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The proximity-induced spin-orbit coupling (SOC) in heterostructures of twisted graphene and topological
insulators (TIs) Bi2Se3 and Bi2Te3 is investigated from first principles. To build commensurate supercells, we
strain graphene and correct thus resulting band offsets by applying a transverse electric field. We then fit the
low energy electronic spectrum to an effective Hamiltonian that comprises orbital and spin-orbit terms. For
twist angles 0◦ � � � 20◦, we find the dominant spin-orbit couplings to be of the valley-Zeeman and Rashba
types, both a few meV strong. We also observe a sign change in the induced valley-Zeeman SOC at � ≈ 10◦.
Additionally, the in-plane spin structure resulting from the Rashba SOC acquires a nonzero radial component,
except at 0◦ or 30◦. At 30◦ the graphene Dirac cone interacts directly with the TI surface state. We therefore
explore this twist angle in more detail, studying the effects of gating, TI thicknesses, and lateral shifts on the
SOC parameters. We find, in agreement with previous results, the emergence of the proximitized Kane-Mele
SOC, with a change in sign possible by electrically tuning the Dirac cone within the TI bulk band gap.
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I. INTRODUCTION

Its long spin-relaxation times [1,2] and high electronic
mobility [3,4] make graphene an excellent material for spin
transport. However, to enable the manipulation of the spins in
graphene and therefore truly unlock its full potential as a plat-
form for spintronics, enhancing and controlling graphene’s
spin-orbit coupling (SOC) is necessary. Additionally, this con-
trol can enable the creation of multiple topological states
[5–10]. Different features can be achieved by adding dif-
ferent flavors of SOC to the graphene: While Kane-Mele
type SOC will lead to the formation of a quantum spin Hall
effect [5,6], valley-Zeeman type SOC is needed to create spin-
orbit valves [11–15] using giant spin-relaxation anisotropy
[16–18]. Furthermore, Rashba type SOC will produce a
Rashba Edelstein effect (charge-to-spin conversion) or even
the recently discussed unconventional Rashba Edelstein effect
(UREE, collinear charge-to-spin conversion) [19–23].

A very successful way of realizing such systems has
been building van der Waals heterostructures [24,25], in
which—due to proximity effects—electronic properties of
one two-dimensional material can be transferred to another.
To induce SOC in graphene, using transition-metal dichalco-
genides (TMDCs, such as WSe2) to form graphene/TMDC
heterostructures [26–30] has proven to be a viable route.
Using thin layers of three-dimensional topological insulators
(TIs) like Bi2Te3 or Bi2Se3 can introduce even larger SOC
[31,32]. In experiment, such graphene/TI heterostructures can
be fabricated using either exfoliation techniques [33–37] or
techniques like chemical vapor deposition (CVD) [38–41].
While the former case should result in incommensurate
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structures with random twist angle, the latter will produce
commensurate structures with mostly fixed twist angle �

(� = 0◦ or 30◦) [38,40] between the two layers. Simi-
lar to graphene/TMDC heterostructures, the twist angle in
graphene/TI heterostructures will also play a significant role
for the proximity SOC that graphene obtains.

Apart from simple low energy models [42,43], a good
approach for theoretically describing such heterostructures is
the ab initio approach of density functional theory (DFT).
Previous papers employing DFT for graphene/TI structures
[34,37,39,44–48] focus mainly on the 30◦ supercell, while
some also explore the 0◦ case [31,32]. However, intermediate
twist angles have not been yet considered, although it is at
those angles where symmetry allows for a radial in-plane spin
structure and therefore the UREE to arise.

In this paper we make a comprehensive DFT study of
the proximity SOC of graphene/Bi2Te3 and graphene/Bi2Se3

heterostructures for a set of commensurate supercells with dif-
ferent twist angles and strains. To increase the comparability
between the supercells, we correct the band offsets (arising
due to strain) by applying a transverse electric field, as already
discussed in Ref. [49] for graphene/TMDC. We find a combi-
nation of valley-Zeeman and Rashba type SOC to be induced
for all cases except 30◦. Additionally, we observe a large
twist-angle dependency of the Rashba phase angle, indicating
the possibility of a purely radial in-plane spin structure (90◦
phase angle) and UREE. A purely radial spin structure was al-
ready proposed to occur in graphene/TMDC heterostructures
by a tight binding model [21]. However, DFT calculations
[23,49] on such graphene/TMDC heterostructures are in dis-
agreement with that prediction, finding a maximal phase angle
of ±30◦. Furthermore, we discuss the band structure of the 30◦
supercell in more detail. Here, our results (i.e., the delicate
spin structure and the unique appearance of Kane-Mele SOC)
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TABLE I. Lattice constants and atomic constants of unstrained
primitive unit cells of graphene, Bi2Te3 and Bi2Se3 [51]. The struc-
ture of the TIs stays unchanged in graphene/TI supercells we use,
while the graphene layers are strained by the factors ε listed in
Table II to ensure commensurability.

a (Å) c (Å) u (Å) v (Å)

Graphene 2.46
Bi2Te3 4.386 30.497 0.4000c 0.2097c
Bi2Se3 4.143 28.636 0.4008c 0.2117c

are in good agreement with Ref. [31]. However, we addition-
ally explore the effect of an external transverse electric field
and find that it can change the sign of the Kane-Mele SOC.

The paper is organized as follows. In Sec. II we introduce
the methodology, the supercell structures, and the procedure
we apply to adjust for strain induced changes in the band
offsets. Section III shows how—following Ref. [50]—the
graphene Dirac cone couples to different parts of the TI first
Brillouin zone (BZ) for different twist angles and strains.
The model Hamiltonian used to fit the results is presented in
Sec. IV. The fitting results are shown in Sec. V. We present
twist angles 0◦ � � � 20◦ and � = 30◦ in Secs. V A and V B
respectively. In Appendix A computational details are given.
In Appendices B and C we discuss details of the 30◦ supercell
band structure: Appendix B explains what we call “type 1”
and “type 2” band pairs in the main paper and Appendix C
discusses an alternative fitting Hamiltonian. In Appendices D
and E the effects of varying lateral shifts and varying TI
thicknesses are discussed.

II. METHODS

The hexagonal unit cell of the TIs is described by the two
lattice parameters a and c as well as the atomic constants
u and v (all geometry parameters for Bi2Se3 and Bi2Te3

are listed in Table I). While such a unit cell contains three
quintuple layers (QLs), we use, unless specified otherwise,
only one QL to reduce computational effort. Due to the short
range of proximity effects, the effect of additional QLs on the
graphene is almost exclusively via the change of the TI surface
state. Since heterostructures with � �= 30◦ explicitly do not
couple to the surface state (see Sec. III), and in accordance
with the results of Ref. [32], we deem the 1QL cases to be
representative for 0 < � � 20◦. We discuss 3QL cases in
Appendix E and in Sec. V B, in connection with � = 30◦.
We construct the supercells by implementing the coincidence
lattice method [52,53], which is detailed in Ref. [49]. We give
integer attributes (n, m) to a monolayer supercell. The lattice
vectors aS

(n,m) and bS
(n,m) are defined as a linear combination of

the primitive lattice vectors a and b:

aS
(n,m) = n · a + m · b, (1)

bS
(n,m) = −m · a + (n + m) · b. (2)

By placing an (n, m) graphene supercell beneath an (n′, m′)
TI supercell, we construct the graphene/TI heterostructure
supercell, which then has a certain relative twist angle �

depending on n, m, n′, and m′.

FIG. 1. (a) Side view of the 13.9◦ unit cell with indicated inter-
layer distance d , atomic constants u and v, and lattice constant c.
The upper two QLs are transparent, since mostly only the first QL
is used in our calculations. (b–d) Bottom view of the graphene/TI
heterostructure supercells with twist angles � = 0◦, 13.9◦, and 30◦,
respectively.

If not specified otherwise, our supercells follow the con-
vention of a “top” configuration. This means that at a corner
of the supercell a carbon atom resides directly beneath a Te or
Se atom (see Fig. 1). Considering different configurations (see
Appendix D) we find that for large enough supercells the prox-
imity SOC is rather insensitive to the changes of the atomic
registry, similar to what is observed in graphene/TMDC het-
erostructures [27,49].

In order to obtain commensurate supercells for periodic
DFT calculations, one of the layers (or both) needs to be
strained. We thus introduce the strain factor ε, which depends
on the lattice constant of the TI and is therefore different
for Bi2Se3 and Bi2Te3. Since the low energy Dirac spec-
trum of graphene is (apart from the renormalization of the
Fermi velocity) rather robust against biaxial strain smaller
than 20% [54,55], we choose to leave the TI unstrained and
strain graphene. Also, to focus on twist-angle effects, the
used interlayer distance d = 3.5 Å separating the monolay-
ers (see Fig. 1) is the same for all studied supercells. We
do not perform structural relaxation calculations for our sys-
tems assuming that—as discussed in [49] for TMDCs—this
will only lead to a modification of the staggered poten-
tial (due to rippling effects) and leave the SOC parameters
largely unaffected. To avoid interactions between periodic
images in our slab geometry, we add a vacuum of 20 Å.
All graphene/TI heterostructures are set up using the Atomic
Simulation Environment [56] code. The structural parameters
of the heterostructures are collected in Table II and some
representative examples are visualized in Fig. 1.

In Ref. [49] we investigated graphene/TMDC heterostruc-
tures and reported a linear connection between the strain ε

(enforced on the graphene) and the band offset between the
graphene and the TMDC band structure. For the graphene/TI
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TABLE II. Structural information of the investigated
graphene/TI heterostructures. Listed are the supercell attributes
(n, m) of graphene and (n′, m′) of the TI, the resulting twist angle
� between the two monolayers, and the strain εTI imposed on the
graphene (which depends on the specific choice of TI). Additionally,
we list the number of atoms (Nat) in the heterostructure for the cases
with one and three quintuple layers (QL) of TI. For completeness,
we also list strains and Nat corresponding to supercells, which were
not investigated, in nonboldface. These supercells, which were not
investigated, either had too much built-in strain, had too many atoms,
or entailed computational difficulties (e.g., convergence problems).

� εBi2Te3 εBi2Se3 Nat Nat

(deg) (n, m) (n′, m′) (%) (%) (1QL) (3QL)

0.0 (0 2) (0 1) −10.85 −15.79 13 23
0.0 (0 5) (0 3) 6.98 1.05 95 185
4.3 (2 3) (1 2) 8.22 2.22 73 143
4.7 (4 3) (2 2) 1.54 −4.09 134 254
8.9 (1 5) (0 3) −3.93 −9.26 107 197
10.9 (2 1) (1 1) 16.72 10.25 29 95
13.9 (1 3) (0 2) −1.1 −6.58 46 86
16.1 (3 1) (1 1) −14.35 −19.1 41 71
17.5 (3 2) (1 2) 8.22 2.22 73 143
19.1 (4 0) (2 1) 17.93 11.4 67 137
19.1 (5 0) (2 1) −5.66 −10.88 85 155
19.1 (2 4) (0 3) 1.08 −4.52 101 191
20.8 (4 3) (1 3) 5.68 −0.17 139 269
21.1 (5 1) (2 2) 10.93 4.78 122 242
21.8 (4 2) (1 2) −10.85 −15.79 91 161
30.0 (1 1) (0 1) 2.94 −2.77 11 21
30.0 (7 0) (2 2) −11.77 −16.66 158 278

heterostructures we also observe a linear relation (see Fig. 2)
allowing us to estimate the apparent zero-strain band offset for
both cases: �E = 396 meV for Bi2Te3 and �E = 671 meV
for Bi2Se3. We then apply a transverse electric field to each
supercell to reduce the band offset to the zero-strain one.

As a reference point for the TI energies we use the TI
surface state (or for the 1QL case the remnants of the surface
state) at �. Unlike thin TMDC monolayers, the TI multilayers
we use are rather thick, having a thickness of ≈7 Å per QL.
This makes them more vulnerable for unwanted side effects of
the electric field to the band structure. A prominent example is
the splitting of the TI surface state [57] into a state living at the
lower TI surface (close to the graphene monolayer) and one
living at the upper TI surface (further away from the graphene
monolayer). However, we expect the consequences for the
proximity SOC to be rather minimal, since the proximity SOC
is induced mainly by the atomic orbitals close to the graphene
monolayer in real space.

The computational methodology for obtaining DFT elec-
tronic band structures of the graphene/TI supercells is
detailed in Appendix A.

III. QUALITATIVE PICTURE OF INTERLAYER
INTERACTION IN K SPACE

Reference [50] details by generalized Umklapp processes
how in twisted heterostructures only certain k points of the
two layers can interact with each other. In the graphene/TI

FIG. 2. Correcting for the strain induced band offset changes.
For all the investigated supercells of graphene with 1QL of Bi2Te3

and Bi2Se3 we plot the band offsets �E of the Dirac cone with
respect to the remnant of the TI surface state (see inset) against the
strain on graphene ε; ε > 0 indicates tensile strain while ε < 0 indi-
cates compressive strain. Each of the data points (red solid circles)
is annotated with the twist angle of the corresponding supercell.
From the linear fit (red line) we extract the (apparent) zero-strain
band offsets (empty red circles). The green circles show the band
offsets after the correction by the transverse electric field employed
to compensate the influence of strain. The inset shows schematically
how the band offset �E is measured.

heterostructures our focus is on the graphene low energy Dirac
states. Therefore we are interested in the k points in the two-
dimensional primitive TI (Bi2Se3 or Bi2Te3) unit cell, with
which the Dirac cone of graphene will primarily interact (and
obtain its SOC from) in a graphene/TI heterostructure. The
principle contribution comes from three k points, which are
equivalent due to symmetry. The location of these k points
depends both on the twist angle between the two materials and
the ratio of their lattice constants, so in this case aTI/aGr. Since
the strain we apply to the graphene in order to construct a
commensurate heterostructure changes aTI/aGr, we can iden-
tify strain and twist angle as the two relevant factors for
our calculations. Figure 3 shows for both Bi2Se3 and Bi2Te3

where those k points lie for the supercells listed in Table II.
As is also clear from Fig. 3, for the 30◦ supercell the

graphene Dirac cone interacts exactly with the � point of the
TI. Since this is the reciprocal lattice momentum at which
the surface states of the TI reside, this particular twist an-
gle is expected to be special. Indeed, Ref. [31] reports SOC
of the Kane-Mele type appearing in DFT calculations on a
graphene/Bi2Se3 heterostructure with a 30◦ twist angle. We
dedicate Sec. V B to discussing this special case.
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FIG. 3. Two-dimensional first BZ of (a) Bi2Te3 and (b) Bi2Se3.
The green dot marks the � point, with the green line indicating the
cross section of the TI surface state (for the 1 QL case) at the height
of the electric field corrected Dirac cone energy. For each calculated
supercell the k points to which the Dirac cone couples are drawn (af-
ter symmetry reduction). Additionally, the zero-strain line is drawn
(dotted line), formed by all points of hypothetical supercells with
ε = 0% and 0◦ � � � 30◦. The outlined sector indicates all relevant
k points for a range of −10 � ε � 10% and 0◦ � � � 30◦. The red
line connects all DFT data points with ε < 10% and represents the
sequence of points in Fig. 5.

IV. EFFECTIVE HAMILTONIAN

In order to find the twist-angle dependence of the proximity
induced SOC in graphene’s Dirac bands due to the coupling
with the TIs, we fit the DFT band structures at the Dirac points
to a model Hamiltonian [26]. The Hamiltonian H comprises
the orbital part Horb and the spin-orbit part HSO. The latter is
composed of the intrinsic spin-orbit coupling HSO,I and the
Rashba coupling HSO,R:

H (k) = Horb(k) + HSO = Horb(k) + HSO,I + HSO,R. (3)

The orbital part describes the dispersion of the graphene Dirac
cone linearized around the K/K ′ point; accordingly, k is the
electron wave vector measured from K/K ′. It also includes a
staggered potential �, caused by the substrate’s asymmetrical
influence on the graphene A and B sublattice:

Horb(k) = h̄vF (κσxkx + σyky) + �σz. (4)

Here, vF is the Fermi velocity of the Dirac electrons and σ

are the Pauli matrices operating on the sublattice (A/B) space.
The parameter κ = 1 for K and κ = −1 for K ′.

The intrinsic spin-orbit Hamiltonian

HSO,I = [λKMσz + λVZσ0]κsz, (5)

and the Rashba spin-orbit Hamiltonian

Hso,R = −λR exp

(
− i	

sz

2

)
[κσxsy − σysx] exp

(
i	

sz

2

)
,

(6)
both additionally act on the spin space, which is described
by the spin Pauli matrices sx, sy, and sz; λVZ and λKM are the
valley-Zeeman [26,29] SOC (sublattice-odd) and the Kane-
Mele [5] SOC (sublattice-even) respectively. The Rashba SOC
term is defined by a magnitude |λR| and a phase angle 	.
The latter is present in C3 symmetric structures [49,58,59]
and rotates the spin texture about the z axis, adding a radial
component to the Rashba field.

We choose to limit the Rashba parameter to positive values
λR > 0. A sign change of λR then corresponds to an additional
phase shift of 	 by a half rotation, i.e., 	 → 	 + 180◦. To
make this clear we always write |λR|.

We only construct heterostructure with angles between 0◦
and 30◦. The parameters for all other twist angles can be
obtained by the following symmetry rules.

Twisting clockwise or counterclockwise from 0◦ influences
only the Rashba phase angle:

λVZ(−�) = λVZ(�), (7)

|λR(−�)| = |λR(�)|, (8)

	(−�) = −	(�), (9)

�(−�) = �(�). (10)

Additionally a twist by 60◦ corresponds to switching the
sublattices of graphene and therefore changes the sign of the
sublattice-sensitive parameters:

λVZ(� + 60◦) = −λVZ(�), (11)

|λR(� + 60◦)| = |λR(�)|, (12)

	(� + 60◦) = 	(�), (13)

�(� + 60◦) = −�(�). (14)

V. RESULTS

We calculate the electronic band structures for all super-
cells listed in boldface in Table II by means of DFT for the
1QL case. Figure 4 shows a few representative band struc-
tures. In addition it shows zooms to the graphene Dirac cone
and the in-plane spin structure around it. It is clearly visible
that the proximity SOC and therefore the structure of the Dirac
cone are different for different angles. Fitting the Dirac cones
to the model Hamiltonian, Eq. (3), results in effective model
parameters (see Table III) which can be used to compare dif-
ferent twist angles. In the following, we discuss these results
separately for twist angles below 20◦ and for the twist angle
at 30◦, as the two cases have distinct features.

A. Results I: 0◦ � � � 20◦

For twist angles 0◦ � � � 20◦ the graphene Dirac point
acquires its SOC mainly from parts of the TI first BZ which
are away from the � point. The corresponding Bloch states
are not what would form TI surface states, as those appear at
�. Hence, the overall SOC is weaker than for the � = 30◦
case (see next subsection). Additionally, the SOC has similar
functional form to that in graphene/TMDC heterostructures
[49]: both staggered potential � and λKM are negligibly small,
while λVZ and |λR| dominate. This is in agreement with earlier
calculations [31,57]. Also, the Rashba phase angle vanishes
(	 = 180◦) for � = 0◦ due to symmetry.

Figure 5 depicts the twist-angle dependence of the ex-
tracted SOC parameters λVZ, |λR|, and 	. The qualitative
structure is the same for both materials Bi2Se3 and Bi2Te3. It
exhibits a special feature of the graphene/TI heterostructures,
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FIG. 4. Calculated band structures of graphene/TI heterostructures using Bi2Te3 (first column), Bi2Se3 (second column), and three different
selected twisting angles � = 0◦, 13.9◦, 30◦. The gray circles indicate states originating from TI orbitals, while the solid (dashed) lines come
from graphene states with (without) the electric field corrections. For the low-strain cases (Gr/Bi2Te3 13.9◦, Gr/Bi2Se3 0◦ and both 30◦ cases)
the solid and dashed lines coincide, because no strong shifting electric field is needed. The origin of the energy scale is set to zero for the Fermi
energy of the band structures without electric field correction. The remnant of the TI surface state can be seen at �. Because of band folding
effects, the graphene Dirac cone resides at the k point for all angles except � = 30◦. In addition to the band structures along high symmetry
lines, we show zooms to the (electric field corrected) Dirac cone with color coded spin and the in-plane spin structure along a circular path
around the Dirac cone at ≈55 meV. For the zooms, dots show DFT data while solid lines represent the fits from the model Hamiltonian
[Eq. (3)]. In the circular-path plots, red (blue) arrows indicate in-plane spin in the energetically lower (higher) valence band. For � = 0◦ the
colors coincide with spin z, but (due to the sign change in λVZ) they do not for � = 13.9◦. Since for � = 30◦ the band structure comprises
eight bands, we show two plots with red and orange (blue and light-blue) arrows indicating the energetically lower (higher) pair of valence
bands. Conduction bands show the same structure. The Rashba phase angles 	 are extracted for all but the � = 30◦ case. Note that for the
zoomed band structures of the � = 30◦ cases the k window is enlarged by a factor of 3 (Bi2Se3) or 15 (Bi2Te3).

namely, the sign change of λVZ at about � = 10◦. Since
increasing the TI thickness from 1QL to 3QL leaves the sign
of λVZ unaffected (see Appendix E), it is reasonable to conjec-
ture, taking into account the short range of the proximity effect
in van der Waals heterostructures, that the valley-Zeeman
SOC changes sign also for graphene on bulk TI.

Since heterostructures with large strain (ε < 10%) couple
to very different parts of the TI Brillouin zone, they deviate
strongly from the zero-strain path in Fig. 3 and are therefore
depicted as transparent points in Fig. 5. Nevertheless, we can
infer from these calculations that there can be a sign change
not only by sweeping the twist angle �, but also by sweeping
the strain ε. E.g., a graphene/Bi2Te3 heterostructure with a
fixed twist angle of 19.1◦ changes the sign of λVZ, when

going from moderate strains (ε1 = −5.66%, ε2 = 1.08%) to
a very large positive strain (ε3 = 17.93%). We estimate this
sign change to happen at 8 to 10% for twist angles � > 10◦.
Although such heterostructures are not directly realizable in
an experiment (due to the large strain), it is a relevant side note
for heterostructures using similar TIs or alloys of TIs, which
have slightly different lattice constants. The sign changes are
visualized in the second line of Fig. 5.

Remarkably, there are two irregularities that appear. First,
there is a rather abrupt sign change in λVZ between the two last
data points (� = 20.8◦ and 21.1◦) of the Bi2Se3 heterostruc-
tures in Fig. 5(b). This could be due to the close vicinity
of the Dirac cone of the � = 21.1◦ heterostructure to the
TI surface state: Despite the rather small difference in twist
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FIG. 5. Calculated SOC parameters of the graphene Dirac cone
proximitized by (a) Bi2Te3 and (b) Bi2Se3. The effect of strain is
corrected by transverse electric field, as described in Sec. II. The
first line of plots shows Rashba SOC |λR| (red squares) and valley-
Zeeman SOC λVZ (blue circles) as a function of the twist angle �.
Data points from supercells with excessive built-in strain of ε > 10%
are deemphasized (transparent). The dotted line is a guide for the
eyes. The second line of plots shows the TI Brillouin zone and filled
circles indicating regions in which the Dirac cone couples to the TI
Bloch states, as in Fig. 3. Blue symbols correspond to positive valley-
Zeeman SOC λVZ > 0, while red symbols correspond to negative
valley Zeeman SOC λVZ < 0. The green circle represents the � point
as well as the 30◦ supercell connecting to it. The dotted line connects
the relevant points with ascending twist angle in the same order as the
guide to the eyes in the first line of plots. The third line of plots shows
the twist-angle dependence of the Rashba phase angle 	. Again, data
points with ε > 10% are deemphasized (gray).

angle, due to its different strain its Dirac cone couples to a
point closer to the �-M line rather than the �-K line. Since in
this direction in k space the slope of the TI surface state is less
steep, it is closer to the Dirac cone in energy. And apparently
this influence manifests in the sign change of λVZ. Secondly,
the magnitude |λR| of the Rashba SOC is generally smaller
than the magnitude of λVZ. It seems to almost monotonically
decrease for 0◦ � � � 20◦. However, when looking again at
the � = 21.1◦ Bi2Se3 data point, we see a strong increase of
|λR|, again likely related to the Dirac cone’s vicinity to the
remnants of the surface state.

The Rashba phase angle 	 is essential for collinear
charge-to-spin conversion [19–23], since for 	 = 0◦ and 180◦
collinear charge-to-spin conversion is forbidden. The twist-
angle dependence of 	 in graphene-based heterostructures is

not well explored apart from the symmetry-dictated fact that
� = 0◦ and 30◦ both entail 	 = 0◦ or 180◦ [21,49,58].

For intermediate twist angles 0◦ < � < 30◦, there can be
either no sign change 	(� = 0◦) = 	(� = 30◦) or a sign
change 	(� = 0◦) = 	(� = 30◦) + 180◦. The latter is es-
pecially interesting, since it implies the existence of a twist
angle 0◦ < � < 30◦ for which 	 = 90◦ or 270◦ and therefore
a purely radial Rashba spin structure and purely collinear
charge-to-spin conversion. Reference [21] predicts such a sign
change to happen for certain graphene/TMDC heterostruc-
tures based on a tight binding model, although DFT results
[23,49] are at odds with that prediction. Our results seem
to strongly indicate that such a sign change could occur
for graphene/TI heterostructures with the twist angle corre-
sponding to a purely radial spin structure being � ≈ 18◦ (see
Fig. 5).

B. Results II: � = 30◦

By combining a
√

3 × √
3 graphene supercell (n = m = 1)

and a 1× 1 TI supercell (n′ = 0, m′ = 1) one can create a het-
erostructure with a twist angle of � = 30◦. Even though other
heterostructures with such a twist angle can be constructed
(e.g., n = 7, m = 0, n′ = m′ = 2), the former is unique in a
few ways.

(1) It is a notably small supercell. For larger heterostruc-
tures the shifting degree of freedom is mostly irrelevant for
the proximity SOC, because the graphene will have many
different local atomic registries, which will always result in
some average proximity effect. Since this is impossible for
such a small supercell, the shifting degree of freedom will
strongly affect the low energy Dirac cone band structure (see
Appendix D).

(2) The K and K ′ points of the primitive graphene first Bril-
louin zone are folding back to the � point of the supercell’s
first Brillouin zone, creating an eight band Dirac cone.

(3) Not only will the Dirac cones fold back to the � point,
but, more significantly, the point of the TI BZ with which the
graphene Dirac cone will interact by the theory of generalized
Umklapp processes (see Sec. III and Ref. [50]) is exactly the
� point, where the TI surface state resides.

According to the first point, we observe very different low
energy spectra for the four different shifting configurations
(see Fig. 9). For all but the “hollow” configuration we see
eight distinct bands, degenerate only at the � point, where
Cramer’s rule strictly demands it. The hollow configuration
is the energetically most favorable one and therefore the one
we will focus on (all plots in the main paper regarding the
� = 30◦ supercell represent this hollow case). It entails band
structures consisting of four band pairs with energy splittings
within such a band pair being on the µeV range. These small
splittings lead to a certain spin structure (see Appendix B),
that has also been found and discussed in Ref. [31]. However,
since the splitting is very small and the resulting spin structure
is very elusive, we only use the simple Hamiltonian [Eq. (3)]
described in Sec. IV for the fittings in the main paper (we
reduce the eight bands to four by ignoring one band of each
almost-degenerate band pair). This on the one hand allows for
better comparability with the parameters of the other twist an-
gles, but on the other hand fails to describe the spin structure.
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In Appendix C we fit the Dirac cones with an alternative fitting
Hamiltonian which is akin to the one used in Ref. [31] and find
that the fitting parameters are very similar.

Due to the aforementioned backfolding, we cannot include
spin-z expectation values in the fitting procedure. However,
pseudospin (sublattice imbalance) is used in addition to the
energies to unambiguously determine the correct parameters.
For the hollow case pseudospin is always zero, therefore
demanding � = λVZ = 0 (this can alternatively be deduced
from symmetry). For the top case the pseudospins of the eight
bands form a complicated structure, which can be roughly
reproduced using a full tight binding model Hamiltonian
including certain onsite potentials (see Appendix D). The
energies and pseudospins of the “bridge” case could not be
sufficiently reproduced by either Hamiltonian.

The in-plane spin structure of the graphene/Bi2Se3 30◦
case (see Fig. 4, right column, last line) can clearly not
be described with the Hamiltonian in Eq. (3). For the
graphene/Bi2Te3 30◦ case (see Fig. 4, left column, last line)
the band pairs seem to exhibit a typical tangential Rashba
in-plane spin structure. However, the order in which clockwise
(c) or counterclockwise (cc) spin structures appear (starting
from the energetically lowest band pair) is alternating, i.e.,
cc-c-cc-c. For the usual Rashba case it is cc-c-c-cc. There-
fore, the in-plane spin structures also cannot be described by
Eq. (3) and we cannot estimate a Rashba phase angle from
such calculations. This means there appears to be physics in
the commensurate system, which the simple model Hamil-
tonian [Eq. (3)] is not able to capture. Assuming that this
physics stems from the specific atomic registry dependence,
an unstrained incommensurate structure should still be well
described by the simple model Hamiltonian [Eq. (3)]. Based
on the results from the last line of plots of Fig. 5, we presume
that the phase angle 	 of such an incommensurate structure
will be shifted by 180◦ with respect to the one at � = 0◦.
Experimentally, a commensurate structure could be the result
of CVD or molecular beam epitaxy fabrication, while the
incommensurate structure might be obtained by an exfoliation
method.

For 0◦ � � � 20◦ the Dirac cone lies (locally) within
a band gap. As already mentioned for � = 30◦ the Dirac
cone now lies directly on top of the TI surface state at the
� point. Therefore, both the thickness of the TI (determin-
ing the concrete form of the surface state) and an applied
transversal electric field (determining the relative position
of the Dirac cone with respect to the surface state) can be
expected to strongly influence the proximity SOC induced
in the graphene. In the following, we will focus on the hol-
low shifting configuration, since it is the energetically most
favorable.

In Fig. 6 we show the electric field dependence of the
parameters for the 1QL case and the 3QL case. The Dirac
cone is shifted through the range marked in black within the
TI band structure using an electric field. With � = λVZ = 0
as stated before, the two remaining parameters λKM and |λR|
are both in the meV range. When the Dirac cone comes close
to a TI band, the SOC becomes larger with both parame-
ters reaching up to 20 meV in magnitude. Parameter λKM

can remarkably change sign whilst the Dirac cone moves
from one band to another. Additionally, we depict the orbital

decomposition of the Dirac cone. The black curve, showing
the general TI content and therefore the strength of the prox-
imity effect, will unsurprisingly increase when nearing one of
the TI bands. We find TI p orbitals to be contributing the most
to the proximity effects (≈90%), while s orbitals contribute
to a less, but still significant, amount (≈10%). The dark green
curve shows that this distribution stays roughly constant, when
shifting the Dirac cone, with a tendency for higher s-orbital
content near the surface state. The d-orbital contribution is
negligibly small. Distinguishing even further, we investigated
the percentage of p orbitals with mj = ±3/2 and ±1/2. This
distinction is essentially the equivalent of distinguishing be-
tween px/y and pz orbitals in a spinless case, only now that
SOC is present ml is not a good quantum number and must be
replaced with mj . We find that the mj = ±3/2 orbitals make
up roughly 20% of the contributing p orbitals, which is rather
high, considering the Dirac cone pz orbitals overlap more with
other pz orbitals and that the TI bands near the Dirac cone
consist of hardly any states with mj = ±3/2. We conclude
that an astonishingly large contribution to the proximity ef-
fect is coming from bands more than 2 eV away from the
Dirac cone in the valence and conduction band, rather than
from the surface state itself. Therefore, when the Dirac cone
approaches any nearby band with low mj = ±3/2 content,
it will acquire a significant proximity effect from it and the
relative contribution of the deep-lying states decreases. This
corresponds to a decline of the yellow curve indicating relative
mj = ±3/2 p-orbital content.

Another interesting feature of the band structure is the sep-
aration into two distinct kinds of band pairs, occurring in an
alternating fashion. One of those kinds of band pairs inherits
its properties (mainly spin structure and orbital composition)
from the nearby surface state, while the other one inherits
its properties from the deep-lying states. This distinction is
described in Appendix B in detail.

VI. SUMMARY

We systematically investigated the proximity induced
SOC in twisted graphene/Bi2Se3 and graphene/Bi2Te3 het-
erostructures. After determining an approximate zero-strain
band offset, we correct the band offset of all structures ac-
cordingly and fit their energies and spin to an established
SOC Hamiltonian to extract relevant SOC parameters. We
separately consider supercells in a twist-angle range 0◦ �
� � 20◦, which are barely affected by the TI surface state,
and one special highly commensurate supercell at � = 30◦,
which is heavily influenced by the surface state. For the
0◦ � � � 20◦ supercells we extract the twist-angle depen-
dence of the relevant types of SOC, which are valley-Zeeman
(λVZ) and Rashba (|λR|, 	). Upon twisting, we witness a
change of the valley-Zeeman sign at � ≈ 10◦. Addition-
ally we witness a sign change upon changing the strain at
about +8 to +10% strain for twist angles � > 10◦. We
confirm that the Rashba phase angle 	 has a value of 	 =
180◦ at � = 0◦. For increasing twist angle the phase an-
gle 	 also increases and crosses 	 = 270◦ for � ≈ 18◦,
where a purely radial in-plane spin structure occurs. Assum-
ing that this trend continues for twist angles � > 20◦, it
seems likely that (for incommensurate heterostructures) the
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FIG. 6. Electric field dependence of fitting parameters for the 30◦ supercell: We show the band structure of 1QL or 3QL of Bi2Te3 or Bi2Se3

around the � point along high symmetry lines. The color code represents the projection of the state onto the TI s orbitals (green) and onto the
p orbitals with mj = ±3/2 (yellow) respectively. The black range shows the energy range within which we shift the graphene Dirac cone in
the respective Gr/TI heterostructures using an electric field. We show the development of the SOC parameters and the orbital decomposition
of the Dirac cone states (averaged over a k range of 0.04 Å−1 for Bi2Te3 and 0.004 Å−1 for Bi2Se3 along the high symmetry path around K)
during this shifting. For (a) and (b) the horizontal dotted lines indicate the Dirac cone position of an electric field corrected band structure
(zero-strain band offset), therefore corresponding to the zooms in the last line of plots in Fig. 4. In the lower plot (“orbital composition”) the
black curve shows the general content of TI orbitals in the Dirac cone. The dark-green curve shows how much of that TI content stems from
TI s orbitals. The yellow curve shows how much of the TI p-orbital content stems from states with quantum number mj = ±3/2.

phase angle will have a value of 	 = 360◦ at a twist angle
of � = 30◦.

The case of the highly commensurate � = 30◦ super-
cell was investigated more closely. We consider the specific
shifting configuration hollow, since it is energetically the
most favorable. Since its symmetries do not allow for valley-
Zeeman SOC, the significant SOC types are Rashba (|λR|) and
Kane-Mele (λKM). Due to backfolding effects, the Dirac cone
coincides with the TI surface state in k space. Using an electric
field, we shift the Dirac cone within a local TI band gap,
which results in a change of the sign of λKM. Furthermore,
orbital decomposition considerations reveal that the Dirac
cone consists of two distinct alternating types of bands, one

of which obtains its proximity SOC almost exclusively from
higher lying bands.

In addition, we show calculations indicating that the effect
of lateral shifting is irrelevant for the cases within 0◦ � � �
20◦, while having a strong effect on the highly commensurate
� = 30◦ supercell.

ACKNOWLEDGMENTS

This work was funded by the International Doctorate Pro-
gram Topological Insulators of the Elite Network of Bavaria,
Deutsche Forschungsgemeinschaft SFB 1277 (Grant No.
314695032) and No. SPP 2244 (Grant No. 443416183), and

195144-8



TWIST-ANGLE DEPENDENT PROXIMITY INDUCED … PHYSICAL REVIEW B 107, 195144 (2023)

TABLE III. Parameters extracted from the band structure calculations. For both Bi2Te3 and Bi2Se3 and for all angles (except if the band
offset is too large and the Dirac cone is shifted into the TI bands), we list the band offset �E of the Dirac cone with respect to the TI
surface band and the extracted model Hamiltonian [Eq. (3)] parameters. The parameters are staggered potential �, Kane-Mele SOC λKM,
valley-Zeeman SOC λVZ, magnitude of the Rashba SOC |λR|, and Rashba angle 	. We denote the offsets and parameters after correction with
the electric field with a bar, for example λ̄VZ. The electric field is defined as positive, if it points from the TI layer to the graphene layer.

� ε 	 � λKM λVZ |λR| �E Electric field 	̄ �̄ λ̄KM λ̄VZ |λ̄R| �̄E
(deg) (%) (deg) (meV) (meV) (meV) (meV) (eV) (V/nm) (deg) (meV) (meV) (meV) (meV) (eV)

Bi2Te3

0 −10.85 180 2.325 0.698 1.256 1.452 0.972 5.554 180 2.257 0.528 0.786 1.037 0.529
0 6.98 180 0.002 −0.004 1.934 0.748 −0.015 −3.399 180 0.037 −0.022 3.026 2.054 0.510
4.3 8.22 152 0.000 −0.006 2.038 0.512 −0.072 −3.838 181 0.034 −0.024 3.126 1.791 0.471
4.7 1.54 146 0.002 −0.003 1.019 0.557 0.141 −2.199 171 −1.936 −0.002 1.254 0.852 0.444
8.9 −3.93 199 0.418 −0.002 −0.319 0.342 0.458 0.247 199 −0.001 0.008 0.050 0.438 0.442
10.9 16.72 19 −0.067 0.271 13.694 7.140 −0.309 −6.171 50 0.109 −0.082 9.562 3.574 0.407
13.9 −1.1 −130 0.010 0.011 −0.464 0.178 0.407 −0.145 −133 0.010 0.006 −0.467 0.183 0.418
17.5 8.22 −10 0.001 0.154 3.513 2.897 −0.044 −3.624 54 0.014 −0.028 −1.568 0.531 0.458
19.1 1.08 −42 −0.001 0.024 −0.814 0.980 0.114 −2.406 −45 −0.001 0.005 −1.320 0.143 0.114
19.1 17.93 −0.393 −5.656 59 −0.034 −0.035 8.578 7.467 0.396
19.1 −5.66 0.772 1.797 −48 0.007 0.006 −2.720 0.636 0.427
30 2.94 0.000 −12.400 0.000 5.089 0.255 −0.771 0.000 −8.413 0.000 2.703 0.324

Bi2Se3

0 −15.79 180 1.496 0.252 0.726 0.816 1.423
0 1.05 180 0.002 −0.007 1.217 0.901 0.704 0.074 180 0.003 −0.007 1.204 0.881 0.692
4.3 2.22 −178 −0.001 −0.006 1.195 0.621 0.518 −1.36 −175 0.004 −0.010 1.344 0.879 0.695
4.7 −4.09 190 0.001 −0.005 0.381 0.616 0.831 1.05 −174 −0.001 0.000 0.369 0.447 0.592
10.9 10.25 47 −0.049 0.002 3.175 1.024 0.240 −4.114 56 0.054 −0.018 5.016 1.554 0.644
13.9 −6.58 −155 0.004 0.007 −0.496 0.623 0.982 2.216 −148 0.003 0.004 −0.331 0.330 0.664
17.5 2.22 17 0.080 0.027 −0.552 0.076 0.519 −1.354 −150 0.006 −0.017 −1.490 0.281 0.692
19.1 11.4 47 0.035 0.006 2.304 2.217 0.225 −3.624 53 0.003 −0.035 3.197 3.146 0.622
19.1 −4.52 −120 0.005 0.002 −0.917 0.299 0.682 −0.098 −124 0.000 0.000 −0.935 0.315 0.706
20.8 −0.17 −41 0.001 −0.007 −1.258 0.468 0.524 −1.313 −85 −0.008 −0.031 −2.194 0.819 0.669
21.1 4.78 23 0.022 −0.028 0.600 1.680 0.388 −2.36 23 −0.005 −0.074 0.844 2.809 0.632
30 −2.77 0.000 0.517 0.000 1.340 0.754 0.617 0.000 0.049 0.000 1.091 0.700

the European Union Horizon 2020 Research and Innovation
Program under Grant No. 881603 (Graphene Flagship) and
Flagera project 2DSOTECH.

APPENDIX A: COMPUTATIONAL DETAILS

All electronic structure calculations are performed imple-
menting density functional theory (DFT) [60] using QUANTUM

ESPRESSO [61]. Self-consistent calculations are carried out
with a k point sampling of nk × nk × 1. The number nk is
listed in Table IV for all cases. We use charge density cutoffs
Eρ = 480Ry and wave function kinetic cutoff EWFC = 48Ry
(EWFC = 58Ry for Bi2Se3) for the fully relativistic pseudopo-
tential with the projector augmented wave method [62] with
the Perdew-Burke-Ernzerhof exchange correlation functional
[63]. Graphene’s d orbitals are not included in the calcu-
lations. We used Grimme D-2 van der Waals corrections
[64–66].

The electric fields are implemented in the DFT calculations
using a sawtooth potential in z direction within the quasi-two-
dimensional unit cell. The electric potential increases linearly
in the area of the heterostructure and then falls rapidly in the
vacuum.

TABLE IV. Computational details: k grid density (we used a
nk × nk grid) for all calculations.

(n, m) (n′, m′) nk (1QL) nk (3QL)

0.0◦ (0 2) (0 1) 15
0.0◦ (0 5) (0 3) 6
4.3◦ (2 3) (1 2) 9 3
4.7◦ (4 3) (2 2) 3
8.9◦ (1 5) (0 3) 3

10.9◦ (2 1) (1 1) 15 9
13.9◦ (1 3) (0 2) 15 9
16.1◦ (3 1) (1 1) 15
17.5◦ (3 2) (1 2) 9 3
19.1◦ (4 0) (2 1) 12
19.1◦ (5 0) (2 1) 6
19.1◦ (2 4) (0 3) 3
19.1◦ (2 4) (0 3) 3
20.8◦ (4 3) (1 3) 3
21.1◦ (5 1) (2 2) 3
21.8◦ (4 2) (1 2) 6
30.0◦ (1 1) (0 1) 45 45
30.0◦ (7 0) (2 2) 3
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FIG. 7. The two types of band pairs of the eight band Dirac cone for � = 30◦. For selected cases we show the Dirac cone and the distinct
properties of the two types of band pairs it consists of. All cases are without applied electric field except “Bi2Se3 1Q E,” where an electric
field of 4.11 V/nm was applied. (a, b) Dirac cone, with color coded spin z (a) and color coded orbital decomposition (b). In (b) green dots
show TI s-orbital contribution, while yellow dots shows mj = ±3/2 orbital contribution as in Fig. 6. Line (c) shows the (µeV) splittings of
the band pairs, where “bands 1–2” refers to the energetically lowest pair of bands. All following lines (d–f) are concerned with the properties
along a circular path around the Dirac cone at 55 meV. (d, e) Spin z expectation values and the contribution of the TI orbitals along this circular
path respectively. (f) Like (d) the spin z along the circular path, but not for the Dirac cone, but for selected deep lying TI states with major
mj = ±3/2 contribution (see Fig. 6). The labels “K” and “M” in (d)–(f) indicate that the k point is lying on the � K (or the � M) connection
line.

APPENDIX B: DISTINGUISHING THE TWO TYPES
OF BAND PAIRS FOR � = 30◦

In the main paper we touched on the two different kinds
of band pairs of the Dirac cones in the case of the � = 30◦
supercell band structures. We now explore this in detail. In
the following we will call band pairs type 1, if they have
similar properties as the energetically lowest pair of bands
in the Bi2Se3 1QL case without electric field (Fig. 7, first
column). Accordingly, type 2 band pairs then are similar to
the band pair energetically above this type 1 case. Figure 7
summarizes the relevant differences of the two types. From
Figs. 7(a) and 7(d) we see that the spin-z expectation values
of type 1 bands are (almost) zero: both bands are unpolarized
in the z direction. In contrast, type 2 band pairs show an
anisotropic spin structure, where the bands show opposite
spin-z values along the � K line and vanishing values along
the � M line. Additionally, the in-plane spin structures we see
in Fig. 4 are also bound to the type of band pair. Figure 7(b)
shows that type 1 band pairs have relevant contributions from
TI mj = ±3/2 states, while type 2 band pairs have relevant
contributions from TI s-orbital contributions. In Fig. 7(c), we
show the splittings within the band pairs: Although both type 1

and type 2 bands are only split on the µeV scale, the splittings
of type 1 bands are significantly higher and increase to the
meV range, when moving away from the center of the Dirac
cone at �. This splitting is enough to overcome the small
spin splitting, seen in type 2 bands. In Fig. 7(e), one can
see that the TI content of type 1 band pairs is higher than
that of type 2 band pairs by a factor of about 5 on average.
Finally, in Fig. 7(f) we see that the same spin structure seen
in type 2 bands can be seen in deep lying (so energetically
low valence or energetically high conduction) bands of the
TI. We conclude that on the one hand type 1 bands acquire
their proximity SOC almost exclusively from deep lying TI
states imprinting their spin-z structure and their mj = ±3/2
character. Type 2 band pairs on the hand acquire the majority
of their proximity SOC from the near surface state, which
results in a larger splitting destroying the spin-z structure and a
significant TI s-orbital content. Comparing the different cases,
we see that different structures can entail a different ordering
of type 1 and type 2 bands. Shifting the Dirac cone within
the TI band structure can result in a switch of this ordering
as well. In fact, we observe such a switching of the ordering
by electric field for all of the cases in Fig. 6, except 3QL of
Bi2Se3.
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APPENDIX C: ALTERNATIVE FITTING HAMILTONIAN
FOR � = 30◦

The Dirac cone of the hollow � = 30◦ supercell has an in-
tricate spin structure (see Fig. 7). In the main paper we neglect
this fine structure, since it is based on µeV splittings within
the band pairs. Now, we try to describe this fine structure
using a full tight binding Hamiltonian akin to the one used
in Ref. [31]:

H =
∑

α=0,p

tα
∑
〈i j〉,s

c†
isc js +

∑
i,s

�ic
†
iscis

+ i

3
√

3

∑
〈〈i j〉〉,ss′

c†
isc js′ (λKM,2 + ξλVZ)[νi j sz]ss′

+ 2i

3

∑
〈i j〉,ss′

c†
isc js′ [(λRẑ + λR,2ρ) · (s × di j )]ss′ . (C1)

The single brackets constitute sums over nearest neighbors
and the double brackets constitute sums over next nearest
neighbors. c†

is and cis are the creation and annihilation oper-
ators of an electron at site i with spin s, di, j is a unit vector
pointing from site j to nearest neighbor site i, s is a vector
containing the Pauli matrices, νi j is equal to +1 for clockwise
and equal to −1 for counterclockwise hoppings from site j
to i, ξ is +1 for sublattice A and −1 for sublattice B, ẑ is
the unit vector in z direction, and ρ is an in-plane vector
representing the electric fields in Fig. 8(a). The first term
of H describes the orbital part with t0 as (stronger) hopping
within the carbon ring depicted in Fig. 8(a) and tp as the
(weaker) hopping parameter between such carbon rings. This
makes t0 − tp the Kekule distortion parameter. The second
term describes a series of onsite potentials �i, which are only
used in the fitting of the top case. The third term describes
Kane-Mele and valley-Zeeman SOC. Note that this term is an
exact translation of the Kane-Mele and valley-Zeeman terms
in Eq. (5) in contrast to Ref. [31], where the Kane-Mele
hoppings only exist on the central carbon ring. The fourth
term describes a Rashba SOC related to an electric field in
z direction [again an exact translation of the term in Eq. (6)]
and an additional Rashba term λR,2 related to electric fields
ρ depicted as arrows in Fig. 8(a). The electric fields are
all pointing inward to the carbon ring located under the Se
(or Te) atom closest to graphene. There are two distinct types
of arrows: to one we assign |ρ| = 1 [large arrows in Fig. 8(a)],
to the other |ρ| = 0.2 [small arrows in Fig. 8(a)]. Note that
Ref. [31] does not allow for the in-plane Rashba connected to
the smaller arrows.

For the hollow case as in the paper we have λVZ = �i = 0.
We obtain good fits only for very small but nonzero values
for |λR| and therefore simply fix it to |λR| = 0.01 meV for
all fits. The remaining parameters therefore are λKM,2, t0 − tp,
and λR,2. The general spin-z structure of the type 2 � = 30◦
band pairs can be modeled with the fittings [see Fig. 8(b)].
To model the spin-z structure of a type 1 band pair, one can
simply set the magnitude of all in-plane electric fields to equal
values |ρ| = 0.6 for the directions indicated by both the large
and the small arrows. This will not significantly change the
values of the other fitting parameters. Note that the in-plane

FIG. 8. Alternative fitting results. (a) Schematic of the additional
fitting parameters λR,2 and t0 − tp introducing an in-plane Rashba
effect and a Kekule distortion effect. The carbon ring beneath the
Se (or Te) atom closest to the graphene plane is shown. The electric
field producing the in-plane Rashba effect is depicted by arrows,
and the electric field along the smaller arrows is set to be only 20%
compared to the one along the larger arrows. The thicker connection
lines between the carbon atoms indicate increased hoppings by the
Kekule distortion. (b) Exemplary (Bi2Se3 1Q, without electric field
correction) spin-z structure along a circle at ≈60 meV above the
Dirac cone. The labels “K” and “M” indicate that the k point is lying
on the � K (or the � M) connection line. (c, d) SOC parameters
|λR| and λKM [extracted with Eq. (3), see Fig. 6] in comparison
with the parameters λR,2, λKM,2, and t0 − tp [extracted with Eq. (C1)]
for different electric fields. The electric field range used to shift the
graphene Dirac cone within the TI bands is the same as in Fig. 6.

spin structure also cannot be sufficiently reproduced using this
Hamiltonian.

We show the fittings results in Figs. 8(c) and 8(d) for
Bi2Se3 and Bi2Te3 respectively for the same electric fields as
in Fig 6. We see the same results for Kane-Mele SOC (com-
pare light green to dark green curve). Also the new in-plane
Rashba SOC replaces the out-of-plane Rashba SOC (compare
red to dark-red curve). The Kekule distortion parameter will
follow a similar behavior as the Rashba SOC increasing dras-
tically in the vicinity of a TI band.

APPENDIX D: EFFECT OF LATERAL SHIFTING

For incommensurate heterostructures the lateral shifting
degree of freedom does not play a role. Assuming a sample
infinite in x and y direction, every shifting configuration exists
somewhere on the sample. The physical properties of the
configurations will then average out, when considering the
properties of the whole material. However, the structures used
in our DFT calculations are commensurate to be computa-
tionally viable and the lattice constants are forced by strain
to be compatible. Therefore, different lateral relative shifts
might ensue different physical properties including different
proximity induced SOC.

Naturally, this effect is less relevant for large supercells, for
which an averaging over the different shifts will occur within
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FIG. 9. Supercells with different lateral shifting positions for (a–d) � = 13.9◦ and (e–g) � = 30◦. For the former, we list the relevant
extracted SOC parameters |λR|, λVZ, and 	 for both Gr/Bi2Te3 and Gr/Bi2Se3. For the latter we show the proximity SOC modified Dirac cone
band structure with color coded spin z. The triangles represent DFT data. For the cases where satisfactory fittings were possible [(e) and (f)]
the gray lines represent the energies of the fit, while for (g) the gray lines represent only a guide to the eyes connecting the data points of the
same band. For the top case of Gr/Bi2Se3 we additionally present the fitting results of the pseudospin and the extracted fitting parameters. The
sketch on the left shows the labeling of the atoms in the top case.
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TABLE V. Comparison between extracted SOC parameters for
selected cases between structures with 1QL thick TI slabs and 3QL
thick TI slabs. The parameters are extracted from calculations with-
out electric field corrections.

Thickness � (deg) λKM (meV) λVZ (meV) |λR| (meV) 	 (deg)

Bi2Te3

1QL 4.3 −0.01 2.04 0.52 152
3QL 4.3 0.01 1.65 0.50 79
1QL 13.9 0.01 −0.46 0.18 −130
3QL 13.9 0.01 −0.36 0.28 −142
1QL 17.5 0.16 3.51 2.90 −10
3QL 17.5 0.08 3.35 2.06 −25

Bi2Se3

1QL 4.3 −0.01 1.19 0.62 −178
3QL 4.3 0.00 1.10 0.38 171
1QL 10.9 0.01 3.18 1.02 47
3QL 10.9 0.01 3.24 1.00 46
1QL 13.9 0.01 −0.50 0.62 −155
3QL 13.9 0.00 −0.43 0.60 −154
1QL 17.5 0.03 −0.55 0.08 17
3QL 17.5 −0.00 0.02 0.32 23

the supercell. We show this by investigating the shifting de-
pendence for two supercells: the 13.9◦ and the 30◦ supercell.
While the former consists of a total of 46 atoms and gives
enough area for the different configurations to average out, the
latter only consists of 13 atoms. Therefore, different lateral
shifting positions will lead to different effects on the Dirac
cone for the 30◦ supercell.

We defined four different shifting options: hollow, top,
bridge, and “random,” which we show in Fig. 9. The keywords
indicate how the Te atom closest to the graphene layer is posi-
tioned with respect to the graphene structure. For the 30◦ case
there is only one such atom per unit cell, while for the 13.9◦
supercell there are multiple ones, with different positions
(we describe the one closest to the corner of the supercell).
Therefore, in the 13.9◦ case, the Dirac cones for the different
shifting positions look almost the same, as the extracted fitting
parameters show hardly any difference. In contrast, the Dirac
cone of the 30◦ case varies widely depending on the lateral
shift.

We now focus on the 30◦ supercell. Since the hollow
configuration is the energetically most favorable and has the
simplest band structure, we focus on it in the main paper. Ad-
ditionally, we fitted the Dirac cone of the top case to a full tight
binding Hamiltonian, since the simple model Hamiltonian
[Eq. (3)] in the main paper is not able to capture the features

of the band structure, which come from the specific shifting
position with respect to the

√
3 × √

3 graphene supercell.
By using the same SOC parameters λVZ, λKM, and |λR| and
additionally extending the sublattice imbalance � to a general
onsite potential 
� [see Eq. (C1)] for the six carbon atoms, we
were able to describe the Dirac cone of the top configuration
reasonably well (see Fig. 9). For all eight bands, the spin-z
expectation values are zero, while the pseudospin shows an
intricate structure. For the bridge case, we were not able to
find satisfying fitting parameters.

APPENDIX E: EFFECT OF INCREASED THICKNESS
OF THE TI SLAB

Varying the thickness of the TI layer changes its band
structure. When increasing the number of QLs, one can see
the TI surface state at � fully forming. While for 1QL the
overlap between the upper and lower surface states opens a
large gap, the surface states of the 3QL case are spatially
separated enough for the characteristic linear sloped surface
state to arise. Since the graphene Dirac cone of the � = 30◦
supercell interacts directly with the TI surface state, it will be
affected significantly by the exact form of the surface state and
therefore by the thickness of the TI.

But also, for the other twist angles, a dependency on the
TI thickness is not excluded, since also the TI bands away
from � are influenced by this change which can in turn then
change the proximity SOC. To investigate this, we calculated
the band structures for the 3QL cases of some of our supercells
and gather the extracted parameters in Table V. Note that
we compare the results without electric field corrected band
offsets, because the 3QL TI band structure is significantly
more susceptible to unwanted distortion by the electric field.
However, since we are only comparing the 1QL case with the
3QL case, which both have the same strain, using the param-
eters from the uncorrected calculations is a valid approach.
The table shows that while in most of the scenarios the SOC
is not strongly affected by the TI thickness, there are two cases
highlighting the importance of the TI thickness.

(1) For the Gr/Bi2Te3 � = 4.3◦ supercell, the change from
1QL to 3QL changes the Rashba phase angle by a significant
amount from 152◦ to only 79◦.

(2) For the Gr/Bi2Se3 � = 17.5◦ supercell, the 1QL case
is dominated by valley-Zeeman type SOC λVZ, while in the
3QL case the Rashba type SOC |λR| is dominating. Here, the
vicinity to the TI surface state in k space might already be a
reason for this massive change in proximity SOC.

In conclusion, we see that for 0◦ < � � 20◦ the proximity
SOC dependency on the TI thickness is overall not too large,
but should not fully be neglected.
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