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Abstract: Heart failure with preserved ejection fraction (HFpEF) is emerging as a widespread disease
with global socioeconomic impact. Patients with HFpEF show a dramatically increased morbidity
and mortality, and, unfortunately, specific treatment options are limited. This is due to the vari-
ous etiologies that promote HFpEF development. Indeed, cluster analyses with common HFpEF
comorbidities revealed the existence of several HFpEF phenotypes. One especially frequent, yet
underappreciated, comorbidity is sleep-disordered breathing (SDB), which is closely intertwined
with the development and progression of the “obese HFpEF phenotype”. The following review
article aims to provide an overview of the common HFpEF etiologies and phenotypes, especially in
the context of SDB. As general HFpEF therapies are often not successful, patient- and phenotype-
individualized therapeutic strategies are warranted. Therefore, for the “obese HFpEF phenotype”, a
better understanding of the mechanistic parallels between both HFpEF and SDB is required, which
may help to identify potential phenotype-individualized therapeutic strategies. Novel technologies
like single-cell transcriptomics or CRISPR-Cas9 gene editing further broaden the groundwork for
deeper insights into pathomechanisms and precision medicine.
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1. Introduction

Heart failure with preserved ejection fraction (HFpEF) is a widespread disease with a
prevalence of approximately 1% in developed countries and it is expected to rise to more
than 5% among elderly populations (i.e., >70 years of age) [1]. The 5-year mortality rates
of patients with HFpEF are estimated to be between 55% and 74% [2]. HFpEF symptoms
such as dyspnea, fatigue, sleeping difficulties, depression, chest pain [1], and recurrent
hospitalizations limit patients’ daily physical and social activities, as well as their capacity
to work, thus leading to a poor quality of life [3]. HFpEF causes more than 0.5 million
hospitalizations per year in Europe. Notably, hospitalizations contribute to 70–80% of the
total health care costs for HFpEF patients, with an average yearly cost of ≈EUR 16,000 per
patient [4,5].

These figures and trends are concerning because, in contrast to patients that have heart
failure with reduced ejection fraction (HFrEF), currently only one class of pharmacological
drugs has been shown to reduce morbidity in patients with HFpEF [1]. Therefore, attention
has been redirected to lifestyle interventions such as exercise training [6,7] and the treatment
of comorbidities [8] in order to prevent the progression of HFpEF and to reduce patient
symptom burdens.

One such comorbidity is sleep-disordered breathing (SDB), which affects up to 58%
(or up to 80% in certain cohorts) of HFpEF patients [9–11]. SDB presents in HFpEF patients
either as predominantly obstructive sleep apnea (OSA) or as predominantly central sleep
apnea (CSA) [9]. Treatment of OSA in patients with HFpEF provides an opportunity
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through which to improve quality of life [12] and exercise capacity [13], and it has the
potential to prevent the progression of HFpEF via reductions in the arterial blood pressure
and cardiac workload, as well prevention of cardiac remodeling [14,15]. Besides these,
therapeutic strategies for patients with HFpEF and SDB are limited, especially with respect
to pharmacological interventions. This highlights the need for a better understanding of
the presence and effects, as well as its treatment, of SDB in patients with HFpEF.

The aim of this review article is to summarize the up-to-date evidence on HFpEF and
SDB to provide an overview of the intricate relationship between both diseases, as well as
to identify important gaps in the knowledge and research needs, which might ultimately
lead to improved and patient-individualized therapeutic strategies for HFpEF patients
with SDB.

2. Phenotypes and Symptoms of HFpEF and SDB
2.1. Epidemiology and Diagnosis of HFpEF

Left ventricular diastolic dysfunction, which is a precursor to HFpEF [16], is highly
prevalent in asymptomatic community samples, and it affects almost one third of adults
aged above 45 years [17]. As increasing age is a major risk factor [1] in the prevalence
of diastolic dysfunction, and, as the prevalence of HFpEF is higher in the elderly, nearly
half of all patients with heart failure (HF) have a preserved ejection fraction [1], which
reaches to 65–77% in patients that are ≥67 years of age [18]. In absolute numbers, women
outnumber men (ratio ≈ 2:1) [19]. However, this imbalance is, in part, caused by the
higher life expectancy of women and the lower risk of death after the diagnosis of HFpEF;
however, this discrepancy is alleviated after accounting for age and other risk factors [20].

Patients with HFpEF have a high rate of recurrent hospitalizations. After an episode of
acute HF, the 30 day all-cause readmission rate is up to 21% and the HF-specific readmission
rate up to 10%, thus reflecting the large burden of comorbidities in HFpEF patients [21].
The readmission rates for one year are up to 63% and 37% for all-cause and HF-specific
readmissions, respectively [21]. The high rates for hospitalizations cause significant costs
for the health care systems. Annual costs have been estimated to be up to USD 27,000 (in
the USA) [22] or EUR 16,000 (in the EU) [5] per patient. The high prevalence and morbidity
of HFpEF impose a significant burden on public health care.

Based on ejection fraction (EF), patients with chronic HF are classified as having HFpEF
(EF ≥ 50%), heart failure with mildly reduced ejection fraction (HFmrEF, EF 40–49%), or
HfrEF (EF < 40%) according to current European guidelines and position papers [1,23,24].

HFpEF is a clinical syndrome composed of many different etiologies, which com-
plicates the aim of establishing a definition of clear diagnostic criteria [1]. The current
guidelines of the European Society of Cardiology (ESC) define HFpEF as the combination of
(1) the presence of symptoms and signs of HF (e.g., dyspnea, ankle swelling, and elevated
jugular venous pressure), (2) a left ventricular ejection fraction of ≥50%, and (3) elevated
levels of natriuretic peptides (BNP ≥ 35 pg/mL and/or NT-pro-BNP > 125 pg/mL) plus
structural (left ventricular hypertrophy, left atrial enlargement, etc.) or functional (diastolic
dysfunction) heart disease [1].

Also, there are empirically derived scoring systems for the diagnosis of HFpEF. Similar
to their guideline criteria, the HFA-PEFF algorithm (Heart Failure Association, and PEFF
stands for the steps of diagnostic work up, i.e., pretest assessment, echocardiographic
and natriuretic peptide score, functional testing, and final etiology) [23] and the H2PEF
score [25] both require normal left ventricular EF, signs or symptoms of HF, structural
cardiac remodeling, signs of diastolic dysfunction, and biomarkers (e.g., abnormal brain
natriuretic peptide). For patients with intermediate score values, echocardiographic stress
testing (i.e., volume challenge or supine exercise) or invasive testing (right heart catheteri-
zation) can be added.
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2.2. Epidemiology and Diagnosis of SDB

There are two main SDB sub-types that are diagnosed by poly(somno)graphy: central
sleep apnea (CSA) and obstructive sleep apnea (OSA) [26]. Mechanistically, in CSA, the
central respiratory signal pauses, thereby decreasing or ceasing airflow for ≥10 s [27–29].
In patients with OSA, a partial or complete collapse of the upper airway reduces the
airflow (hypopnea), or it may even lead to a complete cessation of airflow (apnea) for
≥10 s [29]. An apnea-hypopnea index (AHI) of ≥5 events/h with characteristic symptoms
(e.g., witnessed apneas, daytime sleepiness, and snoring) or an AHI of ≥15 events/h
(regardless of symptoms) defines OSA [29,30]. The classification of SDB into CSA or OSA is
based on the predominant (i.e., ≥50%) type of apneas/hypopneas [27–29]. CSA and OSA
can occur separately, but could also occur concurrently within the same patient [27–29].
Patients with cardiovascular disease, particularly those with central sleep apnea, are less
likely to exhibit classic SDB symptoms (which further complicates diagnoses [27–29,31,32]).

SDB is a widespread disease, and it currently affects about one billion individuals
worldwide, as well as up to 40% in patients with cardiovascular disease [28,33]. In patients
with HF (both HFpEF and HFrEF), the prevalence of SDB increases to 50% [9,10]. Notably,
HF is associated with a high occurrence of CSA [9,27], whereas the severity of CSA is
related to cardiac function.

2.3. Phenotypes of HFpEF—Comorbidities and Cluster Analyses

Ever since HFpEF was acknowledged as a distinct clinical syndrome, it has challenged
cardiologists with respect to successfully finding definitive diagnostic criteria and offering
effective treatment strategies. The difficulties and failures at this task most likely stem
from the diversity of underlying etiologies, pathomechanisms, and relevant comorbidities,
which defy a diagnostic or therapeutic “one-size-fits-all” approach [18].

Similar to SDB, HFpEF is strongly associated with several frequent diseases and
pathologies such as metabolic syndrome (e.g., diabetes, obesity, and hypertension), pul-
monary diseases (e.g., COPD and pulmonary hypertension), coronary artery disease, and
chronic kidney disease [1,34]. A sedentary lifestyle and insufficient physical activity denom-
inate a common risk factor for metabolic syndrome, arterial hypertension, and HFpEF [35].
Accordingly, increased physical activity has been shown to be among the few therapeutic
strategies through which to realistically improve symptomatic outcomes in patients with
HFpEF [6]. All of these comorbidities, specifically HFpEF and SDB, share many pathomech-
anisms that are closely intertwined and may often reciprocally reinforce their detrimental
effects. Therefore, the treatment of those comorbidities may be crucial for avoiding the
propagation of HFpEF.

Since the first attempt to phenotype HFpEF, many of the different approaches that
utilize machine learning have identified distinct HFpEF phenotypes [36]. Based on clinical
considerations, four phenotypes can be discerned: the “aging phenotype”, the “pulmonary
hypertension phenotype”, the “coronary artery disease phenotype”, and the “obese phe-
notype” [37]. This clinical classification has been affirmed and specified by novel artificial
intelligence-based deep-learning approaches that are based on clinical evaluation, echocar-
diographic, ECG, laboratory, and proteomic data [18,36,38] (the reviews of [39–41] provide
an excellent overview).

The review by Peters et al. summarizes three main phenotypes: the “older, vascular
aging phenotype”, the “metabolic, obese phenotype”, and the “relatively young, natriuretic
peptide deficiency phenotype” (Figure 1) [41]. It is important to acknowledge that these
phenotypes cannot be unequivocally discriminated as features of these phenotypes often
overlap, and it is not yet clear if these phenotypes can develop into each other. The “older,
vascular aging” phenotype accounts for approximately 30–50% of HFpEF patients. Its
characteristics are higher age (>75 years), chronic kidney disease, arterial hypertension
(together with arterial stiffness), and a high rate of adverse outcomes [41]. These patients
often have elevated pulmonary arterial systolic pressure, as well as left atrial and/or right
ventricular dysfunction. It seems that systemic inflammation is prevalent in these patients.
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The “metabolic, obese” phenotype accounts for approximately 25–30% of HFpEF patients.
These patients are slightly younger than the “older” phenotype (60–70 years). These
patients are obese and often have diabetes mellitus [41]. Epicardial adipose tissue may
mechanistically favor HFpEF development in these patients. The comorbidities promote
systemic inflammation, which is a contributing factor for HFpEF development. The last
phenotype is the “relatively younger, natriuretic peptide deficiency” phenotype, which
accounts for approximately 40–45% of HFpEF patients. These patients are relatively young
(around 60 years), and they exhibit lower BNP/NT-pro-BNP levels due to increased adipose
clearance. The absence of inflammation distinguishes this phenotype from the “metabolic,
obese” phenotype. These patients have the lowest risk for adverse outcomes [41].
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A cluster analysis of the TOPCAT study cohort also revealed three different pheno-
types [42]. However, while the total HFpEF study cohort of TOPCAT did not benefit
from treatment with spironolactone, a machine learning approach identified one HFpEF
phenotype that, in actuality, showed an improved survival rate [42]. This phenotype was
very similar to the “obese phenotype” [37] and the “natriuretic peptide deficiency syn-
drome” [18], which is highly reminiscent of typical SDB patients (even though SDB was
not explicitly mentioned). This “obese phenotype” is characterized by the metabolic syn-
drome, which increases arterial stiffness, promotes systemic inflammation, and activates the
sympathetic nervous system [37]. The most common comorbidities of this phenotype are
obstructive sleep apnea, diabetes mellitus, and chronic kidney disease [37]. The prevalence
of the “obese phenotype” in the TOPCAT study cohort was 31% [42]. SDB is highly preva-
lent in obese (40–60%) compared to non-obese (10–20%) HFpEF patients [37,43], which
highlights the importance of SDB as a potentially treatable and modifiable comorbidity
in HFpEF.

3. Treatment Options for HFpEF and SDB
3.1. General Treatment Options for Patients with HFpEF

While there have been major advances in the treatment of HFrEF, pharmacological
treatment options for HFpEF remain limited [1,24]. The recent consensus statement of the
ESC on phenotyping in patients with HFpEF provides an excellent overview on pheno-
types, comorbidities, as well as on specific and emerging treatment options [44]. As the
activation of the renin-angiotensin-aldosterone system (RAAS) causes myocardial fibrosis
and endothelial dysfunction, which are both hallmarks of HFpEF, RAAS inhibition is thus
expected to be beneficial in HFpEF patients [45]. However, neither angiotensin-converting
enzyme (ACE) inhibitors [46–48], aldosterone receptor antagonists (i.e., spironolactone) [49],
or the angiotensin-receptor neprilysin inhibitors [50] showed a reduction in cardiovascular
death or hospitalizations. Also, beta blockers, which are a mainstay of HFrEF therapy,
failed in reducing mortality in HFpEF patients [51]. Only sodium-glucose cotransporter 2
(SGLT2) inhibitors have been shown to reduce heart failure hospitalizations [24,52,53]. The
precise cardiac mechanisms of SGLT2 inhibitors are not yet completely understood, but
it has been shown that they inhibit CaMKII activity and pathological CaMKII-dependent
signaling [54]. Plus, it seems that they exhibit effects that are especially beneficial in patients
with SDB [55]. SGLT2 inhibitors improve renal function, thereby potentially ameliorat-
ing the detrimental bidirectional impairment of renal and cardiac function [55]. SGLT2
inhibitors also reduce visceral and subcutaneous adipose tissue, which is also a risk factor
for endothelial dysfunction and is a common feature in HFpEF [55].

A novel and emerging type of therapy, especially for the “obese HFpEF phenotype”,
may be treatments with glucagon-like peptide-1 (GLP-1) receptor agonists. These drugs
have been shown to effectively reduce body weight and blood glucose levels [56,57]. As
obesity and diabetes mellitus are prominent features of the obese HFpEF phenotype, this
treatment regimen may prove beneficial in these patients, especially as the severity of
SDB (specifically in OSA patients) is expected to be ameliorated by weight loss. However,
clinical trials on cardiovascular outcomes are still required.

As many common comorbidities have reciprocal detrimental effects on HFpEF, the
additional treatment of comorbidities and the optimization of risk factors is pivotal [1].
Active atrial contraction becomes relatively more important for maintaining cardiac filling
when the passive diastolic filling of ventricles is impaired. Indeed, a sub-study of the
CABANA trial has shown that the ablation therapy of atrial fibrillation reduces mortality
and improves quality of life in symptomatic patients, of which the majority (about 75%) had
an ejection fraction of >50% [58]. A prospective randomized trial has recently demonstrated
reduced pulmonary wedge pressure, improved peak oxygen uptake, and an improved
quality of life in patients with HFpEF after obtaining rhythm control with ablation therapy
when compared to optimal pharmacological treatment [59]. Exercise training has been
shown to improve exercise capacity and diastolic function in patients with HFpEF [6,7].
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As both diabetes and arterial hypertension contribute to the development of diastolic dys-
function and HFpEF, an optimal treatment for improving diastolic function and preventing
further disease progression is warranted.

Overall, effective pharmacological and non-pharmacological treatment options remain
limited for patients with HFpEF. Many different etiologies, pathomechanisms, and comor-
bidities contribute to this syndrome in which an individualized treatment approach that
targets personal risk factors and disease constellations, as well as a discussion of lifestyle
optimization with the patient, are warranted.

3.2. Specific Treatment Options for Patients with HFpEF and SDB

As specific therapeutic strategies for patients with HFpEF are scarce, the treatment
of risk factors and comorbidities such as SDB becomes imperative, especially due to the
fact that the “obese HFpEF phenotype” closely resembles typical OSA patients. However,
phenotyping studies [39–41], as well as the ESC consensus statement [44], do not include
SDB as a risk factor, which seems to be an important gap in our knowledge and should
be addressed in future analyses. A phenotyping approach of patients with SDB and heart
failure has shown that older hypoxic obese patients with HFpEF represent the patient
group that may best profit from ASV therapy [60,61].

Apart from lifestyle changes (such as, for example, reduction in alcohol intake, weight
loss, etc.), the treatment of SDB consists in delivering positive airway pressure (PAP)
therapy. There are three modalities: continuous PAP (CPAP), bilevel PAP (BiPAP), and
adaptive servo-ventilation (ASV) [62–64]. The vast majority of trials on PAP therapy in HF
included patients with HFrEF [65]. One small trial investigated ASV therapy in patients
with HFpEF (EF > 50%, AHI > 15/h, n = 36) [66]. ASV therapy improved diastolic function,
reduced BNP levels, as well as reduced the composite endpoint of cardiac death and
worsening HF [66]. An observational study in patients with HF and SDB found that older
obese HFpEF patients were the individuals with the greatest reduction in cardiovascular
mortality and morbidity through ASV therapy [61]. These patients also had the best ASV
therapy adherence.

Apart from this small but informative study, a recent meta-analysis showed that PAP
therapy moderately reduces arterial blood pressure, which is an important risk factor
for HFpEF [15]. However, these patients did not have overt heart disease, and it can be
speculated that the effects become larger and more clinically relevant in patients with overt
heart disease. It can be speculated that the treatment of OSA prevents the progression
of HFpEF by reducing risk factors and comorbidities such as arterial hypertension and
cardiac workload, thus averting cardiac remodeling [14,15]. To date, the data from large-
scale clinical trials are lacking and urgently warranted. Plus, developing new and specific
pharmacological strategies for patients with HFpEF and SDB would broaden and improve
the spectrum of therapeutic strategies, but this requires a deep understanding of the
molecular pathomechanisms.

4. Pathophysiological Interactions between SDB and HF

Several similar pathological aberrations are found in SDB and HF, thereby suggesting a
mechanistic overlap or even causal interaction between both disorders [27,67]. Even though
only limited evidence directly elucidates the mechanisms of diastolic dysfunction in patients
with SDB, it is known that many features of SDB, like intermittent hypoxia/reoxygenation,
trigger pathological remodeling that might ultimately result in HFpEF [27,67]. For example,
patients with an acute myocardial infarction and concomitant SDB more frequently develop
diastolic dysfunction, whereas diastolic function does not change when SDB is absent [68,69].

4.1. Increased Cardiac Afterload in SDB

Intermittent hypoxia/reoxygenation and arousals with sudden awakening are key
features of SDB, thereby leading to an increased production of reactive oxygen species (ROS)
and increased sympathetic activation, respectively [15]. As is especially the case in CSA,
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sympathetic overactivation is promoted by the hypoxia-/hypercapnia-induced stimulation
of central and peripheral chemoreceptors, as well as by the deactivation of pulmonary
stretch receptors [70]. These mechanisms favor the development of arterial hypertension
with an increased cardiac afterload, the subsequent ventricular hypertrophy, and possibly
HFpEF [15,67]. Moreover, OSA is related to intrathoracic pressure swings; this significantly
increases cardiac wall stress, which also favors hypertrophy and fibrosis [71]. This is
highlighted by the observation that OSA, but not CSA, caused an impaired ventricular
remodeling in patients after acute myocardial infarction [14].

4.2. Inflammation and Structural Remodeling in SDB

Intermittent hypoxia/reoxygenation is also a strong inducer of systemic inflammatory
signaling (for example, NF-KB-dependent pathways [72,73]). In a rat model of chronic
intermittent hypoxia/reoxygenation, the myocardial levels of inflammation markers (e.g.,
tumor necrosis factor-α and interleukin-6) correlated with myocardial hypertrophy. In addi-
tion, the interleukin 6-related MEK5-ERK5 and STAT-3 pathways, which have been linked
to myocardial remodeling, were increased after intermittent hypoxia/reoxygenation [73,74].
Chronic intermittent hypoxia/reoxygenation also increases the cardiac expression of matrix
metallopeptidase 2, thus leading to fibrosis and subsequent increases in the passive stiff-
ness of the left ventricular extracellular matrix [73,75,76]. In patients with HFpEF, hypoxia
increases red cell distribution width, which is an indicator for subclinical inflammation [77].

In addition, intermittent hypoxia/reoxygenation also increases the levels of angiotensin
II, which is known to induce myocardial hypertrophy and fibrosis, and it is also associated
with HFpEF development [67,78]. As described above, there are several clinical HFpEF
phenotypes, and women display HFpEF more frequently than HFrEF, which also indicates
a relevant sex-dependent difference to be at play [37–40]. Indeed, we have recently found
decreased myocardial protein levels of the angiotensin II cleavage enzyme ACE2 in women
with SDB, which has been associated with an increased frequency of HFpEF [79]. Mecha-
nistically, reduced angiotensin II cleavage means a boost of this signaling cascade, and thus
of increased pathological remodeling [79].

4.3. Functional Myocardial Remodeling in SDB

Besides inflammation and structural remodeling, there is growing evidence that functional
myocardial remodeling is also critical for HFpEF development [67,80]. Ca2+/calmodulin-
dependent protein kinase II (CaMKII) is a central regulator of myocardial function and
signaling, and it has also been implemented into the pathomechanisms of SDB [81–83]
(Figure 2). Thus, CaMKII might be especially important for the “obese HFpEF phenotype”
with SDB. While CaMKII controls the excitation–contraction coupling, cellular Ca2+ cycling,
and the cardiac transcriptome upon physiological homeostasis, overactivated CaMKII is
also a key indicator and inducer of various cardiac diseases like HF [81,82]. Dysregulated
and chronically overactivated CaMKII signaling has been linked to impaired excitation-
contraction coupling, arrhythmias, dysregulated Na+ and Ca2+ homeostasis, transcriptional
changes, inflammation, apoptosis, and fibrosis [81–87]. Notably, these mechanisms have
independently been shown to promote diastolic dysfunction and HFpEF [27,67,80].

Several clinical features of SDB have been shown to possibly promote CaMKII overacti-
vation. Potential mechanisms are an increased cardiac wall stress (e.g., following intrathoracic
pressure alterations due to airway obstruction), increased sympathetic activation (e.g., arousals)
or oxidative stress (e.g., following cyclic episodes of hypoxemia/reoxygenation) [27,88,89]. In-
deed, we recently found an increased ROS production in the atrial cardiomyocytes isolated
from patients with SDB, which resulted in a pathologically increased CaMKII activation in
the myocardium from patients with SDB [83]. As CaMKII is a central regulator of cardiac
Na+ and Ca2+ homeostasis, CaMKII hyperactivation resulted in an enhanced late Na+

current, as well as in an increased diastolic sarcoplasmic reticulum (SR) Ca2+ leak [83]. This
proarrhythmic dysregulation of cellular ion homeostasis induced early and delayed after-
depolarizations (EADs and DADs) on the cellular level, which subsequently triggered mul-
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ticellular arrhythmias in the myocardium from patients with SDB [83]. CaMKII-dependent
signaling has further been linked to the neuronal Na+ channel NaV1.8 [90]. Indeed, we
found an increased NaV1.8 expression in the atrial myocardium from patients with SDB,
which further enhanced a late Na+ current, as well as subsequently increased the dias-
tolic SR Ca2+ leak [91]. All of these CaMKII-dependent proarrhythmic mechanisms found
in SDB may eventually result in atrial dysfunction and arrhythmias, thereby promoting
HFpEF development.
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afterdepolarization, DAD—delayed afterdepolarization, NCX—Na+/Ca2+ exchanger, RAAS—renin–
angiotensin–aldosterone system, ROS—reactive oxygen species, and SR—sarcoplasmic reticulum.
Created with biorender.com accessed on 23 October 2023.

Importantly, these CaMKII-dependent proarrhythmic aberrations in SDB could be
blocked by inhibiting CaMKII, thus making this enzyme a promising therapeutic target
in SDB [83,90]. Unfortunately, current compound-based CaMKII inhibitory strategies face
several challenges and limitations (e.g., specificity, CaMKII inhibition in organs other than
the heart, poor bioavailability, etc.), which currently precludes clinical translation of such a
drug [82,92].

4.4. Insulin Resistance and Hyperinsulinemia in SDB

SDB, especially OSA, is frequently associated with diabetes mellitus. The prevalence
of OSA in patients with type 2 diabetes varies from 18% in primary care [93] to 58% in
older individuals [94]. In obese patients with type 2 diabetes, the prevalence of OSA is
up to 86% [95]. The interrelationship between SDB and diabetes has been shown to be

biorender.com
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independent of several clinical covariates, thus suggesting a mechanistic link [96,97]. A
recent meta-analysis estimated a 63% increase in incident diabetes in patients with moderate
to severe OSA [98]. Vice versa, there have also been studies showing that type 2 diabetes is
an independent risk factor for SDB, which can potentially occur by affecting the central
and autonomic nervous system [94].

Mechanistically, intermittent hypoxia/reoxygenation, as a key feature of SDB, seems
to be critical. Intermittent hypoxia/reoxygenation for 12 weeks impaired glucose tolerance
and increased fasting serum insulin levels in leptin-deficient obese mice [99]. Similar
observations were made in lean C57BL6/J mice, where intermittent hypoxia/reoxygenation
for 14 days increased fasting glucose levels by 67% and impaired glucose tolerance by
27% [100]. The authors further found an impaired insulin sensitivity and pancreatic β-cell
function, increased liver glycogen and glucose output, as well as increased oxidative stress
in the pancreas—all of them following intermittent hypoxia [100].

Diabetes mellitus is an important risk factor for numerous cardiovascular diseases,
including heart failure (both HFpEF and HFrEF), coronary artery heart disease, kidney
dysfunction, strokes, etc. [101]. On a cellular level, increased glucose levels and hyperin-
sulinemia have been shown to induce myocardial hypertrophy, inflammation, and fibro-
sis [102,103]. Notably, all these mechanisms promote HFpEF development (see above) [67].

4.5. Mechanistic Parallels between SDB and HFpEF

The SDB-related mechanisms described above have also been linked to the develop-
ment of HFpEF, thus indicating a close mechanistic interrelationship [67]. An increased car-
diac afterload with myocardial hypertrophy and a disturbed renin-angiotensin-aldosterone
system with systemic inflammation, fibrosis, and the subsequent myocardial stiffness have
been shown to be key features in HFpEF [67]. As CaMKII is mechanistically involved in
hypertrophy and HF, the cardiac specific knock-out of CaMKII is attenuated with afterload-
induced cardiac fibrosis, hypertrophy, and the subsequent transition to HF in mice [104,105].
Similar observations were made in a recent study, where a mouse model that was rendered
resistant to CaMKII autophosphorylation and its subsequent hyperactivation was protected
from afterload-induced hypertrophy, fibrosis, and HF [106]. Afterload-induced CaMKII
activation spawns a vicious cycle. This is because CaMKII also increases the inflammatory
gene expression (e.g., NF-KB) and the activation of the NOD-like receptor pyrin domain
containing protein 3 inflammasome in murine cardiomyocytes [107]. Most recently, Kolijn
and colleagues found increased markers of oxidative stress (hydrogen peroxide) and inflam-
mation (tumor necrosis factor-α and interleukin-6), as well as increased CaMKII activity,
in the left ventricular myocardium of patients with HFpEF [108]. Accordingly, the cardiac
overexpression of CaMKII was found to enhance late Na+ currents, and it subsequently
impaired the diastolic function in mice [109]. As observed in the myocardial biopsies
of patients with SDB, the myocardial NaV1.8 expression was also increased in patients
with cardiac hypertrophy with preserved ejection fraction, whereby HFpEF development
was possibly favored by dysregulating cellular Na+ and Ca2+ homeostasis [91,110]. Fur-
ther parallels have been found with respect to structural remodeling as the myocardial
downregulation of the gap junction protein connexin-43 has been found in both SDB and
HFpEF [111,112]. In addition, SDB increases the risk for other disorders as for diabetes
mellitus (see above) [98]. Diabetes may further promote HFpEF development as it may
possibly enter a deleterious vicious cycle [67,102,103].

However, detailed knowledge about the mechanistic interaction of SDB and HFpEF is
still limited. Mechanistic models are difficult to fathom when the HFpEF syndrome is an
amalgam of markedly different etiologies and phenotypes. Reductionist disease models
are needed to investigate pathomechanisms. Therefore, our group has recently established
a novel SDB mouse model by injecting polytetrafluoroethylene (PTFE) into the murine
tongue [87]. PTFE is an inert substance that permanently enlarges the murine tongue,
which results in spontaneous obstructive apneas, as well as inspiratory flow limitations
that subsequently induce increased hypoxia and myocardial ROS production [87,113]. The
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frequency of apneas correlated with both heart weight (a surrogate for cardiac hypertrophy)
and the severity of diastolic dysfunction (E/e’) suggests a causal relationship [87]. We
found a pathological dysregulation of myocardial Ca2+ homeostasis and proarrhythmic
events in SDB mice [113]. Notably, SDB mice, where the oxidative activation sites of
CaMKII were ablated in the germline, were protected from cellular Ca2+ alterations and
arrythmias [113]. This SDB mouse model, therefore, offers the opportunity to specifically
study the pathomechanisms connecting the OSA subtype and HFpEF, as well as allows one
to optimize and deploy new therapeutic strategies.

5. Conclusions and Future Perspectives

SDB and HFpEF are often closely interwoven, and there might even be bidirectional
associations that promote a vicious circle. It is important to acknowledge that HFpEF
is not a singular syndrome, but that it comprises many different etiologies that result in
different phenotypes. There are various underlying pathomechanisms requiring specific
prevention and treatment strategies. SDB is a very prevalent disorder with profound impli-
cations on the development of cardiovascular disease, especially HFpEF. It is yet unknown
whether the severity of SDB is correlated with the severity of diastolic dysfunction or
HFpEF. Patients with HFpEF should be regularly evaluated for SDB, which includes the
specific history taking regarding signs and symptoms of SDB. As the detection of SDB with
polysomnography is cost- and time-intensive, a widespread screening for SDB is currently
not feasible. However, the implementation of wearable and artificial intelligence-based
devices for screening of SDB is an interesting and growing field in development and re-
search [114,115] that warrants further exploration and scientific validation. If indicated,
treatment of SDB should be initiated and followed up closely to ensure optimal therapy
adherence. As pharmacological therapy is limited, the treatment of risk factors and comor-
bidities is even more important. The potential of PAP treatment for SDB in HFpEF patients
is still unknown as specific prospective and randomized trials are still missing. This is an
important clinical gap of knowledge that should be addressed given the wide prevalence
of both SDB and HFpEF, as well as their subsequent symptoms and disease burdens.

For patient-individualized therapies, a more detailed understanding of the various
HFpEF entities is urgently needed. Only specific mechanistic insights into each etiology
enable the development of targeted efficient therapies. Novel cutting-edge technologies
like single-nucleus RNA sequencing allow for transcriptional analyses of individual cell
types at a very high resolution, thereby providing detailed insights into the cellular mech-
anisms of SDB and HFpEF [116]. Moreover, CRISPR-Cas9 gene editing technology has
revolutionized the spectrum of therapeutic possibilities. We have recently developed
a gene editing strategy to ablate the oxidative activation sites of CaMKII in adult mice
in vivo, which subsequently confers a sustained cardioprotection [85]. We also found that
CaMKII-edited human cardiomyocytes showed preserved diastolic Ca2+ levels following
hypoxia/reoxygenation, which could possibly improve diastolic cardiac function [85]. As
CaMKII activity was increased in SDB and CaMKII editing, which attenuated a myocardial
remodeling like hypertrophy and fibrosis, this strategy could be beneficial for the “obese
HFpEF phenotype” with SDB; however, this remains to be tested [83,106,113]. CRISPR-
Cas9 gene editing could also be used to disrupt other pathological signaling cascades that
are implemented in other HFpEF phenotypes in the setting of a patient-individualized
therapy. Besides CaMKII, there are certainly other targetable effectors that are also involved
in the pathogenesis of the various HFpEF phenotypes. Thus, it would be important to
further consider, analyze, and modulate the other players that have been implemented in
the pathomechanisms in order to develop new therapeutic concepts. Future animal studies
are needed that actually test whether targeting the above-described mechanisms confers
cardioprotection in HFpEF in vivo, which could be a steppingstone toward a potential
clinical trial, as well as toward new and advanced therapeutic strategies.
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et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur.
Heart J. 2023, 44, 3627–3639. [CrossRef]

25. Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A Simple, Evidence-Based Approach to Help Guide
Diagnosis of Heart Failure with Preserved Ejection Fraction. Circulation 2018, 138, 861–870. [CrossRef] [PubMed]

26. Arzt, M.; Oldenburg, O.; Graml, A.; Erdmann, E.; Teschler, H.; Wegscheider, K.; Suling, A.; Woehrle, H. Phenotyping of Sleep-
Disordered Breathing in Patients With Chronic Heart Failure With Reduced Ejection Fraction-the SchlaHF Registry. J. Am. Heart
Assoc. 2017, 6, e005899. [CrossRef]

27. Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep Disordered Breathing and Cardiovascular Disease: JACC
State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [CrossRef]

28. Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra,
R.; Pack, A.I.; et al. Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69,
841–858. [CrossRef]

29. Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394.
[CrossRef]

30. Mehra, R.; Chung, M.K.; Olshansky, B.; Dobrev, D.; Jackson, C.L.; Kundel, V.; Linz, D.; Redeker, N.S.; Redline, S.; Sanders, P.; et al.
Sleep-Disordered Breathing and Cardiac Arrhythmias in Adults: Mechanistic Insights and Clinical Implications: A Scientific
Statement From the American Heart Association. Circulation 2022, 146, e119–e136. [CrossRef]

31. Kadhim, K.; Middeldorp, M.E.; Elliott, A.D.; Jones, D.; Hendriks, J.M.L.; Gallagher, C.; Arzt, M.; McEvoy, R.D.; Antic, N.A.;
Mahajan, R.; et al. Self-Reported Daytime Sleepiness and Sleep-Disordered Breathing in Patients With Atrial Fibrillation:
SNOozE-AF. Can. J. Cardiol. 2019, 35, 1457–1464. [CrossRef]

32. Arzt, M.; Young, T.; Finn, L.; Skatrud, J.B.; Ryan, C.M.; Newton, G.E.; Mak, S.; Parker, J.D.; Floras, J.S.; Bradley, T.D. Sleepiness and
sleep in patients with both systolic heart failure and obstructive sleep apnea. Arch. Intern. Med. 2006, 166, 1716–1722. [CrossRef]
[PubMed]

33. Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.;
et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med.
2019, 7, 687–698. [CrossRef] [PubMed]
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