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Abstract

The aim of this study is to evaluate if single nucleotide polymorphisms (SNPs) in WNT6 and

WNT10A are associated with the risk of dental pulp calcification in orthodontic patients. This

cross-sectional study followed the “Strengthening the Reporting of Genetic Association

Studies” (STREGA) guidelines. Panoramic radiographs (pre- and post-orthodontic treat-

ment) and genomic DNA from 132 orthodontic patients were studied. Dental pulp calcifica-

tion (pulp stones and/or pulp space narrowing) was recorded in upper and lower first molars.

The SNPs in WNT6 and WNT10A (rs7349332, rs3806557, rs10177996, and rs6754599)

were assessed through genotyping analysis using DNA extracted from buccal epithelial

cells. The association between pulp calcification and SNPs were analyzed using allelic and

genotypic distributions and haplotype frequencies (p<0.05). Prevalence of dental pulp calci-

fication was 42.4% in the 490 studied molars. In the genotypic analysis, the SNPs in

WNT10A showed a statistically significant value for molar calcification (p = 0.027 for

rs1017799), upper molar calcification (p = 0.040 for rs1017799) (recessive model), and

molar calcification (p = 0.046 for rs3806557) (recessive model). In the allelic distribution, the

allele C of the SNP rs10177996 in WNT10A was associated with molar calcifications (p =

0.042) and with upper first molar calcification (p = 0.035). Nine combinations of haplotypes

showed statistically significant value (p<0.05). The findings of this study indicates that SNPs

in WNT10A and WNT6 are associated with dental pulp calcification in molars after orthodon-

tic treatment and may be considered as biomarkers for dental pulp calcification.
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Introduction

Teeth are composed of three different types of calcified tissues: enamel, dentin, and cementum.

Dentin is the most abundant and the first developed hard dental tissue, which is responsible to

determine the general shape, mechanical properties, and functions of teeth [1]. Dentin is simi-

lar to bone in its matrix protein composition, but unable to respond such as the bone in case of

damage and does not go under remodeling [2]. The dentin combined with the dental pulp tis-

sue, generally called the dentin-pulp complex, is capable to induce repair instead of remodel-

ing under trauma [3]. The calcification of the dental pulp, partially or completely, is one of the

ways that the dentin-pulp complex reacts by repairing under damage. This mechanism directly

affects clinical approaches, such as endodontic treatment [4].

Dental pulp calcifications are discrete or diffuse calcified structures present in any portion

of the pulp, either in the chamber or canals [5]. They are detected usually in radiographic

examination and can be observed as radiopaque areas of variable sizes and shapes [6]. Dental

pulp calcification may be categorized into 2 types: pulp stones and narrowing of the radicular

pulp space. The key differences between them are the clinical presentation, in which the pulp

stone is presented as well-defined radiopaque masses and the narrowing as a diffuse calcifica-

tion along the dentin walls, with or without projections [5].

The exact etiology of the dental pulp calcification is unknown. Some factors have been

involved in the risk of the occurrence of dental pulp calcifications, such as pulp degeneration

processes, idiopathic factors, age, poor circulatory supply, inductive interaction between epi-

thelium and pulp tissue, and also orthodontic tooth movements [7]. A recent systematic review

concluded that orthodontic force triggers a sequence of biological responses that can affect the

dental pulp, leading to an increase in pulp calcification [8].

Individual genetic predisposition might also play a role in the individual susceptibility to

dental pulp calcification formation [9]. It is possible that genetic variations could be involved

in pulp calcification risk [10]. According to a recent review, at least 300 genes are involved in

the secretion, maturation, and regulation of dentin [11]. Different pathways, related to pro-

teins and extracellular organic matrix, mineralization, and growth factors are involved in den-

tinogenesis, but the exact role of each pathway is not been fully elucidated so far. Not restricted

to dentin secretion and mineralization, the mechanism behind the stress response and dentin

bridge formation under damage, to date, remains to be fully comprehended. The wingless-

type MMTV integration site family (WNT) is a commonly studied pathway, participating in

both ways of dentinogenesis and dentin stress response. The WNT pathway is known to regu-

late multiple stages of tooth development and post-eruption maintenance [12]. WNT pathway

is known as crucial in the physiological and pathological processes of dental pulp tissues, mod-

ulating many cellular events in dental pulp cells via the canonical and non-canonical pathways

[13]. There are evidences of WNT signaling the survival of odontoblasts and the continued

production of dentin [3]. Also, there are strong suggestions that it is related to the dentin

matrix formation and mineralization [13]. An in vitro study using dental pulp cells showed the

positive effects of activation of WNT/β-catenin signaling on odontoblast differentiation, sug-

gesting the potential role of the WNT in pulp reaction to injuries [14]. A study with mice for

dentin injury model observed that WNT-responsive odontoblasts secrete new dentin after

superficial dental injury [15]. Also, a recent systematic review suggested that orthodontic tooth

movement changes the expression of genes in the dental pulp [16]. The activation of WNT sig-

naling pathway during orthodontic tooth movement was also previously observed [17].

From the members of the WNT family, WNT10A is a gene involved in the development of

ectodermal derivates, including teeth [18]. It was previously associated with dental-related syn-

dromic and non-syndromic conditions [19], and some of its single nucleotide polymorphisms
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(SNPs) were already associated with dentin matrix alterations and dental anomalies [20, 21].

The SNP rs3806557 is located in a conserved promoter flanking region in WNT10A, which are

frequently associated with regulatory effects on gene expression and was associated with dental

phenotypes [22]. Two intronic SNPs rs7349332 and rs10177996 in WNT10A were also

strongly associated with dental phenotype in a previous study [21]. WNT6 is another impor-

tant gene involved in tooth development, associated with dental papilla cell migration and dif-

ferentiation and dentin bridge formation [20]. An intronic SNP rs6754599 in WNT6 was

associated with a dental-related phenotype [21]. These studies [21, 22] suggest the important

role of rs6754599, rs3806557, rs7349332 and rs10177996 in dental-related tissues and cells. So,

the aim of this study is to evaluate if SNPs in WNT6 and WNT10A are associated with the risk

of dental pulp calcification in orthodontic patients. The main hypothesis of this study is that

the SNPs rs6754599, rs3806557, rs7349332 and rs10177996 are involved in the risk of dental

pulp calcification on orthodontic patients, and that those SNPs are potential biomarkers for

this phenotype.

Methods

Sample description and dental pulp calcification assessment

The study was previously approved by the Human Ethics Committee of the University of

Regensburg (approval number: 19-1549-101). The project was performed according to the

Helsinki Declaration, and informed consent was obtained from the legal guardians and/or the

participants. The study followed the Strengthening the Reporting of Genetic Association study

(STREGA) statement checklist [23], which is an Extension of the STROBE Statement for

reporting genetic association studies.

Panoramic radiographs (pre- and post-orthodontic treatment) and genomic DNA of ortho-

dontic patients were studied. The sample was composed only by patients that underwent

orthodontic treatment with fixed appliances, from a previous study [24]. The inclusion criteria

were: patients who underwent orthodontic treatment without any extraction of the maxillary

and mandibular first and second premolar and molar treatments, without any loss of teeth due

to caries lesions or trauma, without dental agenesis of any permanent teeth (excluding third

molars) and without severe malocclusion that require further orthognathic surgery. Cases with

low quality radiograph (poor angulations, improper exposures, or faulty processing) were

excluded.

Any patients with a positive history of medical conditions in the anamnesis, syndromes,

and oral cleft were excluded from the study to prevent any bias due to systemic disorders.

For the purpose of this study, all first upper and lower permanent molars were evaluated

for the presence of dental pulp calcification, partially or completely. Firs molars (upper and

lower molars) were assessed due their role as anchorage during orthodontic treatment. Molars

presenting deep-extensive carious lesions or restorations; the presence of crown, bridges, or

endodontic treatment; dental anomalies that compromise the radiographic evaluation, open

apex, and confirmed story of dental trauma [25] were not included in the analysis. Molars with

dental pulp calcification identified previously to orthodontic treatment were also excluded

from the analysis.

The analysis was performed by one endodontic examiner, after training and calibration

with a senior endodontic expert with 25 years of clinical experience. Inter-observer (0.81) and

intra-observer (0.94) concordance were assessed by Cohen’s Kappa, with a very good agree-

ment. All of the radiographs that satisfied the study requirements were examined digitally and

in a dark room [25]. Each radiograph was analyzed using Windows Photo Viewer software,

for Windows 10 (Microsoft Corporation, Redmont, WA, USA), on a 14-in Lenovo
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81V7S00100 monitor (Lenovo PC International, Beijing, China) with 1,360×768-pixel resolu-

tion. The examiner manipulated the images to improve their contrast and brightness to access

the clearest images in the analyzed areas [26].

A molar was recorded as having a dental pulp calcification when masses of calcified tissue

present on the level of the pulp chamber and roots were observed radiographically. Therefore,

pulp calcification was determined when the first molar presented pulp stones in pulp chambers

and/or canals, and/or narrowing of the radicular pulp space also in the chambers and/or

canals. Pulp stones were defined as definite radiopaque masses inside pulp chambers or canals,

and the narrowing was defined as a severe reduction in the volume/size of the pulp chamber

and/or root canals as reported in Kaplan et al. [26]. A decision was made to consider whether

the molar has developed or not dental pulp calcification after orthodontic treatment based on

these radiographic parameters comparing panoramic radiographs before and after orthodontic

treatment.

The influence of orthodontic variables was also taken into consideration. The orthodontic

data regarding age of treatment (beginning and end of treatment), treatment duration (in

years) and type of skeletal malocclusion were collected. The skeletal malocclusion was defined

as Class I (0<ANB < 4), Class II (ANB� 4), and Class III (ANB� 0) according to ANB Stei-

ner angle.

Genotyping of the selected SNPs

The selection of the genes was initially based on the screening of previously published studies

suggesting that WNT10A and WNT6 are involved in tooth development, dentin formation,

and odontoblast activation [20–22, 27], suggesting their role in dental-related tissues and cells.

Subsequently, SNPs in these genes were screened from the dbSNP database (http://www.ncbi.

nlm.nih.gov/snp/) and SNPinfo (http://snpinfo.niehs.nih.gov/), based on the following crite-

ria: previous association with dental phenotypes, MAF (minor allele frequency)� 10% in the

global population and previously associated with calcification conditions. The characteristics

of the selected SNPs are presented in Table 1.

The genotyping analysis was performed with genomic DNA extracted from buccal epithe-

lial cells using two cytobrushes placed in extraction solution (Tris-HCl 10 mmol/L, pH 7.8;

EDTA 5 mmol/L; SDS 0.5%, 1 mL), as previously described [28]. The DNA was extracted

using an established protocol [29]. Spectrophotometry (Nanodrop 1000, Thermo Scientific,

Wilmington, DE, USA) was used to determine the concentration and purity of the DNA.

Four SNPs in WNT10A and WNT6 were evaluated in this study and are described in

Table 1. The genotyping was blindly performed using the Taqman™ method for real-time PCR

in the Mastercycler1ep realplex-S thermocycler, Eppendorf AG (Hamburg, Germany). Addi-

tionally, 10% of the sample was genotyped twice and an agreement of 100% was observed.

Patients with not enough DNA, or DNA samples that failed to be genotyped were excluded

from the further analyses.

Statistical analysis

A sample-size calculation was performed assuming a prevalence of dental pulp calcification in

the first molars similar to 50% [30]. The alpha = 5% and power = 80% were used as parameters.

Based on the average minor allele frequency of the selected SNPs, and assuming a 25% differ-

ence, a minimum sample of 120 was required.

For statistical analysis, narrowing of the radicular pulp space and pulp stones were grouped

as one main group: ‘pulp calcification’ and was compared with ‘control’ (no calcification).

Chi-square and t-test were used to compare orthodontic variables according to groups. PLINK
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was used to analyze the allelic and genotypic distributions, Hardy-Weinberg Equilibrium

(HWE) and haplotype frequencies. Chi-square was used to compare allele and genotype distri-

bution according to the groups. Odds ratio (OR) and confidence intervals of 95% were also

obtained. The haplotype frequencies were compared using chi-square or Fisher’s Exact test.

The significance level was determined as p<0.05.

Results

The flowchart of this study is presented in Fig 1, initially with 190 patients screened. Finally, a

total of 490 molars from 132 patients (71 males, and 61 females) were studied. The prevalence

of dental pulp calcification after orthodontic dental movement in at least one first molar

(upper and/or lower molar) was 42.4% (n = 56), in at least one upper molar was 37.9%

(n = 50), and in at least one lower molar was 20.5%, (n = 27). Orthodontic fixed treatment

duration, as well as age at the beginning and end of the orthodontic treatment were compared

among pulp calcification and control (no calcification) groups. Age and duration were not

associated with pulp calcification (p>0.05). These results are shown in Table 2.

The type of skeletal malocclusion according to the groups (pulp calcification and control) is

presented in the Table 3. Skeletal malocclusion was not associated with dental pulp

calcification.

All SNPs were in Hardy-Weinberg Equilibrium. Table 4 presents the allelic distribution

according to the groups. The allele C of the rs10177996 in WNT10A was associated with molar

calcifications (p = 0.042) and with upper first molar calcification (p = 0.035), in which patients

carrying the C allele had a lower risk to present dental pulp calcification. No other alleles were

associated with molar calcifications.

Table 5 shows the genotype distribution among groups. The rs10177996 in WNT10A
showed a statistically significant p-value for molar calcification (p = 0.027) and upper molar

calcification (p = 0.040) in the recessive model. Also, the rs3806557 showed a significant p-

value in the recessive model in molar calcification (p = 0.046). No others genotype showed sig-

nificant results.

Haplotypes of the four SNPs were analyzed and are fully presented in S1 Table. Table 6

presents the haplotype frequency comparisons between the SNPs with significant statistically

results.

Discussion

The results showed associations between dental pulp calcification and the studied SNPs (in

genotype, allelic and haplotype analyzes), confirming the central hypothesis of the study. Two

main types of dental pulp calcification identified in clinical practice by radiographs are the

pulp space narrowing and the pulp stone [5]. They appear to be different in terms of morphol-

ogy and clinical implications [9]. The key differences between them are the clinical

Table 1. Characteristics of the selected SNPs.

Gene Chromosome SNP Base Change Global MAF* Description

WNT10A 2q35 rs7349332 T/C 0.127 Associated with tooth morphology [21] and dental anomalies [27].

rs3806557 A/G 0.322 Associated with tooth development and agenesis [22].

rs10177996 C/T 0.210 Associated with tooth formation [21].

WNT6 2q35 rs6754599 G/C 0.376 Associated with crown size [21].

*MAF means Minor Allele Frequency

https://doi.org/10.1371/journal.pone.0288782.t001
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appearance, in which the pulp stone is presented as well-defined radiopaque masses and the

pulp space narrowing as a diffuse calcification along the dentin walls, with or without projec-

tions [5]. The distribution of this calcifications varies widely, depending specially on the popu-

lation and the method of analysis [9], but occurs mostly in molars [31]. It appears that both,

pulp space narrowing and pulp stone, are physiological manifestation and may increase in vol-

ume and number due to an associated pathology [9].

Fig 1. Flowchart according to STREGA statement checklist to the sample selection.

https://doi.org/10.1371/journal.pone.0288782.g001

Table 2. Description of the sample.

Characteristic of the orthodontic fixed treatment Mean (SD) in years

Control (no calcification) Calcification groups p-values

All molars (upper + lower) Upper molars Lower molars

Treatment duration 1.84 (0.61) 1.71 (1.31) 1.74 (1.36) 1.81 (0.68) >0.05

Age at the beginning of treatment 14.34 (1.83) 14.91 (2.60) 15.00 (2.70) 14.85 (2.41) >0.05

Age at the end of treatment 16.09 (1.94) 16.71 (2.66) 16.82 (2.76) 16.78 (2.22) >0.05

Note: SD means standard deviation. T test was used. All comparisons were performed using no calcification as control.

https://doi.org/10.1371/journal.pone.0288782.t002
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SNPs are the most common type of genetic variation in humans. It is a type of genetic vari-

ant that involves a variation of a single base pair in the genome [32] and is associated with a

variety of conditions, including endodontic [33–35] and orthodontic phenotypes [21, 22, 24,

27, 33]. It has been stated that these variants could determinate differences in individual pre-

disposition, and even particularly different phenotypes on a similar population [36]. SNP’s

near, or in, the WNT pathways genes have been previously reported to be related to critical

regulation in bone homeostasis, bone mineral density, bone-related diseases [37] and dental-

related phenotypes [21, 22, 27]. The results of this study show that SNPs in the WNT pathway

are potentially related to the dentin-pulp complex mineral metabolism.

The canonical pathway has been related to dentin accumulation, in mice overexpressing β-

catenin [3]. However, the findings indicated cells secrete dentin matrix in a rapid process,

forming an atubular osteodentin structure-like. This remarks the WNT/ β-catenin involve-

ment in dentin formation. The WNT10A is suggested to be involved in the dentin repair pro-

cess, as it is especially expressed in the early stages of dentin formation [38]. The SNP

rs10177996 in WNT10A seems to be related to overexpression of dentin mineral content,

Table 3. Skeletal malocclusion according to pulp calcification status.

Skeletal malocclusion N (%)

Control (no calcification) Calcification groups

All molars (upper + lower) Upper molars Lower molars

Class I 34 (44.7) 26 (46.4) 11 (44.7) 24 (48.0)

Class II 35 (46.1) 29 (51.8) 15 (55.6) 26 (52.0)

Class III 7 (9.2) 1 (1.8) 1(3.7) 0 (0.0)

p-value Reference 0.204 0.543 0.087

Note: Chi-square was used. All comparisons were performed using no calcification as control.

https://doi.org/10.1371/journal.pone.0288782.t003

Table 4. Allelic distribution o of WNT10A and WNT6 genes polymorphisms.

SNP Phenotype MA* frequency (%) p-value OR (95% CI)

rs7349332

(Minor allele T)

Control (no calcification) 13.77 Reference Reference
Molar (upper + lower) calcification 11.54 0.607 0.82 (0.38–1.77)

Upper molar calcification 10.87 0.479 0.75 (0.34–1.67)

Lower molar calcification 12.00 0.847 0.91 (0.35–2.36)

rs3806557 (Minor allele A) Control (no calcification) 24.24 Reference Reference
Molar (upper + lower) calcification 21.43 0.206 0.67 (0.36–1.24)

Upper molar calcification 22.09 0.340 0.74 (0.39–1.38)

Lower molar calcification 18.75 0.161 0.57 (0.26–1.26)

rs10177996 (Minor allele C) Control (no calcification) 37.50 Reference Reference
Molar (upper + lower) calcification 24.45 0.042 0.60 (0.33–0.98)

Upper molar calcification 24.49 0.035 0.55 (0.31–0.96)

Lower molar calcification 26.92 0.640 0.85 (0.44–1.64)

rs6754599 (Minor allele A) Control (no calcification) 18.18 Reference Reference
Molar (upper + lower) calcification 11.76 0.177 0.60 (0.28–1.27)

Upper molar calcification 12.22 0.289 0.66 (0.31–1.42)

Lower molar calcification 8.33 0.129 0.44 (0.15–1.30)

*MA means Minor Allele.

Bold indicates a statistically significant difference (p < 0.05).

https://doi.org/10.1371/journal.pone.0288782.t004
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when we interpreted the results. Similar finds were described within WNT7b overexpressed

[39], which caused a higher ratio of Ca/P in dentin, smaller tubule diameter, and fewer tubules

as well. The opposite way was also stated, pointing that mutations in β-catenin, essential to the

Table 5. Genotype distribution of WNT10A and WNT6 genes polymorphisms.

SNP Phenotype Genotype distribution (%) p-value

additive dominant recessive

rs
73
49
33
2

TT CT CC

Control (no calcification) 0 (0.00) 19 (25.00) 50 (65.79) Reference
Molar (upper + lower) calcification 0 (0.00) 12 (21.43) 40 (71.43) 0.578* 0.578 #

Upper molar calcification 0 (0.00) 10 (20.00) 36 (72.00) 0.483* 0.483 #

Lower molar calcification 0 (0.00) 6 (22.22) 19 (70.37) 0.731* 0.731 #

rs
38
06
55
7

AA AG GG

Control (no calcification) 8 (10.53) 22 (28.95) 36 (47.37) Reference
Molar (upper + lower) calcification 1 (1.79) 19 (33.93) 29 (51.79) 0.136 0.620 0.046

Upper molar calcification 1 (2.00) 17 (34.00) 25 (50.00) 0.186 0.712 0.070

Lower molar calcification 0 (0.00) 9 (33.33) 15 (55.56) 0.202 0.500 0.074

rs
10
17
79
96

CC CT TT

Control (no calcification) 9 (11.84) 36 (47.37) 27 (35.53) Reference
Molar (upper + lower) calcification 1 (1.79) 26 (46.43) 28 (50.00) 0.053 0.131 0.027

Upper molar calcification 1 (2.00) 22 (44.00) 26 (52.00) 0.060 0.090 0.040

Lower molar calcification 1 (3.70) 12 (44.44) 13 (48.15) 0.334 0.266 0.212

rs
67
54
59
9

GG GC CC

Control (no calcification) 3 (3.95) 18 (23.68) 45 (59.21) Reference
Molar (upper + lower) calcification 0 (0.00) 12 (21.43) 39 (69.24) 0.253 0.323 0.123

Upper molar calcification 0 (0.00) 11 (22.00) 34 (68.00) 0.312 0.400 0.147

Lower molar calcification 0 (0.00) 4 (14.81) 20 (74.07) 0.292 0.156 0.288

* Null values were excluded from the analysis.

# Recessive p-values were not applicable by the null recessive frequencies.

Bold indicates a statistically significant difference (p < 0.05).

https://doi.org/10.1371/journal.pone.0288782.t005

Table 6. Haplotypes that were statistically associated for the studied SNPs from genes WNT10A and WNT6.

Haplotype Frequency (%) p-value

Control Case

Molar (upper + lower) calcification

rs6754599 | rs7349332 | rs3806557 | rs10177996 CCGT 0.50 0.66 0.015

rs6754599 | rs7349332 | rs380655 CCG 0.67 0.79 0.045

rs6754599 | rs7349332 | rs10177996 CCT 0.58 0.71 0.030

rs6754599 | rs10177996 | rs3806557 CTG 0.48 0.65 <0.001

rs6754599 | rs10177996 CT 0.57 0.70 0.037

Upper molar calcification

rs6754599 | rs7349332 | rs3806557 | rs10177996 CCGT 0.51 0.67 0.014

rs6754599 | rs7349332 | rs10177996 CCT 0.58 0.73 0.016

rs6754599 | rs10177996 | rs3806557 CTG 0.49 0.66 0.008

rs6754599 | rs10177996 CT 0.57 0.72 0.023

Note: no statistically significant p-value was identified for lower molar calcification.

Bold indicates a statistically significant difference (p < 0.05).

https://doi.org/10.1371/journal.pone.0288782.t006
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WNT canonical pathway, leads to defective odontoblast differentiation, thin dentinal walls,

and disturbs dentinogenesis and cementogenesis [40].

The non-canonical WNT pathway regulates different physiological events, acting indepen-

dently of β-catenin, in contrast to the canonical pathway. When WNT binds to its receptor,

calcium is released intracellularly. This WNT/calcium pathway is associated with developmen-

tal processes [13]. In our study, we selected SNPs in the candidate genes WNT10A and WNT6.

WNT6, one of the proteins in the non-canonical pathway, showed statistically significant

results of the SNP rs6754599 only in the haplotype analysis. This indicates that this SNP could

be a biomarker for dental pulp calcifications, however, more studies are necessary to confirm

our results. Future studies should consider identifying the role of this gene and others related

to the non-canonical WNT pathway. SNPs in WNT10A were associated with pulp calcification

in the allele, genotype, and haplotype analysis, suggesting that SNPs in this gene are a candi-

date for dental pulp calcification and should be further explored by independent research

groups. This is a promising field of investigation considering the intimate relation between

developmental processes and mineral content regulation.

The dentin-pulp complex response to trauma must be considered, as the WNT pathway is

also related to pulp innervation, enzymatic activity, and dental pulp inflammation that could

lead to dentin repair and dentin bridges formation [3, 20]. The orthodontic movement is a

stress factor to the pulp, which causes dental pulp inflammation in many degrees [8]. This

injury could lead mesenchymal stem cells contained in the dental pulp to activate a differentia-

tion to odontoblast-like cells and secreting dentin matrix. WNT signaling plays a significant

role in tertiary dentin formation, as reported previously in pulp injury models [41]. This

implies the involvement of the WNT canonical pathway in reparative dentin formation from

odontoblast-like cell differentiation, in agreement with other studies [3].

Nevertheless, the role of WNT signaling in dentin deposition rate [3] is clinically relevant.

Dental pulp injury could occur in different situations, iatrogenic or therapeutic. Orthodontic

movement is one of the most performed dentistry-related procedures [8], and the pulp injury

that it causes is collateral damage not fully controlled by the clinician.

Although the orthodontic treatment characteristics such as age of the patients, duration of

the treatment and type of skeletal malocclusion were not associated with dental pulp calcifica-

tion in our study, there are other orthodontic factors that could influence the phenotype.

Orthodontic force is well known involved in dental pulp calcification [8], however, this is a dif-

ficult parameter to measure and to include in the study design. It is also possible that differ-

ences in the fixed orthodontic treatment may be involved in the risk of dental pulp

calcification. These are limitations of our study once these factors were not evaluated.

Other limitations of our study should be highlighted here. This study used panoramic

radiographs to identify pulp calcification. The literature indicates that the radiographic exams

are the most used for the assessment of this condition, but it also points to some disadvantages,

like limited resolution, impossibility to identify calcifications lesser than 200˚m and structure

overlap [42]. Previous studies used Cone-beam computerized tomography (CBCT) and

Microcomputed tomography (MicroCT) as tools to assess pulp calcifications, once these

exams are more precise than radiographs [31, 42]. However, CBCT and MicroCT were not

used in our study once the panoramic radiographs were taken as follow-up images for the

orthodontic treatment and, therefore, additional image exams were not performed for this

study in order to protect the patients from additional exposure. Due to the limitation of the 2D

exams, we decided to group pulp stones and narrowing of the radicular pulp space as a single

phenotype. Although the absence of stratification of the pulp calcification phenotypes could be

also a limitation, our hypothesis is that WNT10A and WNT6 act in both phenotypes in a
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similar fashion. WNT10A and WNT6 have an important role in dentin secretion and dentin

bridge formation [20].

This study is limited to the SNPs analyzed. However, it highlights the potential of other

WNT pathway as biomarkers for dental pulp response to injury, dentin formation, and dental

pulp calcification that could allow the identification of patients with a higher risk to develop

dental pulp calcification as an adverse sequela of orthodontic treatment.

Strong evidences suggest the role of WNT pathway as the foundation for regenerative den-

tistry in the future [12], and it must be further investigated also as biomarker for dental traits.

Future studies should investigate the main role of the WNT canonical and non-canonical path-

ways in dentinogenesis, from tooth formation to tertiary or reparative dentin secretion. The

comprehension of predisposing factors, such as the SNPs, could lead to a better understanding

of the aspects involved in dental pulp calcification after orthodontic treatment. The knowledge

of the clinical parameters and molecular factors involved in dental pulp calcification after

orthodontic treatment will allow the prediction of high-risk patients. Allowing a personalized

treatment plan and reducing the collateral damage to the pulp complex. Other SNPs in the

WNT pathway as well, mainly those aroused in the pulp-dentin complex mineral metabolism

and mesenchymal stem cell signaling and differentiation should be further studied to identify

a panel of possible biomarkers for dental pulp calcification. It is possible that a combination of

many biomarkers, as is observed in other oral conditions [43], will aid the identification of

patients with higher risk for pulp calcification after orthodontic treatment.

Conclusions

The findings of this study indicates that SNPs in WNT10A and WNT6 are associated with den-

tal pulp calcification of molars after orthodontic dental treatment and may be considered as

biomarkers for dental pulp calcification.
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