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Abstract
We study the solution uε to the Navier–Stokes equations in R3 perforated
by small particles centered at (εZ)3 with no-slip boundary conditions at the
particles. We study the behavior of uε for small ε, depending on the diameter
εα, α> 1, of the particles and the viscosity εγ , γ > 0, of the fluid. We prove
quantitative convergence results for uε in all regimes when the local Reynolds
number at the particles is negligible. Then, the particles approximately exert a
linear friction force on the fluid. The obtained effective macroscopic equations
depend on the order of magnitude of the collective friction. We obtain (a) the
Euler–Brinkman equations in the critical regime, (b) the Euler equations in the
subcritical regime and (c) Darcy’s law in the supercritical regime.
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1. Introduction

The homogenization of fluid flows in perforated domains has been intensively studied in the
last decades. Various models for the fluids reaching from incompressible inviscid flows (see
e.g. [HLW22, LLN18, LM16a,MP99]) to compressible viscous flows (see e.g. [BO23, HKS21,
Mas02, Osc22]) and even non-Newtonian fluids (see e.g. [Mik18]) have been considered with
different boundary conditions, including Navier slip conditions (see e.g. [All91]) and so-called
sedimentation boundary conditions (see e.g. [DG21, GH21, NS20]).

From the application oriented point of view, interest in such homogenization problems
arises from the study of flow through porous media and of suspension flows. In the case of
such particulate flows, homogenization problems where the particle evolution is frozen or pre-
scribed can be considered as a first step towards the derivation of fully coupledmodels between
the fluid flow and the dispersed phase.

The limiting behavior of solutions to the incompressible (Navier-)Stokes equations with
fixed viscosity in perforated domains with no-slip boundary conditions is by now quite well
understood. On the microscopic lengthscale of the particles, the fluid inertia becomes negli-
gible. Therefore, in the limit of many small particles, a linear friction relation (Stokes law)
prevails, giving rise to an effective massive term, the so-called Brinkman term. Depending
on the particle sizes and number density, the Brinkman term becomes negligible, dominant
or of order one in the homogenization limit, leading to the (Navier-)Stokes equations, Darcy’s
law and the (Navier-)Stokes–Brinkman, respectively, see e.g. [All90a, All90b, CH20, DGR08,
FNN16, GH19, Giu21, HJ20, HMS19, LY23, Mik91, Tar80].

For the case of the Navier–Stokes equations with vanishing viscosity, only very few results
are available though. The problem of considering such fluids in perforated domains with very
small viscosity (or more precisely large macroscopic Reynolds numbers) is a very relevant one
in applications. Indeed, in the modeling of sprays, it is not unusual to couple kinetic equations
for the dispersed phase to the Euler equations (see e.g. [BD06, CDM11]). On the other hand,
regarding porous media, understanding flow at large Reynolds number is very important (see
e.g. [BMW10]) and nonlinear extensions of Darcy’s law, in particular the Darcy–Forchheimer
equations, are proposed at very large Reynolds numbers. Although the rigorous derivation
of such nonlinear effective models seems currently out of reach, the present work aims at
identifying the effective behavior in all scaling limits where a linear friction law prevails. We
emphasize that the effective models we obtain are completely different from the ones that
result by starting from the Euler equations in perforated domains (see e.g. [HLW22, LLN18,
LM16a, MP99] for such models). Instead, correspondingly to the (Navier-)Stokes equations
with constant viscosity, we identify and prove homogenization limits in a critical, subcrit-
ical and supercritical regime yielding the Euler–Brinkman equations, the Euler equations and
Darcy’s law, respectively. To the author’s knowledge, the Euler–Brinkman equations have not
even been formally derived in the literature before. This can be viewed as a first step towards
the rigorous justification of spray models like the one analyzed in [CDM11] that couples the
incompressible Euler equations to a Vlasov equation through a linear friction force.

1.1. Setting and outline of the main results

Let T ⋐ B1/4(0), the reference particle, be a fixed closed set with smooth boundary, such that

B1(0) \ T is connected and 0 ∈ T̊ . For 0< ε < 1, we consider particles centered at xεi := εi,
i ∈ Z3. Moreover, precisely, for α⩾ 1, we define

Ωε := R3 \∪i∈Z3T ε
i , T ε

i := xεi + εαT .
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Then, for some T > 0, γ > 0 and µ0 > 0, we consider solutions uε to the Navier–Stokes
equations

∂tuε + uε ·∇uε −µ0ε
γ∆uε +∇pε = fε in (0,T)×Ωε,

divuε = 0 in (0,T)×Ωε,
uε = 0 on (0,T)× ∂Ωε,

uε (0, ·) = uε0 in Ωε

(1.1)

for some given fε ∈ L2(0,T;L2(R3)) and uε0 ∈ L2σ(Ωε), where

L2σ (Ωε) :=
{
v ∈ L2 (Ωε) : divv= 0,v · n= 0 on ∂Ωε

}
.

It is well known that then at least one Leray solution uε exist, i.e. a weak solution which
satisfies the energy inequality

1
2
∥uε (t)∥2L2(Ωε)

+µ0ε
γ∥∇uε∥2L2((0,t)×Ωε)

⩽ 1
2
∥uε0∥2L2(Ωε)

+

ˆ t

0

ˆ
Ωε

fε · uε dxdt ∀0⩽ t⩽ T. (1.2)

We focus on the case α> 1 which characterizes the regime where the particle diameters εα

are small compared to the inter-particle distance ε. In a nutshell, the effect of the particles on
the fluid can then be described through a superposition of linear friction laws provided that the
fluid inertia is negligible on the lengthscale of the particles. More precisely, we consider the
particle Reynolds number

Reεpart :=
particle diameter×fluid velocity

viscosity
= Uεε

α−γ (1.3)

where Uε, the order of magnitude of the fluid velocity, has yet to be determined. Then, if
Reεpart ≪ 1, the influence of each particle on the fluid can be approximated by a friction force
determined from the unique solutions (wk,qk) ∈ Ḣ1(R3)×L2(R3) to the linear Stokes problem

−∆wk+∇qk = 0 in R3 \ T ,
divwk = 0 in R3 \ T ,

wk = ek on ∂T
(1.4)

through the associated resistance matrixR∈ R3×3

Rjk =

ˆ
R3\T

∇wk :∇wj, (1.5)

which is a positive definite symmetric matrix. Neglecting fluid inertia and particle interaction,
classical scaling considerations imply that each particle approximately contributes a friction
force Fi =−µ0ε

α+γR(uε)i where (uε)i should be understood as a suitable average of uε on
some lenthscale εα ≪ dε ⩽ ε around xεi . Taking into account that the particle number density
is ε−3 leads to approximating the fluid velocity uε by ũε which satisfies the Navier–Stokes
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Figure 1. Scaling regimes of effective equations.

equations in the whole spacewith an additional linear friction term µ0ε
α+γ−3Rũε, sometimes

referred to as Brinkman force. More precisely, provided Reεpart ≪ 1, we expect uε ≈ ũε where

∂tũε + ũε ·∇ũε −mu0εγ∆ũε +µ0ε
α+γ−3Rũε +∇p̃ε = fε in (0,T)×R3,

divuε = 0 in (0,T)×R3.
(1.6)

From this approximation, we may easily identify the limiting behavior, where we distin-
guish the critical regime as γ+α= 3, the subcritical regime as γ+α > 3 and the supercrit-
ical regime as γ+α < 3. Before writing down the limiting equations, we revisit the constraint
Reεpart ≪ 1. In the critical and subcritical regime, the Brinkman force is at most of order one,
and therefore the solution ũε, and thus uε and Uε from (1.3), are expected to be of order 1,
provided uε0 and f ε are of order 1. Thus, in the critical and subcritical regime,

Reεpart =
εα−γ

µ0
,

which leads to the condition α > γ.
On the other hand, in the supercritical regime, the Brinkman force dominates thus slows

down the fluid velocity to Uε = ε3−α−γ . Therefore, in the supercritical case,

Reεpart =
ε3−2γ

µ0
,

leading to the condition γ < 3/2.
Taking the formal limit in (1.6), assuming fε → f and uε0 → u0 leads to the following limit

systems. The regimes are illustrated in figure 1.
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• In the critical regime α+ γ = 3 with α> 1 and α > γ > 0, we obtain (for µ0 = 1 for sim-
plicity) the Euler–Brinkman equations2

∂tu+ u ·∇u+Ru+∇p = f in (0,T)×R3,
divu = 0 in (0,T)×R3,

u(0, ·) = u0 in R3.
(1.7)

• In the subcritical regime for α+ γ > 3 with α> 1 and α > γ > 0, we obtain the Euler
equations

∂tu+ u ·∇u+∇p = f in (0,T)×R3,
divu = 0 in (0,T)×R3,

u(0, ·) = u0 in R3.
(1.8)

Since the particles do not create any effective perturbation on the limit system, the asymp-
totically linear friction law guaranteed by α > γ > 0 is actually not required to obtain this
limit case but it instead suffices that Reεpart ⩽ c0 for some c0 > 0 independent of ε. This cor-
responds to the regime α= γ > 3/2 with µ0 ⩾M for some M sufficiently large.

• In the supercritical regime, for α+ γ < 3 with α> 1 and γ < 3/2, uε → 0. Thus, we rescale
time and velocities to obtain a nontrivial limit. More precisely, if ûε is a solution to (1.1) with
µ0 = 1, we consider the function uε(t,x) = εα+γ−3ûε(εα+γ−3t,x). This rescaled velocity
solves (after rescaling accordingly f ε, pε and u0ε without renaming them)

ε6−2α−2γ (∂tuε + uε ·∇uε)− ε3−α∆uε +∇pε = fε in (0,T)×Ωε,
divuε = 0 in Ωε,

uε = 0 on ∂ (0,T)×Ωε,
uε (0, ·) = uε0 in Ωε.

(1.9)

Performing the same rescaling on the system (1.6), we formally obtain Darcy’s law in the
limit ε→ 0, namely

Ru+∇p = f in (0,T)×R3,
divu = 0 in (0,T)×R3.

(1.10)

1.2. Statement of the main results

The precise results are the following quantitative convergence results for uε in all three regimes
under regularity assumption on the solution u to the respective limit system. Smooth solutions
exist at least for short times.Moreover, in the supercritical regime, we obtain in addition a weak
convergence result in L2(0,T;L2(R3)) assuming only a weak solution u ∈ L2(0,T;L2(R3)) to
Darcy’s law (1.10).

Theorem 1.1 (Critical regime). Let α ∈ (3/2,3), γ = 3−α and µ0 = 1. Let T> 0, u0 ∈
H4(R3), f ∈ C(0,T;H2(R3)) and (u,p) ∈ C1(0,T;H4(R3))×L∞(0,T;H3

loc(R3)) be a solu-
tion to (1.7). Moreover, for 0< ε < 1 let uε0 ∈ L2σ(Ωε), fε ∈ L2(0,T;L2(Ωε)) and let uε ∈
L2(H1

0(Ωε))∩C(0,T;L2(Ωε)) be a Leray solution to (1.1). Then, there exists C> 0 which

2 One might argue that Euler–Darcy would be a more appropriate name for this system but this is already used for a
different system that arises as homogenization limit of the 2-dimensional Euler equations in perforated domains, see
e.g. [MP99].
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depends only on the reference particle T and, monotonously, on T, ∥ f∥L∞(0,T;H,2(R3)),
∥u∥C1(0,T;H4(R3)) and ∥∇p∥L∞(0,T;H2(R3)) such that for all t⩽ T

∥(uε − u)(t)∥2L2(Ωε)
⩽ C

(
∥u0ε − u0∥2L2(Ωε)

+ ∥ fε − f∥2L2(0,T;L2(Ωε))
+
(
ε2α−3 + ε6−2α

))
.

Theorem 1.2 (Subcritical regime). Let µ0 > 0, α > 3/2,γ > 0 satisfy 3−α < γ ⩽ α. Let
T> 0, u0 ∈ H4(R3), f ∈ C(0,T;H2(R3)) and (u,p) ∈ C1(0,T;H4(R3))×L∞(0,T;H3

loc(R3))
be a solution to (1.8). Moreover, for 0< ε < 1 let uε0 ∈ L2σ(Ωε), fε ∈ L2(0,T;L2(Ωε)) and
let uε ∈ L2(H1

0(Ωε))∩C(0,T;L2(Ωε)) be a Leray solution to (1.1). Then, there exists M> 0
depends only on the reference particle T and, monotonously, on T, ∥f∥L∞(0,T;H2(R3)),
∥u∥C1(0,T;H4(R3)) and ∥∇p∥L∞(0,T;H2(R3)), and C> 0 which depends additionally on µ0 such
that, if either α > γ or µ0 ⩾M, we have for all t⩽ T

∥(uε − u)(t)∥2L2(Ωε) ⩽ C
(
∥u0ε − u0∥2L2(Ωε) + ∥fε − f∥2L2(0,T;L2(Ωε)) +

(
ε2α+2γ−6 + ε2α−3 + ε2γ

))
.

In the supercritical regime, we remind that we consider the rescaled system (1.9). The cor-
responding energy inequality reads

1
2
∥uε (t)∥2L2(Ωε)

+ ε2γ+α−3∥∇uε∥2L2(0,t;L2(Ωε))

⩽ 1
2
∥uε0∥2L2(Ωε)

+ ε2γ+2α−6
ˆ t

0

ˆ
Ωε

fε · uε dxds (1.11)

for all 0⩽ t⩽ T.

Theorem 1.3 (Supercritical regime—quantitative result). Let α ∈ (1,3) and 0< γ <
min{3/2,3−α}. Let T> 0 and f ∈ C1(0,T;H4(R3)) and let (u,p) ∈ C1(0,T;H4(R3))×
C1(0,T;H5

loc(R3)) be the unique solution to (1.10) (up to constants for the pressure). For ε> 0
let uε0 ∈ L2σ(Ωε) and let uε be a Leray solutions to (1.9). Then, there exists C> 0which depends
only on the reference particle T and, monotonously, on T, ∥f∥L∞(0,T;H2(R3)), ∥u∥C1(0,T;H4(R3)),
∥∇p∥L∞(0,T;H2(R3)) and ∥u0ε∥L2(Ωε) such that for all t⩽ T

∥uε − u∥2L2((0,T)×Ωε)
⩽ C

(
ε6−2α−2γ∥u0ε − u0∥2L2(Ωε)

+ ∥fε − f∥2L2((0,T)×Ωε)

+ε
6−4γ

3 + εα−1 + ε9−3α + ε12−4α−4γ
)
.

Remark 1.4.

• The three theorems above imply in particular that for any sequence ε→ 0 with ∥u0ε −
u0∥L2(R3) → 0 (respectively ε6−2α−2γ∥u0ε − u0∥2L2(Ωε)

→ 0), and fε → f in L2(0,T;L2(R3))

we have uε → u in L∞(0,T;L2(R3)) (respectively in L2(0,T;L2(R3))). Here, f ε, u0ε and uε
are to be understood as defined in R3 through extension by 0. Note that one may choose
fε = f in Ωε. Moreover, one may choose u0ε = wεu0 with wε as in section 2. Then, estim-
ate (2.2) guarantees ∥u0ε − u0∥L2(R3) → 0 for any choice of the parameter εα ⩽ ηε ⩽ ε that
wε depends on. Optimizing ηε yields ∥u0ε − u0∥2L2(R3) ⩽ Cε3α−3.

• The regularity assumptions on u could probably be weakened but we do not pursue to optim-
ize here.
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• In the supercritical regime, we do not obtain pointwise estimates in time. Indeed, there are
boundary layers in time which prevent pointwise estimates under the stated assumptions.
These boundary layers are due to the initial datum uε but also due to possible jumps in time
of the force f ε.

Theorem 1.5 (Supercritical regime—qualitative result). Assume α ∈ (1,3), 0< γ <
min{3/2,3−α}. For T> 0 and ε> 0, assume uε0 ∈ L2(Ωε) such that ε3−α−γ∥uε0∥L2(Ωε) is
uniformly bounded and fε ∈ L2(0,T;L2(R3)) converges weakly to some f in L2(0,T;L2(R3)).
Let uε ∈ L2(H1

0(Ωε))∩C(0,T;L2(Ωε)) be a Leray solution to (1.9). Then, ũε ⇀ u in
L2(0,T;L2(R3)), where u is the unique weak solution in L2(0,T,L2(R3)) to (1.10) and where
ũε is the extensions of uε to R3 by ũε = 0 in R3 \Ωε.

1.3. Previous results

The vanishing viscosity limit is a classical problem in the study of incompressible fluids, we
refer to [MM18] for a review on the topic. In bounded domains with no-slip boundary condi-
tions, the limiting behavior is not well-understood due to the onset of boundary layers. This is
the reason why we consider the whole space in this paper.

In dimensions two and three, the vanishing viscosity limit has been studied in [ILN09] in the
presence of a single shrinking body. The convergence to the Euler equations has been estab-
lished provided that the local Reynolds number is sufficiently small i.e. the same condition
aε ⩽ cµε ≪ 1, where aε and µε denote the particle diameter and fluid viscosity, respectively,
and c is a sufficiently small constant (depending on the initial data, time, and the reference
particle).

There is a vast literature on homogenization in perforated domains. Modeling the fluid
velocity uε by the stationary Stokes equations, Darcy’s law has been obtained in [Tar80] in the
case of particle of the same size as the inter-particle distance, i.e. α= 1. Later, Allaire [All90a,
All90b] proved homogenization results for the Stokes equations for all ranges of α> 1, identi-
fying Darcy’s law for α ∈ (1,3), the Stokes–Brinkman equations for α= 3 and the Stokes
equations for α> 3. Allaire’s results cover all space dimensions d⩾ 2 with appropriate adapt-
ations of the ranges ofα for d⩾ 4. In the two-dimensional case, the critical regime corresponds
to particle diameters aε such that ε−2 logaε ∼ 1. By compactness, Allaire’s results also apply
to the stationary Navier–Stokes equations (in dimensions d⩽ 4).

The results of Allaire have been refined in a number of works, for example considering
more general distributions of particles, non-homogeneous Dirichlet boundary conditions, the
study of higher order approximations and fluctuations. We refer to the recent results [CH20,
DGR08, GH19, Giu21, HJ20, HMS19] and the references therein.

The homogenization limits for the full instationary Navier–Stokes for fixed viscosity cor-
respond to the one of the stationary Stokes equations and are displayed in figure 1. Formally
they are obtained by setting γ= 0 in (1.6) and taking the limit ε→ 0. The critical regime,
α= 3, leading to the Navier–Stokes–Brinkman equations, has been considered by Feireisl,
Nečasová and Namlyeyeva [FNN16], whereas the subcritical case α> 3 and the supercritical
case α ∈ (1,3) has been treated recently by Lu and Yang [LY23].

The case α= 1, including the full range of vanishing viscosities γ ∈ [0,3/2) has been
treated by Mikelić [Mik91].

We emphasize that the Darcy’s law in [LY23, All90b] is exactly the same as (1.10) whereas
the Darcy’s law in [Tar80, Mik91] differs quantitatively, in terms of a different resistance
tensorRper which is obtained analogously asR from (1.5) but by solving the Stokes equations
in the torus instead of the whole space. The reason for this difference is that in the case α= 1
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the particle diameter is comparable to the interparticle distance. Therefore, the superposi-
tion of friction forces through single particle problems in the whole space (cf (1.4)) must be
replaced by studying the collective forces through the problem with periodic boundary con-
ditions. Mathematically, the analysis of the case α= 1 is somewhat easier as it only involves
two lengthscales, the microscopic lengthscale ε and the macroscopic lengthscale. Since the
study of the case α= 1 requires different corrector problems and is rather well understood, we
restrict our attention to α> 1 in the present paper.

Reflecting its importance for applications, there are several works concerning the derivation
of non-linear Darcy’s laws, especially the Darcy–Forchheimer equations. They seem to focus
on the case α= 1, where nonlinear effects are expected to become important for γ ⩾ 3/2.
Most of these works do not contain rigorous proofs, we refer to [BMW10] for an overview of
the literature. Concerning rigorous results, Mikelić [Mik95] and Marušić-Paloka and Mikelić
[MM00] tackled the critical case α= 1, γ = 3/2 in dimensions two and three starting from the
stationary Navier–Stokes equations. The obtained limit system is a nonlinear nonlocal Darcy
type equation. Moreover, in the subcritical case, α= 1, γ < 3/2, Bourgeat, Marušić-Paloka
and Mikelić [BMM95] justified nonlinear versions of Darcy’s law as higher order corrections
to the linear law.

We also mention that the homogenization of the instationary Stokes equations with van-
ishing viscosity has been studied by Allaire [All92] for α= 1. In this case, the critical scaling
(in any space dimension) is γ= 2 and a Darcy’s law with memory effect is obtained as limit
system.

The only previous result the author is aware of concerning the homogenization of the
Navier–Stokes equations with vanishing viscosities when the particle diameters are much
smaller than the interparticle distance (α> 1) is due to Lacave and Mazzucato [LM16b]. In
dimension two, they recover the unperturbed Euler equations under assumptions on the particle
sizes, distances and the viscosity, which guarantee that the particle Reynolds number is suf-
ficiently small and that the particles do not exert a significant collective force on the fluid
(subcritical regime).

1.4. Elements of the proof

The proof of the (quantitative) main results is based on an energy argument to estimate uε − u
which is, at its core, classical in the study of vanishing viscosity limits. However, simil-
arly as in [ILN09, LM16b], we face the problem, that the limit fluid velocity u does not
vanish inside of the particles and thus u is not an admissible testfunction for the PDE of
uε. As in [ILN09, LM16b], we therefore consider functions ûε obtained from u by a suit-
able truncation. In [ILN09], the truncation is performed on the level of the stream function
(respectively the vector potential in three dimensions). In [LM16b], the fluid velocity itself is
truncated, i.e.

ûε = ϕεu+ hε,

where hε is a suitable Bogovskii type correction such that ûε is divergence free.
As in [LM16b], we perform the truncation on the level of the fluid velocity itself. However,

we need to be more careful, since the truncation needs to contain information of the boundary
layers at the particles that produce the Brinkman term in the limit. Thus, instead of the scalar
function ϕε in [LM16b] that truncate in a εα neighborhood around the particles, we choose a
variant of the matrix-valued oscillating testfunction wε used by Allaire [All90a, All90b] that
are build on the solutions to the resistance problem (1.4).
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These functions wε from [All90a, All90b] (which go back to corresponding functions in
[Tar80] and similar functions for the Poisson equations used by Cioranescu and Murat in
[CM82]) have been used with some modifications in many related works, see e.g. [GH19,
LY23]. However, wε truncates on an ε-neighborhood around the particles, and therefore we
could only use them directly in the present context provided the Reynolds number on the ε-
lengthscale is small. This is the case if γ < 1 in the (sub-)critical regime and γ < 2−α/2 in
the supercritical regime. To overcome this restriction, we modify the testfunctions of Allaire,
to truncate on a lengthscale ηε, εα ⩽ ηε ⩽ ε. Aside from estimates analogous to their standard
versions, we then use a Hardy-type estimate in order to control some error-terms arising from
the nonlinear convection term.

1.5. Some possible generalizations and open problems

In this paper, we focus on periodic distributions of identical particles for the sake of the clarity
of the presentation. The methods of proof do not rely on periodicity, though, and presumably
apply to more general settings.

From the viewpoint of applications to suspensions, it would also be interesting to study
non-homogeneous Dirichlet boundary conditions, i.e. uε = Vi on ∂Tεi which have been treated
for the corresponding model without vanishing viscosity in [DGR08, FNN16].

As in many related works, we focus here on the three-dimensional case. Extensions to two
dimensions are possible with the necessary modifications similar as in [All90a, All90b]. As
mentioned above, parts of the subcritical regime is treated in [LM16b]. There is one important
difference between the two- and three-dimensional case, however, that seems to make it more
difficult to analyze all the cases in dimensions two where the particle Reynolds number tends
to zero. Namely, in three dimensions, the Stokes resistance of a particle of size aε in the whole
space is well approximated by solving Stokes problems in an ηε-neighborhood of the particle,
for any lengthscale ηε with ηε ≫ aε. This allows us to consider the intermediate scale ηε as
outlined in the previous subsection. In two dimensions, however, just like for capacities, only
relative Stokes resistances are meaningful. As observed in [All90a, All90b], it turns out that
the relative resistance in a cell of order of the inter-particle distance ε is the correct object to
consider in order to study the collective effect of the particles3. Therefore, the use of an inter-
mediate lengthscale ηε does not seem suitable in 2 dimensions, at least not in the critical and
supercritical regimes. As discussed above, this would restrict to assuming that the Reynolds
number on the scale ε is of order one, in order that the (accordingly modified) proof given in
this paper still works.

It would be of great interest to understand the regimes where the particle Reynolds number
Reεpart is not tending to zero, i.e. γ ⩾max{α,3/2}, displayed in orange in figure 1. However, as
discussed above, the case when the particle Reynolds number is large is not even understood in
the case of a single shrinking particle. In the case where the particle Reynolds number is small
but fixed, we proved that one still obtains the Euler equations in the subcritical regime. One
could still expect convergence to the Euler equations in the subcritical regime. In the critical
and supercritical regimes, one could expect the onset of nonlinear behavior similar to the one
obtained in [Mik95, MM00] at γ = 3/2.

3 To be more precise, since the relative Stokes resistance scales like | log(ηε/aε)|−1 in two dimensions, it does not
matter whether one chooses ηε = ε or ηε = εβ . However, one should allow aε to be much smaller than powers of ε
in order to include the critical case −ε2 logaε ∼ 1.
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1.6. Outline of the rest of the paper

The rest of the paper is organized as follows.
In section 2, we define the correctors wε and prove some useful estimates on them. Mostly,

these are standard adaptions of previously established estimates.
Section 3 contains the proofs of the main results. In section 3.1 we give the proofs of the-

orems 1.1 and 1.2, which are largely analogous.
Section 3.2 contains the proof of theorems 1.5 and 1.3. The proof of theorem 1.3 is very

similar to those of theorems 1.1 and 1.2. For the proof of theorem 1.5, we first use a well-
known Poincaré inequality in the perforated domain (see proposition 2.4) to get a uniform
a-priori estimate of uε in L2(0,T;L2(R3)). We use a classical duality argument that allows us
to pass to the limit in the weak formulation of the PDE by applying the correctorswε to smooth
testfunctions instead of the solution u of the limit problem as in the proof of the quantitative
results.

2. Corrector estimates

Throughout this section, we write A≲ B for A,B ∈ R when A⩽ CB for some constant C that
depends only on the reference particle T and possibly the exponent p of some Sobolev space
involved in the estimate.

Let εα ⩽ ηε ⩽ ε.We denote byQε
i the open cubes of length ε centered at x

ε
i that (essentially)

cover R3. We split each cube Qε
i into four areas, displayed in figure 2,

Qε
i = T ε

i ∪Cε
i ∪Dε

i ∪Kε
i ,

Cε
i := B ηε

4
(xεi ) \ T ε

i ,

Dε
i := B ηε

2
(xεi ) \B ηε

4
(xεi ) ,

Kε
i := Qε

i \B ηε
2
(xεi ) .

Then, recalling the definition of (wk,qk) from (1.4), we definewε
k ,q

ε
k as the ε-periodic functions

that satisfy (wε
k ,q

ε
k) ∈W

1,∞
0 (Ωε)×L∞(Ωε), and, in Qε

i

wε
k (x) = ek−wk

(
x−xεi
εα

)
, qεk (x) =−ε−αqk

(
x−xεi
εα

)
in Cε

i ,

−∆wε
k (x)+∇qε = 0, divwε

k = 0 in Dε
i ,

wε
k = ek, qεk = 0 in Kε

i .

Here, ek denotes the kth unit vector of the standard basis ofR3. Note that the Stokes equations in
Dε
i are complemented with inhomogeneous no slip boundary conditions due to the requirement

wε
k ∈W

1,∞
0 (Ωε). We will write wε for the matrix-valued function with columns wε

k , and q
ε for

the (row-)vector with entries qεk . We summarize properties of wε in the following lemmas.
Some of the estimates are very similar to the ones given in [All90a, All90b] and other works.

Lemma 2.1. The functions wε, qε satisfy

(i) wε ∈W1,∞
0 (Ωε), qε ∈ L∞(Ωε), divwε

k = 0 for k= 1,2,3 and

∥wε∥L∞(R3) + εα
(
∥∇wε∥L∞(R3) + ∥qε∥L∞(R3)

)
≲ 1. (2.1)
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Figure 2. Decomposition of cell the Qε
i .

(ii) For all compact sets K⊆ R3, we have wε → Id strongly in L2(K). Moreover, for all 3/2<
p< 3 and all φ ∈W2,p(R3)

∥φ (Id−wε)∥L p(R3) ≲ η
3
p−1
ε εα−

3
p ∥φ∥W2,p(R3). (2.2)

Furthermore,

∥φ (Id−wε)∥L3(R3) ≲ εα−1| logε| 13 ∥φ∥W2,3(R3) for all φ ∈W 2,3
(
R3
)
, (2.3)

∥φ∇wε∥L2(R3) + ∥φqε∥L2(R3) ≲ ε
α−3
2 ∥φ∥H2(R3) for all φ ∈ H2

(
R3
)
, (2.4)

∥|∇wε| 12φ∥L2(R3) + ∥|qε| 12φ∥L2(R3) ≲ η
1
2
ε ε

α−3
2 ∥φ∥H2(R3) for all φ ∈ H2

(
R3
)
. (2.5)

(iii) For all φ ∈ H1
0(Ωε)

∥|∇wε| 12φ∥L2(Ωε) + |qε| 12φ∥L2(Ωε) ≲ η
1
2
ε ∥∇φ∥L2 . (2.6)

Proof. Step 1: Pointwise estimates and proof of (i).

|Id−wε|(x− xεi )≲
εα

|x− xεi |
in Cε

i ∪Dε
i , (2.7)

|∇wε|+ |qε|≲ εα

|x− xεi |2
in Cε

i ∪Dε
i . (2.8)

The estimates on Cε
i follow immediately from standard decay estimates for the Stokes

equations in exterior domains (see [Gal11, theorem V.3.2]) applied to (wk,qk) from (1.4) and
the definition ofwε,qε through rescaling onCε

i . Consequently, the estimates onDε
i are deduced

from the estimates on ∂Dε
i and standard regularity theory for the Stokes equations.

Clearly, (i) follows directly from these pointwise estimates.
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Step 2: Proof of (ii). Using (2.7) and wε = Id in Kε
i , we compute for one cell, for all p< 3,

∥Id−wε∥p
Lp(Qε

i )
≲ εαp

ˆ
Bηε/2(xεi )

|x− xεi |−p dx≲ η3−p
ε εαp.

For any compact K⊆ R3, we can cover K by C(K)ε−3 many cubes Qε
i . Hence, ∥Id−

wε∥2L2(K) ≲ C(K)(ηε/ε)ε2(α−1) → 0 as ε→ 0 since ηε ⩽ ε and α> 1.

Denoting (φ)i =
ffl
Qε
i
φ dx, we have for p> 3/2 by the Sobolev embedding W2,p(Qε

i )⊆
L∞(Qε

i ) and the Poincaré inequality that

∥φ − (φ)i − (∇φ)i (x− xεi )∥L∞(Qε
i )

⩽ Cε∥∇2φ∥Lp(Qε
i )
.

Scaling considerations imply Cε = Cε2−3/p. Thus, using also that |(ψ)i |⩽ ε−3/p∥ψ∥Lp(Qε
i )
,

∥φ∥L∞(Qε
i )

⩽ ∥φ − (φ)i − (∇φ)i (x− xεi )∥L∞(Qε
i )

+ |(φ)i |+ ε|(∇φ)i |≲ ε−3/p∥φ∥W2,p(Qε
i )
.

Hence, for p ∈ (3/2,3)

∥φ(Id−wε)∥pLp(R3)
≲
∑
i

η3−pε εαp∥φ∥p
L∞(Qε

i )
≲ η3−pε εαp−3∥φ∥pW2,p(R3)

. (2.9)

Estimates (2.3)–(2.5) are proved analogously. For (2.3) we use in addition that Bδεα(xεi )⊆ T ε
i

for some δ > 0 that depends only on the reference particle T . Therefore wε = 0 in Bδεα(xεi ).
Step 3: Proof of (iii): It suffices to prove that for all φ ∈ C∞(Qε

i ) with φ= 0 in T ε
i , we

have

∥|∇wε|φ2∥L1(Qε
i )

≲ ηε∥∇φ∥2L2(Qε
i )
.

Without loss of generality, we assume xεi = 0. By the pointwise estimate (2.8) and the funda-
mental theorem of calculus, we have for all x ∈ Cε

i ∪Dε
i with δ > 0 as above

|∇wε (x) ||φ(x) |2 ≲ εα

|x|2
|φ(x) |2 ⩽ εα

|x|2

(ˆ |x|

δεα

∣∣∣∇φ( tx
|x|

)∣∣∣dt)2

.

This implies

∥|∇wε|φ2∥L1(Qε
i )

≲ εα
ˆ
S2

ˆ ηε/2

δεα
|φ(rn) |2 drdn⩽ εα

ˆ
S2

ˆ ηε/2

δεα

(ˆ ηε/2

δεα
|∇φ(tn) |dt

)2

drdn

≲ ηεε
α

ˆ
S2

ˆ ηε/2

δεα
r2|∇φ(rn) |2 drdn

ˆ ηε/2

δεα

1
r2

dr≲ ηε∥∇φ∥2L2(Qε
i )
,

as claimed. The proof of the estimate for the term involving qε is analogous.
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Lemma 2.2. We can write

−∆wε +∇qε = εα−3Mε − γε (2.10)

for some Mε,γε ∈W−1,∞(R3) where ⟨γε,v⟩= 0 for all v ∈ H1
0(Ωε) and, for all φ ∈ H3(R3)

and all ψ ∈ H1(R3),

⟨(Mε −R)φ,ψ ⟩≲
(
η−1
ε εα∥ψ∥L2(R3) + η

− 1
2

ε ε
3
2 ∥ψ∥H1(R3)

)
∥φ∥H3(R3), (2.11)

where the matrixR is defined in (1.5).

Proof. We observe that −∆wε +∇qε is supported on
⋃
i ∂C

ε
i ∪ ∂Dε

i =
⋃
i ∂D

ε
i ∪ ∂Ωε and

we define γε to be the part supported on ∂Ωε which consequently satisfies ⟨γε,v⟩= 0 for all
v ∈ H1

0(Ωε). Then (2.10) holds with Mε
k , the columns of Mε, being

Mε
k = ε3−α

∑
i

(
mε
k,i+ div

(
1Dε

i
(qεk Id−∇wε

k)
))

(2.12)

where

mε
k,i = ε−α (qkId−∇wk)

(
ε−αx

)
n|∂Bηε/4|δ

i
ηε/4, δiηε/4 =

H2|∂Bηε/4(xεi )

|∂Bηε/4 (x
ε
i ) |

, (2.13)

and where wk,qk are as in (1.4) and n is the unit normal on ∂Bηε/4(x
ε
i ). By [All90a, lemma

2.3.5] (which follows from the fact that wk,qk asymptotically behave as the fundamental solu-
tion of the Stokes equations), we have

mε
k,i =

εα

2

(
Rk+ 3(Rk · n)n+ η−1

ε εαrεk,i
)
δiηε/4, ∥rεk,i∥W1,∞(∂Bηε/4) ≲ 1.

To conclude the proof, it suffices to show that for all φ ∈ H3(R3) and all ψ ∈ H1(R3)∥∥∥∥∥φ
(
Rk−

ε3

2

∑
i

(Rk+ 3(Rk · n)n)

)
δiηε/4

∥∥∥∥∥
H−1(R3)

≲ η
− 1

2
ε ε

3
2 ∥φ∥H3(R3), (2.14)

ε3−α
∥∥∥φ∑

i

div
(
1Dε

i
(qεk Id−∇wε

k)
)∥∥∥

H−1(R3)
≲ η

− 1
2

ε ε
3
2 ∥φ∥H3(R3), (2.15)

〈
φε3

∑
i

rεk,iδ
i
ηε/4,ψ

〉
≲ ∥φ∥H3(R3)

(
∥ψ∥L2(R3) + η

− 1
2

ε ε
3
2 ∥ψ∥H1(R3)

)
. (2.16)

Indeed, η−1
ε εα ⩽ 1 by assumption and thus (2.12)–(2.16) imply the assertion.

To prove (2.14), we begin by observing that for all v ∈ H1(Qε
i ) we have due to Sobolev

embedding

∥v− (v)i ∥L6(Qε
i )

⩽ C∥∇v∥L2(Qε
i )
, (2.17)

where we recall the notation (v)i =
ffl
Qε
i
v and where the constant C is universal due to scaling

considerations. Similarly, we have the Poincaré-type inequality
 

∂Bηε/4(xεi )

∣∣∣v−  
Bηε/4(xεi )

vdx
∣∣∣dy≲ η

− 1
2

ε ∥∇v∥L2(Bηε/4(xεi ))
. (2.18)
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Since
 

∂Bηε/4

1
2
(Rk+ 3(Rk · n)n) dx=Rk,

we deduce that for any v ∈ H1(Qε
i ) that∣∣∣∣∣

ˆ
Qε
i

(
v ·Rk−

1
2

 
∂Bηε/4(xεi )

v · (Rk+ 3(Rk · n)n) dy

)
dx

∣∣∣∣∣
=
ε3

2

∣∣∣ 
∂Bηε/4(xεi )

(
v− (v)i

)
· (Rk+ 3(Rk · n)n) dx

∣∣∣
≲ η

− 1
2

ε ε3∥∇v∥L2(Bηε/4(xεi ))
+ ε3

 
Bηε/4(xεi )

|v− (v)i |dx

≲ η
− 1

2
ε ε3∥∇v∥L2(Bηε/4(xεi ))

+ η
− 1

2
ε ε3∥|v− (v)i ∥L6(Bηε/4(xεi ))

≲ η
− 1

2
ε ε3∥∇v∥L2(Qε

i )
.

Therefore, for φ ∈ H3(R3) and ψ ∈ H1(R3),〈
φ

(
Rk−

ε3

2

∑
i

(Rk+ 3(Rk · n)n)δiηε/4

)
,ψ

〉
≲ η

− 1
2

ε ε3
∑
i

∥∇(φψ)∥L2(Qε
i )

≲ η
− 1

2
ε ε

3
2 ∥ψ∥H1(R3)

(
ε3
∑
i

∥φ∥2
W1,∞(Qε

i )

) 1
2

≲ η
− 1

2
ε ε

3
2 ∥ψ∥H1(R3)∥φ∥H3(R3),

where the last inequality is shown as in (2.9)
We turn to (2.15). We use the pointwise estimates (2.8) to bound

ε3−α
〈
φ
∑
i

div
(
1Dε

i
(qεk Id−∇wε

k)
)
,ψ
〉

≲ ε3−αη
3
2
ε

∑
i

∥qεk Id−∇wε
k∥L∞(Dε

i )
∥ψ∥H1(Qε

i )
∥φ∥W1,∞(Qε

i )

≲ ε3−αη
3
2
ε η

−2
ε εαε−3/2∥ψ∥H1(R3)∥φ∥H3(R3)

= η
− 1

2
ε ε

3
2 ∥ψ∥H1(R3)∥φ∥H3(R3).

It remains to show (2.16). Using again (2.17) and (2.18), we have for any v ∈ H1(Qε
i )∣∣∣ 

∂Bηε/4(xεi )
vdx
∣∣∣≲  

∂Bηε/4(xεi )

∣∣∣v−  
Bηε/4(xεi )

vdy
∣∣∣dx+ 

Bηε/4(xεi )
|v− (v)i |dx+ |(v)i |

≲ η
− 1

2
ε ∥∇v∥L2(Qε

i )
+ ε−3/2∥v∥L2(Qε

i )
.
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Thus, for φ ∈ H3(R3) and ψ ∈ H1(R3), using (2.13),

〈
φε3

∑
i

rεk,iδ
i
ηε/4,ψ

〉
≲ η

− 1
2

ε ε3
∑
i

∥ψ∥H1(Qε
i )
∥φ∥W1,∞(Qε

i )

+ ε3/2
∑
i

∥ψ∥L2(Qε
i )
∥φ∥L∞(Qε

i )

≲ ∥φ∥H3(R3)

(
η
− 1

2
ε ε

3
2 ∥ψ∥H1(R3) + ∥ψ∥L2(R3)

)
.

This finishes the proof.

Lemma 2.3. For all 1< p<∞, there exists a linear operatorBε :W1,p(R3)→W1,p(R3) such
that for all φ ∈W1,p(R3) that are divergence free we have

divBε (φ) = wε :∇φ (2.19)

and

∥∇Bε (φ)∥Lp ≲ ∥(Id−wε) :∇φ∥Lp , ∥Bε (φ)∥Lp ≲ ηε∥(Id−wε) :∇φ∥Lp . (2.20)

Proof. It suffices to construct the linear operator on the subspace of divergence free functions
φ ∈W1,p(R3). We observe that then wε :∇φ = 0 in R3 \Aε

i where A
ε
i := Cε

i ∪Dε
i and, since

the functions wε
k are divergence free,

ˆ
Aε
i

wε :∇φ dx=
ˆ
Aε
i ∪T ε

i

wε :∇φ dx=
ˆ
Aε
i ∪T ε

i

div((wε − Id)φ) dx= 0

as wε = Id on ∂Dε
i . Therefore we may employ a Bogovski operator in Aε

i . More precisely,
by [DFL17, lemma 3.1] (which is a consequence of [ADM06, DRS10]), there exist operators
Bε
i : Lp0(A

ε
i )→W1,p

0 (Aε
i ) (L

p
0 denotes the subspace of Lp functions with vanishing mean) such

that for all h ∈ Lp0(Aε
i )

divBε
i (h) = h, ∥Bε

i (h)∥W1,p
0 (Aε

i )
≲ ∥h∥Lp0(Aε

i )
.

We then deduce that Bε(φ) :=
∑

i Bε
i (w

ε :∇φ) satisfies (2.19) as well as the first inequality
in (2.20). The second inequality in (2.20) follows from the first one and the Poincaré inequality
in the domains Aε

i ⊆ Bηε
(xi).

For the treatment of the subcritical case, we will rely on the following Poincaré inequality
in Ωε. It is proved in [All90b, lemma 3.4.1] when Ωε is a bounded domain. Since the proof is
based on a local Poincaré inequality in each of the cubes Qε

i , it still applies here.

Proposition 2.4 ([All90b, lemma 3.4.1]). For all φ ∈ H1
0(Ωε)

∥φ∥L2(Ωε) ≲ ε
3−α
2 ∥∇φ∥L2(Ωε). (2.21)
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3. Proof of the main results

As outlined in section 1.4, the strategy for the proof of the main results is based on energy
estimates for the difference

vε = wεu− uε −Bε (u) . (3.1)

Here uε is the solution to (1.1) in the critical and subcritical case and to (1.9)in the supercritical
case and u is the solution to (1.7), (1.8) and (1.10), respectively. Moreover, wε is the matrix
valued function defined at the beginning of section 2 and depends on a parameter εα ⩽ ηε ⩽ ε
that we will choose later. Finally, Bε is the operator from lemma 2.3.

We first observe that the difference (wε − Id)u−Bε(u) between vε and u− uε is very small,
namely

∥vε − (u− uε)∥L∞(0,T;L2(R3)) ⩽ Cη
1
2
ε ε

α− 3
2 , (3.2)

where the constant C depends only on T and ∥u∥L∞(0,T;H3(R3)). Indeed, this follows immedi-
ately from (2.2) and (2.20).

3.1. Proof of theorems 1.1 and 1.2

Throughout this subsection, we assume that the parameters α and γ are in the range of the
critical or subcritical regime specified in theorems 1.1 and 1.2, respectively, that is α > 3/2
and γ > 0, γ ∈ [3−α,α) or γ = α and µ0 ≫ 1. Moreover, vε is defined by (3.1) where uε is
the solution to (1.1) and u is the solution to (1.8) or (1.7).

The main technical part of the proof of the main results is an energy estimate for vε stated
in the following proposition. Thereafter, we show how theorems 1.1 and 1.2 follow from this
proposition and Gronwall’s inequality.

Proposition 3.1. Let εα ⩽ ηε ⩽ ε. Then,

(i) Then, under the assumptions of theorem 1.1 we have for all t⩽ T

∥vε (t)∥2L2(Ωε)
+(εγ −Cηε)∥∇vε∥2L2((0,t)×Ωε)

⩽ ∥vε (0)∥2L2(Ωε)
+C∥( fε − f)∥2L2((0,T)×Ωε)

+C∥vε∥2L2((0,t)×Ωε)

+C
(
ηεε

2α−γ−3 + η−1
ε ε3−γ + ε2γ + η2ε

) (3.3)

for some constant C which depends only on T , T ∥f∥L∞(0,T;H2(R3)), ∥u∥C1(0,T;H4(R3)) and
∥∇p∥L∞(0,T;H2(R3)).

(ii) Under the assumptions of theorem 1.2 we have for all t⩽ T

∥vε(t)∥2L2(Ωε)
+(µ0ε

γ −Cηε)∥∇vε∥2L2((0,t)×Ωε)

⩽ ∥vε(0)∥2L2(Ωε)
+C∥( fε − f)∥2L2(0,T)×Ωε)

+C∥vε∥2L2(0,t;L2(Ωε))

+Cµ0

(
ε2α+2γ−6 + ηεε

2α−γ−3 + η−1
ε ε2α+γ−3 + ε2γ + η2ε

) (3.4)

for some C which depends only on T , T, ∥f∥L∞(0,T;H2(R3)), ∥u∥C1(0,T;H4(R3)),
∥∇p∥L∞(0,T;H2(R3)) and some Cµ0 which depends additionally on µ0.
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Proof of theorem 1.1. We choose ηε = 1
Cε

γ such that we may drop the second term on the
left-hand side of (3.3). Note that as γ = 3−α and α ∈ (3/2,3), the assumption εα ⩽ ηε ⩽ ε
is satisfied for all ε sufficiently small (for ε of order 1, the assertion of the theorem is an
immediate consequence of the energy inequality (1.2)).

Then, by Gronwall’s inequality, proposition 3.1 yields

∥vε (t)∥2L2(Ωε)
≲ ∥vε (0)∥2L2(Ωε)

+ ∥( fε − f)∥2L2(0,T;L2(Ωε))
+
(
ε2α−3 + ε6−2α

)
and we deduce with (3.2), which only gives a higher order error, that

∥(uε − u)(t)∥2L2(Ωε)
≲ ∥(uε − u)(0)∥2L2(Ωε)

+ ∥( fε − f)∥2L2(0,T;L2(Ωε))
+
(
ε2α−3 + ε6−2α

)
.

This finishes the proof.

Proof of theorem 1.2. We choose ηε = δεβ with β =min{γ,1} and

δ =

{
1 if γ = α,
1
C if γ < α.

This choice guarantees εα ⩽ ηε ⩽ ε is satisfied for all ε sufficiently small. Moreover, choosing
M=C, the assumption µ0 ⩾M if γ = α allows us to drop the second term on the left-hand
side in (3.4) in all cases. Therefore, arguing as in the proof above yields

∥(uε − u)(t)∥2L2(Ωε)
≲ ∥(uε − u)(0)∥2L2(Ωε)

+ ∥( fε − f)∥2L2(0,T;L2(Ωε))

+
(
ε2α+2γ−6 + ε2α−3 + ε2α+γ−4 + ε2γ

)
.

We observe that 2α+ γ− 4⩽max{2α− 3,2α+ 2γ− 6} to finish the proof.

Proof of proposition 3.1. We focus on the critical case γ = 3−α where u solves (1.7). We
discuss the necessary adaptions for the subcritical case γ > 3−α in the last step of the
proof. Throughout the proof we write ≲ for ⩽ C with C as specified in the statement of the
proposition.
Step 1: PDE solved by ǔε := wεu−Bε(u):We observe that ǔε satisfies ǔε = 0 on (0,T)×

∂Ωε and, in (0,T)×Ωε

∂tǔε − εγ∆ǔε +wε (u ·∇u)+wε∇p= wεf +(Mε −wεR)u− εγ∇qεu
− 2εγ∇wε∇u− εγwε∆u+Bε (∂tu)+ εγ∆Bε (u) ,

(3.5)

with Mε as in (2.10). Moreover, divǔε = 0.
Step 2: Relative energy inequality: We consider the relative energy 1

2∥vε∥
2
L2 . We estimate

using the energy inequality (1.2) for uε as well as ǔε ∈ L∞(H1), ∂tǔε ∈ L1(H−1)

1
2
∥vε (t)∥2L2(Ωε)

=
1
2
∥uε (t)∥2L2(Ωε)

− (ǔε (t) ,uε (t))L2(Ωε)
+

1
2
∥ǔε (t)∥2L2(Ωε)

(3.6)

⩽ 1
2
∥vε (0)∥2L2(Ωε)

− εγ
ˆ t

0
∥∇uε∥2L2(Ωε)

ds+
ˆ t

0

ˆ
Ωε

fε · uε dxds

−
ˆ t

0

ˆ
Ωε

(∂tǔε · uε + ∂tuε · ǔε) dxds+
ˆ t

0

ˆ
Ωε

∂tǔε · ǔε dxds.
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Using the equation solved by uε, we have

−
ˆ t

0

ˆ
Ωε

∂tuε · ǔε dxds=
ˆ t

0

ˆ
Ωε

((uε ·∇uε) · ǔε + εγ∇uε ·∇ǔε − fε · ǔε) dxds (3.7)

and likewise, using the equation of ǔε

ˆ t

0

ˆ
Ωε

∂tǔε · vε = −
ˆ t

0

ˆ
Ωε

(
εγ∇ǔε ·∇vε +(wε (u ·∇u)) · (ǔε − uε)

− (wεf +Fε) · vε
)
dxds (3.8)

where

F̃ε =−wε∇p+(Mε −wεR)u− εγ∇qεu− 2εγ∇wε∇u
− εγwε∆u+Bε (∂tu)+ εγ∆Bε (u) .

inserting (3.7) and (3.8) in (3.6) and denoting

Fε = F̃ε +(wεf − fε)

yields

1
2
∥vε∥2L2 (t)+ εγ

ˆ t

0
∥∇vε∥2L2(Ωε)

ds

⩽
ˆ t

0

ˆ
Ωε

((uε ·∇uε) · ǔε − (wε (u ·∇u)) · vε +Fε · vε) dxds. (3.9)

Thus, we deduce

1
2
∥vε (t)∥2L2(Ωε)

+ εγ∥∇vε∥2L2((0,t)×Ωε)
⩽ 1

2
∥vε (0)∥2L2(Ωε)

+ |I1|+ |I2| (3.10)

where

I1 =
ˆ t

0

ˆ
Ωε

((uε ·∇uε) · ǔε − (wε (u ·∇u)) · vε) dxds,

I2 =
ˆ t

0

ˆ
Ωε

Fε · vε dxds.

Step 3: Bound of I1:We first manipulate the first term in I1. Using uε = ǔε = 0 on ∂Ωε as
well as divu= divuε = 0 yields by integration by parts

ˆ t

0

ˆ
Ωε

(uε ·∇uε) · ǔε dxds=−
ˆ t

0

ˆ
Ωε

(uε ·∇ǔε) · (uε − ǔε) dxds

=−
ˆ t

0

ˆ
Ωε

(vε ·∇ǔε) · vε dxds

+

ˆ t

0

ˆ
Ωε

(ǔε ·∇ǔε) · vε dxds.

(3.11)
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This allows us to rewrite

I1 =−
ˆ t

0

ˆ
Ωε

(vε ·∇ǔε) · vε dxds+
ˆ t

0

ˆ
Ωε

(Id−wε)(u ·∇u) · vε dxds

+

ˆ t

0

ˆ
Ωε

((ǔε − u) ·∇u) · vε dxds

+

ˆ t

0

ˆ
Ωε

(ǔε ·∇(ǔε − u)) · vε dxds=: I11 + I21 + I31 + I41.

We recall ǔε = wεu−Bε(u) to estimate by the regularity assumptions of u, (2.6) and (2.20)
combined with (2.3) and another integration by parts

|I11|≲ ∥vε∥2L2(0,t;L2(Ωε))
∥wε∥L∞(R3)∥∇u∥L∞(0,t;L∞(R3))

+ ∥∇wε|vε|2∥L1(0,t;L1(Ωε))∥u∥L∞(0,t;L∞(R3))

+ ∥∇vε∥L2(0,t;L2(Ωε))∥vε∥L2(0,t;L6(Ωε))∥Bε(u)∥L∞(0,T;L3(Ωε)

≲ ∥vε∥2L2(0,t;L2(Ωε))
+ ηε(1+ εα−1| logε| 13 )∥∇vε∥2L2(0,t;L2(Ωε))

≲ ∥vε∥2L2(0,t;L2(Ωε))
+ ηε∥∇vε∥2L2(0,t;L2(Ωε))

,

(3.12)

where we used α> 1 in the last estimate.
By the regularity assumptions of u and (2.2), we have

|I21|≲ ∥vε∥2L2(0,t;L2(Ωε))
+ ηεε

2α−3.

Similarly, relying additionally on (2.20),

|I31|≲ ∥vε∥2L2(0,t;L2(Ωε))
+ ηεε

2α−3.

Finally, we estimate by another integration by parts

|I41|⩽
1
4
εγ∥∇vε∥2L2(0,t;L2(Ωε))

+ ε−γ∥ǔε|ǔε − u|∥2L2(0,t;L2(Ωε))
.

We estimate using that u and wε are uniformly bounded in L∞ as well as (2.20) and (2.2) and
Sobolev embedding

∥ǔε|ǔε − u|∥2L2(0,t;L2(Ωε))
≲
ˆ t

0

(
∥(wε − Id)u∥2L2(Ωε))

+ ∥Bε(u)∥2L2(Ωε)
+ ∥Bε(u)∥2L4(Ωε))

)
ds

≲
ˆ t

0

(
∥(wε − Id)u∥2L2(Ωε))

+ ∥Bε(u)∥2L2(Ωε)
+ ∥∇Bε(u)∥2L2(Ωε))

)
ds

≲ ηεε
2α−3.

In summary, we find,

|I1|⩽ C∥vε∥2L2(0,t;L2(Ωε))
+

(
1
4
εγ +Cηε

)
∥∇vε∥2L2(0,t;L2(Ωε))

+Cηεε
2α−γ−3. (3.13)

Step 4: Bound of I2:We split

I2 = I12 + I22 + I32 + I42
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where

I12 =
ˆ t

0

ˆ
Ωε

((Id−wε)(∇p− f)+ f − fε) · vε dxds,

I22 =
ˆ t

0

ˆ
Ωε

((Mε −wεR)u) · vε dxds,

I32 =−εγ
ˆ t

0

ˆ
Ωε

(2∇wε∇u+wε∆u+∇qεu) · vε dxds,

I42 =
ˆ t

0

ˆ
Ωε

(Bε (∂tu) · vε + εγ∇Bε (u)∇vε) dxds.

We estimate

|I12|≲ ∥(wε − Id)∇p∥2L2((0,t)×Ωε)
+ ∥(wε − Id) f∥2L2((0,t)×Ωε)

+ ∥fε − f∥2L2((0,t)×Ωε)
+ ∥vε∥2L2((0,t)×Ωε)

≲ ηεε
2α−3 + ∥fε − f∥2L2((0,t)×Ωε)

+ ∥vε∥2L2((0,t)×Ωε)
.

We rewrite

I22 =
ˆ t

0

ˆ
Ωε

(wε − Id)Ru · vε dxdt+
ˆ t

0
⟨(Mε −R)u,vε⟩ds.

The first term on the right-hand side is estimated as above. Combining this with (2.11) to
estimate the second term on the right-hand side yields for some δ > 0 to be chosen later

|I22|⩽ Cηεε
2α−3 +Cη−2

ε ε2α + ∥vε∥2L2(0,t;L2(Ωε))

+Cδη
−1
ε ε3Cε−γ + δεγ∥∇vε∥2L2(0,t;L2(Ωε))

⩽ Cηεε
2α−3 +Cδη

−1
ε ε3−γ + ∥vε∥2L2(0,t;L2(Ωε))

+ δεγ∥∇vε∥2L2(0,t;L2(Ωε))
.

where we used that ηε ⩾ εα and α⩾ 3− γ to absorb the term η−2
ε ε2α. Next, we estimate

using (2.5) and (2.6)

|I32|⩽ Cεγ
ˆ t

0

(
∥(|∇wε| 12 + |qεk |

1
2 )∇u∥L2∥(|∇wε| 12 + |qεk |

1
2 )vε∥L2 + ∥wε∥∞∥vε∥L2

)
ds

≲ Cδε
γη2εε

α−3 + δεγ∥∇vε∥2L2(0,t;L2(Ωε))
+Cε2γ + ∥vε∥2L2(0,t;L2(Ωε)

≲ Cδη
2
ε + δεγ∥∇vε∥2L2(0,t;L2(Ωε))

+ ε2γ + ∥vε∥2L2(0,t;L2(Ωε)
,

where we used α+ γ ⩾ 3 in the last inequality.
Finally, we estimate, relying on (2.20) and (2.2)

|I42|⩽ Cη2εηεε
2α−3 + ∥vε∥2L2(0,t;L2(Ωε))

+Cδε
γηεε

2α−3 + δεγ∥∇vε∥2L2(0,t;L2(Ωε))
.

Thus, choosing δ sufficiently small, we obtain in summary, after absorbing some higher order
terms,

|I2|⩽
1
4
εγ∥∇vε∥2L2(0,t;L2(Ωε))

+C∥vε∥2L2(0,t;L2(Ωε))
+C∥fε − f∥2L2(0,t;L2(Ωε))

(3.14)

+C
(
ηεε

2α−3 + η−1
ε ε3−γ + ε2γ + η2ε

)
.
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Step 5: Conclusion: Inserting the bounds for I1 from (3.13) and I2 from (3.14) into (3.10)
yields (3.3).
Step 6: Adaptations in the subcritical case: Let now γ > 3−α and let u solves the the Euler

equations (1.8). There are only very little changes in the proof in this case. In Step 1, the only
differences are that in the PDE solved by ǔ, (3.5) all inctances of εγ should be replaced by
µ0ε

γ (in the critical case, we assumed µ0 = 1) and that (Mε −wεR)u has to be replaced by
µ0ε

γ+α−3Mεu . Consequently, estimate (3.10) still holds up to replacing all instances of εγ by
µ0ε

γ and where in the source Fε (appearing in I3) the term (Mε −wεR)u is likewise replaced
by µ0ε

γ+α−3Mεu. In particular, the estimates for I1 in steps 3 still apply, and all the estimates
of step 4 for I2 are unaffected except for the estimate of I22 which now takes the form

I22 = µ0ε
γ+α−3

ˆ t

0

ˆ
Ωε

(Mεu) · vε dxds

= µ0ε
γ+α−3

ˆ t

0

ˆ
Ωε

((Mε −R)u) · vε dxds+µ0ε
γ+α−3

ˆ t

0

ˆ
Ωε

(Ru) · vε dxds.

Thus, we estimate with lemma 2.2

|I22|⩽ µ2
0ε

2γ+2α−6
(
η−2
ε ε2α + 1

)
+ ∥vε∥2L2((0,t)×Ωε)

+Cδµ0η
−1
ε ε3εγ+2α−6 + δµ0ε

γ∥∇vε∥2L2((0,t)×Ωε)

⩽ ∥vε∥2L2((0,t)×Ωε)
+ δεγ∥∇vε∥2L2((0,t)×Ωε)

+Cµ0,δ

(
ε2γ+2α−6 + η−1

ε ε2α+γ−3
)

and we obtain

|I2|⩽
1
4
µ0ε

γ∥∇vε∥2L2(0,t;L2(Ωε))
+C∥vε∥2L2(0,t;L2(Ωε))

+C∥( fε − f)∥2L2(0,t;L2(Ωε))

+Cµ0

(
ηεε

2α−3 + η−1
ε ε2α+γ−3 + ε2α+2γ−6 + ε2γ + η2ε

)
.

Combining this estimate as before with the estimates for I1, (3.13), yields (3.4).

3.2. Proof of theorems 1.3 and 1.5

In this subsection, we consider uε a Leray solution to (1.9) and u the solution to (1.10).

Proof of theorem 1.3. We follow closely the proof of proposition 3.1 to obtain an estimate for
vε = ǔε − uε, where ǔε := wεu−Bε(u) with wε as in section 2 and with Bε as in lemma 2.3.

Recall thatwε depends on a parameter ηε.We take ηε = εβ for some 1⩽ β ⩽ α to be chosen
later.
Step 1: PDE solved by ǔε:We have ǔε = 0 on (0,T)× ∂Ωε, and, in (0,T)×Ωε

ε6−2α−2γ∂tǔε − ε3−α∆ǔε = f −∇p+(Mε −R)u+ ε6−2α−2γ∂tǔε

− ε3−α∇qεu− 2ε3−α∇wε∇u− ε3−αwε∆u+ ε3−α∆Bε (u) ,

with Mε as in (2.10). Moreover, divǔε = 0.
Step 2: Relative energy inequality: Thanks to the energy inequality (1.11) as well as the

PDEs solved by uε and ǔε, we have, correspondingly to (3.9),
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ε6−2α−2γ

2
∥vε (T)∥2L2(Ωε)

+ ε3−α

ˆ T

0
∥∇vε∥2L2(Ωε)

dt

⩽ ε6−2α−2γ

2
∥vε (0)∥2L2(Ωε)

+

ˆ T

0

ˆ
Ωε

(Fε + fε − f) · vε dxdt

+ ε6−2α−2γ
ˆ T

0

ˆ
Ωε

((uε ·∇uε) · ǔε + ∂tǔε · vε) dxdt,

where

Fε = (Mε −R)u− ε3−α∇qεu− 2ε3−α∇wε∇u− ε3−αwε∆u+ ε3−α∆Bε (u) .

Thus, using the Poincaré inequality (2.21) and Young’s inequality,

1
2
ε3−α∥∇vε∥2L2(0,T;L2(Ωε))

⩽ ε6−2α−2γ∥vε (0)∥2L2(Ωε)

+ ∥fε − f∥2L2(0,T;L2(Ωε))
+ |I1|+ |I2|, (3.15)

I1 =
ˆ T

0
⟨Fε,vε⟩dt,

I2 = ε6−2α−2γ
ˆ T

0

ˆ
Ωε

((uε ·∇uε) · ǔε + ∂tǔε · vε) dxdt.

Step 3: Estimate of I1: We estimate with (2.2) as well as lemma 2.2 and the Poincaré
inequality (2.21)∣∣∣∣ˆ T

0
⟨(Mε −R)u,vε⟩dt

∣∣∣∣≲ εα−β∥vε∥L2(0,T;L2(Ωε))+ ε
3−β
2 ∥vε∥L2(0,T;H1(Ωε))

≲ (ε
3−α
2 εα−β + ε

3−β
2 )∥∇vε∥L2(0,T;L2(Ωε))

≲ ε
3−β
2 ∥∇vε∥L2(0,T;L2(Ωε)),

wherewe usedα⩾ β in the last inequality.Moreover, since divvε = 0 and using (2.5) and (2.6),

∣∣∣∣ε3−α

ˆ T

0

ˆ
Ωε

(vε ·∇qε) · udxdt
∣∣∣∣= ∣∣∣∣ε3−α

ˆ T

0

ˆ
Ωε

qε · (vε ·∇u) dxdt
∣∣∣∣

≲ ε3−αε
β
2 ε

α+β−3
2 ∥∇vε∥L2(0,T;L2(Ωε))

= ε
3−α
2 εβ∥∇vε∥L2(0,T;L2(Ωε)),

and similarly ∣∣∣∣ε3−α

ˆ T

0

ˆ
Ωε

vε ·
(
∇wε∇u+ ε3−αwε∆u

)
dxdt

∣∣∣∣
≲ ε

3−α
2 εβ∥∇vε∥L2(0,T;L2(Ωε)) + ε3−α∥vε∥L2(0,T;L2(Ωε))

≲
(
ε

3−α
2 εβ + ε

9−3α
2

)
∥∇vε∥L2(0,T;L2(Ωε)).
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Finally, by (2.20) and (2.2)∣∣∣∣ε3−α

ˆ T

0

ˆ
Ωε

∇vε :∇Bε (u) dxdt

∣∣∣∣
≲ ε3−αεα−

3−β
2 ∥∇vε∥L2(0,T;L2(Ωε)) = ε

3+β
2 ∥∇vε∥L2(0,T;L2(Ωε)).

Since α⩾ β ⩾ 1 and α< 3, we observe that ε
3+β
2 ≲ ε

3−α
2 εβ ≲ ε

3−β
2 to conclude

|I1|⩽ C
(
ε

3−β
2 + ε

9−3α
2

)
∥∇vε∥L2(0,T;L2(Ωε))

⩽ 1
8
ε3−α∥∇vε∥2L2(0,T;L2(Ωε))

+C
(
εα−β + ε9−3α

)
. (3.16)

Step 4: Estimate of I2: Using the identity (3.11) that still holds since uε = ǔε = 0 on ∂Ωε

and divu= divuε = 0, we can decompose

I2 = ε6−2α−2γ
ˆ T

0

ˆ
Ωε

(vε ·∇ǔε) · vε dxdt

+ ε6−2α−2γ
ˆ T

0

ˆ
Ωε

((ǔε ·∇ǔε) · vε + ∂tǔε · vε) dxdt

=: I12 + I22

Combining the estimate (3.12) with the Poincaré inequality (2.21), we have

|I12|≲ ε6−2α−2γ
(
ε3−α + εβ

)
∥∇vε∥2L2(0,T;L2(Ωε))

.

Moreover, we estimate using again (2.21) as well as (2.6), (2.4) and (2.20) combined with (2.2)

|I22|⩽ Cε6−2α−2γ
ˆ T

0

(
∥vε∥L2(Ωε) + ∥|∇wε| 12 vε∥L2(Ωε)∥|∇w

ε| 12 ǔε∥L2(Ωε)

+∥∇vε∥L2(Ωε)∥Bε (u)∥L2(Ωε)

)
dt

⩽ Cε6−2α−2γ
ˆ T

0

(
ε

3−α
2 ∥∇vε∥2L2(Ωε)

+ εβ∥∇vε∥L2(Ωε)∥∇ǔε∥L2(Ωε)

+∥∇vε∥L2(Ωε)ε
βεβ+α− 3

2

)
dt

⩽ 1
8
ε3−α∥∇vε∥2L2(0,T;L2(Ωε))

+C
(
ε9−3α−4γε2βεα−3 + ε12−4α−4γ

)
.

Combining these estimates yields

|I2|⩽ ε3−α

(
Cε6−2α−2γ +Cε3−α−2γ+β +

1
8

)
∥∇vε∥2L2(0,T;L2(Ωε))

+C
(
ε6−2α−4γ+2β + ε12−4α−4γ

)
. (3.17)
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Step 5: Conclusion: Inserting (3.16) and (3.17) into (3.15) yields

ε3−α

(
1
4
−Cε6−2α−2γ −Cε3−α−2γ+β

)
∥∇vε∥2L2(0,T;L2(Ωε))

≲ ε6−2α−2γ∥vε (0)∥2L2(Ωε)
+ ∥fε − f∥2L2(0,T;L2(Ωε))

+ ε6−2α−4γ+2β + εα−β + ε9−3α + ε12−4α−4γ .

We choose

β =min

{
1,α− 6− 4γ

3

}
.

Then, for all ε sufficiently small, using the assumptions γ < 3/2 and α+ γ < 3, the left-hand
side is positive and, combination with the Poincaré inequality (2.21) yields

∥vε∥2L2(0,T;L2(Ωε))
≲ ε6−2α−2γ∥vε (0)∥2L2(Ωε)

+ ∥fε − f∥2L2(0,T;L2(Ωε))

+ ε
6−4γ

3 + εα−1 + ε9−3α + ε12−4α−4γ .

Applying (3.2) and observing that this only produces a higher order error since 2α+β−
3⩾ α−β thanks to α⩾ β ⩾ 1, we find

∥uε − u∥2L2((0,T)×Ωε)
≲ ε6−2α−2γ∥u0ε − u0∥2L2(Ωε)

+ ∥fε − f∥2L2((0,T)×L2(Ωε)

+ ε
6−4γ

3 + εα−1 + ε9−3α + ε12−4α−4γ .

This concludes the proof.

Proof of theorem 1.5. For simplicity of the notation, we write uε instead of ũε for the exten-
sion of uε by 0 to R3. Note that the energy inequality (1.11) does not immediately provide
uniform a priori estimates for uε. The first step of the proof therefore consists in combining
the energy inequality with the Poincaré inequality from proposition 2.4 to deduce a uniform
a priori bound for uε in L2(0,T;L2(R3). Then, uε ⇀ u for some u ∈ L2(0,T;L2(R3)) along
subsequences and it suffices to show that u solves (1.10).
Step 1: Uniform a priori estimateWe claim that,

∥uε∥L2(0,T;L2(R3) + ε
3−α
2 ∥∇uε∥L2(0,T;L2(R3) ≲ ε3−αε−γ∥uε0∥L2(R3) + ∥fε∥L2(0,T;L2(R3) ≲ 1.

(3.18)

By the energy inequality (1.11) and the Poincaré inequality (2.21) we have

∥uε(t)∥2L2(Ωε)
+ ε2γεα−3∥∇uε∥2L2(0,t;L2(Ωε))

≲ ∥uε0∥2L2(Ωε)
+ ε2γε

3α−9
2 ∥fε∥L2(0,T;L2(R3)∥∇uε∥L2(0,T;L2(R3).

Applying Young’s inequality, this establishes the estimate for ∇uε, and the estimate for uε
follows by another application of the Poincaré inequality (2.21).
Step 2: Testing with wεφ −Bε(φ): Let φ ∈ C∞

c ((0,T)×R3) with divφ = 0. Then, we test
the equation (1.9) of uε with

φε := wεφ −Bε (φ) ,
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where wε is as in section 2 and depends on a parameter ηε which we take as ηε = εβ for some
1⩽ β < α to be chosen late. This yields

ε3−α

ˆ T

0

ˆ
R3

∇uε :∇φε dxdt=
ˆ T

0

ˆ
R3

fε ·φε dxdt

+ ε6−2α−2γ
ˆ T

0

ˆ
R3

(uε · ∂tφε + uε · (uε ·∇φε)) dxdt.

It remains to show

I1 :=
ˆ T

0

ˆ
R3

fε ·φε dxdt→
ˆ T

0

ˆ
R3

f ·φ dxdt,

I2 := ε6−2α−2γ
ˆ T

0

ˆ
R3

(uε · ∂tφε + uε · (uε ·∇φε)) dxdt→ 0,

I3 := ε3−α

ˆ T

0

ˆ
R3

∇uε :∇φε dxdt→
ˆ

Ru ·φ.

Step 2: Convergence of I1: Recalling the assumption that fε ⇀ f in L2(0,T;L2(R3))) and
that wε → Id strongly in L2(suppφ) by lemma 2.1 (ii), we have

ˆ T

0

ˆ
R3

fε · (wεφ) dxds→
ˆ T

0

ˆ
R3

f ·φ dxds.

Moreover, by (2.2) and (2.20)

∣∣∣∣ˆ T

0

ˆ
R3

fεBε (φ) dxdt

∣∣∣∣≲ εβεα−
3−β
2 = εαε3

β−1
2 → 0

as β ⩾ 1.
Step 3: Convergence of I2:
We have by the regularity of u, using (2.6), the a priori estimate (3.18) and the estim-

ates (2.20), (2.2) and (2.3)

|I2|≲ ε6−2α−2γ
ˆ t

0
(∥uε∥L2(Ωε)(∥∂tφ∥L2(Ωε) + ∥Bε(∂tφ)∥L2(Ωε))

+∥uε∥L6(Ωε)∥∇uε∥L2(Ωε)∥Bε(φ)∥L3(Ωε)

+∥uε∥2L2(Ωε)
∥∇φ∥L∞(Ωε) + ∥|uε|2∇wε∥L1(Ωε)∥φ∥L∞(Ωε))dxds

≲ ε6−2α−2γ(1+ εβεα+
β−3
2 + εα−3εβ(1+ εα−1| logε| 13 ))

≲ ε6−2α−2γ + ε3+β−α−2γ .

Thanks to the assumption α> 1, γ < 3−α and γ < 3/2, we may choose β ⩾ 1 such that
β ∈ (α+ 2γ− 3,α, which implies I2 → 0 as ε→ 0.
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Step 4: Convergence of I3:WithMε as in lemma 2.2, we rewrite

ε3−α

ˆ T

0

ˆ
R3

∇uε :∇φε dxdt=
ˆ T

0
⟨φMε,uε⟩dt+ ε3−α

ˆ
(uε ·∇qε) ·φ dxdt

+ ε3−α

ˆ T

0

ˆ
R3

∇uε :∇Bε (φ) dxdt

− ε3−α

ˆ T

0

ˆ
R3

uε · (2∇wε∇φε +wε∆φε) dxdt

=: I13 + I23 + I33 + I43.

By lemma 2.2 and (3.18), we have∣∣∣∣I13 −ˆ T

0

ˆ
R3

Ru ·φ
∣∣∣∣≲ (εα−β∥uε∥L2(0,T;L2(R3)) + ε

3−β
2 ∥∇uε∥L2(0,T;L2(R3))

)
∥φ∥L2(0,T;H2(R3))

≲ εα−β + ε
α−3
2 ε

3−β
2 → 0

since β < α. Moreover, we estimate using (2.4)

|I23|=
∣∣∣∣ε3−α

ˆ T

0

ˆ
R3

(qε ·∇φ) · uε dxdt
∣∣∣∣≲ ε

3−α
2 → 0.

Furthermore, by lemma (3.18) and (2.20) and (2.2)

|I33|≲ ε
3−α
2 εα−

3−β
2 = ε

α+β
2 → 0.

Finally, by (2.4) and (2.1)

|I43|≲ ε
3−α
2 → 0.

Therefore, the desired convergence of I3 is established and this finishes the proof.
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