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The effects of SARS-CoV-2 in COVID-19 on the nervous system are incompletely under-
stood. SARS-CoV-2 can infect endothelial cells, neurons, astrocytes, and oligodendrocytes
with consequences for the host. There are indications that infection of these CNS-resident
cells may result in long-term effects, including emergence of neurodegenerative diseases.
Indirect effects of infection with SARS-CoV-2 relate to the induction of autoimmune dis-
ease involving molecular mimicry or/and bystander activation of T- and B cells and emer-
gence of autoantibodies against various self-antigens. Data obtained in preclinical mod-
els of coronavirus-induced disease gives important clues for the understanding of ner-
vous system-related assault of SARS-CoV-2. The pathophysiology of long-COVID syn-
drome and post-COVID syndrome in which autoimmunity and immune dysregulation
might be the driving forces are still incompletely understood. A better understanding of
nervous-system-related immunity in COVID-19 might support the development of thera-
peutic approaches. In this review, the current understanding of SARS-CoV-2 tropism for
the nervous system, the associated immune responses, and diseases are summarized.
The data indicates that there is viral tropism of SARS-CoV-2 in the nervous system result-
ing in various disease conditions. Prevention of SARS-CoV-2 infection by means of vac-
cination is currently the best strategy for the prevention of subsequent tissue damage
involving the nervous system.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
a beta-coronavirus. SARS-CoV-2 is causing coronavirus disease 19
(COVID-19) which emerged at the end of 2019 in Wuhan in China
[1, 2]. Since its appearance, it has spread over the globe. COVID-
19 is mainly affecting the lungs leading to an atypical pneumonia.
Most organs in the body can be affected by COVID-19. SARS-CoV-
2 has mutated fast resulting in multiple lineages and sublineages
with variations in regional distribution and different degrees of
infectivity [3].

The positive ssRNA genome of SARS-CoV-2 encodes 16 non-
structural proteins involved in viral replication and four structural
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proteins (envelope, spike-glycoprotein, membrane, nucleocapsid)
[4]. Angiotensin-converting enzyme 2 (ACE2) is the receptor for
uptake of SARS-CoV-2 [5, 6]. Co-factors are heparan sulfates on
the cell surface and various additional co-factors for SARS-CoV-
2 including neuropilin 1 that may differ also depending on the
infected cell type [7–11]. The spike protein is of major impor-
tance for interaction with ACE2 and cellular uptake. ACE2 is
expressed in many cells of the body and therefore SARS-CoV-
2 can infect most organs [12]. SARS-CoV-2 uses the infected
cell for the production of virus [13]. Many host factors of rele-
vance have been identified as important for infection by SARS-
CoV-2 [11]. Reverse-transcribed SARS-CoV-2 mRNA can inte-
grate into the genome of cultured cells [14]. It can produce
chimeric transcripts of the fusion of viral and cellular sequences
in human tissue [15]. The SARS-CoV-2-induced presence of the
host factor of long interspersed element-1 strongly increases
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the efficacy of retrotransposition of SARS-CoV-2 in human
tissue [15].

In SARS-CoV-2 infection resulting in COVID-19, there is often
affection of the nervous system with impact on the immune sys-
tem as outlined in this article. Moreover, in post-COVID syndrome,
clinical signs of nervous system involvement are observed. So far
it is still debated how far SARS-CoV-2 itself is neurotropic. Many
effects on the nervous system mediated by SARS-CoV-2 in COVID-
19 are related to indirect effects of SARS-CoV-2 infection and
SARS-CoV-2-induced autoimmune disease.

Effects of SARS-COV-2 in COVID-19 on the nervous
system

SARS-CoV-2 in COVID-19 can affect the nervous system through
various mechanisms. The effects of SARS-CoV-2 on the CNS are
not just dependent on a putative assault on neurons but in addi-
tion on other CNS resident cells like astrocytes, oligodendro-
cytes, endothelial cells, and microglia. So far it is not completely
resolved how far SARS-CoV-2 can infect neurons and which type
of neurons are affected since there is no general agreement
regarding neurotropism of SARS-CoV-2 [16, 17]. Dysosmia and
ageusia have been observed early on in patients with COVID-19
[18]. Sustentacular cells are the major target cell type in the olfac-
tory mucosa that is infected by SARS-CoV-2 [16]. Analysis of post-
mortem olfactory sensory neurons from patients with COVID-19
did not show viral infection. Therefore, it has been concluded that
SARS-CoV-2 does not appear to be a neurotropic virus. Rather, it
has been postulated that transient insufficient support from sus-
tentacular cells triggers olfactory dysfunction in COVID-19, that
is, olfactory sensory neurons are affected without getting infected.
Viral invasion was not observed due to anatomical barriers at
vulnerable interfaces [19]. Olfactory dysfunction in COVID-19 is
accompanied by T-cell infiltration with CD4+ and CD8+ positive
T-cells expressing IFN-γ and granzyme B [20]. The persistence
of olfactory dysfunction is associated with the persistence of T-
cells expressing IFN-γ and enrichment of antigen-presenting cells,
especially CD207+ dendritic cells [21].

The potential lack of neurotropism has been debated by others
who found infection of olfactory bulb sensory neurons [22]. In
addition, infection of neurons involved in taste sensing (ageusia)
has been reported [23]. It has been shown that human-induced
pluripotent stem cell-derived sensory neurons can be infected by
SARS-CoV-2 [17]. The infected cells were not capable of produc-
ing the virus.

There is evidence that SARS-CoV-2 is neurotrophic based on
investigations in other parts of the nervous system. Structures
and diseases possibly related to direct infection by SARS-CoV-2
in COVID-19 are indicated in Table 1.

Infection with SARS-CoV-2 can lead to endotheliitis that can
affect CNS vessels [24, 25]. In endotheliitis, there is accumula-
tion of lymphocytes, neutrophils, and macrophages in endothe-
lial walls. Endotheliitis can have major consequences eventually
resulting in ischemic stroke. Also, alternative mechanisms of dam-

age to large and small cerebral vessels by SARS-CoV-2 in COVID-
19 have been observed [26]. In the heart, it has been shown that
endotheliitis leads to small vessel vasculitis. This can also involve
epicardial nerves in COVID-19 with the appearance of an inflam-
matory neuropathy, possibly resulting in cardiac complications
such as myocardial injury and arrhythmias [27]. The main pro-
tease (Mpro) of SARS-CoV-2 cleaves NEMO which is a modulator
of NF-κB. This in turn leads to the death of brain endothelial cells
in mice [28]. Antibody-mediated cytotoxicity directed against the
endothelial cells, which has been observed postmortem in patients
with COVID-19, may act as a potential initial triggering event for
tissue damage leading to vascular leakage, platelet aggregation,
neuroinflammation, and neuronal injury [29].

At biopsy or autopsy, besides hypoxia, CNS microthrombi,
thromboembolic disease, inflammation, and hemodynamic-
mediated changes were found in COVID-19 [30]. Mainly dur-
ing the initial emergence of SARS-CoV-2 and COVID-19 due to
lack of disease understanding and lack of adequate intensive care
respiratory support, reduced oxygenation caused by SARS-CoV-
2-induced pneumonia in COVID-19 resulted in severe hypoxia
of CNS [31]. Acute hypoxic-ischemic injury led to neuronal loss
and presence of apoptotic neurons. This kind of CNS damage
is unrelated to direct viral infection of the CNS by SARS-CoV-2
in COVID-19 or indirect effects mediated by the virus-induced
immune response within the CNS but a consequence of the
strongly reduced oxygenation of erythrocytes in the lung result-
ing in hypoxia of the CNS.

There is further evidence that SARS-CoV-2 can be present in
CNS in COVID-19 [32–35]. In a postmortem study of patients who
died of COVID-19, SARS-CoV-2 was found in multiple organs out-
side the respiratory system including the brain [36]. The degree
of infection with SARS-CoV-2 of multiple organs was higher in
severe cases of COVID-19. Importantly, in this study, only a low
degree of inflammation was observed outside of the respiratory
tract. On the other hand, significant neuroinflammation with acti-
vation of innate and adaptive immune cells was found in COVID-
19 neuropathology [37].

It has been shown that nanotubes provide a route for spread-
ing of SARS-CoV-2 in the CNS [38]. SARS-CoV-2 nucleoprotein is
found early in infection in neurons of the myenteric plexus [39].
In this area, ACE2 is highly expressed. In cerebral cortical tissues,
NOD-, LRR- and pyrin domain-containing protein 3 is co-localized
with ACE2 and viral nucleoprotein [40].

There is preliminary data indicating that SARS-CoV-2 invades
the brain and induces molecular and cellular changes as in
Alzheimer‘s disease [41]. There are indications that SARS-CoV-
2-derived- neurotoxic amyloidogenic peptides may trigger neu-
rological symptoms in COVID-19 [42]. SARS-CoV-2 spike pro-
tein may be amyloidogenic [43]. In postmortem brain of rhe-
sus and cynomolgus macaques after pulmonary disease induced
with SARS-CoV-2, brain infiltration of T-cells and activated
microglia were found [44]. Interestingly, also α-synuclein aggre-
gates were found. Such aggregates are involved in Parkinson’s dis-
ease. There is an ongoing debate regarding the disease-inducing
and modifying roles of SARS-CoV-2 in Parkinson’s disease [45].
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SARS-CoV-2 infected mice with respiratory symptoms had an
increased expression of cytokines and chemokines, especially of
CCL11 in cerebro-spinal fluid (CSF) leading to an activation
of hippocampal microglia [46]. Subsequently, neurogenesis was
impaired and there was loss of oligodendrocytes and myelinated
axons. Similar findings were seen in patients with respiratory
COVID-19.

In a mouse model of neurotropic coronavirus disease induced
with mouse hepatitis virus (MHV), surviving oligodendrocytes are
long-term infected with MHV for at least 150 days [47]. This
infection resulted in cerebral demyelination and the degree of
demyelination was associated with increased numbers of infil-
trating T cells and the presence of activated microglia and
macrophages. MHV-infected oligodendrocytes expressed more
major histocompatibility class I (MHC I) molecules on the cell
surface compared to non-infected oligodendrocytes. In addition
to their potential role in demyelination, such infected oligoden-
drocytes might also be involved in remyelination.

There are indications that SARS-CoV-2 mainly affects cor-
tical astrocytes in the CNS [48]. Such astrocytes have no or
low ACE2 expression. Interestingly, in such astrocytes high lev-
els of CD147 (basigin also known as EMMP inducer) and CD26
(dipeptidyl peptidase-4) are observed which can possibly act
as co-receptors for SARS-CoV-2 [49]. Following infection with
SARS-CoV-2, downstream cellular stress and glial reactivity were
observed. In addition, neuronal infection by SARS-CoV-2 was
observed to a much lower degree compared with cortical astro-
cytes [48].

Taken together, there is much evidence that SARS-CoV-2 is
neurotrophic. Not much is known regarding the consequences on
the immune system caused by this neurotropism. Possibly, neu-
rotropism differs between different SARS-CoV-2 variants [50].

Indirect effects mediated by SARS-CoV-2 in COVID-19
on the nervous system

In the case of infection with SARS-CoV-2 in COVID-19, a cytokine
storm can take place leading to multiple consequences on vari-
ous organs including the CNS [51]. Inflammasome activation in
infected macrophages has been shown to be of paramount impor-
tance for driving widespread immune activation and cellular dam-
age [52]. In line with a preceding cytokine storm in severe COVID-
19 cases with neurological symptoms is the observation of dedif-
ferentiated monocytes and exhausted CD4+ T cells in CSF [53].

There are several neurological symptoms and diseases involv-
ing the peripheral or/and CNS that are associated with COVID-
19. These include Guillain–Barré syndrome, myasthenia gravis,
opsoclonus-myoclonus syndrome, and others as outlined in
Table 2. In these diseases, a direct effect of SARS-CoV-2 and
subsequent tissue damage is unlikely, and other mechanisms are
hypothesized. Such potential mechanisms include activation of
the adaptive immune response by molecular mimicry or/and
bystander activation. Molecular mimicry means that there may be
structural similarity between virus sequences or/and domains and

structures and sequences of the host. These similarities can result
in an immune response of T cells and B cells that are not only
directed against parts of the virus but also against self-proteins,
for example, the nicotinic acetylcholine receptor (nAChR) that is
the main autoantigen in myasthenia gravis. In bystander activa-
tion, the adaptive immune response triggered by viral infection
can cause an activation of an immune response directed against
self-antigens that will also result in autoimmune disease.

There is increasing knowledge regarding the structural
requirements for induction of autoimmune disease after viral
infection with SARS-CoV-2. Preceding infection with SARS-CoV-
2 in COVID-19 can lead to broad cellular perturbations in the
absence of molecular traces of SARS-CoV-2 in the brain [54].
Especially the choroid plexus, which is involved in T-cell traffick-
ing into the brain, appears to play a pivotal role in these pro-
cesses. Affected brain regions after COVID-19 seem to be overlap-
ping with neurodegenerative and neuropsychiatric diseases.

In the JHM coronavirus-induced model in the LEW rat, myelin-
basic-protein specific T cells were primed by coronavirus that per-
sisted and could be transferred to naïve recipients resulting in
CNS disease [55]. In patients with multiple sclerosis T cells that
cross-recognize coronavirus sequences of strain 229E and myelin
basic protein have been found [56]. Possibly, these findings could
be relevant for SARS-CoV-2 mediated nervous system involve-
ment and induction of secondary autoimmunity in COVID-19.

Long-COVID syndrome and post-COVID syndrome

Some patients who had COVID-19 subsequently develop long-
COVID syndrome or/and post-COVID syndrome [57–59]. In long-
COVID syndrome (time span 4 weeks to three months after
COVID-19) it has been found that during this time window, a mul-
titude of symptoms can emerge that are unrelated to the initial
manifestations of COVID-19. These often include unspecific neu-
rological symptoms like fatigue, irritability, and mnestic problems.
Also, in post-COVID syndrome (time span three months to years
after COVID-19) there is persistence or new emergence of symp-
toms related to SARS-CoV-2. Long-COVID syndrome as well as
post-COVID syndrome are still incompletely understood regarding
their pathological, molecular, and immunological basis. Longitu-
dinal effects of SARS-CoV-2 in COVID-19 on the brain in compar-
ison to non-infected individuals were observed in imaging stud-
ies with a reduction of grey matter thickness in the orbitofrontal
and parahippocampal gyrus [60]. Regions that are functionally
connected to the olfactory cortex were affected by morphologi-
cal changes and a reduction of global brain size was observed.
Also, the temporal lobe was involved which is critical for memory
formation [60]. The patients often describe neuropsychological
deterioration that is named “brain fog” [46]. A typical neurologi-
cal manifestation during this time window is fatigue with varying
degrees. The condition is clinically similar to chronic fatigue syn-
drome, also named myalgic encephalomyelitis. In chronic fatigue
syndrome, there is a strong indication of an energy failure on the
cellular level which can result in rapid exhaustion and fatigue.

© 2023 The Authors. European Journal of Immunology published by
Wiley-VCH GmbH.
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In addition, there are changes in certain immune cell types that
can result in increased susceptibility to infection [61]. Changes in
lymphocyte stiffness, monocyte size, neutrophil size and deforma-
bility, and heterogeneity of erythrocyte deformation and size were
found [62]. Some authors have reported increased mast cell acti-
vation in patients with post-COVID syndrome [63].

Many autoantibodies are found in patients with COVID-19
that could be of relevance in long-COVID and post-COVID syn-
dromes [64]. In post-COVID syndrome, antibodies against spe-
cific chemokines were omnipresent [65]. Interestingly, the pres-
ence of these antibodies was associated with a better disease
outcome. Presently, there are no specific markers that allow a
laboratory-based diagnosis of post-COVID syndrome. Usually, CSF
analysis does not show distinctive features [66, 67]. There are
no approved therapeutic options for the treatment of fatigue
associated with long-COVID-19 syndrome or post-COVID-19 syn-
drome. Treatment approaches are mainly based on mild physical
endurance training. Currently, much effort is being undertaken to
define potentially effective treatments for post-COVID syndrome
in clinical trials involving many different treatment modalities
[68].

Antigen presentation in CNS in the context of
SARS-CoV-2 in COVID-19

The role of antigen presentation of SARS-CoV-2 in COVID-19 in
the CNS has not been extensively investigated up to now. Possi-
bly, such investigations would be of value to better understand
the effects of SARS-CoV-2 in COVID-19 in the CNS and sub-
sequent immune responses. There is evidence that SARS-CoV-2
infection leads to downregulation of MHC-I in infected cells [69,
70]. Downregulation of MHC-I on infected cells allows viral per-
sistence. This downregulation of MHC-I seems to be mediated
by proteins encoded in open reading frames (ORF) of SARS-
CoV2, mainly ORF3, ORF7a [70, 71], and ORF8 [69], but also
other mechanisms seem to be operative. In ORF8-expressing cells,
MHC-Ι molecules are selectively targeted for lysosomal degrada-
tion via autophagy. ORF3a and ORF7a act posttranslationally in
the secretory pathway to lower surface MHC-I expression. In one
study a mechanism of MHC-I downregulation has been demon-
strated that involved STAT1–IRF1–nucleotide-binding oligomer-
ization domain-like receptor family caspase activation and recruit-
ment domain containing 5 [72]. Interestingly, SARS-CoV-2 is
capable of immune evasion by spike-dependent targeting of ACE2
on CD8+ T cells and preventing immune synapse formation [73].

Host molecules involved in antigen presentation can have pro-
tective roles against the infectivity of SARS-CoV-2. In this respect,
it has been shown that CD74 (human leukocytes antigen [HLA]-
DR antigens-associated invariant chain) p41 can block the endo-
somal entry pathway of SARS-CoV-2 [74].

HLA peptidomics were used for the identification of SARS-
CoV-2-derived HLA peptides [75]. Several of the SARS-CoV-2
peptides are immunogenic. Many of the SARS-CoV-2 expressed
ligands on MHC-I are derived from out-of-frame ORFs [76].

HLA haplotypes and SARS-CoV-2 in COVID-19

There is evidence that HLA haplotypes affect susceptibility to
COVID-19 [77]. Severe COVID-19 cases are associated with cer-
tain HLA haplotypes [78]. In one specific study, the HLA-B*07:02
allele was associated with an elevated risk of high severity score of
COVID-19, whereas the HLA-C*15:02 allele was associated with
risk reduction [78]. Depending on the genetic background and
SARS-CoV-2 variants, there are indications that the HLA haplo-
type influences differ [77]. So far, there is no knowledge of the
potential influence of HLA haplotypes on neurological manifesta-
tions after infection with SARS-CoV-2 in COVID-19.

Interferons type I and SARS-CoV-2 in COVID-19

Autoantibodies against type I interferons are associated with
unfavorable outcomes of COVID-19 pneumonia [79]. Especially
in older individuals, autoantibodies against type I interferons
were observed that were associated with more severe disease
and increased mortality in COVID-19 [80]. Inborn errors of type
I interferon signatures involving TLR 3-dependent and IRF 7-
dependent type I interferon result in the most severe forms of
COVID-19 [81]. These findings were not confirmed in another
study [82]. No specific knowledge is presently available regard-
ing the influence of type I interferons on nervous system-related
outcomes in SARS-CoV-2 in COVID-19.

SARS-CoV-2 and vaccinations

Vaccines against SARS-CoV-2 are of paramount importance for the
prevention of COVID-19 or reduction of disease severity in COVID-
19. Besides mRNA-based vaccines, adenovirus-based vaccines and
protein vaccines have been introduced [83]. Newly emerging sub-
variants of the omicron variant of SARS-CoV-2 have an increased
ability to evade neutralizing antibodies, possibly resulting in lack
of efficacy of currently available vaccines [84]. There are sev-
eral reports of emergence or reactivation of autoimmune disease
after vaccination with mRNA-based vaccines against SARS-CoV-
2. The development of immune thrombotic thrombocytopenia
(ITTP) has been observed mediated by the presence of platelet-
activating antibodies against platelet factor 4 (PF4, CXCL4) [85].
Moreover, antineutrophil cytoplasmic antibodies in serum and the
associated vasculitis have been reported after vaccination with
mRNA-based vaccines [86]. In multiple sclerosis, exacerbations
of relapses have been observed after mRNA vaccination against
SARS-CoV-2 [87]. There are more reported side effects involv-
ing molecular mimicry or/and bystander activation. Importantly,
the SARS-CoV-2 mRNA vaccine did not induce long interspersed
element-1-mediated reverse transcription and did not lead to inte-
gration of the SARS-CoV-2 mRNA vaccine into human tissue [15].
Therefore, the risk of genomic integration in humans of SARS-
CoV-2 mRNA vaccines is very low. Taken together, side effects
observed after SARS-CoV-2 mRNA vaccination relate to immune-
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mediated autoimmune reactions, whereas natural SARS-CoV-2
infection can result in broader tissue pathology.

Vaccination with adenovirus-based vectors has led to
unwanted side effects related to immune activation and autoim-
munity including ITTP and severe cerebral venous thrombosis
[88, 89]. So far, there is not much data available regarding
protein-based vaccines and the emergence of autoimmune dis-
eases.

Summary

The most challenging issue relates to the understanding of the
long-term consequences of infection with SARS-CoV-2 in COVID-
19 on neurological function and disease. Possibly, the long-term
effects of preceding viral infection with SARS-CoV-2 will only
become evident much later in life. As described above, there are
indications of direct and indirect effects of SARS-CoV-2 in COVID-
19 on CNS resident cells. Some changes bear similarities to mor-
phological and cellular changes observed in psychiatric and neu-
rodegenerative diseases such as Alzheimer’s disease and Parkin-
son’s disease. To understand whether infection by SARS-CoV-2
can lead to such diseases in the long term, more scientific effort
is necessary. Such an effort should especially focus on long-term
follow-up including detailed clinical, imaging, molecular, and
immunological assessments. Regarding treatment approaches, all
data indicates that it would be advantageous to completely clear
SARS-CoV-2 from all organs. In this context, vaccination against
SARS-CoV-2 also in patients who had COVID-19 is of great impor-
tance. Nevertheless, not much is understood about the persis-
tence of genomic information of the SARS-CoV-2 in infected host
cells and the consequences due to activation of the immune sys-
tem. Such immune activation could result in detrimental as well
as beneficial outcomes for the host in the long run. In particu-
lar induction of autoimmune disease as a long-term consequence
of infection with SARS-CoV-2 should not be underestimated and
neglected.

It remains to be seen whether new SARS-CoV-2 variants
or/and subvariants with an increased tropism for infection of CNS
resident cells and possibly detrimental effects such as severe forms
of encephalitis will emerge. Presently, virologists and epidemiolo-
gists indicate that a scenario with more aggressive and encephali-
togenic SARS-CoV-2 variants is highly unlikely since virus variants
with a mild disease-inducing capacity, but high infectivity are pref-
erentially selected.
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