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Controlling quantum chaos: Time-dependent kicked rotor
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One major objective of controlling classical chaotic dynamical systems is exploiting the system’s extreme
sensitivity to initial conditions in order to arrive at a predetermined target state. In a recent Letter [Phys. Rev.
Lett. 130, 020201 (2023)], a generalization of this targeting method to quantum systems was demonstrated using
successive unitary transformations that counter the natural spreading of a quantum state. In this paper further
details are given and an important quite general extension is established. In particular, an alternate approach to
constructing the coherent control dynamics is given, which introduces a time-dependent, locally stable control
Hamiltonian that continues to use the chaotic heteroclinic orbits previously introduced, but without the need of
countering quantum state spreading. Implementing that extension for the quantum kicked rotor generates a much
simpler approximate control technique than discussed in the Letter, which is a little less accurate, but far more
easily realizable in experiments. The simpler method’s error can still be made to vanish as h̄ → 0.
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I. INTRODUCTION

An important discipline within the larger field of control-
ling classical chaos [1] goes by the name of targeting [2–6].
There the exponential instability of a chaotic dynamical sys-
tem is taken advantage of in an optimal way to arrive at a
particular classical target state. Quite small perturbations lead
to extraordinarily different evolutions, and if chosen wisely
enable an arrival at a target state relatively quickly, even if
the target state is quite distant from the evolution of the un-
perturbed system. In essence, the lack of predictability, i.e.,
production of dynamical entropy, is being converted into a
resource for the targeting. The existence of a direct target-
ing analogy in a chaotic quantum dynamical system is not
at all apparent since for quantum dynamics the predictabil-
ity, production of dynamical entropy, and even reversibility
behave in fundamentally different ways [7–9]. For example,
the production of a quantum dynamical entropy vanishes for
isolated, unitarily evolving systems regardless of the classical
dynamics’ underlying nature. Nevertheless, it was recently
demonstrated that an analog of classical targeting could be
extended to the quantum realm, where it is dubbed optimal
coherent chaotic quantum targeting [10].

Clearly, optimal coherent targeting belongs to the general
classification of a quantum control problem. A great deal
of the early work on quantum control was motivated by a
desire to control chemical reactions [11–14] where, due to
rapid dispersal, various laser induced parametric excitation
schemes were introduced, including optimal control tech-
niques [15,16]; a survey of the theory and applications can be
found in [17] and a more recent pedagogical overview of opti-
mal control theory in [18]. The body of quantum control work
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is enormous, but for the most part not oriented toward dealing
explicitly with quantum chaos where the main idea would be
to take maximal advantage of exponential sensitivity in the
underlying classical chaotic dynamics along with the evolving
local structure of the neighboring dynamics; see, however,
the works [19,20]. Nevertheless, a few of the works rely on
concepts of interest here. In [21], Sugawara describes “wave
packet shaping,” which is applied to the integrable Morse os-
cillator potential. It gives a complicated time-dependent laser
field that shifts a wave packet from its ground state location
to another desired location. Another method makes use of
phase space structural implications of Kolmogorov-Arnol’d-
Moser theory [22–24]; see also Ref. [25], which describes the
creation of a nondispersive electronic wave packet following
a trajectory about which the local phase space dynamics has
an approximately harmonic nature.

There have been some forays into controlling specifically
quantum chaotic systems, such as the quantization of turn-
stiles leading to chaotic wave packet revivals [26], using
weak control fields to quantize Ulam’s control conjecture
[27], and the creation of NOON states via chaos-assisted
tunneling [28,29]. None of these address general schemes for
optimal coherent targeting in quantum chaotic systems, which
if fully developed might offer some important capabilities.
Classical chaos, which is inherently ergodic, visits all possi-
ble states of a system. Its control engenders the possibility
of placing a system in desired, but otherwise quite difficult-
to-access states. In a quantum mechanical context, optimal
coherent targeting, as presented in [10] and here, concerns
mostly close-to-minimum-uncertainty states; however, within
that realm there is the potential for accessing exotic states,
for example, with delicate desired phase relationships. Fur-
thermore, the use of particular orbits, tailored to accessing
the desired system states, can have the property of arriving
in as quick a time as dynamically possible, which minimizes
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control errors that build up with increasing time and which
may be critical if quantum phase coherence can only be
maintained over some relatively short timescale. The general
extension discussed here, i.e., alternate method, fits squarely
into the important province of quantum simulation [30].

The approach of extending targeting to quantum systems
in Ref. [10] relies on semiclassical reasoning and makes use
of chaotic trajectories called heteroclinic trajectories [31] as
a resource for constructing unitary propagation matrices that
guide an initial quantum state to a final one in a strongly
chaotic system. The element introduced in [10] that is not
present in classical targeting is based on successive uni-
tary transformations that counter the natural spreading of a
quantum state under the influence of the dynamics. In this
paper a different approach is described for countering the
quantum state spreading that is more general, easier to im-
plement experimentally, and which lends itself to a variety
of approximations. It involves constructing a time-dependent,
locally stable control Hamiltonian. It is designed to possess
the chaotic heteroclinic orbit of interest as a solution, but
with a locally stable dynamics. This obviates the need of
countering quantum state spreading. Ahead, it is applied again
to the quantum kicked rotor.

This system has not only been of paradigmatic importance
for the conceptual development of quantum chaos theory,
but has also been experimentally realized on different plat-
forms. The majority of these experiments address the complex
quantum dynamics of cold atoms in a kicked optical lattice
[32–40]. Since the control protocol proposed in the present
work essentially requires invoking a refined sequence of kicks,
this class of experiments should allow for realizing optimal
coherent targeting and serve as a test bed for this version of
quantum control.

This paper is structured as follows: In Sec. II the basic
ideas behind optimal coherent control are outlined and a brief
description of the classical and quantum versions of the kicked
rotor, a paradigm of chaos, is given. The ensuing Sec. III
introduces an alternative path to optimal coherent control that
has some distinct advantages relative to the work in [10]. This
is followed by an application of this procedure to the kicked
rotor in Sec. IV, where the accuracy is discussed as well. The
final section summarizes the main conclusions of this work
and gives a brief outlook, followed by appendices covering the
details of constructing the building block for coherent control,
ÛM−1 , generally and control Hamiltonians for the kicked rotor
specifically.

II. BACKGROUND

A. Optimal coherent quantum targeting

Starting with minimum uncertainty (or similarly local-
ized) quantum states, i.e., wave packets in ordinary quantum
mechanics or Glauber coherent states [41] for bosons, it is
possible to guide an initial state to some chosen final state fol-
lowing some chaotic (heteroclinic) trajectory of the quantum
system’s classical analog or mean field limit [10]. Heteroclinic
trajectories lie on the intersections of unstable and stable man-
ifolds, have been used to construct semiclassical propagators
in quantum chaotic systems [42,43], and various methods

FIG. 1. Schematic of optimal coherent chaotic quantum target-
ing. The circular zone represents the Wigner transform density of a
minimal uncertainty state centered at (qα, pα ), which can be slightly
shifted (via a unitary operator, Ûs) to be centered on an optimal het-
eroclinic trajectory starting at [pγ (0), qγ (0)] [designated (q0, p0 )].
As it propagates the density follows this trajectory, but is locally
spreading, which must be counteracted by contractions, ÛM−1 ; see
Eq. (1). At the end, it can be shifted from [pγ (τ ), qγ (τ )] [designated
(qτ , pτ )] to the centroid of the target state (qβ, pβ ) (reprinted with
permission from Ref. [10]).

exist to locate them [44–49], even in several degree of freedom
systems [50]. Ahead, the trajectory is labeled by a subscript γ .
Denoting the unitary dynamics of the uncontrolled quantum
chaotic system of interest by Û (t ), it is possible to create a
controlled quantum dynamics given by

ÛCQD(τ ) = Ûs(β )

[
l−1∏
n=0

{ÛM−1Û (t )}n

]
Ûs(α), (1)

where ÛM−1 unwinds the effects of a localized quantum state’s
spreading, τ = lt , and the Ûs are shift operators which dis-
place the centroid of the initial state slightly towards the initial
conditions of the heteroclinic orbit, [pγ (0), qγ (0)], or the final
trajectory point, [pγ (τ ), qγ (τ )], towards the desired final state
(target) centroid [Ûs(�p,�q) = exp{i(�pq̂ − p̂�q)/h̄}]. In
this way, an initially localized quantum state can be made to
follow any trajectory segment that exists in the classical ana-
log dynamical system; for a schematic illustration see Fig. 1
and for a proof of principle implementation see Ref. [10].

This technique of optimal coherent chaotic quantum tar-
geting unwinds quantum state spreading from time to time by
constructing a unitary operator, ÛM−1 , associated with a linear
canonical transformation. The generators of ÛM−1 are at most
quadratic in momentum and position operators or quadratures
as the case may be [51]; see Appendix A for details of its
construction in a configuration space representation [52,53].
In a sense, this is reminiscent of the use of Hessians in a broad
class of large scale control problems [54].

Nevertheless, this may present the difficulty that, although
the ÛM−1 can be theoretically constructed, they may be rather
difficult to physically realize. For this reason, an alternative
approach is discussed ahead which relies on a quite different,
but designed Hamiltonian that does not require the construc-
tion of ÛM−1 and yet follows the desired chaotic heteroclinic
trajectory of the original Hamiltonian.
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B. The usual quantum and classical kicked rotor

The kicked rotor, historically, has provided one of the
most simple and powerful paradigms for both classical and
quantum chaotic dynamical systems [8,55–59]. Its quantum
version has been experimentally realized many times with
cold atoms in a kicked optical lattice for a variety of purposes
[32–40], and it has been realized in kicked molecular rotor
systems [60] and analogous kicked light systems [61] as well.

The usual kicked rotor Hamiltonian is given by

H0(p, q; t ) = p2

2
− K

4π2
cos(2πq)

∞∑
n=−∞

δ(t − n). (2)

which gives a single step quantum dynamics (from just before
a kick to just before the next) generated by a unitary or Floquet
operator,

Û (1) = exp

(−i p̂2

2h̄

)
exp

[
iK

4π2h̄
cos 2π q̂

]
. (3)

In this form, the time between kicks has been scaled to unity
and is not visible in the part of the unitary operator associated
with free propagation kinetic energy.

Quantized on a unit phase space torus in a configuration
representation, Ujk = 〈q j |Û (1)|qk〉, with null Bloch phases it
becomes

Ujk = 1√
iN

exp

[
iπ ( j − k)2

N

]
exp

[
iNK

2π
cos

2πk

N

]
, (4)

where N is the Hilbert space dimension, j, k = 1, . . . , N , and
Planck’s constant is 2π h̄ = 1/N (in this equation unity repre-
sents the area of the fundamental torus being quantized). The
semiclassical limit of h̄ → 0 is equivalent to N → ∞.

Minimum uncertainty Gaussian wave packets, |α〉, can be
expressed as

〈qj |α〉 = A(h̄) exp

[
− (q j − qα )2

2h̄
+ i

h̄
pα (q j − qα )

]
(5)

where A(h̄) is a normalization constant. This form shares
momentum and position minimum uncertainty equally on the
unit torus. This wave packet’s Wigner transform has a circular
symmetry for all h̄. The area inside the wave packet’s two-
standard-deviation contour is equal to h (= 1/N ), which is
the area occupied by a single quantum state. In this formula,
the integer value m of the position qj = m + j/N is chosen
such that |qj − qα| � 1/2 for all j. This is necessary because
Eq. (5) is an approximation and is not represented in a periodic
form. It is valid as long as h̄ is small enough that the two
tails are quite small where they touch on the cylinder. In this
way, pα = 〈α| p̂|α〉 and likewise qα = 〈α|q̂|α〉. For illustration
ahead, the selected initial and target wave packet centroids are
(qα, pα ) = (0.5, 0) and (qβ, pβ ) = (0, 0), respectively.

The resulting classical mapping equations are given by

pn+1 = pn − K

2π
sin(2πqn) (mod 1),

qn+1 = qn + pn+1 (mod 1). (6)

FIG. 2. Illustration of initial and target Gaussian wave packet
states. The dimensionality of the space is given by N = 200 and
thus h̄ = 1/200π . The width is chosen so that the constant density
contours of the Wigner transforms appear circular in Fig. 3 ahead.
The initial state has momentum and position centroids of (pα, qα ) =
(0.0, 0.5) and the final state (pβ, qβ ) = (0.0, 0.0).

The associated single step stability matrix,(
δpn+1

δqn+1

)
= Mn

(
δpn

δqn

)
, (7)

is given by the product of matrices associated with the kick,
MK , and free propagation, M f , contributions of the dynamics,
respectively, i.e.,

M f =
(

1 0
1 1

)
, MK =

(
1 −K cos (2πqn)

0 1

)
, (8)

which after multiplication generates the form for a single time
step:

Mn =
(

m11 m12

m21 m22

)
=
(

1 −K cos (2πqn)

1 1 − K cos (2πqn)

)
. (9)

For large K-values, the dynamics are strongly chaotic, i.e., the
Lyapunov exponent is approximately μ = ln(K/2) [55,59].
This is all the classical information needed for the quantum
targeting. From the mapping, any trajectory can be calculated,
in particular, the optimal heteroclinic one for the particular
initial and final states. For that trajectory, the stability matrix
contains the information needed to construct the unitary trans-
formations in Eq. (1) that counteract the spreading.

C. A small modification and example

Ahead the controlled kicked rotor includes weak kicks at
half time step intervals. This alters a few details just discussed
in Sec. II B. In particular, the natural torus for quantization is
no longer the unit square, but rather it encompasses double
the momentum range. The mapping equations for momen-
tum utilize a mod(2) instead of mod(1). Thus, the relation
between the spatial dimension N and h̄ changes. It becomes
N = S/2π h̄, where S is the action (area) of the fundamental
torus, which has doubled in value. The relationship between
spatial dimensionality and h̄ becomes N = 1/π h̄ (i.e., half the
states are associated with each unit area phase space cell).

To chose a concrete illustration for this paper, the initial
and target states pictured in Fig. 2 provide an excellent starting
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TABLE I. The phase space coordinates of the chosen optimal
trajectory for a time τ = 6. The modulus operation is not applied to
the coordinates so that the fact that it wraps once around the torus in q
is visible. Of the many six-iteration heteroclinic orbits, this particular
one minimizes the two shift distances.

Time, n qn pn

0 0.500 609 737 240 00 0.000 547 453 148 43
1 0.506 035 076 376 07 0.005 425 339 136 07
2 0.559 729 456 994 83 0.053 694 380 618 76
3 1.080 121 543 067 08 0.520 392 086 072 25
4 0.986 273 907 386 57 −0.093 847 635 680 51
5 1.002 098 937 804 49 0.015 825 030 417 92
6 1.001 132 952 522 39 −0.000 965 985 282 11

point and are identical to those of Ref. [10] (except for the
change in the quantized torus). Note that although these states
happen to be centered on unstable fixed points of the mapping
equations, this is only done for convenience, and any two
centroids could have been considered.

A new, longer optimal heteroclinic trajectory is chosen
here for illustration, whose coordinates are given in Table I.
This particular trajectory of all the six-iteration heteroclinic
ones has its initial condition and final endpoint closest to
the centroids of the initial and final states, respectively. The
trajectory begins extremely close to the initial state position
and momentum centroids, and ends similarly close to the
target state by a time τ = 6, in units of the kicking period.
Hence, it is the trajectory of all possible trajectories whose
shift operators, Ûs(α), Ûs(β ), are closest to unit matrices. In
fact, the value of h̄ would have to be very small for them to
play an important role. They are, nevertheless, fully accounted
for ahead.

The value of K = 8.00 is selected for the rather strongly
chaotic dynamics it generates with Lyapunov exponent μ =
ln 4. Finally, a value of h̄ = 1/200π is used ahead because it
is conveniently small enough to work well, but large enough
for the example to exhibit some of the ways in which imper-
fections in the control Hamiltonian appear in the propagating
state.

III. ALTERNATE FORMULATION
OF QUANTUM TARGETING

Instead of applying Eq. (1) and needing to construct and
apply various ÛM−1 , an alternative approach relies on the fact
that, given some particular solution of Hamilton’s equations of
motion, [pγ (t ), qγ (t )], for some particular initial conditions
[pγ (0), qγ (0)] with the Hamiltonian H0(p, q; t ), there exists
an infinity of other Hamiltonians that possess that same partic-
ular solution. Some of those other Hamiltonians have a stable
dynamics in the neighborhood of the chosen solution. For
such a modified Hamiltonian, it is unnecessary to counteract
quantum state spreading. If one can identify a suitable new
locally stable Hamiltonian, the ÛM−1 become irrelevant.

The first element of seeking a new Hamiltonian is to
consider Hamilton’s equations of motion for the particular tra-
jectory. The momentum and position variables can be replaced
by their time-dependent values, completely or partially, along

the desired heteroclinic orbit. In other words, any Hamilto-
nian which leads to the identical time sequence of values for
[ṗ(t ), q̇(t )], i.e.,

q̇(t ) = ∂H0(pγ (t ), qγ (t ); t )
∂pγ (t )

,

ṗ(t ) = −∂H0(pγ (t ), qγ (t ); t )
∂qγ (t )

,

(10)

leads to the same solution for the initial conditions
[pγ (0), qγ (0)] and is a candidate for the control technique.
Among the infinite number of Hamiltonians which would
respect Eq. (10) for the particular initial condition, the best
choice would lead to a stable form for the stability matrix,
e.g., the identity matrix or a simple rotation matrix, the control
Hamiltonian being the simplest physically realizable one.

A trivial example (presumably unphysical), not worrying
about being the best or most optimal, for a modified control
Hamiltonian would be

Hγ (p, q; t ) = ∂H0(pγ (t ), qγ (t ); t )
∂pγ (t )

· p

+ ∂H0(pγ (t ), qγ (t ); t )
∂qγ (t )

· q, (11)

but any other Hamiltonian leading to Eq. (10) is a suitable
candidate. Notice that Hγ (p, q; t ) can be extraordinarily dif-
ferent from the original Hamiltonian, H0(p, q; t ), except in
the neighborhood of the solution of interest [pγ (t ), qγ (t )].
Using any initial condition other than [pγ (0), qγ (0)] would in
all probability lead to completely different trajectories using
the two different Hamiltonians, hence the γ subscript on the
Hamiltonian implies that it is designed exclusively to be used
with the initial condition [pγ (0), qγ (0)].

More generally for continuous dynamical systems, any
time-dependent (elliptic) quadratic control Hamiltonian,
Hγ (p, q; t ), ensures that the stability matrix Mt [pγ (0), qγ (0)]
retains a stable form. This follows naturally from the stability
matrix equation,

dMt

dt
=
⎛⎝− ∂2H (p,q;t )

∂p∂q − ∂2H (p,q;t )
∂q∂q

∂2H (p,q;t )
∂p∂p

∂2H (p,q;t )
∂p∂q

⎞⎠Mt (12)

Thus, an excellent starting point for identifying a desired
Hγ (p, q; t ) is to seek a time-dependent quadratic form subject
to satisfying Eq. (10).

Ahead, in the application to the kicked rotor, the system
can be considered to have a continuous dynamics interspersed
with periodic kicks. In such a case, the stability matrix fol-
lows by solving Eq. (12) during the period τ between kicks,
which multiplies an initial kick stability matrix MK . Hence,
for one period from kick to kick, M = Mτ MK . It is this com-
bined product that must remain stable over time for a suitable
Hγ (p, q; t ). The kicked rotor involves only free particle mo-
tion continously between kicks, which leads to a very simple
form, but any dynamical system could be kicked and solved
using Eq. (12) and the product of stability matrices.
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IV. APPLICATION TO THE QUANTUM KICKED ROTOR

A. An efficient kicked rotor control Hamiltonian

It is indeed possible to identify a time-dependent, alter-
native kicked rotor which can be designed to follow some
heteroclinic trajectory of the original kicked rotor, yet in a lo-
cally stable manner. One method adds a weak kick at half time
steps in the process of identifying a modified, time-dependent
kicked rotor that does not require the unwinding of quantum
state spreading. The sequence of logical steps leading to a
modified Hamiltonian are detailed in Appendix B. Perhaps the
simplest one is the example shown below, but others can be
constructed, which in some cases lead to greater accuracy for
the target state; again see Appendix B. In the limit of h̄ → 0,
this simple example is good enough to lead to a perfect arrival
at the target state. It is given by

Hγ (p, q; t ) = p2

2
+

∞∑
n=−∞

[
δ(t − n)Vγ (q; n)

+ δ

(
t − n − 1

2

)
Vγ

(
q; n + 1

2

)]
, (13)

where

Vγ (q; n) = K

4π2
sin[2πqγ (n)] sin{2π [q − qγ (n)]} (14)

and

Vγ

(
q; n + 1

2

)
= − 1

5π2
cos

{
2π

[
q − qγ

(
n + 1

2

)]}
. (15)

A crude image of the intuitive idea behind the kick at the mid-
point between strong kicks starts with the notion that, during
the free particle motion, the higher momentum components
travel further than the lower momentum components. If one
can boost the lower momentum components, and diminish the
higher momentum components just enough at the mid-time-
point to offset this effect up to the midpoint, without altering
the mean momentum, most of the spreading can be eliminated.
A more complete mathematical depiction of this basic idea is
contained in the relations of Appendix B.

B. The classical controlled kicked rotor

Instead of Eq. (6), the modified Hamiltonian generates the
mapping equations:

pn+ 1
2

= pn − K

2π
sin[2πqγ (n)] cos{2π [qn − qγ (n)]}

(mod 2),

qn+ 1
2

= qn +
pn+ 1

2

2
(mod 1),

pn+1 = pn+ 1
2
− 2

5π
sin

{
2π

[
qn+ 1

2
− qγ

(
n + 1

2

)]}
(mod 2),

qn+1 = qn+ 1
2
+ pn+1

2
(mod 1).

(16)

For the initial conditions [pγ (0), qγ (0)] it is straightforward
to see that these equations generate the same trajectory
[pγ (t ), qγ (t )] as Eq. (6) if a mod(2) is applied instead of the
mod(1) for the momentum change. Thus, the modified Hamil-
tonian successfully follows exactly the trajectory of interest.

On the other hand, the neighboring orbits are significantly
modified, so much so that the stability matrix no longer re-
flects exponential instability locally. To see this, note that the
single step stability matrix can be constructed as the product
of the two half-step matrices. Thus,

Mn(γ ) = M 1
2
(2) × M 1

2
(1), (17)

where

M 1
2
(2) =

(
1 − 4

5 cos
(
2π
[
qn+ 1

2
− qγ

(
n + 1

2

)])
1
2 1 − 2

5 cos
(
2π
[
qn+ 1

2
− qγ

(
n + 1

2

)])),

M 1
2
(1) =

(
1 K sin[2πqγ (n)] sin{2π [qn − qγ (n)]}
1
2 1 + K

2 sin[2πqγ (n)] sin{2π [qn − qγ (n)]}

)
.

(18)

For the initial condition [pγ (0), qγ (0)], the difference argu-
ments of the cosine and sine functions vanish and the stability
matrix reduces to

Mn(γ ) =
(

3
5 − 4

5
4
5

3
5

)
, (19)

which is a simple rotation matrix of fixed angle (roughly 53◦),
independent of n.

In the very close neighborhood of [pγ (t ), qγ (t )], there are
trajectories for which the equalities

0 = sin{2π [qn − qγ (n)]}, (20)

1 = cos
{
2π
[
qn+ 1

2
− qγ

(
n + 1

2

)]}
(21)

are no longer satisfied, but the deviations are nevertheless
quite small, at least for some amount of time. Such trajecto-
ries also remain stable in the neighborhood of [pγ (t ), qγ (t )].
However, the linearizable dynamical neighborhood is effec-
tively smaller than in the case relying on ÛM−1 , and the
accuracy for a given value of h̄ using the modified Hamilto-
nian is seen ahead to be not quite as good as in [10].

The evolution of the controlled Wigner densities is illus-
trated in Fig. 3. A number of features can be seen clearly. First,
note the exponential acceleration of the density’s movement
away from its starting point as time increases. It is best seen by
comparing the shifts in the densities between the n = 0, 1, 2, 3
densities. Conversely, there is an exponential compression
seen by looking at the shifts between the 3,4,5,6 densities.
Another feature to note is the increasing distortion of the
densities 2σ contour as a function of increasing time. In fact,
the h̄ value for the illustration is chosen to be small enough
that the density is following the heteroclinic orbit properly, but
large enough that the imperfect canceling of the wave packet
spreading is visible; if it were perfect each simple closed curve
would remain a circle. In addition, the improved quality of the
method with shrinking h̄ can be deduced from this figure as
well. The σ/2 contour, which is far less distorted from a
perfect circle than the 2σ contour, can also be considered the
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FIG. 3. Evolution of the Wigner transform densities of the prop-
agated initial state. The numbers label the time for each propagated
density. The outer circle is the 2σ contour, which encloses an area h,
i.e., that area occupied by a single quantum state. The σ/2 contour is
also drawn (inner dashed circles).

2σ contour for a value of h̄ 16 times smaller. Thus, as h̄ → 0
the modified kicked rotor discussed here does a better and
better job dynamically of maintaining the local neighborhood
(as measured by h̄) as just a rotation.

C. The quantum controlled kicked rotor

The quantum unitary operator for the controlled kicked
rotor, Eqs. (13)–(15), following the desired heteroclinic tra-
jectory of Table I, can be constructed in a straightforward way.
The matrix elements of the first and second half time steps in
a configuration basis, Ujk (1; n) and Ujk (2; n), respectively, are
given by (with q j = j/N)

Ujk (1; n) = 1√
iN

exp

[
iπ ( j − k)2

N

]
× exp

(
− iNK

4π
sin[2πqγ (n)] sin{2π [q j − qγ (n)]}

)
Ujk (2; n) = 1√

iN
exp

[
iπ ( j − k)2

N

]
× exp

(
− iN

5π
cos

{
2π

(
q j − qγ

[
n + 1

2

])})
.

(22)

The product Û (2; n)Û (1; n) generates a full time step
unitary propagator, Ûn(1). The overall propagation is then
given by

Ûγ (l ) = Ûs(β )

[
l−1∏
n=0

Ûn(1)

]
Ûs(α), (23)

where there is no longer a need for ÛM−1 , but the shift opera-
tors of Eq. (1) are kept. Using this product of the constructed

Ûn(1) leads to the results shown in Fig. 4. The wave packet
is clearly seen following the heteroclinic orbit, but beyond a
time t = 3 there appear some small magnitude oscillations in
the tails that are undesirable and there are slower decaying
tails than would be expected of a Gaussian wave packet. These
imperfections are traceable to the distortions of the Wigner
density seen in Fig. 3 for later times.

The accuracy of the final controlled targeting dynamics can
explored by calculating the deviation from unity of the overlap
| 〈β|Ûγ (τ = 6)|α〉 |2,

� = 1 − | 〈β|Ûγ (τ )|α〉 |2. (24)

The smaller � is, the greater the accuracy is. This deviation
is plotted in Fig. 5, where the stars represent the results of
Eqs. (13)–(15) compared with the prior approach of [10]
that more perfectly unwinds the wave packet spreading using
the stability matrix to create the ÛM−1 operators. Although
less perfect, this approach is presumably just as feasible as
the original kicked rotor, as it requires only a weak extra
kick halfway between the original kicks and control over
the relative phase and strength of kicks. It does not need
the construction of ÛM−1 operators, which may be easy to
construct theoretically, but possibly not in practice. Finally,
the errors disappear as h̄ → 0, i.e., in this limit the accuracy
still approaches perfection.

It is also possible to follow the accuracy as a function of
time. If the controlled propagation were perfect, the propa-
gated state would have unit overlap with a Gaussian wave
packet, Eq. (5), centered at (qt , pt ). Defining for this purpose
�t as 1 minus the absolute square of this overlap at t = n
gives the result shown in Fig. 6. There is negligible error
in the initial shift, and the accuracy is nearly exclusively lost
during the third and fourth iterations. This is entirely consis-
tent with Fig. 3. Inspection there shows that nearly all of the
distortion of the initial circular shape towards a roughly dis-
torted triangular shape occurs from the same third and fourth
iterations. Thus, the classical Wigner transform propagation
clearly holds information about the accuracy with time in its
propagating shape.

V. CONCLUSIONS

This paper gives both a generalization of the optimal
coherent quantum targeting in classically chaotic systems pre-
sented in [10] and provides some additional details; e.g., see
Appendix A. The generalization concerns how to alter the
original Hamiltonian towards a modified, control Hamiltonian
that relies on the same chaotic (heteroclinic) trajectories as
before, but is easier to implement numerically and, more
importantly, experimentally. The resulting quantum targeting
technique is also fully coherent (unitary). The original sys-
tem’s extreme sensitivity to initial conditions is still relied
upon, but counteracting the quantum spreading (scrambling)
by stabilizing the local dynamics is accomplished through
the Hamiltonian modifications. In this alternate approach, the
Hamiltonian has locally stable dynamics, and yet it is still
on an optimum track in order to arrive in an exponentially
fast way and with relatively high precision at a predetermined
target state and given time. Here, the kicked rotor example
in the main text is less precise than the earlier method, but

044202-6



CONTROLLING QUANTUM CHAOS: TIME-DEPENDENT … PHYSICAL REVIEW E 108, 044202 (2023)

FIG. 4. Quantum propagation along the chosen heteroclinic trajectory of Table I. The six panels from upper left to lower right mark the
evolution at the trajectory’s six full time steps. The solid lines are the absolute value, the dashed (green) lines are the real part, and the dotted
(blue) lines are the imaginary part of the controlled propagated wave function, 〈q|α(t )〉. As time increases, deviation from the ideal Gaussian
wave packet becomes more visible. Nevertheless, the state follows the heteroclinic trajectory in Table I quite closely.

adding an additional term in the Hamiltonian as described in
Appendix B would close that gap. As before, there are no free
optimization parameters since everything is determined by the
heteroclinic trajectory and the associated control Hamiltonian.
The general method is flexible in the sense that any trajectory
of the original chaotic system can be selected and followed. In
the specific case of the kicked rotor, increasing the precision

FIG. 5. Accuracy of quantum targeting for the kicked rotor. The
deviation of the squared overlap of the target state with the controlled
propagated state from unity is plotted versus Planck’s constant h.
As h̄ → 0, the error tends to vanish exponentially. Dimensionalities
ranging from N = 50 to 1400 are included. The asterisks are derived
from the dynamics of the control Hamiltonian and various details of
Sec. IV. The line is drawn using the results of [10] and the ÛM−1

operators.

only comes at the cost of increasing the complexity of the
control Hamiltonian. This can be traced to the periodic nature
of the rotor. Ideally, the control kicks would have the appro-
priate sawtooth form in configuration space, and the increase
in complexity comes from adding in additional harmonics in
a Fourier series to better approximate the sawtooth shape.
In a dynamical system in which a time-dependent quadratic
control Hamiltonian is found, this issue does not arise. In

FIG. 6. Accuracy of the quantum targeting propagation for the
kicked rotor for h = 0.01 (N = 200). The deviation from unity of
the squared overlap of a wave packet centered at (qt , pt ) (t = n,
see Table I) with the controlled propagating state is plotted versus
number of iterations. Nearly all of the inaccuracy arises from the
third and fourth iterations. The final value at t = 6 matches the point
(asterisk) at h = 0.01 in Fig. 5, as it must.
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fact, for the Bose-Hubbard system modeling ultracold bosonic
atoms in an optical lattice, such a quadratic Hamiltonian form
appears [62] and this precision issue does not even appear.

As previously mentioned, the quantum kicked rotor has
been realized in a broad range of ultracold atomic and other
experiments [32–40,60,61], and for such experiments the only
additional essential requirement for an experimental realiza-
tion of optimal coherent chaotic quantum targeting is the
ability to control magnitudes and phases of each kick.

Finally, this approach may provide a conceptual plat-
form for further applications to various systems in different
branches of quantum control and quantum simulation, since it
is devised in a rather general form. In particular, an application
of the ideas presented here to coherent states in quantum
chaotic bosonic many-body systems exhibiting a semiclassi-
cal limit [63] is immediate [62]. For example, choosing the
target state identical to the initial state leads to a stabilized pe-
riodic many-body quantum dynamics [with any desired period
or (p, q) centroid]. This can be thought of as creating a nearly
perfect quantum scarred state on a periodic orbit [64].

Generalizing the concepts outlined here towards relevant
many-body quantum control is left for exciting future work.
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APPENDIX A: CONSTRUCTION OF ̂UM−1

Part of the content of the semiclassical propagation method
called linearized wave packet dynamics [52,53] is an account-
ing for wave packet spreading. In other words, within that
method there is a construction of a unitary operator in a

configuration space representation that corresponds to a linear
canonical transformation defined by a stability matrix M,

M =
(

m11 m21

m12 m22

)
, (A1)

written in a block 2 × 2 form. The ordering of components
follows as in Eq. (7) (with all momenta above the positions in
the displacement vector).

The generating function for the transformation, Sγ (q, q′),
is at most a quadratic function of its arguments. A constant
term would represent a global phase and is irrelevant, and
linear terms represent shift operators. The important informa-
tion therefore lies in the second derivatives, which satisfy the
equation [65]⎛⎝ ∂2Sγ

∂q∂q
∂2Sγ

∂q′∂q

∂2Sγ

∂q∂q′
∂2Sγ

∂q′∂q′

⎞⎠=
(

m11 · m−1
21 m12 − m11 · m−1

21 · m22

−m−1
21 m−1

21 · m22

)
.

(A2)

For the optimal coherent targeting of Ref. [10], it is necessary
to use the inverse stability matrix to unwind the spreading of
the dynamics. Using block 2 × 2 identities for inverses [66], it
can be shown that the generating function second derivatives
must satisfy⎛⎝ ∂2Sγ

∂q∂q
∂2Sγ

∂q′∂q

∂2Sγ

∂q∂q′
∂2Sγ

∂q′∂q′

⎞⎠=
( −m−1

21 · m22 m−1
21

m11 · m−1
21 · m22 − m12 −m11 · m21−1

)
.

(A3)

At the moment in time t that the spreading is countered,
the transformation must be centered locally about the hetero-
clinic trajectory’s location (qt , pt ), i.e., using the function’s
arguments to be q − qt and q′ − qt . Hence, the generating
function is nearly but not quite

Sγ (q, q′) = (q − qt , q′ − qt )

( −m−1
21 · m22 m−1

21

m11 · m−1
21 · m22 − m12 −m11 · m−1

21

)(
q − qt

q′ − qt

)
.

(A4)

It turns out that the constructed unitary transformation

〈q| ÛM−1 |q〉′ = Det|m21|1/2

(2π ih̄)D/2 exp

[
i

h̄
Sγ (q, q′)

]
, (A5)

where D is the number of degrees of freedom, does not center
the momentum coordinate properly. However, this is straight-
forwardly accomplished by multiplying the transformation
above by exp[ipt (q − q′)/h̄].

APPENDIX B: CONSTRUCTING EFFICIENT CONTROL
HAMILTONIANS FOR THE KICKED ROTOR

To begin with, assume that one would prefer to just add a
small kick at the half time intervals between kicks in the origi-
nal kicked rotor. Such a time-dependent Hamiltonian takes the

form

Hγ (p, q; t ) = p2

2
+

∞∑
n=−∞

[
δ(t − n)Vγ (q; n)

+ δ

(
t − n − 1

2

)
Vγ

(
q; n + 1

2

)]
, (B1)

and the goal is to determine the two kicking potentials,
Vγ (q; n) and Vγ (q; n + 1

2 ). The idea is to use the constraints
that Eq. (6) holds for the initial condition [pγ (0), qγ (0)] and
that the one-time-step stability matrix is stable, which in this
case ideally means it is a rotation matrix. Hence m2

11 + m2
21 =

1, m11 = m22, and m12 = −m21.
Using the appropriate ordering of the matrices

Mn = M f MK
n+ 1

2
M f MKn (B2)
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with

M f =
(

1 0
1
2 1

)
,

MKn =
(

1 −V ′′
γ (q; n)

0 1

)
,

MK
n+ 1

2
=
(

1 −V ′′
γ

(
q; n + 1

2

)
0 1

)
, (B3)

the one full time step stability matrix elements turn out to be
given by

m11 = 1 − V ′′
γ

(
q; n + 1

2

)
2

,

m21 = 1 − V ′′
γ

(
q; n + 1

2

)
4

,

m12 = −V ′′
γ

(
q; n + 1

2

)
− V ′′

γ (q; n) + V ′′
γ

(
q; n + 1

2

)
V ′′

γ (q; n)

2
,

m22 = 1−V ′′
γ (q; n) − V ′′

γ

(
q; n + 1

2

)
2

+ V ′′
γ

(
q; n + 1

2

)
V ′′

γ (q; n)

4
.

There are two solutions, say A and B respectively, satisfy-
ing the above mentioned rotation matrix constraints,

V ′′[qγ (n); n] = 0,

V ′′
γ

[
qγ

(
n + 1

2

)
; n + 1

2

] = 4

5
(B4)

and

V ′′[qγ (n); n] = 4,

V ′′
γ

[
qγ

(
n + 1

2

)
; n + 1

2

] = 4. (B5)

Note that the derivative relations hold for the control trajecto-
ries, but it would be helpful if the relations held in as large a
local region as possible. It is therefore quite useful to consider
Taylor series expansions about the points qγ (n) and qγ (n + 1

2 )
with respect to the constraints.

It is also essential to maintain the periodicity of the po-
tentials since its absence would lead to a nonrotor system. It
is useful to imagine the potentials to be expanded in discrete
sine and cosine Fourier series and given the Taylor series ar-
gument above, the arguments of the sine and cosine functions
are ideally 2πn[q − qγ (n)] and 2πn[q − qγ (n + 1

2 )] for the
integer and half integer kicks respectively. The integer n is the
usual Fourier series index.

The other part of the constraint, preserving Eq. (6), leads
to the requirements that

V ′
γ [qγ (n); n] = K

2π
sin[2πqγ (n)],

V ′
γ

[
qγ

(
n + 1

2

)
; n + 1

2

]
= 0, (B6)

and hence the equations of motion and stability requirements
give values for the first and second derivatives of the potential
in the control Hamiltonian on the trajectory. Furthermore, a
direct consequence of using the difference arguments in the
Fourier series means that sine terms only contribute to the

mapping equations whereas the cosine terms contribute only
to the stability equations.

The trajectories in the immediate neighborhood of the con-
trol trajectory do not necessarily satisfy the constraints above
exactly. The most critical deviations to be controlled are in the
stability relations. In essence, if a significant neighborhood of
the control trajectory remains stable (rotational), then small
nonvanishing terms in the mapping do not harm the control
procedure. This idea is applied ahead to calculate additional
terms in the potentials, improving the accuracy.

1. Solution A
Solution A, obeying Eq. (B4), leads to a simpler control

Hamiltonian with a weaker perturbation at the half time steps.
It is thus preferable to solution B, satisfying Eq. (B5), and
it is considered first. The simplest potentials, i.e., involving
only the first terms in the Fourier series, consistent to leading
order in q − qγ (n) and q − qγ (n + 1

2 ) with the constraints just
discussed are

Vγ (q; n) = K

4π2
sin[2πqγ (n)] sin{2π [q − qγ (n)]},

Vγ

(
q; n + 1

2

)
= − 1

5π2
cos

{
2π

[
q − qγ

(
n + 1

2

)]}
,

(B7)

and this is the example control Hamiltonian used in the main
text. It works fairly well, though not as well as the original
control relying on ÛM−1 of Ref. [10]; see Fig. 5.

However, notice that the Vγ (q; n) potential generates lead-
ing order corrections to the stability matrix elements m12 and
m22 proportional to q − qγ (n), and they are multiplied by the
large factor K . This is responsible for the increasing distortion
with time seen in Fig. 3 of the Wigner densities. They are
not remaining circularly symmetric with increasing time and,
in fact, the linear deviations from zero of neighboring trajec-
tories in the second derivative of Vγ (q; n) are the dominant
reason. By considering the higher order term of double the
frequency, it is possible to cancel this linear term in the second
derivative of the potential. It is straightforward to show that
the replacement of

sin{2π [q − qγ (n)]}
with

4
3

[
sin{2π [q − qγ (n)]} − 1

8 sin{4π [q − qγ (n)]}] (B8)

in Vγ (q; n) eliminates this linear term yet leaves Eq. (19)
unchanged. With this frequency doubled term in the potential,
the analogous version of Fig. 3 becomes Fig. 7; see also the
direct comparison and improvement of the final densities in
Fig. 8. The densities remain much closer to their original
circular forms. This indicates that using this improved control
Hamiltonian would achieve a greater accuracy than the one
used in the main text for a given value of h̄; see Fig. 5 for the
unimproved case. Continuing with the logic presented here,
it would be possible to create an infinite sequence of ever
improving control Hamiltonians canceling higher and higher
order corrections, but the increasing complexity of the Hamil-
tonians is unlikely to merit the minor additional accuracy in
the control process.

044202-9



TOMSOVIC, URBINA, AND RICHTER PHYSICAL REVIEW E 108, 044202 (2023)

FIG. 7. Evolution of the Wigner transform densities of the prop-
agated initial state for the Hamiltonian of Eq. (B1) using the
modification of Eq. (B8) in Eq. (B7). The numbers label the time for
each propagated density. The outer circle is the 2σ contour, which
encloses an area h, i.e., that area occupied by a single quantum state.
The σ/2 contour is also drawn.

2. Solution B
This solution is more complicated because the second

derivative for the integer kick potential does not lead to a
vanishing contribution to the stability, and yet is responsible
for the nonvanishing term in the mapping. Thus, it must incor-
porate both a sine and cosine term even in the simplest case.
The term can be written in a slightly more compact way by
combining the terms into a single phase shifted cosine term.
This gives

Vγ (q; n) = − 1

π2
cos{2π [q − qγ (n)]}

+ K sin[2πqγ (n)]

4π2
sin{2π [q − qγ (n)]}

= −K (n)

4π2
cos(2π [q − qγ (n)] + φ(n))

with

K (n) = K

√
16

K2
+ sin2[2πqγ (n)],

φ(n) = sin−1

⎡⎢⎣ sin[2πqγ (n)]√
16
K2 + sin2[2πqγ (n)]

⎤⎥⎦ (B9)

and

Vγ

(
q; n + 1

2

)
= − 1

π2
cos

{
2π

[
q − qγ

(
n + 1

2

)]}
.

(B10)

FIG. 8. Comparison of the final propagated Wigner transform
densities for the Hamiltonians of Eqs. (13) and (B1) using the modifi-
cation of Eq. (B8) in Eq. (B7). The outer circles are the 2σ contours,
which show a much greater improvement than the σ/2 contours.

For the control heteroclinic trajectory this leads to the stability
matrix

Mn(γ ) =
(−1 0

0 −1

)
=
(

1 −4
1
2 −1

)(
1 −4
1
2 −1

)
. (B11)

In this case, the stability matrix is that of a rotation about π

radians.

FIG. 9. Evolution of the Wigner transform densities of the iden-
tical propagated initial state, Fig. 2, under the dynamics of Eq. (B1)
with the potentials in Eqs. (B9) and (B10). The outer circle is the 2σ

contour, which encloses an area h, i.e., that area occupied by a single
quantum state. The σ/2 contour is also drawn. As previously, K = 8,
and N = 200.
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This solution is less desirable, not only because it is more
complicated and requires a five times stronger perturbation at
half integer times steps, but also because it leads to worse dis-
tortion of the Wigner transform densities locally for a given h̄.
Nevertheless, trajectories in a small neighborhood around the
control trajectory remain relatively stable for some time. This
is illustrated in Fig. 9, which can be compared to Figs. 3 and 7.

This protocol is somewhat worse at maintaining locally
stable dynamics than the example treated in the main text.
However, just as for the case of solution A, making the
substitution of Eq. (B8) appropriately for Vγ (q; n) in
Eq. (B9) decreases the deformation away from circular
densities. It is not shown here due to its improvement similar
to the case of solution A.
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