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Validating the early phototherapy
prediction tool across cohorts
Imant Daunhawer1†, Kai Schumacher2†, Anna Badura2, Julia E. Vogt1,
Holger Michel2 and Sven Wellmann2*
1Department of Computer Science, ETH Zurich, Zurich, Switzerland, 2Department of Neonatology,
Hospital St. Hedwig of the Order of St. John, University Children’s Hospital Regensburg (KUNO),
Regensburg, Germany

Background: Hyperbilirubinemia of the newborn infant is a common disease
worldwide. However, recognized early and treated appropriately, it typically
remains innocuous. We recently developed an early phototherapy prediction
tool (EPPT) by means of machine learning (ML) utilizing just one bilirubin
measurement and few clinical variables. The aim of this study is to test
applicability and performance of the EPPT on a new patient cohort from a
different population.
Materials and methods: This work is a retrospective study of prospectively
recorded neonatal data from infants born in 2018 in an academic hospital,
Regensburg, Germany, meeting the following inclusion criteria: born with 34
completed weeks of gestation or more, at least two total serum bilirubin (TSB)
measurement prior to phototherapy. First, the original EPPT—an ensemble of a
logistic regression and a random forest—was used in its freely accessible version
and evaluated in terms of the area under the receiver operating characteristic
curve (AUROC). Second, a new version of the EPPT model was re-trained on
the data from the new cohort. Third, the predictive performance, variable
importance, sensitivity and specificity were analyzed and compared across the
original and re-trained models.
Results: In total, 1,109 neonates were included with a median (IQR) gestational age
of 38.4 (36.6–39.9) and a total of 3,940 bilirubin measurements prior to any
phototherapy treatment, which was required in 154 neonates (13.9%). For the
phototherapy treatment prediction, the original EPPT achieved a predictive
performance of 84.6% AUROC on the new cohort. After re-training the model
on a subset of the new dataset, 88.8% AUROC was achieved as evaluated by
cross validation. The same five variables as for the original model were found to
be most important for the prediction on the new cohort, namely gestational age
at birth, birth weight, bilirubin to weight ratio, hours since birth, bilirubin value.
Discussion: The individual risk for treatment requirement in neonatal
hyperbilirubinemia is robustly predictable in different patient cohorts with a
previously developed ML tool (EPPT) demanding just one TSB value and only
four clinical parameters. Further prospective validation studies are needed to
develop an effective and safe clinical decision support system.
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1. Introduction

Hyperbilirubinemia of the newborn is one of the main diseases in neonatology (1) and

the most common reason for readmission to hospital within the first month of life (2–4).

The vast majority of newborn infants show visible jaundice within the first days of life

(5). In most cases, spontaneous remission of this physiological jaundice occurs within two
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weeks (6). However, in a smaller but significant proportion of

newborns, bilirubin levels increase to therapeutically relevant

ranges, making phototherapy treatment necessary (5). If

phototherapy is not applied in time, increased levels of bilirubin

can lead to severe neurological sequelae and cause bilirubin-

induced encephalopathy (BIND) (7). The individual suffering as

well as costs to national health care systems can be enormous (8, 9).

More than two decades ago, Bhutani et al. developed percentiles

to identify newborns at risk for severe hyperbilirubinemia (6). The

so-called Bhutani nomograms introduced in 1999 assess the risk of

developing severe hyperbilirubinemia based on postnatal age and

bilirubin levels, providing a simple formula that remains an

essential part of many national guidelines (5, 6, 10). Very recently

the American Academy of Pediatrics updated the guideline on

diagnosis and management of hyperbilirubinemia in the newborn

infant to address also individual bilirubin dynamics (11).

However, BIND remains a major problem in countries with

poor health care and even in industrialized countries cases of

severe hyperbilirubinemia still occur (8, 9, 12). Over the last

decades, inpatient stay of term and near-term born newborns

after birth has been shortened to less than 48 h (13–15), while

peak levels of bilirubin are only reached around the fifth day of

life (7). The remaining appearance of BIND along with a

shortened length of hospital stays after birth have increased the

need for an early identification and precise surveillance of

neonates at risk for significant hyperbilirubinemia.

Therefore, various studies investigated additional clinical risk

factors—such as maternal, neonatal or birth-related factors—in

order to develop refined models of risk stratification (5, 16–21).

However, these models classify neonates into general risk groups

that might not allow for a sufficiently personalized prediction of

the actual clinical outcome for individual patients. In recent

years, machine learning methods have become more important

in the field of medicine (22, 23) and received increased attention

also in the context of neonatal hyperbilirubinemia. For example,

Castillo et al. (18) and Ferreira et al. (24) presented capable

prediction models using different machine learning methods.

However, both models only provide a single prediction within

24 h, which may not be convenient in daily clinical practice,

where a prediction needs to be done after every follow-up

measurement.

A promising and practical model was presented by Daunhawer

et al. (25) using a combination of two different machine learning

methods, namely a logistic regression and a random forest. The

model requires only four variables that are always available:

bilirubin value, gestational age, birth weight and postnatal age in

hours. With these four variables, the model computes the

probability of needed phototherapy within the next 48 h—a task

for which the model achieved a strong predictive performance of

95.2% Area Under the Receiver Operating Characteristic curve

(AUROC). The model was made publicly available as a web

application called the “Early Phototherapy Prediction Tool”

(EPPT) (26).

In this retrospective study, we apply the EPPT model from

Daunhawer et al. (25) to a new cohort of healthy, term and

near-term newborns ≥35 weeks of gestational age from the
Frontiers in Pediatrics 02
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St. Hedwig of the Order of St. John, University of Regensburg,

Germany. First, we evaluate the model on the new cohort to

test the external validity of the model under real-world

distribution shift. Specifically, the new cohort has a distinct

distribution of covariates (e.g., significantly fewer preterm cases)

and slightly different phototherapy guidelines (see section 2.1).

Second, we re-train the model on the data from the Regensburg

cohort and based on the local guidelines for the administration

of phototherapy. Hence, we validate the reliability of the EPPT

in its original form and adapted to a new cohort to assess the

prediction of therapeutically relevant hyperbilirubinemia. In

particular, our study aims to test whether the model can be

applied in everyday clinical practice to avoid cases of severe

hyperbilirubinemia, to eventually reduce the frequency of blood

sampling and ultimately reduce healthcare costs and improve

patient outcomes.
2. Materials and methods

2.1. Study patients

We performed a retrospective study of prospectively recorded

neonatal data of all infants born at the KUNO hospital,

University of Regensburg, Germany, between January 1 2018 and

December 31 2018. The study was approved by the ethics

commission of the University of Regensburg (20-1945-104).

Inclusion criteria were: two or more total serum bilirubin

(TSB) measurements prior to phototherapy treatment, gestational

age with 34 completed weeks or more of gestation, absence of

malformations requiring operation within the first month of life

and absence of any genetic syndrome.

The following data were retrieved from the electronic

medical records: gestational age at birth, birthweight, delivery

mode (vaginal, elective caesarean section or secondary

caesarean section), maternal Rh and blood group, TSB value

and time elapsed since birth, if phototherapy was performed

onset of first treatment. Phototherapy initiation limit was used

according to the national guideline for hyperbilirubinemia

diagnostic and treatment in neonates (AWMF guideline 024-

007), which is based on the recommendations of the

American Academy of Pediatrics (6). In detail, in the local

KUNO guideline the phototherapy thresholds are increased by

1 mg/dl every 12 h, whereas the national guidelines increase it

by 2 mg/dl every 24 h. All bilirubin measurements were

performed as TSB using a Bilimeter 3D (Pfaff medical GmbH,

Germany).
2.2. Dependent variable

Following previous work (25), we defined the outcome as the

need of a phototherapy treatment within the next 48 h. We

modeled the outcome as a binary variable (phototherapy vs. no

phototherapy) that is positive if the patient’s bilirubin value
frontiersin.org
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exceeded the guideline-specific critical value within the next 48 h

and subsequently a phototherapy treatment was administered. As

such, we assessed a neonate’s risk of developing excessive

bilirubin levels after each bilirubin measurement and not only at

a fixed time point (e.g., 24 h after birth).
2.3. Machine learning

We used machine learning to predict the binary outcome given

a small set of covariates that are generally available in most

hospitals and outpatient settings. Specifically, we used the Early

Phototherapy Prediction Tool [EPPT, (26)] in the same form it

was designed and trained in the original study (25). In the

following, we first provide a short description of the original

model and its core components. Secondly, we explain how the

model was re-trained on the new cohort.
2.4. Original EPPT

The EPPT is an ensemble of two models: a regularized logistic

regression (LASSO) and a random forest classifier (27). As such, it

combines a conventional statistical approach with a more modern

machine learning method, which were shown to complement each

other (25). The EPPT computes the probability of receiving a

phototherapy treatment in the following 48 h based on four

input variables: bilirubin value, gestational age, birth weight and

postnatal age in hours. As such, the model requires only a

handful of variables that are generally available and it can be

used to obtain a prediction after each bilirubin measurement.

Originally, the EPPT was trained on a dataset of 362 newborns

of the University Children’s Hospital Basel (UKBB). To assess

the external validity of the model, we evaluated the original

model without re-training it on the new cohort; specifically, we

used the original model to compute the predictions for the new

cohort and evaluated the predictions according to the local

guidelines of the KUNO hospital.
TABLE 1 Baseline characteristics for all included neonates and neonates
with phototherapy treatment respectively.

All included
neonates

Neonates with
phototherapy

n = 1,109 n = 154
Gestational age, in weeks 38.4 (36.6–39.9) 35.4 (33.7–37.1)

Birth weight, in kg 3.1 (2.6–3.6) 2.5 (2.0–3.0)

Delivery mode
Spontaneous 496 (44.7) 102 (66.2)

Caesarean Section 592 (53.4) 51 (33.1)

First bilirubin value, in mg/dl 7.0 (2.2–10.4) 2.8 (2.0–11.2)

Time point of first
phototherapy, in hours since
birth

N/A 77.0 (51.7–94.3)

For categorical variables, we report the counts and relative frequencies in

parentheses. For continuous variables, we report the median values and 25% and

75% percentiles in parentheses.
2.5. Re-trained EPPT

Additionally, we developed a new version of the EPPT model

that was trained on the data of the new cohort. We used the

same model hyperparameter values as in the original study,

namely a uniform weighting of both models in the ensemble, a

regularization weight of 0.3 for the LASSO, and for the random

forest we used 300 decision trees trained with Gini impurity as a

split criterion, no depth limit, at least two samples per split, at

least one sample per leaf, and random sampling of
ffiffiffi

k
p

variables

in each tree, where k is the total number of input variables in the

training data.

All analyses were performed using the Python programming

language (version 3.6.3) and scikit-learn machine learning library

(version 0.21.3).
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2.6. Evaluation

To evaluate the performance of predicting the need of

phototherapy, we followed previous work and used the AUROC,

which considers the true positive rate and false positive rate at

different decision thresholds. AUROC is a standard metric for

the evaluation of binary classifiers and it allows us to draw a

comparison to the results from previous work.
3. Results

3.1. KUNO dataset

The baseline characteristics of the neonates in the KUNO

dataset are shown in Table 1. Overall, among 1,109 considered

neonates fulfilling a priori inclusion and exclusion criteria, there

were 154 cases (13.9%) that required a phototherapy treatment.

As expected, neonates who received a phototherapy had a lower

gestational age and birth weight on average compared to those

who did not receive a phototherapy treatment. The median time

of the first phototherapy was 77 h after birth. In total, there were

3,940 bilirubin measurements prior to the first respective

phototherapy treatment with an average time of 35.3 h between

measurements. Among these 3,940 observations, there were 239

(6.1%) positives, where a patient’s bilirubin value exceeded the

guideline-specific critical value within the next 48 h and a

phototherapy treatment was administered.
3.2. Predictive performance

Following previous work (25), we evaluated the predictive

performance of the EPPT in terms of the AUROC. The results

are presented in Figure 1. First, we employed the EPPT in its

original form, i.e., without re-training the model on the KUNO

dataset. Consequently, we used the complete KUNO dataset to

evaluate the performance of the model. We observed that the
frontiersin.org
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FIGURE 1

Evaluation of the predictive performance of the EPPT on the KUNO
dataset. We compare the original EPPT trained on the UKBB dataset
with the same model trained on the KUNO dataset. The bold lines
show the operator characteristic (ROC) curve for the respective
models. The fine lines show the ROC curve for the individual cross-
validation folds of the re-trained model.
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original EPPT achieves a predictive performance of 84.6% AUROC,

which is about 11 percentage points lower than in the original

study which evaluated the model on the UKBB dataset. Second,

we re-trained the EPPT model on part of the KUNO dataset and

evaluated the model on a holdout set. Specifically, we used a 20-

fold cross validation, stratified by patient such that no individual

occurs in both the training and test set. We computed the

average performance and standard deviation across folds and

observed that the re-trained EPPT achieves a predictive

performance of 88.8% (± 3.0%) AUROC.

To validate the robustness of our results despite the limited

sample size, we performed an additional analysis, where

we trained the model on a subset of the data. We observed that

even with 25% of the data, the model achieved a predictive

performance within the range of our previous results (Table 2).
3.3. Variable importance

To estimate the effect the individual variables have on the

prediction, we estimated their relevance (i.e., variable or feature

importance) in the random forest. Figure 2 presents the results
TABLE 2 Ablation study using a subset of the training data.

Training
dataset
size

AUROC Sensitivity Specificity PPV

25% 86.325 (± 2.9) 9.663 (± 5.6) 99.616 (± 0.3) 63.483 (± 26.8)

50% 87.965 (± 3.3) 14.962 (± 5.6) 99.374 (± 0.4) 62.781 (± 14.4)

75% 88.365 (± 3.3) 17.015 (± 5.7) 99.315 (± 0.4) 62.221 (± 13.262)

100% 88.761 (± 3.0) 18.514 (± 5.5) 99.266 (± 0.4) 63.431 (± 12.7)

In each row, we report the AUROC, sensitivity, specificity, and positive predictive

value (PPV) for the EPPT trained using a random subset of the training data. Each

value denotes the mean (in percent) computed across 20 cross-validation folds

and in parentheses we show the standard deviation.
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for the random forest trained using all variables in the dataset.

The results indicate that the predictive performance depends on

only a handful of variables. The five most important variables

(gestational age, birth weight, bilirubin to weight ratio, hours

since birth, bilirubin value) correspond to the same variables

used in the original EPPT, which confirms the utility of these

variables for the phototherapy treatment prediction across

datasets. In Figure 3, we provide additional results for which we

performed an iterative backwards variable selection, showing that

the bilirubin to weight ratio is the last variable to be removed,

which is in line with the original study.
3.4. Sensitivity and specificity analysis

While the AUROC metric provides a comprehensive

assessment of the predictive performance of a model, the value is

not easy to interpret in terms of the practical utility of the

model. Therefore, we also evaluated the confusion matrices on a

measurement- and patient-level. On the level of individual

bilirubin measurements, the EPPT (i.e., the original model

without any re-training) achieves a sensitivity of 33.8% and a

specificity of 95.9% on the new population. In absolute numbers,

the model correctly predicted 77 out of 239 phototherapies

within 48 h, but also made 151 false positive and 162 false

negative predictions based on a total of 3,940 predictions (one

after each bilirubin measurement). On the level of individual

patients, the model achieves a sensitivity of 39.6% and a

specificity of 90.7% and in absolute numbers correctly predicted

61 out of 154 phototherapy cases, but also made 89 false positive

and 93 false negative predictions based on 1,109 patients in total.

Additionally, for the re-trained EPPT, in Figure 4 we provide a

refined analysis of the sensitivity, specificity, and positive

predictive value as a function of the decision threshold value.

The results indicate that a threshold value between 0.2–0.3

provides a good balance of sensitivity and positive predictive

value (PPV), as well as a high specificity. The value is slightly

lower than the decision threshold of 0.38 suggested in the

original study.
4. Discussion

In this study, we demonstrated that the considered model

(i.e., EPPT), consisting of a logistic regression and a random

forest, can be successfully applied to a different population of

newborn infants. The model was able to predict the need of

phototherapy treatment 48 h in advance with a predictive

performance of 84.6% AUROC in its original form and 88.8%

AUROC when trained on the new cohort. Thus, we present

additional evidence that machine learning methods can be used

for enhancing the early detection of clinically significant

hyperbilirubinemia.

One strength of this study is that it is based on a large

dataset of newborn infants. Additionally, we found that the

four variables (weight, gestational age, bilirubin and time
frontiersin.org
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FIGURE 2

Variable importance values for the random forest trained using all variables in the dataset. Each bar denotes the relative importance of the respective
variable and the standard deviation across cross validation folds is shown with error bars. The results indicate that the predictive performance of the
random forest depends mostly on a subset of five variables, which correspond to the same variables used by the original EPPT.
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since birth) yield a high predictive performance that is not

significantly improved when we consider additional variables,

which confirms the results from previous work (25). This
FIGURE 3

Backwards feature selection using the random forest. Starting with all
variables, in each step we remove the variable with lowest variable
importance. Markers denote the average AUROC across 20 cross-
validation folds and error bars denote the standard deviation
respectively. The last six variables removed were the following (in the
given order): hours since previous measurement, bilirubin, hours since
birth, gestational age, birth weight, bilirubin to weight ratio.

Frontiers in Pediatrics 05
highlights the general importance of these factors for the

prediction of hyperbilirubinemia and emphasizes the universality

of the developed model.
FIGURE 4

Sensitivity, specificity, and positive predictive value (PPV) for the re-
trained EPPT as a function of the decision threshold value. Error bars
denote the standard deviation across 20 cross-validation folds. PPV
values for threshold values larger than 0.575 are missing, because
there were individual folds without positive predictions as the
predicted probabilities did not exceed the threshold value.
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EPPT shows great potential in its practicability in the clinical

context. It can provide a risk prediction after every follow-up

measurement, not only at a certain time point like in previous

mentioned studies of Castillo et al. (18) or Ferreira et al. (24).

The number of variables required for the prediction is small and

should be available in most hospitals, in outpatient-settings, or

even in case of homebirth as long as a bilirubin measurement is

possible.

While bilirubin nomograms used in many national guidelines

only classify neonates into general risk groups, the EPPT can

supply a precise individual probability, which may illustrate the

individual risk more clearly to caregivers. Compliance is an

essential condition of successful follow-up programs (28–30).

Applying the EPPT in daily routine may contribute to a better

compliance in follow-up programs, since the model is easily

available (online or via mobile App), cost-efficient, simple to use

and delivers specific, understandable instructions for all

caregivers. Lastly, applying EPPT in daily practice may minimize

the need of blood sampling since bilirubin measurements might

be stopped earlier, which can be an interesting opportunity for

future work.

And finally, the EPPT works with just one bilirubin

measurement and does not require at least two bilirubin

measurements as our previously published pharmacometrics-

based mathematical-statistical computer program (PMX-based

algorithm) (31).

The model’s performance in our cohort was lower with 84.6%

AUROC and after retraining with 88.8% compared to the value of

95.2% reported in the original study (25). However, the

performance lies in a similar range and it is comparable to the

results achieved by alternative models (16, 18, 19, 24) for which

there are no existing studies of their external validity. The lower

performance can be explained by differences between local

guidelines and included cohorts. For example, in our cohort the

proportion of preterm newborns was significantly lower as we

only included neonates ≥35 weeks of gestational age.

Additionally, the thresholds for phototherapy treatment in the

considered cohort are slightly different since they are interpolated

compared to those in the AAP and UKBB guidelines. This may

contribute to a lower incidence of phototherapy treatment in our

study and an ambiguous labelling of a few predictions that might

be labelled as false positives based on the local guidelines but as

true positives according to the guidelines of the original study.

Hence, the lower performance can be partly explained by the

distribution shift of covariates and outcome variables across

datasets, and partly by the inherent difficulty of the new cohort

for which even a model that was trained on a subset of the new

cohort achieves a performance of only 88.8% AUROC on a

holdout set.

Before EPPT can be implemented into clinical decision-

making, a prospective cohort study is needed to test its

sensitivity and specificity. Furthermore, one needs to define a

specific cut-off which determines the optimal timing for stopping

follow-up measurements of bilirubin. To achieve this the clinical

study could be divided into various arms with different cut-offs.

Albeit our study dataset contained only TSB values, which are
Frontiers in Pediatrics 06
not affected by various skin colours, and race has been removed

in the latest AAP guideline on neonatal hyperbilirubinemia (11),

we will investigate in the future various populations with

different skin colours which may improve the predictive

performance of the EPPT and may lead to a better

generalization. To further corroborate the validity of the model

in more individualized settings, future studies should include

higher numbers of preterm neonates as well as an integration of

local guidelines for phototherapy treatment.

Our study suggests several opportunities for future research.

For example, it is of clinical interest, to predict not only the

necessity of a phototherapy treatment, but also its duration,

intensity, or risk for a rebound hyperbilirubinemia. Moreover,

the influence of maternal medication during pregnancy could be

examined as a potential risk factor for subsequent significant

hyperbilirubinemia.
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