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Topological insulators and superconductors support extended surface states protected against the otherwise
localizing effects of static disorder. Specifically, in the Wigner-Dyson insulators belonging to the symmetry
classes A, AI, and AII, a band of extended surface states is continuously connected to a likewise extended set
of bulk states forming a “bridge” between different surfaces via the mechanism of spectral flow. In this work
we show that this principle becomes fragile in the majority of non-Wigner-Dyson topological superconductors
and chiral topological insulators. In these systems, there is precisely one point with granted extended states, the
center of the band, E = 0. Away from it, states are spatially localized, or can be made so by the addition of
spatially local potentials. Considering the three-dimensional insulator in class AIII and winding number ν = 1
as a paradigmatic case study, we discuss the physical principles behind this phenomenon, and its methodological
and applied consequences. In particular, we show that low-energy Dirac approximations in the description of
surface states can be treacherous in that they tend to conceal the localizability phenomenon. We also identify
markers defined in terms of Berry curvature as measures for the degree of state localization in lattice models,
and back our analytical predictions by extensive numerical simulations. A main conclusion of this work is
that the surface phenomenology of non-Wigner-Dyson topological insulators is a lot richer than that of their
Wigner-Dyson siblings, extreme limits being spectrum wide quantum critical delocalization of all states vs. full
localization except at the E = 0 critical point. As part of our study we identify possible experimental signatures
distinguishing between these different alternatives in transport or tunnel spectroscopy.
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I. INTRODUCTION

Topological insulators are subject to a powerful bulk-
boundary principle according to which their insulating (yet
topologically nontrivial) bulk implies conducting boundaries
[1–4]. Examples include the chiral edge states of the quantum
Hall effect, the helical edge states of the quantum spin-Hall
effect, or the single Dirac cones in the surface spectrum of a
three-dimensional topological insulator. In these three cases,
the topological boundary states are continuously connected to
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a band of likewise delocalized bulk states at high energies,
without interruption by a spectral gap at the boundary or a
window of localized states at intermediate energies. For the
quantum Hall effect, the connection of delocalized boundary
states to a band of delocalized bulk states follows from the
celebrated Laughlin gauge argument [5], which shows that a
quantized Hall conductance necessitates the existence of delo-
calized bulk states at energies below the Fermi energy, contin-
uously connected to the conducting boundary states. Similar
arguments have been made for the quantum spin-Hall effect
and the three-dimensional topological insulator [6].

The principle that the anomalous boundary states must be
continuously connected to a delocalized band of bulk states —
which we will refer to as the “spectral-flow principle” — es-
sentially relies on the topological equivalence of all boundary
states inside the bulk gap, irrespective of their energy. This
freedom to choose a reference energy inside the gap exists
for the three “Wigner-Dyson classes” A, AI, and AII from the
tenfold-way classification of topological insulators and super-
conductors [7–9][10]. (In the tenfold-way nomenclature, the
quantum Hall effect is in class A, whereas the quantum spin-
Hall effect and the three-dimensional topological insulator are
in class AII.) In this article we question the general validity of
the spectral-flow principle for the non-Wigner-Dyson classes.
These have a defining symmetry that forces the spectrum to be
symmetric around a special pointE = 0 [11], so that the topo-
logical equivalence of all boundary states inside the bulk gap
is no longer guaranteed. Considering the three-dimensional
topological insulator in symmetry class AIII (chiral symme-
try, no other tenfold-way symmetries) as an example, we show
that, in contrast to the Wigner-Dyson classes, (i) the surface
spectrum may be detached from the bulk and that (ii) there is
no topological obstruction to the simultaneous localization of
bulk states at all energies. The two opposing scenarios — with
and without spectral-flow principle — are illustrated schemat-
ically in Fig. 1. The absence of a robust connection of surface
states to a band of delocalized bulk states in class AIII has
profound consequences for even very basic surface state sig-
natures, such as the spatial extension of states in the presence
of static disorder and the resulting transport coefficients.

Physical properties of boundary states — such as their spa-
tial structure at a given energy and the resulting conduction
properties — are commonly addressed in terms of effective
low-energy approaches that zoom in on linear crossing points
in the boundary spectra. Employing such Dirac, or “k ·p” ap-
proximations, physically relevant parts of the boundary spec-
trum are thus described by minimal models of manageable
complexity. The anomalous nature of the boundary states —
i.e., the fact that they do not exist as stand-alone lattice models
— is reflected in the impossibility to close the Dirac theories
in the limit of high momenta and exists for all tenfold-way
classes. Nevertheless, as we show in detail for class AIII in
three dimensions, absence of an ultraviolet closure of the sur-
face Dirac theory does not automatically imply a continuous
connection of the low-energy surface theory to the bulk spec-
trum.

Our work is motivated in part by a series of studies, which
predicted — in contrast to the message of the present arti-
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FIG. 1. (a) If the spectral flow principle holds, there is a robust con-
tinuous attachment of anomalous boundary states (red) to a bulk band
of delocalized states (black), which may be embedded in a wider bulk
band of localizable states (grey). (b) Without spectral flow principle,
anomalous surface bands (red) may in principle be detached from
the bulk spectrum by a spectral gap or by band of Anderson local-
ized states. In this case there is no obstruction to localization of the
bulk states (grey). The figure shows a schematic one-dimensional
boundary spectrum, assuming translation symmetry parallel to the
boundary.

cle — a spectrum-wide delocalization at the surface of class-
AIII insulators and other tenfold-way classes with integer-
valued invariants in three dimensions [12, 13]. That predic-
tion was verified numerically as a robust feature of the ef-
fective two-dimensional Dirac surface theories of class CI,
AIII, and DIII superconductors [13–16], and it was backed
up by numerical studies of a three-dimensional lattice model
for class AIII [14]. On the other hand, robust topological ar-
guments [17], or even rigorous mathematical proof [18] for
surface state delocalization exist for states at zero energy only.
With our demonstration that for class AIII all bulk states may
be localized and that surface states can be energetically de-
tached from the bulk, the spectrum-wide (de)localization of
Refs. [12–14] is up for renegotiation. We will present numer-
ical and analytical evidence that for a suitably chosen model
realization all states away from zero energy are localized, al-
beit with a localization length diverging at zero energy.

To understand how these findings relate to the numerical
results obtained previously, we have to anticipate some of
the results derived in the remainder of this article. We there
show that for an AIII insulator with winding number one —
the “minimal” nontrivial topological insulator — perturba-
tions interrupting the connection of the low-energy surface
band of the class-AIII insulator to the bulk spectrum induce
a surface Berry curvature in the surface band without break-
ing the chiral symmetry. This Berry curvature of the surface
states is intimately tied to their localization behavior [19]:
The surface states localize away from zero energy if the (spa-
tially averaged) surface Berry curvature is nonzero, but not
if it is zero. The spectrum-wide delocalization observed in
Ref. [14] therefore reflects a statistical symmetry of a model
with zero average surface Berry curvature, not a topologi-
cal obstruction to localization. On the other hand, a mini-
mal two-dimensional Dirac theory with chiral symmetry —
the two-dimensional surface theory that the numerical studies
of Refs. [13–16] were based on — is strictly without Berry
curvature and, therefore, unable to capture the localizing geo-
metric effects deriving from surface states at high energies.
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The remainder of this article is organized as follows: In
Sec. II we review the arguments relating delocalization of
boundary states to the existence of (possibly high-energy)
bulk states that are protected from localization in the Wigner-
Dyson classes. Considering three-dimensional AIII as an ex-
ample, we then discuss the principles which may lift this ob-
struction, and state the localizability status of all symmetry
classes in dimensions up to three. In Sec. III we derive the
same conclusions from the boundary perspective: We show
that the effective Dirac-like surface theory of a class-AIII in-
sulator is protected from being gapped at the special energy
E = 0, but not for E ̸= 0, and that it may have nonzero
Berry curvature at any energy E ̸= 0. Both features may
require the addition of trivial bands. (The minimal realiza-
tion of the surface Dirac theory, on the other hand, cannot be
gapped at any energy and has manifestly zero Berry curva-
ture at all energies.) In Sec. IV we consider a canonical four-
orbital topological-insulator lattice model for the class-AIII
insulator in three dimensions [9], analogous to the model that
was analyzed in Ref. [14] to demonstrate spectrum-wide de-
localization, and show that the surface bands can be detached
from the bulk bands at a high energy by a suitably chosen
perturbation. In Sec. V we present numerical evidence for
surface localization if the average surface Berry curvature is
nonzero and explain why delocalization is possible if surface
regions with positive and negative Berry curvature occur with
the same probability. We also discuss ramifications of our
results for the experimental detection of 3D topological su-
perconductors. Implications for the field-theoretic perspective
are discussed in Sec. VI. We conclude in Sec. VII.

II. SPECTRAL FLOW: BULK PERSPECTIVE

In the following, we will address the spectral flow principle
from two different perspectives. The first, taken in this sec-
tion, substantiates the connection between surface and bulk
states alluded to in the introduction. In the next section we
will then discuss spectral flow entirely on the basis of surface
state physics.

A. Surface and bulk spectra

The spectral flow principle essentially relies on the topo-
logical equivalence of all surface states inside the bulk gap,
irrespective of their energy. That the freedom to choose a ref-
erence energy inside the bulk gap implies the existence of a
band of extended bulk states can be seen from a simple argu-
ment: Suppose, on the contrary, that for the bulk there exists
a basis of (exponentially) localized eigenstates |ΨRα⟩ at ener-
gies εRα and with localization centers R. (The index α is an
additional index to label the eigenstates.) Then, up to an expo-
nentially small correction, the Hamiltonian H in the presence
of a (possibly conducting) boundary can be written as the di-
rect sum of boundary and bulk contributions [20],

H = H∂ ⊕Hbulk, (1)
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FIG. 2. Schematic picture of surface (red) and bulk (black) spectra of
a topological-insulator Hamiltonian H (a) and the deformed Hamil-
tonian H ′ (b). If there exists a basis of localized eigenstates in the
bulk, H ′ and H are related via a continuous transformation.

where Hbulk is the projection of H onto eigenstates |ΨRα⟩
with R farther than a cut-off distance from the boundary,

Hbulk =
∑

R∈bulk,α

εRα|ΨRα⟩⟨ΨRα|. (2)

Because the eigenstates |ΨRα⟩ are localized, Hbulk and,
hence, H∂ are local operators. Choosing (without loss of gen-
erality) the Fermi energy at E = 0 and defining E∂ and Egap

such that eigenvalues ofH∂ andHbulk are ≤ E∂ and ≥ Egap,
respectively, see Fig. 2(a), H may be continuously deformed
to

H ′ =

(
Egap

2E∂
H∂

)
⊕Hbulk, (3)

which has a spectral gap for boundary and bulk for energies
between Egap/2 and Egap, see Fig. 2(b), contradicting the
requirement that a topological insulator must have conducting
boundary states at all energies in the bulk gap.

The freedom to choose a reference energy inside the bulk
gap exists for the three Wigner-Dyson classes A, AI, and AII,
but not of the other tenfold-way symmetry classes. In these,
the presence of charge-conjugation symmetry C and/or chi-
ral symmetry S forces the spectrum to be mirror-symmetric
around E = 0. The equivalence of all energies inside the gap
therefore no longer holds, and the spectral flow scenario must
be reconsidered. Indeed, one may now argue in different di-
rections, illustrated schematically in Fig. 1. One option is to
say that deviations away from zero energy explicitly break the
C or S symmetry in question, and so we are limited to state-
ments of surface state delocalization at E = 0. Indeed, this
is as far as the rigorous mathematical proofs go [18]. Alter-
natively, one may give the anomalous nature of the boundary
states — which also holds for the non-Wigner-Dyson classes
— priority and argue that these remain protected against ac-
quiring a gap or being Anderson localized. However, from the
simple argument presented after Eq. (1), a spectrum-wide pro-
tection of boundary states would necessarily imply the pres-
ence of a band of delocalized bulk states. We will consider
the three-dimensional class AIII insulator as an example to
demonstrate where this reading of a bulk-boundary correspon-
dence can fail.
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B. Case study: AIII insulator in three dimensions

The discussion above suggests that a continuous attachment
of boundary states to the bulk spectrum and the existence of
bulk delocalized states are flipsides of the same coin. The two-
dimensional class A insulator is case in point for a situation
where both exist. We now turn to the opposite situation, as re-
alized in the three-dimensional AIII insulator, where spectral
flow and delocalized bulk states are generically absent.

A Hamiltonian in class AIII can be written as

H =

(
0 A
A† 0

)
, (4)

where A is a complex square matrix acting on the subspaces
defined by the condition Γ = ±1, and Γ = τ3 defines the chi-
ral symmetry. For example, in a lattice system the subspaces
corresponding to Γ = ±1 may define two bipartite sublattices.
We assume that H and, hence, A are local matrices: The ma-
trix elements ⟨Rα|A|R′α′⟩ between atomic orbitals α and α′

at lattice sites R and R′ decay exponentially with the distance
|R−R′|.

For an insulator subject to periodic boundary conditions the
spectrum ofH has a finite gap around zero energy. Hence, fol-
lowing Ref. [9], we may deform the Hamiltonian (4) by send-
ing the positive (negative) eigenvalues of H to 1 (−1). Such a
flattening deformation does not change the bulk topology and
preserves the locality of the Hamiltonian matrix. It defines the
Hamiltonian

Hf =

(
0 U
U† 0

)
. (5)

Locality of Hf implies that U is a local unitary operator. (U
is unitary because H2

f = 11.) We may then easily construct a
basis of localized eigenstates at energy ±1 [21],

|Ψ±
Rα⟩ =

1√
2

(
|Rα⟩

±U†|Rα⟩

)
, (6)

where α is an additional index. (Eigenstates |ΨRα⟩ are local-
ized near lattice site R because the unitary operator U is lo-
cal.) This simple construction proves the existence of a basis
of localized eigenstates of Hf , regardless of the underlyling
topology [22]. As shown by the argument presented around
Eq. (1), localizability of the bulk Hamiltonian implies that sur-
face and bulk spectra can be detached in principle.

For later reference we mention that the localized basis
{|Ψη

Rα⟩} and, hence, the decomposition of Hf into surface
and bulk contributions as in Eq. (1) is not unique: Each local
unitary matrix V generates another localized basis {|Ψη,V

Rα ⟩}
by multiplying both elements of the two-component spinor
in Eq. (6) by V . In Sec. IV C, we demonstrate that the sur-
face states described by H∂ in Eq. (1) may have a nonzero
Chern number Ch. This number is constrained to have the
same parity as the winding number of the bulk Hamiltoni-
ans H and Hf . However, for a given parity its value depends
on the choice of the localized basis for the bulk states: basis
changes |Ψη

Rα⟩ → |Ψη,V
Rα ⟩ lead to a change [23]

δCh = 2W [V ], (7)

class d = 1 d = 2 d = 3

A 0 Z✓ 0

AIII Z× 0 Z×

AI 0 0 0

BDI Z× 0 0

D Z×
2 Z✓ 0

DIII Z×
2 Z✓

2 Z✓/×

AII 0 Z✓
2 Z✓

2

CII 2Z× 0 Z×
2

C 0 2Z✓ 0

CI 0 0 2Z×

TABLE I. Localizability of topological insulators and superconduc-
tors. The absence of topological phase is denoted by 0, whereas
entries where topological phases exist are labeled by “×” for local-
izable and “✓” for non-localizable phase. For class DIII in three di-
mensions, superconductors with even bulk invariant are localizable,
whereas superconductors with odd bulk invariant are non-localizable.
The spectral flow principle only applies to non-localizable classes
(denoted with ✓).

where, for a periodically extended definition of the local trans-
formation, W [V ] ∈ Z is the third winding number of V over
momentum space. (An analogous relation was found for the
surface response theory of a three-dimensional topological in-
sulator [24].)

C. Other tenfold-way classes

The discussion above shows that there are two different
classes of topological insulators: those with and without
a spectral flow principle. Given that this dichotomy pre-
sides over the spectrum-wide robustness of boundary states,
it seems necessary to tag each entry in the periodic table of
topological insulators and superconductors [7, 9, 25] accord-
ing to its localizability status. Referring for the full classi-
fication program to the upcoming publication [26], Table I
summarizes the result for dimensions up to three. It adds to
the topological status of a given symmetry class and dimen-
sionality (Z,Z2, or 0) information on the localizability of its
states: The absence of topology is denoted by the entry “0,”
topological classes with symmetry-compatible exponentially
localizable bulk states are labeled by “×,” and those with not
fully localizable bulk by “✓.”

Localizability or, as is is often called in the literature, Wan-
nierizability [27–32], is not the same as being deformable to
an “atomic limit”. The requirement that bulk states can be
exponentially localized is essential here: A stronger require-
ment, e.g., that there exists a basis of bulk states with com-
pact support leads to a trivial classification for dimensions
d > 1 [21]. An “atomic-limit” insulator has eigenstates that
can be localized inside unit cell. For the topologically non-
trivial non-Wigner-Dyson classes, there still is an obstruction
to localizing the eigenstates inside a unit cell, which is con-
sistent with the presence of anomalous delocalized boundary
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states, in spite of the bulk bands being localizable.
The information provided by Tab. I confirms the argument

formulated at the beginning of this section: topological classes
without C or S symmetries, i.e., A, AI, and AII, are not local-
izable. For the non-Wigner-Dyson classes, what determines
localizability is whether C or S are essential for the topology,
or whether they are “spectator symmetries” and the topol-
ogy of the bulk Hamiltonian remains nontrivial if all con-
straints imposed by C and/or S are lifted. In three dimen-
sions, class AIII is an example of the former category, which
we refer to as “genuine” non-Wigner-Dyson classes. Other
examples of “genuine” non-Wigner-Dyson classes are classes
BDI and D in one dimension and classes CI and CII in three
dimensions. Examples of “non-genuine” non-Wigner-Dyson
classes are classes C and D in two dimensions, which have
chiral edge states [33, 34], and which remain topological if
the particle-hole symmetry is lifted. Class DIII in three di-
mensions, which describes time-reversal-invariant supercon-
ductors with broken spin-rotation symmetry is a special case,
as it is a localizable “genuine” non-Wigner-Dyson class only
if the topological invariant is even.

The existence of a localized basis for the one-dimensional
topological tenfold-way classes (second column in Table I)
is well known in the literature [35]. Example are the Su-
Schrieffer-Heeger model (class AIII) [36–38] and the topolog-
ical superconductor (class D, the “Kitaev chain” [39]), which
in their nontrivial phase have localized bases that stretch
across adjacent unit cells. The possibility of localizable topo-
logical superconductors in dimensions larger than one was
mentioned by Ono, Po, and Watanabe [40] in the context of
topological superconductors with additional crystalline sym-
metries (see also Ref. [41]).

Since bulk localizability implies the breakdown of the spec-
tral flow argument, we expect that boundary states away from
E = 0 will be localizable, too. However, “localizable” does
not automatically mean “localized.” The considerations of
this Section therefore raise the follow-up question how the lo-
calizability of surface states relates to the recent observations
of delocalized surface spectra in classes AIII or CI [16], and
to the remarkable resilience of two-dimensional Dirac surface
theories to localization. In the rest of the paper we provide
answers to these questions for our principal case study, three-
dimensional AIII.

III. SPECTRAL-FLOW: BOUNDARY PERSPECTIVE

In the previous section, we considered the status of surface
states on the basis of a connection to bulk states via the spec-
tral flow correspondence. We here approach the question from
a complementary perspective, which focuses entirely on the
surfaces themselves.

A. General considerations

The vicinity of the Fermi crossing points at topological in-
sulator surfaces is often described in terms of effective Dirac

Hamiltonians, which in the two-dimensional case assume the
form

Hb = k1Γ1 + k2Γ2, (8)

where ki are two momenta along the surface measured rela-
tive to the crossing point k = 0, and the two Gamma matrices
satisfy {Γ1,Γ2} = δij . Additional Gamma matrices may ap-
pear at higher order in k or as prefactors of a random surface
potential. At large momenta, the Hamiltonian (8) is ultraviolet
divergent. These divergences cannot be cured by embedding
Hb into the periodic structure of a two-dimensional Brillouin
zone, reflecting that the surface theory does not define the low-
energy limit of a two-dimensional stand-alone lattice model.

In the context defined by Eq. (8), the spectral flow prin-
ciple translates to the statement of an anomaly: Coupled to
an external vector potential, Hb, supplemented with an ul-
traviolet regularization, lacks gauge invariance. The absence
of gauge invariance indicates (quasi-)particle number non-
conservation. Specifically, under adiabatic insertion of a flux
quantum through the bulk, high-lying boundary states get
pushed up in energy, leading to a drain out of the window
of momentum states below a fixed cutoff. If the spectral flow
principle applies, overall particle number conservation is re-
stored by conversion of boundary states into bulk states and
eventually to states at the opposite surface. The observable
consequence is adiabatic transport from one boundary to the
other, i.e., the quantized transverse conductance characteristic
of topological insulators.

In the previous Section, we have argued that the spec-
tral flow principle does not apply to all symmetry classes.
How can this be reconciled with the intrinsic absence of an
ultraviolet closure of the Dirac surface theory? To resolve
the anomaly of the latter there must exist a “sink” of high-
lying states absorbing spectral weight being pushed up by an
anomalous gauge operation. If the spectral flow principle ap-
plies, these are extended bulk states. If it does not apply, im-
plying that the boundary states can be detached from the bulk,
these states must be supported by the boundaries themselves.

In the following we illustrate these complementary scenar-
ios on two case studies, class A in two, and class AIII in three
dimensions. In either case, the focus will be entirely on the
boundaries, no explicit reference to bulk states is made.

B. Case study: Class-A Chern insulator in two dimensions

Two-dimensional class A is the paradigmatic example of an
insulator with spectral flow, as realized, e.g., in the physics of
the integer quantum Hall effect. In this case, the boundary
theory (linearized around any Fermi energy) is governed by
the effective Hamiltonian

Hb = k, (9)

describing a single branch of chiral fermions.
Assuming zero temperature, and the Fermi energy atE = 0

for convenience, states with k < 0 are occupied. Coupling the
system to a gauge potential representing adiabatic magnetic



6

k

E

k

E

(a) (b)

FIG. 3. Schematic dispersions of the minimal edge Hamiltonian (9)
(a) and of the non-minimal model (10), which has an additional band
of localized states at the edge (b). Since it derives from a lattice
model, the asymptotically flat band from the localized states must
be continuously connected for k → ∞ and k → −∞, to reflect
the periodicity of the edge Brillouin zone. Unbounded bands are
continuously connected to the bulk spectrum for k → ∞ and k →
−∞. The arrows indicate how the occupation of states is changed
after insertion of a flux quantum through the bulk.

flux insertion through the bulk, k → k+A, causes an upward
shift of all levels. After the insertion of one flux quantum,
the full quantized single particle spectrum is restored, but the
occupations of the states have changed, as shown schemati-
cally in Fig. 3(a). Specifically, one occupied state previously
at k < 0 now occupies the lowest state at k > 0. By re-
peated insertion of flux quanta, the range of occupied states
will extend up to arbitrarily high energies and, eventually, a
state previously sitting at the upper cutoff of the low-energy
theory gets pushed beyond it [see the arrows in Fig. 3(a)].

Topological features must be stable with respect to arbi-
trary perturbations at the boundary. To see how this robust-
ness manifests itself in the anomaly of the boundary Hamilto-
nian (9), consider adding a band of trivial localized boundary
states at energy εc > 0. Assuming weak coupling γ to the
chiral band, the boundary Hamiltonian generalizes to

H ′
b =

(
k γ

γ∗ εc

)
. (10)

The coupling matrix element γ now generates an avoided
crossing between the chiral and the flat band, see Fig. 3(b),
and a local gap close to the momentum k ∼ εc . However, the
global spectrum of the boundary Hamiltonian remains gap-
less, the reason being that the band structure of the localized
states must be continuous throughout the boundary Brillouin
zone. For the same reason, the addition of the localized band
does not resolve the ultraviolet anomaly of the boundary the-
ory. Indeed, if flux quanta are inserted repeatedly through the
bulk, the occupied states will eventually completely fill the
flat band of localized boundary states and continue to reach
the upper cutoff [see arrows in Fig. 3(b)].

We now turn to three-dimensional class AIII and discuss
how a construction similar to the one above leads to very dif-
ferent conclusions.

k

E

k

E

(a) (b)

FIG. 4. Schematic dispersions of the minimal edge Hamiltonian (11)
(a) and the non-minimal model (12), which has two additional bands
of localized states at the edge (b). The asymptotically flats band from
the localized states must be continuously connected for k → ∞ and
k → −∞, to reflect the periodicity of the edge Brillouin zone. The
ultraviolet divergent bands from the chiral edge states are continu-
ously attached to the bulk spectrum for k → ∞ and k → −∞. In
the non-minimal model, the high-energy band is detached from the
low-energy band containing the linear crossing at zero energy. The
arrows indicate how the occupation of states is changed after inser-
tion of a flux quantum through the bulk.

C. Case study: Class AIII insulator in three dimensions

The minimal surface theory of a class AIII insulator with
winding number one described by a two-dimensional general-
ization of Eq. (9),

Hb = kxτ1 + kyτ2. (11)

where the chiral symmetry is realized as Hb = −ΓHbΓ with
Γ = τ3. Again, this Hamiltonian has no ultraviolet closure.
(To see why, note that the off-diagonal element kx − iky de-
fines a winding number around the origin in two-dimensional
k-space. This is incompatible with the k-space periodicity re-
quired by a genuine two-dimensional lattice Hamiltonian.)

A continuous deformation of this two-band Hamiltonian
cannot open a gap at zero energy. The required perturba-
tion would have to be proportional to τ3, in violation of the
chiral symmetry. The conduction and valence band then con-
nect the single touching point k = 0 to the ultraviolet diver-
gences at large momentum; Within this two-band represen-
tation, the dispersion is continuous without gap openings at
finite momenta. It is for this Hamiltonian, augmented with
a chiral symmetry respecting random vector potential, that
Refs. [13, 14, 16] established a spectrum-wide resilience to
Anderson localization.

As in our previous discussion of class A, we now intro-
duce a band of localized surface states at energies ±εc. As
a two-dimensional surface Hamiltonian analogous to Eq. (10)
we consider

H ′
b =

(
kxτ1 + kyτ2 γτ−

γ∗τ+ εcτ1

)
, (12)

where τ± = τ1 ± iτ2. As in class A, the band-coupling γτ−
defines an avoided crossing between the localized and the lin-
early dispersive bands, see Fig. 4(b). However, unlike in class
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A, the continuous interpolation of the bands at the boundaries
of the Brillouin zone no longer presents an obstruction to the
opening of a global gap, see Fig. 4(b). This option to disrupt
the surface spectrum was to be expected from the discussion
of bulk state localizability in Sec. II, but here follows from
inspection of the surface alone.

We note that the Hamiltonian (12) still has, and needs to
have, an ultraviolet divergence. However, unlike in class A
the repeated insertion of bulk flux quanta no longer leads to
a spectral flow anomaly: the occupied states get shifted as
indicated by the arrows in Fig. 4(b), and eventually fill the
large-k part of band of localized boundary states. However
no particles reach the upper energy cut-off. This observation
indicates that the ultraviolet divergence of effective surface
Hamiltonians — which reflects their non-existence without a
supporting bulk — does not necessarily imply spectral flow
from the surface into the bulk.

In the literature, topological properties that are robust to the
addition of trivial bands are called “stable”. The sensitivity of
the minimal model to the addition of bands, i.e., the opening
of gaps and the disruption of spectral flow, should therefore be
considered a manifestation of “unstable” or “fragile” topol-
ogy: the conclusion is that minimal models are insufficient
to fathom the full spectrum of phenomenologies displayed by
the surfaces of three-dimensional AIII insulators.

Although the concrete worked-out example here is for an
AIII insulator with winding number ν = 1, the general con-
clusion about the fragility of the spectrum-wide protection of
the surface bands in a minimal effective 2 × 2 theory equally
applies to higher winding numbers. A 2 × 2 surface theory
with a winding number larger than one may be realized as a
nodal point involving higher powers of the momentum k or
by having multiple nodal points at different locations in recip-
rocal space. In either case, the restriction to two-component
spinors precludes the interruption of the surface states by a
spectral or mobility gap.

Below Eq. (11), we linked the absence of intrinsic UV reg-
ularization of effective surface theories to the presence of a
winding number. It is interesting to observe that the isola-
tion of detached surface band introduces another invariant,
namely a two-dimensional surface Chern number. Describ-
ing the momentum space topology of the band through the
map k → |αk⟩, where k runs through the two-dimensional
Brillouin zone, and |αk⟩ are the positive energy states of the
finite band indicted in Fig. 4b, we define the Berry curvature

Ωk = i⟨dαk| ∧ dαk⟩, (13)

and from it the Chern number,

Ch ≡ 1

π

∫
BZ

Ωk. (14)

This is the surface Chern number mentioned previously in sec-
tion II B. While its numerical value may vary depending on
the realization of the coupling between the trivial and the chi-
ral bands, its parity is determined by that of the bulk winding
number. For further discussion of this point, we refer to sec-
tion IV C.

IV. AIII INSULATOR IN THREE DIMENSIONS

In the previous section we discussed generic features of
topological insulator bulk states and of their asymptotically
linearizable surface spectra. We will now turn to a more con-
crete level and discuss the band structure of a microscopic
model in class AIII. In the next section we then generalize to
the presence of static disorder and discuss localization prop-
erties of the model’s surface states.

We start our discussion with the definition of the model
in subsection IV A. Following standard protocol, we then
project down to its low-energy Dirac approximation in sub-
section IV B. [Impatient readers may just take notice of the
two principal definitions (17) of the lattice model and (25) of
its Dirac approximation, and directly proceed to Sec. IV C.]
On the basis of these model definitions we then discuss spec-
tral flow in sections IV C-IV D.

A. Lattice model

We consider a cubic lattice model with four orbitals per site
defined by the Bloch Hamiltonian [9]

H(k) =

(
M −

3∑
a=1

cos ka

)
τ2σ0 +

3∑
a=1

τ1σa sin ka, (15)

where we set the hopping strength, which is parametrically
of the same order as the total band width, to unity for conve-
nience. The Pauli matrices σµ and τµ act on two independent
degrees of freedom of the 4 = 2×2 orbitals in the unit cell. An
application of the standard mapping [9] between chiral lattice
Hamiltonians and three-dimensional winding number invari-
ants, W , shows that

W = 1

W = −2

W = 0

 for
1 < |M | < 3

|M | < 1

else

 .

The Hamiltonian (15) is invariant under the symmetry opera-
tions S and C, with C2 = −1,

H(k) = −MS H(k)MS

= −MC H
T(k)MC . (16)

Here T denotes the matrix transpose, MS = τ3, and MC =
τ2σ2. We note that the combination CS = T of charge-
conjugation and chiral symmetry satisfies T 2 = −1, putting
our system into class DIII [42].

To define a class AIII model, we break C, while preserv-
ing S. For our purposes, it will be convenient to realize this
symmetry breaking by adding C-breaking disorder. To this
end, we turn to a real space representation of the model (15),
which reads

H = H0 +

3∑
a=1

Ha, (17)
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with

H0 =M
∑
R

|R⟩τ2σ0⟨R|, (18)

Ha =
1

2

∑
R

[
taR|R+ ea⟩(τ2σ0 − iτ1σa)⟨R+ ea|+ h.c.

]
,

where the R are lattice vectors on the cubic lattice, and the
ea, a = 1, 2, 3 unit vectors in the lattice directions. The am-
plitudes taR, constant in the clean case, are now chosen as,

taR → t e−iϕa
R , (19)

where a ∈ {1, 2, 3} specifies the direction of the nearest-
neighbor bond, and the {ϕax} are static random phase variables
with variance [43]

⟨ϕaRϕa
′

R′⟩ =W 2δRR′δaa′ . (20)

The effects of this disorder on the (de)localization properties
of the surface states will be discussed in Sec. V.

B. Surface Dirac approximation

A bulk winding number W generically implies the appear-
ance of |W | species of gapless Dirac fermions at the sur-
face [9]. Specifically, we consider a W = 1 realization of
the model (15) with 1 < M < 3, a vacuum interface at x = 0
in the 1-direction, and infinite extension in 2- and 3-directions.
In this case, a Dirac surface state appears in the surface Bril-
louin zone at (k2, k3) = (0, 0).

Considering µ ≡ 3−M , with 0 < µ≪ 1, a continuum ap-
proximation near the bottom of the band leads to the effective
Hamiltonian

H ≃H0 +H1, (21)

with

H0 =

(
−1

2

d2

dx2
− µ

)
τ2σ0 + τ1σ1

(
−i d
dx

)
, (22)

H1 =

(
k22 + k23

2

)
τ2σ0 + k2 τ1σ2 + k3 τ1σ3. (23)

The zero modes of H0 are

|0,m⟩ ≡ |mz⟩τ |mx⟩σ|ψ⟩, (24)

wherem ∈ {↑, ↓} denotes the polarization of the surface state,
and |ψ⟩ is an envelope function decaying exponentially into
the bulk in the x-direction. The projection of the transverse
part of the HamiltonianH1 into the space of zero modes gives

H1 →
(

0 k3 − ik2
k3 + ik2 0

)
= k · Γ, (25)

where k ≡ {k3, k2} and Γ = {Γ1,Γ2} are the standard Pauli
matrices acting in the space of zero modes.

FIG. 5. (a) Spectrum of the topological insulator (15) with M = 2
for open boundary conditions the x-direction. The bulk (surface)
spectrum is shown in black (red). There is a single low-energy Dirac
cone at (ky, kz) = Γ = (0, 0). Surface and bulk bands merge at high
energy. (b) The same as panel (a) but with the additional perturbation
Uf of Eq. (26) with uf = 0.5 and n = 3. (c) Minimal value of the
strength uf of the fragmenting potential (26) required to detach sur-
face and bulk bands, for a perturbation with support on the outermost
surface layer only (n = 1, solid) and for a perturbation with support
on the three outermost surface layers (n = 3, dashed). The vertical
axis shows the minimal value of the indirect gap ∆s between surface
and bulk bands.

Equation (25) defines the minimal two-component massless
Dirac approximation to the surface states of the bulk model
in Eq. (15) with winding number W = 1. As discussed in
Sec. III, the minimal Dirac surface theory has a fragile ob-
struction to localization, which is lifted if additional degrees
of freedom are added to the surface theory. In Sec. III the ad-
ditional degrees of freedom were added in the form of a trivial
band of localized states at the surface. In the next subsections,
we will show that the inclusion of the quantum geometric
structure of the high-lying states in the full three-dimensional
theory has the same effect.

C. Detaching bulk and surface bands

The model (15) has a surface band that is continuously con-
nected to the bulk, see Fig. 5(a). We add a term

Uf =
∑

R∈surface

uf(R)|R⟩τ2 σ1⟨R|, (26)

where we set uf(R) = uf nonzero for R in the n outermost
surface layers, and uf(R) = 0 otherwise. (We set n = 1
or n = 3 in our numerical calculations.) The perturbation
Uf breaks C and T = CS symmetries, but preserves S. We
refer to this perturbation as “fragmenting surface potential”.
The definition of the fragmenting potential (26) depends on
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FIG. 6. (a) Integrated Berry curvature θ(E) of the surface band of the
model (15) vs. energy E for the case of zero fragmenting potential uf

(red), uf = −0.3 (black, solid), and uf = −1 (black, dotted). The
fragmenting potential is added on the three outermost layers adjacent
to the surface, n = 3. The vertical red lines denote the position of the
bulk gap. For the two nonzero values of uf , surface and bulk band are
detached, so that θ(E) can be determined for the full surface band;
for uf = 0, θ(E) can be calculated only for energy E inside the bulk
gap. (b) The same as panel (a) but for the minimal surface theory (11)
(red) and the non-minimal model (12) (black) with |γ|/εc = 0.05.
According to the criterion of Ref. [44], surface states at energy E are
delocalized if θ(E) = π mod 2π.

the surface orientation and transforms the same way as the
low-energy surface Dirac cone (25). For values uf > ucf , we
observe the opening of an indirect global gap between the sur-
face band and bulk bands, see Fig. 5(b). The threshold param-
eter ucf depends on how many surface layers are perturbed by
the fragmenting surface potential, see Fig. 5(c). However, re-
gardless of its concrete value, the present construction demon-
strates the interruptibility of spectral flow.

For later reference, we mention that the question whether
or not states in a surface band with winding number one (as
is the case for the model we investigate here) are localized at
energyE can be answered by considering the integrated Berry
curvature carried by the states with energy εk between 0 and
E. Hereto we define

θ(E) = π +

∫
0≤εk≤E

Ωk. (27)

The field theoretical analysis of such a system in the presence
of disorder, see Sec. VI, then shows that states are delocalized
at energy E if

θ(E) = π mod 2π. (28)

Since θ(0) = π, this condition is consistent with the topolog-
ical surface states at E = 0 being delocalized.

Fig. 6(a) shows the angle θ(E) as a function of E for
uf = 0.3 and uf = 1.0 and with the fragmenting perturba-
tion supported on the three outermost layers (n = 3). We
note that the presence of uf has little effect for energies close
to E = 0 [45]. This is consistent with the absence of Berry
curvature in the two-component Dirac approximation, which
in turn is a consequence of the chiral symmetry (i.e. the ab-
sence of terms on the diagonal of the 2 × 2 matrix operator.)
However, we observe significant deviations from θ(E) = π
for energies approaching the edges of the bulk bands. In the
light of our discussion of section III C, these reflect the onset

of effective hybdridization with extraneous bands, whose role
in the present context is assumed by the bulk bands.

For comparison, in Fig. 6(b) we also show θ(E) for the
two-dimensional band that was obtained by coupling a surface
Dirac cone to a localized surface band, see Eq. (12). Analo-
gous to the detached surface band of the full 3d model shown
in Fig. 6(a), the Berry curvature is concentrated mainly near
the band edges.

We finally note that the integral of the Berry curvature over
the entire surface band gives the Chern number Ch of the sur-
face band. Its numerical value depends on the sign of the frag-
menting potential,

Ch = −sign(uf). (29)

Comparing the above result with Eq. (7), we conclude that the
sign of uf corresponds to two different bulk gauge choices for
the detachment of surface and bulk. Alternatively, comparing
with the phenomenological surface theory (12), different signs
of uf represent different perturbations coupling the dispersing
surface band and the degrees of freedom of the external band.

D. Chiral-symmetric chiral modes: surface Hall conductance

We have seen that addition of the perturbation (26) detaches
the surface bands from the bulk and that the now isolated sur-
face band has a nonzero Chern number Ch, which for the
present ν = 1 model is given by Eq. (29). It is interesting
to ask what happens if uf changes sign, for example along
an intra surface domain wall. As we will see, the ensuing
phenomenology is key to the understanding of the disordered
system below.

To explore this situation in the simplest possible setting,
we consider a flattened version of the model (15). The latter
is obtained from the Hamiltonian (15) by keeping its Bloch
states unchanged, while sending the energy eigenvalues to
±1. To describe an insulator with a surface, we then switch
to the position representation and impose open (or vacuum)
boundary conditions at two coordinates in x-direction. More
specifically, we consider an annular cylinder geometry with
two surfaces in the radial x-direction, periodic boundary con-
ditions in circumferential y-direction, and the cylinder axis in
z-direction.

Figure 7 shows that for a constant mass (26), the flattened
model shows a global gap between surface (red) and flat bulk
(black) bands. However, the spectrum becomes more inter-
esting, once we introduce two surface domain walls parallel
to the z-direction where uf switches sign. (Periodicity in y-
direction requires the presence of two of these.) In this case,
we observe the formation of two counterpropagating chiral
modes bound to the respective domain walls. The spectrum
of these modes, indicated in green in Figure 7(a) connects the
surface and the bulk spectrum.

In the clean model, these chiral modes are supported only
by states inside the high-lying band gap. Below it, they hy-
bridize with the extended surface states. In the presence of
disorder, the surface states at E ̸= 0 will localize, but the chi-
ral edge modes do not, so that, for sufficiently strong disorder,
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(a) (b)

FIG. 7. (a) Band structure for a slab geometry of the flattened version
of the model (15) with open boundary conditions along x and two
symmetrically placed domain walls and periodic boundary boundary
conditions along y. The domain-wall height ∆uf takes the values
±0.2 and has support in n = 1 layer closest to the surface. The
bulk, surface, and domain-wall part of the spectrum are indicated in
black, red, and green, respectively. Solid and dashed green curves
are for the domain wall for which uf goes from negative to positive
and from positive to negative upon increasing y, respectively. Note
that the addition of the fragmenting potential to the surface raises
part of the surface spectrum above the flattened bulk band. (b) In the
presence of disorder, only surface states at E = 0 are delocalized. In
this case, the chiral domain-wall modes are expected to extend from
the bulk spectrum all the way down to zero energy.

the chiral modes will eventually extend their support over the
entire surface spectrum, cf. Fig. 7 (b).

At energies E ̸= 0 the chiral symmetry is effectively
broken, so that we may think of each surface as a two-
dimensional system in class A. In this reading, the counter-
propagating chiral modes at the domain walls surrounding a
surface region with a different sign of the fragmenting poten-
tial acquire a status equivalent to the edge modes of a quan-
tum Hall insulator, and Laughlin’s gauge argument applies.
It requires that the branches of chiral modes must eventually
hybridize with extended states, at E = 0 as well as at high
energies. The extended states at E = 0 are the topologically
protected delocalized surface states of the class-AIII insula-
tor. At high energies, the chiral modes must hybridize with
delocalized bulk states or with energetically high-lying delo-
calized surface states. Either way, the presence of the domain
wall modes prevents a full localizability of all states at large
energies.

In anticipation of our later in-depth discussion of disorder,
it will be rewarding to link the presence of chiral edge modes
to transport coefficients. To this end, consider a surface ge-
ometry where a puddle of given value of uf is surrounded
by an outer region with uf of opposite sign. The presence
of a chiral edge mode at the puddle boundary implies that a
fictitious four-terminal measurement of its Hall conductance
would yield the result σ(E) = sgn(E) sgn(uf)/2 for all en-
ergies inside the mobility gap where the chiral mode exists.
(The factor 1/2 reflects the fact that the surface is governed
by a single Dirac fermion species, with its characteristic half-
integral transverse conductance. Chiral symmetry requires
σ(E) to be an odd function of E [46]. At the band center,
σ(0) = 0, again by chiral symmetry.).

Now imagine a mass profile uf(y, z) smoothly varying in

such a way that the spatial average ⟨uf(y, z)⟩ = 0 and pud-
dles with masses of opposite sign form with equal proba-
bility. Since each puddle is surrounded by its own chiral
mode, we expect the formation of a network in which co- and
counterpropagating loops occur with equal likelihood. This
system is topologically equivalent to the Chalker-Coddington
network [47] of the integer quantum Hall effect at critical-
ity. At this point, the network model predicts the percolation
of quantum states evading Anderson localization in the pres-
ence of even strong disorder. This simple picture — which
is the mechanism behind the “statistical topological insulator”
[48] — is compatible with the observation of model realiza-
tions with a spectrum-wide existence of delocalized surface
states [14]. (The same statistical mechanism underlies delo-
calization of a topological-insulator surface in a random mag-
netic field [49] and of the surface states of a weak topological
insulator [50–52].) On the other hand, we expect localiza-
tion of finite-energy surface states if a non-vanishing average
⟨uf(y, z)⟩ ≠ 0 causes an imbalance between puddles with
opposite signs of uf . Note that these predictions are consis-
tent with the expectation that it is the presence or absence of
Berry curvature, corresponding to the presence or absence of
an average surface fragmenting potential, that decides over lo-
calization. In the next section, we will back these hypotheses
by a quantitative analysis of disorder.

V. SURFACE LOCALIZATION PROPERTIES

Previous sections demonstrated that the surface states of a
class AIII topological insulator can be detached from the bulk.
Concomitant with the opening of the spectral gap, the 2D sur-
face acquires a nonzero Chern number due to induced surface
Berry curvature, as explicated above in Secs. III C and IV C.

In this section, we consider the implications of surface
Berry curvature for the Anderson localization properties of
the surface states in the presence of symmetry-preserving dis-
order. Since the minimal 2-component surface Dirac theory is
void of curvature, we work with a slab of the 3D lattice model
defined in Eq. (17). Surface Berry curvature is induced along
the slab boundary via the fragmenting potential introduced in
Eq. (26), above.

We demonstrate below (see Fig. 8) that a nonzero uni-
form fragmenting potential localizes all surface states except
the zero-energy one, which remains topologically protected.
By contrast, spectrum-wide criticality (critical delocalization
linked to the plateau transition of the quantum Hall effect [14])
survives when either (a) the surface fragmenting potential is
set to zero, or (b) randomly distributed with zero mean. Sce-
nario (b) explains the origin of spectrum-wide criticality as
the percolation of chiral edge modes discussed in the end of
the previous section.

We discuss detectable ramifications of our results for exper-
iment in Sec. V B.
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A. Surface Berry curvature and disorder: Numerics

We perform a numerical study of localization in a disor-
dered version of the model (15), with and without Uf [uf ] (26).
Disorder is implemented by random Peierls phases as intro-
duced in Eq. (19). We apply multifractal analysis to decide
whether the surface wave functions are localized or delocal-
ized [53, 54].

It turns out that the spectral weight of surface wave func-
tions is dominantly (> 75%) concentrated on the outermost
surface layer. We define the surface inverse participation ra-
tios (IPR) of these wave functions via the moments,

PE
q =

∑
y,z

(∑
σ | ψE

σ (y, z) |2
)q

[
∑

σ,y,z | ψE
σ (y, z) |2]q

, (30)

where ψE
σ (y, z) ≡ ψE

σ (x = 0, y, z) are 3d wave functions of
energy E evaluated at x = 0. The IPRs are normalized such
that PE

1 = 1. To improve statistics, we consider PE
q averaged

over disorder and a small window of energy. (For system sizes
from Ny = Nz = L = 16 to L = 128, the number of wave
functions over which the moments are averaged ranges from
3 × 105 to 103.) Details concerning the convergence of our
data with the slab thickness and the distribution functions of
the IPR are provided in Appendices B 2 and B 3.

For surfaces of large linear extension L [55] the IPRs are
expected to asymptotically scale as

PE
q ∝ L−τE

q , (31)

with an effective dimension τEq [53]. Multifractality manifests
itself in the appearance of a non-trivial anomalous dimension

∆E
q = τEq − d(q − 1), (32)

measuring deviations from the naive dimension d(q − 1) ex-
pected for uniformly distributed states. The opposite extreme
is that of localized states, for which τq = 0, reflecting the ab-
sence of scaling in system size. Presently, we are discussing
a system with two distinct realizations of critical points. The
first is the mirror symmetric point, E = 0, marking the posi-
tion of a topologically protected critical state. In the vicinity
of this point, the system is expected to show multifractality
with the anomalous dimensions [53, 56],

∆AIII
q = ΘAIIIq(1− q), (33)

where ΘAIII is a non-universal coefficient depending on the
disorder strength. The second is the quantum criticality oth-
erwise realized by states sitting at the center of Landau levels
in quantum Hall systems. For these states, the spectrum of
scaling dimensions is approximately parabolic [57]

∆QH
q ≃ ΘQHq(1− q), (34)

with ΘQH ≃ 0.25 [53, 58, 59]. In either case, the spectrum
is expected to be approximately parabolic up to a threshold
|q| ≃ qc =

√
2/Θ [53, 56, 60].

Figure 8 shows the anomalous multifractal exponent
∆q/q(1−q) for q = −0.5, 0.5, 0.75 (left to right) and vanish-
ing (dashed), constant (blue) and random (green) fragment-
ing potential. The different curves show data obtained for
increasing system sizes Ny = Nz = L = 24 to 128 as a
function of energy, E . Numerically, we calculate an effective
L-dependent multifractal exponent, with a finite logarithmic
difference between IPRs of increasing system size L. The de-
tails of this procedure are delegated to Appendix B. At E = 0
we obtain ΘAIII ≈ 0.85 ± 0.2 (uf = 0), 0.32 ± 0.05 (con-
stant uf ), and 0.18 ± 0.03 (random uf ). Here uf determines
the fragmenting potential Uf (26). The approximate indepen-
dence of these values on the value of q and L indicates that
we are observing the anomalous dimension (33) of the E = 0
quantum critical point. Away from E = 0, our results sensi-
tively depend on the chosen model for uf :

Zero fragmenting surface potential: For uf = 0 the data
quickly drops to the value Eq. (34) expected at quantum Hall
criticality. This value is maintained, including for large ener-
gies inside the bulk gap. In this way we confirm the observa-
tion of spectrum-wide criticality of Ref. [14].

Constant fragmenting surface potential: Upon applica-
tion of a constant uf = 0.3, we observe a clear tendency away
from criticality and towards localized behavior upon increas-
ing the system size. We note that the perturbation of strength
uf = 0.3, presently applied to only one surface layer, is by a
factor of two below the threshold ucf ≃ 0.6 required to induce
an indirect gap below surface and bulk band, see Fig. 5(c).
(We restrict our attention to |uf | < ucf , because larger val-
ues require stronger disorder to observe effects in finite size.)
This finding is consistent with the expectation that fragility of
the surface-bulk connection — and consequently eigenstate
localization at large length scales — will be induced by any
constant non-vanishing uf .

Random fragmenting surface potential: Motivated by the
scenario laid out at the end of Sec. IV D, we consider a spa-
tially varying surface deformation uf(x, y, z) of unit layer
depth, vanishing average, and variance

⟨uf(x, y, z)uf(x, y′, z′)⟩y,z = u2f δy,y′ δz,z′ (35)

for x = 0 and x = Nx. The green data shows that this pertur-
bation leads to delocalized and quantum Hall critical behav-
ior at finite energies, much as that of the unperturbed model.
However, the convergence towards the quantum-Hall expo-
nent is slower than in the absence of a fragmenting potential.
For further discussion of this point we refer to Appendix B 2.

We conclude from the three sets of data (black, blue, green)
presented in Fig. 8 that an arbitrary perturbation of the sur-
faces is not necessarily sufficient to localize the finite-energy
states. Instead, a deformation that induces a nonzero aver-
age surface Berry curvature [e.g., ⟨uf(x, y, z)⟩y,z ̸= 0] is
needed. This conclusion is consistent with the considerations
of Sec. IV C, where it was argued that a uniform perturbation
of the form in Eq. (26) induces Berry curvature.

As discussed in Sec. IV D, spatial fluctuations of the frag-
menting potential with zero average, on the other hand, lead to
a percolating network of chiral domain-wall modes. This per-
colating network appears at all nonzero surface-state energies
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FIG. 8. The scaled exponent, ∆q/q(1 − q) for q = −0.5, 0.5, 0.75 (left to right) and system sizes Nx = 8 and Ny = Nz = L = 24 to
L = 128 of the model (15). Black data: no fragmenting potential uf = 0 [Eq. (26)] and disorder strength W = 0.15; Blue data: a constant
potential with uf = 0.3 applied to the outermost surface layers, and disorder strength W = 0.2; Green data: random fragmenting potential
with zero average and standard deviation uf = 0.3 [Eq. (35)], and disorder strength W = 0.2. The horizontal dashed lines marks the value
0.25 of quantum Hall criticality, and the localization limit, τq = 0 corresponds to ∆q/q(1 − q) → ∞, 4, 8/3 for q = −0.5, 0.5, 0.75 . (The
value ∞ reflects the formal divergence of the IPR in the localized limit for negative q.)

as quantum-Hall criticality.
Localization was not observed in previous continuum stud-

ies [13, 14, 16] that employed a 2D minimal Dirac description,
as this carries exactly zero Berry curvature as long as chiral
symmetry is preserved. The fragmenting potential projects to
zero in the minimal Dirac approximation. Although we con-
sider a phase with only a single surface Dirac cone (2 sur-
face bands), the Berry curvature necessary to localize the sur-
face states appears in the full 4-component description of the
surface-state wave functions, when the fragmenting potential
is applied to the lattice Hamiltonian in Eq. (17). Alternatively,
localization should occur in the continuum Dirac description
when the latter is wedded to a trivial band in such a way so
as to induce surface Berry curvature, see Sec. III C. In both
cases, it is essential to retain additional degrees of freedom
beyond the minimal Dirac description in order to decide the
fate of the surface states in the presence of disorder.

B. Implications for experiment

Interpreted as a topological insulator with sublattice sym-
metry, the model in Eqs. (15) and (17) is rather artificial. Al-
though clean systems with approximate sublattice chiral sym-
metry appear in nature (e.g., graphene), simple onsite impu-
rity potentials destroy the symmetry and revert the system to
a Wigner-Dyson class. For this reason, topological phases in
classes CI, AIII, and DIII have received far less attention than
the quantum-Hall and quantum-spin Hall insulators.

However, the non-Wigner-Dyson classes admit natural in-
terpretations as 3D topological superconductors [25]. Then a
lattice model as in Eq. (17) can be viewed as the Bogoliubov-
de Gennes quasiparticle Hamiltonian in static mean field the-

ory [9, 60]; indeed Eq. (17) can be interpreted as a lattice regu-
larization of the topological superfluid 3He-B [42]. Although
quantum fluctuations are inevitable in a non-s-wave topologi-
cal superconductor, the notion of topology is expected to carry
through to fully interacting phases of matter [61].

Three-dimensional topological superconductors are pro-
tected by physical time-reversal symmetry (which transmutes
into the chiral S condition in Eq. (16) within the Bogoliubov-
de Gennes language [25]), and varying degrees of spin SU(2)
symmetry. Class CI, AIII, and DI superconductors respec-
tively possess SU(2), U(1), and no spin rotational symmetry.
Beyond time-reversal and spin symmetries, no other restric-
tions are placed upon lattice structure or disorder realizations;
see Appendix C for the explicit mapping in class AIII. This
means that generic non-magnetic impurities do not alter the
symmetry class for these superconductors.

The surface fluid of a bulk topological superconductor con-
sists of unpaired fermion quasiparticles (“Dirac fermions” for
classes CI and AIII, “Majorana fermions” for class DIII). This
fluid can dominate certain observables at low temperature T .
In particular, a clean surface-Dirac cone gives a power-law-
in-T contribution to the Meissner effect, due to the paramag-
netic current of the surface [62]. The surface quasiparticles
also contribute to the longitudinal thermal and (for classes CI
and AIII) spin conductivities. By contrast, the contribution
of the fully gapped bulk is exponentially suppressed for these
quantities in the T ≪ ∆0 limit, where ∆0 is the bulk super-
conducting gap.

Disorder is inevitable in real materials, and particularly
at crystal boundaries. Then, the alternative scenarios of
spectrum-wide criticality versus surface Anderson localiza-
tion produce very different phenomenologies. Localization
suppresses surface conduction, which can then be mediated
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at finite temperature only through inelastic processes. This
should suppress the surface contribution to the Meissner ef-
fect. Without inelastic scattering, the finite-T surface thermal
conductivity vanishes with surface localization in the ther-
modynamic limit; this is because the single delocalized state
at zero energy is a set of measure zero in the surface spec-
trum. In reality, dephasing stabilizes a surface contribution
at finite T , analogous to the longitudinal conductivity mea-
sured at the plateau transition of the quantum Hall effect [63].
By contrast, spectrum-wide quantum criticality should yield
a universal surface thermal conductivity determined (via the
Wiedemann-Franz relation) by the average zero-temperature
electrical conductivity of the quantum Hall plateau transition
[14].

Which scenario is expected to be realized experimentally?
A main message of this paper is that microscopics are neces-
sary to determine the presence or absence of average surface
Berry curvature; the latter is responsible for surface localiza-
tion with disorder. We note that for the cubic lattice model
in Eq. (15), the fragmenting surface potential in Eq. (26) used
to induce the localization in Fig. 8 breaks the average cubic
rotational symmetry. Equivalently, different surface perturba-
tions are needed to induce average surface Berry curvature on
different surfaces. This suggests that point-group symmetry-
breaking perturbations tailored to particular crystal termina-
tions may be necessary to induce surface localization. Al-
ternatively, as described in Sec. III C, surface localization for
E ̸= 0 can be induced by coupling the surface of the AIII
superconductor to a non-magnetic atomic-limit insulator. Hy-
bridization between the insulator states and the superconduc-
tor, which is most effective if the band edge of the insulator is
close to the Fermi energy of the superconductor, then yields
the required Berry curvature. On the other hand, magnetic im-
purities or a weak external field should be sufficient to local-
ize even the zero-energy surface state because they break the
(physical) time-reversal symmetry protecting the class-AIII
superconductor. This would exponentially suppress the lon-
gitudinal surface thermal conductivity at low temperatures.

VI. FIELD THEORY

In this section, we discuss how the physics discussed above
presents itself from the perspective of effective field theory. It
is self contained, and included to provide an analytical justifi-
cation for the criterion of state delocalization used empirically
in previous sections. Readers willing to accept the evidence
provided so far as convincing enough may consider this sec-
tion as optional or skip it.

By “field theory,” we here mean theoretical frameworks in
which averaging over static disorder is performed at an early
stage to describe d-dimensional systems in a given symme-
try class in terms of (d + 0) dimensional [64] nonlinear σ-
models. Such theories have been in use for a long time in
the physics of conventional disordered metals (see the text-
book [65] for review) and were extended to the description
of various topological insulators [66–68] even before the mo-
mentum space topologies of clean insulators became under-

stood. In parallel to that developement, the approach was up-
graded to a full classification of disordered topological insu-
lators [9] alternative to, say, the mathematical framework of
non-commutative geometry [69]. From an applied perspec-
tive, its strength is that it can predict, e.g, the flow of transport
coefficients [52, 70, 71] as a function of disorder strength or
system size. It is this latter aspect that will be important in our
discussion below.

We begin with a short review of the physics of the two-
dimensional class A, and the three-dimensional AIII insula-
tor, extending the discussion of Sec. II B to the presence of
disorder. While these are known structures, included here to
provide perspective, our discussion of the AIII surface in sec-
tion VI C, and specifically that of a connection between field
theoretical topological θ-angles and momentum space Berry
curvature in Appendix A is new material.

A. Two-dimensional Chern insulator

The starting point of field theoretical representations of
topological insulators is an intermediate action (see Ap-
pendix A for a brief review of its derivation) of the form

S[X] ≡ − tr ln (E − Ĥ(k) + iκX̂(x)), (36)

where k and x are momentum and position, respectively,
Ĥ(k) is the clean Hamiltonian (throughout, we will omit
carets on operators in their eigenbasis representation), κ a pa-
rameter measuring the effective disorder scattering rate, and
X̂ = {Xrr′

ss′ } a matrix valued slowly fluctuating field carry-
ing a replica index r = 1, . . . , R (sometimes traded for the
mathematically more rigorous internal supersymmetry struc-
ture [65]), and a second index s = ± = ±1 distinguish-
ing between propagators of retarded and advanced causality.
Further details of the internal structure of X̂ depend on the
symmetry class under consideration. For example, in class
A, X̂ ≡ Q = T τ̂3T

−1, where τ̂3 will be a Pauli matrix in
s-space throughout this section (not to be confused with the
earlier sublattice/chiral τ3) or in AIII just Q = T .

The further processing of the action reflects a notion of real
and momentum space duality, according to which the momen-
tum space symmetries and topology encoded in H(k) deter-
mine the real space symmetries and topology of Q(x). To
demonstrate the principle, consider the first step towards a
gradient expansion in class A and use the unitary invariance
of the trace to transform the action to

S[Q] ≡ − tr ln
(
Ĝ−1(E,k)− [T−1(x), Ĥ(k)]T (x)

)
. (37)

Here, we encounter the impurity broadened Green function
of the system Ĝ−1(k) ≡ E − Ĥ(k) + iκτ̂3 in conjunction
with a term in which the real- and momentum-space depen-
dent terms of the action talk to each other. Assuming smooth
variation of its two constituents, a first order Wigner-Moyal
expansion leads to [T−1(x), Ĥ(k)]T (x) ≈ Fi(k)Φi(x), with
Fi = i∂iĤ and Φi ≡ (∂iT

−1)T , where the derivatives are
with respect to ki and xi, respectively. The effective action
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describing the system at large distance scales then is obtained
by expansion of the tr ln up to second order in the derivative
terms Φi. Notice that the real space Φi always appear in con-
junction with momentum space Fi. Also note that to leading
order in a derivative expansion,

tr
(
Â(x)B̂(k)

)
=

∫
dxdk tr

(
Â(x)B̂(k)

)
(38)

where dx = ddx and dk = ddk/(2π)d, and the trace on the
right hand side is over the internal matrix structure of the op-
erators in question. In this way, terms appearing in the action
naturally assume the form of (momentum space integrals) ×
(real space integrals), where in the case of topological terms,
the two partners encode “dual” aspects of the topology of the
system.

Specifically, for the case of the two-dimensional Chern in-
sulator, the result of the expansion to second order in gradi-
ents is Pruisken’s nonlinear σ-model, which first appeared in
the context of the integer quantum Hall effect [70],

S[Q] = g

∫
d2x tr(∂iQ∂iQ) +

θϵij
16π

∫
d2x tr(Q∂iQ∂jQ).

(39)

Here, the first term describes the diffusion and eventually An-
derson localization of a two-dimensional electron gas in the
presence of disorder, where the bare value of the coupling
constant g = σxx/8 is set by the system’s longitudinal con-
ductance. The second term is of topological nature and counts
the number of times theQ-matrix field winds around its target
manifold. In the classical reference its weighing topological
angle θ = 2πσxy was identified with the Hall conductance.
Of more relevance to our present discussion is its interpreta-
tion as a momentum space dual of the real space term, namely
θ = θ(E) as given in Eq. (27). (This expression is derived for
general two-dimensional systems in class A in Appendix A.)

As derived, the action Eq. (39) describes the system at “bare
length scales,” with a minimal distance cutoff set by the scat-
tering mean free path. Upon integrating out short distance
fluctuations, and for generic values of E, the coupling con-
stant g renormalizes to zero (Anderson localization), while the
effective angle θ renormalizes to a multiple of 2π (Hall quan-
tization). For these fixed point values, the topological θ-action
reduces to a boundary action 1

8ϵij
∫
d2x tr(Q∂iQ∂jQ) =

S1d[T ], where

S1d[T ] ≡
1

2

∮
dx tr

(
T−1τ̂3∂xT

)
, (40)

and x now is a one-dimensional boundary coordinate. This
single derivative action describes the dissipationless chiral
circulation of boundary currents against the protecting back-
ground of a localized bulk. As with the chiral Hamiltonian of
the clean system it lacks gauge invariance, signalling spectral
flow through the delocalized states at the energies E+ or E−.

We next compare this physics to that in our reference sys-
tem without protected spectral flow.

B. Three-dimensional AIII insulator

As with its lower-dimensional cousin, the gradient expan-
sion of the prototypical action (36) leads to a nonlinear σ-
model [72, 73] enriched by a topological term [9],

S3d[T ] =

∫
d3x

[
g tr

(
∂iT∂iT

−1
)
+ Eν tr

(
T + T−1

)]
+

+
ϑϵijk

24π2

∫
d3x tr

(
T−1∂iTT

−1∂jTT
−1∂kT

)
.

(41)

Compared to Eq. (39), the field manifold has changed to
group-valued matrix fields, T ∈ U(2R). Otherwise, we again
have a job division between a gradient term describing bulk
conduction properties, and a topological term now measur-
ing three-dimensional windings over the unitary group. The
second term describes the symmetry breaking induced by de-
partures away from E = 0, where ν is proportional to the
three-dimensional density of states.

There are different physical limits that may be investigated
on the basis of this representation: at the particle-hole sym-
metric point E = 0 we are sitting inside the bulk spectral gap.
The bare conduction parameter g may nevertheless be finite,
due to impurity states smearing the band gap of the clean sys-
tem. At large length scales, we expect renormalization to an
Anderson insulator, g = 0, where a value ϑ = 2πn with n a
non-vanishing integer will signal topological non-triviality. In
this limit, and in analogy to the Pruisken action, the topologi-
cal term becomes a boundary term, Γ[T ]/12π, with the physi-
cal interpretation of a Wess-Zumino term [19] of an emerging
surface action. In the immediate vicinity of the surface, the
gradient term remains finite and now describes intra-surface
conduction. The net effect is the stabilization of a surface
Wess-Zumino action

S2d[T ] = g

∫
d2x tr

(
∂iT∂iT

−1
)
+

1

12π
Γ[T ], (42)

through the localization of the bulk. This action is the AIII
analog of Eq. (40) for the A system. At large length scales,
this theory renormalizes [19, 74] to the conformally invariant
action with g = 1/8π representing a single two-dimensional
Dirac point at zero energy; this is the field theoretical inter-
pretation of zero energy surface delocalization in the AIII in-
sulator.

However, we may also investigate what happens at finite de-
viations E ̸= 0 away from chiral symmetry. In this case, the
(strongly RG relevant) “mass term” in Eq. (41) only admits
configurations T → Q = T τ̂3T

−1 for which tr
(
Q+Q−1

)
is a constant vanishing in the replica limit. These are the Q-
matrices of the model of lower symmetry AIII → A. Sub-
stitution into the bulk action annihilates the second and third
term, while the gradient term becomes the conventional action
of a disordered three-dimensional metal below the Anderson
transition point: away from zero energy, the AIII insulator be-
haves like a conventional Anderson insulator. A more interest-
ing limit is the case of small but finite E ̸= 0 in the vicinity of
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the surface. The symmetry breaking now collapses the Wess-
Zumino term Γ[Q] to the Pruisken term of a two-dimensional
class A action, at topological angle θ = (2Z + 1)π [19]. We
conclude that the naive extension of the zero-energy WZW
action to finite energies equals the action Eq. (39) of a two-
dimensional Chern insulator fine tuned into criticality. This is
a field theoretical indication of a tendency to extended surface
quantum criticality. The question is what happens for larger
deviations E away from zero. To answer it, we need to go
beyond the present level of high level reasoning and turn to a
first principle approach.

C. Surface of the three-dimensional AIII insulator

In order to understand the physics of the disordered surface
at arbitraryE, we again start from the prototypical representa-
tion (36). For the slow field, we take X̂(x) = (T τ̂3T

−1)(x),
where x is a two-dimensional surface coordinate. (The jus-
tification behind this surface projection is that states of finite
extension into the bulk have eigenenergies much larger than
E, which we assume to be way below the bulk gap.) For the
surface Hamiltonian Ĥ(k), we assume a spectral decomposi-
tion

Ĥ(k) ≡
∑
α

|αk⟩ ϵαk
⟨αk|, (43)

where {|αk⟩} are the system eigenstates at a given transverse
momentum.

This formal spectral decomposition actually is less innocent
than it looks: Naively, it should include all eigenstates at a
given k. However, this is not the case. Going back to the tr
ln (36), only eigenstates of Ĥ(k) with a finite spatial overlap
with the surface Hubbard-Stratonovich field X̂(x) contribute
to the expansion. The obvious candidates here are the two
eigenstates forming the chiral partners of the surface band.
However, the internal spinor representation space at a given
k of the lattice model is four-dimensional, implying that two
states are insufficient to span it. We must, therefore, assume
a contribution of bulk states (with finite surface amplitude),
and an associated state-dependent weight κ = κα. As we
do not have full access to this information, we sidestep the
problem by considering Eq. (43) as a formal complete sum.
We also consider the surface band for the flattened model, i.e.
we assume a finite spectral gap to higher-lying bands.

In Appendix A we show that under these conditions, the
surface action assumes the form of a two-dimensional class A
action Eq. (39), with the topological angle given by Eq. (27),
or Eq. (A2) in a more explicit representation. As discussed
above, the added curvature integrals of the upper and lower
surface band computed in this way need not add to zero. In
view of the above discussion, this phenomenon relates back to
the embedding of the surface band into a larger Hilbert space
of bulk states. Unlike with intrinsic two-dimensional lattice
bands, whose Chern numbers would have to add to zero, we
are here considering a single two-dimensional shadow of a
three-dimensional bulk (the other lives at the opposite surface)
and the cancellation principle does not apply.

VII. DISCUSSION AND CONCLUSION

For topological insulators in the Wigner-Dyson classes A,
AI, and AII — the most prominent realizations being the two-
dimensional class A integer quantum Hall insulator and class
AII quantum spin Hall insulator, and the three-dimensional
class AII topological insulator — boundary states are contin-
uously attached to delocalized bulk states, without interrup-
tion by a spectral or mobility gap. In this paper, we showed
that for the complementary class of “genuinely” non-Wigner-
Dyson class topologlogical insulators this key principle is bro-
ken. (The attribute “genuine” indicates that the constraints
imposed by charge conjugation symmetry C or chiral symme-
try S that define the non-Wigner-Dysnon classes and force the
spectrum to be symmetric around E = 0 are essential for the
protection of the bulk topology. By contrast, “non-genuine”
classes remain topological after lifting constraints due to C
and S behave effectively as Wigner-Dyson insulators.)

In the literature, nontrivial topology is often associated with
an obstruction to the construction of a localized basis of con-
duction and valence bands, referred to as “Wannierizability”.
Our general results — see Tab. I — show that, by contrast, all
genuine non-Wigner-Dyson class insulators enjoy this prop-
erty, and can be topologically non-trivial nonetheless. We ar-
rived at these conclusions both from a bulk perspective, show-
ing that localizability of the bulk implies that the connection
between surface and bulk bands becomes fragile, and from an
intrinsic boundary perspective, showing that the effective sur-
face theory admits a gap-opening perturbation. A key conclu-
sion following from this observation is that the surface states
of genuine non-Wigner-Dyson topological insulators them-
selves are localizable, except at the center E = 0 where state
delocalization is topologically protected.

The existence of gapless or conducting surfaces is the key
signature distinguishing topological from conventional insu-
lators. Our analysis shows that, in this regard, the physics
of genuine non-Wigner-Dyson topological insulators is differ-
ent from that of their Wigner-Dyson siblings: Their surface
states can, but need not be delocalized away from one iso-
lated energy, E = 0. As a concrete case study, we considered
the three-dimensional AIII insulator and showed that the spec-
trum of different scenarios ranges from full delocalization of
all states in a surface band connected to a bulk band, to lo-
calization of all states away from zero energy. The situation
is “fragile” in that the tuning of local lattice potentials may
continuously interpolate between these extremes. Depending
on which option is realized, one expects different behavior of
surface thermodynamic and transport properties, as discussed
in section V B.

Indeed, our study was motivated by recent work, which re-
ported a spectrum-wide delocalization of the surface states
of a class-AIII insulator and other non-Wigner-Dyson classes
[13–16]. These observations were based both on a numerical
analysis of an effective Dirac surface theory and a numerical
study of a three-dimensional lattice model of a class-AIII in-
sulator. In this work we identified the principles that led to
this seemingly robust prediction. We showed that the minimal
2 × 2 Dirac theory considered in these references is intrinsi-
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cally protected against localization. However this protecition
is topologically fragile in that it is lifted if additional trivial
surface bands are added (which can be achieved, e.g., by cou-
pling an extraneous surface layer). The absence of localiza-
tion in the full three-dimensional lattice model considered in
Ref. [14] results from a statistical symmetry, similar to that
realized in the “statistical topological insulator” [48].

For the case of minimal topological winding number ν = 1,
we identified a powerful indicator for the localization proper-
ties of states at energy E, namely the integrated Berry curva-
ture of all states energetically below (or equivalently above)
that energy: an integer-quantized integral implies delocaliza-
tion, departures from these values localization. While the en-
ergetic non-locality of this criterion may be unexpected for a
model of non-interacting particles, it reflects the importance
of global momentum space quantum geometry in a topologi-
cally nontrivial context. In the two models mentioned above,
that criterion signals global delocalization, if for different rea-
sons: the minimal surface Dirac theory is Berry-flat; in the
lattice model, the disorder model considered in Ref. [14] leads
to a statistical cancellation of curvature in the integral. How-
ever, both the embedding of the minimal 2 × 2 theory into a
four-component spinor theory (the minimal framework to de-
scribe topological non-triviality in three-dimensional AIII), or
the lifting of the statistical symmetry in the lattice model by
addition of a “fragmenting surface potential” of non-zero av-
erage, lead to state localization in a manner discussed in detail
in section V.

At the same time, our analysis indicates that for winding
numbers |ν| > 1, the precise meaning of the term “mini-
mal model”, and the identification of quantitative localization
measures must be reconsidered. In conclusion, the princi-
ple that a localizable bulk implies a gapable surface spectrum
(and vice versa) applies to all “genuine” non-Wigner-Dyson
classes. Other observations, such as the precise ways in which

the minimal Dirac description is fragile, and the relation of
localizability and Berry curvature, need not straightforwardly
generalize beyond the ν = 1 AIII context and invite future
work.

Most of the previous work on surface state localization
in the AIII insulator considered a low-energy, continuum
two-dimensional Dirac description with two-component Dirac
spinors [60, 75]. Our results imply that these theories are fun-
damentally incomplete, because the surface Berry curvature
responsible for Anderson localization is strictly ruled out. To
readers who trust in the predictive power of minimal mod-
els, it is a surprising and possibly disturbing notion that such
Lorentz-covariant and renormalizable field theories cannot en-
code the most basic characteristics (localized versus extended)
of surface-state wave functions. At the same time, it may be
reassuring that the origin of the problem does not lie in the
notorious and difficult-to-handle lack of ultraviolet closure of
the Dirac theories, but that the problem can be cured by the
simple addition of trivial degrees of freedom. Allowing for
the addition of trivial bands is common practice in topologi-
cal classifications based on stable equivalence, and our results
show that it is equally important when determining the exis-
tence of a topological obstruction to Anderson localization.
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Appendix A: Field theory analysis

In this section we discuss the field theoretical analysis of
the disordered surface. To make the paper self-contained, we
start with a quick review of the derivation of the intermedi-
ate representation Eq. (36), here formulated for class A for
concreteness. In a second step we then show that the expan-
sion of that action establishes a connection between the θ-term
describing the real space surface topology in the presence of
disorder and the integrated momentum space Berry curvature.

1. Replica field theory

We begin by adding disorder a potential V̂ (x) with vari-
ance ⟨V̂ (x)V̂ (x′)⟩ = γ0

2 δ(x − x′) to the clean Hamiltonian
Ĥ . Transport observables such as the longitudinal or trans-
verse conductance at characteristic energy E may be com-
puted from the R-fold replicated partition sum [79]

ZR =

∫
Dψ exp(−S[ψ]),

S[ψ] = −i
∫
dV ψ̄(E + iδτ̂3 − Ĥ − V̂ )ψ,

where ψ = {ψr
s,µ(x)} is a Grassmann field, the index

µ = 1, . . . , 4 labels the components of the lattice spinor,
r = 1, . . . , R is a replica index, s = 1, 2 distinguishes be-
tween advanced and retarded components, and τ̂3 is a Pauli
matrix in advanced/retarded space. We average the partition
sum over disorder to obtain a quartic interaction potential be-
tween replicas,

S[ψ] = S0[ψ] +
γ0
2

∫
dV (ψ̄ψ)2, (A1)

where S0 is the clean action. To decouple the quartic term,
we introduce a Hubbard-Stratonovich matrix field B(x) =

{Brr′

ss′,ii′(x)}. Integrating out the ψ fields yields,

〈
ZR
〉
=

∫
DB exp

(
− 1

2γ0

∫
dV trB2 + tr ln Ĝ[B]

)
,

with Ĝ[B] = (E + iδτ̂3 − Ĥ − B)−1. A variation of the ac-
tion in B leads to B̄(x) = γ0 tr Ĝ[B̄](x, x), which has the
structure of a self-consistent Born equation. According to

it, the mean field B̄ pays the role of an impurity scattering
“self energy” whose strength is determined by the impurity-
broadened local spectral density, Ĝ[B̄](x, x). The equation is
solved by the diagonal ansatz B̄ = −iκτ̂3, where κ an effec-
tive scattering rate determined by the bare strength γ0. For our
purposes, we need not discuss the self-consistent dependence
κ(γ0) in detail. However, what does matter is that the station-
arity equation affords a whole manifold of solutions besides
the matrix-diagonal one, B = −iκT τ̂3T−1 = −iκQ, where
T ∈ U(2R)/(U(R)× U(R)), and Q = T τ̂3T

−1. Physically,
these are the Goldstone modes associated to the “spontaneous
symmetry breaking” iδ → iκ reflected in the upgrade of the
infinitesimal causal parameter iδ to the finite damping iκ.

Substituting these modes into the action, and noting that
tr
(
Q2
)
= const. is a constant (vanishing in the replica limit),

we arrive at the soft mode action (36) which will be our start-
ing point for all further considerations.

2. Gradient expansion

We now discuss the steps required to advance from Eq. (36)
and its equivalent representation (37) to a local action con-
taining of lowest non-vanishing order in gradient operators.
There are only two of these consistent with the symmetries of
the model, namely tr(∂iQ∂iQ) and ϵij tr(Q∂iQ∂jQ). The
derivation of an action containing the first via expansion of
the tr ln is textbook material [65] (see also Ref. [44] for the
specific case of the two-dimensional topological class A in-
sulator) and is not of primary relevance to our present dis-
cussion. However, the construction of a topological action
containing the second terms is concerned, we need to start
afresh; previous derivations of this action where specific to the
quantum Hall effect [70], or other genuinely two-dimensional
materials [12]. By contrast, we here want to allow for situ-
ations where the effective H(k) is given by a general spec-
tral decomposition as in Eq. (43). In this way, we will ad-
dress all class A situations relevant to our discussion (bulk
two-dimensional insulators for the sake of comparison, and
the AIII surface at finite energies) in one go.

The second order expansion of the tr ln in the combina-
tions FiΦi defined after Eq. (37) leads to two terms, S →
Stop = S(1) + S(2), where S(1) = − tr

(
ĜFiΦi

)
, and

S(2) = 1
2 tr

(
ĜFiΦi

)2
, and the subscript “top” indicates that

we wish to isolate the topological contribution to the action.
Naively, one might think that the first order term drops out by
symmetry. However, this is not so because the trace over a sin-
gle Green function leads to ultraviolet divergent expressions,
i.e. we are facing a 0 ×∞ situation. The way out, originally
suggested by Pruisken, is to process the first order term as
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S(1) = −
∫ ∞

E

dϵ tr
(
ĜFiΦiĜ

)
≈ − i

2

∫
dxdk

∫ ∞

E

dϵ tr
(
(∂jĜ)Fi(∂jΦi)Ĝ− ĜFi(∂jΦi)∂jĜ

)
=

= − i

4

∫ ∞

E

dϵ

∫
dk
∑
s

s tr
(
[Ĝs, ∂jĜ

s]Fi

)∫
dx tr(τ̂3∂jΦi),

where in the first equality we used Ĝ(E) = −
∫∞
E
dϵ Ĝ2(ϵ) to increase the number of Green functions, thereby mitigating the UV

issues. To keep the notation slim, we omit the energy arguments throughout. In the second equality we applied another Moyal
expansion (with ∂iĜ = ∂kiĜ(k)), and used that only the imaginary part F (Ĝ) → 1

2 (F (Ĝ
+) − F (Ĝ−))τ̂3 = 1

2

∑
s sF (Ĝ

s)τ̂3
will contribute to a non-vanishing trace. With the second of the two auxiliary identities

−4ϵlm
∑
s

tr(sP sΦlP
−sΦm) = 4ϵlmtr(τ̂3∂lΦm) = ϵij tr(Q∂iQ∂jQ) ≡ Ltop(Q),

we reduce this expression to S(1) = I1
∫
dxLtop(Q), with the energy-momentum integral

I1 =
i

32

∫ ∞

E

dϵ

∫
dk
∑
s

sϵij tr
(
[Ĝs, ∂jĜ

s]Fi

)
.

Turning to second order term and using the first of the above auxiliary relations, it is straightforward to derive an analogous
expression, S(2) = I2

∫
dxLtop(Q), where

I2 = − 1

32
ϵij

∫
dk
∑
s

s tr
(
ĜsFiĜ

−sFj

)
,

and we again retain only contributions which combine to a non-vanishing trace. It remains to make sense of the momentum
integrals, I1 and I2. To this end, we engage the eigenfunction representation,

Ĝ(E) =
∑
α

|α⟩ 1

E + isκ− ϵα
⟨α|, Fi = −i∂iĤ = −i

∑
α

ϵα∂i|α⟩⟨α|,

where we anticipate that momentum derivatives of energies will not contribute to an expression of topological significance (this
can be checked by explicit computation). Substituting the first of these identities into I1, the energy dependent denominators
can all be pulled out and integrated over. As a result, we obtain

I1 =
iπ

16

∫
dkϵij

∑
αβ

1

ϵα − ϵβ

(
δ(E − ϵα) + δ(E − Eβ)−

2

ϵα − ϵβ
(Θ(ϵα − E)−Θ(ϵβ − E))

)
⟨α|∂jĤ|β⟩⟨β|∂iĤ|α⟩,

where we assumed the disorder to be weak enough to justify the approximation δ(E − ϵα) = − 1
π Im(E + iκ− ϵα)

−1. In I2 no
energy integral needs to be done, and the substitution of the spectral decomposition leads to

I2 = − iπ
16
ϵij
∑
αβ

∫
(dk)

1

ϵα − ϵβ
(δ(E − ϵα) + δ(E − ϵβ)) ⟨α|∂iĤ|β⟩⟨β|∂jĤ|α⟩.

We observe that in the combination Stop = (I1 + I2)
∫
dxLtop(Q) the on–Fermi–shell term I2 cancels against the on–shell

contributions of I1, a phenomenon which in the context of the quantum Hall effect is known as the cancellation of the Streda I
Fermi surface conductance against a contribution to the Streda II conductance [70]. In a final step, we substitute the second of
the above spectral decompositions to compute the matrix elements as ⟨α|∂iĤ|β⟩ = ϵβ⟨α|∂iβ⟩+ϵα⟨∂iα|β⟩ = (ϵα−ϵβ)⟨∂iα|β⟩.
Substitution into I1 + I2 leads to the final result

Stop[Q] =
1

16π

∫
d2kΩkΘ(ϵα − E)

∫
dx ϵij tr(Q∂iQ∂jQ), (A2)

where Ωk = i⟨dα| ∧ dα⟩ = iϵij⟨∂iα|∂jα⟩.

Appendix B: Details of numerical calculation of the multifractal
spectra
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FIG. 9. Distribution functions of Pq at q = 0.5 for uf = 0.3
(left), uf = 0 (middle), and uf random (right) with rmsuf = 0.5.
(Here, the topological control parameter is M = 2.0 and the dis-
order strength is W = 0.2.) The horizontal axis has been rescaled
as discusseed in the text. Inset: the convergence of the mean of the
IPRs, scaled by the trivial scaling exponent of fully extended states
for constant (blue), zero (yellow) and random (green) uf .

1. Effective multifractal exponent

In practice to analyze the convergence of the numerical cal-
culation in the linear surface dimension L we define an effec-
tive L-dependent multifractal dimension

τEq (L) = − lnPE
q (L)− lnPE

q (L/2)

lnL− lnL/2
. (B1)

For a critical point with multifractal scaling, this quantity will
converge to the true multifractal exponent limL→∞ τEq (L) →
τEq according to Eq. (31). [53] However, away from a criti-
cal point, where wave functions localize for sufficiently large
system sizes, L, its value will not converge until L is larger
than the localization length and τEq → 0. In this way the ef-
fective exponent allows us to distinguish between a localizing
and critical behavior. In the latter case, it also quantifies the
convergence of the multifractal spectrum.

2. Distribution functions of inverse participation ratios

In a numerical experiment, the moments Pq are randomly
distributed quantities, whose mean values are shown in Fig. 8.
The probability distribution of the moments P0.5 is shown in
Fig. 9, again for the three cases constant, zero and random uf .
For ideal quantum Hall criticality, we expect P0.5 = cL−τ0.5 ,
with the exponent [cf. Eqs. (32) and (34)] τ0.5 ≈ −1 + 1

16 .
This implies that the variable ln[P0.5 + τ0.5 ln(L)] should be
distributed around the non-universal constant ln c [53, 80].
The figure shows for uf = 0 (center) this variable is indeed
narrowly distributed around a maximum, with data collapse
for all values of L. Qualitatively similar behavior is found
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FIG. 10. Distribution functions of Pq at E = 0.1, uf = 0, W = 0.15
and linear surface extension L = 64 for different slab widths Nx on
a linear (main) and semi-logarithmic scale (inset).

for random uf (right). While, for the numerically accessible
system sizes the scaling limit is harder to reach in this case,
the collapse becomes more pronounced for our largest values
of L, shown in blue. However, for non-vanishing constant uf
(left) the data cannot be scaled to collapse, including for dif-
ferent values of τ0.5. In this way, the absence of criticality
reveals itself.

In the inset we show the scaling of the mean of the moments
with system size, rescaled by the trivial extended scaling be-
havior. Blue (yellow, green) data represents the finite (vanish-
ing, random) uf , where the latter two asymptote towards the
QH scaling indicated as a black dotted line.

3. Convergence in transverse direction

We here demonstrate that already small slab widths Lx are
sufficient to make quantitative statements about the localiza-
tion properties of the surface states. As an example, Fig. 10
shows the distrubtion function of the moments P0.5 for uf = 0
and a surface extensionL = 64 for different values ofLx. The
full distribution function, including mean and tails, coincide,
indicating that for all shown slab widths the distribution func-
tion are already converged.

The reason for the observed width–independence is the ex-
ponential transverse localization of surface states, with a de-
cay length of order one layer or less. Here, and in the nu-
merical calculations shown above, only surface states with a
surface weight of more than 75% are taken into account to
avoid artefacts due to low lying bulk states. (These are rare
but they exist due to disorder inside the clean bulk gap.)
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Appendix C: Class AIII superconductors

In a superconductor with a spin rotational invariance around
a fixed axis, the Bogoliubov-de Gennes (BdG) Hamiltonian
H = diag (h↑, h↓) splits into two blocks, corresponding to
“spin up” and “spin down” sectors. (The BdG Hamiltonian
acts on four-component spinors with spin and particle-hole
degrees of freedom.) Particle-hole conjugation C and time-
reversal symmetry T map these two blocks onto each other,

h↑ = −C−1h↓C = T −1h↓T , (C1)

so that it is sufficient to consider the “spin-up” block h ≡ h↑
only. The product S = CT acts as an antisymmetry constraint
on the Hamiltonian,

h = −S−1hS. (C2)

It follows that a superconductor with time-reversal symmetry
and a remnant U(1) of spin SU(2) rotational invariance resides
in class AIII [25, 81]. We now make these arguments more
explicit, using a formulation in terms of fermion creation and
annihilation operators, so that particle-hole symmetry is au-
tomatically encoded in the fermion anticommutation relations
and need not be implemented explicitly.

For a system of spin-1/2 electrons, we can form the spin-
triplet Cooper-pair annihilation operator in position space

ba(r, r
′) ≡ cσ(r) cσ′(r′) (σ2 σa)σ,σ′

= cT(r)σ2 σa c(r
′). (C3)

Here the electron annihilation operator cσ(r) carries spin in-
dices σ ∈ {↑, ↓}, and the Pauli matrices σa act on this space;
repeated indices are summed. On the second line of Eq. (C3),
we suppress indices and T denotes the transpose, viewing c
(cT) as a column (row) spinor. The pair operator is antisym-
metric (“p-wave”) under the exchange of r ↔ r′, and trans-
forms like a vector under spin SU(2) rotations of the fermions.
Under the physical T 2 = −1 antiunitary time-reversal trans-
formation,

c(r) → iσ2 c(r), i→ −i, (C4)

the pair operator ba(r, r′) is invariant. By contrast the ordi-
nary magnetization density inverts under T .

In Bogoliubov-de Gennes (BdG) static mean field theory,
the Hamiltonian for a spin-triplet superconductor can be ex-
pressed as

H =

∫
ddk

(2π)d
ε̃(k) c†(k) c(k)

+
1

2

∑
r,r′

[
∆a(r− r′) b†a(r, r

′) + H.c.
]
, (C5)

where H.c. denotes the Hermitian conjugate. Here c(k) is the
Fourier transform of the position-space annihilation spinor,
and ε̃(k) denotes the normal-state band structure, incorpo-
rating the chemical potential. The vector-valued function
∆a(r) = −∆a(−r) is the mean-field BCS order parameter.
With a particular gauge choice, Eq. (C5) is invariant under the
time-reversal transformation in Eq. (C4) if the band structure
is invariant and ∆a(r) = ∆∗

a(r).
If we restrict to a real-valued ∆a(r) = δa,3 ∆(r), then

Eq. (C5) describes a time-reversal invariant superconductor
with a remnant U(1) of spin SU(2) invariance, corresponding
to rotations about the z-axis in spin space. To see that this is
class AIII, we reformulate in terms of the Nambu spinor,

η(r) ≡
[
c↑(r)

c†↓(r)

]
, η†(r) =

[
c†↑(r) c↓(r)

]
. (C6)

In the Nambu language, a z-axis spin rotation becomes the
U(1) transformation η → eiϕ/2 η, η† → η† e−iϕ/2. Time-
reversal [Eq. (C4)] becomes

η(r) →
[
c↓(r)

−c†↑(r)

]
= iτ2

[
η†(r)

]T
. (C7)

Here the Pauli matrix τ2 acts on the components of the Nambu
spinor, and

[
η†
]T

is the column spinor corresponding to the
row η†. Eq. (C7) implies that time-reversal acts like an antiu-
nitary particle-hole transformation in the Nambu language,
because spin (unlike electric charge) inverts under T . This is
in fact chiral symmetry in second quantization. To see this,
we recast Eq. (C5) compactly as

H =
1

2
η†hη, (C8)

where h is the Hermitian BdG Hamiltonian that acts on posi-
tion and Nambu components. This form is manifestly invari-
ant under spin U(1) rotations. Imposing invariance under T in
Eq. (C7) leads to the chiral condition on h,

−τ2 h τ2 = h. (C9)

Physical time-reversal symmetry is thus transmuted into a chi-
ral condition on the BdG Hamiltonian. Since there are no
other constraints on h, the superconductor resides in class
AIII.

The other topological superconductor classes in three di-
mensions are CI and DIII; both require physical time-reversal
symmetry [9, 25]. Class CI, in addition, possesses a C2 = −1
particle-hole symmetry. In the superconductor interpretation,
this encodes invariance under π-rotations along x and y axes
in spin space, which is tantamount to full SU(2) symmetry.
Class DIII by contrast has no spin symmetry, and is usually
cast in terms of a real (Balian-Werthammer [78]) spinor that
encodes both spin and particle-hole degrees of freedom. Phys-
ical time-reversal also appears as a chiral condition, while
C2 = +1 particle-hole symmetry is imposed on the BdG
Hamiltonian by the reality condition on the spinor.
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