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Abstract

1. Neighbour–stranger response differences (NSRDs) are when individuals are either

more aggressive (“Nasty Neighbour”) or less aggressive (“Dear Enemy” or “Dear

Neighbour”) to direct neighbours than to other competitors perceived as “strangers”
by the residents. Such effects are often reported in ants which, being fixed-location

central-place foragers, may compete directly with their neighbours for resources or

raid each other for brood. Overlayed onto this are potential spatial distance and relat-

edness effects on aggression, which are often not differentiated from NSRDs.

2. The literature on NSRDs and distance effects in ants does not reveal a systematic

pattern across all ants due to their diversity of life histories, requiring each species

to be evaluated individually. Lasius niger is a common Eurasian ant species, which

can form very dense populations of colonies and shows pronounced nestmate rec-

ognition, so may be expected to show NSRDs.

3. Here, we take advantage of a semi-regular colony array to examine the effect of

spatial distance and relatedness on aggression and probe for NSRDs.

4. Overt aggression does not vary with relatedness or spatial distance, and there is no

evidence that direct neighbours represent a special case in terms of aggression.

However, antennation and jerking decrease between less related and more spatially

distant pairs, but are almost completely absent from allospecific interactions.

5. We tentatively propose that antennation and jerking together represent a ‘negotia-
tion’ phase, which may either precede or reduce the need for overt aggression.

While a Nasty Neighbour effect might occur, a Dear Neighbour effect is unlikely in

this species, and overall NSRDs do not play a large role in the ecology of this spe-

cies. More broadly, this work highlights the importance of considering non-overtly

aggressive responses when studying NSRDs.
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INTRODUCTION

Competition for resources between animals may result in both inter-

and intraspecific aggressions. However, since aggression can be

costly, aggressive responses are modulated depending on the

potential costs and gains each actor faces. For species that protect

long-term territories or those that use their territories for multiple

purposes, a major proximate aspect modulating aggression is whether

the interaction is between direct neighbours or unknown individuals—

so called neighbour–stranger response differences (NSRDs) (reviewed

in Christensen & Radford, 2018; Temeles, 1994). Such NSRDs can

occur at both the intra- (e.g., Yagound et al., 2017) and interspecific

(e.g., Tanner & Adler, 2009) levels. Compared with interactions involv-

ing stranger (i.e., non-neighbours) individuals, direct neighbours may

either be responded to with reduced aggression, termed the Dear

Neighbour Effect, or with increased aggression, termed the Nasty

Neighbour Effect. Whether a Dear Neighbour or Nasty Neighbour effect

is found relates to the ecology and environment of the studied system.

A Dear Neighbour effect (senso reviewed in Temeles, 1994, also

termed the “Dear Enemy” effect) is often to be expected, because the

behaviour of established neighbours is better known. They are, thus,

more predictable (Amorim et al., 2022; Getty, 1987) and are less likely

to compete for resources, since they have their own (Jaeger, 1981;

Switzer et al., 2001). However, in some situations, direct neighbours

represent a greater threat, and thus, a Nasty Neighbour response is

expected (Müller & Manser, 2007). This might occur in situations

where neighbours can usurp territory and gain by this (e.g., by access

to more, better or more reliable feeding sites), or when established

neighbours are more powerful than non-neighbours. For example,

banded mongooses often usurp the territory of their neighbours (Cant

et al., 2002) and pose a bigger threat than roving bands of dispersing

splinters (Cant et al., 2001). They, thus, do not show a Dear Neighbour

effect, but rather a Nasty Neighbour effect, where aggression is

higher towards direct neighbours (Müller & Manser, 2007). Similarly,

less resource-rich areas lead to an increasing competition for food,

and thus aggressiveness in Formica aquilonia (Sorvari &

Hakkarainen, 2004). In essence, whether NSRDs occur, their direction

and their strength depend primarily on the difference in threat levels

between neighbours and strangers. This is also influenced by how

much the focal animal stands to lose. The strength and direction of

NSRDs strongly depend on species and breeding stage (Werba

et al., 2022).

While NSRDs were initially studied in solitary species, recently, a

greater focus has been on the response of social species (reviewed in

Christensen & Radford, 2018). The NSRDs of social animals can differ

greatly from non-social animals for two reasons. First, inter-individual

differences in a group, in terms of personality, status and resources

(Beehner & Kitchen, 2007; Desjardins et al., 2008), mean that some

individuals in a group are more likely to respond to territorial incursion

than others—depending on what they stand to gain or lose (Mares

et al., 2011; York et al., 2019). For example, dominant male meerkats

respond more strongly to cues of male invaders than females or non-

dominants, because they risk losing their position as the main group

breeder (Mares et al., 2011). Second, social groups must respond

collectively to incursions, both to better handle the threat and to

improve information transfer (Graw & Manser, 2007). Finally, cooper-

ative, not just competitive, behaviour can vary between neighbours

and strangers. For example, tree ants Oecophylla smaragdina can res-

cue conspecifics trapped in spiderwebs. They show this behaviour not

just to nestmates but also to ants from neighbouring colonies, but

not from distant colonies (Uy et al., 2019). Similarly, great tits are

more likely to assist conspecifics in nest defence if they are very famil-

iar with the conspecifics (Grabowska-Zhang et al., 2012).

Eusocial insects are a special case for NSRDs. Like other social

animals, they must often mount collective responses to incursions

(Bradshaw et al., 1975; Hölldobler, 1981; Whitehouse & Jaffe, 1996).

However, as in most social insect colonies reproduction is performed

overwhelmingly by the reproductive caste (Wilson, 2000), the motiva-

tions of all individuals are usually aligned in foraging and defence con-

texts, and the colony is in many respects effectively one solitary

superorganism (Boomsma & Gawne, 2018). Competition for territory

and resources, including tournaments and raids, are repeatedly

reported in ants (Czechowski, 1984; Hölldobler, 1976; Pollock &

Rissing, 1989), making them especially interesting for the study of

NSRDs. However, no clear pattern of NSRDs can be seen for ants,

with several studies reporting Dear Neighbour effects, others report-

ing Nasty Neighbour effects, and yet others reporting complex inter-

actions or no effect (Table 1). This is not surprising, given that the

presence, direction and strength of NSRDs depend on the specific

ecology of the species: whether conspecifics are the largest competi-

tor (Fogo et al., 2019), whether the species maintains distinct terri-

tories (Boulay et al., 2007), whether the distance between these

territories is small or large (Zorzal et al., 2021) and whether competi-

tion over rare resources or raiding is common (Tumulty & Bee, 2021).

NSRDs in ants are also strongly influenced by seasonal effects

(Ichinose, 1991; Katzerke et al., 2006; Thurin & Aron, 2008). We note,

however, that several studies do not differentiate spatial distance

from neighbour–non-neighbour differences. This is an important dis-

tinction, as apparent NSRDs may be a result of spatial distance or

genetic differences: in ants and other eusocial insects, nestmate rec-

ognition, and thus aggression to incursions by non-nestmates, is

driven by colony-specific cuticular hydrocarbon (CHC) profiles

(reviewed in van Zweden & d’Ettorre, 2010). CHC profiles may be

influenced by genetic and environmental differences. Thus, overlaid

on top of NSRDs, aggression is expected to increase with both relat-

edness and spatial distance since spatial distance can correlate with

environmental differences. All such correlations have been reported

(genetic: Aksoy & Çamlitepe, 2018; Saar et al., 2014, spatial distance:

Jutsum et al., 1979; Sanada-Morimura et al., 2003, substrate and for-

age: Heinze et al., 1996; Jutsum et al., 1979; Stuart, 1987), but impor-

tantly, none of these measures are universally predictive of

aggression. As such, to understand the ecology of a specific species,

direct experimentation is required.

Here, we study the role of being close neighbours, spatial dis-

tance, and relatedness on aggression in the ant Lasius niger. We take

advantage of a regularly spaced array of L. niger nests, allowing an
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T AB L E 1 Literature summary of neighbour–stranger response differences in ants.

Species Details Reference

Nasty neighbour effect (higher aggression to neighbours)

Pristomyrmex pungens Aggression decreased with spatial distance. Experiential exposure to a colony

subsequently increased aggression towards that colony.

(Sanada-Morimura et al., 2003)

Linepithema humile This ant species forms large supercolonies. Workers from different supercolonies are

always aggressive to each other, but aggression is highest between ants from

neighbouring nests, implying experience drives increased aggression. Relatedness

and genetic similarity do not predict aggression.

(Thomas et al., 2007)

Oecophylla smaragdina Higher proportion of non-nestmates recognised as such from neighbouring colonies.

Once recognised as non-nestmates, higher aggression towards ants from

neighbouring colonies.

(Newey et al., 2010)

Formica pratensis Higher aggression between direct neighbours than between ‘second neighbours’ and
non-neighbours.

(Benedek & Kobori, 2014)

Cataglyphis niger Aggression between colonies from different populations lower than between colonies

from the same population. Genetic and CHC profile differences were larger between

than within populations.

(Saar et al., 2014)

Crematogaster scutellaris Aggression decreases with increasing spatial and CHC differences. CHC profiles do not

covary with relatedness.

(Frizzi et al., 2015)

Azteca muelleri Higher aggression between non-sympatric ant pairs than sympatric ant pairs. No

relationship between aggression and overall CHC similarity, but signs of higher

methylated alkane similarity linked to higher aggression.

(Zorzal et al., 2021)

Dear neighbour effect (lower aggression to neighbours)

Acromyrmex octospinosus Aggression increases with distance between nests. Laboratory studies suggest both

forage type and endogenous (presumably genetic) differences drive aggression.

(Jutsum et al., 1979)

Temnothorax curvispinosus Lower aggression between colonies collected in the same area. After extended housing

in the lab, aggression between stranger colonies decreased.

(Stuart, 1987)

Temnothorax nylanderi Both increasing spatial distance and nesting material differences increased intra-specific

aggression. Spatial distances between colonies tested ranged from 0 – >3 meters.

(Heinze et al., 1996)

Paired colonies transferred into different nesting material increased aggression, pairs

with matching nesting materials did not.

Iridomyrmex purpureus Experiments using live ants and CHC extracts both find increasing aggression with

spatial distance. Aggression increased in areas with a high density of conspecific

nests.

(Thomas et al., 1999)

Formica exsecta Aggression increases with spatial distance, but only in spring, not summer or autumn.

Aggression was not correlated with genetic distance or intranest relatedness.

(Katzerke et al., 2006)

Acromyrmex lobicornis Aggression increases with spatial distance. Genetic distance did not correlate with

spatial distance.

(Dimarco et al., 2010)

Formica pratensis Aggression increases with spatial and/or genetic distance, which themselves covary.

Moving ants to the laboratory removes this effect, implying either context

dependence or an effect of nesting substrate on aggression.

(Aksoy & Çamlitepe, 2018)

Oecophylla smaragdina Rescue behaviour is directed towards nestmates and neighbours, but not conspecifics

from distant colonies.

(Uy et al., 2019)

Both, none, or “it’s complicated”

Pogonomyrmex barbatus Encounters with neighbours on a foraging trail reduce foraging more than encounters

with non-neighbours. This stronger response may reduce costly aggression.

(Gordon, 1989)

Pheidole tucsonica

& P. gilvescens

P. tucsonica show higher aggression towards conspecific from distant areas. When only

ants from within a local area were tested, no effect of distance on aggression was

found.

(Langen et al., 2000)

P. gilvescens ants show no effect of distance on aggression.

Iridomyrmex purpureus Higher aggression between ants from adjoining territories than ants from non-adjoining

territories, but within these groupings more aggression between more distant

colonies.

(van Wilgenburg, 2007)

No influence of genetic similarity on aggression.

No evidence of experience modulating aggression.

(Continues)

DISTANCE EFFECTS ON ANT INTERACTIONS 3
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unusually controlled spatial distance between the colonies. This model

species is of particular relevance to study NSRDs for several reasons.

L. niger is an extremely widespread species, dominating especially

anthropogenically disturbed and open habitats throughout the Pale-

arctic (Arnan et al., 2017; Guenard et al., 2017; Janicki et al., 2016). It

is strictly monogynous, with occasional polyandrous colonies

(Boomsma & Van Der Have, 1998; Fjerdingstad et al., 2002; van der

Have et al., 1988). Dispersal is by alate gynes (winged female sexuals),

which after mating found colonies claustrally (Fjerdingstad

et al., 2003). L. niger is aggressive and, thus, may play an important

role in resisting the spread of invasive ants into an ecosystem

(Cordonnier et al., 2020). Furthermore, it is an important model organ-

ism for studying a wide variety of ecological and behavioural topics,

such as defence and nestmate recognition (Devigne et al., 2004;

Lenoir et al., 2009), biotic interactions (Blanchard et al., 2021; Detrain

et al., 2010; Verheggen et al., 2012), collective behaviour (Beckers

et al., 1990; Czaczkes et al., 2016; Dussutour et al., 2005) and cogni-

tion (De Agrò et al., 2022; Oberhauser et al., 2020; Poissonnier

et al., 2023). Nest density can be high in suitable habitats, reaching

almost 400 colonies per hectare (Boomsma et al., 1982) (see also

Figure 1b). Colonies compete for nesting and food resources, and raid

each other for brood, with tournaments being reported

(Czechowski, 1984). A reduction in the production of sexuals with

increasing nest density (Boomsma et al., 1982) and increasing produc-

tion of sexuals if neighbouring colonies are poisoned (Pontin, 1961)

implies that intraspecific competition is an important ecological factor

for this species. Colonies maintain distinct territories that they defend

from conspecifics (Czechowski, 1984; Devigne & Detrain, 2002;

Fourcassié et al., 2012). It seems likely that direct neighbours are the

greatest source of competition for resources and the greatest raiding

threat. One might, thus, expect pronounced NSRDs in this species.

MATERIALS AND METHODS

Biological material

The ants used for the experiments came from 11 L. niger colonies

sampled between 12 and 24 August 2021 in Regensburg, Germany

(coordinates: 48.994129 N, 12.091213 E). Here, we took advantage

of regularly spaced concrete slabs, which had been placed onto a

grassy field to encourage L. niger colonies to settle underneath.

The slabs had been in place for over 5 years, and all had been

colonised by L. niger. These slabs serve as a source of experimental

ants for behavioural experiments. Regular reinforcement of lab

colonies, preceded by aggression tests, demonstrated that colony

identity has been stable for many years. As such, we could well expect

ants from neighbouring colonies to have extensive experience with

each other (Czechowski, 1984). Eleven colonies, in a roughly linear

array (see Figure 1), were selected for this study. We chose both end

colonies (#1 and #11) and the central colony (#6) as target colonies

(see Figure 1). Five ants from each target colony were tested individu-

ally against five ants from all other colonies, resulting in five pairs of

ants per colony combination, with colonies 1 and 11 having one direct

neighbour colony tested (2 and 10, respectively), and colony 6 having

two (5 and 7). In addition, five pairs of ants from each target colony

were tested (nestmates), and five heterospecific interactions per

target colony were tested, using Formica rufibarbis, also found on the

University of Regensburg campus.

Experimental procedure

To reduce observer bias, two experimenters conducted the aggression

assays. One experimenter randomised the testing and collected ants

from the colonies for each test session. The other remained

completely blind to all ant identities.

Two test sessions were conducted per day, one in the morning

and one in the afternoon. Each test session began by collecting ants

from the respective test colonies (decided a priori) from the outside

slabs and returning them to the lab. We chose to test aggression

immediately, rather than allow acclimatisation to the lab, as one factor

affecting intraspecific aggression in ants is differences in colony odour

derived from their nesting substrate (Heinze et al., 1996). Keeping the

ants in artificial nests in the lab may have eliminated a potentially

important cue for the ants. As we conducted five encounters per col-

ony pair, five ants of each colony per target–competitor pair were

collected, along with some additional ants so that the tested ants

would never be alone before testing. Ants were encouraged to leave

the nest by briefly raising their nesting slab, causing ants at the sur-

face to exit the nest onto the slab surface, from where they could be

collected. Unused ants were released after each test session.

Collected ants were stored in fluon-coated boxes with pieces of paper

acting as a shelter. No less than 15 min and no more than 2 h elapsed

T AB L E 1 (Continued)

Species Details Reference

Camponotus cruentatus No difference in aggression between sympatric neighbours, sympatric non-neighbours,

or allopatric pairs.

(Boulay et al., 2007)

Liometopum

microcephalum

Arboreal ants with limited nest sites, so high competition. Compared aggression to

direct neighbours, colonies in shared tree patch, and colonies in a distant tree path.

Slightly higher aggression to neighbouring nest than stranger nest in shared patch.

More pronounced increase in aggression to ants from distant patches

(Keresztes et al., 2020)

Note: This table includes only studies of intraspecific aggression.

4 CZACZKES ET AL.
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between collection and testing. Distances between each slab and its

neighbour were measured in centimetres from the centre of the slabs,

using a field tape measure.

Ant pairs were placed separately in two halves of a divided arena,

consisting of a plastic container (floor diameter 65 mm and wall height

25 mm), with the floor covered with a disposable graph paper inlay.

The chamber was divided using a piece of fluon-coated acetate sheet.

Ants were allowed a 30 s habituation period, after which the divider

was removed. The ants were then free to interact for 2 min, and the

behaviour of the ants was scored in real time. We scored all behav-

iours, but not the identity of the ant performing the behaviour. Both

experimenters recorded the number of occurrences of each of the

behaviours separately. However, these rarely diverged. On the rare

occasions where counts diverged, these were averaged. A set of eight

interactions were defined and noted a priori (see Table 2). However,

fight duration and avoidance were not analysed and were excluded

from this study, since prolonged fights were very rare (see below).

However, when they did occur, they continued for the entire length

of the recording session. Fighting duration was removed because

extended fighting events were rare (only 10 fights longer than 1 s).

Avoidance was removed because it was recorded only six times. After

the first day of the experiment, we added a seventh interaction type

post hoc, neutral body contact, which we considered to be an informa-

tive behaviour about the lack of aggression between two individuals.

After 2 min of observation, each individual was placed separately in a

1.5 mL Eppendorf Safe-Lock Tube. Each tube also included a label

1 2 3 4 5 6 7 8 9 10

Heterospecific encounter
(Formica rufibarbis)

11

Nestmate 
encounter

(a)

(b)

F I GU R E 1 (a) Encounter schematic (36 combinations � 5 replicates = 180 pairwise encounters tested). Each square represents a colony in
the linear array. Colonies 1, 6 and 11 are target colonies, and encounter each of the other colonies in the array, as well as ants from their own
colony (nestmate encounters) and Formica rufibarbis (heterospecific encounter). Each arrow represents 5 pairwise encounters. (b) Position of all
slabs in the test field. Non-numbered slabs were not used in this experiment.

T AB L E 2 Behaviours recorded.

Behaviour Definition

Neutral body contact Ants have body contact or are in the

range where bodies could have

contact but do not interact

otherwise

Antennation Antenna quickly move up and down

while either also touching the other

individual or the individual is

approximately the length of an

antenna away from the other

Jerking Very fast back and forth movement of

the whole body while staying in the

same place

Mandible gaping Mandibles open widely

Brief biting Ant briefly (<1 s) bites the other, i.e.,

mandibles close around a body part

of the other individual

Gaster flexing Gaster is bend under the body pointing

in front

Fighting/prolonged

biting

Rolling up while biting each other

and potentially spraying each

other/at least one ant bites the

other and holds on with her

mandibles to a body part of the

other for >1 s

Fighting duration (s) Total time the ants were fighting or

prolonged biting each other

DISTANCE EFFECTS ON ANT INTERACTIONS 5

 13652311, 0, D
ow

nloaded from
 https://resjournals.onlinelibrary.w

iley.com
/doi/10.1111/een.13291 by U

niversitaet R
egensburg, W

iley O
nline L

ibrary on [29/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



that identified the date, the colony pair and, if possible, whether the

respective ant was from the target or competitor colony. The tubes

containing the ants were placed on ice for the remainder of the ses-

sion (maximum 2 h) and after each stored at �20�C for later genetic

analysis.

Note: All behaviours were defined a priori, except for neutral body

contact, which was added on the second day of data collection. The

number of times the behaviour occurred (except for Fighting duration,

see Table 2 for details) was recorded independently by two experi-

menters. Note that avoidance behaviour and fight duration were

recorded, but never analysed (see main text). Jerking and antennation

can be seen in Video S1.

Molecular analyses

Due to resource limitations, only a subset of tested pairs underwent

molecular analysis. We selected the pairs to be analysed by calculating

the proportion of overtly aggressive behaviours (mandible gaping,

brief biting, gaster flexing and fighting [in seconds) from the total

behaviours recorded and then selecting the 22 pairs showing the least

and most aggression. Note that this selection was performed a priori,

well before formal statistical analysis. Since this selection did not

cover all sampled colonies, several additional pairs were added to the

molecular analysis where this was needed to cover the entire range of

colonies with at least six individuals per colony. Finally, DNA was

extracted from 5 to 22 workers in each of the 11 colonies (see

Table S1 for details) using a CTAB method (modified from Green &

Sambrook, 2012). Eleven highly variable microsatellite markers were

used to determine the genetic relatedness and the colony structure:

Ant1343, Ant3993, Ant 859, Ant 10878, Ant 575, Ant 8424, Ant

2794 (Butler et al., 2014), L10-282, L10-174, L1-5 and L10-53

(Fjerdingstad et al., 2003). Primer sequences are available in Table S2.

For all markers, the 15 μL PCR reaction volume consisted of 7.5 μL

GoTaq® G2 Hot Start Colourless Master Mix (M7433, Promega);

4.5 μL ddH2O, 1.0 μL unlabelled reverse primer (10 μM); 1.0 μL

labelled forward primer (10 μM; labelled HEX, FAM and TET and the

final concentration of 0.67 μM for each primer) and 1 μL DNA

(2–10 ng). The PCR consisted of initial denaturation at 94�C (4 min),

33 cycles at 94�C (denaturation, 30 s), 55�C (annealing, 30 s) and

72�C (elongation, 30 s), and a final step at 72�C (1 min). The PCR

products were analysed in an ABI PRISM 310 Genetic Analyser

(PE Biosystems) after DNA denaturation at 90�C (1 min). Allele sizes

were determined using the genescan 3.1 software (PE Biosystems). In

case of PCR failure or unclear results, the molecular analysis was

repeated to ensure that genotypic information was obtained for all

individuals at all loci. All 11 loci were polymorphic and showed consid-

erable variation with an average of 11.45 alleles across all samples

from the 11 colonies (ant 1343: 6; ant 3993: 4; ant 859: 7; ant10878:

22; ant 575: 8; ant 8424: 5; ant 2794: 16; L10-282: 11; L10-174: 15;

L1-5: 12 and L10-53: 20 alleles. Hardy–Weinberg Equilibrium was

checked for at each locus using GenAlEx (Peakall & Smouse, 2006).

For each locus, we recorded the sample size, the number of alleles,

the effective number of alleles, the observed and expected heterozy-

gosities, and the fixation index (GenAlEx). In addition, we confirmed the

absence of stuttering and large allele dropout and estimated the fre-

quency of null alleles (Microchecker 2.2.3; Van Oosterhout et al. 2004)

(Table S4). Linkage disequilibrium was tested between each pair of

markers (Genepop 4.7.5; Rousset 2008, Table S5).

The relatedness between pairs of colonies was calculated using

the estimator of Queller and Goodnight (Queller & Goodnight, 1989)

provided by GenAlEx. The Queller and Goodnight estimator (Queller

& Goodnight, 1989) allowed us to determine the genotypic similarity

of microsatellite markers between pairs of individuals compared with

an expected value between two individuals taken at random from the

population. Negative values indicated that the degree of kinship

between the two individuals tested was less than that of individuals

drawn randomly from the population. The relatedness between the

two colonies was calculated based on the average relatedness of all

pairs of individuals belonging to these colonies.

Statistical analyses

As a preliminary analysis, a first principal component analysis (PCA1)

was conducted a priori on the seven behavioural variables before

using the status of the interactants (nestmate, non-nestmate or het-

erospecific) as a classification variable. This analysis was used to

ensure the consistency of the behaviours recorded during the interac-

tions and to confirm that they varied properly according to the con-

text. In effect, the allospecific interactions acted as the positive

control (expected to show high aggression) while the nestmate inter-

actions were the negative control (expected to show no aggression).

We then focused on the intraspecific, non-nestmate interactions

(n = 150). Among the seven behavioural variables recorded, only the

number of antennation and jerking events were not zero-inflated and

were not a priori related to aggression. The number of each of the five

other behaviours (neutral contacts = no aggression, mandible gaping,

brief biting, gaster flexing and fighting = higher aggression level) was

highly zero-inflated and, therefore, difficult to analyse separately as

dependent variables of models. We therefore used the ade4 package

(Dray & Dufour, 2007) to perform a second PCA (PCA2) on these five

variables, to derive the most informative summary variable describing

the aggressiveness of the focal ant. Visual inspection of the scree

plots showed an inflexion point that justified retaining two factors,

but only the first dimension explained more than 30% of the variabil-

ity and was biologically meaningful (see results), and was, therefore,

retained as an “aggressiveness level” variable in the subsequent ana-

lyses. Note that the variable was reversed in subsequent analyses so

that higher numbers represented higher levels of aggression.

The impact of spatial distance (in centimetres) and genetic related-

ness between the nests on the behavioural responses were

analysed using three (generalised) linear mixed models (M1 associated

with the number of antennation events; M2 associated with the

number of jerking events and M3 associated with the level of aggres-

siveness). As the level of aggressiveness fitted a Gamma distribution

6 CZACZKES ET AL.
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(package fitdistrplus, Delignette-Muller & Dutang, 2015), M3 was

adjusted using the Gamma family after the transformation of the

variable towards a positive variable by adding the minimal possible

value of 1.6. In all three models, the identities of the focal nest were

included as random effects. The spatial distance between the nests and the

genetic relatedness between them were included as dependent variables.

We then ran the three models a second time (M’1–M’3) but with

the neighbour status of the pair of colonies as a dependent variable

(neighbour adjacent colonies; non-neighbours, i.e., strangers: all other

pairs). Because of an extremely high genetic relatedness between two

colonies compared with all other colony pairs (genetic relatedness

around 0.2, i.e., circa half siblings, whereas all other pairs presented

negative relatedness values varying between �0.3 and 0), we

removed this one colony pair from all the models as it was heavily dis-

torting the results. The results of the models including this pair are

reported in Tables S6 and S7. All statistical analyses were carried out

using the R v.3.5 software (R Core Team, 2018). All GLMM models

were analysed using the package glmmTMB (Magnusson et al., 2020),

and the quality of the model estimates was monitored using Pearson

residuals using the DHARMa package (Hartig, 2020). Figures were

created using the Effects package (Fox et al., 2016). For all statistical

tests, the level of significance was set at p < 0.05.

RESULTS

The preliminary PCA1 (Figure 2) confirmed the relevance of the

behavioural variables chosen. The allospecific interactions were

characterised by more biting and fighting events, more mandible

gaping and a few neutral body contacts compared with intraspecific

interactions. Among the intraspecific dyads, the non-nestmates

interactions showed more antennation, jerking and mandible gaping,

whereas the interaction between nestmates showed more neutral

body contacts.

Regarding the intraspecific interactions between the colonies

(corresponding to the “non-nestmate” interactions of the previous

analysis), the PCA2 (Figure S1) conducted on the five variables relat-

ing to aggressiveness (neutral contacts = no aggression, mandible

gaping, brief biting, gaster flexing and fighting = higher aggression

level) suggested that only the first axis should be maintained and fed

into subsequent analyses. Indeed, the first dimension was relevant in

terms of both contribution to the global variability (38.67%) and was

biologically meaningful, as all the variables relating to aggressiveness

were grouped on the left and opposed to the neutral contacts on the

right, suggesting a strong division between the aggressive (left) and

non-aggressive (right) interactions (Figure S1). The “aggression” vari-

able was, therefore, derived from the first dimension of the PCA2.

The models confirmed that two of the three behavioural variables

studied (M1: number of antennation events and M2: number of jerk-

ing events) were significantly impacted either by the spatial distance

between the colonies or by the genetic relatedness between them, or

both (Table 3). Specifically, as spatial distance increased, antennation

decreased (M1: estimate = �1.030, p = 0.009), as well as the number

of jerking events (M2: estimate = �1.394, p = 0.034; Figure 3). As

genetic relatedness between the colonies increased, so did the num-

ber of jerking events (M2: estimate = 21.027, p = 0.014; Figure 3).

neutral contact

antennation

jerking

mandible gaping

brief biting

gaster flexing

fighting / prolonged biting

−6

−4

−2

0

2

4

−4 −2 0 2 4
Dim1 (32.2%)

D
im

2 
(2

8.
1%

) groups

nestmate

non−nestmate

allospecific

PCA − Biplot

F I GU R E 2 General PCA1 biplots incorporating allospecific (L. niger vs. F. rufibarbis) and conspecific (L. niger vs. L. niger) interactions. Axes
referred to the score coordinate system with values related to the explained variance on each component. Ellipses are 0.95 confidence ellipses
around group mean points.
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However, genetic relatedness did not impact the number of antenna-

tion events (M1: estimate = 7.956, p = 0.122). Aggression was not

significantly predicted by either spatial distance or relatedness

(M3: spatial distance; estimate = �0.046, p = 0.491; relatedness;

estimate = �1.294, p = 0.112; Figure 3). It slightly trended to

decrease as genetic relatedness increased. None of the three beha-

vioural variables studied (number of antennation events, number of

jerking events and level of aggressiveness) were impacted by the

neighbour status of the colonies (M1’–M3’, Table 3). Spatial distance

and relatedness were not correlated (estimate = 0.00543, p = 0.410).

DISCUSSION

The behaviours we measured captured differences in aggression

among nestmate, non-nestmate and allospecific encounters (Figure 2):

encounters with allospecific ants were much more aggressive, accord-

ing to the composite aggression score (Figure S1) than the encounters

with either nestmates or conspecific non-nestmates. This implies that,

perhaps surprisingly, some allospecifics represent a larger threat or

competitor than conspecifics. Conversely (see below), Lasius niger may

have developed intraspecific communication strategies to avoid costly

fighting, although raids and fighting between the colonies of different

sizes may be lethal (Seifert, 2007). Nestmate and non-nestmate

encounters were mostly differentiated by increased jerking and anten-

nation behaviours in non-nestmate encounters and increased neutral

body contacts for nestmate encounters. This would seem to imply

that jerking and antennation behaviour can be taken as a measure of

moderate aggression, as assumed for this and other species previously

(Devigne & Detrain, 2002; Holway et al., 1998). However, the pattern

of these behaviours in interactions between the non-nestmates does

not support this assumption: as spatial distance increases, antennation

and jerking decrease. This requires a more nuanced interpretation of

these behaviours.

Antennation can be assumed to be involved with information

gathering. Nestmate recognition is driven by the ants’ cuticular hydro-

carbon profiles used for nestmate recognition, which are influenced

both by genetic factors and extrinsic environmental factors (van Zwe-

den & d’Ettorre, 2010). It is thus reasonable that antennation, and

thus information gathering, increases for non-nestmates from spatially

closer ants, as they will be harder to distinguish from nestmates—

although we note that the opposite pattern could also have been

explained, had it been found, by assuming more experience with

closer ants. Jerking behaviour is more difficult to interpret. This

behaviour is often observed being performed by active foragers

returning to the nest (TJC, AK, unpubl. obs.). It can also often be trig-

gered by allowing light to enter laboratory nests. Similar jerking

behaviours have been reported in other ant species as recruitment

signals (Hölldobler, 1971, 1976, 1983; Liefke et al., 2001) and as a

response to light or puffs of air entering the nest (Weber, 1957).

Between nestmates, it thus seems to represent a form of communica-

tion, potentially a generalised activity upregulation signal. This is sup-

ported by the fact that this behaviour is hardly ever directed towards

allospecifics (6.6% of encounters) but is almost ubiquitous in conspe-

cific encounters between non-nestmates (93.3% of encounters) and

between nestmates (100%). In Linepithema humile, jerking behaviour

has been reported to be more common between nestmates after

feeding on higher quality food (Sola & Josens, 2016). It is less clear

what this jerking behaviour means between non-nestmate conspe-

cifics. It has been reported to play a role in tournaments between ants

in Lasius niger (Czechowski, 1984). According to Devigne and Detrain

(2002), jerking behaviour is more common between non-nestmates

than nestmates, and they assume that jerking behaviour between

non-nestmates is a form of low-level aggression. Given this and the

pattern of decreasing jerking and antennation with decreasing related-

ness and increasing spatial distance we describe, we tentatively pro-

pose that the combination of antennation and jerking can be

approximated to ‘negotiation,’ where ants are gathering information

about each other and attempting to avoid overt aggression. In a nor-

mal encounter, the ant pairs would be able to communicate, ‘negoti-
ate’ and then withdraw. However, withdrawal was not possible in our

T AB L E 3 Effects of the distance (spatial distance between the
colonies) and the relatedness (genetic relatedness between the
colonies based on the Queller and Goodnight estimator) on the three
behavioural descriptors: M1: number of antennation events, M2:
number of jerking events and M3: aggression level.

M1: Antennation Estimate Std. error Z value p value

Intercept 11.930 0.908 13.144 <0.001

Distance �1.030 0.397 �2.597 0.009

Relatedness 7.956 5.140 1.548 0.122

M2: Jerking Estimate Std. error Z value p value

Intercept 14.795 1.509 9.807 <0.001

Distance �1.394 0.660 �2.115 0.034

Relatedness 21.027 8.544 2.461 0.014

M3: Aggression Estimate Std. error Z value p value

Intercept 0.302 0.144 2.092 0.036

Distance �0.046 0.067 �0.690 0.491

Relatedness �1.294 0.814 �1.590 0.112

M’1: Antennation Estimate Std. error Z value p value

Intercept 10.733 1.241 8.650 <0.001

Neighbour status �0.077 1.313 �0.059 0.953

M’2: Jerking Estimate Std. error Z value p value

Intercept 11.400 2.071 5.505 <0.001

Distance 0.056 2.192 0.026 0.980

M’3: Aggression Estimate Std. error Z value p value

Intercept 0.396 0.197 2.013 0.044

Distance 0.132 0.208 0.633 0.523

Note: Effects of the neighbour status (binary variable) on the three

behavioural descriptors: M’1: Number of antennation events, M’2:
Number of jerking events and M’3: aggression level.

8 CZACZKES ET AL.
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setup, potentially resulting in the eventual occurrence of aggression.

This would explain why aggression does not correlate with these

‘negotiation’ behaviours. Our results imply that jerking and antenna-

tion may be good measures of moderate aggression, before more

overt and traditional signs of aggression (mandible gaping and gaster

curling) appear. Antennation also no doubt plays an important role in

distinguishing nestmate from non-nestmate. If both ants are nest-

mates, no negotiation is required.

Importantly, we found no evidence for neighbour–stranger

response differences (NSRDs) in this system—neither in terms of

aggression nor in terms of jerking or antennation: direct neighbours

were not responded to in a different manner from non-direct neigh-

bours. This absence of NSRDs could be because, in this system,

neighbours and strangers present equivalent threat levels or a lack of

differentiation in threat levels posed by neighbours and strangers. The

latter case could be partly explained by the homogeneous environ-

mental conditions within the studied area. In Cordonnier et al. (2022),

higher levels of aggression were observed between allopatric individ-

uals compared with individuals sharing similar environmental charac-

teristics. Here, the relative similarity between nests in terms of

substrate or available food could also have induced a homogenisation

of cuticular hydrocarbons, with a consequent reduction in recognition

of non-nestmates and aggressiveness (van Zweden & d’Ettorre, 2010).

Nonetheless, such an environmental impact is not consistent in the lit-

erature, with some studies on the relationship between environment

and aggressive behaviours suggesting correlations (e.g., Benedek &
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F I GU R E 3 Results of the predicted effects for the three models M1–M3, investigating the relationship between the behaviour observed
during the encounter and the spatial distance (left) and the genetic relatedness (right) between the colonies (n = 150). The figure provides
predictions for the response variable (Y-axis) across the range of values of each explanatory variable (X-axis), whilst holding values of the other
explanatory variable constant. The confidence band (shaded—95% CI) and the regression line (bold) have been calculated based on the values
predicted by the models. Note that the genetic relatedness axis has been reversed to make spatial distance and genetic relatedness easier to
compare.
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Kobori, 2014; Frizzi et al., 2015) while others do not (e.g. Langen

et al., 2000; Martin et al., 2012). However, absence of evidence is not

evidence of absence. Aggression in ants often varies strongly with

season (Ichinose, 1991; Katzerke et al., 2006; Thurin & Aron, 2008),

as raiding of conspecifics for brood and territorial disputes over valu-

able food resources likely occur mostly in spring (Czechowski, 1984).

In Plagiolepis pygmaea, significant seasonal variations are expected in

the levels of aggression among workers of different colonies accord-

ing to the biological cycle of the species (Thurin & Aron, 2008). In For-

mica exsecta, aggression levels significantly correlated with spatial

distance between nests in spring, but not in summer or in autumn

(Katzerke et al., 2006). Aggression among Formica polyctena colonies

is highest in the spring when nests become active and taper off in the

summer, and indeed in autumn, neighbouring F. polyctena colonies

share foraging trails without aggression (Mabelis, 1978). In Paratre-

china flavipes, workers were aggressive to related individuals only dur-

ing the season when the nest was active (Ichinose, 1991). It is thus

reasonable to expect that such a seasonal effect could also occur in

other species, including L. niger, which hibernates from October until

the end of March, inducing a Nasty Neighbour effect (higher aggres-

sion to direct neighbours) that might manifest only in spring. How-

ever, we think it unlikely that a Dear Neighbour effect (lower

aggression to direct neighbour) would manifest at different seasons,

and no record in the literature suggests such a pattern. The experi-

ment was conducted in high summer, which should be the ideal time

to detect a Dear Neighbour effect once territorial disputes are con-

cluded. Thus, while we are not confident about excluding a Nasty

Neighbour effect, we believe a Dear Neighbour effect is unlikely to

play a role in L. niger. Finally, an important caveat is that we did not

attempt to locate all L. niger colonies in the area, and we did not

include all the known colonies in the area in the experiment

(Figure 1b). Thus, it is possible that what we consider to be direct

neighbours may have had a buffer colony in between them. Added to

this is the fact that some colonies likely had more neighbours than

others, potentially influencing NSRDs. For example, in Iridomyrmex

purpureus, aggression towards non-nestmates was influenced by the

density of surrounding conspecific nests, inducing more aggressive

behaviour when nest density was higher (Thomas et al., 1999). NSRDs

also occur between different species, such as between the dominant

Formica integroides and the submissive F. xerophila (Tanner &

Adler, 2009). Considering the local ant community and interspecific

aggression could, therefore, provide more information, as L. niger

shows a stronger dominance and aggressiveness towards other spe-

cies, allowing a better differentiation of NSRDs at the interspecific

level. All experiments are a trade-off between ecological realism and

tight control: the current experiment is a field study which, although

taking advantage of a semi-regular array to increase control, nonethe-

less cannot guarantee full control.

Finally, it must be mentioned that due to limited resources, the

study had a reduced power. Likewise, we lack data on neutral body

contact from the first day of data collection. We note a

non-significant trend for antennation to drop with relatedness and

aggression to rise. While we remain ambivalent about whether these

represent biologically meaningful patterns, we again caution that an

absence of evidence is not evidence of absence.

The fact that aggression did not correlate with spatial distance or

relatedness, but that antennation and jerking did, highlights the impor-

tance of considering non-overtly aggressive behaviours when examin-

ing neighbour–stranger response differences, or the correlation of

responses to physical and relatedness. While the theoretical frame-

work for the field of NSRDs arises out of competition research

(Temeles, 1994), it could also be used to examine the strategies used

by animals to avoid aggression, as proposed here. Indeed, perhaps

more emphasis needs to be given to increased cooperation between

neighbours, which is expected both theoretically (Eliassen &

Jørgensen, 2014; Getty, 1987) and observed empirically (Booksmythe

et al., 2010; Elfström, 1997).

Overall, we find evidence that jerking and antennation behaviours

are better measures for describing non-aggressive or pre-aggressive

interactions among conspecifics than traditional measures of aggres-

sion such as biting and mandible gaping. These behaviours decrease

with physical distance and increase with relatedness. We propose, as

a working hypothesis, that these behaviours together can be consid-

ered ‘negotiation’ behaviour. Future studies, in which ants have the

possibility of escaping, could shed light on this idea. We found no evi-

dence of either a Dear neighbour or a Nasty Neighbour effect,

although for the latter, we suggest future studies should evaluate

whether neighbours and strangers present varying degrees of threat

and explore the occurrence of a potential “Dear enemy” effect in

Spring. While physical distance and relatedness affect behaviour dur-

ing encounters in the ecologically important ant L. niger, NSRDs do

not seem to play a major role in their behavioural ecology.
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Table S1.Overall description of the genotyping results for the 11 stud-

ied colonies. The genotypes of mated queens and males were inferred

in each colony based on worker genotypes. At each locus, two alleles

shared by all the workers were assigned to the queen, while the puta-

tive genotypes of the haploid fathers were determined from the

alleles unassigned to the mother. This pattern was iterated over the

11 markers until reaching a minimal number of males. The inferred

genotypes of the mates allowed the calculation of within-nest related-

ness between them.

Table S2. Sequences, alleles number and size range of the 11 microsat-

ellite primers used in the study.

Table S3. Chi-squared test of Hardy–Weinberg equilibrium for the

11 primers and the 11 colonies studied. M: Monomorphic.

Table S4. Detection of stuttering, large allele dropout, null allele and

null allele frequencies (Microchecker 2.2.3), sample size, number of

alleles and effective alleles, observed and expected heterozygosity,

fixation index (GenAlEx) for each of the 11 microsatellite markers.

Table S5. Linkage disequilibrium between each pair of the 11 microsat-

ellite markers (Genepop 4.7.5).

Table S6. Effects of the Distance (spatial distance between colonies)

and the Relatedness (genetic relatedness between colonies based on

the Queller and Goodnight estimator) on the three behavioural

descriptors: M1: Number of antennation events, M2: Number of jerk-

ing events, M3: aggression level for the models incorporating the

interactions between the two colonies genetically highly related.

Table S7. Effects of the neighbour status (binary variable) on the three

behavioural descriptors: M’1: Number of antennation events, M’2: Num-

ber of jerking events, M’3: aggression level, for the models incorporating

the interactions between the two colonies genetically highly related.

Figure S1. PCA1 biplot conducted on the 5 variables relating to

aggressiveness (neutral contacts = no aggression, mandible gaping,

brief biting, gaster flexing and fighting = higher aggression level). Axes

referred to the scores coordinate system with values related to the

explained variance on each component.

Video S1. Antennation and jerking.
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