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ABSTRACT

By assessing the effect of hypothetical actions without the need to directly
interact with the real world, causal inference offers valuable tools for data
science and artificial intelligence. However, a consensus on how to combine
different causal algorithms into a holistic analysis workflow, as well as a
universally agreed-upon validation strategy for causal models are yet to
be established. In this thesis, a causal end-to-end analysis is proposed
as a combination of multiple methods of graph-based causal inference [1]
from observational data and domain knowledge. Quantitative probing [2] is
introduced as a model-agnostic causal validation strategy in accordance with
Popper’s falsificationist view on scientific discovery [3]. The effectiveness of the
strategy is evidenced by a thorough simulation study that includes a discussion
of its current limits at the example of malfunctioning validation runs. In
order to provide application scenarios for the methodological contributions,
selected use cases from the domain of manufacturing light-emitting diodes are
presented. Open-source Python packages for executing the causal end-to-end
analysis and benchmarking the quantitative probing validation strategy are
provided [4, 5].
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INTRODUCTION
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Denken ist Handeln im vorgestellten Raum. / Thinking is acting
in an imagined space.

– Konrad Lorenz, Die Rückseite des Spiegels [6]

Il faut cultiver notre jardin. / We must cultivate our garden.
– Voltaire, Candide, ou l’optimisme [7]

When we make use of data science techniques, there is often a mismatch
between the employed methods and the ultimate goal: The methods are mostly
descriptive or predictive in nature, passively describing what is or what will be,
whereas the intent usually is to find an active manipulation of the reality that
helps us achieve certain goals. A company faced with horrible sales forecasts
will not stoically accept that customers do not want their product, but ask how
they can prevent the predicted scenario. The management could decide that a
new sales strategy should be implemented and ask the data scientist to predict
the company’s success in the actively manipulated scenario. It is tempting to
query the same model that has produced the bad sales forecast and ask for
an updated prediction factoring in the introduction of the new sales strategy.
However, due to spurious correlations and hidden biases that might be present
in the data, it is hard to distill genuinely causal mechanisms from observed
data that can be exploited for intelligent decision making. Gaining knowledge
about the effect of hypothetical changes to a system is precisely the task of
causal inference. The concerns about purely data-driven causal inference have
lead to slogans such as "No causation without manipulation" [8], suggesting
that experiments, as opposed to only passively observed data, are necessary
to uncover and exploit the underlying causal structure. Nevertheless, causal
inference researchers lead by Judea Pearl and Donald Rubin have succeeded
in developing techniques that provably solve the above task by supplementing
the observational data with additional assumptions [1, 9]. These efforts have
been recognized by the scientific community and their influence is evidenced
by Pearl winning the ACM Turing Award [10] and Rubin’s collaborator Guido
Imbens winning the Nobel Memorial Prize in Economics [11]. Considering
the goal of artificial intelligence (AI) research, namely creating machines or
algorithms that can truly think, causal inference provides an exciting new
perspective: By acting in an imagined space, which is made possible by the
different classes of models developed by the causal inference community, it is
feasible to think ahead and assess the effect of various actions. On this basis,
intelligent strategies can be devised without directly interacting with the real
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world. The techniques for manual construction or even data-driven learning
of causal models that satisfy the demands of downstream AI tasks are already
available [1, 12]. However, so far there is no consensus on how to combine the
different causal methods that solve subtasks of the causal inference spectrum,
and no common interface for the integration of application-specific domain
knowledge. An even greater concern lies in the absence of agreed-upon tools
for validating the causal models once they have been constructed. As we
will see, the validation task is considerably harder for causal models than
for purely predictive ones, and still an active area of research. Without
reassurance that our causal model actually does what it promises, it can be
misleading and dangerous to base any downstream decisions on its output.
The main contributions of this thesis therefore focus on these two questions:

1. How can we create a causal end-to-end analysis that combines appro-
priate causal model types and algorithms into a holistic strategy for
causal modelling based on observational data and domain knowledge?

2. How can we validate the resulting causal models?

The remainder of the thesis is structured as follows: Part II starts by
highlighting the differences between causal and purely associational queries,
in order to demonstrate the need for causal inference methods. Techniques
for answering causal queries are presented and graphical causal models are
introduced as an appropriately complex model type for answering interven-
tional questions. Consequently, causal discovery techniques are discussed
as a method of recovering the causal graph from observational data and
domain knowledge in situations where it cannot be manually constructed
by domain experts. The discussed tools are subsequently combined into the
causal end-to-end analysis, which is a holistic strategy for causal analysis
based on observational data and domain knowledge.

Given that the causal modelling process is a complex workflow, in which
errors can have drastic consequences for the intended downstream task,
Part III focusses on the validation of causal models using quantitative domain
knowledge. Therefore, the state of the art for the validation of both correlation-
based and causal models is briefly reviewed together with methods of exploiting
domain knowledge for causal modelling. Based on the gaps in the literature,
quantitative probing is developed as a largely model-agnostic causal validation
strategy that integrates quantitative domain knowledge and follows the logic
of scientific discovery. The proposed validation strategy is evaluated in a
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thorough simulation study, which serves to highlight both strengths and
weaknesses of the concept.

Although the main focus of this thesis is on the development of causal
analysis methods, Part IV briefly illustrates the presented techniques by
discussing application cases from the domain of LED manufacturing. The
usefulness of quantitative probing together with the causal end-to-end analysis
is shown using the example of color point shifts during the manufacturing
process. A real-world instance of Simpson’s paradox is resolved for evaluating
the benefit of an additional phosphor conversion process step. Finally, an
ongoing project about the holistic optimization of the production processes
serves to highlight the potential of combining causal inference methods with
the techniques of reinforcement learning, before Part V concludes the thesis
by shortly reviewing its contents and main findings.



Part II

THEORY AND PRACTICE OF CAUSAL
END-TO-END ANALYSIS
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In the first part of this thesis, we want to introduce the central elements
of causal inference from observational data and domain knowledge. We
follow the graph-based framework that was pioneered by Judea Pearl [1],
as opposed to Rubin’s potential outcomes framework [9], due to its clearer
interface for integrating domain knowledge. The first chapter highlights
the difference between associational queries, which can be answered using
correlation-based statistical tools, and genuinely causal queries, in order
to demonstrate the need for methods of causal inference. Subsequently,
different methods for answering interventional queries are explained and
graphical models are presented as a viable solution that strikes the balance
between overly complex structural causal models and insufficiently powerful
purely statistical models. Therefore, the methods of causal discovery from
observational data and domain knowledge are briefly introduced, in order to
tackle situations where the graphical structure of the data generating process
is not known to the analyst. Finally, the presented methods for learning the
causal graph, identifying an unbiased estimand for the causal effect of interest,
and estimating the latter are combined into a causal end-to-end analysis. The
cause2e package is provided as an open-source Python implementation of this
analysis strategy [4].



1. CAUSALITY VS. CORRELATION

Causality ̸= correlation is a common warning issued at the beginning of
statistics courses. However, lectures tend to proceed by ignoring all causal
questions and focussing purely on analyzing correlations, which is clearly
not an option for this thesis about causal inference. In order to acquire
sufficient working knowledge about the difference between the two terms, we
will first examine a number of counterintuitive situations where correlation-
based statistical tools are not enough to resolve the problem. Subsequently,
we briefly introduce a popular exemplary problem that helps illustrate all the
methodology presented in the remainder of the thesis. Finally, a terminology
of queries is presented, which allows us to select the right tools for tackling
different types of statistical problems.

1.1 Shortcomings of correlation-based analysis

Before we dive into the fascinating, but admittedly sometimes confusing
and counterintuitive world of causal inference, we want to see whether the
additional methodology is really necessary. Why should we not simply
use traditional correlation-based methods to determine causal effects from
observational data? Discussing serious problems arising from missing causal
tools in statistical analysis, we aim to eliminate all such doubts about the
necessity of proper causal inference methodology.

1.1.1 Hidden variables

The first common pitfall is the omission of important variables from an analysis.
Ice cream sales and shark attacks are likely to be positively correlated, but
the two direct causal conclusions - sharks preferring humans with ice cream
filling or humans resorting to stress eating from watching their fellow citizens
being devoured - both seem unlikely. Indeed, this is an example of a spurious
correlation that does not imply direct causation. The explanation is given
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by including a third important variable that has previously been hidden,
namely the temperature: On hot days, people are more likely both to buy ice
cream and to go swimming in the shark-infested sea. Such a variable that
influences treatment and outcome in a causal study is called a confounder
and we need to account for it explicitly in the analysis to avoid spurious
correlations. While the above example admittedly sounds constructed and
easy to defuse for experienced statisticians, not all confounding is equally
harmless: In a heatedly debated study [13], researchers empirically confirmed a
correlation between soda consumption and violent tendencies among teenagers.
Although the authors refrained from drawing causal conclusions and others
cited socioeconomic status as an important neglected confounder, media
coverage partly portrayed soda consumption as the direct cause of the violent
tendencies. The above examples suggest that we should condition on all
available covariates, in order to avoid confounding bias due to hidden variables.
However, this strategy has major drawbacks: Firstly, subdividing the available
data into a potentially enormous number of subpopulations and calculating
statistical measures on each of them separately leads to unnecessarily small
effective sample sizes and imprecise estimates. Secondly, blindly searching
for correlations in large amounts of data leads to false positives that arise
purely for statistical reasons and cannot be explained by confounding, as is
illustrated in Figure 1.1. The figure is reprinted with permission from [14],
where circa 30000 such correlations have been collected by automated data
mining methods.

As we will see later on, causal inference allows us to resolve both problems
by explicitly using qualitative knowledge about the data generating process
as an additional input.

1.1.2 Berkson’s paradox

In addition to the above mentioned issue with sample size, there are cases
where conditioning on additional variables does not reduce but increase bias.
Recent studies investigated the peculiar negative correlation between smoking
and COVID-19 severity [15] among different parts of the population. As an
explanation, [16] suggests that the counterintuitive observation is not causal,
but a case of collider bias or Berkson’s paradox. By selecting a subpopulation,
such as patients admitted to a hospital, which is equivalent to conditioning
on a covariate, we introduce a bias: Persons that have been admitted, but
do not suffer from severe COVID-19, must suffer from some other disease to
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Fig. 1.1: A Pearson correlation of 0.9979 seems to suggest a clear causal relation
between government spending on science and certain types of suicide.
Reprinted with permission from [14].

justify their admission. This disease might in turn be positively correlated
to (and even caused by) smoking. Therefore, severe symptoms of COVID-19
can be negatively correlated to being a smoker under the right numerical
circumstances. The paradox is named after Joseph Berkson, who published a
seminal article about the still relevant problems of using fourfold tables in
observational clinical studies in 1946 [17]. As an entertaining example, the
Wikipedia entry on Berkson’s paradox shows how talent and attractiveness
are negatively correlated among celebrities, even if the traits are independent
among the general population: By considering only celebrities, we introduce a
collider bias, since people that are ugly should at least be talented to become
famous [18]. In summary, we see that conditioning on the wrong covariates
can be just as dangerous as forgetting to condition on a confounder.

1.1.3 Simpson’s paradox

Simpson’s paradox is named after Edward Simpson who described the phe-
nomenon of opposite causal effects in subpopulations and the overall popu-
lation in 1951 [19]. In illustrating perhaps the most surprising paradox on
our list, we follow Pearl’s introduction [20] that clearly demonstrates how
data alone is not enough to draw causal conclusions. Table 1.1 shows data
from an observational study about the effectiveness of a drug for treating a
certain illness. A decision maker who is presented with only the first two rows
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would certainly see the data as evidence that the drug increases the chances
of recovery: Both the male (93% vs. 87%) and the female subpopulation
(73% vs. 69%) show better recovery rates when using the drug. However,
considering the coarser aggregate data, the effect is reversed: Patients that
have taken the drug are less likely to recover (78% vs. 83 %). Therefore, a
decision maker who is presented with only the data for the overall population
would most likely decide against recommending the drug to future patients.

Recovery rates
Drug No drug Overall

Men 81/87 (93%) 234/270 (87%) 315/357 (88%)
Women 192/263 (73%) 55/80 (69%) 247/343 (72%)
Combined data 273/350 (78%) 289/350 (83%) 562/700 (80%)

Tab. 1.1: Simpson’s paradox: Although both sex-specific subpopulations seem to
indicate a beneficial effect of the drug, the overall population seems to
show the opposite effect. Adapted from [20].

The confusing behavior can be explained by examining the number of
patients in each of the finer subpopulations: Both men and women have
contributed to the study in roughly equal proportions. However, it appears
that women are considerably more likely than men to take the drug (263 vs.
87 cases) and at the same time have lower overall chances of recovery (72%
vs. 88%). These observations hint at the solution for the seemingly paradox
behavior of the numbers: Since women are generally more likely to die from
the illness, which might be explained by biological factors, and at the same
time more likely to take the drug, a spurious correlation is established between
taking the drug and not recovering in the non-adjusted overall population
data. As with sharks and ice cream, the solution is given by conditioning on
the confounder (sex), such that the subpopulation trends lead to the correct
conclusion: Taking the drug is advantageous for both men and women.

Note how it is impossible to draw this conclusion from the data alone:
Table 1.2 holds the exact same data for the study of a different illness, but the
labelling has changed. This time, we record the patients’ blood pressure after
the treatment instead of their sex, and the column labels have been switched.
Is it again correct to condition on all covariates, leading to the conclusion that
the drug is harmful? The answer is no: The illness is caused by high blood
pressure, which is counteracted by the drug. Consistent with this observation,
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the combined data shows that the recovery rate is better for treated patients.
By erroneously conditioning on the post-treatment blood pressure, we would
condition away the effect of the drug. The only effect remaining to be seen
in the subpopulations would be harmful side effects of the drug, therefore
suggesting a negative treatment effect on recovery rates. Falsely conditioning
on all available covariates is again an instance of Berkson’s paradox.

Recovery rates
No drug Drug Overall

Low BP 81/87 (93%) 234/270 (87%) 315/357 (88%)
High BP 192/263 (73%) 55/80 (69%) 247/343 (72%)
Combined data 273/350 (78%) 289/350 (83%) 562/700 (80%)

Tab. 1.2: Simpson’s paradox: Although both blood-pressure-specific subpopulations
seem to indicate a harmful effect of the drug, the overall population seems
to show the opposite effect. Adapted from [20].

Even the statistically literate reader is probably confused by the above
scenarios and their different resolutions that are far from obvious from in-
specting the raw data. We highlight that these problems are hard to solve
for cases with only three variables and the situation will not improve for
considerably more complex real-world applications. Unfortunately, Simpson’s
paradox does indeed not only appear in carefully constructed numerical ex-
amples, but also in studies whose conclusions are likely to influence important
political decisions [21, 22, 23]. An often cited study by Bickel et al. from 1975
focussed on seemingly obvious bias against women in the process of graduate
school admissions at Berkeley [21]. Although the different ratios of admission
between men and women displayed a massive discrepancy in favor of male
applicants, closer examination of the underlying mechanisms revealed a small,
but significant bias against men. Women were simply applying more often to
departments with a higher rejection rate, which lead to their overall worse
chances of success. In summary, we see that it is hard and even dangerous
to answer causal questions on the basis of non-causal, purely data-driven
methods. Therefore, we will introduce techniques of causal inference and
combine them into a holistic strategy for causal analysis based on data and
domain knowledge.
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1.2 Sprinkler example

In order to make all the theoretical and practical concepts in this thesis more
tangible, we introduce an exemplary scenario that is widely used within the
causal inference community: Pearl’s sprinkler example [1]. As we will see
later on, it has been carefully crafted to illustrate many aspects of causality
while still being accessible to researchers from all application domains due
to its conceptual simplicity. This makes it ideal for our purposes and we
will therefore prefer this example over more domain specific applications
scenarios from the optical semiconductor industry. We take the liberty to
add, emphasize and omit aspects of Pearl’s original formulation whenever
it is beneficial for this thesis. In short, the sprinkler example is about
inferring causal effects from observational data and possibly domain knowledge.
Suppose that a gardener has logged the same five variables daily over the
course of a year, in order to learn more about his lawn watering strategy:

• What is the current season?

• Is it raining?

• Is the lawn sprinkler turned on?

• Is the lawn wet?

• Is the lawn slippery?

Additionally, he might know of some direct causal influences, e.g. the
fact that rain makes the lawn wet. A graphical representation of the data
generating process, unknown to the gardener, is shown in Figure 1.2. The
gardener is interested in finding out how these variables influence each other.
In particular, he is concerned whether sprinkler activation is responsible for
an increased slipperiness of the lawn. The easiest way to answer the question
would be to conduct a direct experiment: Each morning, the gardener would
throw a coin and activate the sprinkler depending on the outcome. Assuming
a constant number of visitors per day, he counts how many of them slip and
compares the numbers between days with and without sprinkler activation.
The major drawback of this simple strategy is the need to put people’s health
in jeopardy for the sake of answering the causal question. Furthermore, the
experiment answers only one question, whereas other causal effects between
the variables remain unknown to the gardener. In light of the already logged
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and readily available observational data, it seems preferable to run a statistical
analysis that avoids any collateral damages caused by experimentation. The
naive approach is the calculation of correlation coefficients or the examination
of linear regression coefficients. However, Section 1.1 has already highlighted
that correlation-based techniques are not an adequate match for causal
queries. The correlation coefficients are by definition symmetrical, contrary
to the directed nature of causation, and linear regression coefficients depend
on the inclusion of the correct covariates to be effective. At least for the
challenge of covariate selection, it should be possible to incorporate the
gardener’s aforementioned domain knowledge, but the strategy for doing so
is not clear. In the remainder of this thesis, we will, among other things,
introduce methodology for solving the sprinkler example and more generally
the inference of causal effects from observational data and domain knowledge.

Fig. 1.2: Visualization of Pearl’s sprinkler example: The season directly influences
the probability of rain and the activation of the sprinkler. The latter
two variables are responsible for the wetness of the lawn, which in turn
determines its slipperiness. All arrows represent direct causal influences,
as opposed to indirect effects, which correspond to directed paths.
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1.3 Terminology of queries

In order to understand what queries cannot be answered by correlation-based
or purely probabilistic analysis, it is helpful to have a clear terminology of
the queries themselves.

1.3.1 Associational queries

The queries that we aim to answer with traditional probabilistic or statistical
methods are associational in nature. "What is the probability that the lawn
is wet, given that it rains? What is the probability that it rains, given that
the lawn is wet?" Answering these questions requires the computation of
conditional probabilities or conditional probability distributions (CPDs) of the
form

p(Y |X = x) (1.1)

where Y is the prediction target and X a variable whose value is observed
to be x. Note that the value of X is not actively manipulated in any way:
We are merely observing its value in a passive role, in an attempt to gather
additional information for the prediction of Y . Apart from such predictions,
another type of associational query aims at relating variables to each other:
"Does the observation that it is raining have any benefit for predicting the
state of the sprinkler or vice versa? What if we already know the current
season?" As the questions already suggest, they can be answered using CPDs.
Two variables X and Y are called (statistically) independent, written as

X ⊥⊥ Y, (1.2)

if and only if
p(Y,X) = p(Y ) · p(X) (1.3)

holds, which is equivalent to having

p(Y |X) = p(Y ) (1.4)

and
p(X|Y ) = p(X). (1.5)

Otherwise, they are called (statistically) dependent or associated. Notably,
whenever two variables X and Y are independent, the symmetry of condi-
tion (1.3) with respect to X and Y shows that the same holds true with
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the roles of X and Y exchanged. For the above question, we can intuitively
say that rain and sprinkler are dependent in Europe: The sprinkler is more
likely to be activated in the hot months of the year, which in turn show
a lower probability of rain compared to the colder months in autumn. In
order to answer the question whether the rain variable gives any additional
information about the status of the sprinkler, given that we already know the
season, we need to introduce the concept of conditional independence: Given
a variable Z, two variables X and Y are called conditionally independent
given Z, written as

(X ⊥⊥ Y | Z), (1.6)

if and only if
p(X, Y |Z) = p(Y |Z) · p(X|Z) (1.7)

holds, with the same implications concerning symmetry as above. Looking at
Figure 1.2, it seems plausible that the rain and the sprinkler are conditionally
independent given the season. We will present tools for reading of the full set
of conditional independencies from graphical representations in Section 2.2.2.
Alternatively, (conditional) independence conditions can be tested by com-
paring the probability distributions that appear in the definitions. The area
of conditional independence testing is still an active field of research due to
its importance for causal inference and statistics in general [24, 25, 26], but
we will steer clear of this challenge and assume that we have access to an
oracle answering conditional independence questions for the remainder of this
thesis. Perhaps the most frequent associational query is about the correlation
between two variables, which is encoded in the Pearson correlation coefficient

ρX,Y =
Cov(X, Y )

σX · σY

(1.8)

for the covariance

Cov(X, Y ) = E[X · Y ]− E[X] · E[Y ] (1.9)

and the standard deviations

σX =
√
Var(X) =

√
E[(X − E(X))2]. (1.10)

and σY . The correlation coefficient ρX,Y can be interpreted as a measure of
linear association between the two random variables X and Y . In practical
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applications, it can be estimated from a dataset (xi, yi)i=1,...,n as

ρ̂X,Y =

∑n
i=1(xi − x̄)(yi − ȳ)

σ̂X · σ̂Y

(1.11)

with the usual maximum likelihood estimators

x̄ =
1

n

n∑
i=1

xi (1.12)

and ȳ for the means as well as

σ̂X =

√√√√ 1

n

n∑
i=1

(xi − x̄)2 (1.13)

and σ̂Y for the standard deviations. It is easy to see that both ρX,Y and
its empirical counterpart ρ̂X,Y take values in [−1, 1] with the extremes only
realized in case of a linear relation between X and Y . The empirical correlation
tells us how well the data points fit on a line, i.e. it answers the question:
"How strongly do the data suggest that an increase in Y is linearly associated
with an increase in X?" It is most important to note that this question is
distinct from the causal question about the effect that an increase in X has
on Y . The Reichenbach common cause principle, formulated by physicist
Hans Reichenbach [27], connects the notions of association and causation:
Two variables A and B are associated if and only if there is a third variable
C that causally affects both A and B. As a special case, C can coincide with
either A or B.

1.3.2 Interventional queries

Going beyond association, the first type of genuinely causal queries that we
want to state are interventional queries. As the name already indicates, these
queries ask about the behavior of one or more random variables in response
to an active intervention in the data generating process. As opposed to a
relation on an associational level, an interventional cause/effect relation is not
symmetric: Even if an intervention on a variable X leads to a change in the
distribution of another variable Y , the converse does not need to hold. We can
change the measurement on a thermometer by manipulating the temperature
of the environment, but writing a different number on the display of the
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thermometer will have no effect on the temperature. The most basic type
of an intervention is given by the atomic intervention, which intervenes on a
single treatment variable by forcing it to take on a single value, and thereby
entails a distribution over an outcome variable of interest. Our sprinkler
example is focussed on estimating the effect of such an atomic intervention:
We want to predict what happens to the slipperiness of the lawn Y if we force
the sprinkler X to be turned on. Considering the Reichenbach common cause
principle, we cannot describe the resulting distribution over Y by estimating
p(Y |X = x) from observational data because of possible confounding. Even if
the sprinkler had no effect on the slipperiness, there could be a third variable
that influences both the sprinkler and the slipperiness such that we would
measure a spurious correlation in the data. Therefore, we use a different
notation for distinguishing active interventions from passive observations.
Variables that are actively intervened upon are accompanied by the word do:

p(Y |do(X = x)) (1.14)

The covariate-specific intervention is a slight variation of the atomic
intervention. There is again a single intervention variable that is assigned a
single value, but this time we have additionally observed the value of other
variables, leading to a query of the form

p(Y |do(X = x), Z = z) (1.15)

where Z is the set of observed covariates and z the set of observed values.
Another extension is given by a stochastic or soft intervention, where we
assign the value of the treatment variable not in a deterministic, but in a
stochastic manner. The assigned values of X can be seen as realizations of
another stochastic function σ, leading to a query of the form

p(Y |do(X = σ)). (1.16)

Instead of varying the number of available observed covariates or the
assignment mechanism of the treatment variable, we can as well choose
multiple treatment or outcome variables. It is furthermore possible to combine
all these query types to form more complex interventions. In order to fill
the mysterious do-expressions with life, we can interpret them as ordinary
conditionals of an entailed or interventional distribution: Our intervention on
X changes the DGP such that the remaining variables behave according to
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a new probability distribution pdo(X=x) instead of the original observational
distribution p. The interventional distribution is a probability distribution in
its own right and we can use it to formulate quantities of interest for causal
analysis. For ease of presentation, we assume both treatment and outcome
to be binary random variables, but extensions to more general settings are
well-established in the causal literature [1]. The average treatment effect
(ATE) τ quantifies the change in the outcome Y if we compare interventional
distributions for both assignments of the treatment X:

τ = pdo(X=1)(Y = 1)− pdo(X=0)(Y = 1) (1.17)

If we want to evaluate causal effects in more specific scenarios, e.g. the
effect of the sprinkler on the slipperiness specifically during winter, we can
compute the more refined conditional average treatment effect (CATE) ρ.

ρZ=z = pdo(X=1)(Y = 1|Z = z)− pdo(X=0)(Y = 1|Z = z) (1.18)

In other cases, we are not interested in overall effects of an intervention,
but only in specific mechanisms: Does the sprinkler make the lawn more
slippery only indirectly by making it more wet, or is there a direct causal
effect that is not mediated by the wetness? Such a question can be answered
by the controlled direct effect (CDE) λ that measures changes to the outcome
under a given treatment while keeping all other variables at fixed values.

λW=w = pdo(X=1,W=w)(Y = 1)− pdo(X=0,W=w)(Y = 1) (1.19)

The set W is given by all considered variables except for X and Y , and w
indicates a special configuration of W . Note how the do-notation is not only
employed to convey the active notion of treatment, but also for the fixing
of the rest of the variables to W = w, which illustrates its usefulness for
mediation analysis in a more general context. We are still lacking the tools
to determine the interventional distribution or any quantities derived from it,
but this gap will be filled in Chapter 2.

1.3.3 Counterfactual queries

Ascending on the ladder of query complexity, we advance to counterfactual
queries. Whereas interventional queries ask about the expected outcome of a
target variable Y , given an intervention do(X = x) on the treatment variable
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and possibly observations Z = z of other variables, counterfactual queries
add another type of observation. We assume that we have observed what
happened for a different choice of intervention X = x̃. Intuitively, humans ask
such questions to think about hypothetical outcomes of situations, had they
chosen to act differently. Having observed that the lawn became wet after
the sprinkler was turned on in summer, what would have been the effect of
not turning it on in the same situation? Although these types of queries are
of minor importance in the remainder of the thesis, it is helpful to mention
them explicitly, in order to establish the boundaries of interventional queries
p(Y |do(X = x)) not only from one side by associational queries p(Y |X = x),
but also from the other side by counterfactual queries. These take on forms
such as

p(YX=x = y|X = x̃, Y = ỹ) (1.20)

to describe the probability of observing Y = y after the hypothetical
active manipulation X = x, given that we have actually observed Y = ỹ and
X = x̃.

Contrary to interventional queries, not even experiments can answer such
a query because there is no way of having both X = x̃ and X = x occurring
for the same subject at the same time. Nevertheless, counterfactuals have
real implications for performing mediation analysis. The natural direct effect
(NDE) µ, a special instance of the CDE in Eq. (1.19), counts only causal
contributions that are not mediated by other variables. However, instead of
allowing arbitrary values w for the configuration of the remaining variables W ,
we prescribe W = w0, meaning that the remaining variables take on exactly
the value that they would have taken on for an intervention do(X = 0). The
natural indirect effect (NIE) ν on the other hand excludes direct influences and
counts only indirect contributions to the causal effect. Perhaps surprisingly, we
cannot just define ν = τ − µ except in the case of linear DGPs. Furthermore,
it is possible to use counterfactual language to define a number of intricate
causal effects that can serve as metrics for otherwise inaccessible attribution
problems. Given that such questions are not the main focus of this thesis,
we refer the reader to Pearl’s short primer for an intuitive introduction with
examples from various application domains [20].
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1.3.4 The ladder of causation

Assuming that we can answer interventional queries, it is clear that we can
also answer corresponding associational queries by intervening on none of
the variables. In the same way, we can rephrase interventional queries as
counterfactual queries by not changing the circumstances encountered by
the sample under consideration. The converse is not true: Interventional
queries can only restated as associational queries if we provide additional
ingredients such as a causal graph. Therefore, it is not possible to answer
interventional queries using only observational data. A similar border appears
between interventional and counterfactual queries. The grouping of queries
into observational, interventional and counterfactual queries that we have
illustrated in the previous sections can be justified rigorously in the the ladder
of causation or Pearl causal hierarchy (PCH) [28]. For us, the important
takeaway is that we are operating on the interventional level, such that our
models are necessarily more complex than observational ones, but still coarser
than counterfactual ones.



2. ANSWERING INTERVENTIONAL QUERIES

As we have seen in Section 1.3.2, several causal effects of interest can be
formulated in terms of do-probabilities of the form

p(y|do(x), z) (2.1)

where x, y, z are realizations of random variables X, Y and Z. The expres-
sion (2.1) denotes the probability of observing an outcome Y = y, given
that we have also passively observed a covariate Z = z and actively enforced
the treatment X = x. Consequently, we need to be able to determine these
quantities, which leads us to consider different options:

1. Active intervention: Enforce X = x in the physical world or a simulation
and observe what happens.

2. Algebraic solution: Reduce all interventional probabilities to ordinary
non-interventional probabilities and estimate these from observational
data.

Both options are used in practical settings and we want to briefly explain
the methodology behind them, as well as their respective strengths and
weaknesses.

2.1 Active methods

It is no surprise that the effect of an active intervention in a data generating
process can be assessed by actively intervening and observing the result.
However, direct interaction with the environment is not always feasible or
desirable, such that different strategies have been developed. Even though
we will focus on methods using observational - as opposed to interventional -
data, it is helpful to briefly introduce active methods as the gold standard
that we are trying to mimic with observational methods of causal inference.
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2.1.1 Experiments and simulations

The easiest method of answering queries on the higher levels of the Pearl causal
hierarchy is to execute reproducible experiments under controlled conditions.
If we are interested in the effect of a binary intervention on an outcome
variable, we simply carry out two iterations of the experiment: We set the
treatment to 0 in the first one and observe the outcome, and then repeat the
experiment under the same conditions with the treatment set to 1. If the
setup includes a probabilistic component, multiple experiment runs can be
executed to gather the necessary statistics. By the reproducible nature of the
experiment, we can even answer counterfactual queries simply by having access
to multiple "copies of the same world" such that we can answer hypothetical
questions. In practical applications, the necessary controlled conditions might
be hard to obtain: There is no way of assessing the effect of the sprinkler in
summer if it is currently winter. If we want to know whether the sprinkler
makes the lawn more slippery even if it is already raining, we cannot test this
assumption if the sky is currently unclouded. However, this obstacle can be
overcome if the dynamics of the problem are sufficiently well-understood. The
dynamics, e.g. known system equations in a physical context, can serve as the
basis for a numerical simulation. Such a simulation gives us full control of all
tunable parameters and we can again have many attempts of manipulating
our environment. Under these conditions, causal inference is not really needed
because we can simply answer all our questions by direct interaction with
the simulated environment. The focus then typically shifts more towards
finding the optimal manipulations for achieving a predefined goal, which
is precisely the domain of reinforcement learning (RL) [29]. For example,
Wankerl, Luce et al. carried out this strategy and optimized components of
light-emitting diodes using RL and a simulation based on the transfer matrix
method [30, 31]. In this thesis, we want to examine the methods of causal
inference as a valuable alternative for situations where the dynamics are not
known such that no simulations can be set up.

2.1.2 Randomized controlled trials

For many causal inference tasks, detailed simulations or reproducible experi-
ments are out of reach: The environment is simply too complex to understand,
let alone replicate all the underlying physics. If we want to answer a query
that is concerned with some causal effect of a medical treatment on a pa-
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tient, we cannot simulate all the biochemical processes in the patient’s body.
Similarly, it is not possible to put the patient into the same state twice to
compare the effect of subsequently administering the treatment or not. In
the medical domain, randomized controlled trials serve to answer at least
interventional questions about the effect of a treatment on the patients’ well-
being [32]. The procedure is simple: In order to avoid spurious correlations
by differing propensity of treatment between subpopulations with different
chances of recovery, the doctors randomly decide for each patient whether
they should be treated or receive a placebo. Afterwards, the interventional
distributions for treated and untreated patients can be compared, in order
to answer interventional queries as in Section 1.3.2. For example, the ATE
of the treatment on the recovery can be calculated by simply comparing
recovery rates in both patient groups. In our sprinkler example, an RCT
can be performed by activating the sprinkler on a randomly selected set of
days. The main drawback of RCTs lies in their side effects: Whereas the
slipping of some people on the lawn might be considered acceptable collat-
eral damage, the deliberate non-treatment of ill patients or the deliberate
treatment of patients with a potentially harmful drug poses serious ethical
concerns. However, RCTs are still the default method in medical settings
due to a lack of alternatives, although there is active research on adaptive
versions that optimize the outcome for the study population by changing
treatment assignment during the study [33]. The success of RCTs reaches so
far that they are also used outside of the medical field for similarly sensitive
questions, such as development economics, which has sparked debate due to
the unavoidable side effects [34]. In the remainder of this thesis, we will show
causal inference methods for avoiding RCTs in the simple sprinkler example,
but research on using the same methods for more critical settings has already
started [35].

2.2 Causal models

If we want to be able to perform causal inference without intervening in the
physical world, we need a model from which we can derive causal effects.
Figure 2.1 connects causal modelling to the well-known probabilistic/statistical
modelling : Given a probabilistic model, such as a joint distribution over
all variables of interest, we can predict future outcomes Y from a set of
observations X, by evaluating p(Y |X). This process is called probabilistic
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reasoning. Conversely, if we are given a set of observations X and a set of
corresponding outcomes Y , we can try to recover the underlying probabilistic
model using methods of statistical learning. The obtained model can then
again be used to perform probabilistic reasoning, in order to predict outcomes
for hypothetical observations that have not been part of the dataset. As we
have seen above, predicting future outcomes by probabilistic reasoning is
subject to an important constraint. A probabilistic model only describes how
samples behave if we passively observe them being drawn from an unchanged
data generating process. If we want to understand the behavior of samples
that are drawn from a data generating process that is subject to being changed
by active interventions, we need to turn to a new class of causal models. Given
that we can choose to "intervene" by doing nothing, every causal model must
already be a probabilistic model in itself. This means that we do not lose any
flexibility by choosing causal models over purely probabilistic ones. However,
it might still be preferable to use a probabilistic model for strictly probabilistic
queries, as the additional flexibility of causal models necessarily comes at
a cost. In this section, we introduce different types of causal models and
explain how they can be exploited to answer different types of causal and
probabilistic queries.

2.2.1 Structural causal models

A structural causal model (SCM) codifies the intuition of causal mechanisms
as a set of functions that tell us how a set of variables causally depends
on each other and possibly random influences. Formally, an SCM S is a
quadruple

S = (X , U, F, pU), (2.2)

consisting of

• a set of endogenous random variables X ,

• a family of exogenous random variables or error terms U = (UX)X∈X ,

• a family of functions F = (fX)X∈X and

• a probability distribution pU over the exogenous variables.

The family F contains one function
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Fig. 2.1: Probabilistic reasoning and statistical learning both connect probabilistic
models and observational data. Analogously, causal learning and causal
reasoning connect causal models to both observational and interventional
data. While observational and interventional data can obviously be seen as
a generalization of purely observational data, it is worth noting that causal
models can be seen as a generalization of probabilistic models. Redrawn
based on a figure in [12].

fX :
∏

Y ∈YX

RY ×RUX
→ RX , (y, u) 7→ fX(y, u) (2.3)

for each of the endogenous variables X ∈ X , where YX ⊂ X \ {X} is a
subset of the endogenous variables and RZ denotes the support of a random
variable Z. This function deterministically computes the value of X, given all
the relevant values of other variables. We call the endogenous variables YX

that appear as arguments in fX the (causal) parents or direct causes of X. In
order to incorporate randomness into the model, the exogenous variables are
governed by the probability distribution pU , whereas each endogenous variable
deterministically depends on a subset of the endogenous and exogenous
variables.

In Pearl’s sprinkler example, the corresponding SCM could look like this:

S = (X , U, F, pU) (2.4)
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with

• X = {Season,Rain, Sprinkler,Wet, Slippery},

• U = {UX | X ∈ X} with each UX following a continuous probability
distribution over [0, 1],

• F = (fX)X∈X ,

• pU =
∏

X∈X pUX
.

The most interesting part of the SCM, namely the functions fX could
take on the following form: The season is a random variable that does not
depend on any of the other endogenous variables.

fSeason : RUSeason → {Spring, Summer, Fall, Winter}, (2.5)

u 7→


Spring if u ∈ [0, 0.2),

Summer if u ∈ [0.2, 0.5),

Fall if u ∈ [0.5, 0.75),

Winter if u ∈ [0.75, 1]

(2.6)

The rain depends on the season and on its associated exogenous variable:

fRain : RSeason ×RURain → {0, 1}, (2.7)

(y, u) 7→



1 if y = Spring and u > 0.5, or
if y = Summer and u > 0.8, or
if y = Fall and u > 0.4, or
if y = Winter and u > 0.7,

0 else

(2.8)

The same holds true for the sprinkler, which is more likely to be activated
in a hot summer. This is why we have explicitly included the season as an
endogenous variable, even though its value could have been fully encoded in
USeason by choosing an appropriate discrete probability distribution. None
of the exogenous variables are allowed to appear in multiple functions. The
wetness of the lawn depends on both the sprinkler and the rain variable, as
well as on another exogenous error term, whereas the slipperiness of the lawn
is modelled to depend only on its wetness and another error term. For brevity,
we refrain from explicitly spelling out the latter three functional mechanisms.
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Note that we are modelling the situation such that the sprinkler does not
depend on the rain variable. This means that the sprinkler will be activated
regardless of the outside weather, as one could imagine in a scenario where the
sprinkler is governed by a microcontroller that has no rain sensor. Further,
it may be criticized that the sprinkler activation does not directly depend
on the slipperiness of the lawn: If we assume that the sprinkler is manually
activated by someone, this person could injure themselves on the way to their
duty on the slippery lawn, rendering them unable to activate the sprinkler.
These two examples show that an SCM, albeit very concise in its nature of
specifying the causal mechanisms, is still subject to possible criticism. The
main goal of the precision in the above formulation is not to make the model
more correct, but to make the assumptions of the modeler more transparent.
Not only the signatures of the causal mechanisms, qualitative in nature, can
be scrutinized, but also their functional form or even specific parameter values
of the function. Why should it rain more often in spring than in Winter?
The parameters in fRain could be criticized depending on the climate zone.

Keeping the example in mind, the path to calculating interventional
distributions of the form p(Y |do(X = x) based on an SCM is layed out
clearly:

1. Firstly, we need to understand how to compute the probability distribu-
tion pS(X ) that is associated with a given SCM S.

2. In a second step, we can transform the SCM S into a new SCM Sdo(X=x)

that reflects the intervention do(X = x) and calculate the associated
probability distribution pSdo(X=x)

(X ).

3. Finally, we can answer the interventional query via the equation

p(Y |do(X = x)) = pSdo(X=x)
(Y ) (2.9)

based on the observation that pSdo(X=x)
(X ) is precisely the interventional

distribution associated with the manipulation do(X = x).
The first point can be achieved simply by propagating the uncertainty

over the exogenous variables through the structural mechanisms F . We start
by topologically sorting X with respect to F , i.e. we sort the endogenous
variables as (X1, ..., Xn) such that no Xi appears in fXj

if we have i > j [36].
As a next step, we write down the associated trivial factorization

p(x1, ..., xn) =
n∏

i=1

p(Xi = xi|X1 = x1, ...Xi−1 = xi−1) (2.10)
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where we omit the index S for convenience. Each factor on the right hand
side is called a conditional probability distribution (CPD) over Xi and it can
be separately calculated using F :

p(Xi = xi|X1 = x1, ..., Xi−1 = xi−1) =

∫
RUi

1g−1
x1,...,xi−1

(xi)
(u)dpU (2.11)

In this expression that looks considerably more challenging than it actually is,
we use the notation 1 for the indicator function of a set, namely the preimage
of xi under the map

gx1,...,xi−1
: RUi

→ RXi
(2.12)

that inputs the necessary values into the function fXi
to determine xi

and discards the rest of the xj. Broadly speaking, for the configuration
(X1 = x1, ..., Xi−1 = xi−1), we check which values of Ui are mapped to Xi = xi

via fXi
and weight their contributions according to the distribution pU , in

order to arrive at the probability of interest. As a byproduct of the explicit
calculation, we notice that we do not need all of the preceding endogenous
variables as input for the CPD over Xi, but only the causal parents Πi that
appear in the structural mechanism fXi

. Therefore, we can replace the trivial
factorization in Equation (2.10) with the more compact causal Bayesian
factorization associated with S

p(x1, ..., xn) =
n∏

i=1

p(Xi = xi|Πi = πi) (2.13)

which requires fewer parameters and is independent of the particular ordering
of the variables.

Since we are interested in the probability distribution that occurs after the
active intervention do(X = x), we need to use a slightly altered version of S
as the basis for the above calculations. Luckily, the SCM formalism naturally
lends itself to incorporating atomic interventions: We arrive at the desired
SCM Sdo(X=x) by replacing fX with the constant function that has x as its
only value, whereas the rest of the SCM stays the same. By calculating the
probability distribution associated with Sdo(X=x) and using Equation (2.9), we
can finally answer interventional queries. Note that the process of modifying
the original SCM and drawing samples from the entailed distribution can also
be used to construct a simulated environment as described in Section 2.1.1.
Furthermore, we can avoid recalculating the interventional distribution for
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each new intervention by directly modifying the causal Bayesian factorization
associated with the original SCM S according to

p(x1, ..., xk, ..., xn|do(Xk = v)) =

{∏
i ̸=k pS(Xi = xi|Πi = πi) if xk = v,

0 else
(2.14)

which is called the truncated product rule. In summary, SCMs are a powerful
tool to compute interventional probabilities, but correctly specifying them is
obviously not an easy task. However, a closer look at the above calculations
reveals that we never explicitly use the structural mechanisms F , but only
their signatures: In order to evaluate the truncated product rule, we only
need to know which variables appear as inputs for each of the functions in F .
If we can provide the associated CPDs pS(Xi = xi|Πi = πi), we are able to
answer the interventional queries of interest. Therefore, specifying the full
SCM might not even be necessary for our purposes, as long as we know that
it exists in the background.

2.2.2 Causal Bayesian networks and causal graphs

Inspired by the preceding observations, the second class of causal models
that we want to consider are causal Bayesian networks (CBNs). In general, a
Bayesian network (BN) B = (G,C) is characterized by

• a directed acyclic graph (DAG) G = (X , E) with vertices X and edges
E ⊂ X × X and

• a set of CPDs C = (p(X = x|ΠX = πX))X∈X

where ΠX = {Y ∈ X | (Y,X) ∈ E} denotes the parents of X in G.
Starting from an SCM S, there is an associated CBN B(S) that can be

seen as its logical graphical representation: The vertex set of the graph are
all endogenous variables in S, and the edges are given by

E = {(X, Y ) ∈ X × X | fY explicitly depends on X}. (2.15)

Put simply, we look at each of the functions given by S and draw an arrow
from each endogenous input variable to the output variable. Note that for
each variable, the causal parents in S are precisely the parents in B(S). The
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CPDs of B(S) are obtained from S by propagating the uncertainty of the
exogenous variables through the functions F , as we have already seen in
Equation (2.11).

In summary, we have created a coarser description of the SCM S: The en-
dogenous variables directly correspond to the nodes X in G and the functional
signatures in F are preserved as the edges E, but the exact form of the func-
tions is no longer accessible. For each X ∈ X , the CPD p(X|ΠX) combines
the probabilistic information in pUX

and the deterministic assignment fX into
another probabilistic object. It is clear that the map (pUX

, fX) 7→ p(X|ΠX)
is not injective, meaning that we lose information. As discussed at the end of
the previous Section, this loss of information is irrelevant for the computation
of interventional probabilities, since we still have enough knowledge to eval-
uate the truncated product rule in Equation (2.14). Furthermore, ordinary
statistical methods can be used to learn the CPDs from data and the CBN
can again be used as a simulator for interventional data. The limited ability
of the CBN to model certain aspects of causality, as opposed to the fully
specified SCM, would only matter if our queries were of counterfactual nature
(cf. Section 1.3.3) because the exogenous variables and functional mechanisms
need to be separately available for these purposes [1]. The resulting CBN for
the sprinkler example can be seen in Figure 2.2.

Going one step further in the quest of reducing model complexity, we can
even strip the CBN of its CPDs and consider only the graph G, which we call
the causal graph. Just as the CBN, the causal graph justifies its existence
as a causal model by being a derived entity from the fully specified SCM.
Therefore, we can talk about causal parents and direct causes based on the
graphical representation, without knowing pU or the exact functional forms
of F beyond the signatures.

2.2.3 Noncausal Bayesian networks

While the above view on CBNs and causal graphs sees them only as a weaker
representation of the SCM, it is clear that directed graphs are an interesting
mathematical object in their own right. We could draw many different directed
graphs over the endogenous variables and talk about parents of nodes with
respect to each of these other graphs, but we would lose any justification for
calling them causal parents or direct causes.

The same holds true for CBNs: (Possibly non-causal) Bayesian networks
are again interesting mathematical objects in their own right, and they can
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Fig. 2.2: Bayesian networks incorporate both graphical and probabilistic information.
The displayed BN is the causal one since its DAG and CPDs are derived
from the SCM that fully describes the underlying causal mechanisms of
the DGP.

be used for efficiently modelling the joint distribution over the endogenous
random variables. Non-causal BNs are not useful for answering genuinely
causal queries, but it is helpful to understand their strengths when compared
to non-graphical probabilistic models such as a joint distribution. A graph-
ical criterion called d-separation has been developed as an analogue of the
probabilistic notion of independence between random variables [37]. A given
(possibly noncausal) DAG G over the endogenous variables is eligible as basis
for a BN whenever each graphical d-separation between the variables implies
the corresponding independence statement in the joint distribution. This
criterion can be written as

(X ⊥d Y | Z) =⇒ (X ⊥⊥ Y | Z) (2.16)

where the left-hand side denotes that the nodes X and Y are d-separated
in the DAG given another set of nodes Z. Since a definition or even a deeper
discussion of the d-separation formalism is unfortunately out of scope for this
work, we refer the interested reader to the seminal work by Koller and Fried-
man [37]. For us, it suffices to know that reading off d-separation statements
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from the graph is a trivial task and Condition (2.16), which is called the
global Markov condition, allows us to easily read off independence statements
from a DAG. The global Markov condition is equivalent to the local Markov
condition, which states that each endogenous variable needs to be independent
of its nondescendants given its parents in G. The importance of this condition
becomes apparent in light of our above derivation of the causal Bayesian
factorization (2.13) from the trivial factorization (2.10). This derivation was
enabled precisely by the local Markov condition that is justified for the causal
DAG by the signatures of the structural mechanisms in F . Consequently,
whenever another DAG satisfies the local Markov condition, we can use it as
the basis for an associated Bayesian factorization. Although such a noncausal
Bayesian factorization cannot be used to answer interventional queries, the
decomposition of the joint distribution gives us a compact description of the
DGP on an associational level. Therefore, research on Bayesian networks
has already been conducted before their capabilities in causal settings had
been discovered [38, 39]. Two DAGs in which the same set of d-separation
statements hold are called Markov equivalent and this equivalence relation
separates the set of DAGs over the endogenous variables into disjoint Markov
equivalence classes. We know that a DAG whose d-separations exactly cor-
respond to the conditional independencies of a joint distribution lies in the
same Markov equivalence class as the causal graph that corresponds to the
CBN. However, we cannot answer interventional queries using its associated
truncated factorization if the BN is not the causal one, as the justification for
the truncated product rule in Section 2.2.1 depended on the underlying SCMs,
which makes it invalid for noncausal BNs. Nevertheless, the d-separation
formalism evolved into a causal calculus that lets us treat the raw causal
graph as a non-generative causal model, as we will see in the next section.

2.2.4 Pearl’s do-calculus

An alternative to the potentially harmful RCTs and the complex creation of
a surrogate model is given by Pearl’s do-calculus [40, 41]. The central idea is
to restate the original interventional query in terms of do-free observational
expressions. Once this is achieved, the well-established tools of statistics
can be employed to estimate the resulting expression, which is called an
estimand. As we have seen in Section 1.1, it is not always possible to simply
replace do(x) by x in the conditional probability. The causal structure of the
problem, encoded in the causal graph G and its d-separations, determines
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which substitutions are allowed for expressions involving groups of variables
X, Y, Z,W and their respective values x, y, z, w:

1. Observation insertion/deletion

p(y|do(x), z, w) = p(y|do(x), w)
if (Y ⊥d Z | X,W )GX

(2.17)

2. Action/observation exchange

p(y|do(x), do(z), w) = p(y|do(x), z, w)
if (Y ⊥d Z | X,W )GX

Z

(2.18)

3. Action insertion/deletion

p(y|do(x), do(z), w) = p(y|do(x), w)
if (Y ⊥d Z | X,W )GX,Z(W )

(2.19)

The graph GX denotes the graph that is obtained by deleting all edges
from G that point into variables in X. Analogously, GX denotes the graph
that is obtained by deleting all edges from G that originate in variables in X.
Both notations can be combined. The set Z(W ) consists of all nodes in Z
that are not ancestors of any node in W based on GX .

From a high-level perspective, the do-calculus is a machinery that auto-
matically converts interventional expressions into do-free estimands. It is
both sound and complete, in the sense that this conversion can be obtained
by applying the three rules 2.17 to 2.19 sequentially [42, 43], whenever the
effect is identifiable, i.e. expressible in terms of the observed distribution.
There are non-identifiable cases where the existence and position of an un-
measured confounder in the causal graph are known, but there is no way of
expressing the causal effect in terms of only the observed variables. Note
that the functional form of the DGP does not matter except for the part
encoded in the causal graph such that a table of identifiable effects together
with the suitable estimand can be compiled for common graph structures.
The do-calculus even allows us to infer causal effects in many scenarios with
unmeasured variables, as long as we know the location of these variables
in the causal graph and they do not appear in the estimand provided by
the algebraic machinery. Furthermore, uncertainty about specific edges in
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the causal graph can be ignored if all possible versions of the graph lead to
the same estimand. However, since the studies presented in this thesis were
concerned with situations where all variables of interest have been observed,
we will sidestep discussions of identifiability and point to [1, 44, 42] for further
reading.

In the sprinkler example, we need to estimate the expression

p(Slippery|do(Sprinkler)) (2.20)

in order to calculate the average treatment effect of interest. This can be
achieved by applying the law of total probability to introduce the season as a
condition, before using an action/observation exchange on Z = Sprinkler in
the first factor and an action deletion on Z = Sprinkler in the second factor
of each summand:

p(Slippery|do(Sprinkler))

=
∑
s

p(Slippery|do(Sprinkler), Season = s) · p(Season = s|do(Sprinkler))

=
∑
s

p(Slippery|Sprinkler, Season = s) · p(Season = s)

(2.21)
To justify the resulting expression, we can observe that the season acts

as a confounder in the DGP: The sprinkler is more likely to be turned on
in some seasons, and similarly the lawn is more likely to be slippery in
some seasons due to the rain variable. By keeping the season fixed in each
summand, we eliminate spurious correlations. This can be seen as an instance
of the backdoor criterion or adjustment rule that can be derived from the do-
calculus. It indicates that the interventional query p(y|do(x)) can be answered
by a reweighted sum of conditional probabilities including the causal parents
Π(X) of the treatment variable, rather than just the unweighted conditional
probability p(y|x). There is some discussion whether the heavy do-calculus
machinery is necessary to arrive at such transformations [45]. However, this
approach has the advantage that more intricate criteria such as the frontdoor
criterion for partially unobserved scenarios can be derived by the same calculus
when human intuition reaches its limits [1].

Coming back to the sprinkler example, we can rewrite the ATE of the
sprinkler on the slipperiness on the lawn as
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p(Slippery = 1|do(Sprinkler = 1))− p(Slippery = 1|do(Sprinkler = 0))

=
∑
s

p(Slippery = 1|Sprinkler = 1, Season = s) · p(Season = s)

−
∑
s

p(Slippery = 1|Sprinkler = 0, Season = s) · p(Season = s)

(2.22)
such that all involved quantities are computable from the observed dis-

tribution. If we further assume a homogeneous effect, i.e. if there is a c ∈ R
such that for all seasons s, we have

p1,s − p0,s = c (2.23)

using the notation pi,s = p(Slippery = 1|Sprinkler = i, Season = s), the
above computation of the ATE simplifies and yields precisely c. A special
case for the homogeneous situation is given by a linear SCM of the form

p(Slippery = 1) = Wet

p(Wet = 1) = c · Sprinkler + d ·Rain
(2.24)

where the exogenous variables (omitted for ease of notation) act by flipping
the outcome of each variable with a small probability.

In summary, we observe that we can estimate ATEs in fully observed
scenarios from the observational data. In linear SCMs, we can employ linear
regressions by applying the backdoor criterion, regressing the outcome on
the treatment and the parents of the treatment, and finally reading of the
coefficient associated with the treatment. Under the same strict assumptions,
similar procedures serve to determine NDEs and NIEs as regression coefficients.
They are presented in detail in [20], accompanied by a discussion of the
additional obstacles in the general nonlinear case.



3. CAUSAL DISCOVERY: LEARNING CAUSAL GRAPHS
FROM DATA AND DOMAIN KNOWLEDGE

As anyone who tries to draw the causal graph even for a moderately complex
problem will immediately notice, it is not an easy task to decide which edges
should or should not be in the graph. This is alarming, since the validity of
graph-based causal inference is first and foremost based on the validity of
the graphical assumptions. However, we are rarely in the situation of having
to draw a graph out of thin air, but in many cases we will have access to
observational data that stems from the underlying SCM. Given that this SCM
links the causal graph and the generated data, there are several methods of
exploiting this connection to learn the causal graph from data. On the other
hand, it is clear that data alone cannot be sufficient to infer the causal graph,
as this would again imply that causal inference is possible from data alone.
Therefore, we will also take the time to consider how domain knowledge can
be used to augment the presented learning algorithms.

3.1 Different algorithmic approaches

The main classes of causal discovery algorithms are given by constraint-based
and score-based algorithms. Whereas the constraint-based algorithms exploit
the correspondence of graphical and statistical independence, the score-based
algorithms view the graph as part of a generative model and reduce the
problem to the well-known maximum likelihood formalism from statistical
learning [46]. There are other interesting approaches to causal discovery,
such as the LiNGAM method that exploits independence constraints on the
error terms, but we will focus on the two main classes. The goal is not a
textbook treatment of all available algorithms, but only reaching the level of
understanding that is necessary for the remainder of this thesis. For the same
reason, we will not discuss concrete implementations of the ideas, as these
can be used interchangeably in all of the subsequently discussed applications.
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Comprehensive surveys on the subject offer further detail for the interested
reader [47, 48, 49].

3.1.1 Constraint-based algorithms

As we have seen in Section 2.2.2, the causal graph fulfills Markov proper-
ties, which link graphical d-separation criteria to probabilistic conditional
independence statements. Constraint-based discovery algorithms exploit this
knowledge in order to check candidate graphs with respect to their ability
to represent the statistical independencies that the data suggest. For each
d-separation (X ⊥d Y | Z) that we can read from the graph, we inspect
the data and verify if the corresponding conditional independence statement
(X ⊥⊥ Y | Z) holds. If this not not the case, we know that the data cannot be
generated from an SCM whose structure corresponds to the graph in question.
In principle, we can now list all possible candidate graphs and apply this pro-
cedure to filter out one ill-suited graph after the other. Such a naive algorithm,
however, has two important technical weaknesses. First, it is in many cases
not practically possible to enumerate all DAGs with the required number
of nodes, as their number grows superexponentially in the number of nodes:
For n = 0, 1, 2, 3, ... nodes, the number of possible DAGs with n vertices is
given by the rapidly growing sequence 1, 1, 3, 25, 543, 29281, 3781503, ... [50].
This obstacle can be overcome by reversing the above procedure. Instead
of blindly trying out all possible DAGs, it is much more efficient to look at
the independencies in the data first and reverse-engineer a suitable graph
from this information. The most prominent example of this strategy is the
famous PC-algorithm, which is named after its creators Peter Spirtes and
Clark Glymour [51]. Second, in the above formulation, we have assumed that
we can flawlessly read off conditional independencies from observational data.
This is an unrealistic assumption, as the data is likely noisy or simply to small
to allow such inferences, which poses a considerably challenge to current con-
ditional independence tests [25]. Apart from these technical difficulties, there
is also a severe conceptual shortcoming of constraint-based causal discovery
algorithms: We are filtering out all graphs whose graphical independence
structure does not match the statistical independencies in the data, but are
we left with only one, namely the causal, graph in the end? As we have
already discussed in 2.2.2, all other graphs that are Markov-equivalent to the
causal graph will generate the same independence constraints, meaning that
constraint-based causal discovery can only find the correct Markov-equivalence
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class of graphs instead of the correct graph. Given that Markov classes can
consist of many different graphs and only the causal representative can be
used in downstream causal inference tasks, this is a major problem. However,
we will shortly see how domain knowledge can be used to mitigate the issue.

3.1.2 Score-based algorithms

Score-based algorithms reduce the discovery problem to a maximum likelihood
problem by building a generative model based on the candidate graph and
checking how likely such a model is to have generated the observed data.
Given the candidate graph, we have to prescribe a parameterized form

p(Xi|Πi, θi) (3.1)

of the associated CPDs for each of the nodes, such that we can use the
resulting Bayesian network as generative model. We can then build up the
joint distribution over all nodes by multiplying the CPDs and calculate the
likelihood of the data as

L(G) = p(D|G, θG) (3.2)

with
θG = argmax

θ
p(D|G, θ) (3.3)

and
θ = (θi)i=1,...,n (3.4)

Given a candidate graph G, finding the associated optimal parameterization θG
is a standard optimization problem and the same algorithms as for any other
optimization problem can be used. Provided that this optimization can be
solved and that the computation of the likelihood has a tractable form, we
are again at the same dilemma as in the constraint-based case. The number
of DAGs is too high to compute the respective likelihood for each of them. As
in the PC algorithm, the problem can be mitigated by building up suitable
candidate graphs in a strategic way. On the other hand, this time we have
an explicit figure of merit, namely the likelihood function L that we want
to maximize, so we can see this as an instance of an optimization problem
over a discrete search space. There are different ways of dealing with the
discreteness that prevents us from using generic optimization techniques, such
as the well-known gradient descent. Using a simple greedy approach makes
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the discrete search a tractable problem by transforming it into a sequence
of problems with a restricted search space: We start out with a graph that
contains no edges, and compute the likelihood for all graphs that we can reach
by adding a single edge. We greedily add the edge with the highest score and
repeat the procedure, until no further improvement is possible. Subsequently,
a pruning phase can be employed to remove superfluous edges and thereby
reduce the complexity of the resulting DAG [52].

A second approach transforms the discrete search space into a continuous
one by a slight reformulation, using the concept of an adjacency matrix : For
a graph G = (X,E) with vertices X and edges E, the associated adjacency
matrix is given by A = (aij)i,j=1,..n with

aij =

{
1 if (Xi, Xj) ∈ E

0 else
(3.5)

If we allow arbitrary values in [0, 1] instead of only binary ones, and
make the generative model depend smoothly on these values, we can per-
form gradient based optimization on A. By thresholding, the result can be
retransformed into a binary matrix, which can then be interpreted as a graph
again. In order to restrict the search space to contain only acyclic graphs,
a penalty term that enforces acyclicity in terms of the adjacency matrix
must be introduced, before Lagrange optimization is possible [53, 54]. As in
the constraint-based case, several problems remain. First, the score-based
approach requires the specification of additional information (e.g. the func-
tional form of CPDs) to turn the graph into a generative model that can be
used to calculate a likelihood. If this information is misspecified, the quality
of the causal discovery procedure will deteriorate accordingly. Second, the
purely likelihood-based approach leads to overfitting: An overparameterized
model with many unnecessary edges can always perform at least as well as a
model that contains only a subset of the edges, since unnecessary parameters
can simply be set to zero. It is therefore essential to add a penalty term
that punishes model complexity [55]. Third, most scores are borrowed from
structure learning for general, possibly non-causal, Bayesian networks, where
it is seen as advantageous to have equal scores for graphs in the same Markov-
equivalence class, as they can represent the same probability distributions.
As discussed above, this is a severe disadvantage if we are interested only in
the causal graph as a special representative of the optimal equivalence class.
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3.2 Domain knowledge in causal discovery

As we have seen above, there are several obstacles in purely data-based causal
discovery, such as the enormous search space and the indistinguishability of
Markov-equivalent graphs. Luckily, we are often in a position to support
the algorithms with domain knowledge. In most applications, it is not
hard for a human to specify some edges which are obviously required if the
graph is to be the causal one, as well as some other edges which can never
occur in the causal graph. Often, this knowledge stems from a temporal
order: In industrial manufacturing, the results of the first processing step
could influence variables in the second processing step, whereas edges in
the antitemporal direction can be excluded. Another source of knowledge
are basic physical facts: The temperature will determine the value that is
displayed on a thermometer, the reverse direction is out of question. A third
category of domain knowledge is expert knowledge: A production expert
often knows a set of causal implications that hold true in the manufacturing
process, e.g. the logistics of how intermediate products are distributed across
the different machines for the next process step.

Given some edges that must or must not be present in the causal graph,
we need a way to communicate this information to the aforementioned causal
discovery algorithms. Unfortunately, most of the algorithms were not designed
with this requirement in mind, so there is no unified interface for passing
domain knowledge to an arbitrary algorithm. However, a closer manual
inspection often leads to at least one feasible option per algorithm: In the
case of an algorithm that relies on naive enumeration of all DAGs, in order to
subsequently check independency constraints or evaluate a likelihood score,
we can just leave out all of the candidate graphs that do not meet our
requirements, which saves us from unnecessary computational efforts. In the
PC algorithm, we can initialize the graph scaffold with all our required edges
and refrain from adding any forbidden edges. The score-based algorithms
even allow multiple possibilities: For a greedy algorithm that adds one edge
at a time, we can again start by adding all required edges and refrain from
adding any forbidden edges afterwards. Another possibility is to add explicit
penalty terms to the score, which is a softer way of preventing the algorithm
from selecting unwanted edges. Conversely, there can be reward terms for
selecting required edges. These soft constraints have the advantage of being
fault tolerant with respect to misspecified domain knowledge: Even an expert
can make mistakes in enumerating many required or forbidden edges, and
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in such a case, the optimization can still overrule this knowledge if the data
demands it, given that the hyperparameters are chosen suitably. If the expert
wants to explicitly specify a degree of certainty about each domain knowledge
item, we can transform the above likelihood optimization into a maximum a
posteriori (MAP) optimization by introducing a prior p(G) over all graphs:

L̃(G) = p(G|D) ∝ p(D|G) · p(G) = L(G) · p(G) (3.6)

Such a prior can even be further decomposed into a prior over certain edge
probabilities. On the other hand, if we set p(G) = 1 for all graphs that are
compatible with the domain knowledge and p(G) = 0 for the rest, we recover
the above method of simply excluding all non-compatible graphs from the
search space.

It is worth noting that the relation between domain knowledge specification
and causal discovery is not unidirectional: Running causal discovery and
inspecting the result can in turn serve as a basis for discussing specific edges
with domain experts. For instance, the initial discovery result could show
edges that the expert considers unrealistic, and these can subsequently be
added to the list of forbidden edges. Afterwards, another run of the discovery
algorithm with the improved domain knowledge produces a second proposed
causal graph. Iterating this process ideally leads to an increase in both the
quality of the resulting graphs and the amount of codified domain knowledge.



4. CAUSAL END-TO-END ANALYSIS

After the above discussion of causal inference techniques, it is time to distill a
holistic strategy for conducting causal analyses. The main challenge that we
want to address is answering interventional queries based on available domain
knowledge and observational data. For this purpose, the (causal) end-to-end
analysis workflow was developed and implemented by the author during his
PhD studies. An open-source implementation as a Python package is available
on GitHub [4] and maintained using continuous integration techniques to
ensure a working state for other researchers and practitioners.

4.1 Components of a holistic causal analysis

In order to select suitable components for the end-to-end analysis from the
available modelling strategies discussed in the previous sections, we work
our way back from the goal. If we want to answer interventional queries, we
should only consider models on the second layer of the Pearl Causal Hierarchy.
More powerful models, such as a full SCM, are more complex to build and we
do not need their additional third layer capabilities to answer our queries of
interest. This observation already suggests that we should focus on graphical
models, which leads to a necessary decision between two alternatives:

1. A causal graph, together with Pearl’s do-calculus and an estimation
technique, can answer all identifiable interventional queries: Our query
is stated in terms of do-expressions, which the do-calculus can often
convert into do-free probabilities. The problem is then reduced to
estimating the latter probabilities from the observational data, which is
the central task of statistics and therefore a well-studied area.

2. A Causal Bayesian Network offers even stronger functionality, consider-
ing that we can directly use it as a generative model to sample from
the interventional distribution of interest. The price we pay for this
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functionality is the need to know the functional form of each involved
CPD as well as the distribution over the exogenous variables.

Since the first approach is sufficient to answer our queries and does not
require the explicit modelling of the exogenous variables, we select the bare
causal graph as our model of choice. As for the estimation strategy, we can
use linear regression as a well-established, hyperparameter-free default setting
and switch it out for more sophisticated techniques if the DGP is suspected
to be nonlinear. With these pillars in place, our strategy for answering causal
queries based on a causal graph and observational data is mapped out. The
central remaining obstacle is the distillation of the causal graph from domain
knowledge and observational data, but we have already introduced causal
discovery as a solution for exactly this problem in Section 3. In order to
keep track of the domain knowledge, which turned out to be an obstacle in
discussions with domain experts, the author developed the concept of the
knowledge graph. It features the same nodes as the causal graph, but visually
indicates all edges whose presence is required or forbidden in the causal
discovery result (cf. Figure 4.2). As mentioned in Section 3, many discovery
algorithms only provide the Markov-equivalence class of the causal graph.
Therefore, edges under whose orientation the equivalence class is invariant are
left unoriented in the causal discovery result. In order to advance to a fully
oriented DAG, which is in general necessary to proceed to the identification
step, we suggest that the orientation of these edges is manually decided in
cooperation with a domain expert. An alternative route for dealing with
partially oriented graphs would be a sensitivity analysis, i.e. the remainder
of the end-to-end analysis is carried out for all possible orientation choices
(cf. Section 5.1.1). However, the effort required for this strategy grows
exponentially with the number of unoriented edges, such that it is not always
feasible in practice. The three main pillars of causal discovery, estimand
identification and estimation are supplemented by data preprocessing and
reporting steps.

4.2 Step-by-step description

In summary, by causal end-to-end analysis, we mean the following procedure
for a given dataset and given causal effects of interest.

1. We preprocess the data by deleting, adding, rescaling or combining
variables.
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2. We pass domain knowledge by specifying which edges must or must not
be part of the causal graph.

3. We run a causal discovery algorithm that respects the domain knowledge.

4. We postprocess the proposed causal graph by deleting, adding, reversing
or orienting a subset of edges in the causal discovery result.

5. We identify an unbiased statistical estimand for each effect of interest
by applying the do-calculus to the causal graph.

6. We estimate the estimands by a method of our choice.

7. We report the results of the analysis.

Figure 4.1 illustrates how the steps of the analysis depend on various
inputs. We can ignore the depicted validation step and the distinction between
qualitative and quantitative domain knowledge for now, as these aspects will
be developed and discussed in great detail in Part III of this thesis.

4.3 Software contributions

In order to perform the above steps of a causal end-to-end analysis, the
author developed the open-source cause2e Python package [4]. Internally, the
package relies on pycausal [56], which is a Python wrapper around the popular
TETRAD Java application [57], to perform the causal discovery step, whereas
identification and estimation are delegated to DoWhy [58]. The cause2e
package takes care of the interface between pycausal and DoWhy, including
functionality for postprocessing partially oriented causal discovery results.
Furthermore, methods for reading and preprocessing data from different
formats are provided. Domain knowledge can be efficiently passed, managed
and visualized using custom classes and the knowledge graph. Methods for
validating causal models, including quantitative probing and domain-agnostic
refutation checks (cf. Part III for a discussion of these methods) are provided
to ensure reliable results. Each analysis is summarized automatically in a
detailed pdf report that can be used to communicate application-specific
assumptions and the results of the analysis. Tutorial notebooks can be found
on the cause2e GitHub page [4]. It has to be mentioned that the DoWhy
package has recently sparked the creation of the PyWhy organization with
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Fig. 4.1: The causal end-to-end analysis includes data preprocessing, domain knowl-
edge management, causal discovery, identification, estimation and valida-
tion, before an automated report is generated.

the goal of creating an open-source ecosystem for causal machine learning [59].
PyWhy’s commitment is to "build and host interoperable libraries, tools, and
other resources spanning a variety of causal tasks and applications, connected
through a common API on foundational causal operations and a focus on
the end-to-end analysis process". With a growing open source community
behind it (instead of a single PhD student) that extends the core DoWhy
functionality [60], PyWhy will hopefully make cause2e obsolete soon and
provide a durable and continuously supported implementation of the above
causal end-to-end analysis.
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4.4 Sprinkler example

In order to illustrate the concept of the causal end-to-end analysis depicted in
Figure 4.1, we apply it to our sprinkler example and finally solve the mystery
whether sprinkler activation leads to a slippery lawn.

4.4.1 Setup and preprocessing

As a ground truth, we prescribe a data generating process following Figure 1.2
and generate 10000 samples from it that are provided as observational data for
our exemplary analysis. Preprocessing is not necessary, since all the variables
except for the season are chosen to be binary with zero corresponding to False
and one corresponding to True. A use case requiring real preprocessing is
described in Section 8.2.

4.4.2 Causal discovery

In addition to the observational data, we provide some domain knowledge
items for recovering the causal graph:

1. We forbid all edges that originate from "Slippery".

2. We forbid all edges that go into "Season".

3. We forbid the edges "Sprinkler" → "Rain" and "Season" → "Wet".

4. We require the edges "Sprinkler" → "Wet" and "Rain" → "Wet"

In this scenario, we could naturally prescribe most of the graph from domain
knowledge, but we leave multiple edges unspecified for illustrative purposes.
The resulting knowledge graph in Figure 4.2 (left) gives a comprehensive
graphical overview of the communicated domain knowledge. Subsequently,
the causal graph is recovered by running fast greedy equivalence search, a
score-based causal discovery algorithm [61], and the result in Figure 4.2 (right)
indeed corresponds to the known DGP. Postprocessing of the graph is not
necessary, since our domain knowledge was sufficient to both find the correct
Markov equivalence class and exclude all non-causal representatives, such
that no edge has remained unoriented.
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Fig. 4.2: Causal discovery using observational data and domain knowledge: The
knowledge graph (left) indicates edges that are required by domain knowl-
edge in red. Forbidden edges are omitted from the graph whereas the
remaining possible edges are drawn dotted. The causal discovery result
(right) contains all required edges (red), but only a subset of the possible
edges (black) has been selected by the discovery algorithm based on the
observational data.

4.4.3 Effect identification and estimation

The graph is then used to identify a suitable linear regression for estimating
the quantitative probes. Even without rigorously applying the do-calculus,
it should be clear that it is sufficient to include the season as a confounder,
since it influences both the sprinkler and the slippery variable. Conversely,
the wetness must not be adjusted for in the linear regression, since this would
incorrectly block the causal pathway from the sprinkler to the slipperiness.
The remaining rain variable can optionally be included as a covariate, but
it is not necessary. Controlling for the season and fitting a linear regression
on the available data, the causal model yields an estimate of 0.52 for the
ATE of "Sprinkler" on "Slippery". The result makes sense: Turning on the
sprinkler makes the lawn more slippery because of the increased wetness. We
do not need to content ourselves with this particular ATE between our target
variables: Using the do-calculus and our causal graph, we can formulate and
estimate unbiased estimands for a multitude of other causal effects. Given the
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observational data and the knowledge about the necessary linear regression
covariates, the estimation consists only of fitting the linear regression models
on the observational data and reading off the causal effects from the resulting
regression coefficients. As an example, we estimate all possible ATEs, NDEs
and NIEs between the variables in the causal graph. Unfortunately, it is not
clear what a causal effect with a categorical treatment or outcome variable
is supposed to describe: Does "treatment" mean changing the season from
winter to spring, or from fall to summer, or from summer to winter? In order
to avoid any ambiguity, we simply filter the dataset to include only samples
recorded in winter or spring and binarize the resulting feature. Winter is
encoded as zero whereas spring is encoded as one. Alternatively, we could
use the whole dataset and cycle over all possible binary treatment/outcome
encodings for the season variable, in order to calculate an aggregation of
the causal effects. Cause2e provides different aggregation strategies, but we
skip this exercise while keeping in mind that categorical variables need to be
treated with additional caution compared to binary ones.

4.4.4 Result analysis

At the end of the causal analysis, the results of the various effect estimations
can be evaluated using different tables and visualizations. Figures 4.3 and 4.4
provide a quick overview of the causal mechanisms that govern the behavior
of the involved variables: Figure 4.3 shows heatmaps of the overall ATEs,
the direct NDEs and the indirect NIEs. Especially the black areas in the
heatmaps are helpful for discerning variable pairs that do not interact in the
sense of the effect type under consideration. Figure 4.4 helps to quantify
the most important influences by listing the largest effects for each effect
type. If we already know a specific effect of interest, such as the ATE of the
sprinkler on the slipperiness of the lawn, we can look it up in the full effect
tables provided in Figure 4.5. We can see that sprinkler activation makes
the lawn considerably more slippery: the ATE of 0.52 is halfway between the
minimal effect of zero and the maximal effect of one. Therefore our analysis
finally tells the gardener that sprinkler activation is only possible at the cost
of endangering people walking on the lawn. Additionally, we can read off
that the effect is fully mediated by the wetness of the lawn, meaning that the
danger is only caused indirectly by the increased wetness.
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Fig. 4.3: Heatmaps serve as a visualization of the causal effects between various
treatment-output-combinations. Different effect types, such as the ATE
(upper left), NDE (upper right) and NIE (bottom) can be illustrated in
different heatmaps.
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Fig. 4.4: In an exploratory causal analysis, the largest causal effects can be examined
to gain an overview over the most important causal relationships governing
the DGP.
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Fig. 4.5: For a detailed analysis of all causal effects, the full causal effect tables are
provided.



Part III

CAUSAL MODEL VALIDATION
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After having introduced the methods of graph-based causal inference from
observational data, we can now apply them to a wide range of problems.
However, an important part of the analysis is still missing: The presented
methodology allows us to predict the effect of interventions in settings where
direct experimentation would be too costly or risky such that inference from
purely observational data is preferable. By the same argumentation, it is of
paramount importance to validate the results of the causal analysis before
decision makers use the findings to manipulate the sensitive target domains.
In the remainder of this thesis, we will therefore discuss the problem of
causal model validation, which will complete the notion of a causal end-to-
end analysis. To reach this goal, the concept of quantitative probing will
be introduced as a largely model-agnostic causal validation strategy that
exploits quantitative domain knowledge. Following the motivation based
on Popper’s falsificationist validation ideas, a thorough simulation study is
presented as evidence for the effectiveness of quantitative probing. Limitations
of the concept are discussed and a practitioner’s guide aims at facilitating the
incorporation of the method in causal data science applications. Remaining
open questions are finally revisited, in order to provide a starting point for
future research.

The following content has in parts already been included in a research
article (soon to appear in the Journal of Causal Inference) by the author and
his advisors [2] or in a preprint version of the same article [62]. In order to
avoid self-plagiarism, direct quotes are listed explicitly here:

• Except for the newly added description of the train/validation/test
split, the review of correlation-based model validation in Section 5.1.1
is a verbatim quote of the corresponding section in [62] that has been
omitted from [2] in response to the reviewers’ feedback.

• The reviews of refutation-based causal model validation in Section
5.1.2 and exploiting causal domain knowledge in Section 5.2 are taken
verbatim from the "Related work" section in [2].

• The stepwise description of the simulation setup in Section 7.1.2 is a
slightly reworked version of the description in [2] and contains direct
quotes.

• Figures 6.1, 7.1 to 7.3 and 7.5 to 7.10, as well as their captions are taken
from [2] without any modifications.
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The overall structure and content naturally also overlaps with [62] and [2],
given that the same subject matter is presented as part of this thesis. However,
the thesis explains many points in greater detail and discusses ideas that were
not included in the above articles.



5. STATE OF THE ART

In order to motivate quantitative probing as a largely model-agnostic causal
validation strategy that exploits quantitative domain knowledge, we review
the existing literature and highlight the gaps that quantitative probing is
aiming to fill.

5.1 Model validation

As quantitative probing is a strategy for validating causal models, we will
first review the literature on validation procedures for both correlation-based
and causal models. Unfortunately, we will see that the currently available
methods either cannot be applied to causal modelling at all, are restricted to
specific types of causal models, or are unable to incorporate various forms of
domain knowledge.

5.1.1 Correlation-based models

In order to gauge the difficulty of the challenge that validation poses for
causal inference procedures, it is worth taking a step back and recapitulating
the reasoning behind the predominant strategy for validating traditional
correlation-based statistical learning methods. These methods, which encom-
pass both classification and regression algorithms, such as linear regression,
support vector machines or numerous variations of deep learning with neural
networks, have one crucial assumption in common [63]: Every sample that we
have observed in fitting the model as well as every sample that we will need
to feed into the final model for classification or regression is drawn from the
same distribution, and they all are drawn independently of each other. This
assumption is commonly referred to as the i.i.d. assumption, which stands
for independent and identically distributed. However, it is seldomly explicitly
mentioned because of how deeply ingrained it is in all correlation-based think-
ing about machine learning. The two parts of the term i.i.d. have important
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consequences for how we train or validate machine learning models:
The independence assumption is the implicit foundation of the current

practices for model training: If we did not assume that all samples are drawn
independently from each other, the likelihood

p(X, Y |ϕ) =
n∏

i=1

p(xi, yi|θ) (5.1)

of observing samples with features X and labels Y for a given parameteriza-
tion ϕ would not factorize over all the samples (xi, yi) for a lower-dimensional
parameterization θ. The consequence would be that the commonly used error
metrics, e.g. the mean squared error or mean absolute error, would lose their
theoretical backing: All of them are based on summing up independently
computed prediction errors of the model for each sample, which is justified
precisely by the factorization property of the likelihood (or equivalently the
summation property of the log-likelihood).

The assumption of identical distribution enables the use of the train/test
split for model validation: If all the samples that we will ever need to classify
stem from the same distribution as the observed labelled data, we can fit our
model on the observed data and be confident that the obtained model will also
be suitable for classifying the new incoming data. Even the thereby caused
risk of overfitting, i.e. learning overly specific characteristics of the training
data that fail to generalize and lead to a worse than expected performance on
new data, can be mitigated using the same distributional assumption: If we
do not train the model on all the labelled data, but only on a subset of it (the
training set), we can evaluate its performance on the rest of it (the test set),
given that the correct labels for the test set are available to us. Additionally,
we have not used the test set for model training and it is statistically identical
to the new data that we will have to classify in the actual task, because it
is drawn from the same distribution. Therefore, the expected value of the
prediction error for any unseen sample is equal to the mean error on the
test set. In summary, we can base our confidence in the predictions of the
model on its performance on the test data, which is enabled precisely by the
assumption of identical distribution.

If we want to compare multiple candidate models and select the best
among them, we cannot base the comparison on the error on the training set,
given that these measures are possibly tainted by overfitting. On the other
hand, we also cannot use the test set for model selection because the test
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set would no longer constitute new, unseen data after the selection process.
This issue can be overcome by the train/validation/test split, which divides
the non-test samples into a training and a validation set: After all models
have been trained on the training set, they can be compared based on their
performance on the validation set. The best model is selected accordingly
and the test set now can serve to judge the expected fitness of the model with
respect to new data.

If we now try to transfer these techniques to the training and validation
of causal models, we will inevitably face severe problems. The observational
data that we use to train our causal models can very well follow the i.i.d.
assumption. The notion of using test samples from the same distribution to
evaluate how well the model performs on hypothetical queries, however, is
diametrically opposed to the task of causal inference: We want to predict
what happens under certain interventions, and an intervention is precisely the
act of changing the data generating process. A change in the data generating
process, of course, generally entails a change in the distribution from which
the samples are drawn. Therefore, the train/test split cannot be used to
evaluate the performance of causal models.

5.1.2 Causal models

The unavailability of the train/test split has already lead to different streams
of validation research in the causal inference community. We will briefly review
the main directions and point out why there is still no universally agreed
upon solution that would constitute a causal analogue to the model-agnostic
train/test split.

Sensitivity analysis

Sensitivity analysis is a well-established tool in statistical modelling with
a simple premise: If we suspect that the model M in question might be
misspecified in one or multiple ways, but we are not able to correct all
the errors, we should accept them and change the form of output instead.
Suppose that we are able to identify all of the possible weaknesses as the
degree to which the true parameters might deviate from the model under
scrutiny. Using this knowledge, we can turn the initial point-estimate of the
prediction y = M(x) into a range of predictions that reflect our beliefs about
the remaining uncertainty. For a set M of models that we consider reasonable,
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we can then still report f(M) as our estimate, but with the addition that the
true value might as well lie anywhere within the set

Y = {M̃(x)|M̃ ∈ M}. (5.2)

Although we give up on the goal of a single precise estimate, the resulting set
Y of possible estimates can in practice be sufficient for subsequent decision-
making, since all estimates outside of Y are ruled out. The evaluation of
the additional models often comes at a negligible cost, when M is given as
a parameterized family of models and the same estimation procedure can
be reused. In a causal scenario, the uncertainty could arise from multiple
sources and different model-specific strategies for addressing it are proposed
in the literature [64, 65, 66, 67]. An exemplary source of uncertainty is given
by doubts about the presence or absence of an edge in the causal graph. To
avoid an overconfident but incorrect estimate, we use both variants of the
causal graph to identify and estimate the causal effect of interest and report
the set of plausible values. Downstream decisions can then be based on this
set to account for the underlying uncertainty, instead of being based only on
an unstable point estimate. While sensitivity analyses are easy to use and
allow for an honest communication of remaining doubts about the examined
model, they also suffer from a crucial drawback: In order to specify the set
M of possible models, it is necessary to identify not only the dimensions in
which the model might be incorrect, but also to what extent a deviation in
these dimensions is possible. Both questions are in general hard to answer
and any mistake threatens to void the guarantees that the sensitivity analysis
is supposed to give. Another pitfall depends on the intentions with which the
model was built: If its only goal is to predict a single causal effect, before
being abandoned, the set Y can be a sufficient outcome of the validation
procedure. If, however, we are planning to reuse the model or even just
components of it for future tasks, or if we are interested in the model itself
for understanding the underlying process, the sensitivity analysis does not
indicate how certain we can be that our initial model is indeed correct.

Benchmarking on simulated data

Another stream of research does not try to directly validate the causal model,
but the algorithm that was used to produce it [68]. As we do not have a
ground truth for our actual modelling task, we make up for it by applying
one or multiple simulations in the following procedure:
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1. We prescribe the DGP, e.g. a Causal Bayesian Network, ourselves and
draw a number of samples from it.

2. We specify a task to be solved for the simulated scenario, e.g. estimating
an average treatment effect between two of the involved variables.

3. We use the same algorithm as in the actual modelling task, e.g. causal
discovery via greedy equivalence search, identification via the do-calculus
and estimation via linear regression, to build and evaluate a causal model
for the simulated data.

4. We check whether the analysis was successful and use this information
to decide whether the same algorithm should be applied to the actual
task of interest.

Note that the last step is only possible because we have a ground truth in the
simulated scenario, given that we have full knowledge about the DGP. The
main idea is that an algorithm that will perform well on the simulated tasks
will also perform well on the real task. In principle, it is not necessary to
resort to simulated data if we can provide benchmark scenarios from the real
world where the underlying DGP is sufficiently well-understood. Instances
of such benchmarking approaches are given by various papers in the causal
discovery community that evaluate algorithms on the genomic Sachs dataset
[69, 48, 70]. Although circumventing the issue of missing causal ground
truth by the introduction of benchmark datasets is elegant and, especially in
the case of simulated ones, allows for precise customization, there is again
a major pitfall: It is simply not known how well the performance on the
benchmarking task transfers to the real task. Certainly, not every task is
sufficient for ensuring the quality of the candidate algorithm: If the real task is
a complex one with hundreds of variables but we only evaluate the algorithm
on a simulated variant with three variables, the benchmark will be of limited
use. Generalizing this observation, the missing piece can be phrased as a
statement about Lipschitz continuity of maps between the space of DGPs and
the performance of causal models. In [71], a Taylor expansion on the space of
DGPs is used as a first-order approximation: The error of the candidate model
for the real DGP is estimated by its error on a simulated DGP, corrected by
the product of an influence function and the distance between the two DGPs.
It remains problematic to obtain this distance without detailed knowledge
about the real DGP, which would make any causal analysis obsolete.
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Refutation tests

Given the shortcomings of simulation-based benchmarks, much of the current
research on causal model validation is focused on providing refutation checks
that can be directly applied to the causal model under scrutiny without the
need to go back and forth between simulated and real DGPs:

In the potential outcomes community, model criticism for Bayesian causal
inference [72] has been developed based on posterior predictive checks [73, 74].
The causal model is separated into a treatment model and an outcome model,
which are criticized independently. Both are generative parameterized models
and, for a given candidate model, discrepancy functions are evaluated to
summarize properties of the data generated from it, using a suitable prior. The
model is then evaluated by a comparison of these results and the discrepancy
that has been realized by the actually observed data. Drawbacks of the
procedure lie in its restriction to a special case of a potential outcomes model
where the posterior factorizes across outcome and assignment parameters, the
need to choose suitable discrepancy functions and the missing interface for
incorporating domain knowledge.

In out-of-sample causal tuning [75], a graphical causal model induces a
set of predictive models, namely one for each of the nodes. If the underlying
graph is misspecified, some of the predictive models will not rely on the correct
inputs (the Markov blanket) to predict the node. Each predictive model can
then be evaluated against domain knowledge about the actual distribution
over the respective nodes, such that wrong models can be detected. As
presented in [75], the method is restricted to probabilistic graphical models
and formulated for checks of non-interventional distributions that will be
passed not only by the causal model, but any model in the same Markov
equivalence class. We will build on the point of view that all variables in
a graphical model can be used for refutation checks and extend it to the
interventional setting.

In [76], domain- and model-agnostic refutation tests are employed to
probe candidate models. An example would be to replace the data for the
treatment or outcome variable by random data, which is independent of all
other variables. If the model predicts a non-zero causal effect, it should
clearly be refuted. Other tests include the synthetic addition of random and
unobserved common causes, as well as replacing the original dataset by a
subset or a bootstrapped version of itself. These tests serve as a filter to refute
implausible models. Although such checks are well in line with the scientific
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method [3], these generic tests might be too weak a filter for distinguishing the
correct model from plausible, but incorrect models. The authors explicitly call
for the extension of their methods by more domain-expert guided validation
tests to improve their practical relevance.

In summary, the existing validation methods are either tightly coupled
to a type of causal model or unable to incorporate problem-specific domain
knowledge that could be provided by a domain expert without deep knowledge
in causal inference.

5.2 Exploiting causal domain knowledge

Incorporating domain knowledge in the causal discovery step is an established
concept in graph-based causal inference, as we have seen in Section 3. The
presented approaches have in common that only knowledge about the presence
or absence of certain edges in the causal graph can be directly exploited.
Due to its relation with the discrete properties of the graph, we refer to this
type of knowledge as qualitative domain knowledge. However, this represents
only a fraction of the causal knowledge that could be available to domain
experts, which becomes clear by a slight rephrasing: The presence or absence
of an edge from node A to node B in the causal graph is equivalent to a
set of controlled direct effects of variable A on variable B being nonzero or
zero, respectively. Knowledge about other types of causal effects, such as
the average treatment effect (ATE), the natural indirect effect (NIE) or the
conditional average treatment effect (CATE) cannot be used in the above
procedures. In order to separate this wider notion of knowledge from the
restricted qualitative domain knowledge, we refer to it as quantitative domain
knowledge. It furthermore describes not only constraints demanding that
certain effects be either nonzero or zero, but also includes knowledge about
the effect strength on the full spectrum of real numbers. As its name suggests,
quantitative probing will make all quantitative domain knowledge available
for causal model validation.



6. APPLYING THE LOGIC OF SCIENTIFIC DISCOVERY TO
CAUSAL INFERENCE

In the following, we want to explore a line of thought that we consider a
solid foundation for the validation of causal models and scientific theories
in general. Naturally, most of the following reasoning belongs to the field
of philosophy, which is not the domain of expertise of the author. Given
that the same statement will also hold true for most of the readership, we
will refrain from a lengthy and analytical discourse, which would require a
precise definition of terms that philosophers have struggled to define for many
centuries. The arguments will be presented in a necessarily imprecise, but
tangible and hopefully instructive manner, such that the validation of causal
models can be connected to a much broader and better investigated spectrum
of scientific questions. For a more mature treatment, we refer the reader to
Popper’s seminal work on the subject [3].

6.1 A brief excursion into the natural sciences

In order to understand the challenge that the validation of causal models
poses, it is beneficial to briefly step away from the comparatively young field of
causal inference and to inspect a similar challenge in the more mature natural
sciences. In these sciences, which include physics, chemistry and biology,
the central goal is the formulation of theories that explain the behavior
of our surrounding physical reality. Such a theory could in principle take
many forms, such as a verbal description, a drawing or a mathematical
formula. If we allow for such freedom in the syntax of possible theories,
the thereby entailed freedom in the semantics is enormous. Any children’s
drawing could be considered a scientific theory, which is clearly not in line
with our understanding of research in the natural sciences. If we demand that
a theory must answer a prespecified question (whatever that means), most
of these nonsensical theories are immediately excluded. For the remaining
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theories, it is of course desirable to verify whether they indeed give the correct
answer to the question. A collection of beautiful mathematical formulas might
look convincing and elegant, but it is only useful as a scientific theory if its
predictions actually correspond to the reality that it is intended to model.
Deciding strictly whether a theory gives correct answers to our scientific
questions is necessarily impossible here, given that we have not defined
strictly what we mean by question and answer. However, it is clear that
different theories will often make conflicting statements and in most cases,
we want to resolve this conflict by declaring most of the candidate theories as
invalid ones, until no further inconsistencies are entailed by the remaining
set of theories. Well-known principles, such as Occam’s razor, advise us to
discard theories that are unnecessarily complex in favor of simpler ones that
seem equally suitable for explaining our reality, and have already found their
way into probabilistic modelling [77]. Nevertheless, we are still required to
judge whether a theory, however complex or simple it may be, does indeed
possess the ability to explain what is happening in the real world.

The challenge here does not only reside in the already mentioned difficulty
of precisely stating what this is supposed to mean, but there is an inherent
problem with proving theories: In order to prove any statement, it is necessary
to start with a collection of statements that are known to be true, and then
to logically derive the statement in question from these assumptions. This
method is called deductive reasoning. Such a collection of true statements
about the physical world, alas, is impossible to obtain, as philosophers have
long established by the use of simple thought experiments [78]. Contrary to
the paradise of pure mathematics, it is therefore impossible to employ only
deductive logic in the natural sciences, simply because we cannot provide a
starting point for the deductive machinery. This does by no means exclude
the use of deductive logic after having accepted some initial theories to be
true: Using Newton’s general laws of motion, many laws for special cases,
such as the different pendulum setups that are taught in every mechanics
class, can be derived in the true sense of the word. For the initial theories,
it is by definition impossible to use deductive reasoning, such that inductive
reasoning has become the method of choice in the natural sciences. This
line of thought can be seen as an inverse of the deductive method: Instead
of deriving many special cases from one established general law, we observe
many special cases and try to find a more general law that is consistent with
each of the special cases. In other words, we do not believe in the theory of
gravity and therefore expect an apple to fall on our head, but we observe the
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fall of the apple and speculate that there is an underlying theory of gravity
that describes the general mechanisms behind this particular observation.
When dealing with the actual physical world, inductive reasoning has one
decisive advantage over deductive reasoning: Although we cannot prove that
a theory is true in the sense that it correctly explains all data in the entirety
of our spatio-temporal universe, we can easily prove the same theory wrong
by providing one data point that is in conflict with the theory. A theory
that predicts all sheep to be white can easily be refuted by showing a single
black sheep. This refutation makes for an efficient tool in theory selection
or restriction, since the large majority of the above-mentioned nonsensical
theories are immediately and effortlessly disproven by the presentation of a
single counterexample.

Deductive and inductive logic can even be combined in a simple pro-
cedure. Observations are primarily used to inspire a theory that explains
them (inductive), before special cases of the theory are derived by sound
logic (deductive). If we now find any datum, be it in the original or in an
additional set of observations, that is inconsistent with any of the derived
versions of the theory, we can directly conclude that the original theory must
be wrong. It is important to realize that the absence of conflicting data does
not warrant the conclusion that the theory must be correct, since we cannot
exclude the possibility of conflicting, but yet unobserved data. Therefore,
the effectiveness of such a refutation process depends on the availability of
possibly conflicting data. The sheep-theory cannot be refuted if we do not
observe any sheep (no data). The same holds true if we restrict our data
collection to white sheep only: A large amount of data is still not useful,
unless we ensure an process of data collection that is not biased in favor
of the theory. Unfortunately, the problems can even arise before the data
collection by formulating theories that purposefully evade the possibility of
being refuted: A theory suggesting that every man who is born in the year
3023 will die in 3054 cannot be refuted by any data available to researchers in
the foreseeable future. Although the theory will never be refuted before the
year 3055, we are not inclined to believe it, simply because it has not earned
our trust by withstanding any refutation attempts despite being in conflict
with our prior beliefs. In order to be considered a worthy candidate, a theory
must be falsifiable, otherwise we can consider it useless. A falsifiable theory,
on the other hand, can gain our trust by not only conforming to the original
data that lead to its formulation, but also to subsequent data that is collected
with the aim of disproving it. As Popper writes: "But I shall certainly admit
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a system as empirical or scientific only if it is capable of being tested by
experience. These considerations suggest that not the verifiability but the
falsifiability of a system is to be taken as a criterion of demarcation." [3] To
summarize this philosophical excursion, the current practice of establishing
theories in the natural sciences can be described as follows:

1) Initial data is collected.

2) A falsifiable theory that explains the data is formulated.

3) Additional data is collected with the goal of possibly falsifying the
theory.

Step 3 can lead to different outcomes: If the additional data contradicts
the theory and any errors in measurement can be excluded, the theory is
clearly not correct and needs to be adapted (step 2), before more data is
collected. Contrarily, if the additional data does not contradict the theory,
its conformance with the theory supports it and increases the trust in its
correctness.

It is worth noting that this so-called scientific method has proven effective
to such a degree that it is now even used in disciplines where formal proof
would be an option: In mathematics, the Riemann hypothesis is believed to
be true by most mathematicians because more than 1013 falsification attempts
have failed [79, 80]. Although this would be considered compelling evidence in
most fields of science, it is seen only as a crutch by most mathematicians who
would prefer a proper proof or a counterexample to eliminate the remaining
doubts and settle the matter for all eternity [81]. This fear is nourished
by known examples, such as Skewes’s numbers [82, 83], where all numerical
evidence supports a conjecture, until a large number in the order of 10316
finally disproves it.

In software engineering, it is common practice to verify all parts of a
program, the units, by unit tests. These tests ensure the correct functionality
of each unit by verifying that it performs as expected for various given inputs.
If enough unit tests fail to expose a unit as flawed, it is trusted to work
as expected. Otherwise, the unit has to be rewritten until it passes all the
tests without error. This approach to software validation is in sharp contrast
to the ideas of pioneers like Dijkstra, who advocated for the use of formal
verification: "Today a usual technique is to make a program and then to test
it. But: program testing can be a very effective way to show the presence
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of bugs, but is hopelessly inadequate for showing their absence. The only
effective way to raise the confidence level of a program significantly is to
give a convincing proof of its correctness." [84] Although formal verification
had been abandoned as a validation method by most software developers,
the more recent advent of automated tools has lead to an increase in its
popularity, especially for safety critical applications [85, 86].

6.2 Challenges in the falsification of causal models

Coming back to the realm of causal inference, it seems straightforward to
apply the logic of causal discovery to the challenge of validating causal models.
Analogously to physical theories, such as the law of gravity, causal models are
also theories that aim at explaining our surrounding reality. Therefore, we can
apply the logic of scientific discovery and collect data in an attempt to falsify
the causal model after its original formulation. At this point, however, we
should realize a crucial difference between causal models and other theories in
the natural sciences. In physics, we can usually observe the quantities that we
are reasoning about by setting up experiments in a safe environment that we
consider similar enough to the target domain. If we want to model the behavior
of a giant spring on Mars using Hooke’s law, we can build a small spring on
Earth and observe the data that it generates. After gathering sufficient data
in these inexpensive settings, we can then decide that we trust the model
enough to predict the behavior of the giant spring on Mars, which saves us
the inconvenient and costly journey that would be necessary to perform the
experiment in the target domain. In the causal setting, an analogous scenario
could be the testing of a new drug for medical patients. Just as the journey to
Mars, it is desirable to avoid direct testing on the patients with a randomized
controlled trial (RCT): If the drug works, we have possibly sacrificed the
lives of the patients in the control group for the study. If the drug has no
effect at all, both the treated and the control groups have foregone the chance
of being treated with another possibly helpful therapy. If the drug has a
negative effect, again both groups are harmed. Therefore, we want to exploit
a theory that gives us the desired information about the effectiveness of the
drug without performing the otherwise necessary experiment, so we build a
causal model that can answer interventional queries, such as the effect of the
drug on the patients’ recovery. When it comes to validating our theory (the
causal model), we note that it is hard to find an analogous experiment that
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we can perform in a safe environment. We could of course perform an RCT
on a "validation group" of patients different from the original one, just as
Hooke’s law could be validated with data from a different spring. However,
this immediately poses two new problems: Firstly, it is hard to find such a
validation group of patients that would constitute a "safe environment" for
experimentation without admitting the questionable hypothesis that some
human lives are more valuable than others. If the lives in the validation group
deserve the same protection as those in the original group, we gain nothing
by performing an experiment on the validation group: Validating the causal
model with the resulting data and thereby avoiding experimentation on the
original group causes the same harm as directly performing the experiment
on the original group. Secondly, even if we manage to find a validation group
that we would be willing to experiment on, for example a species of mice or
even apes, it is questionable whether the data is useful to validate a causal
model that should work for humans. The underlying problem seems to be that
laws in the natural sciences are far more universal than most causal models
that are intended to be used only for a very narrow domain of application. In
physics, it could even be worth doing the actual experiment because, despite
its cost, we might gain a greater understanding of the world by the formula
that offers additional insights other than the direct result of the experiment.
For causal models, the aspect of understanding the underlying mechanisms is
often secondary, as we are primarily interested in the answer to one specific
causal query, such as a single average treatment effect between two variables.

6.3 Quantitative probing

In order to overcome the above challenges in applying the logic of scientific
discovery to the validation of causal models, we propose the method of
quantitative probing, which has been co-developed by the author during his
PhD studies [2]. As explained above, it is possible and helpful to first derive
one or more falsifiable statements from the original causal model by the use
of deductive logic. These can subsequently serve as targets of our falsification
attempts. Such a derived statement could be a specific causal effect between
two variables in the causal model, and the deductive logic that is employed
to calculate it could be Pearl’s do-calculus in the case of an unparameterized
graphical causal model, or a simple probabilistic calculation in the case of a
Causal Bayesian Network. Other derived statements are in principle possible,
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but the investigated concept of quantitative probing focusses exclusively on
quantitative causal effects predicted by the model. Since these effects will be
used to probe the quality of the model, they are referred to as quantitative
probes or simply probes. It is important to note here that the selected
quantitative probes do not have to correspond to the actual causal effect of
interest of our investigation, which is referred to as the target effect. In the
drug example in Section 6.2, we could select the natural direct effect of gender
on recovery as a quantitative probe, even if we are ultimately interested
in predicting the average treatment effect of drug use on recovery. If the
causal model is trustworthy, it should correctly predict the natural direct
effect of gender on recovery. Otherwise, the model is falsified and should not
be trusted to give the right answer to our original query about the average
treatment effect of drug use on recovery. In fact, it is even advantageous
to use non-target effects as quantitative probes: Our knowledge about the
target effect is necessarily restricted, which is why we are performing the
causal analysis in the first place. Non-target effects, on the other hand, can
be well-understood and serve as falsification tools in a validation strategy
based on domain knowledge, without introducing any circular reasoning.

The general procedure for quantitative probing as a validation method
can be summarized as follows (see Figure 6.1):

1. Probe selection and specification: Select one or multiple non-target
effects and specify their true values.

2. Modelling: Construct a causal model.

3. Probe prediction: Use the causal model to predict values for the quanti-
tative probes.

4. Probe evaluation: Evaluate the prediction of each probe by comparing
the predicted values to the true values.

5. Model evaluation: Based on the probe evaluation, accept or refute the
causal model.

6. Target prediction: If the causal model has been accepted, use it to
predict the target effect.

The proposed procedure can be applied to any type of causal model,
as long as it is able to predict both the target effect and the quantitative
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Fig. 6.1: The six steps of a causal modelling workflow that uses quantitative probing
as a validation strategy. Steps that are part of the validation itself are
colored in orange, whereas steps that are performed by the modelling
algorithm are marked in blue.

probes. Even though there is still no direct usage of the quantitative domain
knowledge for building the causal model, the formulation of the quantitative
probes provides a way of indirectly incorporating the knowledge into the
falsification-based validation of the model. Combining these two advantages,
quantitative probing represents the first causal validation strategy that is
both model-agnostic and able to incorporate quantitative domain knowledge.

From a high-level perspective, we have reduced the problem of determining
the target causal effect to the problem of determining one or even multiple
other causal effects between the variables in the causal model. This might at
first seem disillusioning, but we have made progress: We are unable to directly
determine the target effect, which is why we are conducting the causal analysis
in the first place. For the quantitative probes, however, it is entirely possible
that they are either easy to determine or even already known. We have
therefore reduced an intractable original problem to one or more tractable
new problems, which is a classic way of problem solving. Unfortunately,
unlike in mathematics, knowing the answer to all the new problems does
not yield a definitive answer to the original problem: It is possible that our
model passes all tests by correctly recovering the quantitative probes, but this
only means that the model is not falsified. Due to the remaining uncertainty
that is inherent to the scientific method, the model could still be wrong and
therefore yield an incorrect estimate of the target effect, as we will see in
Section 7.4. This is lamentable, but it is an inherent and unavoidable flaw
of falsificationist model validation that we have to accept, as opposed to a
weakness specific to the method of quantitative probing.
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6.4 The sprinkler example revisited

Before we step into the statistical analysis of the effectiveness of the proposed
validation method, we illustrate the full procedure using Pearl’s sprinkler
example. The goal is again to evaluate the average treatment effect of the
sprinkler on the slipperiness of the lawn. Is the risk of slipping increased if we
turn on the sprinkler? In order to have a ground truth, we prescribe the usual
binary data generating process (cf. Figure 1.2) and generate 10000 samples
from it that are provided as observational data for our exemplary analysis.

6.4.1 Probe selection and specification

In this example, we could arguably write down a multitude of quantitative
probes without consulting a domain expert. For a clearer presentation,
however, we only choose two of them:

1. Our knowledge about sprinklers tells us that activating the sprinkler
should have a positive overall effect on the chance of the lawn being
wet, so we expect the ATE to be greater than zero.

2. The same holds true for the effect of the wetness on the slipperiness
of the lawn, which yields another quantitative probe in the form of a
positive expected ATE.

Note that quantitative probing can be applied to any type of causal effect,
as well as to any type of probe specification: We could have chosen to use
probes involving the natural direct effect, or probes where we do not only
expect a positive value, but more precisely a value in a given compact interval.

6.4.2 Modelling

For the modelling part, we use the previously introduced strategy of causal
end-to-end analysis, since the tools for it are readily available in the open-
source cause2e package [4], which was developed by the author during his PhD
studies. In order to show how both correctly and incorrectly specified causal
models are received by quantitative probing, we build two independent models
in parallel that only differ in the specified qualitative domain knowledge. The
first one, in addition to the observational data, exploits the following domain
knowledge items for recovering the causal graph:
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1. We forbid all edges that originate from "Slippery".

2. We forbid all edges that go into "Season".

3. We forbid the edges "Sprinkler" → "Rain" and "Season" → "Wet".

4. We require the edges "Sprinkler" → "Wet" and "Rain" → "Wet"

The second model receives qualitative domain knowledge for the same
edges, but the two required edges are specified in the wrong direction, whereas
the forbidden edges are left unchanged. The corresponding knowledge graphs
in Figure 6.2 indicate that seven edges are still unconstrained if we exclude cy-
cles. Subsequently, two causal graphs (cf. Figure 6.3) are obtained by running
fast greedy equivalence search, a score-based causal discovery algorithm [61],
on the respective sets of qualitative domain knowledge. The graphs are then
used to identify suitable linear regressions for estimating the quantitative
probes.

Fig. 6.2: The knowledge graphs visualize the correct (left) and incorrect (right) sets
of qualitative domain knowledge. Edges prescribed by the respective sets
of domain knowledge are marked in red, forbidden edges are not drawn at
all, and unconstrained edges are drawn dotted.
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Fig. 6.3: The recovered graphs correctly (left) or incorrectly (right) represent the
data generating process. Edges prescribed by the respective sets of domain
knowledge are marked in red, the rest of them has been added by the
causal discovery algorithm.

6.4.3 Probe prediction

Given the observational data and the knowledge about the necessary linear
regression covariates, probe prediction consists only of fitting the linear
regression models on the observational data and reading off the causal effects
from the resulting regression coefficients. The correct causal model yields an
estimate of 0.62 for the ATE of "Sprinkler" on "Wet" and 0.81 for the ATE
of "Wet" on "Slippery". The incorrect causal model yields estimates of 0 and
0.81, respectively.

6.4.4 Probe evaluation

In both cases, the probe evaluation is straightforward: For the correct causal
model, both probe estimates are evidently greater than zero, which is in accor-
dance with the previously specified expectations. Note that the hypothetical
extreme values of the causal effects are −1 and 1, respectively, meaning that
there is even a comfortable margin of error around both estimates. For the
incorrect causal model, the ATE of "Wet" on "Slippery" is still greater than
0. This illustrates that incorrect causal models can still succeed at recovering
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quantitative probes. However, the second probe is estimated to be 0. In this
case, we can even exclude a statistical error, since there is no directed path
from treatment to outcome in the corresponding causal graph. Therefore, the
estimate for the effect will always be 0, regardless of the supplied observational
data, and we do not have to worry about tolerances.

6.4.5 Model evaluation

The correct causal model is evaluated to be trustworthy, since it has success-
fully recovered all quantitative probes. Contrarily, the incorrect causal model
has been detected by one of the probes, leading to its rejection, possibly
followed by further investigation and subsequent adaptation. It is probable
that the erroneous reversal of the two required edges, which might have
been due to a typing error, will be detected, such that the correction of this
error will lead to the true causal model. Note, however, that the above two
probes cannot be used to evaluate any reworked versions of the model: The
rework process constitutes an instance of overfitting to the probes, such that
an independent evaluation of the result is no longer possible. This issue is
discussed in more detail in Section 7.5.5.

6.4.6 Target prediction

The correct causal model yields an estimate of 0.52 for the ATE of "Sprinkler"
on "Slippery", therefore successfully recovering the fact that turning on the
sprinkler makes the lawn more slippery because of the increased wetness. The
incorrect (not reworked) causal model would yield an estimate of 0, since
there is no direct path from "Sprinkler" to "Slippery" in its causal graph. To
summarize, the quantitative probing method has declared the correct model
to be safe for use, leading to an accurate answer to the original causal query,
whereas the incorrect model has been prevented from giving a potentially
harmful inaccurate answer by being marked as unsafe.



7. SIMULATION STUDY

In the preceding sections, we have motivated the quantitative probing strategy
and illustrated the procedure in an exemplary analysis. In order to provide
empirical evidence for the effectiveness of the concept, we supplement the
above arguments for the strategy with an extensive simulation study. The
main hypothesis that has been investigated is the following:

Hypothesis 1 (H1): Although even a perfect prediction of the quantitative
probes does not guarantee a correct estimation of the target effect, the success
of the target effect estimation should on average increase with the number of
correctly predicted probes.

7.1 Setup

The simulation-based evaluation of a validation strategy necessarily involves
a complex chain of data generation, analysis and assessment steps. Therefore,
we attempt to logically derive each of the steps from our goal of corroborating
hypothesis H1, before separately summarizing the concrete choice of setup
and the selected parameters.

7.1.1 Deriving the components of the setup

The above hypothesis H1 generates some constraints for the simulation setup:

1. Since the success of each analysis needs to be measured, we need to use
scenarios with a known ground truth.

2. Since the statement is about the behavior of an ensemble of analyses,
we need to evaluate many independent analysis runs.

3. The previous two points leave simulation as the only option, as opposed
to real-world data where often either the ground truth is not known, or
not enough data can be provided.
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4. Since the overall relation between success at probe recovery and success
at target effect recovery needs to be measured, either a quantitative or
a visual evaluation of the aggregated results is necessary. Given the
unknown nature of the relation, we refrain from calculating correlation
coefficients and choose a visual approach based on suitable plots.

These points already prescribe the main pillars of the study. Regarding
the model-agnostic formulation of the quantitative probing strategy, it is
still unclear what kind of analysis should be performed in each of the runs.
Another open choice for the design of the study is the type of DGP that
should be used as ground truth. For this work, the author decided to focus
on graph-based causal inference. The DGP is therefore chosen as a randomly
generated Causal Bayesian Network, which is a fully customizable type of
DGP and at the same time a classic causal model in itself, allowing for
precise comparison of ground truth and causal model. In accordance with
this choice, a configuration of the earlier presented causal end-to-end analysis
(cf. Chapter 4) is selected as a graph-based modelling strategy. The graph-
based nature of both DGP and modelling strategy enable the evaluation of a
second hypothesis with only minor additional effort:

Hypothesis 2 (H2): Although even a perfect prediction of the quantitative
probes does not guarantee a correct recovery of the causal graph, the success
of the causal discovery should on average increase with the number of correctly
predicted probes.

In order to avoid needlessly complicated DGPs and analysis strategies,
only ATEs in a binary data setting are evaluated. However, the concept
naturally translates to other causal effects and data types: These choices can
be seen as implementation details of the modelling steps in Figure 6.1, which
leave the necessary validation steps unaltered. The remaining free choices
are now only related to parametrization details of the DGP and modelling
strategy, as well as to the measures that are used to evaluate the success
of each analysis. Concerning the latter point, we have chosen two different
measures for H1 and H2 to account for the different target entities.

1. The target effect estimation is evaluated by comparing the estimate τ̂
and the true value τ of the target causal effect on an absolute and on a
relative scale, leading to the measures

|τ − τ̂ | and
|τ − τ̂ |
|τ |

.
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There is no risk of dividing by zero, since we are only using DGPs with
nontrivial target effects: We require that there exists a directed path
from the treatment to the outcome in the causal graph. Otherwise,
any ATE is trivially zero or one, depending on whether treatment and
outcome coincide.

2. Similarly, the estimation of each probe is evaluated using the absolute
error. In order to account for numerical errors and statistical fluctua-
tions, we allow an absolute deviation of ϵprobe from the true value for
a probe estimate to be considered successful. The hit rate is defined
as the proportion of probes that have been correctly recovered by the
analysis.

3. The graph recovery is evaluated using the Structural Hamming Dis-
tance (SHD) ∆(G, G̃) [87], which is defined for two graphs G = (V,E)

and (̃G) = (V, Ẽ) that share a vertex set V , but whose edges E and
Ẽ possibly differ This measure checks for each node pair (A,B) ∈ V
whether G and G̃ agree on the type of edge between A and B, and then
returns the number of disagreements:

∆(G, G̃) = |E△Ẽ| −
∣∣∣{e ∈ E | r(e) ∈ Ẽ}

∣∣∣ (7.1)

where △ denotes the symmetric difference between two sets, and r(e)
is the edge that results from reversing edge e. The second term avoids
double-counting reversed edges. If one of the graphs is obvious from
the context, we shorten the notation to ∆G.

7.1.2 Step-by-step procedure

The above considerations can be put into practice by executing the following
steps multiple times:

1. Parameterization: Choose n (number of nodes), pedge (edge probability),
m (number of samples), phint (hint probability), pprobe (probe probability)
and ϵprobe (probe tolerance).

2. Ground truth generation:

(a) Draw a random DAG with n nodes x1, ..., xn. Random means that
for each of the n2 possible directed edges, we include the edge with
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a probability pedge. After all the edges have been selected, check
whether the result is a DAG with no isolated nodes. If not, repeat
the procedure.

(b) Draw a random binary CPD for each node xi, given its causal
parents Πi. The entries p(xi = 1|Πi = πi), which fully determine
the CPD, are sampled from a uniform distribution on [0, 1].

(c) Draw m samples from the resulting joint distribution over (x1, ..., xn).

(d) Select a proportion phint of all the edges (rounded down) in the
causal graph and add their presence to the qualitative domain
knowledge.

(e) Randomly choose a nontrivial target effect and pprobe · n2 (rounded
down) other treatment-outcome pairs that will serve as quantitative
probes.

(f) Calculate the corresponding ATEs for the target effect and the
probes from the fully specified Causal Bayesian Network.

3. Causal analysis: Run a causal end-to-end analysis (cf. Chapter 4), using
the m observational samples, the qualitative domain knowledge, fast
greedy equivalence search, the do-calculus and linear regression. If edges
remain unoriented after the causal discovery step, their orientation is
chosen randomly with equal probability.

4. Evaluation:

(a) Report the discovered causal graph, the estimate of the target
effect and the hit rate for the quantitative probes.

(b) Report the number of edges that differ between the true and the
discovered graph, as well as the absolute and relative error of the
target effect estimate.

We refer to the execution of these steps as a run. By aggregating the
results of many runs that all share the same parameterization, we accumulate
the necessary statistics to judge the effectiveness of the quantitative probing
strategy.



7. Simulation study 79

7.1.3 Parameter choices

In the next sections, we report the results for runs with the following parameter
choices:

1. n = 7 nodes are used in the DGP to ensure that the scenario is
sufficiently challenging for the causal analysis, but not needlessly com-
plicated. The graphs provide sufficient options for backdoor paths, while
still being easy to visualize and investigate.

2. An edge probability of pedge = 0.1 produces graphs that feature on
average 0.1 · 72 = 4.9 (allowing for loops) or 0.1 · 7 · 6 = 4.2 (excluding
loops) edges. Note that selection bias towards fewer edges is introduced
by our approach to resample when a cycle appears. On the other hand,
the constraint that there are no isolated nodes produces a bias towards
more edges, since at least 4 edges are needed to avoid isolated nodes.

3. For each DGP, m = 1000 samples are generated, such that sufficient
data is available to the causal discovery and estimation algorithms.

4. phint = 0.3 ensures that we pass 30% (rounded down) of the correct
causal edges as domain knowledge to the causal discovery procedure.
This choice is supposed to mimic real applications where domain experts
will be able to determine the presence and orientation of some, but not
all possible edges.

5. Analogously, pprobe = 0.5 ensures that we use half of the possible causal
effects as quantitative probes because not all of the effect strengths will
be known to domain experts in real applications.

6. By choosing ϵprobe = 0.1, we consider probe estimates successful if they
deviate no more than 0.1 from the true value on an additive scale. To put
the magnitude of the number into context, we note that all ATEs in the
binary setting lie between −1 and 1 such that a maximal discrepancy of 2
between true and estimated ATE is theoretically possible. The additive
scale, as opposed to the relative one, is chosen to avoid numerical
instabilities for ATEs close to 0.
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7.2 Software contributions

The implementation of the setup mainly rests on two open-source Python
packages that were developed by the author during his PhD studies:

1. Each causal analysis is performed via the aforementioned cause2e pack-
age [4], enabling the sequential execution of causal discovery, identi-
fication and estimation. Even the quantitative probing functionality
is already built into cause2e, as the idea was created during the early
development phase of the package. Internally, the package relies on
pycausal [56], which is a Python wrapper around the popular TETRAD
Java application [57], to perform the causal discovery step, whereas
identification and estimation are delegated to DoWhy [58]. Cause2e,
however, is only designed for carrying out independent causal analyses
and does not provide any functionality for benchmarking the validation
strategy itself by aggregating the results.

2. In order to evaluate the success of the overall strategy, the qprobing
package was created [5]. It internally uses cause2e to implement the
above described simulation setup and furthermore provides methods
for filtering and visualizing the results by incorporating additional
third-party open-source libraries. For the ground truth generation,
random DAGs are created using networkx [88] and extended to fully
parameterized Causal Bayesian Networks using pgmpy [89]. After all
the runs have been performed, the results are displayed in plots based
on matplotlib [90].

Both packages are freely available, open-sourced, thoroughly tested by
continuous integration techniques on a regular basis, and documented, in
order to ensure their usability by other researchers.

7.3 Results

In this section, we discuss the results of a simulation study that consists of 1378
runs following the setup in Section 7.1. Initially, 2200 runs were performed,
but 793 of them were aborted because of problems in the modelling process
that would have required manual intervention. Of the remaining 1407 runs, 29
were excluded because the true causal effect was so close to zero that numerical
instabilities occurred during the calculation of the relative estimation error.



7. Simulation study 81

As predicted above, our selection for acyclic DGPs introduced a bias on the
edge structure in the underlying causal graph that brought the mean number
of edges to 6.0, as opposed to the theoretical estimates of 4.9 (including loops)
or 4.2 (excluding loops).

Fig. 7.1: The top row shows plots of the absolute (left) and relative (right) differences
between the true target effect and the estimated result against the hit
rate. The bottom row shows a plot of the structural hamming distance
between the true causal graph and the causal discovery result against the
hit rate (left), as well as a histogram of the observed hit rates (right). In
the three scatterplots, the number of overlapping points is indicated by
the level of opacity.

Figure 7.1 visualizes the relations between the entities in the hypotheses
H1 and H2 in three separate plots. Contrary to the hypotheses, the expected
downward trend in estimation error or SHD with increasing hit rate is not
visible. In the two plots relating estimation error and hit rate (top row), it
even seems that increasing hit rates lead to a higher estimation error. At
least this concern can be explained by the bottom right plot in Figure 7.1:
The vast majority of the runs achieved a hit rate of at least 0.8, such that
the apparent increase in runs with a higher estimation error is simply due
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to the overall increase in runs. An explanation for the high hit rate lies
in the selection of the probes: In contrast to the target effect, which was
constrained to be nontrivial, the probes were allowed to be trivial. By our
parameter choice pedge = 0.1, the causal graphs are only sparsely connected
and most effects are indeed trivially zero due to the absence of directed
paths between treatment and outcome. For such a probe, the estimation is
successful for any analysis that does not mistakenly introduce a directed path
during causal discovery. Given our parameter choice phint = 0.3, the causal
discovery algorithm received sufficient qualitative domain knowledge to avoid
such errors in most cases.

In order to address the main problem of the missing downward trend, we
reduce the complexity of the plots by only showing the mean of each hit rate
column in Figure 7.2. After this modification, the error plots for both target
effect estimation and causal graph recovery show a clear downward trend,
at least in the sufficiently populated hit rate regions. The behavior in these
regions even looks linear, although there is no obvious theoretical justification
for this observation (cf. Section 7.6.2).

While Figure 7.2, contrary to Figure 7.1, decidedly supports our hypothe-
ses, we need to refer to a third visualization to account for the statistical
variability of the simulation and analysis process. As Figure 7.2 only shows
the means of the quantities, we enrich the contained information by the use
of boxplots in Figure 7.3. Only hit rate columns with at least 20 data points
are included in the boxplots, in order to avoid generating the impression
of reliable error bounds for columns with insufficient data. The empirically
determined quartile bounds, whiskers, medians and means still exhibit the
downward trend, with the notable exception of the quantities in the relative
estimation error plot (top right): The third quartiles and part of the medians
are precisely 1, which represents the many cases where an estimation error
was caused by the erroneous elimination of all directed paths between the
target variables in the causal discovery step.

In summary, the simulation study provides convincing empirical evidence
for both of our hypotheses: On average, a high hit rate in probe recovery
serves as a reliable indicator for the success of an analysis in both target effect
estimation and causal discovery. However, the reported success is only based
on aggregate measures. For an individual analysis, there is still a risk that
target effect estimation or causal discovery fail despite a high or even perfect
hit rate, as is evidenced by Figure 7.1. In order to carefully assess the thereby
evidenced shortcomings of the strategy, we will investigate exemplary failing
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Fig. 7.2: Aggregated results (means only): The top row shows plots of the mean
absolute (left) and relative (right) difference between the true target effect
and the estimated result against the hit rate. The bottom row shows a
plot of the mean structural hamming distances between the true causal
graph and the causal discovery result against the hit rate (left), as well as
a histogram of the observed hit rates (right).

runs more closely in Section 7.4 and explore the reasons for the unexpected
behavior. To complement this evaluation, Section 7.5 provides a guide for
practitioners that serves as a reference for applying the strategy safely to
real-world causal inference tasks.

7.4 Outlier analysis

In this section, we want to look more closely at runs that simultaneously
display a high hit rate and bad performance with respect to the target effect
estimation. To make this more precise, we define an outlier to be a run with
a perfect hit rate of 100 % and an absolute estimation error of at least 0.2.
The strict hit rate bound reflects our belief that models cannot be trusted
if they fail any falsification test. The error bound is admittedly a rather
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Fig. 7.3: Aggregated results: The top row shows boxplots of the absolute (left)
and relative (right) difference between the true target effect and the
estimated result against the hit rate. The bottom row shows a boxplot of
the structural hamming distances between the true causal graph and the
causal discovery result against the hit rate (left), as well as a histogram
of the observed hit rates (right). For each box in the boxplots, the green
triangle indicates the mean whereas the orange line indicates the median.
The lower and upper bounds of the boxes indicate the first and third
quartiles, respectively, and the whiskers around the boxes use the standard
interquartile range scaling factor of 1.5. Points that lie outside of this
range are plotted as singular outliers. Only hit rate columns with at least
20 data points have been included in the boxplots.

arbitrary value, given that there is no hypothetical domain background for our
simulated DGP that could provide a task-specific threshold for considering
an estimation attempt a failure. To put the magnitude of the number into
context, we note that all ATEs in the binary setting lie between −1 and
1, such that a maximal discrepancy of 2 between true and estimated ATE
is theoretically possible. If we filter the dataset in the simulation study
accordingly, 15 of the 1378 runs (highlighted in Figure 7.4) remain to be
further investigated.
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Fig. 7.4: Using an absolute estimation error threshold of 0.2 (dashed line) and a hit
rate threshold of 1.0 (rightmost column), 15 outliers (circled) are selected
for further investigation.

7.4.1 Connectivity

The true and discovered causal graphs of the first outlier are shown in
Figure 7.5. Although the true target ATE of x3 on x5 is 0.51, the causal
analysis has estimated it to be precisely 0. Looking at the graphs, this
can already be explained by the absence of directed paths from x3 to x5

in the discovery result. Although the discrepancy between estimated and
true value is large, all of the probes have been correctly recovered: This
is possible because the causal graph has two components, whose respective
skeletons are identical between ground truth and discovery result. For the
larger component, not only the skeleton, but also the orientation of all edges
has been correctly recovered. Therefore, all probes that include at least one
variable from the larger component seem to corroborate the model. As the
smaller component contains only the two variables that appear in the target
effect, there are no probes left to select that would lie entirely in the smaller
component. This explains why perfect probe recovery has been achieved. In
summary, the strategy has failed due to the probes and the target effect being
entirely unrelated.

In order to verify that the empirical findings in the previous section are
still valid for connected causal graphs, we filter out all runs with DGPs
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Fig. 7.5: Connectivity: Plot of the true (left) and discovered (right) causal graphs
for an outlier run with treatment x3 and outcome x5 (surrounded by small
box). In the discovered graph, the red edge x1 → x6 has been required by
domain knowledge. The edge x3 → x5 (blue) has been oriented incorrectly.

based on disconnected graphs and visualize the results for the remaining 653
runs in Figures 7.6, 7.7 and 7.8. The plots look largely similar to those in
the corresponding Figures 7.1, 7.2 and 7.3. Above, our selection for acyclic
DGPs without isolated nodes introduced a bias on the edge structure in the
underlying causal graph that brought the mean number of edges to 6.0, as
opposed to the theoretical estimates of 4.9 (including loops) or 4.2 (excluding
loops). By selecting only connected graphs, we expect denser structures,
which is confirmed by recalculating the mean number of edges to be 7.0. For
the sake of completeness, we report the mean number of edges for graphs with
more than one connected component to be 5.1. Since 11 of the 15 initially
identified outliers have also been filtered out, we need to find additional
explanations only for the 4 remaining ones.

7.4.2 Probe coverage

One of the remaining outliers illustrates an issue that is bound to appear in
practice: We do not have unlimited quantitative domain knowledge, such
that not every cause-effect pair can be used to formulate a quantitative probe.
Looking at Figure 7.9, the target effect of x5 on x6 has been erroneously
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Fig. 7.6: Results for all runs with connected causal graphs: The top row shows
plots of the absolute (left) and relative (right) differences between the true
target effect and the estimated result against the hit rate. The bottom row
shows a plot of the number of structural hamming distances between the
true causal graph and the causal discovery result against the hit rate (left),
as well as a histogram of the observed hit rates (right). In the three
scatterplots, the number of overlapping points is indicated by the level of
opacity.

estimated to be 0 instead of 0.28. The discrepancy is again due to an edge
reversal that leads to a trivially vanishing estimate. Contrary to Figure 7.5,
the target variables are connected to the rest of the causal graph, such that
we can hope to falsify the candidate model by a suitable probe. A manual
inspection shows that a probe that would detect the error is given by the
ATE of x3 on x6, which is trivially zero in the candidate model and non-zero
(in the non-degenerate case) in the true model. However, our simulation setup
was designed to include only half of the non-target effects as probes, in order
to simulate more realistic conditions, and this probe was not selected. The
same holds true for the other relevant probes given by the ATEs of x6 on
x5, x6 on x1, x5 on x2, x5 on x4, x3 on x2 and x3 on x4, respectively, such



7. Simulation study 88

Fig. 7.7: Aggregated results for all runs with connected causal graphs (means only):
The top row shows plots of the mean absolute (left) and relative (right)
difference between the true target effect and the estimated result against
the hit rate. The bottom row shows a plot of the mean structural hamming
distances between the true causal graph and the causal discovery result
against the hit rate (left), as well as a histogram of the observed hit
rates (right).

that the selected probes were not suitable for detecting the error. It seems
unlucky that all of these probes have not been selected, but with the high
number of runs some of these cases are bound to appear: The probability of
not selecting all 7 relevant probes is p7probe = 0.57 ≈ 0.78%, such that our 653
runs with connected causal graphs should produce roughly 5 such cases if we
assume a constant number of relevant probes. Indeed, one of the remaining
three outliers can also be fully explained by not having any of its relevant
probes selected. We can therefore deduce that it is important to provide
sufficient coverage of the model by quantitative probes.
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Fig. 7.8: Aggregated results for all runs with connected causal graphs: The top
row shows boxplots of the absolute (left) and relative (right) difference
between the true target effect and the estimated result against the hit rate.
The bottom row shows a boxplot of the structural hamming distances
between the true causal graph and the causal discovery result against the
hit rate (left), as well as a histogram of the observed hit rates (right). For
each box in the boxplots, the green triangle indicates the mean whereas
the orange line indicates the median. The lower and upper bounds of the
boxes indicate the first and third quartiles, respectively, and the whiskers
around the boxes use the standard interquartile range scaling factor of 1.5.
Points that lie outside of this range are plotted as singular outliers. Only
hit rate columns with at least 20 data points have been included in the
boxplots.

7.4.3 Probe tolerance

Even in cases where we have enough probes and they are related to all
important parts of the DGP, the success of the procedure is not guaranteed.
For the model in Figure 7.10, the target ATE of x1 on x2 was estimated to be 0
instead of −0.24. Similarly to the last outlier, manual inspection reveals that
the ATE of x4 on x2 must differ between the two models. Although the probe
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Fig. 7.9: Probe coverage: Plot of the true (left) and discovered (right) causal graphs
for an outlier run with treatment x5 and outcome x6 (surrounded by small
box). In the discovered graph, the red edges x3 → x5 and x3 → x1 have
been required by domain knowledge. The edge x5 → x6 (blue) has been
oriented incorrectly and the edge x5 → x2 (blue dotted) is missing.

has been selected in this case, the incorrect causal model still has not been
detected. A closer examination of the probe reveals the problem: The true
ATE of x4 on x2 is indeed nonzero, but its absolute value of 0.07 is smaller
than our selected tolerance parameter ϵprobe. Therefore, the estimated value of
0 lies within the acceptance interval of (−0.03, 0.17). This example illustrates
the importance of the tolerance parameter for the overall effectiveness of the
strategy. Similarly, the relevant probes given by the ATEs of x4 on x5, x1 on
x0 and x1 on x4, respectively, have suffered from too lenient probe tolerances.
On the other hand, the previously discovered probe coverage issue also comes
into play, as the ATEs of x1 on x5 and x1 on x5 have not been selected in
the first place and have therefore not detected the misspecified model. For
the last remaining outlier run, a similar mixture of probe coverage and probe
tolerance issues has lead to the failure of the validation strategy.
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Fig. 7.10: Probe tolerance: Plot of the true (left) and discovered (right) causal
graphs for an outlier run with treatment x1 and outcome x2 (surrounded
by small box). In the discovered graph, the red edges x6 → x0 and
x3 → x5 have been required by domain knowledge. The edge x1 → x2
(blue) has been oriented incorrectly and the edge x4 → x5 (blue dotted)
is missing.

7.5 Practical considerations for quantitative probing

Before we summarize the findings of the above sections and formulate questions
for further research, we want to briefly revisit the individual steps of the
quantitative probing strategy from a practitioner’s viewpoint. Figure 6.1 and
the accompanying stepwise description in Section 6.3 can serve as a rough
guideline for causal modellers, but in order to enable a fruitful realization of
all the proposed steps, it is necessary to provide additional advice on how to
apply each step in practice.

7.5.1 Probe selection and specification

The quantitative probes are the central element of the validation strategy. As
we have seen in Section 7.4.2, it is important to provide a sufficient number of
them. This is also evident from the falsificationist point of view that motivates
the quantitative probing strategy: Each probe provides another falsification
test that has the potential to detect a misspecified causal model before we
use it for the target estimation and risk downstream damages. However, the
exemplary outlier in Section 7.4.1 shows that it makes no sense to blindly
maximize the number of probes: In cases where the probes are not sufficiently
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connected to the variables in the target effect, they fail to uncover problems
in the decisive region of the causal graph. It is probable that the usefulness of
a probe could be judged by different metrics, such as its distance to the target
variables, but there are no studies to the knowledge of the author. Although
we might be tempted to say that additional probes, even if ineffective, can
never lead to a worse performance of the overall validation procedure, there
are substantial arguments in favor of a careful probe selection: Firstly, the
hit rate is no longer a reliable figure of merit if the probes are too weak.
In Section 7.4.1, we have witnessed an analysis with perfect hit rate and
substantial target estimation error. If practitioners still prefer to use all their
available domain knowledge, they can overcome this obstacle by weighting the
contribution of each probe to the hit rate individually. Secondly, it is evident
that probe selection and specification cannot be performed independently of
each other: There is no use in specifying probes if we cannot obtain their
true values, and each additionally selected probe requires work to find its
true value. The amount of work depends on the procedure that is used to
find this true value, and there are two main possibilities:

Experimental data

After the distillation of the falsification targets, we can collect additional data,
in order to compare the empirically measured causal effect to the one that is
entailed by the causal model in question. Although it seems counterintuitive
to avoid a direct experiment on the target effect, only to then validate the
surrogate causal model using even more experiments, there are scenarios
where this approach is justified: It is conceivable that the data collection
for testing the derived statements is possible at a considerably reduced cost,
when compared to performing the original experiment that we are determined
to avoid.

Quantitative domain knowledge

In other cases where experiments for obtaining the true values of the derived
statements are costly or even impossible, we can frequently resort to the
preferred route of using expert knowledge: Although it might be impossible
to evaluate the natural direct effect of gender on recovery by the use of a
randomized controlled trial, medical experts could provide us with the answer
in some cases. These cases are desirable, since we do not have to perform
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any experiments anymore, with the minor disadvantage of having to find an
expert and occupying their time. In order to distinguish this form of expert
knowledge from other forms, such as the knowledge about the presence or
absence of specific edges in the causal graph, we refer to any knowledge about
the numeric causal effects as quantitative domain knowledge, whereas any
knowledge about the discrete nature of the causal graph will be summarized
under the term qualitative domain knowledge.

Despite the apparent difference in form and intended use of the knowledge
items (cf. Section 5.2), it is plausible that the same persons will be experts for
both qualitative and quantitative domain knowledge. This leads to synergy
effects in the process of building and validating the causal model if a graphical
modelling approach is used: The expert for qualitative domain knowledge is
already required for partially or fully specifying the relevant edges in the causal
graph. If the same person is able to answer our questions about quantitative
causal effects, the additional effort for quantitative probing is minimized.
It is particularly worth noting that the fear of having to keep the domain
expert around while the model is fitted is baseless: Even though we have to
provide the fully specified causal model for the comparison of the expected
and predicted values of the quantitative probes, their initial formulation
does not require any model. We only need to know which variables will be
included in the final model, but this is already a prerequisite for eliciting the
qualitative domain knowledge, such that no additional constraints arise by
applying quantitative probing. However, it is of course beneficial to reconvene
with the domain expert at the different stages illustrated in Figure 6.1, e.g.
when a refutation test fails and we suspect the error to be on the probe side
instead of the modelling side.

7.5.2 Modelling

Building a causal model refers not only to constructing the correct causal
graph, but to all the steps that we need to perform in order to arrive at
a causal model that can predict both the target effect and the probes. It
is worth noting that quantitative probing can be seen as a model-agnostic
validation method: There is no need for us to know the internals of the
model. For example, it is irrelevant whether the model is a causal graph
with supplementary observational data and an estimation strategy, a causal
Bayesian network, a fully specified structural causal model or even a non-
graphical potential outcomes model. Neither does it matter how we arrived
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at the final model. In the case of a graphical model, we do not need to know
whether the graph has been prescribed by domain knowledge, derived purely
from the data via causal discovery, or resulted from a combination of both
approaches. All that we expect from a model that is suitable for quantitative
probing is the ability to predict both the target effect and the probes. This
is of great practical advantage, since it allows researchers to independently
modify the internals of the models and the validation procedure, as long as
the interface between the two entities remains unchanged. Therefore, we
refrain from recommending particular modelling strategies, as this step is not
a part of the validation itself.

7.5.3 Probe prediction

After a model has been provided, we query it about the values of certain
causal effects, which are given by the quantitative probes. Again, the model
can be treated as a blackbox for this step. In order to adapt this point of
view, it is necessary to consider the concrete prediction strategy an internal
detail of the model itself. A causal graph together with observational data
could otherwise give different predictions for the causal effects, depending
on whether we use linear regressions or more sophisticated estimators. This
does not diminish the previously mentioned benefits of causal models with
respect to explainability and interpretability, and neither does it free the
modeller from choosing an appropriate estimation technique. It only signals
that the validator does not need to know the details of the model, which
leads to a desirable separation of concerns, comparable to the clean division
between causal discovery, identification and estimation steps within graph-
based modelling itself.

7.5.4 Probe evaluation

This step seems to be the simplest one. In order to evaluate whether a
causal effect has been correctly predicted, we only need to check whether the
predicted value of a quantitative probe is in accordance with the one that
we specified at the beginning of the validation. However, it is not trivial to
define what we mean by accordance. In most cases, it is unrealistic to expect
a perfect match between true and predicted value. The discrepancy might
arise due to random statistical fluctuations, slight misspecifications of the true
value or even imprecisions in floating point manipulations. Acknowledging
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these hindrances as unavoidable, it is necessary to specify a tolerance within
which a quantitative probe is judged to be correctly recovered by the model.
The tolerance specification should ideally be a part of the probe specification
at the beginning of the process, in order to ascertain an unbiased evaluation
of the probes (cf. the setup in Section 7.1.2). Nevertheless, we have chosen
to discuss this hyperparameter here where we face the consequences of the
decision. In Section 7.4.3, we have seen that a careless tolerance choice can
render decisive probes and thereby the whole validation strategy ineffective.
Therefore, we recommend selecting the tolerance individually for each of the
probes. The exact value of each tolerance should be guided by the domain
knowledge expert and can include specifications on both an absolute and a
relative scale.

7.5.5 Model evaluation

The model evaluation inherits its difficulty from the underlying probe eval-
uations. Both the selection of an acceptance threshold for the hit rate and
the considerate usage of quantitative probing for adapting or selecting causal
models pose considerable challenges to practitioners.

Setting the acceptance threshold

On the one hand, the scientific method requires us to refute a model as
falsified whenever it fails to correctly recover any of the quantitative probes.
On the other hand, knowing about the possibility of ill-advised tolerance
specifications, it seems pedantic to reject a model that is in accordance with
our expectations for one thousand probes, while only violating one. In such
a case, it might be preferable to attribute the discrepancy to an error on
the side of the validating entity instead of the model. As a consequence, the
acceptance threshold could be lowered, such that models that pass not all,
but most of the falsification attempts, say 95 %, are considered trustworthy.
Note that each softening of the standard is linked to a suspected weakness
on the side of the domain expert. Therefore, it seems preferable to address
these weaknesses directly by searching the domain knowledge for misspecified
probes together with an expert and subsequently removing these, in order
to avoid the need to lower the acceptance threshold. If we do not want to
remove an uncertain probe completely, it is again preferable to specifically
reduce the impact of this probe on the overall hit rate by employing weighted
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hit rates. This strategy accounts for the uncertainty at the right place, as
opposed to introducing an overall lenience via a reduced acceptance threshold
on the hit rate.

Adapting rejected models

This is an optional step, depending on the goal of the analysis. If the model
evaluation has judged the model to be suitable for predicting the target
effect, we can directly skip it. Otherwise, we have two possibilities. First, we
could accept that our candidate model has not passed the tests and therefore
abandon the analysis, in order to avoid producing an erroneous estimate of
the target effect. A second possibility, which is often preferable, both in
academic and industrial applications, is a rework of the candidate model.
This gives us another chance to pass the validation with the modified model.
Machine learning practitioners might rightfully be wary of adapting a model
after it has seen its benchmarking routines, since this allows for accidental
overfitting or even malevolent data snooping: It is trivial to build a model
that correctly predicts all the probes if the ideal values are already known in
advance.

While it is true that the validation procedure becomes easier to pass
with each iteration, we should keep in mind that we are not interested in
the hardest possible validation procedure, but in the best possible model.
Incorporating previous failures into building a better model is an integral
part of all of science, just as classical Newton mechanics was replaced by the
more powerful theory of quantum mechanics after newly observed "probes"
were found to be in conflict with the old theory [91, 92]. The unsatisfactory
alternative would be to give up after the first initial failure, until another
researcher wants to probe a completely independently developed model. This
means that we are forced to allow a model rework in practice, even at the
necessary price of a diminishing effectiveness of the provided quantitative
probes.

In order to mitigate the risk of gradually wearing out our probes, we can
apply a procedure similar to the above discussed train/validation/test split
(cf. Section 5.1.1), which we call causal validation/test split : After probe
selection and specification, part of the probes, say 20%, could be hidden
from the modeller until a candidate model passes all of the other probes and
therefore no longer needs to be reworked, whereas the rest of them is used
for model validation. The suitability of the final model is then judged only
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by checking its performance at recovering the previously unknown probes. It
would bring the same benefits as dividing the non-training samples into a
validation set, which is used for iterative model building and selection, and
a test set, which is used for evaluating the performance of the final model.
Given that the probes are never directly used for model fitting, the train part
is omitted. The causal validation/test split solves the problem of degrading
probes, but it cannot answer what happens if the final model evaluation on
the test set is unsatisfactory. In practice, we would still be forced to return
to a rework stage. Another drawback is the necessity to temporarily ignore
all domain knowledge in the test set, which happens at the cost of thinning
out our valuable domain knowledge. Note that our simulation study has in
no way addressed the possibility of model rework, since no suitable way to
automatically adapt rejected models could be determined. Therefore, it is
not possible at this point to recommend a safe procedure for dealing with
rejected candidate models.

Model selection

A related idea to using quantitative probing for an iterative modelling process
is using it for model selection: If we are presented with a set of candidate
models, it is tempting to probe all of them and select the one with the highest
hit rate. Since there is no possibility of actively overfitting to the probes,
we can then use the best model for target effect estimation. However, it
is important to keep in mind that the best candidate model could still be
severely misspecified if the initial set of models was inappropriate to begin
with: Among the blind, the one-eyed is king. In order to avoid a one-eyed
causal model, it is necessary to validate the chosen model independently after
it has been selected. In correlation-based machine learning, this is again
achieved by using the validation set for model selection and the disjoint test
set for estimating the unbiased performance of the chosen model. To the best
of our knowledge, there exists no other model-agnostic and domain-sensitive
validation strategy that could be recommended for this final validation step.
Therefore, we advise against using quantitative probing for model selection.
If it is unavoidable, the causal validation/test split could again be used as
outlined above with the same drawbacks.
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7.5.6 Target prediction

After having successfully performed all of the above steps, we have reached a
point where we decide that our causal model can be trusted to correctly predict
the actual target effect. Note that probe prediction and target prediction
can be carried out simultaneously if this yields computational benefits, as
long as we are disciplined enough to not use the target estimate prematurely.
Similarly to the step of probe prediction, the concrete mechanism that is used
for target effect prediction is part of the causal model, as opposed to being a
part of the validation procedure, such that no further discussion is needed
here.

7.6 Discussion and open questions

In summary, the simulation study has provided compelling evidence for our
hypotheses H1 and H2: High hit rates at probe recovery, on average, indicate
good performance of the candidate model at target effect estimation and causal
discovery. However, the outlier analysis in Section 7.4 has illustrated that
passing all falsification attempts is no guarantee for having found an adequate
causal model. Following the structure of the outlier analysis, Figure 7.11
recapitulates how a probe needs to be relevant (e.g. connected to the target
effect), selected and equipped with the appropriate tolerance to detect a
modelling error.

Furthermore, the study has evaluated only a specific setup with binary
DGPs, ATEs as causal effects, causal end-to-end analysis with fast greedy
equivalence search and linear regression as modelling strategy (cf. Sec-
tion 7.1.2), as well as specific parameter choices (cf. Section 7.1.3). Various
extensions of the discussed study are possible and we want to briefly explore
different questions of interest for further research.

7.6.1 Parameter studies

A particular configuration of the parameters n, pedge, m, phint, pprobe, ϵprobe has
been investigated (cf. Section 7.1.3). We believe that their values have been
chosen appropriately with respect to probable conditions of practical applica-
tion scenarios. However, similar studies could be carried out while varying
one or multiple of these parameters to further investigate their respective
influences on the overall success of the quantitative probing approach.
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Fig. 7.11: A quantitative probe can only help detect a misspecified candidate model
if it is relevant, selected and equipped with the appropriate tolerance.
A successful validation refutes the incorrect model, whereas the model
is failed to be exposed as untrustworthy if no error is detected by the
probe. If multiple probes are employed, it suffices for any of the probes
to detect an error, even if the rest of them raises no suspicions.

1. The parameters n and pedge determine the nature of the DGP by pre-
scribing the number of variables and the density of the causal graph. By
varying them, an evaluation of the effectiveness of quantitative probing
in DGPs of different complexity can be carried out.

2. The parameters m and phint seem to be of minor interest: The number
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of samples is more likely to influence the performance of the modelling,
as opposed to the validation strategy. Likewise, phint is a parameter
specific to modelling strategies based on causal discovery and decoupled
from the actual validation part.

3. The parameter pprobe plays an important role by determining the cover-
age of the DGP by quantitative probes. As discussed in Sections 7.9
and 7.5.1, it is vital to include both a sufficient number of probes and
probes related to the target variables. By varying pprobe and replacing
the currently uniform sampling distribution over the probes with a
reweighted alternative, our qualitative observations can be quantified.
The results will help practitioners in judging how many probes they
need to gather and which probes to select if they want to maximize the
effectiveness of the strategy subject to time and budget constraints.

4. The parameter ϵprobe has great influence on the overall success of the
validation procedure, given that it determines the acceptance bounds
of each probe estimation. By varying it, the dynamics of balancing
over- and underreject can be studied. Going one step further, tolerance
thresholds based on relative error scales can be investigated, in order to
avoid outliers as in Section 7.10. Simulation-based research following
our recommendation of individually selected acceptance bounds (cf. Sec-
tion 7.5.4) seems out of reach due to the required amount of manual
bound specification.

7.6.2 Theoretical analysis

The above simulation study only provides empirical evidence for the effective-
ness of quantitative probing. Strictly speaking, it is even limited to proving
its effectiveness for modelling based on the concept of causal end-to-end
analysis. Although the latter concern can be fixed simply by exploiting the
model-agnostic nature of quantitative probing and repeating the analysis for
different modelling approaches, settling the debate by a theoretical analysis
would be optimal. Prompted by the approximately linear relation between
hit rate and estimation/discovery performance in Figure 7.2, the author has
attempted to follow this route but failed even for the comparably simple
binary DGP setup. To put the goal into equations, the aim for hypothesis H1
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is to prove a relationship of the form

E(∆τ |η) ≈ βτ · η (7.2)

where ∆τ = |τ − τ̂ | denotes the absolute estimation error, η denotes the hit
rate and βτ < 0 describes the slope of the observed linear relation, or the
analogous statement for a relative error measurement. Similarly, the aim for
hypothesis H2 is to prove a relationship of the form

E(∆G|η) ≈ βG · η (7.3)

where ∆G denotes the Structural Hamming Distance (SHD) between the
true and the discovered causal graph. Using the tools of graph-based causal
modelling, we describe the situation in Figure 7.12:

Even though some components, such as the discovery, identification and
estimation strategies are kept constant in our simulation setup, the modelling
of the remaining parts seems out of reach. In order to simplify the task and
identify a crucial problem, we replace Figure 7.12 by Figure 7.13.

The main message of this illustration is that our three quantities of interest
are causally linked by a fork structure: Both the target estimation error ∆τ
and the hit rate η depend on the quality of the causal graph, which is measured
by ∆G. In our simple DGP, a misspecified causal graph is indeed the main
source of estimation errors, aside from statistical fluctuations, although it is
debatable whether this information is sufficiently represented by ∆G alone.
However, even if we agree to all these simplifications, we still need to provide
the two conditional probability distributions p(∆τ |∆G) and p(η|∆G). A
theoretical derivation of these expressions requires a complete understanding
of how the misspecification of single edges changes the probability of correctly
estimating some target effect. This is an unrealistic goal, since this heavily
depends on the individual graph structure under consideration: The incorrect
edge could introduce a new backdoor path, change a fork into a collider, or
have no relevance at all for some causal effects. Therefore, the author could
not think of a strategy to analytically derive the two CPDs. A different route
is given by reexamining Figure 7.12: It might be impossible to model all the
involved CPDs but we note that both ∆τ and η depend on the same set
of causal parents: The identified estimands prescribe the do-free expression
to be estimated, and the estimation strategy carries out this task using the
generated observational data. If we replace the continuous error term ∆τ by
the binary target hit
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Fig. 7.12: Many variables contribute to the success of causal discovery, probe esti-
mation and target effect estimation. Note that the estimation error ∆τ
and the hit rate η depend on the same set of causal parents: The identi-
fied estimands prescribe the do-free expression to be estimated, and the
estimation strategy carries out this task using the generated observational
data.

yτ =

{
1 if ∆τ ≥ 0.1

0 else
(7.4)

both the hit rate and the target hit are measures of success based on
estimating one or multiple causal effects with an absolute error of less than
0.1. Similar to Figure 7.2, we can plot the mean target hits for each hit rate
in Figure 7.14. Given the binary nature of yτ , we refrain from including the
non-aggregated plot and the boxplot.

The data in the most populated hit rate columns again seems to suggest
an equation of the form
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Fig. 7.13: The reduced version of Figure 7.12 symbolizes that the estimation of
both the target effect and the quantitative probes depends on the quality
of the discovered causal graph. As a measure of the latter, we use the
SHD ∆G.

Fig. 7.14: Target hits (means only): As the hit rate increases, it is more likely to
estimate the target effect with an absolute error of less than 0.1. As in
Figure 7.2, the data for the most populated hit rate columns suggest a
linear relationship between the two quantities (indicated by red line).

E(yτ |η) ≈ βy · η (7.5)

and the above reasoning might even lead us to believe that βy = 1 holds:
Both the probes in the hit rate calculation, as well as the target effect are
randomly chosen ATEs that need to be estimated with the same precision.
However, a closer look at Section 7.1.2 reminds us that the target effect is
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constrained to be nontrivial. Therefore, the probes that make up the hit
rate are on average easier to recover than the nontrivial target effect, which
explains why the fraction of target hits for each mean in Figure 7.14 tends
to be smaller than the corresponding hit rate. It does not seem worthwhile
pursuing closed form relations between the hit rate in the presented simulation
study and other quantities: In our data, all probes share a tolerance of 0.1,
whereas in practical applications all probes should be given specific tolerance
bounds, as discussed in Section 7.5.4. Together with various biases that
influence the probe or target effect selection, such as the above triviality
criterion, an analytic justification of the strategy is likely out of reach. For
the sake of completeness, we summarize our observations about the linear
behavior in Tables 7.1 and 7.2: Table 7.1 holds the Pearson correlation
coefficients ρη,⋆ between the hit rate η and the hit rate specific means of a
second quantity ⋆ ranging over the SHD ∆G, the absolute target estimation
error ∆τ , the relative target estimation error ∆τ

|τ | and the binary target hit yτ .
The first row uses all the means displayed in Figures 7.2 and 7.14, including
those in the sparsely populated hit rate bins. Since no weighting is employed,
these unrepresentative means disproportionally decrease the scores and should
therefore be filtered out by considering only the 6 hit rate bins that contain
the most samples, leading to an almost perfect correlation.

ρη,⋆

∆G ∆τ ∆τ
|τ | yτ

Unfiltered 0.80 0.55 0.66 0.82
Filtered 0.99 0.99 0.94 0.99

Tab. 7.1: Correlation coefficients (based on aggregated data): The Pearson correla-
tion coefficient between the hit rate η and other aggregated quantities of
interest (cf. Figures 7.2 and 7.14) is displayed. In the unfiltered version,
all 14 hit rate specific means entered the calculation (top row). In the fil-
tered version, only the 6 means with a hit rate of η > 0.75 were considered
(bottom row). The unweighted contribution of the sparsely populated
regions with a low hit rate disproportionally decreases the scores.

In order to remind us that the observed linear relation holds only for the
aggregated measures and not or single runs, we repeat the procedure using
singular runs instead of means as input and display the results in Table 7.2.
As we have already visualized in Figure 7.1, the downwards trend is hardly
visible on an individual level, with the exception of a rather weak correlation
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between the hit rate η and the SHD ∆G. Therefore, we cannot make reliable
statements about the success of a single analysis based on its hit rate, except
for the case of a perfect hit rate where we have observed only few outliers
and discussed strategies for avoiding them in Sections 7.4 and 7.5.

ρη,⋆

∆G ∆τ ∆τ
|τ | yτ

Unfiltered 0.64 0.28 0.14 0.30
Filtered 0.62 0.26 0.14 0.29

Tab. 7.2: Correlation coefficients (based on non-aggregated data): The Pearson
correlation coefficient between the hit rate η and other non-aggregated
quantities of interest (cf. Figure 7.1) is displayed. In the unfiltered version,
all 1378 runs entered the calculation (top row). In the filtered version,
only the 1303 runs with a hit rate of η > 0.75 were considered (bottom
row).

7.6.3 Comparative benchmarking

Keeping in mind the model-agnostic and knowledge-based nature of quantita-
tive probing, it is possible to combine the strategy with both the model-specific
and the domain-agnostic validation strategies presented in Section 5.1.2.
Therefore, the author has focussed on establishing the credibility of quanti-
tative probing, as opposed to benchmarking different validation strategies
that work together rather than compete in practice. Nevertheless, it would
be interesting to compare the effectiveness of the various possible combined
validation strategies. The main problem in setting up such a benchmark is
given by the drastically different demands that each validation strategy has
with respect to the capabilities of the model under consideration: Whereas
quantitative probing relies on the ability of the model to predict multiple
causal effects, other strategies might not need non-target effects but other
characteristic properties of the model. These might include:

• Marginal probabilities over the involved variables: Especially for gen-
erative models, such as Bayesian networks, the fitness of the model
could be judged by comparing its entailed marginals with the actually
observed data.
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• Transition probabilities: If the model is to be used in a reinforcement
learning setting (cf. Chapter 9), transition probabilities are closer to
the intended downstream task than the above marginals.

• Graphical properties: For graphical models, the edge density, number
of connected components, maximum number of parents per node and
other descriptors of the graph structure are usable for comparing the
model to prior expectations.

In order to achieve a fair comparison between validation strategies that
test these criteria, the selected model type needs to be able to provide all of
them to the validator. A fully-specified causal Bayesian network would fit
this description, but this is most likely due to the author’s focus on graphical
models that has influenced the exemplary selection of the above properties.
Benchmarking combinations of validation strategies on Bayesian networks
might therefore favor strategies that perform well in this setting but are
unsuitable for validating potential outcomes models.

Even if we accept this flaw, we could use different Bayesian networks as
candidate models: Besides the parameter choices discussed in Section 7.1.3,
we could use randomly generated candidate models or ones that result from
causal learning strategies such as the end-to-end analysis. While random
models might serve the purpose of uniformly covering the space of models,
the validations are more likely to be applied to learned models. Another
point of debate is the question on what basis a candidate model is to be
evaluated as trustworthy in the ground truth itself: Is it enough to correctly
recover the target effect, even if the marginals or the graph structure are
incorrect? Extending our Hypothesis 1 in Chapter 7, we can replace not only
the quantitative probes as our refutation criterion, but also the recovery of
the target effect as our ultimate goal. In a general form, we can then ask how
closely certain properties of a causal model are related to each other, not only
how closely the quantitative probing hit rate is related to successful target
effect estimation.

The author has attempted to tame the complexity of the many involved
entities and their interfaces by employing class diagrams from software en-
gineering [93], as shown in Figure 7.15. For simplicity, we only show the
highest organization level of a possible benchmark study: A ModelGenerator
generates both the true and the candidate model, the latter of which is then
validated using the validation strategy under consideration, an instance of
the Validator class. In order to determine the desired result of the validation,



7. Simulation study 107

Fig. 7.15: The design for a benchmarking of validation studies involves multiple
entities, all of which are to be fleshed out further, in order to create a
prototypical implementation.

the two models must be compared using another instance of the Validator
class. The GeneratorChecker ensures that the generated models provide all
the interfaces that are needed by the Validators, such as the ability to answer
queries about non-target effects in the case of quantitative probing. Although
the author could not finish the implementation of the presented design due
to time constraints, the topic is included in this thesis as a starting point for
other researchers who are interested in a general comparative study of causal
validation strategies.



Part IV

APPLICATIONS
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Despite the author’s focus on methods for performing and validating causal
analyses, we will complement these theoretical considerations with a short
overview of selected applications. The goal is to illustrate how the concepts
can be applied to real problems, here shown at the example of industrially
manufacturing light-emitting diodes (LEDs). Given that some of the data
in the chosen use cases is sensitive and the main contribution of the thesis
consists in the presented methodical developments, we will keep this excursion
brief and highlight only the main points of each application. Firstly, we apply
causal methodology to challenges in optimizing the color point of white LEDs
that use phosphor conversion. These applications motivated the methodical
developments in Parts II and III. Secondly, we describe ongoing efforts to
combine the respective strengths of causal inference and reinforcement learning.
The work in Section 8.3 and Chapter 9 was conducted as part of the Deep
Thought project, which is a collaboration between ams OSRAM and Economic
AI with the aim of studying and implementing novel methods of artificial
intelligence for the optimization of dynamic and complex process chains. The
Deep Thought project is funded by the Bavarian Joint Research Program
(BayVFP) - Digitization (Funding reference: DIK0294/01).



8. LED COLOR POINT OPTIMIZATION

The first two applications of the presented causal inference methods aim at
optimizing the color point of LEDs that use phosphor conversion to emit white
light. Therefore, we will give a short introduction of the working knowledge
that is necessary to understand the context of the analyses, before advancing
to the description of the actual applications.

8.1 Background: White LEDs

Before we proceed to the applications, we introduce just enough working
knowledge about white LEDs to understand the context of the following use
cases. For further reading we recommend Schubert’s seminal and compre-
hensive work on LEDs [94]. The active region of an LED is the die made
out of semiconductor material. Although semiconductors are themselves a
fascinating topic, we will ignore most of the underlying physics and treat
the die as a blackbox that emits light according to a narrow wavelength
distribution. White LEDs can be produced by manufacturing dice that emit
blue light and adding phosphor conversion material around or on top of
the die. When hit by a photon, some particles in the conversion material
emit light following a broader wavelength distribution in the yellow part of
the spectrum. Since not all photons hit these particles on their way, the
human eye receives a mixture of light from the two wavelength distributions
(cf. Figure 8.1), which is perceived as white.

The CIE 1931 color space chromaticity diagram in Figure 8.2 can serve
as a reference system for describing the resulting color in two-dimensional
coordinates. By varying the amount of the applied conversion material, the
manufacturer can achieve different colors, which results in a conversion curve
in the color space that connects the color points of pure unconverted and
completely converted emission. Snell’s law [94]

n1 sin(θ1) = n2 sin(θ2) (8.1)
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Fig. 8.1: Emission spectrum of a white LED, taken with permission from [95]: The
left peak stems from the light that leaves the LED without interacting
with the conversion material. The broader right peak in the yellow region
of the spectrum represents converted light. Overall, the combination of
both contributions is perceived as white by the human eye.

which relates the refractive indices n1, n2 of two materials and the incident
angles θ1, θ2 of a light ray that passes the interface between the materials
(cf. Figure 8.3), plays an important role for determining the exact mixture of
blue and yellow photons: Depending on the involved refractive indices and
angles, unconverted blue light can fail to pass the boundary of the conversion
layer. Whenever this occurs, the chances of the photon being converted
increase, which shifts the overall color point towards the yellow region of
the color space and results in a warmer impression of the emitted white
light. In summary, the LEDs under consideration consist of a blue chip and a
phosphor conversion layer whose properties including its roughness need to
be optimized, in order to achieve a desired white tone.

Due to the complex nature of the color point optimization process, the
color of each LED is measured multiple times along the production chain.
We will make use of the inline color control (ICC) measurement that occurs
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Fig. 8.2: The CIE 1931 color space chromaticity diagram allows to specify colors of
interest in a two-dimensional coordinate system. Both coordinates between
0 and 1 are obtained by embedding the normalized three-dimensional
response of the short, medium and long wavelength cone receptors of the
human eye into the real projective plane [96]. The white point is at (13 ,

1
3),

whereas the regions of blue and yellow emission can be found outside of
the center. Exemplary color point measurements before (C0) and after
conversion (C1), as well as for the final LED (C2) are included. The
dotted conversion curve through C0 and C1 depicts the effect of applying
a varying quantity of a given conversion material made from a green and
a red phosphor component. The white triangle shows the gamut that is
reachable by additionally varying the proportions of the two phosphor
components in the conversion material. Unlike C0 and C1, C2 does not lie
on the conversion curve due to other processes influencing the color point
of the LED at final testing. Figure taken with permission from [97].

immediately after phosphor deposition, as well as the final testing (FT)
measurement that is performed before shipping the finished LED to the
customer. The final testing measurement determines whether the LED can be
sold and is therefore the figure to be optimized with respect to the envisioned
color target. Based on these measurements, the percentage of LEDs that
satisfy the customer’s specifications within an agreed upon tolerance is referred
to as yield and should be maximized.
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Fig. 8.3: A light ray emanating from point Q in a material of refractive index n1

hits the interface to another material of refractive index n2 > n1 and is
refracted according to Snell’s law to reach point P . Figure taken from
[98].

8.2 Color shift analysis

Hitting the color target at final testing is a delicate matter in LED manufac-
turing: Even if the target is hit perfectly after the aforementioned phosphor
conversion step, further process steps are performed between the intermediate
color measurement and its counterpart at final testing, which leads to a shift
of the emitted spectrum and therefore a change in perceived color. There are
two major options of dealing with this shift: On the one hand, we can find its
root causes and eliminate them, in order to avoid the shift altogether. On the
other hand, we can try to predict the shift under various circumstances and
adjust our phosphor conversion target accordingly. Both alternatives require
a causal understanding of the underlying mechanisms, such that a causal
end-to-end analysis with the cause2e package was performed for a certain
type of LED.

A company-internal prestudy suggested that the shift could be partially ex-
plained by a computational model if two properties of the conversion material,
which we will call A and B, were included as inputs. These observations lead
to the conjecture that properties A and B could be used to manipulate the
color shift. Furthermore, properties A and B were experimentally confirmed
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to have a causal influence on the roughness of the boundary between the
conversion layer and the surrounding material. The roughness of boundary
layers in LED manufacturing is known to be an important parameter due
to its substantial impact on the light extraction efficiency of the device [99].
Process experts were therefore interested in knowing whether A and B were
directly responsible for the color shift or only indirectly via the roughness
of the conversion material. The latter possibility was supported by the fact
that a silicon lens is molded on top of the conversion material in a subsequent
process step (cf. Figure 8.4), such that the color point might be calibrated to
the wrong boundary conditions at the interface between conversion material
and surrounding material: According to Snell’s law, the difference between the
refractive indices of the conversion material and the surrounding air influences
the outcoupling dynamics at the time of the conversion step. Therefore, this
difference determines the amount of conversion material that must be applied,
in order to reach the color target. However, the finished LED is equipped
with a lens such that the refractive index of silicon instead of air determines
the actual light outcoupling at final testing. Additionally, the weight of the
applied conversion layer is expected to play an important role: For a conver-
sion layer consisting of a fixed material, the weight is directly proportional to
the thickness of the layer, which in turn influences the likelihood of a blue
photon hitting a phosphor particle on its way through the layer.

Fig. 8.4: At the phosphor conversion process step (left), the LED consists of a
substrate (orange), the active material (blue) and the conversion material
(yellow). The silicon lens is molded on top only later (right), such that it
cannot be taken into consideration for calibrating the application of the
conversion material.

The conducted causal analysis was required to determine not only average
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treatment effects, but also natural direct and indirect effects (cf. Section 1.3.2),
in order to enable a mediation analysis. Based on the above observations,
two main groups of variables were selected for inclusion in the causal model:

• Color point measurements at the inline color control directly after
applying the conversion material (ICCx, ICCy) and at final testing
(FTx, FTy) served as the main measurements for detecting the color
shift. The coordinates refer to the CIE 1931 depicted in Figure 8.2.

• The phosphor characteristics A and B, as well as the total weight W and
surface roughness R of the conversion layer were included to describe
the applied conversion material.

Subsequently, minor preprocessing was applied:

• The final testing measurements were normalized by the corresponding
inline color control measurements, leading to their replacement by the
deviations

DFTx = FTx − ICCx

and
DFTy = FTy − ICCy

in order to directly incorporate the color shift of interest. The inline
color control measurements were not discarded, since a color point
dependent color shift could not be excluded a priori.

• In order to bring the variables to a common scale, each variable X was
replaced by its corresponding z-score

z(X) =
X − E[X]

σX

(8.2)

using the estimators from Equations (1.12) and (1.13).

Afterwards, qualitative domain knowledge was gathered in discussions with
an expert. Some knowledge items, such as the constraint that the deviation
measurements have no causal children, were obvious to the expert whereas
others had to be distilled by iteratively applying causal discovery with the
available knowledge and discussing the resulting graph proposals. Over several
sessions with the expert, the knowledge graph in Figure 8.5 was distilled,
which already eliminated most of the previously possible DAGs before causal
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discovery. After applying fast greedy equivalence search, the causal graph
in Figure 8.5 was used for the identification of suitable causal estimands for
all possible average treatment, natural direct and natural indirect effects
between the involved variables. Due to the lack of unoriented edges, no
manual postprocessing was necessary.

Fig. 8.5: Causal discovery using observational data and qualitative domain knowl-
edge: The knowledge graph (left) indicates edges that are required by
domain knowledge in red. Forbidden edges are omitted from the graph
whereas the remaining possible edges are drawn dotted. The causal discov-
ery result (right) contains all required edges (red), but only a subset of the
possible edges (black) have been selected by the discovery algorithm based
on the observational data. The densely connected graph underlines the
difficulty of resolving all causal dependencies, which is necessary to arrive
at an unbiased estimate of the target effects. Both graphs were created
using cause2e’s graph processing and visualization capabilities during the
study, but redrawn by the author for this thesis, in order to achieve a
clearer arrangement of the nodes.

The resulting estimands were then computed via linear regression, which
corroborated the aforementioned experts’ opinion on the color shift: The full
output and exact numbers are not included for confidentiality reasons, but
the format was the same as in the exemplary causal end-to-end analysis in
Section 4.4. Parameter A had a large influence on the color shift in both
directions, but a sizeable part of it was due to its influence on the roughness
R, as was evidenced by comparing the pertaining overall, direct and indirect
treatment effects. Parameter B turned out to be of minor importance. All the
steps, including reading and preprocessing the data, organizing and visualizing
the domain knowledge, executing the causal discovery and displaying its
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result, identifying and fitting the unbiased regression models, as well as finally
summarizing the results in a detailed report, were performed using the cause2e
package.

Together with the domain expert, non-target effects were used to validate
the model by an intuitive first version of quantitative probing. However,
quantitative probing had not been developed as a principled strategy at
the time of the study, such that cause2e offered no support for automated
validation at the time. Therefore, manual formulation and evaluation of
the probes led to an oversight that was only identified later on: The model
predicted that an increase of the conversion layer weight would lead to a shift
of the inline color control measurement in the blue direction. However, this
effect is in sharp contradiction to the principle of phosphor conversion, which
aims at shifting the color away from the natural blue color of the LED by
adding a yellow peak to the emission spectrum. Consequently, the model could
not be trusted and the communication of its possibly corrupted predictions
about the target effects was avoided before further harm was caused by
potentially changing production processes accordingly. Indeed, problems with
the qualitative domain knowledge were identified that hinted at a misspecified
graphical model. On the other hand, it is possible that the issue is related
to the simple linear model that might have to be replaced by more flexible
estimation strategies. In light of the remaining uncertainties about the model
and the possible dangers of using it in production without thorough validation,
the author decided to focus on developing proper validation strategies for
causal models instead of further investigating the color shift problem. This
decision resulted in the quantitative probing framework that is described in
Part III of this thesis.

8.3 Color rework

The second application is again focussed on reaching a given white color target
by combining a blue LED with a phosphor conversion layer (cf. Figure 8.1).
After applying the conversion layer, an intermediate color measurement is
performed, in order to control the success of the conversion step. In case of
an unsatisfactory outcome, additional phosphor can be deposited on selected
chips to further shift the color point along the conversion curve that is
determined by the fixed conversion material. We will refer to this additional
application of conversion material as the rework step. Perhaps surprisingly,
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an exploratory data analysis showed that reworked chips were less likely to
meet the customers’ requirements at final testing than their non-reworked
counterparts. Should we therefore conclude that the rework step should be
removed from the processing chain? After all, it is costly and seems to worsen
the outcome instead of bettering it. The attentive reader might already be
thinking of Simpson’s paradox (cf. Section 1.1), and rightfully so. It can be
expected that the problematic chips that were selected for rework had worse
chances of fulfilling the requirements, regardless of actually being reworked or
not. Therefore, the criterion C that determines the rework decision acts as a
confounder that influences both treatment (rework R) and outcome (yield Y )
and we must account for it in our analysis. Putting this into proper notation,
we should not use the conditional probabilities

p(Y |R) (8.3)

for a fair assessment of rework effectivity, but rather the do-probabilities

p(Y |do(R), C = c) = p(Y |R,C = c) (8.4)

where the last equality is justified by the causal diagram in Figure 8.6 and
the corresponding causal Bayesian factorization

p(Y,R,C) = p(Y |R,C) · p(R|C) · p(C). (8.5)

Fig. 8.6: The criterion C that determines the rework decision R simultaneously
influences the yield at final testing (Y ). Therefore, C is a confounder that
must be adjusted for, in order to reach an unbiased causal conclusion.

In order to elucidate the nature of the criterion C, it is worth noting that
chips show two sorts of deviations from the desired color point after the first
conversion step (cf. Figure 8.7):
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1. Along the conversion curve: The deviation can be explained by having
applied too little or too much conversion material. Therefore, chips
that show signs of insufficient phosphor application can be reworked
until they reach the desired point on the conversion curve. On the other
hand, chips that suffer from abundant phosphor application cannot be
saved, since it is not possible to remove the material after hardening.

2. Orthogonal to the conversion curve: The deviation can be explained
by problems that are not related to the conversion itself, provided that
the conversion material has been properly crafted. Therefore, these
problems cannot be mitigated by a rework step.

Fig. 8.7: The data lies on an ellipsis whose major axis corresponds to the conversion
curve. Variation along this axis is captured by the first component of a
principal component analysis. Samples selected for rework are colored
blue whereas the remaining ones are colored red. The axes deliberately do
not show units for confidentiality reasons.

It was confirmed that the deciders indeed used the deviation along the
conversion curve as the single criterion for administering the rework step.
Formalizing these observations, the criterion C is given by the first component
of a principal component analysis (PCA) of the color measurement after
the initial conversion step: The two main directions of variation in the data
occurred along and orthogonal to the conversion curve, respectively. Given
that the process is sufficiently optimized to produce colors near the target
color point, the conversion curve could reasonably be approximated by a linear
function, such that a PCA was applicable. The main direction of variation
was along this line, such that the first component of the PCA encoded the
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desired criterion C numerically. In the spirit of quantitative probing, it was
confirmed that the likelihood of a chip being reworked

p(R = 1|do(C = c)) = p(R = 1|C = c) (8.6)

increased with growing distance from the color target for chips with insufficient
conversion material. On the other side of the target color point, chips
with excessive conversion material were all unlikely to be reworked. After
having distilled the previously hidden criterion C and having validated the
model, the data was binned along the C-axis into bins C1, ..., Cn and the
adjusted probabilities from Equation 8.4 were evaluated for the C-bins that
contained both reworked and non-reworked chips. This directly enabled the
calculation of the corresponding conditional average treatment effects (CATEs,
cf. Section 1.3.2). Thereby, the initially negative evaluation of the rework
process could be reversed and the benefit of the process was demonstrated
numerically. In order to provide a single figure, the ATE was calculated by
evaluating the unconditional do-probabilities

p(Y |do(R)) =

i1∑
i=i0

p(Y |R,C ∈ Ci) · p(C ∈ Ci). (8.7)

These were used as a discretized version of the continuous expression

p(Y |do(R)) =

∫ c1

c0

p(Y |R,C = c) · p(C = c)dc (8.8)

in order to account for the C-binning. The summation boundaries i0
and i1 as well as the integration boundaries c0 and c1 enclose the part of
the data in which both reworked and non-reworked chips appeared. Again,
the ATE confirmed the positive effect of the rework step on the overall
yield. Currently, methods from Double Machine Learning [100, 101] are
investigated in the aforementioned Deep Thought funded project, in order to
build a continuous CATE estimator that avoids the C-binning and includes
uncertainty quantification for establishing the significance of the presented
effects [97]. Together with a cost estimate for the rework step itself, the goal
is to give a robust recommendation for when to rework a chip, which includes
reliable estimates of the expected monetary profit.



9. CAUSAL REINFORCEMENT LEARNING FOR
PRODUCTION OPTIMIZATION

The final and most ambitious application of causal inference methods was
the creation of a reinforcement learning environment for optimizing complex
industrial production chains. Although the application to the real use case is
still ongoing, a principled framework for causal reinforcement learning as well
as a proof of concept on simulated data could be distilled as intermediate
results. From a methodological perspective, the ultimate goal behind these
efforts is the extension of the causal end-to-end analysis by including a
component for decision making.

9.1 Problem statement

The manufacturing of LEDs is a complex sequence of many production
processes, such that a variety of choices along the process need to be made in
order to arrive at a viable product. These choices include selecting the right
machines, optimizing their respective control parameters and choosing the
right materials to be used. Given the complex causal mechanisms that govern
the interdependences between the process steps, a naive local optimization of
each stage leads to suboptimal results: A set of choices for the first step that
yields good results at an intermediate measurement can have negative side
effects that only become visible later on. Furthermore, some intermediate
measurements are not understood well enough to be equipped with a clear
target value.

The machine learning community has produced reinforcement learn-
ing (RL) as an approach for devising strategies (policies) that an agent
should employ to advantageously manipulate its environment. In each step,
the agent observes the current state of the environment and performs an ac-
tion, before receiving a reward (cf. Figure 9.1, which is reproduced from [29]).
The overall goal consists in maximizing an aggregation of these rewards,
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although the exact weighting differs depending on the application case. A
proper introduction of RL methods and terminology is vastly out of scope for
this thesis, so we refer the reader to the seminal work by Sutton and Barto
for an in-depth treatment of the subject [29].

Fig. 9.1: After observing the current state, the agent selects an action according
to its policy and thereby manipulates the environment. Consequently,
the environment changes its current state and hands out a reward to the
agent.

The important takeaway is that a classic RL agent needs an environment
that responds to each of its actions by changing its state accordingly and
handing out rewards. In some popular problem settings, such as teaching the
agent to play video games [102, 103], this can be achieved simply by letting the
agent play the original game until its performance has risen to a satisfactory
level. Training the agent by direct interaction with the target environment is
called online RL. In our setting, this strategy cannot be used: Even if the
agent was able to learn the perfect policy for controlling the production chain
over many runs, by then the company would no longer exist because the agent
would sabotage the whole production during the learning phase. Therefore,
we need to find a way of training the agent without interfering with the real
environment. As a substitute for the latter, we can make use of observational
data that has been logged along previous production runs, which the RL
community calls offline RL [104]. Ideally, we can create a digital twin from
the observational data, such that the agent can interact with this surrogate
model as if it were the real environment. We call this approach simulated
online learning and consider it an instance of offline RL.
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9.2 Bridging the gap between causality and reinforcement
learning

From a high-level perspective, simulated online learning does not differ much
from ordinary online RL. The only change is that we need to provide a
surrogate model that responds appropriately to the agent’s actions. In causal
language, an action is an intervention and we are looking for a model that
answers interventional queries of the form

p(Si+1|do(Ai) = a, Si = s) (9.1)

by sampling from an appropriate interventional distribution given the current
state S = si and an action Ai = a. The attentive reader will recognize the
above expression as the covariate-specific intervention from Equation (1.15).
The interventional probabilities that describe the behavior of the system
under various actions are called system dynamics or transition probabilities
by the RL community. In case of a stochastic policy π(s) that makes non-
deterministic decisions based on the observed state, we can even use soft
interventions as indicated in Equation (1.16). Such a model, as explained
in Part II of this thesis, can be built by combining observational data with
domain knowledge and learning the causal graph via causal discovery. The
generative nature of the model can be achieved by equipping the graph with
CPDs, which can again be learned from the observational data, thereby
converting it into a causal Bayesian network (cf. Section 2.2.2). A schematic
overview of the involved entities is given in Figure 9.2. As an alternative to
the simulated online learning approach, model-based RL provides dynamic
programming (DP) algorithms that input the transition probabilities and
directly exploit them for deriving an optimal policy [105, 106].

9.3 State of affairs

In order to separate the basic viability of the outlined strategy and the
practical success of its implementation for real world data, we will first look
at a proof of concept in an idealized setting and then highlight the difficulties
that arose when leaving the latter.
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Fig. 9.2: Schematic overview of the simulated online learning strategy: Logged
observational data and expert knowledge are combined into a generative
causal model that serves as a simulated factory. The agent is trained and
validated by interacting with the simulated factory, before it is transferred
to the real factory.

9.3.1 Proof of concept on synthetic data

Given that the combination of causal inference and reinforcement learning,
both in itself complex fields, was expected to be challenging in practice, the
first step was the implementation of a proof of concept with synthetic data.
This project was realized as a bachelor thesis by Andreas Marchl, which was
co-supervised by the author [107]. A Bayesian network over fully observed
binary variables was created as a known DGP using the aforementioned
pgmpy Python package for probabilistic graphical models [89]. By sampling
from this network, an observational dataset was generated, in order to mimic
our logged production data. Assuming that the causal graph was known,
CPDs for each variable given its causal parents were fitted using maximum
likelihood estimation. The thereby recreated Bayesian network was used
to algebraically calculate the transition probabilities (9.1), which were then
compared to the known ground truth. After verifying their correctness, the
fitted Bayesian network was used as a surrogate model for online RL as
described above. In accordance with the real use case where the quality of
the LED is judged mainly in a final benchmarking step, rewards were only
given at the last step of the agent’s trajectory. A variant of the popular
model-free online Q-learning algorithm [108] was employed to train the agent,
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which lead to near optimal performance on the given task. Additionally, value
iteration as a model-based exhaustive dynamic programming algorithm [29]
was employed and yielded similar results. Near optimality was benchmarked
by running value iteration on the known ground truth model and observing
the results. The process was repeated for two altered versions of the causal
graph:

1. The first alteration consisted in adding further edges to the assumed
causal graph without removing any of the true edges. As expected,
this lead to slower convergence of the maximum likelihood estimation
of the CPDs because the dimension of the CPDs was increased by
the addition of irrelevant parents. By increasing the sample size, the
same performance as for the true causal model could be achieved. This
observation suggests that several causal models can serve as a viable
surrogate model for RL, but the true causal model achieves the best
sample efficiency.

2. The second alteration consisted in a complete rework of the edge struc-
ture, such that all included edges were incorrect. Even for large sample
sizes, the resulting Bayesian network could not recover the correct tran-
sition probabilities. Consequently, the resulting policy after training
the agent fared worse than a random uniform policy. This observation
highlights that it is not enough to fit any Bayesian network without
regarding the underlying causal structure of the DGP.

The quality of the produced goods for varying causal graphs and RL
algorithms is shown in Figure 9.3. A more detailed quantitative evaluation,
including pseudocodes and a comparison between true and recovered transition
probabilities, can be found in Andreas Marchl’s thesis [107].

In summary, the proposed causal reinforcement learning approach leverages
the strengths of causal inference by providing a surrogate model of the
appropriate complexity as an environment for RL algorithms. By establishing
a clean interface between the responsibilities of causality (provide the model)
and RL (exploit the model for learning), the concrete implementations of
the two constituents can be varied independently of each other in a modular
approach. From a high-level perspective, we can see this as an extension of
the causal end-to-end analysis that includes a component for decision making.
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Fig. 9.3: Histograms of the quality states achieved by the agents in the hypothetical
production environment. Every Bayesian network (causal, full and wrong)
used for training was fitted with 100.000 observations of the environment.
The full model is the first above-mentioned alteration and the wrong model
is the second one.

9.3.2 Application to real data

Despite the encouraging results of the proof of concept, the strategy could
not yet be successfully transferred to the intended application domain of LED
production optimization. The major obstacles include:

• The data was too big to fit into RAM, such that currently available
implementations of causal algorithms could not be used. Based on
the Apache Spark engine for big data processing [109], parts of the
causal pipeline had to be reimplemented. The modular nature of causal
end-to-end analysis and other causal analysis strategies considerably al-
leviated this issue because data independent parts, such as the estimand
identification from a given causal graph, could be left unchanged.

• Contrary to the binary data in Section 9.3.1, the involved variables
were either continuous or categorical. Therefore, the difficulty of finding
appropriate functional forms for the CPDs of the desired causal Bayesian
network considerably increased. A binning strategy was employed for the
continuous variables, in order to reduce all data to the same categorical
format. However, the dense causal graph lead to situations where only
sparse or even no observational data was available for the estimation of
the corresponding CPD entries. Furthermore, it is to be expected that
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valuable information is lost by transforming the continuous variables
into their binned counterparts that require a larger set of parameters,
such that the effective sample size is drastically diminished.

• Validating initial models was again complicated by the nature of the
binned data: As discussed in Section 4, reliably assessing causal effects
based on categorical input was complicated, such that quantitative
probing could not be employed. For this use case, causal effect esti-
mation was of minor importance, because the generative model can in
principle just provide the desired interventional distribution by sampling.
Therefore, alternative validation techniques were employed, such as a
histogram-based comparison between the observed marginal distribu-
tions over each variable and their counterparts that were sampled using
the CPDs of the Bayesian network.

• Considering the task of the RL agent, namely optimizing the policy
with respect to the crucial intervention targets, the available data may
not have been suitable: Some of the most important target variables,
according to process experts, were not available for the analysis. For
other variables, the production data showed insufficient variation be-
cause a stable configuration was used for most of the logged production
samples. The latter problem might be solved by providing domain
knowledge driven functional forms for the CPDs, in order to extrapolate
and produce samples from the generative model.

In summary, we see that many problems may be mitigated by having
access to appropriate functional forms for the relevant CPDs. On one hand,
this can be viewed as further evidence that domain knowledge is an essential
pillar of successful causal analysis, and it is reasonable to expect that a subset
of the CPDs can be modelled together with domain experts. On the other
hand, it shows that there are still too many questions to be answered on the
causal side, before we can rely on the causal model as the perfect oracle that
was envisioned in Section 9.2 and Figure 9.2. These questions are currently
being addressed within the aforementioned Deep Thought project.



Part V

CONCLUSION
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In summary, we have addressed two gaps that need to be closed in order to
allow human or digital decision makers to exploit causal methods: Following
Pearl’s graph-based flavor of causal inference, we have constructed a causal
end-to-end analysis including data reading and preprocessing, causal discovery,
identification of an unbiased estimand based on the do-calculus, estimation of
the estimand and reporting of the results. This flexible framework allows us to
combine causal algorithms into a holistic strategy for answering interventional
queries based on observational data and domain knowledge, and the open-
source Python package cause2e [4] is provided as an implementation.

An integral part of such a holistic strategy is the validation of the resulting
causal model, which we have addressed by developing quantitative probing [2]
as a largely model-agnostic approach that benefits from quantitative expert
knowledge. Although an analytic proof for the effectiveness of quantitative
probing could not yet be distilled, we have gathered favorable evidence via
a thorough simulation study. Limits of the strategy have been identified
and discussed extensively at the example of malfunctioning validation runs,
and the shortcomings have inspired a guide for practitioners with the aim
of avoiding critical scenarios. The open-source Python qprobing package [5]
provides researchers with the possibility to further study quantitative probing,
in order to answer the remaining open questions.

The methodological contributions have been illustrated by three use cases
from the domain of manufacturing light-emitting diodes. While the first two
applications have shown the causal end-to-end analysis, quantitative probing
and Simpson’s paradox at play, the third one has been concerned with the
combination of causal inference and reinforcement learning. This attempt at
bridging the gap between causality and decision making, which has served
as a central motivation for this thesis, unfortunately has shown that there
are still plenty of obstacles to overcome. Although the thesis ends on this
sobering note, the author is optimistic that the recent surge of interest in
causal methods will help establish graph-based causal inference as a valuable
tool for researchers of all domains, thereby paving the way for a solution of
the remaining challenges.
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