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Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal
dichalcogenide heterostructures
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We investigate the proximity-induced spin-orbit coupling in heterostructures of twisted graphene and mono-
layers of transition metal dichalcogenides (TMDCs) MoS2, WS2, MoSe2, and WSe2 from first principles. We
identify strain, which is necessary to define commensurate supercells, as the key factor affecting the band offsets
and thus magnitudes of the proximity couplings. We establish that for biaxially strained graphene the band
offsets between the Dirac point and conduction (valence) TMDC bands vary linearly with strain, regardless of
the twist angle. This relation allows us to identify the apparent zero-strain band offsets and find a compensating
transverse electric field correcting for the strain. The resulting corrected band structure is then fitted around
the Dirac point to an established spin-orbit Hamiltonian. This procedure yields the dominant, valley-Zeeman,
and Rashba spin-orbit couplings. The magnitudes of these couplings do not vary much with the twist angle,
although the valley-Zeeman coupling vanishes for 30◦ and Mo-based heterostructures exhibit a maximum of the
coupling at around 20◦. The maximum for W-based stacks is at 0◦. The Rashba coupling is in general weaker
than the valley-Zeeman coupling, except at angles close to 30◦. We also identify the Rashba phase angle which
measures the deviation of the in-plane spin texture from tangential, and find that this angle is very sensitive to
the applied transverse electric field. We further discuss the reliability of the supercell approach with respect to
atomic relaxation (rippling of graphene), relative lateral shifts of the atomic layers, and transverse electric field.
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I. INTRODUCTION

Graphene’s weak (tens of μeV) spin-orbit coupling (SOC)
[1,2] enables long spin diffusion paths but precludes it from
forming a platform for spin manipulation [3]. Fortunately,
proximity effects enable strong SOC—on the meV scale—in
graphene [4], making it a suitable candidate for spintronics
devices [5,6] and for observing topological states [7–12].

Unlike pristine graphene, whose spin-orbit coupling is of
the Kane-Mele type [1,2,7], graphene proximitized by transi-
tion metal dichalcogenides (TMDCs) exhibits valley-Zeeman
SOC which acts as an effective magnetic field, opposite at
K and K ′, but otherwise momentum independent close to
these points [11,13–15]; similarly for graphene on topological
insulators [16–19]. There is by now plenty of experimental
evidence for the large proximity SOC in graphene [14,19–31].
Ramifications of the proximity effect include a spin-orbit
valve [28,32–35] and giant spin-relaxation anisotropies
[24,36–38].

The discovery of superconductivity in magic-angle twisted
bilayer graphene [39–42] gave the impetus for twistronics
[43–46], recognizing the twist angle as a critical new control
parameter for tailoring electronic properties of van der Waals
heterostructures [47–51]. It is then natural to ask how does the
twist angle influence proximity SOC in graphene. Two recent
pioneering studies [49,50] based on tight-binding modeling
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[52] suggest that the twist angle between the TMDC and
graphene has a major influence on both the magnitude and the
type of proximity induced SOC. In those works, the interlayer
interaction in incommensurate systems is described by Umk-
lapp processes which connect selected points of the TMDC
Brillouin zone with the K and K ′ points of the graphene
Brillouin zone. As these momentum points vary with the
twist angle, the proximity SOC gets modified. The reliability
of such calculations depends on how well both the energy
dispersion of the TMDC layer and the interlayer hybridization
between graphene and TMDC orbitals are described by the
effective microscopic models.

Perhaps the most direct theoretical approach for extracting
proximity SOC in graphene/TMDC bilayers is to perform ab
initio calculations on supercell geometries incorporating the
twisted monolayers. Since density functional theory (DFT)
calculations in this regard have been performed almost ex-
clusively on aligned heterostructures (0◦ twist angle), there is
yet no clear ab initio perspective on this topic. There already
exist studies [14,53,54] discussing electronic properties of
twisted graphene/TMDC stacks, but not examining the prox-
imity SOC. Recently though, Pezo et al. [51] reported SOC
parameters from DFT calculations on three twist angles (0◦,
15◦, and 30◦) for graphene/MoTe2 and graphene/WSe2, and
examined ramifications for spin relaxation anisotropy.

Here we aim to provide a comprehensive picture, applying
DFT to large graphene/TMDC heterostructures employing
four different semiconducting TMDCs MoS2, MoSe2, WSe2,
and WS2. For several twist angles we build commensurate
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supercells with built-in strains in graphene (TMDCs are left
unstrained) of up to 17%, although we deem as excessive
strains of more than 10%. From the band structures of the
supercells we find that the apparent dependence of the band
offsets between the Dirac point and the TMDC bands is due
to the strain. In other words, heterostructures of different
twist angles but similar strain exhibit similar band offsets.
By plotting the band offsets as a function of the strain we
find a scattered linear relation which allows us to extract
the “zero-strain” offset. To correct for the strain we then
apply a transverse electric field, different for different het-
erostructures, so that at the end we compare different extracted
parameters for the same band offsets. We believe that this
currently is the best way to extract quantitatively reliable
twist-angle dependence of the proximity spin-orbit parameters
for computationally feasible supercell sizes. We compare our
results with previous tight-binding studies [49,50].

Overall, the magnitude of the SOC parameters are on the
meV scale, while the Rashba coupling is typically weaker than
the dominant valley-Zeeman coupling. Only close to 30◦, at
which the valley-Zeeman coupling vanishes due to symme-
try, does Rashba coupling prevail. There is also a marked
difference for Mo- and W-based heterostructures. For Mo-
based stacks the valley-Zeeman coupling exhibits a global
maximum at a peak around 20◦, reaching a value twice that
at 0◦. In contrast, while there is a local maximum for W-based
stacks close in the region of 15◦–20◦, the largest value of the
valley-Zeeman coupling is found at 0◦. The largest parameters
for W-based structures are roughly twice as large as the largest
ones for Mo structures.

Unlike at 0◦ and 30◦, at a general twist angle between the
two extremes (outside of this interval the parameters can be
obtained from symmetry arguments as presented below) the
Rashba coupling exhibits a radial component which results
in a spin texture which deviates from the typical tangential
Rashba pattern. The deviation is measured by the Rashba
phase angle [49,50]. We also report these angles for selected
supercells and demonstrate their rather high sensitivity to the
electric field, but not to lateral shifts of the layers.

There certainly are still many pitfalls of the methodology
we use. Finite supercells are susceptible to the atomic reg-
istry and atomic relaxation leading to graphene rippling. We
also investigate the dependence of the proximity spin-orbit
coupling parameters on such effects, although in a limited
way due to computational complexity, focusing on selected
heterostructures to provide realistic expectations rather than
sweeping proofs. For example, we find that lateral shifts of
the atomic layers do not change significantly the spin-orbit
parameters, while the rippling of graphene strongly enhances
the staggered potential and increases the Kane-Mele cou-
pling, though valley-Zeeman coupling still dominates. Also,
the compensating electric field to correct the band offsets is
not the panacea. Especially for excessive strain above 10%
the electric field can modify the band structure itself and
induce Rashba spin-orbit couplings that are not native to the
heterostructures. We provide a discussion of the electric field
effects as well.

The paper is organized as follows. In Sec. II we introduce
supercell geometries, the computational methods are detailed
in Appendix A. The influence of strain on the band offsets

and our method of correcting them is presented in Sec. III. In
Sec. IV we introduce the effective low energy Dirac Hamil-
tonian, which is used to extract orbital and proximity SOC
parameters. Finally, in Sec. V we discuss the extracted param-
eters for different angles. We additionally comment on the ef-
fect of lateral shifts and structural relaxation in Appendixes B
and C, respectively. In Appendix D we quantify the Rashba
phase angle for different TMDCs and twist angles. Using a
specific example, we demonstrate in Appendix E how a trans-
verse electric field tunes the extracted spin-orbit parameters.

II. SUPERCELL GEOMETRIES

Starting from the primitive hexagonal unit cells of
graphene and four TMDCs (MoS2, MoSe2, WSe2, and WS2;
geometry parameters listed in Table II), we construct the
supercells by implementing the coincidence lattice method
[46,55,56]. Using the integers n and m, we define the lattice
vectors aS

(n,m) and bS
(n,m) of a new supercell as a linear combi-

nation of the primitive lattice vectors a and b:

aS
(n,m) = n · a + m · b, (1)

bS
(n,m) = −m · a + (n + m) · b. (2)

We give attributes (n, m) to such a supercell. Its lattice con-
stant is

aS
(n,m) = a

√
(n2 + m2) + nm, (3)

where a = |a| = |b| is the lattice constant of the primitive unit
cell. The relative twist angle with respect to the primitive unit
cell is given by

�(n,m) = arctan

( √
3m

2n + m

)
. (4)

A graphene/TMDC heterostructure supercell contains a (n, m)
graphene supercell beneath a (n′, m′) TMDC supercell result-
ing in a relative twist angle

� = �(n,m) − �(n′,m′ )

= arctan

( √
3m

2n + m

)
− arctan

( √
3m′

2n′ + m′

)
.

In our supercells there is at a corner a carbon atom directly
beneath a metal atom of the TMDC, see Fig. 1. Consider-
ing different configurations (see Appendix B) we find that
proximity SOC is rather insensitive to the changes of the
atomic registry, as was already shown for 0◦ in Ref. [15].
In order to obtain commensurate supercells for periodic DFT
calculations, one of the layers (or both) need to be strained.
We thus introduce the strain factor ε which depends on the
twist angle and the lattice constant of the TMDC. TMDCs
are very sensitive to strain [57], while the low energy Dirac
spectrum of graphene is—apart from a renormalization of the
Fermi velocity—rather robust against biaxial strain smaller
than 20% [58,59]. Therefore, we choose to leave the TMDC
unstrained and instead strain graphene. Also, we use the same
interlayer distance d = 3.3 Å separating the monolayers (see
Appendix C) for all studied supercells, to focus on twist-angle
effects. However, in Appendix C we discuss the effects of
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FIG. 1. (a)–(c) Bottom view of the graphene/TMDC heterostruc-
ture supercells with twist angles |�| = 0◦, 19.1◦, 30◦. (d) Side
view of the 0◦ unit cell with indicated interlayer distance d and
chalcogen-chalcogen distance dXX.

structural relaxation and rippling on the proximity band struc-
ture at the Dirac cone. Finally, we add a vacuum of 20 Å to
avoid interactions between periodic images in our slab geom-
etry. The graphene/TMDC heterostructures are set up using
the atomic simulation environment (ASE) [60] code.
The structural parameters of the heterostructures are collected
in Table I and some prominent examples are visualized in
Fig. 1.

When a hexagonal system is described by a (n, m) super-
cell, the K point of the Brillouin zone can fold back to either
K , K ′, or � of the reduced Brillouin zone. The following
rule, which can be derived from geometrical considerations,
determines which of the three options is the case:

backfolding to � for: n − m = 0 + 3 · l, (5)

backfolding to K for: n − m = 1 + 3 · l, (6)

backfolding to K ′ for: n − m = 2 + 3 · l, (7)

with l ∈ Z. Because of these backfolding effects, the TMDC
band gap resides at the K or the � point depending on the
exact supercell. The Dirac cone can in principle also fold back
to �, e.g., for a (n, m) = (1, 1) supercell (i.e., a

√
3 × √

3
supercell). In the following we only consider supercells for
which the Dirac cone folds back to the K/K ′ point to be
able to compare different structures and extract the spin-orbit
parameters using our model Hamiltonian presented below.

Computational methodology for obtaining DFT electronic
band structures of the supercells is detailed in Appendix A.

III. CORRECTING BAND OFFSETS FOR STRAIN

For most investigated twisted heterostructures we find that
the Dirac cone of graphene lies within the TMDC band gap for
most supercells. Exceptions are stacks with heavily strained
graphene.

Crucially, the relative twist angle � barely influences the
band offset between the Dirac point and the TMDC conduc-

TABLE I. Structural information of the investigated graphene/
TMDC heterostructures. We list the supercell attributes (n, m) of
graphene and (n′, m′) of the TMDC. We also list the absolute value
of the twist angle |�| between the two monolayers (the sign of � is
not relevant here), the strain εTMDC in graphene (which depends on
the specific choice of TMDC), and the number of atoms (Nat) in the
heterostructure. For completeness, we also list strains corresponding
to supercells, which were not investigated, noted in non-boldface—
for a full list of the supercells used in Figs. 5 and 2, see Table IV.
These supercells, which were not investigated, either had too much
built-in strain, too many atoms, or entailed computational difficulties
(e.g., convergence problems).

|�| εMoS2 εWS2 εMoSe2 εWSe2

(deg) (n, m) (n′, m′) (%) (%) (%) (%) Nat

0.0 (4,0) (3,0) −2.9 −3.05 1.19 1.19 59
0.0 (0,5) (0,4) 3.58 3.41 7.93 7.93 98
5.2 (3,1) (2,1) −4.99 −5.14 −1.0 −1.0 47
6.6 (3,2) (2,2) 2.89 2.73 7.22 7.22 74
9.5 (3,2) (3,1) 7.1 6.93 11.6 11.6 77
10.9 (2,1) (1,1) −15.24 −15.37 −11.67 −11.67 23
13.9 (3,1) (3,0) 7.73 7.56 12.26 12.26 53
13.9 (0,4) (1,3) 16.7 16.52 21.61 21.61 71
13.9 (5,0) (3,1) −6.64 −6.78 −2.71 −2.71 89
19.1 (2,1) (2,0) −2.13 −2.28 1.99 1.99 26
22.7 (3,2) (1,3) 7.1 6.93 11.6 11.6 77
23.4 (3,2) (3,0) −10.89 −11.03 −7.14 −7.14 65
27.0 (3,1) (1,2) −4.99 −5.14 −1.0 −1.0 47
30.0 (2,0) (1,1) 12.13 11.95 16.84 16.84 17
30.0 (5,0) (2,2) −10.3 −10.44 −6.53 −6.53 86

tion (valence) band minimum (maximum). Instead, we trace
the considerable band offset variations among the investigated
heterostructures to the applied strain which is otherwise nec-
essary to build commensurate supercells of manageable sizes.
In Fig. 2 we collect the data for the investigated structures
and plot the band offset EC to the conduction band as a
function of the strain ε applied to graphene. The band offset
varies, with some scatter, linearly with ε. The above thesis
that it is the strain and not twist that causes the band offset
variation, is most strikingly seen in the data of disparate twist
angles and very similar strain, such as the three angles 9.5◦,
22.7◦, and 13.9◦ for graphene/MoS2, see Fig. 2. These three
heterostructures feature essentially the same offset EC .

The absolute deformation potential of the Dirac cone can
be defined as the change of its energy when applying strain.
Using the TMDCs band edges (which remain at the same
energy, because we leave the TMDC unstrained) as a fix point,
we can identify |αD| as the absolute value of the slope of the
linear fits in Fig. 2:

αD = ∂ED

∂ε
= ∂EV

∂ε
= −∂EC

∂ε
. (8)

Here ED is the energy level of the Dirac cone and EV and
EC are the band offsets to the valence and conduction band,
respectively. We find αD to be roughly −80 meV/%, i.e., the
Dirac cone is lowered in energy towards the valence band by
80 meV for each percent of tensile strain on the graphene.
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FIG. 2. Correcting for the strain. For all the investigated super-
cells of graphene with MoS2, WS2, MoSe2, and WSe2 monolayers
we plot the band offsets EC of the Dirac cone with respect to conduc-
tion band (see inset) against the strain on graphene ε; ε > 0 indicates
tensile strain while ε < 0 indicates compressive strain. Each of the
data points (red solid circles) is annotated with the twist angle of
the corresponding supercell. From the linear fit (red line) we extract
the (apparent) zero-strain band offsets (empty red circles) which are
collected in Table III. The green circles show the band offsets after
the correction by the transverse electric field employed to compen-
sate the influence of strain. Strains above 10% and below −10% and
negative band offsets EC < 0 were not included in the linear fit.

Using this relation we were able to extrapolate an estimate for
the zero strain band offset for all four TMDCs (see Table III).

The large magnitude of the extracted deformation poten-
tial indicates that even small strains can cause large band
offset changes. From the perspective of perturbation theory,
it is clear that the energy distance between the Dirac cone
and the TMDC bands, i.e., the bands offsets, influences the

TABLE II. Unstrained geometries of the primitive unit cells
of graphene and four selected TMDCs [57]. The structure of the
TMDCs stay unchanged in the supercells, while the graphene layers
are strained by the factors listed in Table I to ensure commensurabil-
ity.

Graphene MoS2 WS2 MoSe2 WSe2

a (Å) 2.46 3.185 3.18 3.319 3.319
dXX (Å) – 3.138 3.145 3.357 3.364

proximity SOC [49] (see Appendix E). Therefore, to obtain
reliable proximity orbital and spin-orbit parameters the offsets
need to be corrected. In order to bring the Dirac cone to its
apparent zero-strain level, as specified by the obtained offsets
in Table III, we apply a transverse (perpendicular to the layers)
electric field to compensate the effects of strain ε. This is done
in Fig. 2. The values of the compensating electric fields are
listed in Table IV. A field is defined as positive if it points
from the TMDC layer to the graphene layer. Figure 3 shows
the global band structure along high-symmetry lines for three
selected angles, before and after the offset correction. The
Dirac points are located well inside the TMDC band gaps and
the proximity effects can be well discerned, see Fig. 4.

IV. EFFECTIVE HAMILTONIAN

To find the twist-angle dependence of the proximity in-
duced SOC in our heterostructures, we fit the DFT band
structures at the Dirac points to a model Hamiltonian [13].
The Hamiltonian H comprises the orbital part Horb and the
spin-orbit part Hso, which is composed of the intrinsic spin-
orbit coupling Hso,I and the Rashba coupling Hso,R:

H (k) = Horb(k) + Hso = Horb(k) + Hso,I + Hso,R. (9)

The orbital part describes the dispersion of the graphene Dirac
cone linearized around the K/K ′ point; accordingly, k is the
electron wave vector measured from K/K ′. It also includes a
staggered potential �, caused by the substrate’s asymmetrical
influence on the graphene A and B sublattice:

Horb(k) = h̄vF (κσxkx + σyky) + �σz. (10)

Here vF is the Fermi velocity of the Dirac electrons and σ

are the Pauli matrices operating on the sublattice (A/B) space.
The parameter κ = 1 for K and κ = −1 for K ′.

The intrinsic spin-orbit Hamiltonian

Hso,I = 1
2

[
λA

I (σz + σ0) + λB
I (σz − σ0)

]
κsz, (11)

TABLE III. Extrapolated zero-strain valence and conduction
band offsets (with respect to the graphene Dirac cone) E 0

V and E 0
C ,

respectively, and the absolute deformation potential αD, as obtained
by the fit in Fig. 2. Data points with excessive strain (|ε| > 10%) or
negative band offset EV/C < 0 were excluded from the fit.

MoS2 WS2 MoSe2 WSe2

E 0
V (meV) 1365 1027 680 290

E 0
C (meV) 238 546 673 978

αD (meV/%) −74 −79 −78 −89
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TABLE IV. Parameters extracted from the band structure calculations. For all four TMDCs and all used angles, we list the band offset
EV (EC) of the Dirac cone with respect to the valence band (conduction band) and the extracted model Hamiltonian [see Eq. (9)] parameters
(staggered potential �, intrinsic SOC for sites A and B λA

I and λB
I , and Rashba SOC λR). We denote the offsets and parameters after correction

with the electric field with a bar, for example λ̄A
I . The electric field is defined as positive, if it points from the TMDC layer to the graphene

layer.

ε � λA
I λB

I |λR| EV EC E field �̄ λ̄A
I λ̄B

I |λ̄R| ĒV ĒC

|θ | (deg) (%) (meV) (meV) (meV) (meV) (eV) (eV) (V/nm) (meV) (meV) (meV) (meV) (eV) (eV)

MoS2

0 −2.9 0.014 0.346 −0.346 0.085 1.598 0.004 1.499 0.009 0.331 −0.331 0.081 1.341 0.262
0 3.58 −0.005 0.402 −0.408 0.043 1.066 0.533 −1.748 0.130 0.445 −0.442 0.016 1.358 0.236
5.2 −4.99 0.022 0.455 −0.457 0.165 1.773 −0.169 – – – – – – –
6.6 2.89 0.054 0.341 −0.341 0.104 1.118 0.482 −1.301 0.032 0.384 −0.384 0.111 1.334 0.264
9.5 7.1 0.023 0.225 −0.225 0.139 0.838 0.761 −2.962 0.026 0.356 −0.358 0.146 1.322 0.262
13.9 7.73 0.017 0.119 −0.120 0.168 0.809 0.791 −3.183 0.010 0.291 −0.293 0.165 1.331 0.258
13.9 16.7 0.037 −0.270 0.270 0.265 0.377 1.230 −6.154 −0.327 0.176 −0.174 0.157 1.381 0.256
13.9 −6.64 0.124 8.707 −8.754 1.251 1.828 −0.222 – – – – – – –
19.1 −2.13 0.023 1.223 −1.230 0.241 1.532 0.075 1.107 0.031 0.593 −0.602 0.159 1.336 0.258
22.7 7.1 −0.005 −0.040 0.040 0.047 0.859 0.745 −2.564 −0.004 0.052 −0.052 0.092 1.242 0.315
27 −4.99 −0.004 0.459 −0.458 0.531 1.773 −0.168 – – – – – – –
30 12.13 0.000 0.000 0.000 0.075 0.596 1.009 −6.582 0.059 0.002 0.002 0.057 1.359 0.235
30 −10.3 0.000 −0.062 −0.062 1.774 1.868 −0.418 – – – – – – –

WS2

0 −3.05 0.021 1.094 −1.095 0.154 1.248 0.325 0.951 0.014 1.068 −1.072 0.168 1.082 0.492
0 3.41 −0.097 1.201 −1.193 0.077 0.717 0.853 −1.969 −0.047 1.32 −1.312 0.024 1.053 0.514
5.2 −5.14 0.000 1.148 −1.152 0.287 1.459 0.114 2.234 0.008 1.011 −1.012 0.233 1.056 0.518
13.9 7.56 0.866 −0.076 0.068 0.386 0.463 1.110 −3.416 −0.263 0.394 −0.397 0.309 1.035 0.531
19.1 −2.28 0.004 1.305 −1.316 0.526 1.185 0.389 0.662 0.005 0.938 −0.947 0.454 1.067 0.507
27 −5.14 −0.052 0.608 −0.606 0.959 1.459 0.116 2.195 0.010 0.171 −0.170 0.559 1.073 0.503
30 11.95 0.000 0.004 0.004 0.214 0.237 1.327 −4.973 −0.001 0.004 0.004 0.069 1.067 0.504

MoSe2

0 1.19 0.034 0.418 −0.416 0.425 0.535 0.817 −0.863 0.017 0.404 −0.402 0.370 0.673 0.679
0 7.93 −0.625 0.282 −0.271 0.717 0.098 1.252 −3.754 0.101 0.463 −0.457 0.358 0.667 0.678
5.2 −1 0.024 0.412 −0.412 0.368 0.708 0.645 0.209 0.016 0.413 −0.413 0.378 0.674 0.679
6.6 7.22 0.069 −0.023 0.030 0.834 0.142 1.209 −3.453 −0.006 0.311 −0.310 0.466 0.672 0.676
9.5 11.6 0.038 −1.099 1.061 1.380 −0.051 1.386 −5.101 0.038 0.239 −0.239 0.555 0.687 0.657
10.9 −11.67 0.244 4.906 −4.632 1.011 1.719 −0.363 – – – – – – –
13.9 12.26 0.029 −0.994 0.923 1.621 −0.069 1.433 −5.150 −0.051 0.285 −0.281 0.676 0.675 0.672
13.9 −2.71 0.024 0.694 −0.696 0.227 0.850 0.503 1.080 −0.016 0.624 −0.626 0.269 0.676 0.677
19.1 1.99 −0.015 0.873 −0.873 0.573 0.496 0.856 −1.048 0.000 0.871 −0.872 0.490 0.655 0.678
22.7 11.6 −0.013 −0.028 0.029 0.881 −0.026 1.370 −4.958 0.033 0.360 −0.360 0.411 0.696 0.655
23.4 −7.14 −0.002 −0.209 0.213 0.253 1.284 0.071 – – – – – – –
27 −1 −0.012 0.306 −0.305 0.446 0.721 0.633 0.288 −0.012 0.313 −0.313 0.465 0.677 0.677
30 16.84 0.000 0.005 0.005 0.509 −0.178 1.544 −6.515 −0.236 0.003 0.003 0.121 0.675 0.655
30 −6.53 0.000 −0.004 −0.004 0.213 1.224 0.131 – – – – – – –

WSe2

0 1.19 0.042 1.651 −1.647 0.671 0.186 1.081 −0.636 0.056 1.635 −1.633 0.621 0.289 0.978
0 7.93 0.219 1.537 −1.519 0.671 −0.018 1.282 −3.445 0.084 1.728 −1.722 0.445 0.286 0.977
5.2 −1 0.034 1.495 −1.494 0.675 0.360 0.907 0.449 0.033 1.491 −1.490 0.703 0.291 0.977
6.6 7.22 0.090 −0.161 0.169 1.219 −0.164 1.429 −3.137 0.073 1.052 −1.050 0.740 0.285 0.979
10.9 −11.67 0.014 3.185 −3.211 1.051 1.417 −0.147 – – – – – – –
13.9 −2.71 0.023 1.612 −1.616 0.642 0.504 0.764 1.327 −0.022 1.387 −1.388 0.709 0.290 0.978
19.1 1.99 0.009 0.640 −0.631 1.051 0.138 1.123 −0.920 0.014 0.836 −0.835 0.950 0.294 0.974
23.4 −7.14 −0.004 0.641 −0.644 0.911 0.943 0.326 3.085 0.000 0.588 −0.588 0.906 0.427 0.783
27 −1 0.000 0.347 −0.343 0.868 0.375 0.894 0.555 0.000 0.328 −0.323 0.892 0.294 0.975
30 16.84 0.001 0.018 0.019 0.198 −0.349 1.633 −6.065 0.003 0.009 0.009 0.225 0.313 0.901
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FIG. 3. Calculated band structures along high symmetry lines for selected graphene/TMDC supercells. For each of the four TMDCs, we
show three different angles: |�| = 0◦, 19.1◦, 30◦, as indicated. The gray circles originate from TMDC orbitals, while the solid (dashed) lines
come from graphene states with (without) the electric field corrections. The energy scale is set to zero for the Fermi energy of the electric-field
corrected band structures. Because of band folding effects, the TMDC bands look different, while the global TMDC band gap stays intact for
different twist angles.

and the Rashba spin-orbit Hamiltonian

Hso,R = λR exp

(
−i�

sz

2

)
[κσxsy − σysx] exp

(
i�

sz

2

)
, (12)

both additionally act on the spin space, described by the spin
Pauli matrices s; λA

I and λB
I are the intrinsic spin-orbit param-

eters for the sublattices A and B, respectively, while λR is the
Rashba SOC strength. The Rashba phase angle �—present
in C3 symmetric structures [49,50]—rotates the spin texture
about the z axis, adding a radial component to the Rashba
field. For � = 0◦ and � = 30◦, the reflection symmetry [50]
along the x and y axis, respectively, forces either � = 0 or
� = 180◦, therefore this parameter does not appear in the
Hamiltonian of Ref. [13] valid for aligned structures.

We choose to limit the Rashba parameter to positive values
λR > 0. A sign change of λR then corresponds to an additional
phase shift of � by a half rotation, i.e., � → � + 180◦. To
make this clear we always list |λR| below. We also evaluated
the angles � for a few selected supercells (see Fig. 4 and
Appendix D). While the energy dispersion is not affected
by �, the radial component of the Rashba field can affect
spin physics and need to be considered when interpreting
experimental results on spin transport and spin-orbit torque.

For example, the in-plane spin accumulation in the presence
of electrical current can have a component along the current,
unlike for the usual Rashba effect.

We also define

λVZ = λA
I − λB

I

2
and λKM = λA

I + λB
I

2
(13)

as the valley-Zeeman [13,14] SOC (sublattice odd) and the
Kane-Mele [7] SOC (sublattice even), respectively. It turns out
that λKM is negligible for graphene/TMDC heterostructures
[13,14]. This is also true for the twisted heterostructures pre-
sented below, and already predicted by tight-binding modeling
[49,50].

Our DFT structures are for angles between 0◦ and 30◦. The
results for all other twist angles can be obtained by symmetry
as follows. Twisting clockwise or counterclockwise from 0◦
does not influence the parameters:

λVZ(−θ ) = λVZ(θ ), (14)

λR(−θ ) = λR(θ ), (15)

�(−θ ) = �(θ ). (16)
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FIG. 4. Proximity Dirac band structures (after correcting band offsets for strain) at K . We show the results for |�| = 0◦, 19.1◦, and 30◦.
The dots represent the DFT data while the solid line represents the fit from the model Hamiltonian in Eq. (9). The spin-z expectation value
is color coded from 〈sz〉 = −0.5 (spin down; blue) over 〈sz〉 = 0 (unpolarized; gray) to 〈sz〉 = 0.5 (spin up; red). The extracted parameters
are listed in Table IV. The last row shows the spin-x and spin-y expectation values of the spin-up (red arrows) and spin-down (blue arrows)
valence band of the Dirac cone of graphene proximitized by MoSe2 for the three twist angles. The k path (dotted line) goes along a circular
path around the K point. We also present the extracted value for the Rashba angle � which measures the uniform deviation of the spin texture
from tangential.

Additionally a twist by 60◦ corresponds to switching the
sublattices of graphene and therefore changes the sign of the
sublattice-sensitive parameters:

λVZ(θ + 60◦) = −λVZ(θ ), (17)

λR(θ + 60◦) = λR(θ ), (18)

�(θ + 60◦) = −�(θ ). (19)

Using the first set of rules, one can infer the parameters’
values for � ∈ [−30◦, 0◦] from the values for � ∈ [0◦, 30◦].
Then, using the second set of rules, one can infer the values
for � ∈ [30◦, 60◦]. For example, λVZ(32◦) = −λVZ(−28◦) =

−λVZ(28◦). This leads to the conclusion that λVZ changes sign
at � = 30◦ and λVZ(30◦) = 0.

V. RESULTS

The fitted valley-Zeeman λVZ and Rashba λR spin-orbit
couplings are collected in Table IV for both uncorrected
and corrected electronic band structures. The latter are plot-
ted in Fig. 5. In agreement with earlier DFT studies of
aligned graphene/TMDC heterostructures [13–15], the prox-
imity spin-orbit coupling of the Dirac electrons is on the meV
scale. In all cases valley-Zeeman SOC λVZ vanishes at � =
30◦, while the Rashba SOC λR reaches a minimum there. We
also find that λVZ for the Mo-based TMDC heterostructures
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FIG. 5. The E -field corrected spin-orbit parameters λR (red
squares) and λVZ (blue dots) of the graphene Dirac cone as function
of the twist angle � for the heterostructures with TMDCs MoS2,
MoSe2, WSe2, and WS2, as indicated. We de-emphasize (transparent,
light red) data points from supercells with excessive built-in strain of
ε > 10%, deeming them less reliable. The dotted line is a guide for
the eyes.

exhibit a peak at about θ = 20◦, where the parameters jump to
about twice the value at 0◦. This pronounced peak is preceded
by a slight dip at around � between 10◦ and 15◦. Similarly, for
the heterostructures based on WSe2 and WS2 there appears to
be a peak in the valley-Zeeman coupling below 20◦, although
its magnitude is less that the value at 0◦. Except for twist an-
gles close to 30◦, the Rashba parameters are generally smaller
in magnitude than λVZ.

Tight-binding models [49,50] predicted a peak structure
with a global maximum in the region of 15◦–20◦. We can
confirm this picture for Mo-based but not for W-based het-
erostructures. The two tight-binding models differ in their
predictions for the sign of λVZ: Ref. [50] predicts positive λVZ,
while Ref. [49] predicts a sign change at around 10◦. As seen
in Fig. 5, the extracted valley-Zeeman coupling parameters do
not change sign, in agreement with Ref. [50].

To check our approach, for 0◦—and for MoS2 and MoSe2

additionally for 13.9◦—we plot in Fig. 5 two data points
corresponding to two different supercells with the same twist
angle but different strain. Such data pairs indicate how reliable
the DFT approach based on strained supercells is. Ideally, the
extracted parameters would agree for the given twist angle
after correcting for strain by transverse electric field. This
is indeed the case at 0◦ where data pairs for TMDCs agree
rather well. However, for the 13.9◦ data pairs the parameters
differ significantly. At this angle one of the heterostructures
in the pairs have strain above 10%. We believe that such a
strain is already too large for obtaining quantitatively reliable
proximity band structures even after correcting by the electric
field. We exclude such data from considering the trends seen
in Fig. 5. The reason for the sensitivity to strain is that the
size of the Brillouin zone of strained graphene varies with
ε. Following the interlayer coupling picture of Refs. [49,52],
the graphene K point thus couples to somewhat different re-
gions of the TMDC Brillouin zone. This momentum-specific
coupling (hybridization of the corresponding graphene and
TMDC orbitals) is responsible for the proximity effect.

We note that the differences in our reported data in Table IV
and previous ones [15] at 0◦ are due to the unrelaxed atomic
structures used here. The main effect of atomic relaxation is
to introduce rippling of the graphene layer which enhances
especially the staggered potential � and the Kane-Mele SOC
λKM parameter. In our calculations both � and λKM are rather
suppressed. We have studied the atomic relaxation effects for
selected heterostructures with 0◦ and 19.1◦ twist angles; the
results are presented in Appendix C).

Finally, let us compare the proximity SOC for uncorrected
and corrected band structures. The former is plotted in Fig. 9,
the latter in Fig. 5 which we discussed above. We see that the
while the overall magnitudes of λVZ and λR are similar for
both cases, the correction by electric field has an influence
on the overall twist-angle dependence. The main effect of
the correction is shifting the band offsets which modify the
interlayer coupling and charge transfer between the layers.
Both have an effect on the valley-Zeeman and Rashba cou-
plings. In Appendix E we further investigate the influence of
the electric field on the proximity spin-orbit parameters for a
19.1◦ graphene/MoS2 heterostructure, demonstrating a rather
strong decrease of the magnitude of λVZ upon increasing of
E field and accompanying increase of the band offset EC , see
Fig. 8.

VI. SUMMARY

We have performed systematic investigations of the
twist-angle dependence of the proximity spin-orbit coupling
induced by four TMDC monolayers MoS2, MoSe2, WS2, and
WSe2 in graphene. For each graphene/TMDC bilayer we have
studied several twist angles, being computationally limited by

TABLE V. Computational details: Used charge density cutoff en-
ergy Eρ , wave function kinetic energy cutoff Ewfc, and k-grid density
(we used a nk × nk grid) for the calculations listed in Table IV.
E -field calculations are listed with a tilde over the material. The
supercells are in the same order as in Table I.

MoS2 M̃oS2 WS2 W̃S2 MoSe2 ˜MoSe2 WSe2 W̃Se2

Eρ (Ry) 55 55 70 70 60 60 65 65
Ewfc (Ry) 350 350 500 500 350 350 550 550

nk

0◦ 21 21 15 15 21 15 21 15
0◦ 3 9 3 9 3 9 3 9
5.2◦ 21 – 21 15 21 15 21 21
6.6◦ 21 21 – – 18 12 18 12
9.5◦ 21 18 – – 18 18 – –
10.9◦ – – – – 21 – 21 –
13.9◦ 21 21 3 9 21 15 – –
13.9◦ 9 15 – – – – – –
13.9◦ 21 – – – 6 12 3 3
19.1◦ 30 30 30 30 21 21 21 21
22.7◦ 21 18 – – 18 12 – –
23.4◦ – – – – 18 – 21 12
27◦ 21 – 15 15 21 15 21 21
30◦ 39 39 21 36 21 21 21 21
30◦ 21 – – – 6 – – –
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FIG. 6. Three different options for lateral shifting for the
MoS2 19.1◦ supercell and their (electric field corrected) model fit
parameters.

the supercell sizes. We have identified strain, which is neces-
sary to build commensurate supercells of reasonable sizes, as
the key factor influencing the reliability of the extracted SOC
parameters. To correct for strain, we apply a transverse (to the
layers) electric field which compensates the changes of the
band offsets caused by strain.

Extracting the SOC parameters by fitting the corrected
DFT band structures to an already established model Hamil-
tonian, we present as the main result the magnitudes of the
valley-Zeeman and Rashba couplings of the Dirac electrons
as functions of the twist angles from 0◦ to 30◦; symmetry
relations can be used to deduce the parameters for other an-
gles. A qualitatively new effect of twisting is the emergence
of the Rashba phase angle � which rotates the spin texture
away from tangential; � vanishes at 0◦ and 30◦. There appears
to be no discernible trend for � as a function of the twist

angle, but we show that the phase angle depends strongly on
the electric field. While not affecting the energy dispersion,
nonzero � adds a radial component to the typical tangential
Rashba texture and should be considered when interpreting
spin transport experiments in twisted heterostructures. In par-
ticular, the spin accumulation due to electric current need
not be perpendicular to the current. Unfortunately, the phase
angles appear too sensitive to the band offsets and transverse
electric fields, preventing us to make reliable quantitative
predictions on their magnitudes. It is natural to assume that
each twisted heterostructure is in this sense unique, exhibiting
� based on the twist angle, unintended doping, interlayer
distance, and applied gate. An experimental observation of �

and its tunability is currently outstanding.
As required by symmetry, the valley-Zeeman SOC van-

ishes at 30◦. This clear case should serve as a useful tool
for experiments relying on valley-Zeeman coupling. For other
twist angles, we can conclude that the coupling does not
change sign between 0◦ and 30◦, and that λVZ for Mo-based
TMDCs has a (global) maximum at roughly 20◦. For W-
based heterostructures the maximum coupling appears to be
at 0◦. The Rashba coupling is, in general, weaker than the
valley-Zeeman coupling, except close to 30◦ where the latter
vanishes.

We have also studied the effects of structural relaxation on
the proximity effects. We found that rippling of graphene is
the main factor significantly enhancing the staggered potential
� and the Kane-Mele coupling λKM (which is otherwise negli-
gible for unrelaxed structures), but does not affect strongly the
valley-Zeeman and Rashba couplings. Relative lateral shifts
of the graphene and TMDC layers too do not have a significant
effect on the proximity spin-orbit parameters.

TABLE VI. Relaxation and its effect on the Dirac cone. We examine the 0◦ and the 19.1◦ supercells of MoS2 and the 19.1◦ supercell of
WSe2. We additionally consider the 19.1◦ MoS2 supercell, with strained TMDC instead of strained graphene (marked with *). For each of
those cases we distinguish between calculations without prior relaxation (fixed), with prior relaxation (relaxed), and with prior relaxation, but
with flattened graphene (flat Gr). The latter was achieved by setting the C atom’s z coordinate to an average value after the relaxation. For
each case we list the important structural parameters (rippling, interlayer distance d and chalcogen-chalcogen distance dXX) and the extracted
parameters from the model fit (�, λA, λB, and λR). All calculations were performed without the electric field corrections.

Rippling (mÅ) d (Å) dXX (Å) � (meV) λA (meV) λB (meV) λR (meV)

MoS-0◦

Fixed 0.00 3.30 3.138 0.014 0.35 −0.35 0.085
Relaxed 368.20 3.11 3.128 2.985 0.33 −0.14 0.206
Flat Gr 0.00 3.33 3.128 0.003 0.30 −0.30 0.074

MoS-19.1◦

Fixed 0.00 3.30 3.138 0.023 1.22 −1.23 0.241
Relaxed 23.63 3.31 3.126 −1.016 1.38 −0.96 0.252
Flat Gr 0.00 3.31 3.126 −0.175 1.15 −1.10 0.229

MoS-19.1◦*

Fix 0.00 3.30 3.138 0.018 0.86 −0.87 0.223
Relaxed 8.64 3.37 3.079 −0.294 0.59 −0.53 0.163
Flat Gr 0.00 3.31 3.312 −0.082 0.65 −0.64 0.198

WSe-19.1◦

Fix 0.00 3.30 3.364 0.009 0.64 −0.63 1.051
Relaxed 6.56 3.37 3.347 0.295 0.60 −0.51 0.763
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APPENDIX A: COMPUTATIONAL DETAILS

All electronic structure calculations are performed by den-
sity functional theory (DFT) [61] with QUANTUM ESPRESSO

[62]. Self-consistent calculations are carried out with a k-point
sampling of nk × nk × 1. The number nk is listed in Table V
for all twist angles. We use energy cutoffs listed in Table V for
the scalar relativistic pseudopotential with the projector aug-
mented wave method [63] with the Perdew-Burke-Ernzerhof
exchange correlation functional [64]. Graphene’s d orbitals
are not included in the calculations. We used van der Waals
corrections [65–67].

The electric fields are implemented in the DFT calculations
using a sawtooth potential in z direction within the quasi-2D
unit cell. The electric potential increases linearly in the area
of the heterostructure and then falls rapidly in the vacuum.

APPENDIX B: EFFECT OF LATERAL
SHIFT BETWEEN THE LAYERS

For incommensurate heterostructures consisting of two
materials whose lattice constants are no integer multiples of
each other, the lateral shifting degree of freedom does not
exist. If the sample can be assumed to be infinite in x and
y direction, every shifting configuration exists somewhere on
the sample. The physical properties of the configurations will
then average out, when considering the properties of the whole
material.

However, the structures we consider in our DFT calcu-
lations are commensurate to be computationally viable and
the lattice constants are forced by strain to be compatible.
Therefore, different lateral relative shifts might ensue differ-
ent physical properties including different proximity induced
SOC. Naturally this effect is less relevant for larger supercells,
for which the averaging over the different shifts can occur
within the supercell.

In order to estimate the effects of lateral shifts, we look at
different configurations for one of our supercells: the 19.1◦
supercell of MoS2. As one can see in Fig. 6, all three su-
percells have very similar spin-orbit parameters and only
the staggered potential � changes. While we cannot make a
sweeping conclusion based on one twist angle and a few lat-
eral shifts (and computational power limits one’s capabilities
here), these results indicated that the sizes of our supercells are
already sufficient to yield quantitatively reasonable results for
the magnitudes of the proximity valley-Zeeman and Rashba
spin-orbit couplings.

TABLE VII. Extracted parameter � for selected twisted
graphene/TMDC heterostructures.

Material Twist angle |θ | (deg) E field (V/nm) � (deg)

WS2 0 0 0
WS2 0 0.951 0
WS2 5.2 0 −50
WS2 5.2 0.520 −45
WS2 5.2 2.234 −29
WS2 19.1 0 16
WS2 19.1 −1.039 27
WS2 19.1 0.662 4
WS2 27 0 −11
WS2 27 0.553 −11
WS2 27 2.195 −10
WS2 30 0 180
WS2 30 −5.142 180
WS2 30 −4.973 180
MoSe2 0 −0.863 0
MoSe2 5.2 0.209 −3
MoSe2 19.1 −1.048 13
MoSe2 27 0.288 −27
MoSe2 30 −6.515 0
MoS2 19.1 0 41
MoS2 19.1 1.107 25

FIG. 7. The parameter �, as obtained by fitting the spin-x and
spin-y expectation values (for better readability, � is always plotted
modulo 180◦): (a) Spin-x and spin-y expectation values of the spin-
up (red arrows) and spin-down (blue arrows) valence band of the
graphene Dirac cone proximitized by WS2 with a twist angle of 0◦.
The k path (dotted line) goes along a circular path around the K point.
Here the reflection symmetry along the x axis demands � = 0◦ or
� = 180◦. (b) The same as (a), but for a 5.2◦ supercell. (c) The angle
� extracted from the fits for several heterostructures (see Table VII)
plotted against the twist angle. All results shown here are done with
the electric field corrections. For 0◦ and 30◦, we extract � = 0 and
� = 180◦ as expected. (d) Electric field dependence of � for four
WS2/graphene heterostructures.
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FIG. 8. The effect of the correcting electric field on the spin-orbit
parameters for the MoS2 19.1◦ supercell. The electric field increases
the conduction band offset EC and therefore reduces the proximity
induced SOC.

APPENDIX C: EFFECTS OF STRUCTURAL RELAXATION

All the results in the main text were obtained without
prior relaxation of the atomic structure. To study how atomic
relaxation affects proximity SOC, we performed calculations
on selected supercells which were relaxed in different ways.
The results are gathered in Table VI. Our main finding is that,
while the valley-Zeeman SOC λVZ is largely unaffected, the
staggered potential � and the Kane-Mele SOC λKM, which
are both very small for the unrelaxed structures, are greatly
enhanced by the relaxation. This can be traced to the rippling
of graphene, which results from the relaxation. We checked
this by flattening the relaxed graphene, which exhibited again
very small � and λKM. Our calculations indicate that even
very small ripplings can induce a staggered potential � on
the meV scale. Since the unrelaxed structures show almost
zero � or λKM (on the order of few tens of μeV), the rippling
can be considered the sole cause for the sublattice-asymmetric
parameters � and λKM to be nonzero in graphene/TMDC
heterostructures..

APPENDIX D: ROTATION OF THE RASHBA TERM:
FIT RESULTS

As mentioned in the main text, to accurately describe the
spin-x and spin-y expectation values of graphene in twisted
heterostructures without a mirror reflection symmetry [49,50],
one needs to implement a rotation of the Rashba term HSOC,R

around the z axis. We show the parameter �, as extracted
from our fits, for selected heterostructures in Table VII and
Fig. 7(c). For � = 0◦ and � = 30◦ the reflection symmetry
of the system demands � = 0◦ or � = 180◦. Our DFT results
confirm this.

FIG. 9. The uncorrected spin-orbit parameters λR (red squares)
and λVZ (blue dots) of the graphene Dirac cone as function of the
twist angle � for the four TMDCs MoS2, MoSe2, WSe2, and WS2

similar to Fig. 5. The transparent data points come from supercells
with built-in strain ε > 10% and are therefore less reliable. We
removed all data points with negative band offsets. The dotted line
is a guide for the eyes connecting reliable data points.

However, there appears to be no distinct dependence of �

on the twist angle. What we can establish is that � depends
strongly on the applied transverse electric field, see Fig. 7, but
is rather insensitive to the lateral shift of the graphene and
TMDC layers at a given twist angle, see Fig. 6.

APPENDIX E: EFFECT OF ELECTRIC FIELD

To correct the band offsets of our DFT calculations, we use
electric fields in the z direction. This is important to obtain
the right spin-orbit parameters, since the energetic vicinity
of the Dirac cone to the valence or the conductance band
of the TMDC can massively influence the effectivity of the
proximity effects. In Fig. 8 we depict this effect by exposing
the 19.1◦ MoS2 supercell to different electric fields. Without
any electric field, the Dirac cone of this supercell lies very
close to the TMDC conductance band and therefore has very
strong proximity SOC. By applying an electric field, we can
bring the Dirac cone down in energy and exponentially reduce
both the Rashba spin orbit-coupling λR and the valley-Zeeman
SOC λVZ. In Fig. 9 we show how Fig. 5 would look without
the electric field corrections.
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