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Sensitivity of the MnTe valence band to the orientation of magnetic moments
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An effective model of the hexagonal (NiAs-structure) manganese telluride valence band in the vicinity of
the A point of the Brillouin zone is derived. It is shown that whereas for the usual antiferromagnetic order
(magnetic moments on the basal plane) band splitting at A is small, their out-of-plane rotation enhances the
splitting dramatically (to about 0.5 eV). We propose extensions of recent experiments [Phys. Rev. Mater. 6,
014404 (2022)] where such inversion of magnetocrystalline anisotropy has been observed in Li-doped MnTe to
confirm this unusual sensitivity of a semiconductor band structure to magnetic order.

DOI: 10.1103/PhysRevB.107.L100417

I. Introduction. The electronic structure of crystalline semi-
conductors can be treated by various methods, which differ
greatly in their computational cost [1]. Among ab initio
methods, GW is one of the most advanced approaches yet a
numerically rather expensive one [2]. A widely used alterna-
tive is density functional theory (DFT) where the speed comes
at the cost of worse performance (even if there are various
approaches to mitigate deficiencies, such as too small gaps)
and yet faster options are available of which tight-binding
approaches [3] and k · p models [4] will be of interest here.
Such effective models need material parameters (for example
on-site energies or hopping amplitudes) as an input which can
sometimes be of advantage because they can be adjusted to
fit experiments. Also, they may offer insight into mechanisms
governing the band structure.

An archetypal example of an effective model is the
Kohn-Luttinger Hamiltonian [5] which has a wide range of
applications to nonmagnetic materials, including silicon and
III–V semiconductors with the �8 manifold at the top of the
valence band (VB). Magnetism adds a new twist: for Mn-
doped GaAs, the host is described by this Hamiltonian, and
the effect of ferromagnetic ordering is captured by a kinetic
pd exchange term ∝�̂s · �S where �̂s is the spin operator (of the
VB holes), and �S is the classical spin representing the Mn
magnetic moments (usually treated on the mean-field level).
Such a description of ferromagnetic semiconductors [6,7] has
been employed extensively in the context of spintronics [8]
and now that antiferromagnetic spintronics [9] has become an
active field, we hereby wish to contribute to its progress by
presenting an effective model of hexagonal (NiAs-structure
[10]) MnTe which is a well-established antiferromagnetic
semiconductor as exemplified by its T = 0 band structure
in Fig. 1 with a relatively high (≈310 K) Néel temperature.
Typical samples, both bulk and epitaxial layers exhibit p-type
conductivity, and we will, therefore, focus on its VB.

The magnetic structure of MnTe was established [11] long
ago (see Fig. 3) with a strong anisotropy favoring in-plane
orientation of the magnetic moments and a weak residual
anisotropy within the plane [12]. Recently, Moseley et al.
[13] have found by neutron diffraction that, upon doping
by lithium, the magnetic moments rotate out of plane. They
also noted that in the density of states, significant changes
occur, and we use the effective model to explain how the VB
responds to this change in magnetic order (once spin-orbit
interaction is taken into account). Even if the Mn d states lie
[14] deep below the Fermi level EF and seem too remote from
the VB top [15] which is built dominantly from p-Te orbitals,
we demonstrate that the combination of the MnTe-layered
structure and relativistic spin-orbit interaction (SOI) lead to an
unusual sensitivity of the electronic structure to the orientation
of magnetic moments. In the next section, we discuss the

FIG. 1. Band structure of MnTe calculated by quasiparticle self-
consistent GW (QSGW) for �L ⊥ z (in-plane orientation). Note the
competing maxima of the valence band at � and A points.
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FIG. 2. Detailed view of the VB maximum and (c) the Brillouin
zone of α-MnTe corresponding to lattice constants: 0.414 nm and
c/a = 1.6208. Panels (a) and (b) show the difference between SOI
ignored and included and (d) gives for the latter case the energy
difference between VB maximum in � and A depending on the c/a
ratio (for several values of a given in atomic units); origin of this
dependence is discussed in Sec. 5.2 of the Supplemental Material
[16]. Negative �E means that the VB maxima around A prevail and
all energies are given in electron volt.

competing VB maxima, and we focus on the one near A point
of the Brillouin zone (BZ) in Sec. III. We conclude in Sec. IV.

II. Competing VB maxima. Once the SOI is taken into ac-
count, there arises a tight competition between valence-band
maxima close to A and � points of the BZ, see Fig. 2(b). A
long-standing consensus [17,18] that the former prevails has
recently been challenged by Yin et al. [20] who claim that
the VB top occurs in the vicinity of the � point. To im-
prove on the potentially less accurate DFT approach [20], we
employ the quasiparticle self-consistent GW approximation
[21]. The GW approximation, which is an explicit theory of

FIG. 3. NiAs structure (left) reduced to a toy model comprising a
one-dimensional chain of magnetic (B) and nonmagnetic (A) atoms;
there are two of the latter, Aa and Ab per unit cell. Energies are shown
in the units of t and �/t = 1, −εd/t = 3 was chosen.

excited states is widely used to predict quasiparticle levels
with better reliability than density functionals. QSGW is an
optimized form of the GW approximation where the starting
Hamiltonian is generated within the GW approximation itself,
constructed so that it minimizes the difference between the
one-body and the many-body Hamiltonians. As a by-product
the poles of the one-body Green’s function coincide with the
poles of the interacting one: Thus, energy band structures
have physical interpretation as quasiparticle levels, in marked
contrast to DFT approaches (some examples [22,23] are given
in Sec. 5.1 of the Supplemental Material [16]) where the
auxillary Hamiltonian has no formal physical meaning (in
practice, Lagrange multipliers of this Hamiltonian are inter-
preted as quasiparticle levels). It turns out that, QSGW yields
high fidelity quasiparticle levels in most materials where dy-
namical spin fluctuations are not strong [24].

Bulk lattice constants of MnTe at room temperature are
a = 0.414 and c = 0.671 nm [12]; we show in Fig. 2(d) that
for such c/a = 1.621, the VB maximum close to the A point
safely prevails (�E is the difference between energy of the
local VB maxima close to � and that close to A). Most ex-
periments nowadays are performed with thin films of MnTe,
however, and then lattice constants depend on the choice of
substrate. Temperature-dependent data in Fig. 3 of Ref. [12]
suggest that whereas samples grown on the SrF2 surface still
fall into the same class, low temperatures may effectively push
the VB maxima close to the � point up and, in particular,
samples grown on the InP substrate may exhibit the inverted
alignment of the VB maxima.

Comparing the present QSGW results to DFT calculations
of Ref. [20], several remarks are in order. Lattice constants
used in that reference (which correspond to c/a = 1.57) have
been obtained by structure optimization in DFT rather than
from experimental data. Next, the hybrid functional HSE06
may avoid the known problem of underestimated gaps in DFT,
but this, in itself, does not guarantee a reliable description
of finer details of the band structure (such as VB maxima
alignment). Predicted valence and conduction bands are more
uniformly reliable in GW than in density-functional methods.
Moreover QSGW surmounts the problematic starting-point
dependence that plagues the usual implementations of the GW
approximation, and, therefore, QSGW is a better choice for
our Letter than DFT. Regarding the subsequent derivation of
an effective model for the VB around the � point [20], we
note as follows. The kz = 0 approximation is used; whereas
this would be appropriate for very thin layers (say 5 nm),
present experiments [12] are more likely behaving, such as 3D
bulk. Also, the effective model (1) in Ref. [20] assumes a fixed
direction of the magnetic moments; to plot the experimentally
relevant “angular sweeps,” the current direction rather than
Néel vector is rotated which is, however, not the actual exper-
imental protocol. For systems where only the noncrystalline
anisotropic magnetoresistance (AMR) occurs [25], the two
protocols are equivalent, but measurements in the Corbino
geometry [12] prove this assumption false. Being aware of
these issues, we strive to derive an effective model in the
following which is free of these shortcomings captures the
dependence on magnetic moments direction.

A proper symmetry analysis of the crystal structure of
MnTe provides the nonsymmorphic space-group D4

6h. Once
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AF ordering is included the Mn atoms must be treated as
inequivalent since each Mn layer would have spins pointing
in the opposite direction as shown in Fig. 3 for in-plane spins.
Hence, the symmetry group is reduced from D6h to D3d with-
out SOI (see for instance Sandratskii et al. [26]). Furthermore,
the symmetry group would also depend on the interplay of
SOI and choice of the AF direction since spins pointing in
different directions behave differently under symmetry opera-
tions. For example, in the out-of-plane AF configuration, the
symmetry remains D3d whereas for in-plane AF, either along
[101̄0] or [112̄0] directions, the symmetry group is reduced
C2h. Besides the conceptual analysis of the symmetries, inde-
pendent calculations using the WIEN2K and Quantum Espresso
ab initio packages also provide the same symmetry groups
discussed above. Thus, for the particular choice of in-plane
AF the D2h point group discussed by Yin et al. [20] should be
replaced by C2h.

III. Effective models. Several attempts to describe the
electronic structure of α-MnTe in a simplified way have
been made so far. Here, the k · p approach [4,27] is a
common choice for semiconductors [28] especially if only
high-symmetry points in the BZ are of interest. Such a model
for the VB top in the A point was derived more than forty years
ago [26] and later extended to a tight-binding scheme [29].
The latter allows for the description of the energy bands over
the whole BZ but neither of these models allows to analyze
the dependence of electronic structure on the directions of
Mn magnetic moments. In the perfectly ordered AFM phase
[as in Fig. 2(d)] and without SOI, the Bloch functions at
the top of the valence band in the A point transform as the
two-dimensional irreducible representation Eg or (�+

3 ) of the
D3d . Including corrections up k2 and no SOI (essentially given
by Eq. (2) in Sandratskii et al. [26]), one would obtain the
following Hamiltonian:

Hkp,2×2 =
(

ak2
x + bk2

y + ck2
z (a − b)kxky

(a − b)kxky bk2
x + ak2

y + ck2
z

)
. (1)

The inverse effective masses (proportional to a, b, and c)
imply that Fermi surfaces (FSs) are, at this level of approx-
imation, two prolate ellipsoids (one inside another and doubly
degenerate) touching at the point where they are pierced by
the A� line; other properties of this model and its parameters,
effective masses, extracted from fits to QSGW are given in
Sec. 2 of the Supplemental Material [10]. From the point of
view of magnetism, this is a consequence of neglecting the
spin-orbit interaction. Once SOI is included, the band disper-
sion will depend on the direction of magnetic moments. On
the other hand, if higher-order terms in �k were included, the
symmetry would be lowered, and FSs would become warped
and spin split [30]. Consequent spin order in reciprocal space,
being a hallmark [31] of so-called altermagnetism, can lead
to phenomena normally unexpected in collinear compensated
magnets, such as the anomalous Hall effect.

The derivation of Eq. (1) is based solely on symmetry
arguments and entails neither any explicit information about
orbital composition of the corresponding Bloch states nor any
parametric dependence on magnetic order. In the following,
we, therefore, first describe a toy model capturing the essence
of interplay between magnetism and orbital degrees of free-

dom and next, we make use of these insights to derive a
realistic model of MnTe valence band.

A. Toy model. Consider a one-dimensional chain of al-
ternating nonmagnetic (A) and magnetic (B) atoms depicted
in Fig. 3 where only the nearest neighbors couple (the
amplitude being t). The single-orbital-per-site tight-binding
Hamiltonian assuming that the B-atom orbitals have on-
site energies εd ± � (where 2� is the exchange splitting)
reads

H1(�) =

⎛
⎜⎜⎝

0 t 0 te−ika

t εd + � t 0
0 t 0 t

teika 0 t εd − �

⎞
⎟⎟⎠, (2)

in the basis of Bloch states with momentum k so that ka
ranging from −π to π parametrizes the BZ.

The toy model described by H1 can be in part treated
analytically (see Ref. [16], Sec. 1) and focusing on the bands
of dominantly A-atom orbital composition, we observe a
downfolded cosine band of width downscaled by factor ≈ t/εd

in the large |εd | limit, i.e., remote B-atom dominated bands as
the dashed black dispersion in Fig. 3 confirms. Atoms Aa and
Ab interact only through the intermediate (magnetic) atoms
B which suppresses their effective coupling. There are two
main observations to make at this point. First, even if � � εd

there opens a gap in the “VB states” at the BZ edge (to make
the gap better visible, we chose a larger value of �/εd for the
blue and red bands in Fig. 3). This allows for the insight that,
inasmuch the atom Ab is sandwiched between spin-up (left)
and spin-down neighbors (right) where the exchange coupling
is � and −�, their effect on the A band (blue in Fig. 3 at the
bottom right panel) does not average out to zero. Next, an
even more important insight concerns the eigenstates of H1

at ka = ±π .
At this point, we should point out that H1 of (2), in fact,

only describes one of the two spin species; let us denote it as
up-spin and, correspondingly, H1,↑ = H1(�). The two states
at ka = ±π split by nonzero � turn out to be (|a〉 ± |b〉) ⊗ |↑〉
where |a〉 and |b〉 refer to orbitals of Aa and Ab atoms, respec-
tively. For the spin-down sector, H1,↓ = H1(−�) which leads
to identical band structure as in Fig. 3 whose eigenstates are,
nevertheless, not the same as for H1,↑. The state degenerate
with (|a〉 ± |b〉) ⊗ |↑〉 is (|a〉 ∓ |b〉) ⊗ |↓〉 and, thus, we arrive
at the conclusion that at the BZ edge, the VB states in our toy
model come in two pairs (split by the gap), and without loss of
generality, we now focus on the subspace spanned by the pair,

(|a〉 + |b〉) ⊗ |↑〉, (|a〉 − |b〉) ⊗ |↓〉. (3)

Unlike the pair |↑〉, |↓〉 (without any orbital part), any linear
combination of the two states in (3) has a zero expectation
value of transversal spin operators σ̂x, σ̂y. This can also be
restated as 〈 �̂σ 〉‖z, or, easily generalized to the statement
that the states (3) have the (expectation value of) spin
parallel to the magnetic moments of atoms B. In this way,
the direction of magnetic moments of the atoms remote
in energy from the VB top influences the current-carrying
states close to the Fermi energy. In the following, we denote
the direction of spin in the basis state (|a〉 + |b〉) ⊗ |↑〉,
by �L, and it can be understood as the Néel vector. In
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the following, we explore this influence in the context of
spin-orbit interaction; an alternative pathway relies on spin
disorder [32] (as it occurs, for example, at finite temperatures)
and we outline an approach to it based on the coherent
potential approximation (CPA) in the Supplemental Material
[16]. It provides an alternative interpretation of “magnetic
blueshift” [15] of the gap which does not rely on many-body
effects.

B. Extension to the MnTe crystal. The previous argument
can be extended to Te px, py states which form the VB top
near A. To account for fine details of the band structure (as

explained in Ref. [16], Sec. 2), we also include the remote pz

levels [in A, they are ≈3 eV below the VB top, see Fig. 2(a)]
whose dispersion is dropped at this level of approximation.
Also note that the group of VB maxima close to � relies on
Te-pz orbitals as explained in the Supplemental Material [10].
We will measure energy from the VB top (as it appears in
the case of absent SOI) with EF denoting the Fermi energy
and use two copies of Eq. (1) to describe the kx,y-dependent
mixing of px, py orbitals. Denoting the position of pz orbitals
of tellurium by ez (ez < 0, |ez/EF | � 1), the full description
of the VB close to A is provided by a block-diagonal 6 × 6
matrix,

Hkp =

⎛
⎜⎜⎜⎜⎜⎜⎝

ak2
x + bk2

y + ck2
z (a − b)kxky 0

(a − b)kxky bk2
x + ak2

y + ck2
z 0

0 0 ez

ak2
x + bk2

y + ck2
z (a − b)kxky 0

(a − b)kxky bk2
x + ak2

y + ck2
z 0

0 0 ez

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

and the first and second 3 × 3 blocks are written in the basis
(3) whereas inside the blocks, the basis vectors are simply
|px〉, |py〉, and |pz〉. Since the matrix (4) does not explicitly
depend on �L (only its basis vectors are), we arrive at the
conclusion that (when SOI is ignored) the band structure does
not depend on the direction of Mn magnetic moments.

In the limit |ez| → ∞, the full model (4) combined with
SOI breaks down into two decoupled 2 × 2 blocks, and since
we now have a microscopic understanding of the basis, one
which contains the information about direction of Mn mag-
netic moments, the SOI can now be evaluated. With finite ez,
the dependence of band splitting in A can be better described
as we explain in the following.

C. Spin-orbit interaction. We are now in a position to
explain the following behavior of band structure calculated by
relativistic ab initio methods. In panel (b) of Fig. 2, we could
have already observed the bands split by SOI and compared
to bandwidths, such splittings were small (note that these
splittings cause the shift of the VB top away from A, the
point of high symmetry). Those calculations were performed
assuming �L ‖ x and, at this level of detail, depend only little
on the direction of �L as long as �L ⊥ z which is compatible
with MnTe being an easy-plane material [12]. However, when
�L ‖ z is assumed in calculations, see Fig. 4, band splittings be-
come sizable. Restricting our discussion to Te px, py orbitals
combined into the states (3), this behavior is linked to the
directionality of Hso = λ�l · �σ evaluated in the corresponding
basis,

Hso,2×2 =
(

0 iλ cos θ

−iλ cos θ 0

)
(5)

where �L · ẑ = cos θ and �l is the orbital angular momentum
operator. Clearly, SOI projected to such a restricted space
becomes ultimately ineffective for the in-plane orientation
of magnetic moments where θ = π/2 (taking into account
also the |pz〉 orbital in the Supplemental Material [16], small
splittings at A in the in-plane configuration can, nevertheless,

be also accounted for) whereas for finite ez, the full 6 × 6
matrix of Hso must be considered instead of (5). On the other
hand, for out-of-plane magnetic moments, the splitting at A
seen in Fig. 4 can be directly compared to eigenvalues ±λ of
Hso,2×2.

IV. Discussion and conclusions. An effective model of the
MnTe valence band around A point of the BZ depends on the
level of detail needed: Eq. (1) is a meaningful approxima-
tion to begin with, but it cannot describe the band-dispersion
dependence on the direction of Mn magnetic moments and
spin splitting in Fig. 2(b); the six-band (or four-band, cor-
responding to the |ez| → ∞ limit) description using Eq. (4)
combined with Hso evaluated with respect to basis (3) times
|px〉, |py〉, and |pz〉 is the reasonable next step. On this level,
the large sensitivity of the valence band at A to magnetic
moment orientation can be explained in terms of zero matrix
elements of Hso between (|a〉 + |b〉) ⊗ |→〉 and (|a〉 − |b〉) ⊗
|←〉 where a, b refer to the two Te atoms within the unit cell

FIG. 4. MnTe band structure for �L‖z (energies in eV). Color
coding: red: Te; blue: Mn.
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of MnTe. Zooming into the details of the valence band smaller
than ∼100 meV would require adding further terms, such as
those discussed on p. 8 of the Supplemental Material to Ref.
[30]; on this level of approximation, phenomena, such as the
anomalous Hall effect or AMR can then likely be successfully
modeled.

Calculations in Fig. 4 show that the splitting at A is asso-
ciated with reduction of the band gap in agreement with DFT
calculations [13]. This implies that not only angular-resolved
photoemission could be used to confirm the sensitivity of
the MnTe band structure to the orientation of Mn magnetic
moments, but also optical absorption measurements should
reveal signatures of this effect. Such experiments could also

confirm our results concerning the competition of valence-
band maxima close to the A and � points of the Brillouin zone.
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