pointer Remote Desktop. https://blog.printf.net/articles/

2009/01/26/multi-pointer-remote-desktop/

[2] Lior Berry, Lyn Bartram, and Kellogg S. Booth. 2005. Role-based control of

shared application views. In Proceedings of the 18th annual ACM symposium on
User interface software and technology (UIST ’05). Association for Computing

Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/1095034.1095039

[3] Jacob T. Biehl and Brian P. Bailey. 2004. ARIS: an interface for application

relocation in an interactive space. In Proceedings of Graphics Interface 2004 (GI
’04). Canadian Human-Computer Communications Society, Waterloo, CAN, 107–

116.

[4] Eric A. Bier, Steve Freeman, and Ken Pier. 1992. MMM: The multi-device multi-

user multi-editor. In Proceedings of the SIGCHI conference on Human factors in
computing systems - CHI ’92. ACM Press, Monterey, California, United States,

645–646. https://doi.org/10.1145/142750.143065

[5] Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie Argue. 2002.

The "mighty mouse" multi-screen collaboration tool. In Proceedings of the 15th
annual ACM symposium on User interface software and technology (UIST ’02).
Association for Computing Machinery, New York, NY, USA, 209–212. https:

//doi.org/10.1145/571985.572016

[6] Muriel Bowie, Oliver Schmid, Agnes Lisowska Masson, and Béat Hirsbrunner.

2011. Web-based multipointer interaction on shared displays. In Proceedings of
the ACM 2011 conference on Computer supported cooperative work (CSCW ’11).
Association for Computing Machinery, New York, NY, USA, 609–612. https:

//doi.org/10.1145/1958824.1958926

[7] Kurtis Heimerl, Divya Ramachandran, Joyojeet Pal, Eric Brewer, and Tapan

Parikh. 2009. Metamouse: Multiple Mice for Legacy Applications. (2009), 6.

[8] Alan Hevner and Samir Chatterjee. 2010. Design Science Research in Infor-

mation Systems. In Design Research in Information Systems. Integrated Se-

ries in Information Systems, Vol. 22. Springer US, Boston, MA, 9–22. http:

//link.springer.com/10.1007/978-1-4419-5653-8_2 https://doi.org/10.1007/978-1-

4419-5653-8_2.

[9] Alan Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design

Science in Information System Research. MIS quarterly 28, 1 (March 2004),

75–105.

[10] Peter Hutterer, Benjamin S. Close, and Bruce H. Thomas. 2006. TIDL: mixed

presence groupware support for legacy and custom applications. In Proceedings

4
https://github.com/PDA-UR/CoShare/

of the 7th Australasian User interface conference - Volume 50 (AUIC ’06). Australian
Computer Society, Inc., AUS, 117–124.

[11] Peter Hutterer and Bruce H. Thomas. 2007. Groupware support in the windowing

system. In Proceedings of the eight Australasian conference on User interface -
Volume 64 (AUIC ’07). Australian Computer Society, Inc., AUS, 39–46. https:

//doi.org/10.5555/1273714.1273721

[12] Peter Hutterer and Bruce H Thomas. 2008. Enabling Co-located Ad-hoc Collabo-

ration on Shared Displays. Wollongong, NSW, Australia, 8.

[13] Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone. 2002.

PointRight: experience with flexible input redirection in interactive workspaces.

In Proceedings of the 15th annual ACM symposium on User interface software and
technology (UIST ’02). Association for Computing Machinery, New York, NY, USA,

227–234. https://doi.org/10.1145/571985.572019

[14] Zhangbo Liu. 2007. Lacome: a cross-platform multi-user collaboration system
for a shared large display. Ph. D. Dissertation. University of British Columbia.

https://doi.org/10.14288/1.0051402

[15] Philipp Mayring. 2015. Qualitative Content Analysis: Theoretical Background

and Procedures. In Approaches to Qualitative Research in Mathematics Educa-
tion: Examples of Methodology and Methods, Angelika Bikner-Ahsbahs, Christine
Knipping, and Norma Presmeg (Eds.). Springer Netherlands, Dordrecht, 365–380.

https://doi.org/10.1007/978-94-017-9181-6_13

[16] J. F. Nunamaker, Alan R. Dennis, Joseph S. Valacich, Douglas Vogel, and Joey F.

George. 1991. Electronic meeting systems. Commun. ACM 34, 7 (July 1991),

40–61. https://doi.org/10.1145/105783.105793

[17] Udai Singh Pawar, Joyojeet Pal, Rahul Gupta, and Kentaro Toyama. 2007. Multiple

mice for retention tasks in disadvantaged schools. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’07). Association for

Computing Machinery, New York, NY, USA, 1581–1590. https://doi.org/10.1145/

1240624.1240864

[18] Udai Singh Pawar, Joyojeet Pal, and Kentaro Toyama. 2006. Multiple Mice for

Computers in Education in Developing Countries. In 2006 International Conference
on Information and Communication Technologies and Development. 64–71. https:

//doi.org/10.1109/ICTD.2006.301840

[19] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper. 1998. Virtual

network computing. IEEE Internet Computing 2, 1 (Jan. 1998), 33–38. https:

//doi.org/10.1109/4236.656066

[20] Oliver Schmid, Agnes Lisowska Masson, and Béat Hirsbrunner. 2014. Real-time

collaboration through web applications: an introduction to the Toolkit for Web-

based Interactive Collaborative Environments (TWICE). Personal and Ubiquitous
Computing 18, 5 (June 2014), 1201–1211. https://doi.org/10.1007/s00779-013-

0729-0

[21] Stacey D Scott, Garth B D Shoemaker, and Kori M Inkpen. 2000. Towards Seamless

Support of Natural Collaborative Interactions. In Proceedings of the Graphics
Interface 2000 Conference. Montréal Québec Canada, 8.

[22] Bastian Steinert, Michael Grünewald, Stefan Richter, Jens Lincke, and Robert

Hirschfeld. 2009. Multi-user multi-account interaction in groupware supporting

single-display collaboration. In 2009 5th International Conference on Collaborative
Computing: Networking, Applications and Worksharing. 1–9. https://doi.org/10.

4108/ICST.COLLABORATECOM2009.8290

[23] Jason Stewart, Benjamin B. Bederson, and Allison Druin. 1999. Single display

groupware: a model for co-present collaboration. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (CHI ’99). Association for

Computing Machinery, New York, NY, USA, 286–293. https://doi.org/10.1145/

302979.303064

[24] GrantWallace, Peng Bi, Kai Li, and Otto Anshus. 2004. AMulti-Cursor XWindow

Manager Supporting Control Room Collaboration. (2004), 7.

[25] Jim Wallace, Vicki Ha, Ryder Ziola, and Kori Inkpen. 2006. Swordfish: user

tailored workspaces in multi-display environments. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems (CHI EA ’06). Association for Computing

Machinery, New York, NY, USA, 1487–1492. https://doi.org/10.1145/1125451.

1125724

[26] Michael Westergaard. 2002. Supporting Multiple Pointing Devices in Microsoft

Windows. In Proceedings of Microsoft Summer Workshop for Faculty and PhDs.
Cambridge.

329

https://blog.printf.net/articles/2009/01/26/multi-pointer-remote-desktop/
https://blog.printf.net/articles/2009/01/26/multi-pointer-remote-desktop/
https://doi.org/10.1145/1095034.1095039
https://doi.org/10.1145/142750.143065
https://doi.org/10.1145/571985.572016
https://doi.org/10.1145/571985.572016
https://doi.org/10.1145/1958824.1958926
https://doi.org/10.1145/1958824.1958926
http://link.springer.com/10.1007/978-1-4419-5653-8_2
http://link.springer.com/10.1007/978-1-4419-5653-8_2
https://github.com/PDA-UR/CoShare/
https://doi.org/10.5555/1273714.1273721
https://doi.org/10.5555/1273714.1273721
https://doi.org/10.1145/571985.572019
https://doi.org/10.14288/1.0051402
https://doi.org/10.1007/978-94-017-9181-6_13
https://doi.org/10.1145/105783.105793
https://doi.org/10.1145/1240624.1240864
https://doi.org/10.1145/1240624.1240864
https://doi.org/10.1109/ICTD.2006.301840
https://doi.org/10.1109/ICTD.2006.301840
https://doi.org/10.1109/4236.656066
https://doi.org/10.1109/4236.656066
https://doi.org/10.1007/s00779-013-0729-0
https://doi.org/10.1007/s00779-013-0729-0
https://doi.org/10.4108/ICST.COLLABORATECOM2009.8290
https://doi.org/10.4108/ICST.COLLABORATECOM2009.8290
https://doi.org/10.1145/302979.303064
https://doi.org/10.1145/302979.303064
https://doi.org/10.1145/1125451.1125724
https://doi.org/10.1145/1125451.1125724

	Abstract
	1 Introduction
	2 Related Work
	2.1 Co-located Collaboration
	2.2 Multi-pointer interaction

	3 Design and Implementation
	3.1 Requirement Analysis
	3.2 Design Decisions and Implementation

	4 Evaluation
	5 Results and Discussion
	6 Conclusion and Future Work
	References

