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Abstract
Motivation: Mixed molecular data combines continuous and categorical features of the same samples, such as OMICS profiles with genotypes,
diagnoses, or patient sex. Like all high-dimensional molecular data, it is prone to incorrect values that can stem from various sources for example
the technical limitations of the measurement devices, errors in the sample preparation, or contamination. Most anomaly detection algorithms
identify complete samples as outliers or anomalies. However, in most cases, not all measurements of those samples are erroneous but only a
few one-dimensional features within the samples are incorrect. These one-dimensional data errors are continuous measurements that are either
located outside or inside the normal ranges of their features but in both cases show atypical values given all other continuous and categorical
features in the sample. Additionally, categorical anomalies can occur for example when the genotype or diagnosis was submitted wrongly.

Results: We introduce ADMIRE (Anomaly Detection using MIxed gRaphical modEls), a novel approach for the detection and correction of anomalies
in mixed high-dimensional data. Hereby, we focus on the detection of single (one-dimensional) data errors in the categorical and continuous features of
a sample. For that the joint distribution of continuous and categorical features is learned by mixed graphical models, anomalies are detected by the
difference between measured and model-based estimations and are corrected using imputation. We evaluated ADMIRE in simulation and by
screening for anomalies in one of our own metabolic datasets. In simulation experiments, ADMIRE outperformed the state-of-the-art methods of Local
Outlier Factor, stray, and Isolation Forest.

Availability and implementation: All data and code is available at https://github.com/spang-lab/adadmire. ADMIRE is implemented in a Python
package called adadmire which can be found at https://pypi.org/project/adadmire.

1 Introduction

Molecular data are error-prone. Systematic errors in sample
collection or preparation can affect large sets of features and
need to be corrected using normalization methods.
Additionally, technical problems can affect individual measure-
ments. Due to the different molecular properties of the mea-
sured features, it is often the case that a sample shows only in a
few of its measured features abnormalities while the rest of
them are inconspicuous. Also, not all samples might be affected
in the same way as each sample is usually processed separately
and therefore is exposed to a different kind of error source.
Consequently, molecular datasets contain individual data
errors that can affect each measured feature in each sample in a

different way. These one-dimensional data errors are especially
hard to detect in the setting of high-dimensional molecular
datasets. Furthermore, they might present themselves as univar-
iate outliers, with measured values exceeding the range of the
features by multiple orders. But they also appear as anomalies
when a value fits well into the univariate distribution of its fea-
ture, but not into the joint distribution of all features. For ex-
ample, if a gene shows expression values between 4–6 in men
and between 8–14 in women, a value of 12 in a man is
suspicious.

More formally, a given value xij of a feature j in a sample i
might be a typical value for the marginal distribution of fea-
ture j, but not for its conditional distribution given all other
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features of sample i. These anomalies can only be detected
when the information given by the categorical, phenotypic in-
formation is taken into consideration as well. But this data
can also contain anomalies. Data entry errors or a mix-up
during the experimental procedure can lead to artifacts in the
phenotypical information of a dataset. Samples are then
assigned, e.g. to the wrong treatment class, a female partici-
pant is considered as a male, etc.

The literature knows numerous methods for detecting uni-
variate outliers in molecular data (Grubbs 1969) and for
detecting multivariate anomalies in continuous (Korn et al.
2001, DeCoste and Levine 2004, Hodge and Austin 2004,
Ando 2007) as well as in discrete data (John 1995). A com-
mon approach to anomaly detection is using the k-nearest
neighbors to detect anomalies within this neighborhood as
done by the Local Outlier Factor (LOF) (Breunig et al. 2000)
and the Search and TRace AnomalY (stray) algorithm
(Talagala et al. 2021), or to use random forests to isolate
anomalous samples (see Isolation Forest; Liu et al. 2008).
Unlike our method which aims at the detection of anomalies
in individual entries of the data matrix, those algorithms how-
ever confine themselves to identifying suspicious samples, see
Supplementary data.

Most datasets in molecular biology are mixed. Continuous
OMICS data are complemented by discrete phenodata-like
patient characteristics (sex, diagnosis, treatment), experimen-
tal conditions (experimental groups, controls), or technical
designs (batches, repetitions). Therefore, we developed a
novel approach to anomaly detection based on mixed graphi-
cal models (MGMs). MGMs (Lee and Hastie 2015, Cheng
et al. 2017) are well-established generalizations of Gaussian
graphical models (GGMs) (Lauritzen 1996, Meinshausen and
Bühlmann 2006) to mixed data. Beyond anomaly detection
MGMs have been successfully used for studying the structure
of metabolic, proteomic, or transcriptomic networks (Chun
et al. 2013, Wang et al. 2016, Zhao and Duan 2019,
Altenbuchinger et al. 2020). We briefly review the concept of
MGMs, describe how ADMIRE (Anomaly Detection using
MIxed gRaphical modEls) detects anomalies, handles missing
values, validate it in simulation experiments, compare it to al-
ternative approaches and demonstrate its power in the con-
texts of finding experimental artefacts in a state-of-the-art
metabolomics dataset.

2 Materials and methods

In a nutshell, ADMIRE fits for each sample in a leave-one-out
approach a MGM to the mixed dataset. From this MGM, we
derive the conditional distribution of a feature given all other
features. We then compare an actual observation of a specific
feature in a specific sample with its corresponding conditional
distribution. If the value is far away from what can be
expected from the model given all other features of the same
sample, we flag it as anomaly and the user may choose to re-
place it by a model-based imputation.

2.1 Mixed graphical models

Like GGMs, their continuous counterpart, MGMs learn the
conditional independence structure of a given set of features
together with parameters that define the joint distribution of
both continuous and discrete variables (Lee and Hastie 2015).
The conditional independence structure is encoded in an undi-
rected graph where nodes represent features and edges the

conditional dependencies between them. The conditional dis-
tribution of a node (feature) xj given all other nodes (features)
xnj only depends on the values of the nodes that are directly
connected to xj. More formally, the data are modeled as a
pairwise Markov random field with density

pðx; y; HÞ / exp

 Xp
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Xp

s¼1

� 1
2

bjsxjxs þ
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qjsðysÞxj þ
Xq
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s¼1

/jsðyj; ysÞ
!
;

(1)

where x1; . . . ;xp are continuous features and y1; . . . ; yq dis-
crete features where yj has Lj distinct states. Together, the xj

and yj form the nodes of the network. The remaining parame-
ters are node and edge weights (couplings) that jointly define
how the distribution of a node depends on the values of its di-
rect neighbors. bjs are couplings between two continuous
nodes, aj are continuous node potentials, qjsðysÞ are
continuous-discrete couplings, and /jsðyj; ysÞ are discrete–dis-
crete couplings. We denote the complete parameter set by
H ¼ ffbjsg; fajg; fqjtg; f/rtg; j; s 2 f1 . . . pg; r; t 2 f1 . . . qgg.
Figure 1 visualizes the roles of individual parameters.

To simplify notations, we will omit the index i of the sample
whenever the focus is on the features xj in the continuous and yj

in the discrete case. Single data points in our data matrix are
realizations of the random variables xj or yj and are denoted by
xij or yij, respectively.

Equation (1) defines the full joint distribution of both discrete
and continuous features. To judge whether a specific continuous
xij or discrete yij data point fits to all other observed data points
in the same sample, we need to calculate the conditional distri-
bution of a node given all its direct neighbors. Following (Lee
and Hastie 2015) the conditional distribution of a continuous
variable xj given all other continuous variables xnj and discrete
variables y is Gaussian with

Figure 1. A mixed graphical model. The nodes include both continuous

features (X1; :::; X5) and discrete features (Y1and Y2). A missing edge

between two nodes denotes their conditional independence given all

other variables. The node and edge weights correspond to the couplings

and potentials in equation (1).
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xjjðxnj; y; HÞ � N ðx̂j; b
�1
jj Þ (2)

where the linear regression

x̂j ¼ aj þ
X

s

qjsðysÞ �
X
s 6¼j

bjsxs (3)

yields the mean and the variance is given by b�1
jj .

The conditional distribution of a discrete variable yj with Lj

states has the probability mass function

pðyjjynj;x; HÞ ¼

exp
�P

sqsjðyjÞxs þ Ujjðyj; yjÞ þ
P

s 6¼jUjsðyj; ysÞ
�

PLj

l¼1 exp
�P

sqsjðlÞxs þ Ujjðl; lÞ þ
P

s 6¼jUjsðl; ysÞ
� (4)

which corresponds to a multiclass logistic regression. Together,
the conditional distributions (2) and (4) describe the conditional
independence structure via the regression coefficient of a variable
on all others. We denote the conditional distribution (2) of a
continuous feature xj in a sample i by Qij and the conditional
distribution of a discrete feature yj in sample i by pij.

2.2 Detection of data anomalies in continuous

features

ADMIRE builds on the discrepancies between the original
observations xij from their model-based conditional distribu-
tions and the resulting linear predictions x̂ij. The estimated
means x̂ij from the conditional distribution (2) serve as a
regression-based re-estimation of a continuous feature based
on all other features (see Altenbuchinger et al. 2019).
Furthermore, the conditional distribution describes how well
an observed data point fits to the rest of the data. More specif-
ically, it tells us the probability of observing a specific feature
value given all other continuous and categorical features for
the same sample. Let xij be the observed, measured value, x̂ij

the estimated mean, and � ¼ jxij � x̂ijj the deviation of the ob-
served value from the estimated mean. Then the probability p
of observing a deviation greater or equal � is given by

p ¼ Pðx � x̂ � �Þ þ Pðx � x̂ þ �Þ ¼ 2 � Fðx̂ � �Þ; (5)

where F is the cumulative distribution function of
x � Nðx̂ij; b

�1
jj Þ. We apply (5) to all entries xij in the data matrix

and rank them according to their probability. Entries at the top
of this list have a low probability and are most likely anomalies.
Mind that the same ranking is achieved, when instead of the

probabilities the scores so
ij ¼ jxij � x̂ijj=

ffiffiffiffiffiffiffiffi
b�1

jj

q
are used for rank-

ing. Data entries with a high deviation from the estimated mean
rank at the top of the list.

We threshold this list by comparing the observed scores
with anomaly-free scores simulated from the estimated distri-
bution (2). For every observed data point xij, let Qij be its
model-based conditional distribution given all other features
k 6¼ j of sample i defined in (2). We generate random data by
drawing one random value rij from each Qij, resulting in as
many random data points as original continuous observa-
tions. Note that this data does not contain anomalies, since
every simulated data point was drawn from its proper condi-

tional distribution. Let sr
ij ¼ jrij � x̂ijj=

ffiffiffiffiffiffiffiffi
b�1

jj

q
be the score of rij.

The joint distribution of the sr
ij represents a score distribution for

data in which no anomalies exist. Next, we sort the lists of ob-
served scores so

ij and random scores sr
ij and compare them rank

by rank. If the real data contains anomalies, the scores of top
ranking data points are higher than rank matching random
scores. This results in different score distributions for highly
ranking scores. To stabilize the distribution of random scores,
we draw repeatedly from the distributions Qij and compute sr

ij

by averaging the resulting scores rank by rank. The first random
score that exceeds its matched observed score is chosen for
thresholding the lists and we flag all data points with an ob-
served score higher than this threshold value as anomalies.

2.3 Detection of discrete anomalies

Similar to the continuous case, we can calculate for each discrete
data entry yij a score depending on the conditional distribution
(4) and compare the resulting ranked list to anomaly-free scores
generated from the estimated distribution.

Let yij ¼ k be the jth discrete feature in sample i with ob-
served state k. Then the discrete observed score is defined as
so

ij ¼ �logðpijðkÞÞ, where pijðkÞ is the conditional probability
(4) of observing state k in feature yj for sample i given all
other features (discrete and continuous). If the probability of
observing yij ¼ k is low, the score so

ij is high and the discrete
feature is most likely erroneous. For thresholding, we draw
for each observed discrete value yij a random value rij from
the conditional distribution pij. If the observation yij ¼ k is an
anomaly, the probability pijðkÞ of observing state k should be
low, resulting in a realization rij 6¼ k with a different state. We
define random scores by sr

ij ¼ �logðpijðrijÞÞ. The random
scores contain no anomalies. Again, we draw multiple times
from the distribution and average over the repeated scores
rank by rank. In line with the continuous case, we match ob-
served and random scores rank by rank and set the threshold
as the first random score that is higher as its observed
counterpart.

2.4 Imputation of missing values

ADMIRE imputes missing values by a two-step procedure. If
the value of feature j is missing in sample i, ADMIRE pre-
imputes it in step 1 by the value of j in the sample i0, which
has the smallest Euclidean distance to i among all samples
where the value of j is not missing. After the pre-imputation,
feature j is re-scaled in the entire dataset. In step 2, an MGM
is fitted on the pre-imputed dataset including calibration of
the regularization parameter. Finally, all pre-imputed
missing values are re-estimated, as described in Sections 2.2
and 2.3.

2.5 Implementation and model training

ADMIRE estimates the parameter set H ¼ ffbjsg; fajg; fqjtg;
f/rtg; j; s 2 f1 . . . pg; r; t 2 f1 . . . qgg which defines the node
and edge weights and hence specifies the joint probability distri-
bution (1) together with the conditional distributions (2) and
(4). Let fxjgj¼1;...p be the standardized continuous features with
mean 0 and variance 1 across samples and fyjgj¼1;...q the discrete
features. Then, following Altenbuchinger et al. (2019) and Lee and
Hastie (2015), we minimize the negative pseudo log-likelihood
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~lðHjx; yÞ ¼

�
Xp

j¼1

log ðQðxjjxnj; y; HÞÞ �
Xq

j¼1

log ðpðyjjx; ynj; HÞÞ þ kkHk1

(6)

to estimate H. The pseudo-likelihood (6) consists of the prod-
uct of all conditional distributions where Qðxsjxns; y; HÞ is the
conditional distribution of a continuous variable given all
other variables (2) and pðyrjx; ynr; HÞ is the distribution of a
discrete variable conditioned on all other variables (4). The
term kkHk1 corresponds to the lasso penalty with an addi-
tional weighting scheme to adjust for group sizes and varian-
ces of the features (see Altenbuchinger et al. 2019). Following
Altenbuchinger et al. (2019), the minimization is done using a
proximal gradient descent algorithm (O’Donoghue and
Candès 2015).

The sparseness parameter k is calibrated by leave-one-out
cross-validation. More precisely, let k ¼ ðk1; . . . ; kmÞ be a
sequence of values and i 2 f1; . . . ng. For every kk and every i,
we fit a MGM leaving out the ith sample. The resulting parame-
ters HiðkkÞ are used to re-estimate the continuous features xij via
Equation (3). For every kk, we get a matrix x̂ij with the same
dimension as the continuous input data. We choose the kk with
smallest mean-squared error between original and re-estimated
data as the optimal sparseness parameter. The corresponding
parameters HiðkkÞ and the cross-validated estimators x̂ij are
finally used for anomaly detection.

Note that x̂ij and ŷij are estimated given all other features in
the sample and thus can be affected by other anomalies in the
same sample. To compensate this effect, we check for each es-
timated data point x̂ij in the continuous case or ŷij in the dis-
crete case, if its regressors xik and yik, k 6¼ j, are potential
anomalies [probability (5) of <5%]. If a continuous estimator
xik is flagged as a potential anomaly, we replace it by the
group mean xlk where l corresponds to the samples with the
same discrete states as sample i. If a discrete estimator yik is
flagged as an anomaly, we replace its state by the state with
highest estimated probability. The resulting adjusted estima-
tors then are used in (3) and (4) to predict x̂ij and ŷij.

ADMIRE is implemented in an easy-to-use Python package
called adadmire which is listed in the python package index
PyPi.

3 Simulations

We studied the performance of ADMIRE by simulating artificial
anomalies in a proteomics dataset (Higuera et al. 2015). The
dataset consists of protein expression levels from the brains of
mice with and without Down syndrome. In total, 77 proteins
(continuous features) were measured using reverse-phase protein
arrays in several groups of mice that can be characterized by
three discrete features: genotype (normal/trisomic), treatment
(saline/memantine), and behavior: a protocol used to stimulate
learning (shock-context/context-shock). In total, 72 mice were
analyzed with three replicates in a five-point dilution series
resulting in 1080 measurements per protein. Each measurement
can be considered as an independent sample. Since the focus of
this study is the evaluation of ADMIRE’s anomaly detection
and correction, we excluded 12 proteins because they contained
missing values. Extensive performance evaluation of ADMIRE’s
imputation routine can be found in Supplementary data.
Furthermore, we sub-sampled 400 samples such that each of the

eight different groups of mice was represented by 50 samples.
This resulted in a dataset of 400 samples, 68 continuous fea-
tures, 3 discrete features, and 400 * 68¼ 27 200 continuous and
3 * 400¼ 1200 discrete data points. In the following analyses,
we used the log-transformed protein measurements. Further in-
formation on the dataset can be found in Supplementary data.

3.1 Anomaly detection

To validate the detection of discrete anomalies, we introduced
artificial anomalies by changing the original states of the dis-
crete features. For each feature we chose two samples and
swapped the according states, e.g. a sample with original
treatment “Saline” was assigned to the other treatment state
“Memantine.” Thereby, we introduced six artificial anoma-
lies in the dataset.

ADMIRE detects among the 1200 discrete data points 10
anomalies. Figure 2A reports the 12 discrete data points with
highest ranking observed scores. Additionally, we reported
for each rank the corresponding calculated random score. In
green, we marked the threshold for anomaly detection, where
the random score exceeds the equally ranking observed score.
The rows marked in red correspond to the artificially intro-
duced anomalies. As can be seen, all six artificially introduced
anomalies are detected by ADMIRE. The other detected
anomalies cannot be verified since the dataset was not gener-
ated by us. Figure 2B–D additionally shows the estimated
probabilities for the three features split in their corresponding
states. Overall, high probabilities (low scores) were computed
for all data points, except for the samples where the state was
swapped (marked in red).

To study anomaly detection in continuous data points, we
introduced artificial anomalies similar as in Steinbuss and
Böhm (2017). We randomly choose na data points and per-
turb them by adding random shifts. The size of the shifts is
relative to the normal range of the feature and can be cali-
brated by a parameter �. For � < 1, the perturbed data does
not exceed the range of the feature and thus does not present
an outlier. For larger values of �, the perturbations can intro-
duce outlier values as well. In addition, our simulation ensures
that every chosen data point is perturbed by at least 15%.
Details on the simulation can be found in Supplementary
data. For illustration, Fig. 3 shows the distribution of artificial
anomalies introduced in the data of the protein pNR2A_N
for different values of �. We ran 10 simulation scenarios vary-
ing the number of introduced anomalies and their strengths �.
We either introduced 2.5% anomalies (corresponding to 680
perturbed data points) or 5% (corresponding to 1360 per-
turbed data points) and also varied the strength � of the intro-
duced anomalies. In Supplementary Table 2, we summarized
the 10 simulations.

The algorithm shows good performance in the detection of
anomalies with an area under the curve of 0.890 for a con-
tamination level of 2.5% and of 0.912 for 5% contamination
and � set in both cases to 1.4. With decreasing � (1.2 � 0.6),
the magnitude of the anomalies decreases and the number of
hidden anomalies increases. Therefore, the anomalies are
harder to detect, which is reflected in lower AUCs.
Nevertheless the detection of anomalies remains good with
AUCs ranging from 0.864 to 0.584 for 2.5% contamination
and 0.899 to 0.688 for 5% of contamination (see Fig. 4A).
Note, that we did not adjust the proteomics data for intrinsic
anomalies that might exist in addition to the simulated ones.
If we did identify these anomalies using ADMIRE and adjust
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the PR curves for them (see Fig. 4B), the performance
increases further, with AUCs now ranging from 0.978 to
0.854 for 2.5% of contamination and 0.966 to 0.861 for 5%
contamination. Further information on the detection of intrin-
sic anomalies can be found in Supplementary data.

Finally, we compared ADMIRE to three competing outlier
detection algorithms: Isolation Forest (Liu et al. 2008), LOF
(Breunig et al. 2000), and stray (Talagala et al. 2021) in the

context of the 10 simulations described above. Since these
methods aim at finding anomalous instances in a dataset, we
applied them feature-wise. Our algorithm outperforms all
methods, which reached only maximal AUCs of 0.63 and
0.747 for 2.5% and 5% contamination (stray) and 0.701 and
0.789 (LOF) on the log-transformed simulations. Isolation
Forest performed best on the scaled raw data with AUCs up
to 0.828 for 2.5% and 0.888 for 5% contamination. Further

Figure 2. Observed and random scores for the dataset containing artificial discrete anomalies and estimated probabilities for the categorical variables split

in the respective binary states across the according samples. (A) Highest ranking observed and random scores, artificial anomalies are marked in red, the

threshold is marked in green. (B) Estimated probabilities for behavior (C/S or S/C). (C) Estimated probabilities for genotype (control/trisomic). (D) Estimated

probabilities for treatment with treatment either Memantine or Saline.
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information on how Isolation Forest, LOF, and stray were ap-
plied can be found in Supplementary data, together with the
precision recall curves after correcting for the intrinsic
anomalies.

3.2 Anomaly correction

Here we study how ADMIRE performs in correcting detected
anomalies. For the 10 simulations described above, we calcu-
lated anomaly thresholds and corrected all data points by
replacing them with their re-estimated values (3). We next
compared both the uncorrected (perturbed) and corrected
data to the original data (ground truth) and calculate mean
absolute percentage errors for both (Table 1). Anomaly cor-
rection reduced theses errors strongly, showing that the algo-
rithm automatically can improve the quality of datasets
significantly. Note that correction was applied to all detected
anomalies including the falsely detected ones, suggesting that
in case of false-positive detections, the corrections do not
compromise the data very much.

4 Anomaly detection in metabolomics data

We used ADMIRE to investigate anomalies in one of our own
metabolomics datasets (Feist et al. 2018). These data were
generated to study the metabolism of B-cells in response to
stimuli from a tumor micro-environment. In particular, we
were interested how the responses changed when the onco-
gene MYC was activated. MYC activation is a hallmark of
many B-cell lymphomas. We used human P493/6 B-cells that
contain an inducible MYC-construct and stimulated them
with different cocktails of micro-environmental factors. Their
metabolism responded to these stimuli and we profiled these
changes using both nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry (MS) applied to the cell cul-
tures’ supernatants and cell pellets, which were both
independently measured. Note that in the previous paper by
Feist et al. (2018), only cell pellet data were evaluated, while

the present contribution focuses on the data obtained from
the corresponding supernatants.

Continuous features consist of 49 metabolites that were
quantified in a total of 100 samples. 11 features were mea-
sured using NMR and 38 using MS. The discrete features are
the MYC status (high/low) of the B-cells and the 10 batches in
which the samples were processed.

We ran ADMIRE on the full dataset including both contin-
uous and discrete variables. First, we checked for discrete
anomalies. These could be manual data entry mistakes such
as misassignments of either the MYC-status or one of the
batches. Supplementary Fig. 8A shows observed scores next
to rank matching random scores for the 10 top scoring dis-
crete data points. No observed score exceeds the random
score and we conclude that all discrete features are correct.
Artificially introduced errors, similar to Section 3, were
detected correctly, see Supplementary data.

Next, we studied potential anomalies in the continuous me-
tabolite measurements. Our algorithm flagged 46 out of 4900
continuous data points as anomalies (0.94%). The flagged
anomalies are distributed uniformly across the 49 features
with mostly only one anomaly per feature, indicating that
there are no globally conspicuous features. However, if we
mapped anomalies to samples, a different distribution was ob-
served. Supplementary Fig. 9 shows that while most samples
contain only a small number of anomalies (75% of the sample
do not even have an anomaly at all), two samples show signif-
icantly more. In sample 7, ADMIRE flagged 11 out of the 49
continuous features as anomalies and in sample 92, a total
number of 7 features were flagged.

Figure 5A shows sample 7 (red) together with all samples
of the same MYC state (green lines). The black diamonds are
the anomalies detected by ADMIRE. All anomalies are in the
first two blocks, which correspond to the metabolites that
where quantified by MS. All of them were amino acids. To
verify that the detected anomalies are genuine errors, we
quantified them again using NMR, a completely independent
method. This was possible for 10 out of 11 flagged features.
Only for cystine NMR signals were too low and highly over-
lapping such that no NMR measurement was possible. For
the remaining 10 metabolites, NMR confirmed that the MS-
based measurements were in fact incorrect, deviating by more
than 15% from the corresponding NMR measurements. We
suspect that a pipetting mistake in the probe preparation for
amino acid MS is responsible for the anomalies ADMIRE
found. Metabolites were quantified relative to added internal
standards with different separate standard mixes for amino
acids and tryptophan and therefore, any pipetting error in the
standard will falsify results for this specific measurement type.
Further, note that for each measurement method such as the
amino acid method or the tryptophan method, a separate in-
ternal standard mix was used. As a consequence, a pipetting
error can be detected using NMR as a validation method since
it uses a different internal standard and is, therefore, not af-
fected. This shows nicely the potential of the MGM for detect-
ing true anomalies and also patterns of anomalies within a
sample.

For the validation of the anomaly correction, we calculated
the mean absolute percentage error for the 11 anomalies of
sample 7 with clear NMR signals. Hereby we used for cystine,
that could not be validated by NMR, the originally measured
concentration. The MAPE between the originally measured
and validated values is reduced from 76.63 to 12.27 when the

Figure 3. Influence of the parameter � on the strength of the anomalies in

protein pNR2A_N. Black dots indicate introduced anomalies.
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originally measured values were replaced by the corrections
proposed by ADMIRE.

The sample with the second highest amount of anomalies is
sample 92. In this sample ADMIRE detected seven anomalies.
Only two of these could be quantified by NMR (one false

positive and one true anomaly). For the other metabolites,
NMR signals were too low and overlapping for accurate
quantification. Figure 5B shows sample 92 together with all
other samples of the same MYC state. The anomalies are
mostly located in the tryptophan group of measurements,
which was independently measured employing a dedicated
MS method (see Supplementary data for details). Again, this
points to a possible pipetting error during sample preparation.
Most probably, the sample volume used for the tryptophan
method was incorrect.

For the remaining flagged anomalies, we inspected the raw
spectra and searched for deviations or errors in the integra-
tion of the single spectra. Whenever possible, we validated
MS measurements by re-analyzing the correspondent NMR
spectra. This is only possible for metabolites with concentra-
tions up to a lower limit of micromolecular range. For smaller
concentrations, the sensitivity of the NMR is not sufficient
enough to quantify reliably. Table 2 reports all 46 anomalies
sorted by their anomaly score. The last three columns show
the corrections proposed by ADMIRE, the originally mea-
sured value (original) and the validated, true measurement
(validated), respectively. All anomalies that could be unam-
biguously validated as anomalies are highlighted in green. For

Figure 4. Precision–Recall curves for the simulations with 2.5% and 5% contamination. (A) PR curves of ADMIRE on log-transformed data without

correcting for intrinsic outliers. (B) PR curves of ADMIRE on log-transformed simulations corrected for intrinsic outliers.

Table 1. Summary of the corrected datasets.a

Dataset � # Introduced # Detected TP MAPEi (%) MAPEc (%)

S1 0:6 680 856 504 1.047 0.823
S2 0:6 1360 1244 927 2.073 1.22
S3 0:8 680 812 566 1.396 0.747
S4 0:8 1360 1244 1040 2.763 1.139
S5 1:0 680 763 596 1.746 0.676
S6 1:0 1360 1241 1103 3.454 1.119
S7 1:2 680 729 606 2.095 0.65
S8 1:2 1360 1198 1093 4.145 1.23
S9 1:4 680 666 578 2.444 0.73
S10 1:4 1360 1072 1008 4.836 1.473

a The table shows the strength of the simulation (�), the number of
introduced anomalies (column “# Introduced”), the number of detected
continuous anomalies (column “# Detected”) and the number of true-
positive anomalies among the detected ones (TP), the anomaly simulation
introduced mean average percentage error (MAPEi) and the mean average
percentage error after correcting the datasets with ADMIRE (MAPEc).
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them, the difference between the original and the verified
value was at least 15%. False positives, where ADMIRE
detected an anomaly but the verification showed no erroneous
measurement or other peculiarity are marked in red. Note
that we treated metabolites that couldn’t be verified by an in-
dependent method and whose spectra showed no abnormali-
ties also as false positives. These anomalies are marked with
an asterisk. The rows highlighted in yellow correspond to the
anomalies of sample 92 which all belong to the tryptophan
measurement group. Here, we couldn’t verify an error in the
measurement, but a mishap during sample generation similar
to sample 7 is likely. Two anomalies belonging to the features
Spermidine and 3-Hydroxyanthranilic acid are marked in
purple. We included these two features although both con-
tained a large number of imputed values and measurements
below the lower limit of quantification. Note that these values
were not imputed by ADMIRE but preprocessed using the
laboratory’s own pipeline.

We calculated for the 46 validated data points in Table 2
the MAPE between the original measured concentrations and
the validated concentrations and compared it to the MAPE
between the corrections proposed by ADMIRE and the vali-
dated ones. Using the corrected concentrations, the MAPE de-
creased from 23.015 to 10.802, which is an almost 2.5-fold
improvement. Again, the false-positive anomalies were in-
cluded in the calculation of the MAPE. This shows once more
that even if ADMIRE detects a false-positive anomaly, its cor-
rection is still close to the original, true value.

5 Discussion

Incorrect data points make data analysis invalid, even if they
are infrequent. In large datasets, they are hard to detect manu-
ally, but easier to detect automatically because they are

Figure 5. (A) Scaled, originally measured concentrations of sample 7 (red)

with all other samples in the same MYC group (green), detected

anomalies are marked as black diamonds. The features (metabolites) on

the x-axis are ordered according to the different quantification methods.

(B) Scaled, originally measured concentrations of sample 92 (red) with all

other samples in the same MYC group (green), detected anomalies are

marked as black diamonds. The features (metabolites) on the x-axis are

ordered according to the different quantification methods.

Table 2. Detected anomalies ordered according to their scores.a

Sample Metabolite Score Corrected Original Validated

31 Hippuric acid 21.05 5.52e�05 3.20e�03 4.31e�04
29 Spermidine 13.81 1.08e�05 9.30e�05 9.30e�05
7 Aspartate 12.178 �1.14e�02 �7.30e�02 8.77e�05
92 Anthranilic acid 11.27 8.076e�07 �2.12e�05 �2.12e�05*
7 Glutamate 10.19 0.128 �0.151 0.142
90 Acetone 10.16 �9.37e�04 4.73e�03 3.91e�03
93 Succinic acid 8.73 �3.88e�03 2.05e�02 �1.47e�02
7 Glycine 8.70 �1.91e�02 �8.25e�02 �6.25e�02
92 Kynurenic acid 8.39 �2.41e�06 �7.35e�06 �7.35e�06*
7 Proline 8.22 0.103 �2.95e�02 0.137
7 Asparagine 8.09 �5.29e�02 �1.43e�01 �2.31e�02
99 Succinic acid 6.25 �3.88e�03 1.57e�02 �1.49e�02
89 4-Hydroxyproline 5.70 �8.32e�03 �2.79e�02 1.48e�04
92 Indole-lactic acid 5.69 �7.28e�06 2.93e�08 2.93e�08*
7 Cystine 5.55 �2.44e�02 �4.26e�02 �4.26e�02*
7 Tyrosine 5.17 �7.50e�02 �0.102 �6.45e�02
7 Leucine 5.10 �0.190 �0.261 �0.211
92 Kynurenine 4.77 �3.15e�04 �7.93e�04 �7.93e�04*
80 3-Hydroxyanthranilic acid 4.56 2.11e�05 3.84e�05 3.84e�05*
89 Acetone 4.47 �7.967e�04 2.46e�03 1.71e�03
80 Adenosine 4.22 2.37e�05 4.80e�05 4.80e�05*
92 Indole-3-acetic acid 4.21 6.01e�06 4.03e�06 4.03e�06*
29 S-Adenosylmethionine 4.14 1.51e�05 3.89e�05 3.89e�05*
15 Ornithine 3.93 �2.31e�02 2.56e�02 2.56e�02
3 Kynurenic acid 3.90 1.12e�07 2.28e�06 2.28e�06*
64 Ornithine 3.83 �5.03e�03 3.00e�02 �1.58e�02

(continued)
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inconsistent with the inherent structure of the rest of the data.
Here we describe ADMIRE, an algorithm that combines
MGMs and cross-validated re-estimation of data points to de-
tect data anomalies in large mixed molecular datasets. The
MGM learns inherent data structure, the CV-based re-estima-
tion checks whether individual data points are consistent with
this data structure.

Outliers are a special instance of anomalies. An outlier is a
value of a feature that is suspiciously higher or lower than all
other values of the same feature. In general, they are more easily
detected. Although we can in principal detect them feature by
feature independently from all other features, the use of condi-
tional distributions can nevertheless support the process.
Importantly, anomalies do not need to present as univariate out-
liers and in fact many of the anomalies we detected did not.

ADMIRE was primarily designed for molecular datasets that
combine continuous features such as abundance of certain mole-
cules (OMICS data) with discrete features that for example de-
scribe experimental designs or patient characteristics. Here,
incorrect data in continuous features can result from experimen-
tal artifacts, while incorrect discrete data can be caused by incor-
rect manual data entry. However, ADMIRE can be used for any
large dataset continuous, discrete, or mixed.

ADMIRE does not only detect anomalies, but it also has
routines to correct them thus generating more consistent data-
sets. In this way, it can be used as a pre-processing or data
normalization routine as well. Additionally, the adadmire
package offers a testing routine that allows the user to test
ADMIRE in simulations with their own data. Finally, anoma-
lies do not need to be incorrect data points. They can also be
observations that are rare, unusual but correct. Such oddities
can be scientifically interesting and ADMIRE can be used to
spot them for further investigation. In this way, it can be used
as a data mining tool as well.

Supplementary data

Supplementary data are available at Bioinformatics online.
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