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Semimetallic and semiconducting graphene-hBN multilayers with parallel or reverse stacking
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We theoretically investigate three-dimensional (3D) layered crystals of alternating graphene and hBN layers
with different symmetries. Depending on the hopping parameters between the graphene layers, we find that
these synthetic 3D materials can feature semimetallic, gapped, or Weyl semimetal phases. Using first-principles
calculations to parametrize the low-energy Hamiltonians we establish the most likely electronic phases. Our
results demonstrate that 3D crystals stacked from individual 2D materials represent a synthetic materials class
with emergent properties different from their constituents.
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I. INTRODUCTION

Thanks to the recent progress in the layer-to-layer assem-
bly of two-dimensional atomic lattices, it is now possible
to combine individual atomic layers to create advanced syn-
thetic crystals that would be difficult to achieve with any
other bottom-up technique. Such layered three-dimensional
(3D) materials with engineered stacking series can exhibit
emergent characteristics different from the properties of their
individual constituent layers. Moreover, such assembly of lay-
ers allows for multiple stacking orders of consecutive layers
with different symmetries. Therefore, 3D crystals obtained
from stacking individual atomic layers one by one represent a
synthetic materials class compared to the individual 2D sheets
and their few-layer counterparts [1].

One widespread choice is to combine graphene with
hexagonal boron nitride (hBN). Heterostructures of various
numbers and stacking arrangements of graphene and hBN
layers feature, e.g., diverse superlattice moiré effects [2–9],
topological states [10,11], correlated states and superconduc-
tivity [12,13], dielectric and ferroelectric properties [14–16],
and exotic Hofstadter butterflies [17,18].

Here, we provide both hybrid tight-binding-k · p-theory
and density functional theory (DFT) calculations for the
low-energy states of 3D synthetic crystals constructed from
alternately stacked graphene and hBN monolayers. At a single
interface between graphene and hBN monolayers, the two
lattices have slightly different lattice constants and straining
one lattice to fit the lattice constant of the other is energetically
very costly [19]. However, in a 3D bulk system with hBN
layers alternating on either side of each monolayer graphene,
the adhesion energy would promote the favorable atomic
stacking of carbon and boron/nitrogen atoms. In compliance
with recent first-principles [20] and diffusion Monte Carlo
calculations [19] our DFT results confirm the interplay of
adhesion and strain to favor carbon atoms to align with boron
atoms to minimize the total energy [4,21].

We study periodic 3D stacking obtained by translating the
hBN layers in the stacking process (hence all hBN layers are

parallel to each other; cf. Fig. 1). For this perfectly z-periodic
Gr/hBN stack we study the resulting 3D band structures.

In a formal parametrization of the low-energy Hamiltonian,
we find that, depending on the interlayer graphene hopping
parameters, such a 3D crystal can feature different types of
semimetallic spectra, including overlapping electron and hole
pockets, as well as type I and type II Weyl cones. Such
Weyl semimetals are 3D phases of matter whose electronic

FIG. 1. Possible electronic phases for 3D crystals of graphene
and hBN monolayers periodically stacked in the z direction (sketch
on the top left, where the dashed orange line indicates the unit cell).
Depending on the hopping parameters γ5 and γ2 between graphene
sheets, this artificial material may exhibit different semimetal phases
illustrated by the dispersion sketches. The black mark in the
parameter map indicates parameter values we obtain from DFT cal-
culations yielding the range γ5 ∈ {0.48 γ 2/VB, 0.64 γ 2/VB} and γ2 ∈
{−0.10 γ 2/VB, −0.07 γ 2/VB} with increasing interlayer distance d ,
identifying overlapping bands as the most likely phase (pink regime).
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properties and topology entail protected surface states and
anomalous responses to external electric and magnetic fields
[22–28]. Subsequently, we use DFT calculations to obtain
estimates for the coupling parameters and establish the actual
phase of the 3D Gr/hBN crystal to feature overlapping, non-
topological bands; cf. Fig. 1.

This manuscript is structured as follows. In Secs. II A and
II B, we discuss the low-energy effective Hamiltonian for 3D
Gr/hBN stacks with parallel hBN layers yielding the phase di-
agram of Fig. 1. In Sec. II C we present our DFT calculations
used to parametrize the hopping parameters and to determine
the most likely phase. In Sec. III we consider an alternative
stacking sequence, where the hBNs are alternatingly rotated
before placing them onto the graphene, resulting in adjacent
hBN crystals in every second layer being antiparallel to each
other (cf. Fig. 4). For this case of antiparallel stacking of hBN
layers, we again analyze the resulting 3D band structures in
terms of the low-energy Hamiltonian and complimentary DFT
calculations. We discuss our results in Sec. IV and give details
of the derivations and DFT calculations in the Appendixes.

II. PARALLEL STACKING

A. Phenomenological low-energy effective Hamiltonian

Starting from a hybrid k · p theory tight-binding ap-
proach [29] for the 3D graphene/hBN crystal we derive the
low-energy effective Hamiltonian for the electrons on the
graphene layers subject to perturbations from the adjacent
hBNs [3,30,31]. Hybridization between graphene and hBN
orbitals has been studied previously and used in earlier studies
of, e.g., moiré superlattices of single Gr/hBN interfaces [8].
Here, we use second order perturbation theory in the inter-
layer hoppings to exclude the boron and nitrogen bands (see
Appendix A for details of the calculation). For the 3D
Gr/hBN stacks with translated (parallel, p) hBN layers as
depicted in Fig. 1, the resulting low-energy Hamiltonian for
the electrons in graphene reads

Hp

=
(

− 2γ 2

VB
[1+ cos(2kzd )]+2γ5 cos(2kzd ) vπ†

vπ 2γ2 cos(2kzd )

)
,

(1)

operating in the space spanned by the two-component wave
function � = (ψCA, ψCB ) describing electronic amplitudes on
the CA and CB sites of the graphene lattice. Further, π = px +
ipy (p = −ih̄∇), VB is the on-site potential of boron measured

with respect to the on-site potentials of carbon, v =
√

3a
2 γ0 is

the Fermi velocity, and d is the distance between graphene
and hBN as indicated in Fig. 1.

For a faithful description of low-energy features in the
electronic structure it is crucial to retain all the relevant cou-
plings between different atomic sites [30]. Here, we take into
account γ (between carbon and boron atoms), as well as the
interlayer coupling parameters between graphene layers γ5

and γ2 between the in-equivalent carbon atoms CA (separated
by a boron atom) and CB (separated by a hollow position).
The precise values of these hoppings are a priori unknown.
To explore the full parameter space, we first treat γ5 and γ2 as

free parameters in relation to γ in the following discussion of
possible phases. Then, in Sec. II C, we use DFT to estimate
these parameters and establish the actual phase.

B. Semimetal band structures

The relative magnitude and sign of the hopping parameters
between different atomic lattice sites determines the electronic
properties of the 3D Gr/hBN crystals in Fig. 1.

We find that a 3D Gr/hBN crystal with parallelly ori-
ented hBN layers either features overlapping electron and
hole pockets or type I or type II Weyl points depending on
the hopping parameters γ2 and γ5. Figure 1 demonstrates this
parametric dependence of the electronic properties, showing
the phase diagram in the plane spanned by the interlayer hop-
pings and examples for the distinct possible 3D band structure
types that we obtain from diagonalizing Hp in Eq. (1). In
the gapless phases, linear Weyl nodes [22,24,32–35] form at
momentum points k0 = (0, 0, kz0) with

kz0 = ± 1

2d
arccos

[
− γ 2

γ 2 + VB(γ2 − γ5)

]
. (2)

These touchings can be type I Weyl nodes (closed or point-
like Fermi surfaces, blue phase in Fig. 1) or type II Weyl
nodes (overlap between electron and hole bands leading to
open Fermi surfaces, gray phase in Fig. 1) [22,27,35], and
we find them to be Chern-nontrivial with Chern numbers
C = ±1.

C. Modeling of graphene-hBN multilayers with density
functional theory

To estimate values for the parameters in Eq. (1) we
perform electronic structure calculations of the 3D Gr/hBN
stack in Fig. 1 by DFT [36] with QUANTUM ESPRESSO [37].
Self-consistent calculations are carried out with a k-point sam-
pling of 36 × 36 × 18. We use an energy cutoff for charge
density of 480 Ry and the kinetic energy cutoff for wave
functions is 60 Ry for the scalar-relativistic pseudopoten-
tials with the projector augmented wave method [38] with
the Perdew-Burke-Ernzerhof exchange correlation functional
[39]. Spin-orbit coupling is not included in the calculations.
DFT-D2 van der Waals corrections are also included [40–42].

Our DFT calculations confirm that the atomic arrangement
in Fig. 1 is indeed the lowest energy configuration, where
B atoms serve as dimer atoms for C atoms in graphene.
For this lowest-energy stacking, we fit the parameters of the
model Hamiltonian. We present the extracted values of the
parameters as a function of the interlayer distance in Fig. 2.
The black mark in the parameter plot of Fig. 1 corresponds
to these DFT parameter values in Fig. 2. The resulting DFT
band structure for the lowest energy configuration yields an
interlayer distance of d = 3.15 Å and confirms the top right
continuum model bands in Fig. 1 (pink phase). Based on
these results we claim the most likely phase of the parallelly
stacked 3D Gr/hBN crystal to feature separated, overlapping
bands. We show the corresponding shape of the EF = 0 Fermi
surface in Fig. 3.

Note that a small lattice mismatch of graphene and hBN
does lead to moiré patterns [3,43,44]. Therefore, one cannot
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FIG. 2. Parameters obtained by fitting the model Hamiltonian [see Appendix B, Eq. (B1)] to the DFT-calculated low energy band structure,
as a function of the layer spacing d . In the rightmost figure, we explicitly compare the DFT and model low energy band structure for the lowest
energy distance d = 3.15 Å.

a priori exclude other stacking configurations within ex-
perimental setups. In Appendix B, we compare to the other
commensurate high-symmetry stackings, where either N or
both N and B atoms serve as dimer atoms. We also introduce
model Hamiltonians, similar to above, and parametrize them
according to the DFT results. We observe band touchings
and conical band intersections for the parallel stacking con-
figurations where graphene and nitrogen atoms dimerize; cf.
Figs. 8 and 9 in Appendix B. Hence the electronic phase
is determined by the stacking configuration. Reducing the
interlayer distance, achievable with external pressure, does not
lead to a phase transition. We explicitly demonstrate this in the
Supplemental Material [45], where we show movies of the
evolution of the band structures as a function of the interlayer

distance for the different stackings. However, since all com-
mensurate high-symmetry stackings are potentially present in
realistic experimental structures, the full phase diagram in
Fig. 1 is physically relevant and one can expect local varia-
tions of the electronic phase in large scale samples.

III. ANTIPARALLEL STACKING

We turn to 3D Gr/hBN crystals where the adjacent hBN
layers are rotated by 180◦ with respect to each other (antipar-
allel, ap; see the sketch in Fig. 4). In a similar fashion as for
the parallel case we compute the low-energy Hamiltonian for
antiparallel stacking,

Hap =

⎛
⎜⎜⎜⎜⎝

− 2γ 2

VB
vπ† ei4dkzγ2 + γ5 − γ 2

VB
0

vπ − 2γ 2

VB
0 γ2 + ei4dkz

(
γ5 − γ 2

VB

)
e−i4dkzγ2 + γ5 − γ 2

VB
0 − 2γ 2

VB
vπ†

0 γ2 + e−i4dkz
(
γ5 − γ 2

VB

)
vπ − 2γ 2

VB

⎞
⎟⎟⎟⎟⎠. (3)

Note that the periodicity of the unit cell in the case of antipar-
allelly stacked hBN layers, Fig. 4, is twice as large compared
to the case of parallel stacking; cf. Fig. 1. See Appendix A for
details of the calculation.

We diagonalize Hap in Eq. (3) to obtain the 3D band
structures of Gr/hBN stacks with antiparallel arrangement of
adjacent hBN layers. We compare different types of possible
dispersions in Fig. 4 for different values of the couplings γ5

and γ2 (similar values as in the parallel case, Fig. 1, for the
blue and magenta phase). We find gapless band structures
for all coupling parameters as a consequence of the restored
inversion symmetry of the antiparallel stacking configuration
compared to the parallel one (the gray and the pink phase in
Fig. 1 merge). The two electron bands and the two hole bands
are degenerate, respectively, along kz with kx = ky = 0. All

bands show conical band touchings at zero energy along a ring
of radius

k′
0 = 1

v

(
γ 2

VB
− γ2 − γ5

)
, (4)

as well as for zero momentum at energies

ε = ± 1

VB
(
√

[γ 2 − (γ2 + γ5)VB]2 − γ 2) (5)

in the conduction/valence band.
As in the case of parallelly stacked crystals, our DFT

calculations confirm the lowest-energy stacking configuration
and the results of the continuum model with the coupling
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FIG. 3. Fermi surface for EF = 0 of the overlapping bands of
the parallelly stacked Gr/hBN 3D crystals that we identify using the
parameters obtained from DFT.

parameters of the magenta phase (rightmost panel in Fig. 4).
We show the conical band touchings and the resulting
EF = 0 Fermi line for the set of parameters from DFT in
Fig. 5.

IV. CONCLUSION

We presented the possible electronic structure of 3D stacks
of alternating graphene and hBN layers with different symme-
tries. The atomic arrangements we consider represent the most
stable configurations for carbon and boron/nitrogen atoms
in single adjacent layers [19,20] as we confirm using DFT
calculations. Since the hopping parameters between graphene
atoms in different layers are a priori unknown, we iden-
tify regimes with different electronic properties (semimetallic,
overlapping bands, and Weyl semimetals) upon varying these
hoppings. We then extract estimates for the hopping parame-
ters from DFT electronic structure calculations to determine

FIG. 5. Conical crossings between the 3D bands of antiparallelly
stacked Gr/hBN stacks at kz = 0 that we determine for the param-
eters obtained from DFT. The white ring of radius k′

0 indicates the
EF = 0 Fermi line.

the most likely electronic phases. Regimes with different
electronic band structures would make for distinctively dif-
ferent experimental signatures. Therefore, knowledge of the
different possible types of dispersions presented here will help
in identifying signatures of the band structure in both transport
and spectroscopy experiments to confirm the relative sign and
magnitude of these material parameters and set boundaries for
their values. Moreover, we anticipate that these out-of-plane
hopping parameters could be manipulated, e.g., by applying
perpendicular pressure to the 3D stacks [46–48]. We hence
confirm the stability of the electronic phase from DFT for
different values of the interlayer distance.

Individual layers of graphene and hBN are very commonly
combined in heterostructures with increasing precision and
control, making the proposed crystals of alternating mono-
layers achievable in experiment. Using these 3D stacks of
graphene and hBN as examples, we have demonstrated that
artificial 3D crystals of individual atomic layers represent

FIG. 4. Possible dispersions for 3D Gr/hBN crystals with antiparallel stacking, where adjacent hBNs in every second layer are rotated with
respect to each other (sketch on the left). The dashed orange box illustrates that the unit cell in the z direction is twice as large for antiparallel
stacking compared to parallel arrangements. We chose similar parameters as for the phases (blue, magenta) in Fig. 1. The phenomenological
low-energy description in the magenta phase reproduces our DFT results (rightmost dispersion for a cut along the turquoise path in momentum
space where the two electron bands and the two hole bands are degenerate, respectively).
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an advanced synthetic 3D materials class with intriguing,
potentially topologically nontrivial electronic properties only
now achievable in experiments [1,49,50]. Besides the cases of
alternating sequencing studied in this work, one may consider
other stacking sequences with longer periods [51,52], stacking
faults, interlayer twisting, and the combination of multiple
different 2D materials. Such considerations are left for further
studies.
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APPENDIX A: DERIVATION OF THE LOW-ENERGY
HAMILTONIANS

For the parallel stacking we start from the 4 × 4 Hamilto-
nian,

H =
(

HG T †

T HhBN

)
, (A1)

in the basis of the graphene and hBN atomic sites
(CA, CB, N, B), where

HG =
(

V A
C + 2γ5 cos(2kzd ) vπ†

vπ V B
C + 2γ2 cos(2kzd )

)
,

HhBN =
(

VN 0

0 VB

)
, T = (1 + e−i2kzd )T0,

T0 =1

3

2∑
j=0

ei(K j−K0 )·r0

(
γN γN e−i2π j/3

γBei2π j/3 γB

)
,

K j =4π

3a

(
cos

j2π

3
, sin

j2π

3

)
( j = 0, 1, 2), (A2)

and for the relaxed equilibrium stacking considered in the
main text the interlayer offset is r0 = (0, a√

3
). Eliminating the

hBN sites,

Hp = HG + T †(−HhBN)−1T, (A3)

assuming V A
C ,V B

C � VB, and setting γ ≡ γB, we arrive at the
expression in Eq. (1) of the main text.

Similarly, for the alternative antiparallel stacking, we start
from the Hamiltonian,

H̃ =
(

HGG T̃ †

T̃ HhBNhBN

)
, (A4)

in the basis of atoms on the upper and lower layers,
(CA, CB, C̃A, C̃B, N, B, B̃, Ñ), where

HGG =

⎛
⎜⎜⎝

V A
C vπ† γ5 + ei4kzdγ2 0

vπ V B
C 0 γ2 + ei4kzdγ5

γ5 + e−i4kzdγ2 0 V A
C vπ†

0 γ2 + e−i4kzdγ5 vπ V B
C

⎞
⎟⎟⎠,

HhBNhBN =

⎛
⎜⎜⎝

VN 0 0 0
0 VB 0 0
0 0 VB 0
0 0 0 VN

⎞
⎟⎟⎠, T̃ = γ

⎛
⎜⎜⎝

0 0 0 0
1 0 1 0
0 e−i4kzd 0 1
0 0 0 0

⎞
⎟⎟⎠. (A5)

Then, we obtain Hap in Eq. (3) via the usual transformation,

Hap = HGG + T̃ †(−HhBNhBN)−1T̃ , (A6)

for V A
C ,V B

C � VB.

APPENDIX B: DETAILS OF THE DFT CALCULATIONS

1. Structural information

Among the parallel configurations, we have three different choices to set up the unit cell [9]. The energetically most favorable
is where CA and B are dimer atoms, while CB and N are nondimer atoms; see Fig. 6(a). The in-plane lattice constant is chosen
to be a = 2.4846 Å, to compensate for the lattice mismatch between graphene and hBN [9]. Initial interlayer distances are
summarized in the caption of Fig. 6. We also perform an interlayer distance study to find the energetically most favorable
situation.
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FIG. 6. Geometries of the parallel stacking configurations. The dashed lines represent the unit cell. (a) CA and B are dimer atoms, while
CB and N are nondimer atoms. The interlayer distance d = 3.35 Å. (b) CA and N are dimer atoms, while CB and B are nondimer atoms. The
interlayer distance d = 3.50 Å. (c) CA and B, as well as CB and N, are dimer atoms. The interlayer distance d = 3.55 Å. Initial interlayer
distances from Ref. [9].

FIG. 7. Top: DFT and fit results for the geometry in Fig. 6(a). Bottom: the corresponding DFT-calculated projected band structure.
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TABLE I. Fit parameters of the model Hamiltonian H(a)
p , for different interlayer distances. The reference energy is the lowest energy.

d (Å) γ0 (eV) γ B
1 (eV) γ2 (eV) γ5 (eV) V A

C (eV) V B
C (eV) VB (eV) VN (eV) E − Eref (eV)

3.05 2.75470 0.82614 −0.02102 0.09618 0.24316 0.03318 3.37880 −1.29091 0.00194
3.15 2.69242 0.71470 −0.01501 0.07636 0.18641 0.02375 3.35765 −1.32144 0
3.25 2.64012 0.61771 −0.01069 0.06018 0.14587 0.02035 3.34286 −1.34743 0.00833
3.35 2.59775 0.53364 −0.00761 0.04716 0.11139 0.01456 3.32984 −1.37067 0.02219
3.45 2.56400 0.46093 −0.00542 0.03679 0.08449 0.00978 3.31976 −1.39077 0.03876
3.55 2.53771 0.39811 −0.00388 0.02859 0.06399 0.00631 3.31176 −1.40743 0.05622
3.65 2.51729 0.34409 −0.00281 0.02219 0.04918 0.00449 3.30500 −1.42199 0.07354
3.75 2.50181 0.29784 −0.00205 0.01724 0.03928 0.00441 3.30070 −1.43176 0.09008

2. Model Hamiltonians to fit the DFT data

The model Hamiltonian for the geometry in Fig. 6(a) in the ordered basis (CA, CB, N, B) is

H(a)
p =

⎛
⎜⎜⎜⎝

V A
C + 2γ5 cos(kzc) γ0 f (k) 0 γ B

1 [1 + exp(ikzc)]

γ0 f ∗(k) V B
C + 2γ2 cos(kzc) 0 0

0 0 VN 0

γ B
1 [1 + exp(−ikzc)] 0 0 VB

⎞
⎟⎟⎟⎠, (B1)

where V A
C , V B

C , VB, and VN are on-site potentials. The parameters γi, i = {0, 1, 2, 5} correspond to intra- and interlayer hopping

amplitudes [53], f (k) = e
i

a√
3

ky [1 + 2 e−i

√
3a
2 ky cos( a

2 kx )] is the structural function of graphene, and c = 2d is the lattice constant

FIG. 8. Top: DFT and fit results for the geometry in Fig. 6(b). Bottom: the corresponding DFT-calculated projected band structure.
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FIG. 9. Top: DFT and fit results for the geometry in Fig. 6(c). Bottom: the corresponding DFT-calculated projected band structure.

in z direction. In analogy, the model Hamiltonian for the geometry in Fig. 6(b) in the ordered basis (CA, CB, B, N) is

H(b)
p =

⎛
⎜⎜⎜⎝

V A
C + 2γ5 cos(kzc) γ0 f (k) 0 γ N

1 [1 + exp(ikzc)]

γ0 f ∗(k) V B
C + 2γ2 cos(kzc) 0 0

0 0 VB 0

γ N
1 [1 + exp(−ikzc)] 0 0 VN

⎞
⎟⎟⎟⎠. (B2)

TABLE II. Fit parameters of the model Hamiltonian H(b)
p , for different interlayer distances.

d (Å) γ0 (eV) γ N
1 (eV) γ2 (eV) γ5 (eV) V A

C (eV) V B
C (eV) VB (eV) VN (eV) E − Eref (eV)

3.10 2.25211 0.43522 −0.01971 0.02840 0.01380 −0.03399 3.01740 −1.55462 0.06995
3.20 2.29749 0.36510 −0.01411 0.02101 0.01076 −0.02424 3.08254 −1.52662 0.05677
3.30 2.33659 0.30670 −0.01012 0.01509 0.00725 −0.01751 3.13329 −1.50618 0.05485
3.40 2.36844 0.25815 −0.00728 0.01045 0.00388 −0.01285 3.17258 −1.49182 0.05987
3.50 2.39339 0.21790 −0.00525 0.00692 0.00113 −0.00941 3.20297 −1.48154 0.06919
3.60 2.41262 0.18494 −0.00380 0.00420 −0.00163 −0.00739 3.22568 −1.47470 0.08065
3.70 2.42711 0.15816 −0.00279 0.00213 −0.00355 −0.00568 3.24278 −1.47029 0.09328
3.80 2.43767 0.13657 −0.00207 0.00060 −0.00483 −0.00435 3.25588 −1.46734 0.10616
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TABLE III. Fit parameters of the model Hamiltonian H(c)
p , for different interlayer distances.

d (Å) γ0 (eV) γ B
1 (eV) γ N

1 (eV) γ2 (eV) γ5 (eV) V A
C (eV) V B

C (eV) VB (eV) VN (eV) E − Eref (eV)

3.15 1.98206 0.71627 0.40386 0.02357 0.07780 0.16312 0.03231 3.25605 −1.36919 0.08568
3.25 2.13136 0.61940 0.33878 0.01722 0.06117 0.12664 0.02461 3.26689 −1.38102 0.07053
3.35 2.23663 0.53526 0.28458 0.01219 0.04781 0.09836 0.01829 3.27438 −1.39315 0.06710
3.45 2.30986 0.46237 0.23965 0.00829 0.03721 0.07588 0.01256 3.27816 −1.40536 0.07098
3.55 2.36046 0.39939 0.20266 0.00526 0.02885 0.05873 0.00795 3.28132 −1.41596 0.07920
3.65 2.39517 0.34524 0.17246 0.00295 0.02235 0.04590 0.00457 3.28350 −1.42555 0.08985
3.75 2.41887 0.29884 0.14800 0.00123 0.01732 0.03626 0.00219 3.28483 −1.43317 0.10162
3.85 0.25930 0.259298 0.12843 −5.06750 × 10−5 0.01347 0.02865 5.07040 × 10−5 3.28621 −1.43986 0.11372

Finally, the model Hamiltonian for the geometry in Fig. 6(c) in the ordered basis (CA, CB, N, B) is

H(c)
p =

⎛
⎜⎜⎜⎝

V A
C + 2γ5 cos(kzc) γ0 f (k) 0 γ B

1 [1 + exp(ikzc)]

γ0 f ∗(k) V B
C + 2γ2 cos(kzc) γ N

1 [1 + exp(ikzc)] 0

0 γ N
1 [1 + exp(−ikzc)] VN 0

γ B
1 [1 + exp(−ikzc)] 0 0 VB

⎞
⎟⎟⎟⎠. (B3)

3. Results

In Fig. 7, we provide the DFT and fit results for the geometry in Fig. 6(a) for an interlayer distance of 3.35 Å. The minimal
model Hamiltonian Eq. (B1) accurately reproduces the low energy bands, with the fit parameters summarized in Table I. We also
provide a projected band structure to identify the sublattice contributions to the bands. In fact, the DFT results confirm that the
energetically most favorable stacking results in a trivial (magenta) phase in the diagram of Fig. 1.

Similarly, we provide the DFT-calculated band structures with fit results for the other geometries in Figs. 8 and 9, with the
model parameters summarized in Table II and Table III. We find that the other stacking configurations provide low energy bands
in the nontrivial phase. So it is likely that, within a Gr/hBN moiré structure, both phases coexist.

Finally, the interlayer distance dependence of the model parameters, for all three stacking configurations, is summarized in
Fig. 10. In the Supplemental Material [45] we also provide movies of the band structure evolution with the interlayer distance,
demonstrating that a phase transition is not possible by tuning the distance.

FIG. 10. Evolution of the fit parameters as a function of the interlayer distance, summarizing the results from Table I, Table II, and Table III.

125402-9



XI CHEN et al. PHYSICAL REVIEW B 107, 125402 (2023)

[1] F. Liu, W. Wu, Y. Bai, S. H. Chae, Q. Li, J. Wang, J. Hone, and
X.-Y. Zhu, Science 367, 903 (2020).

[2] Z. Wang, Y. B. Wang, J. Yin, E. Tóvári, Y. Yang, L. Lin, M.
Holwill, J. Birkbeck, D. J. Perello, S. Xu, J. Zultak, R. V.
Gorbachev, A. V. Kretinin, T. Taniguchi, K. Watanabe, S. V.
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