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Abstract

The use of NGS-based testing of the bacterial microbiota is often impeded by inconsistent

or non-reproducible results, especially when applying different analysis pipelines and refer-

ence databases. We investigated five frequently used software packages by submitting the

same monobacterial datasets to them, representing the V1-2 and the V3-4 regions of the

16S-rRNA gene of 26 well characterized strains, which were sequenced by the Ion Tor-

rent™GeneStudio S5 system. The results obtained were divergent and calculations of rela-

tive abundance did not yield the expected 100%. We investigated these inconsistencies and

were able to attribute them to failures either of the pipelines themselves or of the reference

databases they rely on. On the basis of these findings, we recommend certain standards

which should help to render microbiome testing more consistent and reproducible, and thus

useful in clinical practice.

Introduction

Microbiome sequencing enables new insights into the role of microorganisms in various

pathologies, as well as into their roles when interacting with the host immune system [1].

High-throughput sequencing techniques could enable broad-range molecular diagnostics, not

only from primary sterile material like cerebrospinal fluid, organ tissue or vitreous aspirates,

but also for the detection of pathogens within complex communities of commensal microor-

ganisms. The transition of microbiome analysis into routine diagnostics with clinical applica-

tion is still hampered by the lack of standardization, that renders the reproducibility and

comparison of such results difficult [2]. Methodological variations during all steps from sam-

pling, through to wet-lab processes, including cell lysis, PCR amplification, library preparation

and high-throughput sequencing platforms, have been extensively analyzed in various studies

[3–5]. The choice of target region to be sequenced as well as the analysis software and data-

bases used also have an impact on the results and thus need to be evaluated and understood.

Our study therefore focuses on this aspect of the workflow.
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A prerequisite for implementation of microbiome sequencing in clinical diagnostics is the

ability to accurately determine the presence or absence of pathogenic and beneficial species,

and their abundance. Reliable species-level identification and quantification is necessary to

identify compositional shifts over time within complex sample matrices. These requirements

hold true also for pre-clinical and clinical studies which build the basis for valid scientific con-

clusions and interpretation for certain pathologies.

The gene (named here 16S) which encodes for the small ribosomal subunit, 16S rRNA, is

the most widely used phylogenetic marker and sequences for all recognized species are avail-

able. The 16S gene has 9 variable regions, but not all have the same potential to differentiate

species [6]. Since NGS sequencing often relies on the generation of rather short reads, many

authors focus on the V3-V4 region, thus often restricting their analysis to the genus-level

because species differentiation cannot be achieved. Other variable regions such as the V1-V2

region hold the promise for better species differentiation [7], but would need to be evaluated

for the purpose of microbiome analysis. Recently, sequencing of full-length 16S became avail-

able and Johnson et al. demonstrated differentiation of intra-genomic 16S polymorphisms

within one genome for strain-level discrimination [6]. However, this technology is still rather

complex, expensive and sensitivity is an issue; therefore, routine applications focus rather on

partial 16S analyses. In our study we compare results obtained with the V1-V2 and V3-V4

regions which are easily covered by widely used sequencing technologies.

After sequencing is performed, reads need to be matched against a reference database to

assign a species. Frequently used clustering or binning algorithms group reads or contigs into

operational taxonomic units (OTU) based on a predefined similarity cutoff, usually e.g. 97%;

consensus sequences are then used for mapping the most similar reference sequence. Given

the high resemblance of 16S sequences of some close species, other approaches favor compar-

ing all divergent contigs against the references, without prior clustering. In our study we have

evaluated both types of approaches.

Currently, multiple 16S reference databases exist, including publicly available ones such as

SILVA [8], Greengenes [9], All Species Living Tree Project (LTP, [10]), Genome Taxonomy

Database (GTDB, [11]), as well as commercial products such ase EzTaxon (ezbiocloud.com,

[12]), or SmartGene (smartgene.com, Switzerland). All these databases differ significantly

regarding their content (partial sequences vs full genomes vs type strains etc), their size, how

they are curated, and how frequently they are updated. Obviously, the choice of database

impacts on the results one can obtain and therefore we included several databases in our

evaluation.

Given the difficulties often encountered with non- comparable or non-reproducible results,

our study explores the impact of the following choices: target variable region of the 16S, the

pipeline (matching algorithms against references) and the databases (content, representation

of the Kingdom). We used a very simplified microbiome model based on 26 well characterized

and clinically relevant bacterial species. Ideally, all results should yield a fraction of 100% of

sequences assigned correctly for the species under investigation; in cases where this was not

achieved, we analyzed in more depth the underlying causes and provide some

recommendations.

Material and methods

Cultivation and sources of bacterial strains

Bacterial isolates used in this study were obtained or isolated from different sources. Each sam-

ple represents a single strain originated from pure cultures. These strains have been selected

primarily to cover a broad spectrum of the bacterial kingdom. Species from all bacterial phyla
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that can be frequently found as part of the human microbiota (Actinobacteria, Bacteroidetes,

Firmicutes, Proteobacteria) have been included. The majority of strains were either obtained

from the DSMZ culture collection (www.dsmz.de, Braunschweig, Germany), or from quality

control material used in international external quality assessment schemes (EQAS). These

were supplemented by strains which have been isolated from patient specimens during routine

microbiological diagnostics or from cecal content of C75BL/6 wildtype mice. Initial identifica-

tion of species was conducted according to DIN EN ISO 15189 accredited methods including

MALDI-Tof mass spectrometry using the MALDI Biotyper1 system (Bruker Daltonics Inc.,

Billerica, MA, USA). The identified species names and all sources and conditions used for cul-

tivation of these strains are summarized in Table 1.

Bacterial species were cultivated from cryobank stocks (Mast Diagnostica, Reinfeld, Ger-

many) stored at—80˚C. One bead containing cryopreserved bacterial cells was transferred to

agar plates and further streaked out using 10 μl inoculation loops. Growth media are summa-

rized in Table 1. Lactobacillus and Rhizobium species were cultivated at 30˚C, all other species

at 37˚C. Anaerobic bacteria were cultivated under oxygen-free atmosphere (85% N2, 10%

CO2, 5% H2) in an anaerobic jar using the Advanced1 Anoxomat™ system (Augusta Laborbe-

darf GmbH). After growth of colonies, cultivation was repeated by transferring a single colony

to a new agar plate. Species designation was confirmed by sanger-based sequencing on a ABI

PRISM1 310 Genetic Analyzer (Life Technologies) using primers S-D-Bact-0008-a-S-16 and

S-D-Bact-1492-a-A-16 [13].

Table 1. Overview on bacterial strains and isolates used in this study and the culture media used.

Strain Number Species Source Cultivation

1 Agrobacterium radiobacter DSM 30147 Aerobic, Luria-Bertani (LB) agar

2 Alcanivorax borkumensis DSM 11573 Aerobic, Marine Broth (Difco)

3 Alicyclobacillus acidiphilus DSM 14558 Aerobic, Alicyclobacillus medium 402 (DSMZ)

4 Bacillus licheniformis Clinical isolate Aerobic, Columbia blood agar (Oxoid)

5 Bacteroides caccae Clinical isolate Anaerobic, Schaedler-KV agar

6 Bacteroides fragilis ATCC 25285 Anaerobic, Schaedler -KV agar

7 Bacteroides thetaiotaomicron ATCC 29741 Anaerobic, Schaedler-KV agar

8 Bifidobacterium longum Clinical isolate Anaerobic, Bifidobacterium agar, modified (BD)

9 Butyricimonas virosa Blood culture isolate Anaerobic, Schaedler Anaerobe agar (Oxoid)

10 Clostridium tertium INSTAND bacteriology ring trial round 2006 Anaerobic, Schaedler Anaerobe agar (Oxoid)

11 Enterococcus durans INSTAND bacteriology ring trial round 2000 Aerobic, Culumbia blood agar (Oxoid)

12 Enterococcus faecium ATCC 6057 Aerobic, Culumbia blood agar (Oxoid)

13 Enterococcus gallinarum Clinical isolate Aerobic, Culumbia blood agar (Oxoid)

14 Escherichia coli DSM 6897 Aerobic, Luria-Bertani (LB) agar

15 Salinibacter ruber DSM 13855 Aerobic, Salinibacter medium 936 (DSMZ)

16 Staphylococcus aureus ATCC 29213 Aerobic, Culumbia blood agar (Oxoid)

17 Idiomarina loihiensis DSM 15497 Aerobic, Marine Broth (Difco)

18 Lacticaseibacillus rhamnosus Murine isolate Anaerobic, Lactobacilli MRS agar (Difco)

19 Lactobacillus gasseri Clinical isolate Anaerobic, Lactobacilli MRS agar (Difco)

20 Lactococcus lactis Murine isolate Anaaerobic, Schaedler Anaerobe Agar (Oxoid)

21 Leuconostoc mesenteroides Clinical isolate Aerobic, Culumbia blood agar (Oxoid)

22 Ligilactobacillus salivarius Murine isolate Lactobacilli MRS agar (Difco)

23 Limosilactobacillus reuteri DSM 12246 Lactobacilli MRS agar (Difco)

24 Paenibacillus aceti Clinical isolate Aerobic, Culumbia blood agar (Oxoid)

25 Paenibacillus barengoltzii Clinical isolate Aerobic, Culumbia blood agar (Oxoid)

26 Streptococcus oralis Clinical isolate Aerobic, Culumbia blood agar (Oxoid)

https://doi.org/10.1371/journal.pone.0280870.t001
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Extraction of nucleic acids

A total of 3–5 colonies of each bacterial species were suspended into 500 μl of sterile PBS buffer

using an inoculation loop and vortexed to obtain homogeneous cell suspensions. Mechanical

disruption of bacterial cells was achieved by repeated bead beating by means of a TissueLyser

II (Qiagen, Hilden, Germany) for 5 min at 30 Hz using Lysing Matrix Y (0.5 mm diameter

yttria-stabilized zirconium oxide beads; MP Biomedicals, Eschwege, Germany). Nucleic acids

were purified from crude cell lysates by means of the MagNA Pure 96 instrument (Roche,

Mannheim, Germany) using the MagNA Pure 96 DNA and Viral NA Large Volume Kit

(Roche). Total amount and purity of total nucleic acids was measured spectrophotometrically

using the NanoDrop 1000 instrument (Thermo Fisher Scientific, Waltham, USA).

Semiconductor-based sequencing of bacterial 16S rRNA genes

Concentrations of nucleic extracts were normalized to 5 nanogram per μL. Subsequently, V1

to V2 and V3 to V4 hyper-variable regions of bacterial 16S rRNA genes were amplified by

PCR in two separate reactions from a total of 5 ng DNA using the Platinum II Taq Hot-Start

DNA Polymerase (Thermo Fisher Scientific). For amplification of V1 to V2 regions, primer

S-D-Bact-0008-c-S-20 containing a 10-bp sample-specific barcode sequence and the IonTor-

rent-specific sequencing adaptor A together with reverse primer S-D-Bact-0517-a-A-18 con-

taining a 3’-P1 adapter sequence were used. For amplification of V3 to V4 regions, primers

S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21 were used containing the same barcode and

adapter sequences. After 30 PCR cycles, amplicons were analyzed by agarose gel electrophore-

sis. Identical volumes of V1-V2 and V3-V4 PCR reactions were combined for each sample and

purified twice using MagSi-NGSprep Plus beads (Steinbrenner, Wiesenbach, Germany) apply-

ing a 0.8 beads to DNA ratio. Copy numbers of amplicons containing sequencing-adaptors

were determined using the KAPA Library Quantification IonTorrent Kit (Roche) and pooled

to equimolar concentrations of each amplicon. A total of 120 attomol of the final library pool

was subjected to isothermal amplification using the Ion Chef instrument before running 1350

flow cycles during high-throughput sequencing on an Ion Torrent™ GeneStudio S5 Plus

machine (Thermo Fisher Scientific).

Pre-processing of sequencing reads for further analysis

Signal processing and base calling was performed using the Torrent Suite Software Version

5.12 without additional quality trimming of sequencing reads. Cutadapt 3.1 [14] was used for

removal of 5’- and 3’- adapter sequences, for the demultiplexing according to the barcode

sequences and the splitting into V1-2 and V3-4 regions after matching the 5’ends with the for-

ward primer sequence. Resulting FASTQ files were then uploaded to the various analysis pipe-

lines for further processing.

Analysis of preprocessed reads using different analysis pipelines and

databases

Preprocessed FASTQ files were subjected to further analysis using five analysis pipelines and

reference databases as summarized in Table 2. Divisive Amplicon Denoising Algorithm pipe-

lines (dada2, version 1.16 [15]) were used in combination with SILVA, LTP and GTDB data-

bases, a vsearch pipeline [16] used the Greengenes database, the SmartGene pipeline relied on

its proprietary 16S Centroid database. With the exception of the SmartGene pipeline where

the database is integrated in a cloud service, database FASTA files were downloaded directly

from the respective websites (Table 2).
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Prior to the analysis with dada2 and vsearch pipelines, low-quality bases were trimmed

using Trimmomatic version 0.39 [17] in a 25 bp sliding window approach, with a phred -score

cutoff of 15 and a length cutoff of 150 bases. For dada2 processings, reads with a maximum of

five expected errors were denoised applying an OMEGA_A and OMEGA_P cutoff of 1e-30 in

conjunction with a homopolymer gap penalty of -1 [15]. Chimeric sequences were detected

and removed with the removeBimeraDenovo command; thereafter these reads were then sub-

jected to the IDTAXA algorithm of DECIPHER 2.18.1 [18] for taxonomic classification of all

detected amplicon sequence variants (ASV) based on 200 iterations with a bootstrap threshold

of 40% as confidence value for assigning a taxon with certainty. For dada2 processing with the

SILVA database, the training set provided with DECIPHER was applied, which is annotated to

the genus-level only [18]. For the dada2 in combination with the LTP and GTDB databases, new

training sets for the IDTAXA classifier were set up from downloaded FASTA files following the

DECIPHER tutorial. Relative abundances represent the fraction of reads assigned to the amplicon

sequence variants obtained. These reads are summarized at different taxonomic levels.

For data analysis with the SmartGene pipeline, FASTQ files were uploaded to the protected

cloud-platform. The SmartGene IDNS-5 Bacteria 16S Microbiome App is a commercial

CE-IVD labeled automated cloud application service of SmartGene (SmartGene, Unteraegeri,

Switzerland, www.smartgene.com). It uses a proprietary SmartGene "16S Centroid" database

of non-redundant representative bacterial 16S rRNA sequences covering 15’960 species across

3’161 genera as of May 2020, which is maintained and updated using AI and algorithms (pat-

ent #EP02215578). A sliding-window filter eliminates low quality sections of reads and the

resulting contigs are mapped against the reference sequences without prior binning. Results

are grouped according to match quality (e.g. % of coverage, number of mismatches, etc),

match specificity (matching a single species or not), and match consistency (close matches

belonging to the same genus). The system produces a confidence score for the matching taxon

and if a species cannot be called specifically, the system assigns the next taxon level and indi-

cates all possibly matching species and genera. Results are displayed in a table format, along

Table 2. Overview of versions and characteristics of analysis pipelines and 16S reference databases used in this study.

Abbreviation Reference Database

/Pipeline

Analysis pipeline DB Release DB Release

Date

Sequences Link

d2.GTDB Genome Taxonomy

Database (GTDB)

dada2 05-RS95 17th July

2020

194,600 (1)

(redundant)

https://gtdb.ecogenomic.org/

d2.LTP All-Species Living Tree

Project (LTP)

dada2 LTPs132 SSU June 2018 13,903 (non-

redundant)

https://www.arb-silva.de/projects/living-tree/

d2.SILVA SILVA dada2 SSU r138 December

2019

112,585 (3)

(redundant)

http://www2.decipher.codes/Downloads.html

SG SmartGene 16S

Centroid

SmartGene (IDNS

-5 v.3.7.0)

2.2.0_16S_r144u034 18th May

2020

15,960 (non-

redundant)

https://www.smartgene.com

vs.GG Greengenes vsearch 13_5 May 2013 1,262,986 (2)

(redundant)

http://greengenes.secondgenome.com/?prefix=

downloads/greengenes_database/gg_13_5/

(1) The Genome Taxonomy Database (GTDB) was constructed by average nucleotide identity and assignment of tentative placeholder species names. Phylogeny based

on 120 ubiquitous single-copy proteins was used to propose taxonomic classification.

(2) The total of 1,262,986 near full-length SSU sequences are clustered to 99 percent sequence identity (203,452 sequences). Greengenes uses a NCBI nomenclature

based on de novo tree inference and ismaintained and curated by an international consortium of 4 research groups.

(3) The original non redundant (NR) Silva Database release (https://www.arb-silva.de/documentation/release-138/) contains 510,984 bacterial and archaeal 16S rRNA

sequences. Here we used a modified SILVA SSU r138 datbase (December 2019) which is provided by the DECIPHER package (http://www2.decipher.codes/Downloads.

html). This repository contains taxonomy to the genus-level. Here, putative chimeric sequences, sequences with more than 10 ambiguities, sequences classified to non-

basal taxons have been removed resulting into 112,585 database entries.

https://doi.org/10.1371/journal.pone.0280870.t002
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with the number of reads and the relative abundance, and can be consolidated to the species,

genus, and family levels, along with a dynamic Krona diagram. Abundances are measured by

the count of reads mapped to a specific species/genus/family.

The vsearch pipeline in combination with the Greengenes database subjected reads with a

maximum of 5 expected errors to the downstream analysis: a unoise3 algorithm with mini-

mum size of 2 and an alpha value of 8 was used for denoising, followed by a chimera filtering

step using uchime3 [19]. Reads were then pre-sorted by length and clustered at 98.5%

sequence identity applying the cluster_fast algorithm prior to mapping them to the Green-

genes database using the SINTAX algorithm of vsearch with default parameters [16].

Comparison of results obtained on the basis of species identification and

relative abundances

Relative abundances on the species and genus level were either obtained from the SmartGene

pipeline (csv export) or were calculated in R using the phyloseq package version 1.34 [20].

Combined barplots were generated using the ggubr 0.2.4 package. Relative abundances of all

analysis pipelines were compared for each sample on the genus and species levels. A relative

abundance level of more than 95 percent were defined as acceptable classification result.

Re-assessment of performance after in-depth analysis of the results

We analyzed the sequence distribution of the bacterial strains within all databases used as well

as presence of closely related species. Therefore, full-length 16S centroid sequences of all spe-

cies used were obtained from the SmartGene IDNS3 module which were considered as refer-

ence sequences for the corresponding species. To assess species-level discrimination, the seqs.

pcr command of mothur version 1.45 was used to trim all reference sequences to the exact

regions covered by the amplification primers for the V1-2 and the V3-4 region respectively

[21]. These references represent the ideal situation where all reads cover the full amplicon

length. Resulting V1-2 and V3-4 sequences were uploaded to the SmartGene IDNS3 module

to search for best matching centroid sequences for all species and both 16S regions. Results

tables were sorted by sequence identities and mismatches.

For all other pipelines used, local BLAST databases were created from sequence repositories

obtained from the corresponding database websites. Trimmed V1-2 and V3-4 reads for all

strains were aligned to all 16S databases by the command-line BLAST+ toolkit 2.12.0 using

BLASTn algorithm [22]. Resulting tables were sorted by sequence identities and mismatches.

Equivalently best matching species of all databases and both 16S regions were analyzed.

Results were scored according to the following scheme. A total of 25 (V1-2) or 26 (V3-4) points

were regarded as maximum, when all isolates could be unequivocally classified towards the

species, which means the sequences of the species sought was the best match and distinguish-

able from closely related species. One point was deduced if a) the best matches were not distin-

guishable from closely related genera or families b) closely related species were not present or

c) sequences were only designated towards lower taxonomic levels like the genus or family

level. Final scores for all pipelines and both 16S regions were summarized to compare their

performance regarding species-level identification.

Results

We studied the species- and genus-level accuracy of 16S-based microbiome sequencing in a

very simplified and defined experimental setting, allowing the precise investigation of analyti-

cal influences on species- and genus-level identification. A 100% relative abundance of the cor-

responding species was expected if all sequencing reads are classified correctly towards the
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species level, and a proportion of 95 percent was regarded as an acceptable classification result.

Applying that cutoff, 24 (92%) out of 26 samples showed at least one inaccurate result, with

regard to the analysis pipelines used or to the variable regions analyzed (Table 3). Across all

pipelines tested, between 5 and 16 samples (20 to 64%) were correctly assigned to the species

level using the V1-V2 region, but only 5 to 9 (19 to 35%) when targeting V3-V4. The pipeline

using the Silva database did not yield species-level results at all. Accurate genus-level results

were observed for 24 (d2.LTP), 24 (d2.GTDB), 23 (SG), 22 (d2.SILVA), and 22 (vs.GG) out of

25 isolates in the V1-2 region, and for 24 (d2.LTP), 20 (d2.GTDB), 21 (SG), 20 (d2.SILVA),

and 23 (vs.GG) of 26 isolates in the V3-4 region.

The detailed results per strain are summarized in Fig 1. We selected representative cases to

provide examples of factors which impact classification accuracy in S1 File.

For the sample containing Bifidobacterium longum (8), no PCR amplification was observed

in the V1-2 region, so only the V3-4 region has been considered. Bacteroides fragilis (6) was

the only isolate where results were fully in line with the expected 100% relative abundance.

This was true across all pipelines and databases used, variable 16S regions analyzed and the

taxonomic levels considered. For all other strains several deviations from the expected value

were observed, which were dependent on the bacterial species analyzed.

More isolates were identifiable towards the species and genus-levels in the V1-2 region than

in the V3-4 region. Across all analysis pipelines 48/100 (48%) results showed an accurate classi-

fication towards the species level in the V1-2 region compared to 30/104 (29%) when analyzing

V3-4 regions. This was especially the case for isolates 4, 5, 10, 15, 16, 19, 21, 22, and 23.

In addition to the results shown in Table 3, some pipelines and databases failed to identify

specific isolates (i.e. nearly 0 percent of correctly assigned reads). Genus-level identification for

both 16S regions was not possible in three cases using the GG database (isolates 3,10, and 14),

while the d2.GTDB pipeline failed to identify isolate 18 (Lactococcus lactis). Both Paenibacillus
species (isolates 22 and 23) exhibited very low relative abundances (V1-2: 0% and 21,8%; V3-4:

10,8% and 18%, respectively) using d2.SILVA, due to assignment of Paenibacillus spp. to two

different genera (Fontibacillus/Paenibacillus) in the SILVA database.

Some isolates could not be classified using vs.GG while other pipelines showed nearly per-

fect matches. Indeed Alcanivorax borkumensis (2), Alicyclobacillus acidiphilus (3), Bacillus
licheniformis (4), Bacteroides thetaoitaomicron (7), Clostridium tertrium (10), Idiomarina loi-
hiensis (15), Lacticaseibacillus rhamnosus (16) and Salinibacter ruber (24) were missed at the

genus-level (3), solely at the species-level (2, 4, 7, 15, 16, 24), or at both taxonomic levels (3,10)

using vs.GG. For isolate 3 neither species- nor genus-level entries were present in the database

(3). For other strains, taxonomies were deposited only towards the genus-level (2, 4, 7, 10, 15,

16, 24) which hindered species-level classification.

Considering thus the different databases and their composition with respect to the depos-

ited 16S rDNA sequences and their corresponding taxonomic annotation, some of the

sequences were not accurately assigned towards the species level by the pipelines used. In

Table 3. Correctly identified isolates on species or genus level using five different analysis pipelines.

Pipeline/Database d2.GTDB d2.LTP d2.SILVA SG vs.GG

N species assigned V1-2 (max 25) 13 16 0 14 5

N genus assigned V1-2 (max 25) 24 24 22 23 22

N species assigned V3-4 (max 26) 7 9 0 8 5

N genus assigned V3-4 (max 26) 18 24 20 21 23

N species assigned Total (max 51) 20 15 0 12 10

N genus assigned Total (max 51) 42 40 42 44 45

https://doi.org/10.1371/journal.pone.0280870.t003
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order to address this issue and to validate the previously obtained species by including the

underlying database structure, we analyzed the SG, GTDB, LTP and GG databases which theo-

retically should allow for the assignment towards the species level. We used BLASTn to align

V1-V2 and V3-V4 16S rDNA regions of all bacterial isolates (1–26) to all entries in the refer-

ence databases. Equivalent best matches were analyzed, using penalty criteria described in the

Methods section. For each of these criteria one point was deduced from the maximum achiev-

able score, i.e. a perfect annotation of 26 (V3-V4) or 25 (V1-V2) isolates towards the species

level. The reassessed results are summarized in Table 4. Taking the results for both 16S regions

into account, the SG pipeline and the d2.LTP pipeline performed best, while d2.GTDB

achieved a lower score because 16S sequences were identical with other species or genera. For

example, best matching V1-2 and V3-4 sequences in the GTDB database of Staphylococcus
aureus were 100% identical with a sequence annotated as Pararheinheimera mesophila. Pipe-

line vs.GG performed worst, mainly because of taxonomic assignments of multiple identical

database entries towards the genus-level or lower taxonomic ranks. A detailed overview of all

observations obtained, and scoring is available in S1 Table.

Discussion

In this particular exercise of determination from a single-species culture, a large number of

results did not yield the expected 100% relative abundance and identification to the species

level. Given these discrepancies, we investigated the systematic causes for this.

Matching highly homologous 16S sequences and coverage of variable

regions of significance

Some bacterial species such as Staphylococcus aureus, S. schweitzeri, S. argenteus share homolo-

gous or even identical 16S rDNA sequences [7]; such species cannot be differentiated on the

basis of their 16S sequences, as one could observe with samples 12, 25 and 26 in Fig 1 (see

alignments in S1 Fig).

Other species differentiate rather within one variable region of the 16S but not elsewhere:

Sample 10 containing Clostridium tertium also matched other close Clostridium species in

V3-4, thus decreasing the specific abundance for C. tertium. Results in general and those

obtained for strains 4, 11, 22 (Fig 1) in particular indicate a better performance of the V1-2 var-

iable region to assign correct species, whereas V3-4 yields correct result on the genus-level

only. The better performance of the V1-V2 region of the 16S was also reported by other recent

studies [6] and somehow contrasts with the tendency in the field of using 16S V3-4 for targeted

microbiome analyses [23, 24].

Fig 1. Fractions of correctly assigned sequences on the species- and genus-level after sequencing of V1-2 and V3-4 16S rRNA

gene regions and sequence analysis using different pipelines and 16S rRNA reference databases. SG = SmartGene IDNS pipeline,

LTP = All Species Living Tree database, GTDB = Geome Taxonomy Database, GG = Greengenes Database, SILVA = SILVA database.

https://doi.org/10.1371/journal.pone.0280870.g001

Table 4. Re-assessment of pipeline performances for species assignment based on achievable resolutions within

the 16S rRNA gene.

Pipeline/Database d2.GTDB d2.LTP d2.SILVA SG vs.GG

Score V1-2 region (max 25) 16 20 NA 19 4

Score V3-4 region (max 26) 11 17 NA 21 14

Score Total (max 51) 27 37 NA 40 18

https://doi.org/10.1371/journal.pone.0280870.t004
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In few cases, 16S sequences can be identical even across two genera, as is with Escherichia
coli (E. coli) and Shigella flexneri, or with Agrobacterium radiobacter, Agrobacterium salinitoler-
ans and Rhizobium pusense. In these cases, we recommend results to be reported at the lowest

taxon level which can be unambiguously assigned, here the family. Notwithstanding its com-

plex diversity and ambiguous taxonomic position, E.coli strains are often part of reference

materials or community standards (e.g. the Gut Microbiome Whole cell Mix (American Type

Culture Collection, ATCC), ZymoBIOMICS microbial community standards (Zymo

Research)).

Finally, when contigs are shortened, e.g. after quality trimming, they may lack sections of

sequence with discriminatory capacity. This can easily result in assignment to different taxon

levels: the longer contigs may match to the species and the shorter ones to the genus-level, thus

yielding a lower fraction of correctly assigned sequences to the species level, but not for the

genus (see results for Lactobacillus rhamnosus in V3-4 of the SG pipeline with sample 16). We

therefore recommend to assess the relative abundance on both levels, species and genus, espe-

cially if the presence of other close species is unlikely for the specimen. Still, guidelines for

quality filtering or trimming of 16S sequencing data are still missing.

Deficiencies in matching algorithms and relevant criteria

Matching of reads is greatly influenced by their length and accuracy. OTU based approaches

cluster similar contigs towards a defined sequence identity (“binning”) before matching the

consensus to the database. Provided a predefined similarity for binning at 97%, this means

that 500 bp contigs with up to 15 mismatches will be clustered together, thus reducing the abil-

ity to differentiate close species when present in the sample [25, 26]. The SG pipeline of Smart-

Gene only clusters identical contigs and matches these against its proprietary Centroid

database, thus not compromising by binning the few but crucial mismatches for the differenti-

ation of close species, as seen for strains 9 and 18. Non-clustering approaches (e.g. SmartGene)

or de-noising approaches like zero-radius OTUs (zOTUs) and amplicon sequence variants

(ASV) applying the unoise [19] and dada2 [15] approach, theoretically allow differentiation of

species with sequences towards single nucleotide resolution.

Match consistency indicates that the closest matching species to a contig belong to the same

genus and is thus indicative of a high confidence in genus matching. If the closest matching

species belong to several genera, it suggests that the sequenced region is either not being dis-

criminative enough for the type of organisms encountered or that taxonomy is uncertain

within the organisms encountered. Only in the SG pipeline is the match consistency accounted

for in the algorithm of assigning species and genera. An example showing inconsistency of

matches is sample 1 (Rhizobium) or sample 14 (E. coli).

Database design and curation, species-coverage

Several factors determine the usefulness of a reference database for microbiome 16S contig

matching. First, annotation accuracy assures that the correct species names are attached to the

sequences, in compliance with up-to-date bacterial nomenclature. Sample 16, containing Lac-
ticaseibacillus rhamnosus, may serve as an example for divergent results: pipelines d2.SILVA

and vs.GG identified the sample under its former name Lactobacillus rhamnosus and therefore

does not yield the correct genus.

Second, the content should be fully representative of the Kingdom, to ensure that all rele-

vant species are included in a database to cover the natural diversity of the bacterial kingdom

adequately. Missing a species in the database can result in either misclassification by matching

the contigs to the next closest species instead, or in an identification to a higher taxonomic
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rank. The S. aureus (strain 25 in Fig 1) in our study illustrates an apparently accurate assign-

ment of reads in LTP and GG for V1-2; however, since no sequences for S. argenteus or S.

schweitzeri were present in these databases, this match is not exhaustive and thus not reliable.

The correct result should be Staphylococcus “genus”, given that aureus, argenteus and schweit-
zeri cannot be reliably differentiated within the variable regions analyzed. The same is true for

E. coli, where sequences of Shigella dysenteriae, E. fergusonii etc. were missing in the databases;

the correct result would have to be Enterobacteriacae family, given the equivalent matches to

different genera.

Some authors advocate for databases focusing on pathogenic or clinically relevant species,

or on specific habitats: examples are the human intestinal 16S rRNA database (HITdb, [27], or

the expanded Human Oral Microbiome Database (HOMD, [28]). These databases often miss

naturally occurring variants and other close species and thus will likely not detect contami-

nants or unusual infections. That intra-species diversity has an impact on match accuracy of

contigs and thus should also be covered by a database for easier species differentiation [7]. A

type strain database such as LTP does not sufficiently cover this diversity, as illustrated by the

reduced relative abundance of Bacillus licheniformis (strain 4) in the V1-2 region. Some pipe-

lines rely on clustered reference databases, such as Greengenes [29], which cluster entries at a

certain sequence identity (e.g. 97%) to reduce computing time.

Curating a database, for updates and for adoption of current nomenclature, is often manu-

ally performed by experts. This mode of curation is rather flexible to adopt new taxa and modi-

fied nomenclature, but is very demanding in time and expertise, which will not allow for

covering all taxa equally. Furthermore, expert curation requires perpetual funding, which is

not guaranteed via research grants. Commercial solutions on the other hand often lack the

transparency on their criteria for including entries and on the frequency and thoroughness of

updates. For all manually curated databases, a certain lag behind most recently published spe-

cies and nomenclature can be expected. The Greengenes database is outdated (latest release

date is 2013) and its use is discouraged. However, it is still used occasionally. Algorithm-

curated databases such as SmartGene’s 16S Centroid databases hold the promise of more fre-

quent updates with adequate representation of natural diversity. In order to appreciate the

quality of the curation, users should have access to its principals, to a list of species covered in

the database, the number of sequences evaluated to select representative records and be aware

of the frequency of updates.

Nomenclatural changes can alter measurements of relative abundances, as was observed

with sample 1, containing Agrobacterium radiobacter (formerly Rhizobium radiobacter) with

the last update of the most up-to-date SG pipeline: since some of the shorter contigs also

matched the next closest species of the genus Rhizobium, this reduced the overall fraction of

sequences assigned correctly to the genus Agrobacterium.

Analytical process and sequencing technologies

The design of appropriate PCR primers is crucial for the recovery of species and can lead to

missing an organism or induce an amplification bias which subsequently leads to shifts of

microbial compositions and eventually to divergent and unexpected results [5]. The same is

true for DNA extraction processes, which can fail to lyse some bacterial cells or favor the

recovery of certain genomes over others [30]. When relying on sequencing technologies which

produce rather short reads, contigs will only cover one or two variable regions of the 16S, thus

reducing the ability to differentiate a number of bacterial species; in such situation it is of

importance to choose the covered regions carefully to differentiate the expected species unam-

biguously. As explained above, longer contigs may be assigned to the correct species whereas
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the shorter ones may match two and more species, reducing the calculated relative abundance

for the expected species. In our study, several examples illustrate this behavior, e.g. with regard

to the SG pipeline: 1, 9, 13, 19. Long read sequencing at high accuracy will certainly improve

the species resolution provided that these are adequatically represented in the database used.

One interesting approach was published by Karst et al., who have developed and applied a syn-

thetic long read protocol for sequencing of full-length 16S rRNA genes [31]. However, we

think that some principal problems will still remain for analyses which rely on comparison

with reference databases as such databases do not fully cover the full biological diversity. The

carefull selection and analysis of the reference databases related to the representativity for the

species of interest will remain a very important task.

Base-calling errors impact on the matching accuracy as well. Here we used the IDTAXA (LTP,

SILVA, GTDB) and SINTAX (GG) approach which are based on machine-learning algorithms

using the reference databases as training sets to calculate confidence values, based on repeated

random sampling of k-mers belonging to the query sequence. However, the training of the classi-

fier is very much dependent on the composition and reliability of the reference database used.

Ion Torrent1 semiconductor-based sequencing was used in this study, while the Illumina

MiSeq1 platform is certainly the most widely used platform for 16S rDNA gene sequencing.

Our data demonstrates, that the observed differences can be well explained on the basis of

DNA sequence alignments or the underlying database structure and the findings of our study

should therefore be also applicable to other short read technologies. Strains that are well distin-

guishable on the basis of 16S rRNA genes could be well identifiable at the species level, indicat-

ing a high accuracy of the chosen method. Although the Ion Torrent1 platform might

produce higher rates of indel errors, especially in homopolymer regions [32], comparable per-

formance for 16S amplicon sequencing to Illumina-based workflows has been demonstrated

[33]. However, quality filtering steps and subsequent bioinformatic methods should be

adapted to the technology used and validated.

The choice of strains for quality control

In our study we were relying on strains from strain collections with the exception of one strain

of Butyricimonas virosa (9), which originated from a patient specimen (blood culture) and

was unambiguously identified by MALDI. Microbiome results obtained with the SG and the

LTP pipelines however indicated presence of a minority of several Butyricimonas species, e.g.

B. virosa (63.7%), faecihominis (21.25%) and paravirosa (9.45%), and of a taxonomically rather

different bacterium, Catabacter hongkongensis (4%), which was unambiguously identified by

its signature sequence in the V1-2 region (see alignment in supplemental materials). When

inquiring about the case retrospectively, the patient history revealed a sepsis after surgical

intervention on recurrent colon diverticulitis, with peritonitis as complication after perfora-

tion. In light of such clinical picture, there is indeed a strong possibility of disseminating gut

flora via the blood stream; the microbiome results were rather plausible for the case and may

have helped clinicians in their management of the case. Note that only the SmartGene and

LTP pipelines were able to detect the mixed infection, whereas the other pipelines did not. The

V1-2 primers were not able to amplify the Bificobacterium longum (9) DNA. However, primer

mismatches in the 27f primer region to some Bifidobacterium species have been reported

before [34]. Sequence alignments of full-length 16S rRNA gene sequences of the most fre-

quently occurring Bifidobacterium species indicate, that the V1-2 and the V3-4 regions are

both discriminative for the differentiation of such closely related species. In general, primers

should be validated in silico and in vitro to verify the coverage and amplification of relevant

species for the environment being tested.
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Recommendations

To conclude our analysis, we recommend the following:

• The target regions for sequencing should enable sufficient differentiation of all species which

are expected to be detected, especially if the sequencing technology used produces short con-

tigs. The V1-2 region of the 16S rRNA gene performs generally better for species identifica-

tion than the V3-4 region.

• Assessing read quality and subsequent filtering/trimming should be transparent, in order to

enable better understanding and troubleshooting of the results obtained.

• Reference databases used for analyses of microbiomes should be representative of all bacterial

species and their natural diversity and include potential contaminants; annotations should fol-

low up-to-date nomenclature. We suggest to avoid the use of targeted and thus restricted data-

bases and opt for covering maximal diversity to allow for accurate and significant matches.

• Analysis pipelines and databases used should be versioned and validated. Any changes in

pipelines or databases including updates should be subject to new validation using a suitable

validation dataset which includes reads from real sequencing runs.

• Matching contig against a reference database should yield all equivalent matches, up to the

next closest species which can be ruled out given the presence of significant mismatches. All

such close matches should be listed as alternative results.

• Contigs which cannot be assigned unambiguously to any species should be assigned to list of

all species that can be considered or to a genus or family, depending on the certainty of the

matches obtained at such higher taxonomic levels.

• Quantitation of abundance should include assessment on both, the species and the genus-

level; attention should be paid to shorter contigs which may only match at the genus-level.

Quantification of abundance should be verified for inconsistencies especially if closely

related taxa are in the same specimen and match ambiguously.

• Strains to be used for microbiome standardization or performance assessment should be

fully characterized, to identify the species beyond doubt and to rule out contamination. One

should take into account the ability to differentiate other close species and genera and avoid

organisms of unclear taxonomy; expected results should also account for species with pro-

nounced intra-species or intra-operon diversity.
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Investigation: André Gessner.
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