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Previous research on Bayesian reasoning has typically investigated people’s 
ability to assess a posterior probability (i.e., a positive predictive value) based on 
prior knowledge (i.e., base rate, true-positive rate, and false-positive rate). In this 
article, we  systematically examine the extent to which people understand the 
effects of changes in the three input probabilities on the positive predictive value, 
that is, covariational reasoning. In this regard, two different operationalizations 
for measuring covariational reasoning (i.e., by single-choice vs. slider format) are 
investigated in an empirical study with N  =  229 university students. In addition, we 
aim to answer the question wheter a skill in “conventional” Bayesian reasoning is 
a prerequisite for covariational reasoning.

KEYWORDS

covariational reasoning, Bayesian reasoning, double-tree, unit square, natural 
frequencies

1. Introduction

Imagine a police officer who frequently conducts traffic stops and uses breathalyzer tests in 
order to determine whether a driver is intoxicated. She has noticed over time that breathalyzer 
test results are sometimes discovered to have been false positives (ascertained by ensuing blood-
alcohol level lab tests). Then imagine that it is early morning on New Year’s Day, and the number 
of people driving under the influence of alcohol is substantially higher than on an average day. 
To her surprise, the officer finds that the test results from this time period, when the number of 
people driving under the influence of alcohol is higher than on average, seem to be more reliable. 
Therefore, she wonders why the test does not always work in the same way, and asks herself if 
and how a changed amount of intoxicated people might affect the validity of a positive test result.

The calculation of the so-called positive predictive value (PPV)—that is, in this specific 
Bayesian situation, the probability of an individual actually being under the influence of alcohol 
given a positive breathalyzer test result—is usually called Bayesian reasoning and has been 
examined in various studies (Talboy and Schneider, 2017; Reani et al., 2018; Brase, 2021). In 
general, a “conventional” Bayesian situation consists of a binary hypothesis, for example being 
under the influence of alcohol H or not being under the influence of alcohol H , and a binary 
indicator, that is, a positive test result I or a negative test result I  (Zhu and Gigerenzer, 2006). 
Experimental cognitive psychology thus far has focused almost exclusively on the computation 
of a correct answer in Bayesian tasks when three pieces of information are given, namely base 
rate, true-positive rate, and false-positive rate. In Table 1, we refer to this conventional task as 
“calculation.”
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Even though Bayesian situations can be extremely relevant in 
various domains, and a misinterpretation can have serious 
consequences (Hoffrage et  al., 2000; Spiegelhalter et  al., 2011), 
calculation tasks usually cannot be solved by participants (McDowell 
and Jacobs, 2017), nor by students (Binder et al., 2015), nor by experts, 
for example from the fields of medicine (Hoffrage and Gigerenzer, 
1998; Garcia-Retamero and Hoffrage, 2013) or law (Hoffrage et al., 
2000; Lindsey et al., 2003). Difficulties with conventional Bayesian 
reasoning as well as helpful strategies for calculating the positive 
predictive value are discussed in section 2.1.

In Bayesian situations with two binary variables, people can easily be 
confronted with changed input parameters and their influence on e.g., the 
PPV (that we call covariation in the following see Table 1): in the case of 
our introductory example, the fact that it is early morning on New Year’s 
Day means an increase in the base rate that ultimately results in an 
increase of the PPV (for a theoretical analysis of the respective effects of 
changes of the three parameters on the PPV, see section 2.2). Other 
examples of relevant changes in the base rate include medical situations. 
For instance, with COVID-19 tests, it makes a huge difference whether a 
tested person comes from a high- or a low-incidence area. But also 
understanding the effect on the PPV of changes in true-positive and false-
positive rates is of everyday importance, for instance, if a new COVID-19 
test becomes available or if the difference between the meaning of a 
positive rapid test or PCR test has to be understood. Yet there are almost 
no empirical investigations on people’s understanding of the effects 
induced by changes in these input probabilities (see, e.g., Borovcnik, 
2012). Interestingly, the question of the operationalization of a covariation 
task is not as straightforward, as we will see in section 2.3.

In the present article, we propose an explicit extension of the 
research referring to Bayesian reasoning by adding both the aspect of 
covariation and the corresponding skill of covariational reasoning, as 
well as how to approach measuring covariational reasoning. Before 
addressing covariation (2.2) and possible operationalizations to 
measure people’s respective skills (2.3) theoretically, we  first 
summarize findings and helpful strategies concerning conventional 
Bayesian reasoning that might also be  suitable for covariational 
reasoning (2.1).

2. Theoretical background

2.1. Calculation of the positive predictive 
value as one aspect of Bayesian reasoning

In the following, we call the typically examined conventional 
Bayesian reasoning (i.e., estimating the PPV at a given base rate, 
true-positive rate, and false-positive rate) calculation. In general, 
the positive predictive value can be  assessed (e.g., with 
Bayes formula):

 
( ) ( ) ( )

( ) ( ) ( ) ( )
| ·

|
| · | ·

P I H P H
P H I

P I H P H P I H P H
=

+

In the introductory example, with hypothesis H (being under 
the influence of alcohol) and given statistical information I 
(positive result in the breathalyzer test), the positive predictive 
value can be calculated as follows (for the specific numbers, see 
Table 1):

0.9 · 0.1
( | )

0.9 · 0.1 0.5 · 0.9
P H I =

+
 ≈ 0.167 = 16.7%.

Many studies have shown that a majority of people fail when 
solving tasks of this structure (Hoffrage and Gigerenzer, 1998; Garcia-
Retamero and Hoffrage, 2013; Binder et al., 2015). A meta-analysis 
reveals that only 4% of participants are able to make correct inferences 
(McDowell and Jacobs, 2017).

However, research over the past 30 years has shown that there 
are at least two helpful strategies for solving such tasks: (a) 
translating the given numerical information from probabilities 
into what is known as natural frequencies, (e.g., replacing 
probabilities or percentages like “80% of the people who are 
under the influence of alcohol test positive” with expressions like 
“80 out of 100 people who are under the influence of alcohol test 
positive”; Gigerenzer and Hoffrage, 1995; Krauss et al., 2020), and 
(b) visualizing the given information (Binder et  al., 2015; 
Böcherer-Linder and Eichler, 2019).

TABLE 1 Calculation and covariation tasks.

Extension of the concept Bayesian reasoning

Formal 
notation

Technical term Calculation
Conventional Bayesian reasoning task:

Covariation
Possible instructions regarding covariation:

Given 

information

P(H) Base rate (b) The probability is 10% that a person who 

undergoes a breathalyzer test is under the influence 

of alcohol.

Imagine the probability that a person is actually under 

the influence of alcohol is 2% smaller than 10%. 

(concrete change)

P(I|H) True-positive rate (t) If a person is actually under the influence of 

alcohol, the probability is 90% that this person will 

test positive.

Imagine that the probability of a person under the 

influence of alcohol actually testing positive is smaller 

than 90%. (qualitative change)

P(I|H ) False-positive rate (f) If a person is not under the influence of alcohol, 

the probability is 50% that this person will 

nevertheless test positive.

Imagine that the probability of a person not under the 

influence of alcohol falsely testing positive is actually 3% 

smaller than 50%. (concrete change)

Question P(H|I) Positive predictive 

value (PPV)

If a person tests positive, what is the probability 

that this person is under the influence of alcohol?

How does that change the probability that a person is 

actually under the influence of alcohol, if he or she tests 

positive?
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 a) Natural frequencies

When all statistical information is expressed in terms of natural 
frequencies instead of probabilities, one can imagine actual people, and 
the solution algorithm becomes simpler (Gigerenzer and Hoffrage, 
1995; McDowell and Jacobs, 2017). In the format of natural 
frequencies, the above-mentioned Bayesian situation about 
breathalyzer tests (Table 1) translates to the following:

Given information:
100 out of 1,000 people (who participate in breathalyzer tests) are 

under the influence of alcohol. 90 out of these 100 people who are 
under the influence of alcohol test positive. 450 out of the 900 people 
who are not actually under the influence of alcohol nevertheless 
test positive.

Question:
How many of the people who test positive in the breathalyzer test 

are under the influence of alcohol?
Now, one can see that 90 + 450 people test positive with the 

breathalyzer test, and that 90 out of these 540 people who have tested 
positive are actually under the influence of alcohol. The above-
mentioned meta-analysis found that study participants’ average 
performance increases up to 24% in natural frequency versions 
(McDowell and Jacobs, 2017).

 b) Visualizations

Visualizations can also be  a helpful tool for improving 
conventional Bayesian reasoning (e.g., Brase, 2014; Sirota et al., 
2014). Typical visualizations are, for example, tree diagrams or 
2 × 2 tables (for an overview of a variety of alternative visualizations 
such as roulette-wheel diagrams or frequency grids, see 
Spiegelhalter et  al., 2011 or Binder et  al., 2015). In the present 
study, we chose enhancements of tree diagrams and 2 × 2 tables, 
namely double-trees (Binder et  al., 2022) and unit squares 
(Böcherer-Linder and Eichler, 2017; Pfannkuch and Budgett, 2017; 
Talboy and Schneider, 2017). Both visualizations are suited to 
calculation and covariation as well, and can, in principle, 
be  equipped with probabilities and/or absolute frequencies. In 
Figure 1 both visualizations display the Bayesian situation about 
the breathalyzer test.

2.2. Covariation as an extension of 
Bayesian reasoning

In mathematics, functions can display the covariation between 
two variables x and y (e.g., y(x) = x2). The concept of covariation—
which is prominent in the field of mathematics education—stresses 
the mutual, dynamic association between the independent variable x 
and the dependent variable y(x). Mathematics educators who are 
interested in functional thinking empirically inverstigate, for instance, 
students’ understanding of the dynamic relation between (changes of) 
x and (changes of) y(x) (e.g., Thompson and Harel, 2021). For 
example, for the function y(x) = x2, there is a quadratic relation 
between x and y, meaning, for instance, that doubling the x-value 
results in quadrupling the y-value.

From the perspective of mathematics education, “covariation” is 
one of three “basic ideas” (“Grundvorstellungen”) of proper functional 

thinking (Vollrath, 1989). The other two are “mapping” (the x-value 
of 2 is assigned to the y-value of 4) and “function as an object” (e.g., in 
this case, the object represented by a parabolic graph).

From a mathematical point of view, Bayes’ theorem cannot only 
be understood as a formula but also as a function that expresses the 
dependency of the positive predictive value (PPV) on three variables, 
namely the base rate (b), the true-positive rate (t), and the false-
positive rate (f):

 
( ) ( )

·, ,
· · 1

t bPPV b t f
t b f b

=
+ −

 
(1)

If in equation (1), two of the three parameters are fixed as 
constant and one is considered “variable,” one gets the three functions 
PPV(b), PPV(t), and PPV(f) (the functions are plotted in Figure 2). A 
typical question considering covariation in the field of Bayesian 
reasoning might be: “How does the positive predictive value change 
when the base rate (considered as a variable) increases/decreases (and 
the other two parameters remain unchanged)?” In general, in this 
article, we  use the term covariational reasoning for participants’ 
understanding of the effects when one of the three variables (b, t, f) 
changes.

Covariation between the PPV and each of the three variables can 
be illustrated using graphs (Figure 2; graphs are not experimentally 
implemented in the present approach).

Alternatively, the idea of covariation can be illustrated by means 
of a double-tree diagram and a unit square (Figure 1). Figure 3 depicts 
decreases of b, t, and f in the Bayesian situation about the breathalyzer 
test. In the double-tree diagram, arrows indicate which of the 
frequencies (or parameters) change and in which direction. In the unit 
square, the shifted lines indicate the changes. In the line below each 
visualization, the effects on the PPV are shown using a visual fraction 
(Eichler and Vogel, 2010; Büchter et al., 2022a).

In the following, we describe in detail the effects of changes in b, 
t, and f on the PPV by means of a double-tree diagram and unit square 
(for a summary, see Table 2). At the end of each subsection (2.2.1–
2.2.3), the range of possible changes as displayed by graphs (Figure 2) 
is discussed.

2.2.1. Changing the base rate (b)
Considering a possible decrease in b in the context of the 

breathalyzer test (Figure 3, column 1) means that the probability of 
a person being under the influence of alcohol is smaller than 10%. 
The frequency (in the double-tree) or area (in the unit square) of 
persons who are under the influence of alcohol now becomes smaller 
than in the original situation, and thus the relevant quantity of true-
positives—the number of people who are under the influence of 
alcohol and receive a positive test result—also becomes smaller. As 
a consequence, the frequency/area of persons who are not under the 
influence of alcohol increases, and thus the relevant quantity of false-
positives—the number of people who are not under the influence of 
alcohol yet receive a positive test result—increases as well. In both 
corresponding visual fractions that represent the PPV (column 1), 
the numerator (e.g., true-positives) decreases, and in the 
denominator, the first summand (e.g., true-positives) decreases 
while the second summand (e.g., false-positives) increases. However, 
it is unclear at first sight in the visual fraction regarding the 
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double-tree whether the denominator increases or decreases. In any 
case, the denominator cannot decrease as much (relatively and 
absolutely) as the numerator. Therefore, the fraction (and thus the 
positive predictive value) decreases with a decrease in the base rate. 
If the base rate were to increase, all frequencies would change in the 
opposite of direction and the PPV would increase as well. Thus from 
a mathematical point of view, increase and decrease in statistical 
information work analogously (see Table 2). Note that only in this 
case (2.2.1) do all relevant frequencies change in numerator and 
denominator as well which is why this change is considered the 
most difficult.

In Figure 2 (column 1), it can be observed that a small change in b 
has quite a large influence on the change in PPV in the given context. 
This is even more the case for small base rates when the false-positive 
rate is also low (e.g., 5%). Moreover, the PPV can take any value from 0% 
to 100% when the base rate changes. When the other two parameters are 
varied (2.2.2 and 2.2.3), it is typically not the case that the PPV can take 
any value between 0% and 100% (see Figure 2, columns 2–3).

2.2.2. Changing the true-positive rate (t)
A decrease in t in the context of the breathalyzer test (Figure 3, 

column 2) means that the probability of receiving a positive test result 

FIGURE 1

Double-tree and unit square as visualizations in the Bayesian situation about the breathalyzer test. Note that neither natural frequencies nor 
visualizations are a factor of interest in the present study. Both tools will be used experimentally to provide an understanding of conventional Bayesian 
reasoning situations and thus to make it possible to investigate covariational reasoning at all.

FIGURE 2

Graphs for the PPV as function in the Bayesian situation about the breathalyzer test when the base rate (b) (column 1), the true-positive rate (t) (column 
2), and the false-positive rate (f) (column 3) change individually.
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when a person is under the influence of alcohol is smaller than 90%. 
This reduces the relevant frequency/area of the true-positives. Since the 
frequency/area of the people who are not under the influence of alcohol 
remains unchanged, the relevant false-positives stay the same as well. 
For the visual fractions (column 2), the numerator becomes smaller 
and the denominator, in absolute terms, decreases by the same amount, 
so that the fraction corresponding to the PPV becomes smaller. 
Analogously, increasing the true-positive rate would increase the PPV, 
since everything would behave exactly the opposite. Contrary to a 
base-rate change, changes in t only result in a change in true-positives 
(both in the numerator and the denominator of the visual fraction), not 
in changes in false-positives (in the denominator).

Looking at Figure 2 (column 2), it becomes clear that changes in 
t in the context of the breathalyzer test have a smaller effect on the 

PPV than changes in b. With the maximal change of 100%  
in t in the given context, the PPV only changes by 20% in  
total.

2.2.3. Changing the false-positive rate (f)
A reduction in f in the context of the breathalyzer test (i.e., 

the probability of receiving a positive result from the test even 
though one is not under the influence of alcohol) is illustrated in 
Figure 3 (column 3). The decrease in f reduces the frequency/area 
of false-positives. The frequency/area of true-positives, however, 
does not change. In the visual fractions (column 3), the 
numerator as well as the first summand in the denominator (i.e., 
true-positives) remain the same, and the second summand in the 
denominator (i.e., false-positives) decreases, so that the fraction 

FIGURE 3

Double-tree diagram with visual fraction and unit square with visual fraction for the reduction of b (column 1), t (column 2), and f (column 3).
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corresponding to the PPV increases. In the same way, increasing 
f would decrease the PPV.

In terms of the graphs shown in Figure 2 (column 3), it is clear that 
in that specific case, small changes in f have a large effect on the PPV 
especially for very small false-positive rates. For example, with a false-
positive rate of 0%, the positive predictive value would be 100%, while 
with a false-positive rate of 10%, the positive predictive value already 
decreases to 50%. The larger f  becomes, the smaller the impact on the 
PPV becomes. This strong influence is due to the small given base rate, 
which is, however, typical for many Bayesian situations (especially in 
medical contexts, where the base rate denotes the prevalence of diseases).

2.3. Measuring covariational reasoning

Interestingly, it is no straightforward task to measure the 
covariational reasoning of participants. In contrast to Bayesian 
calculation tasks—where one can just ask for a certain conditional 
probability (given three other probabilities)—how to operationalize 
such a task is an open question. Why is measuring covariational 
reasoning so difficult? If you just change one of the given probabilities 
(e.g., by a certain percentage), you  get nothing more than a new 
conventional Bayesian reasoning task. For this purpose, we used the 
single-choice operationalization presented by Böcherer-Linder et al. 
(2017) for measuring covariational reasoning in Bayesian situations 
and added a second operationalization with a slider.

2.3.1. Single-choice operationalization
The change in a given probability could be  described purely 

qualitatively without specifying the concrete values of a change (e.g., 
Table  1 change in t). For instance, participants may be  guided to 
imagine that—with reference to a typical Bayesian task—“one of the 
parameters is now smaller/larger” than the original value. Afterwards, 
for instance, a closed-ended question format might be implemented 
asking for the respective effect on the PPV (e.g., “increases”, “stays the 
same”, or “decreases”; see section 4.2).

2.3.2. Slider operationalization
Alternatively, covariational reasoning might be  measured 

with the help of a slider. A concrete change of a parameter could 
be described (e.g., “the base rate is 2% smaller than 10%”) and a 

new calculation of the changed PPV could be  avoided, for 
example, by introducing time pressure. For instance, a slider for 
the PPV with values from 0% to 100% might be implemented (see 
section 4.2), and participants could be asked to move the slider—
as quickly as possible—from the original position (which 
resembles the PPV in the original Bayesian situation) to the new 
position, all while a timer is running. In principle, the slider 
format would allow one to evaluate not only the direction of 
change but also the participants’ estimations of the degree of 
this change.

2.3.3. Other possible operationalizations
Other possibilities for measuring covariational reasoning would 

be, for example, to (openly) ask for concrete reasons for changes in the 
PPV. In this way, the thought processes involved in solving covariation 
tasks might be recorded. Of course, a combination of single-choice 
and/or slider with the analysis of possible reasons would also 
be conceivable for such tasks.

2.4. The distinction between the terms 
“covariation assessment” and “covariational 
reasoning”

It is important to note that the idea of covariational reasoning is 
different from the concept of covariation assessment, which has been 
used by McKenzie (1994, 2004), McKenzie and Mikkelsen (2007), and 
Shaklee and Mims (1981). According to McKenzie (1994), covariation 
assessment refers to the detection of whether two binary variables (e.g., 
hypothesis H and indicator I)—e.g., given as numbers in a 2 × 2 table—
covary at all. For example, the four frequencies of joint events might be 
given and the participants have to indicate the strength of contingency 
on a 100-point scale from 0 (no relation between the two variables) to 
100 (a “total relation” between the two variables Arkes and Harkness, 
1983). In a similar kind of task created by Shaklee and Mims (1981), 
the four frequencies of joint events were also given, and then the 
participants are asked to compare P I H|( ) and P I H|( ), that is, whether 
P I H|( ) > P I H|( ), P I H|( ) = ( ) ( )| , |P I H or P I H  < P I H|( ) holds.

Note that in contrast, in a typical Bayesian situation, this 
covariation is given implicitly in its framing as a diagnostic 

TABLE 2 Resulting changes of the PPV (right column) dependent on the changes of input variables (left column); in both middle columns already the 
indeed in the empirical study implemented changes are displayed (see section 4. Empirical study).

Given parameter change Implemented in … Resulting change of PPV

Single-choice Slider

Base rate (b)
 

— 2% PPV 

Qualitative — PPV 

True-positive rate (t)
 

Qualitative — PPV 

— 3% PPV 

False-positive rate (f)
 

Qualitative — PPV 

— 3% PPV 
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situation. This means that concepts such as true-positive rate 
P I H|( ) and false-positive rate P I H|( ) only make sense if 
P I H P I H| |( ) ≠ ( ) . If both of these probabilities were equal, the 
probability of getting a positive test result would—paradoxically—
be independent of health status (and so the medical test would 
“have nothing to do” with the disease). Therefore, the given 
inequality of both conditional probabilities already states their 
mutual dependence as understood in the covariation assessment. 
Consequently, the latter paradigm is not focused on within this 
article in the context of Bayesian reasoning.

3. Research questions

The core questions of the present study are whether people are 
able to correctly estimate the effects of changes in the given 
probabilities (b, t, and f) on the PPV (“covariational skill”) and how 
these skills depend on the chosen measurement operationalization 
(i.e., single-choice vs. slider). Furthermore, we  are interested in 
interactions in this regard concerning the type of the varying input 
variable, namely base-rate (b), true-positive-rate (t), and false-
positive-rate (f).

Another interesting research question for us was the extent to which 
an ability in conventional Bayesian reasoning (“calculation”) is helpful or 
is even a prerequisite for successfully applying covariational reasoning. 
Because of this interest, we  implemented a conventional Bayesian 
reasoning task that was given to participants before the covariation tasks. 
In order to avoid floor effects (remember the typical performance of 4% 
when given a probability version, c.f. McDowell and Jacobs, 2017), 
we made use of visualizations that are well suited for calculation and 
covariation. Considering the multiple representations of covariation in 
2.2, the question arises which visualization should be implemented in 
order to allow a understanding of the previous conventional Bayesian 
reasoning task. Since both the formulas and the graphical representation 
(Figure  2) are based on probabilities (which has proven to be  a 
disadvantageous format in many studies), we chose double-tree diagrams 
and unit squares (which have already proven helpful in conventional 
Bayesian reasoning; Böcherer-Linder and Eichler, 2017; Binder et al., 
2022). The structure of the visualization was explained to  
participants in advance in written form using a different context 
(Supplementary material 1S, 2S). For cross-validation, we implemented 
two contexts (breathalyzer and mammography). Instead of implementing 
the context of the COVID-19 test (given above), we chose the well-known 
mammography task as a medical example in order to be able to compare 
performances with previous research.

In sum, research question 1 (RQ 1; manipulation check) 
investigates whether context or visualization type affects calculation 
in the primary Bayesian task (if this is not the case, we can examine 
covariational skills aggregated across context and visualization). In 
research question 2 (RQ 2) we address covariational skills.

3.1. RQ 1 calculation

1.1 Is conventional Bayesian reasoning affected by context 
(breathalyzer vs. mammography)?

1.2. Is conventional Bayesian reasoning affected by visualization 
type (double-tree vs. unit square)?

Since RQ 1 focuses on conventional Bayesian reasoning—without 
referring to covariation—we will be able to compare these results with 
previous studies.

3.2. RQ 2 covariation

2.1 Can people judge the effect of parameter changes on the 
PPV (at all)? Are there differences regarding the type of changed input 
variable, that is, when considering

 a) base rate changes?
 b) true-positive rate changes?
 c) false-positive rate changes?

2.2 Are there differences in covariational reasoning with respect 
to the two measurement operationalizations implemented (single-
choice vs. slider)?

2.3 Do covariational reasoning skills depend on the 
participants’ performance in the previous Bayesian calculation?

4. Empirical study

4.1. Design

An overview of the design is given in Table 3. Each participant 
worked on two Bayesian situations (breathalyzer test and 
mammography screening). For each situation, the participants 
first had to (a) calculate the positive predictive value (calculation 
task; see Figure  4, above); the following three tasks were to 
determine how an increase or decrease of the (b) base rate, (c) 
true-positive rate, or (d) false-positive rate would affect the PPV 
(covariation tasks; see Figure  4, below). Accordingly, each 
participant had to work on eight tasks (1a-d, 2a-d). The statistical 
information (b, t, f) in tasks a-d was given as probabilities in a 
visualization (double-tree or unit square) that was additionally 
filled with frequencies (Figure  1). Note that we  did not 
experimentally implement the detailed specifications and 
elaborations in Figure 3. Rather, participants could apply exactly 
this kind of reasoning in order to demonstrate their skill in 
covariational reasoning. For each participant, the visualization, 
which was not a factor of interest in the present study, was held 
constant in all tasks (see right column in Table 3).

In the covariation tasks, it was always made clear that in each 
task, only the change in one input variable of the original 
Bayesian situation should be  considered (see 
Supplementary material 3S). In one of the two contexts, 
covariation answers had to be  given using a single-choice 
operationalization with three options: the PPV (i) decreases, (ii) 
stays the same, or (iii) increases. In order to avoid simply having 
a new calculation task, we did not use concrete probability changes 
here. Instead, the changes (decreases for b and increases for t and 
f) were not quantified.

In the other context, participants had to move a slider. The 
original position of the slider was the correct PPV in the previous 
calculation task (rounded to the nearest whole percent), and the 
slider could be used to change the PPV in intervals of 1% (only the 
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numbers for 0% and 100% were depicted on the scale). A timer was 
used to impose a time pressure. The participants had to answer the 
questions as quickly as possible. In the slider format, an increase of 
3% in b, a decrease of 2% in t, and a decrease of 2% in f was in both 
contexts given.

The order of the contexts and the order of the three covariation 
tasks were varied systematically (Table 3). Participants were allowed 
to use a calculator when completing the tasks.

4.2. Instrument

The conventional Bayesian reasoning tasks (1a and 2a) are 
formulated as a conditional probability question (Figure 4, above; 
bold). The base rate (b), true-positive rate (t), and false-positive rate 
(f ) are not given as textual descriptions as in typical Bayesian 
reasoning tasks, but are depicted at the respective branches in the 
double-tree, which additionally is completely filled with 
absolute frequencies.

In Figure 4, the instructions for a task on covariation for an 
increase in f (single-choice) and a decrease in f (slider) are 
described (the actual changes of b, t, and f as realized in our 
materials can be  seen in the gray-shaded area of Table  2. All 
tasks−included the tasks based on a unit square−are provided in 
detail in the Supplementary material 3S).

4.3. Participants

N = 229 students (N = 180 female, N = 47 male, and N = 2 
without indication) who were studying to become primary or 
secondary school mathematics teachers (N = 153 for primary, 
N = 78 for secondary) participated in the present study. The 
participants were students in Germany at the University of 
Regensburg (N = 114) and the University of Kassel (N = 115). 
They were mostly at the beginning of their studies, with N = 189 
students in the first to third semester and N = 40 students in the 

fourth or a higher semester (M = 1.7; SD = 2.3). The participants 
had not received any prior training in probability. The study was 
carried out in accordance with the University Research Ethics 
Standards and written informed consent was obtained. The 
students were informed that their participation was voluntary 
and that anonymity was guaranteed.

4.4. Coding

4.4.1. Calculation tasks
The correct solution in the context of the breathalyzer test was 

16.6% and in the context of the mammography screening 33.8%. An 
answer was coded as correct if the probability or the fraction (which 
means both numerator and denominator values; i.e., 90/540 or 48/142) 
was provided correctly (it was sufficient if either the correct probability 
or the correct fraction was given). Probability answers were also coded 
as correct if the solution was rounded up or down to the next full 
percentage point. For instance, in the context of the breathalyzer test, 
the correct solution is 16.6%, and therefore answers between 16% and 
17% were classified as correct solutions.

4.4.2. Covariation tasks
The correct directions of PPV changes, which depend on the 

directions of changes in b, t, and f, are depicted on the right in 
Table 2. In the single-choice operationalization, answers were 
coded as correct if the right qualitative option for the PPV (out 
of “decreases,” “stays the same,” or “increases”) was chosen. In the 
slider operationalization, the original slider position was that of 
the (correct) PPV in the previous calculation task (17% or 34%; 
without the numerical specification of the correct value depicted 
at the scale, Figure 4). When the slider was moved in the correct 
direction, the answer was scored as correct. Since the metric PPV 
(0–100%) was divided into three categories by the slider position 
(“decreases,” “stays the same,” or “increases”), we  could also 
theoretically compare judgments with both operationalizations 
for measuring covariational reasoning.

TABLE 3 Overview of the study design.

Context 
covariation tasks 1b-d (after calculation task 1a);  
covariation tasks 2b-d (after calculation task 2a)

Visualization (no factor of interest)

Mammography Breathalyzer

Slider Single-choice Slider Single-choice

N = 59 1 2
Double-tree: N = 30

Unit square: N = 29

N = 57 1 2
Double-tree: N = 27

Unit square: N = 30

N = 57 2 1
Double-tree: N = 30

Unit square: N = 27

N = 56 2 1
Double-tree: N = 27

Unit square: N = 29

“1” and “2” refer to the order of contexts processed.
In this table, for instance, N = 56 participants (last line) first had to solve a calculation task (context 1: breathalyzer), and then had to work on the three corresponding covariation tasks in the 
single-choice operationalization. After answering a further calculation task (in the other context 2: mammography), they were provided with the corresponding covariation tasks in the slider 
operationalization. Out of the N = 56 participants, N = 27 received a double-tree and N = 29 a unit square as visualization throughout all eight tasks.
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4.5. Statistical analyses

For each research question, we  ran generalized linear mixed 
models with a logistic link function in order to predict the probability 
that participants solve a task correctly (as a binary dependent variable, 
0 = wrong, 1 = correct).

In terms of RQ 1 (calculation skills), in order to compare the effects 
of contexts and visualization type, the context “breathalyzer” and the 
visualization “double-tree” were specified as reference categories. The 
context “mammography” and the visualization “unit square” were 

included as explanatory factors via dummy coding. In addition, an 
interaction term context × visualization was modeled. The predicted 
probability îjγ  of solving a calculation task correctly is given by:

 ( )
0 1 2

3 1
ˆ . .

. model
ij i j

i j

context visualization
context visualization

β
β

γ β β= + +
+ ×

In terms of RQ 2.1, which relates to covariational reasoning, the 
factor “type of covariation task” was considered by taking a change of 

FIGURE 4

Examples of a calculation task (above) and covariation instructions (below) for a change in f (increase in single-choice operationalization and decrease 
in the slider operationalization).
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the base rate (b) as the reference category and including a change of 
the true-positive rate (t) as well as of the false-positive rate (f) as the 
explanatory factor via dummy coding (change in t with 0 and 1; 
change in f with 0 and − 1). The predicted probability îjγ  of solving a 
covariation task correctly is given by:

 ( )0 1 2 1. .ˆ _ _ model 2.ij i jchange t change fγ β β β= + +

In order to statistically compare the effects of the operationalization 
for measuring covariational reasoning regarding RQ 2.2 for each type of 
covariation task (i.e., for changes of b, t, and f separately), the single-choice 
operationalization was specified as the reference category (with the slider 
operationalization being the explanatory factor). The predicted probability 

îγ  of solving a covariation task correctly is given by:

 ( )0 1 2.ˆ model 2.i ioperationalizationγ β β= +

Concerning RQ 2.3, we ran a model in which we specified the 
single-choice operationalization as the reference category β1( ) for 
measuring covariational reasoning and included the slider 
operationalization (as the explanatory factor) via dummy coding. 
Furthermore, in this model, the participants who could not previously 
calculate the positive predictive value (see 5.1) were implemented as 
another reference category (β2), and the factor “calculation ability” 
was included via dummy coding. In addition, the interaction term 
operationalization × calculation_ability was modeled.

The predicted probability îjγ  of correctly solving a covariation 
task is given by:

 ( )
0 1 2

3 3
. .ˆ

m.
_

_ odel 2.
ij i j

i j

operationalization calculation ability
operationalization calculation ability

β β βγ
β

= + +
+ ×

In all models, the participant’s ID was implemented in the model 
as a random factor.

5. Results

5.1. Calculation

We first consider participants’ performance on conventional 
Bayesian reasoning tasks (i.e., calculating the positive predictive value) 
for both contexts and both visualization types. Table 4 shows that 
there obviously were no substantial differences between contexts 
or visualizations.

It was confirmed by means of regression (model 1 above) that 
there were no significant differences in performance with respect to 
context (ß1 = 0.31; SE = 0.39; z = 0.78; p = 0.43), or visualization 
(ß2 = 0.35; SE = 0.57; z = 0.62; p = 0.53), or their interaction (ß3 = −0.16; 
SE = 0.55; z = − 0.29; p = 0.77). Fixed and random effects explained 
R2

conditional = 0.70 of the variance in performance and only fixed effects 
explained R2

marginal = 0.003. Since the implemented fixed effects 
(visualization and context) do not explain any variance and in the 
absence of significant differences (RQ 1.1 and RQ 1.2), we aggregated 
across both factors for the following analyses of covariational skills.

5.2. Covariation

Overall, 64% of all covariation tasks were correctly solved by 
participants (Figure 5) where the guessing probability was 33%. Thus, 
given helpful didactic tools (double-tree or unit square with 
frequencies), people seem in general to be capable of covariational 
reasoning (RQ 2.1).

While the lines in Figure  5 display performance in the three 
different covariation tasks (changes in b, t, and f), the columns 
distinguish the operationalizations (single-choice vs. slider). Note that 
we analyzed covariational reasoning across context and visualization 
type. However, when considering the effects of context and 
visualization regarding covariational reasoning, there were indeed 
almost no descriptive differences in solution rates across all tasks with 
respect to context (breathalyzer 64% vs. mammography 63%) and 
visualization (double-tree 63% vs. unit square 64%).

To get an initial descriptive overview of the results, some descriptive 
observations need to be discussed. First, estimating the effects of changes 
in f on the PPV (53%, see column 3, line 3) descriptively seemed to 
be more difficult than those of changes in the other two parameters (68% 
in column 3, line 1, or 71% in column 3, line 2). Second, judging the 
effects of changes in b seemed to be  easier when using the slider 
operationalization (compare 74% vs. 61%, columns 1–2, line 1), whereas 
judging the effects of changes in t appeared to be easier when using the 
single-choice operationalization (62% vs. 79%, columns 1–2, line 2). 
Interestingly, only judging the consequences of changes in f did not differ 
substantially between the two measurement operationalizations (columns 
1–2, line 3). Third, and most intriguing, an ability in conventional 
Bayesian reasoning (“calculation”) seemed to be most relevant concerning 
changes in f (compare Figure 5, brackets indicating: given wrong previous 
Bayesian reasoning; given correct previous Bayesian reasoning), which 
can be  seen in the difference between the performances regarding 
covariational reasoning in the single-choice operationalization [35%; 
67%] as well as in the slider operationalization [43%;70%] when 
evaluating changes in f.

Now we turn to the inferential statistics (Table 5). With respect 
to RQ 2.1, it can be confirmed by model 2.1 that covariational tasks 
regarding the judgment of effects on PPV were more frequently 
solved correctly when b changes than when f changes. Furthermore, 
there was no significant difference in performance between changes 
in t and changes in b (R2

conditional = 0.15, R2
marginal = 0.04). These results 

are in some ways surprising because, when f changes only one 
component of the visual fraction (Figure 3), changes. If t changes, 
two components change, and, finally, when b changes all three 
components change. Thus, at least from the perspective of resulting 
changes in the visual fraction, a change of f should be easiest to judge 
and the change of b most difficult.

TABLE 4 Performance (standard error SE) on conventional Bayesian 
reasoning tasks (“calculation”), separated by context and visualization 
type.

Visualization

øDouble-tree Unit square

Context Mammography 45.6% (SE = 4.7) 47.8% (SE = 4.7) 46.7% (SE = 3.3)

Breathalyzer 42.1% (SE = 4.6) 46.1% (SE = 4.7) 44.1% (SE = 3.3)

ø 43.9% (SE = 3.3) 47.0% (SE = 3.3) 45.4% (SE = 2.3)
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In order to statistically compare the effects of measurement 
operationalization regarding changes in b, t, or f, we ran three 
different models 2.2 (one each for a change in b, t, and f, 
respectively; Table 5). Regression analysis revealed that the type 
of operationalization used for measuring covariational reasoning 
was a significant predictor in the models of changes in b and t. 
For changes in b, the tasks with a slider operationalization were 
solved significantly better than the tasks with a single-choice 
operationalization (R2

conditional = 0.15, R2
marginal = 0.03). However, for 

changes in t (see Table  5, model 2.2), the tasks with a 

single-choice operationalization were solved significantly better 
than the tasks which were operationalized with a slider 
(R2

conditional = 0.25, R2
marginal = 0.06). Finally, regarding changes in f 

(see Table  5, model 2.2), the operationalization used for 
measuring covariational reasoning did not significantly predict 
the ability to answer correctly (R2

conditional = 0.19, R2
marginal = 0.003). 

We  will return to an interpretation of these results in 
the discussion.

With RQ 2.3, in order to statistically estimate the effect of 
understanding calculation on the following covariation tasks, we ran 

FIGURE 5

Percentages of solution rates for the three different covariation tasks (b, t, and f), separated by single-choice and slider.
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model 2.3. The ability of conventional Bayesian reasoning indeed was a 
significant predictor for evaluating changes of a parameter in a Bayesian 
situation, but only regarding changes in f (Table 5; R2

conditional = 0.26, 
R2

marginal = 0.09). For both other changes, calculation ability was not a 
significant predictor (not displayed in Table 5) for the covariational 
reasoning. Note that only in judging changes in f were the directions of 
changes in f and PPV opposite to each other. For the other two changes 
(b and t), “pure intuition” seemed to suffice, even without completely 
understanding the situation (explanations will be  provided in 
the discussion).

6. Discussion

6.1. Rationale and theoretical background

In the present article, we  extend the research on Bayesian 
reasoning both theoretically and empirically with respect to the ability 
to deal with effects that changes in input variables (i.e., base rate b, 
true-positive rate t, and false-positive rate f) have on the positive 
predictive value. We chose the concept of functional thinking from 
mathematics education (e.g., Vollrath, 1989) as the framework for our 
study and theoretically explored how Bayes’ formula can be seen as a 
function (with the variables b, t, or f) and how the changing of 
parameters then refers to the covariation between each input variable 
and the PPV.

Measuring people’s covariational reasoning is not easy because 
one has to avoid just formulating a (new) conventional Bayesian 
reasoning task. We  proposed two options to elicit covariational 
reasoning (i.e., the single-choice operationalization, which presented 
not a concrete numerical change of the input parameter but only a 
direction, and, alternatively, the slider operationalization, where a 
concrete numerical change was given but a time pressure imposed 
that should hinder calculating). Both operationalizations for 

measuring covariational reasoning were implemented in an 
empirical study.

In research question 1 (RQ 1), we first checked our materials to 
see whether the two contexts (mammography vs. breathalyzer) and/
or the two visualization types (double-tree vs. unit square) would 
make a difference with respect to conventional Bayesian reasoning. 
Since we found this not to be the case, we aggregated our findings 
concerning covariational reasoning (RQ 2) across both contexts and 
both visualizations for the following analyses (when implementing 
contexts and visualizations in the models for RQ 2, there were no 
substantial differences in the statistical results, however).

6.2. Summary of results

First, people generally seemed to be  capable of covariational 
reasoning when a visualization (double-tree/unit square filled with 
frequencies) was presented. Furthermore, estimating the effect of 
changes in f on the PPV (RQ 2.1) was more difficult for participants 
than it was with the other two parameters (b and t). This finding was 
surprising because, from a theoretical point of view, changes in f have 
an influence on only one component of the fraction representing the 
PPV (namely on one of the two summands in the denominator). In 
contrast, changes in t affect two elements of the fraction (numerator and 
one summand in the denominator) and changes in b all three 
(numerator and both summands in the denominator). It is known from 
the field of mathematics education that changes of independent and 
dependent variable in the same direction (this is the case when b and t 
change) are better understood than changes in the opposite direction of 
independent and dependet variable (this is the case when f changes; e.g., 
Hahn and Prediger, 2008). This could be a possible explanation for the 
surprising result. We alternatively speculate that the consequences of 
changes in b and t can also be grasped by intuition and without formal 
algorithmic reasoning.

TABLE 5 Results of the models 2.1, 2.2, and 2.3 (see 4.5).

Model Estimate ß SEβ z p

Model 2.1 (RQ 2.1) Comparison of evaluation of 

changes within the different 

parameters

Intercept 0.79 0.11 6.93 <0.01

Changes in t 0.18 0.15 1.20 0.23

Changes in f 0.69 0.14 4.86 <0.001

Model 2.2 (b, t, and 

f) (RQ 2.2)

Evaluating changes in b with 

different measurement 

operationalizations

Intercept 0.48 0.15 3.15 <0.01

Operationalization 0.66 0.22 3.06 <0.01

Evaluating changes in t with 

different measurement 

operationalizations

Intercept 1.59 0.23 7.05 <0.001

Operationalization −1.00 0.24 −4.16 <0.001

Evaluating changes in f with 

different measurement 

operationalizations

Intercept 0.01 0.16 0.08 0.94

Operationalization 0.21 0.21 1.02 0.31

Model 2.3 (RQ 2.3) Evaluating changes in f with 

different measurement 

operationalizations and with 

no calculation ability as an 

additional predictor

Intercept −0.66 0.21 −3.13 <0.01

Operationalization 0.37 0.28 1.34 0.18

Calculation ability 1.41 0.31 4.55 <0.001

Operationalization × 

Calculation ability

−0.23 0.42 −0.55 0.58

β = Estimated parameter value; SEβ = Standard error of the parameter estimate; z = z-value; p = value of p (bold = significant at 1% level).

https://doi.org/10.3389/fpsyg.2023.1184370
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Steib et al. 10.3389/fpsyg.2023.1184370

Frontiers in Psychology 13 frontiersin.org

Second, we found differences between covariational reasoning 
performance concerning b and t with respect to the operationalization 
of covariational reasoning (RQ 2.2), surprisingly, however, with a 
different direction of impact. While using the slider improved 
covariational reasoning for b, it made covariational reasoning for t 
worse. This might presumably be the case because, with a decrease in 
t (as in the given task), the slider had to be moved even further to the 
left, although the initial position in both contexts was already toward 
the left side of the slider (17% and 34%). Regarding the base rate 
change, the correct solution was to move the slider to the right (an 
increase in the base rate was provided in the task, and moving the 
slider to the right could be seen as more intuitive because of the larger 
space there). Comparisons between the response behavior of  
both operationalizations for measuring covariational reasoning  
could strengthen the assumption that the design of the slider 
operationalization impacts the response behavior. It is also noticeable 
that the slider was left in the original position less often compared to 
the option “PPV stays the same” in the single-choice operationalization. 
This could be expected, since with a slider one can ultimately choose 
between all values from 0% to 100%, and for that reason, one is 
presumably more tempted to change something. In the single-choice 
operationalization, in contrast, only three options were given (and 
thus “PPV stays the same” has a one-third probability of 
being guessed).

Third, ability in conventional Bayesian reasoning (RQ 2.3) was a 
predictor for covariational reasoning with respect to changes in f only. 
Regarding b and t, in contrast, people both with and without a 
complete understanding of conventional Bayesian reasoning can 
estimate the consequences (see the values in the brackets in Figure 5). 
This finding is in line with the results of RQ 2.1.

6.3. Limitations and future research

In the present study, established visualizations for calculation 
(double-tree and unit square) as a basis for the covariation tasks were 
applied in order to avoid floor effects. Nevertheless, it would 
be interesting to see to what extent individuals are able to solve such 
covariation tasks without any presentation of helpful strategies. In 
addition, a systematic comparison of different visualizations and 
information formats is still pending. And covariation tasks could, of 
course, still be  considered when more than one input variable is 
changed. In medical tests, for example, it is typically the case that 
both the false-positive rate and the true-positive rate vary from one 
test to another. For example, if both of these probabilities increase by 
the same absolute percentage, one could again examine the effect on 
the PPV. In the covariation tasks that we  employed, only one 
direction of change concerning each input variable (b, t, f) was 
implemented (in each operationalization for measuring covariational 
reasoning; Table 2).

Moreover, in our analyses, in order to be able to compare both 
operationalizations, we  categorized the “participant’s variable 
movements” in the slider operationalization into three categories 
“PPV decreases,” “PPV stays the same,” and “PPV increases.” To judge 
people’s covariational reasoning skills more precisely, we might need 
to closely analyze how far the sliders were moved. In the same way, 
future research could analyze the role of the starting position of 
the slider.

Another problem with the slider format in our study might 
be that the implemented small changes in the input variables led to 
relatively small changes in the PPV. For instance, participants who 
thought that only a very small change was likely to happen might 
have decided not to move the slider at all. However, a closer look at 
our data revealed that when answers of “stays the same” in the slider 
tasks were also counted as correct, there were no significant 
differences in the results of all models at least with respect to changes 
in b and t (the results with respect to f are mixed). Future research 
could examine larger changes in terms of input variables, especially 
in the slider format.

Our recommendation to measure covariational reasoning in 
future research (especially in medical contexts, where small base rates 
are common) would be a combination of a single-choice task followed 
by justifications for the chosen direction of change. For instance, 
given that participants gave the correct answer in the single-choice 
task, they might be provided with a closed-item format with various 
(correct or wrong) justifications.

Regarding the results obtained, it is not clear why changes of 
f are understood worse than of t and b and why an ability in 
conventional Bayesian reasoning was a predictor for covariational 
skills only in the case of a change in f (although we provided 
speculation above). Here it would certainly be  interesting to 
analyze the additional open justifications from our participants 
to capture their reasoning processes (see Büchter et al., under 
review). Future research might also analyze, e.g., whether such 
reasoning strategies depend on the concrete values of b, t, and f 
as is the case in conventional Bayesian reasoning tasks 
(Hafenbrädl and Hoffrage, 2015).

Furthermore, specific well-known errors in conventional Bayesian 
reasoning (see Binder et al., 2020; Eichler et al., 2020) might also explain 
findings regarding covariational reasoning (e.g., the high solution rates for 
the changes in b and t). In conventional Bayesian reasoning, for instance, 
the instruction for calculating the PPV (“to be under influence of alcohol, 
given a positive test result”) is sometimes misunderstood as a joint 
probability (“to be under the influence of alcohol and to get a positive test 
result”). If we assume that a participant wrongly thinks that the PPV can 
be described by the visual fraction denoting a joint probability, namely 
# . .

# . . ,

true positives e g , 

all persons e g , 

− ( )
( )

90

1 000

, then a change in b and t would change 

both the correct PPV and the wrong visual fraction in the same direction. 
Thus, participants holding this misconception would arrive at the correct 
answer in the covariation tasks (yielding a higher solution rate). Note that 
a change in f would have no consequences in the wrong visual fraction, 
and here, participants would erroneously decide that the PPV stays 
the same.

It would also be  possible (and interesting) to examine 
covariational reasoning skills with experts in prominent applied 
domains such as medicine and law. Of course, in these domains 
a training in covariational reasoning could be constructed and 
implemented. In such a training on covariational reasoning, one 
could, for instance, work with dynamic geometry software to 
make changes in b, t, and f even more intuitive, for example by 
using a dynamic double-tree or a dynamic unit square (for a 
proposal of such dynamic visualizations see Büchter et al., 2022b; 
for information on a respective training course, see http://www.
bayesian-reasoning.de/en/br_trainbayes_en.html or Büchter 
et al., 2022a).
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